
JUNOS Cookbook

By Aviva Garrett

...

Publisher: O'Reilly

Pub Date: April 2006

Print ISBN-10: 0-596-10014-0

Print ISBN-13: 978-0-59-610014-8

Pages: 682

Table of Contents | Index

The Juniper Networks routing platforms are becoming the go-to solution for core, edge, metro and
remote office networks, and JUNOS software is behind it all. The operating system is so full of
industrial-strength routing protocols and IP innovations that those treading into the world of JUNOS
will need clarification, explanation, and a showcase example or two. Look no further. This JUNOS
Cookbook provides it all and more.

Yes, you can mine through the 5,000 pages of documentation or take a two-thousand-dollar
training course, but JUNOS's interprocess sophistication can be baffling unless you know the
shortcuts and tricks, as well as those rays of illuminating comprehension that can come only from
those who live with it. JUNOS Cookbook is the first comprehensive book about JUNOS software and
it provides over 200 time-saving step-by-step techniques including discussions about the processes
and alternative ways to perform the same task. It's been tested and tech-reviewed by field
engineers who know how to take JUNOS out for a spin and it's applicable to the entire line of M-, T-,
and J-series routers. JUNOS Cookbook will not only pay for itself the first few times you use it, it will
make your network easier to manage and update.

"Aviva Garrett has done a tremendous job of distilling the features of JUNOS software in a form that
will be useful for a wide audience-students, field engineers, network architects, and other
networking professionals alike will benefit from this book. For many people, this is the only book on
JUNOS they will need."
Pradeep Sindhu, CTO and Founder, Juniper Networks

"This cookbook is superb. Aviva Garrett has masterfully assembled a complete set of practical real-
world examples with step-by-step instructions. Security, management, routing: it's all here!"
Stephen Gill, Research Fellow, Team Cymru

"A technical time-saver for any NOC or SOC working with JUNOS. It's clear, concise, and
informative recipes are are an invaluable resource. "
Scott A. McIntyre, Security Officer, XS4ALL Internet B.V

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JUNOS Cookbook

By Aviva Garrett

...

Publisher: O'Reilly

Pub Date: April 2006

Print ISBN-10: 0-596-10014-0

Print ISBN-13: 978-0-59-610014-8

Pages: 682

Table of Contents | Index

 Copyright

 Foreword

 Preface

 Chapter 1. Router Configuration and File Management

 Introduction

 Recipe 1.1. Configuring the Router for the First Time

 Recipe 1.2. Configuring the Router from the CLI

 Recipe 1.3. Getting Exclusive Access to Configure the Router

 Recipe 1.4. Displaying the Commands to Recreate a Configuration

 Recipe 1.5. Including Comments in the Configuration

 Recipe 1.6. Checking the Syntax of the Configuration

 Recipe 1.7. Activating the Router Configuration

 Recipe 1.8. Debugging a Failed Commit

 Recipe 1.9. Exiting Configuration Mode

 Recipe 1.10. Keeping a Record of Configuration Changes

 Recipe 1.11. Determining What Changes You Have Made to the Configuration

 Recipe 1.12. Configuring the Router by Copying a File from a Server

 Recipe 1.13. Configuring the Router by Copying Text from a Terminal Window

 Recipe 1.14. Backing Up the Router's Configuration

 Recipe 1.15. Scheduling the Activation of a Configuration

 Recipe 1.16. Provisionally Activating a Configuration

 Recipe 1.17. Loading a Previous Router Configuration

 Recipe 1.18. Creating an Emergency Rescue Configuration

 Recipe 1.19. Backing Up Filesystems on M-Series and T-Series Routers

 Recipe 1.20. Backing Up Filesystems on J-Series Routers

 Recipe 1.21. Restoring a Backed-Up Filesystem

 Recipe 1.22. Installing a Different Software Release on M-Series and T-Series Routers

 Recipe 1.23. Installing a Different Software Release on J-Series Routers

 Recipe 1.24. Creating an Emergency Boot Disk

 Recipe 1.25. Gathering Software Version Information

 Recipe 1.26. Gathering Hardware Inventory Information

 Recipe 1.27. Finding Out How Long the Router Has Been Up

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 1.28. Gathering Information Before Contacting Support

 Recipe 1.29. Managing Routers with Similar Configurations

 Recipe 1.30. Managing Redundant Routing Engines

 Recipe 1.31. Using the Second Routing Engine to Upgrade to a New Software Version

 Chapter 2. Basic Router Security and Access Control

 Introduction

 Recipe 2.1. Allowing Access to the Router

 Recipe 2.2. Controlling Root Authentication

 Recipe 2.3. Logging In to the Router's Console

 Recipe 2.4. Setting the Login Authentication Methods

 Recipe 2.5. Setting Up Login Accounts on the Router

 Recipe 2.6. Changing the Format of Plain-Text Passwords

 Recipe 2.7. Changing the Plain-Text Password Encryption Method

 Recipe 2.8. Creating a Login Account for Remote Authentication

 Recipe 2.9. Creating a Group Login Account

 Recipe 2.10. Customizing Account Privileges

 Recipe 2.11. Creating a Privilege Class that Hides Encrypted Passwords

 Recipe 2.12. Setting Up RADIUS User Authentication

 Recipe 2.13. Setting Up TACACS+ User Authentication

 Recipe 2.14. Restricting Inbound SSH and Telnet Access

 Recipe 2.15. Setting the Source Address for Telnet Connections

 Recipe 2.16. Creating a Login Banner

 Recipe 2.17. Finding Out Who Is Logged In to the Router

 Recipe 2.18. Logging Out of the Router

 Recipe 2.19. Forcibly Logging a User Out

 Chapter 3. IPSec

 Introduction

 Recipe 3.1. Configuring IPSec

 Recipe 3.2. Configuring IPSec Dynamic SAs

 Recipe 3.3. Creating IPSec Dynamic SAs on J-Series Routers or Routers with AS PICs

 Recipe 3.4. Using Digital Certificates to Create Dynamic IPSec SAs

 Chapter 4. SNMP

 Introduction

 Recipe 4.1. Configuring SNMP

 Recipe 4.2. Setting Router Information for the MIB-II System Group

 Recipe 4.3. Setting Up SNMP Traps

 Recipe 4.4. Controlling SNMP Access to the Router

 Recipe 4.5. Using a Firewall Filter to Protect SNMP Access

 Recipe 4.6. Controlling Access to Router MIBs

 Recipe 4.7. Extracting Software Inventory Information with SNMP

 Recipe 4.8. Extracting Hardware Inventory Information with SNMP

 Recipe 4.9. Collecting Router Operational Information with SNMP

 Recipe 4.10. Logging SNMP Access to the Router

 Recipe 4.11. Logging Enterprise-Specific Traps

 Recipe 4.12. Using RMON Traps to Monitor the Router's Temperature

 Recipe 4.13. Configuring SNMPv3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 4.14. Tracking Router Configuration Changes

 Recipe 4.15. Setting Up SNMPv3 Traps

 Chapter 5. Logging

 Introduction

 Recipe 5.1. Turning On Logging

 Recipe 5.2. Limiting the Messages Collected

 Recipe 5.3. Including the Facility and Severity in Messages

 Recipe 5.4. Changing the Size of a Logging File

 Recipe 5.5. Clearing the Router's Logfiles

 Recipe 5.6. Sending Log Messages to Your Screen

 Recipe 5.7. Sending Logging Messages to a Log Server

 Recipe 5.8. Saving Logging Messages to the Other Routing Engine

 Recipe 5.9. Turning Off Logging

 Recipe 5.10. Turning On Basic Tracing

 Recipe 5.11. Monitoring Interface Traffic

 Chapter 6. NTP

 Introduction

 Recipe 6.1. Setting the Date and Time on the Router Manually

 Recipe 6.2. Setting the Time Zone

 Recipe 6.3. Synchronizing Time When the Router Boots

 Recipe 6.4. Synchronizing Time Periodically

 Recipe 6.5. Authenticating NTP

 Recipe 6.6. Checking NTP Status

 Chapter 7. Router Interfaces

 Introduction

 Recipe 7.1. Viewing Interface Status

 Recipe 7.2. Viewing Traffic Statistics on an Interface

 Recipe 7.3. Setting an IP Address for the Router

 Recipe 7.4. Setting the Router's Source Address

 Recipe 7.5. Configuring an IPv4 Address on an Interface

 Recipe 7.6. Configuring an IPv6 Address on an Interface

 Recipe 7.7. Configuring an ISO Address on an Interface

 Recipe 7.8. Creating an MPLS Protocol Family on a Logical Interface

 Recipe 7.9. Configuring an Interface Description

 Recipe 7.10. Choosing Primary and Preferred Interface Addresses

 Recipe 7.11. Using the Management Interface

 Recipe 7.12. Finding Out What IP Addresses Are Used on the Router

 Recipe 7.13. Configuring Ethernet Interfaces

 Recipe 7.14. Using VRRP on Ethernet Interfaces

 Recipe 7.15. Connecting to an Ethernet Switch

 Recipe 7.16. Configuring T1 Interfaces

 Recipe 7.17. Performing a Loopback Test on a T1 Interface

 Recipe 7.18. Setting Up a BERT Test on a T1 Interface

 Recipe 7.19. Configuring Frame Relay on a T1 Interface

 Recipe 7.20. Configuring a SONET Interface

 Recipe 7.21. Using APS to Protect Against SONET Circuit Failures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 7.22. Configuring an ATM Interface

 Recipe 7.23. Dealing with Nonconfigurable Interfaces

 Recipe 7.24. Configuring Interfaces Before the PICs Are Installed

 Chapter 8. IP Routing

 Introduction

 Recipe 8.1. Viewing the Routes in the Routing Table

 Recipe 8.2. Viewing Routes to a Particular Prefix

 Recipe 8.3. Viewing Routes Learned from a Specific Protocol

 Recipe 8.4. Displaying the Routes in the Forwarding Table

 Recipe 8.5. Creating Static Routes

 Recipe 8.6. Blackholing Routes

 Recipe 8.7. Filtering Traffic Using Unicast Reverse-Path Forwarding

 Recipe 8.8. Aggregating Routes

 Recipe 8.9. Load-Balancing Traffic Flows

 Recipe 8.10. Adding Martian Addresses

 Recipe 8.11. Changing Route Preferences to Migrate to Another IGP

 Recipe 8.12. Configuring Routing Protocols to Restart Without Losing Adjacencies

 Chapter 9. Routing Policy and Firewall Filters

 Introduction

 Recipe 9.1. Creating a Simple Routing Policy

 Recipe 9.2. Changing a Route's Routing Information

 Recipe 9.3. Filtering Routes by IP Address

 Recipe 9.4. Filtering Long Prefixes

 Recipe 9.5. Filtering Unallocated Prefix Blocks

 Recipe 9.6. Creating a Chain of Routing Policies

 Recipe 9.7. Making Sure a Routing Policy Is Functioning Properly

 Recipe 9.8. Creating a Simple Firewall Filter that Matches Packet Contents

 Recipe 9.9. Creating a Firewall Filter that Negates a Match

 Recipe 9.10. Reordering Firewall Terms

 Recipe 9.11. Filtering Traffic Transiting the Router

 Recipe 9.12. Using a Firewall Filter to Count Traffic on an Interface

 Recipe 9.13. Logging the Traffic on an Interface

 Recipe 9.14. Limiting Traffic on an Interface

 Recipe 9.15. Protecting the Local Routing Engine

 Recipe 9.16. Rate-Limiting Traffic Flow to the Routing Engine

 Recipe 9.17. Using Counters to Determine Whether a Router Is Under Attack

 Chapter 10. RIP

 Introduction

 Recipe 10.1. Configuring RIP

 Recipe 10.2. Having RIP Advertise Its Routes

 Recipe 10.3. Configuring RIP for IPv6

 Recipe 10.4. Enabling RIP Authentication

 Recipe 10.5. Routing RIP Traffic over Faster Interfaces

 Recipe 10.6. Sending Version 1 Update Messages

 Recipe 10.7. Tracing RIP Protocol Traffic

 Chapter 11. IS-IS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Introduction

 Recipe 11.1. Configuring IS-IS

 Recipe 11.2. Viewing the IS-IS Link-State Database

 Recipe 11.3. Viewing Routes Learned by IS-IS

 Recipe 11.4. Configuring IS-IS for IPv6

 Recipe 11.5. Configuring a Level 1Only Router

 Recipe 11.6. Controlling DIS Election

 Recipe 11.7. Enabling IS-IS Authentication

 Recipe 11.8. Redistributing Static Routes into IS-IS

 Recipe 11.9. Leaking IS-IS Level 2 Routes into Level 1

 Recipe 11.10. Adjusting IS-IS Link Costs

 Recipe 11.11. Improving IS-IS Convergence Times

 Recipe 11.12. Moving IS-IS Traffic off a Router

 Recipe 11.13. Disabling IS-IS on an Interface

 Recipe 11.14. Tracing IS-IS Protocol Traffic

 Chapter 12. OSPF

 Introduction

 Recipe 12.1. Configuring OSPF

 Recipe 12.2. Viewing Routes Learned by OSPF

 Recipe 12.3. Viewing the OSPF Link-State Database

 Recipe 12.4. Configuring OSPF for IPv6

 Recipe 12.5. Configuring a Multiarea OSPF Network

 Recipe 12.6. Setting Up Stub Areas

 Recipe 12.7. Creating a Not-So-Stubby Area

 Recipe 12.8. Summarizing Routes in OSPF

 Recipe 12.9. Enabling OSPF Authentication

 Recipe 12.10. Redistributing Static Routes into OSPF

 Recipe 12.11. Adjusting OSPF Link Costs

 Recipe 12.12. Improving OSPF Convergence Times

 Recipe 12.13. Moving OSPF Traffic off a Router

 Recipe 12.14. Disabling OSPF on an Interface

 Recipe 12.15. Tracing OSPF Protocol Traffic

 Chapter 13. BGP

 Introduction

 Recipe 13.1. Configuring a BGP Session Between Routers in Two ASs

 Recipe 13.2. Configuring BGP on Routers Within an AS

 Recipe 13.3. Diagnosing TCP Session Problems

 Recipe 13.4. Adjusting the Next-Hop Attribute

 Recipe 13.5. Adjusting Local Preference Values

 Recipe 13.6. Removing Private AS Numbers from the AS Path

 Recipe 13.7. Prepending AS Numbers to the AS Path

 Recipe 13.8. Filtering BGP Routes Based on AS Paths

 Recipe 13.9. Restricting the Number of Routes Advertised to a BGP Peer

 Recipe 13.10. Authenticating BGP Peers

 Recipe 13.11. Setting Up Route Reflectors

 Recipe 13.12. Mitigating Route Instabilities with Route Flap Damping

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Recipe 13.13. Adding a BGP Community to Routes

 Recipe 13.14. Load-Balancing BGP Traffic

 Recipe 13.15. Tracing BGP Protocol Traffic

 Chapter 14. MPLS

 Introduction

 Recipe 14.1. Configuring LSPs Using LDP as the Signaling Protocol

 Recipe 14.2. Viewing Information and LDP-Signaled LSPs in the Routing Tables

 Recipe 14.3. Verifying that an LDP-Signaled LSP Is Carrying Traffic

 Recipe 14.4. Enabling LDP Authentication

 Recipe 14.5. Tracing LDP Operations

 Recipe 14.6. Setting Up RSVP-Signaled LSPs

 Recipe 14.7. Viewing Information About RSVP-Signaled LSPs in the Routing Tables

 Recipe 14.8. Verifying Packet Labels

 Recipe 14.9. Verifying that the RSVP-Signaled LSP Is Carrying Traffic

 Recipe 14.10. Configuring RSVP Authentication

 Recipe 14.11. Protecting an LSP's Path

 Recipe 14.12. Using Fast Reroute to Reduce Packet Loss Following a Link Failure

 Recipe 14.13. Automatically Allocating Bandwidth

 Recipe 14.14. Prioritizing LSPs

 Recipe 14.15. Allowing IGP Traffic to Use an LSP

 Recipe 14.16. Installing LSPs into the Unicast Routing Table

 Recipe 14.17. Tracing RSVP Operations

 Chapter 15. VPNs

 Introduction

 Recipe 15.1. Setting Up a Simple Layer 3 VPN

 Recipe 15.2. Viewing the VPN Routing Tables

 Recipe 15.3. Adding a VPN for a Second Customer

 Chapter 16. IP Multicast

 Introduction

 Recipe 16.1. Configuring PIM-SM

 Recipe 16.2. Manually Establishing a PIM-SM RP

 Recipe 16.3. Using Auto-RP to Dynamically Map RPs

 Recipe 16.4. Setting Up a PIM-SM Bootstrap Router

 Recipe 16.5. Filtering PIM-SM Bootstrap Messages

 Recipe 16.6. Configuring Multiple RPs in a PIM-SM Domain with Anycast RP

 Recipe 16.7. Configuring Multiple RPs in a PIM-SM Domain Anycast PIM

 Recipe 16.8. Limiting the Group Ranges an RP Services

 Recipe 16.9. Viewing Multicast Routes

 Recipe 16.10. Checking the Groups for Which a PIM-SM Router Maintains Join State

 Recipe 16.11. Manually Configuring IGMP

 Recipe 16.12. Using SSM

 Recipe 16.13. Connecting PIM-SM Domains Using MSDP and MBGP

 Recipe 16.14. Configuring PIM-DM

 Recipe 16.15. Tracing PIM Packets

 About the Author

 Colophon

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Cover Designer: Karen Montgomery

Production
Editor:

Laurel R.T.
Ruma

Interior
Designer:

David Futato

Copyeditor:
Laurel R.T.
Ruma

Cover
Illustrator:

Riverside Natural History

Proofreader:
Matt
Hutchinson

Illustrators:
Robert Romano, Jessamyn Read, and
Lesley Borash

Indexer: Lucie Haskins

Printing History:

April 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The JUNOS Cookbook, the image of an angora goat, and related trade dress are
trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-10014-0

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Foreword
The early days at Juniper Networks were not for the faint of heart. Joining during the hiring rush of
early 1997, I found that the cubes and offices of the small office in Santa Clara, California were
already packed with experienced old handspeople whom I knew had been around the block once
before and would not be shy of expressing themselves. Everyone had strong views on nearly every
aspect of building a router from scratch. If you had the misfortune to sit next to a busy conference
room, a good pair of headphones and large CD collection were required to drown out the arguments.
Design meetings often became heated, and egos were occasionally bruised. Our friends from previous
employers taunted us with predictions of doom.

Despite the arguments, we were all united and driven by one solitary goal: to win the competition to
build the best Internet core router available. This was a serious challenge, considering the primary
competition was a 300-pound gorilla in the form of Cisco Systems. Beating Cisco would require us to
produce a router that tackled the perceived weaknesses in its core router platform. A Juniper
Networks core router would have to provide line-rate performance (which, for the M40 router meant
forwarding around 40 million packets per second), robust core routing protocols, and stable control
software. In short, it had to make customers really want to use it.

The performance requirements meant that the network traffic had to be forwarded entirely in
hardware. This was something that had never before been attempted for a core network router. As a
result, the hardware design of the M40 looked like science fiction to Juniper recruits who had worked
on other networking products. The entire forwarding path of the router was constructed from four
Application Specific Integrated Circuits (ASICs), designed entirely by Juniper. These four ASICs
(called A, B, C, and D to prevent loose lips from revealing their function) were huge, intricate, and
enormously ambitious. A large design team of experienced engineers was assembled to implement
the ASICs and partnered with another large verification team to check that the designs were
functionally correct. Since Silicon Valley was littered with networking startups that had failed because
of silicon design problems, there was enormous pressure on the ASIC teams to get it right first time.
We all knew that a failed ASIC would probably sink the company.

Not that there was any less pressure on the software teams. Convincing customers to deploy a brand
newand essentially untriedcore router into the very heart of their networks is an enormous task. A
new router that crashes, forwards packets erratically, or just basically behaves weirdly won't make
any friends in the network operations team and will find itself unceremoniously removed from the
network. The problem is that designing and implementing a core router that works completely
reliably is a feat that has defeated many companies. And those were "simple" routers where the
packets had been forwarded by software. In contrast, not only did the Juniper router require robust
routing protocols that could scale to the largest networks, but it also had to have a robust software
infrastructure on the CPU-based control boards that managed the fiendishly complicated packet-
forwarding ASICs. Just like the ASIC team, the software team had to get it right the first time.

The JUNOS team started from a basic FreeBSD software base and reworked much of the network
software in the kernel. New user daemons were written, and a carrier-grade routing protocol suite
was implemented. The routing protocols had to be designed to scale to the largest networks and be
robust enough to withstand wild fluctuations in the networks around them, something that the
competing routers often struggled with. Thankfully, Juniper had a deep well of routing protocol talent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

available that could pool its cumulative knowledge to design high-quality routing protocol
implementations. Potential customers still had to be convinced that the new protocol implementations
would interoperate safely within their existing networks. To allow early evaluation, a fledgling JUNOS
system appeared in the form of Olive, which was a standard rackmount PC pretending to be a JUNOS
routing engine board. This prototype system was delivered to potential customers to give them a feel
for the current state of the system and to allow the routing protocols to be debugged.

Juniper had outgrown the offices it occupied in Santa Clara and moved to Mountain View, just off of
Highway 237. We didn't trust the movers to shift the servers between sites and decided to move all
the systems ourselves. At one point, we realized that all of Juniper's primary software servers were
loaded into just one car; paranoia dictated that we split them between two cars just in case
something happened on the short drive to the new office. We drove gingerly to the new site once the
rush hour had finished and breathed a huge sigh of relief when all the servers powered up again. We
also got a surprise bonus when we arrived at the new site. The previous occupants of our new office
block had left a huge rat's nest of network cables in their old data center; they'd obviously decided
that it was just too much work to untangle it. However, since money was tight, we refused to throw
the huge bundle of cables out and spent the next couple of weeks teasing CAT5 cables out of the
jumble during quiet moments. There were enough cables from the bundle to let us completely rewire
the first software engineering lab for free.

Throughout 1997 and early 1998, all the Juniper engineering teams worked pretty much flat-out to
finish the M40. The engineering labs were seldom quiet, and it was hard to tell the weekends from
the weekdays by counting cars in the parking lot. The software teams designed and implemented a
truly astonishing amount of code in a very short period of time. FreeBSD kernel extensions were
added to provide support for chassis management and new Juniper network interfaces. A clean user
interface was designed and implemented to provide a seamless interface to the system and prevent
users from having to edit raw configuration files by hand. An entire embedded microkernel was
written to manage the packet-forwarding engine boards in the system (a fully-loaded M40 would
have nine PFE-related boards), which would allow users to exchange configuration and status
messages with the routing engine and each other. Drivers for the embedded microkernel were
written to manage the ASICs and to allow the route engine to configure the PFE. The size and
complexity of the software required to manage just the various control boards eventually grew to
rival the route engine itself.

The real headache for the software team was that the hardware wasn't available to test with. It can
take many months after a system is assembled in the engineering lab to get it to a usable state as a
complete system. But Juniper couldn't afford for us to spend six months in the lab; there just wasn't
enough money or time. The solution was to get extremely creative with test equipment, evaluation
boards, and generic PCs before the final hardware was available. All sorts of emulation environments
were developed to allow the new routing engine and embedded software to be debugged ahead of
the actual hardware. For months, we used a motley collection of machines cobbled together from
parts and equipment that emulated the final hardware. We didn't really have to disguise the lab for
external visitorsthey wouldn't have been able to guess that each ratty bundle of machines was a
virtual M40.

The payback from this approach was enormous. When the hardware finally arrived, it took just one
week in the engineering lab for the first network packets to be forwarded successfully! Considering
the complexity of the routing engine and PFE interaction, this was a monumental achievement and
meant that we could quickly verify that the hardware worked before shipping the systems to our
early test customers in September of 1998.

Designing and implementing the first release of the JUNOS software was an unforgettable time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although the reader may think I've concentrated way too much on the hardware, the JUNOS
software is intrinsically the way it is because of the hardware. That it has gone through so many
iterations since then, and continues to evolve with the advancement of Juniper routers, is the first
item you should learn in this book.

The second thing that you should know is that although creating the JUNOS software really was a
team effort, Aviva Garrett had the dubious task of documenting our efforts. In fact, she wrote the
first manual. And then, as the manager of Juniper Networks technical publications, she led the effort
from Version 1.0 until very recently, somewhere after 7.x. Now she has come back and worked on
this marvelous book for an entire year, revisiting everything we once did and everything that has
evolved since those early days. JUNOS Cookbook represents a full circle for the JUNOS software suite
somehow, looping from those early, midday conference room marathons to today's ability to route a
large portion of the world's network traffic. Aviva and her team of reviewers and technical experts
have broken it all down into bite-size recipes and discussions that make today's complex array of
features seem like that simple, erudite version we created back in 1998. Enjoy it, and cheers.

Scott Mackie

Former Distinguished Engineer, Juniper Networks February 2006

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
Over the past decade, network service providers have been adding high-performance Juniper
Networks routers to their networks to run their IP backbones. With the recent introduction of smaller
routers with the same basic functionality as the larger core routers, more people will be using Juniper
Networks routers in their business networks and will need to learn how to configure and run the
JUNOS software that runs on their routers. JUNOS Cookbook explains the design of the JUNOS
software and provides recipes and guidelines for setting up common features that you need to
configure and secure your Juniper Networks router.

For those of you who are familiar with Cisco IOS or other routers, you will find the JUNOS software
and the design of the router hardware similar to the other routers in some ways, but very different in
many ways. The initial design of the JUNOS software began in 1996, when the TCP/IP protocol suite
was already mature and it was clear that this protocol suite was the only one needed for network
devices to run on the Internet. Those involved in developing the original JUNOS software and router
hardware all had previous experience designing similar products and were intent on building
something better. Some of the JUNOS features that improve the router operation include:

Software modularity

The JUNOS software comprises several dozen processes, or daemons, rather than a single
process, so you can stop a single process and restart it without having to reboot the entire
router.

Separation of forwarding and routing

The actual forwarding of packets is performed by custom high-speed Application-Specific
Integrated Circuits (ASICs), while routing is performed by a CPU in a small PC that is built into
the router. This separation of the routing and forwarding functions improves router
performance.

Powerful configuration editor and batch configuration activation

The JUNOS configuration editor supports command completion and text files and allows you to
return to previous configurations. Activating JUNOS configurations is a batch process, and
interdependent configuration segments take effect at the same time.

Hard disk in the router

Having a built-in hard disk provides storage on the router for software images needed for
software upgrades, core dumps, and JUNOS documentation, which is accessed with online help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first version of JUNOS software, released in 1998 with the first router, the M40 router, focused
on features for large-capacity Internet service provider (ISP) and telephone company (telco)
networks. Like any network operating system, additions are regularly being made to the software to
incorporate new technologies, protocols, and feature sets. The JUNOS software is updated four times
per year. JUNOS Cookbook was written for Release 7.4, which shipped at the end of 2005. You will
find, however, that most of the recipes in this book also work on earlier software releases, and they
should continue to work on future releases. All recipes in this book were developed on M7i or J2300
routers. And, except where noted, they should run on any Juniper Networks J-series, M-series, and
T-series routing platform. I have indicated when I use features that are available only with certain
software releases or hardware.

Given the diversity and complexity of the JUNOS software, this book cannot cover the entire
operating system. Instead, JUNOS Cookbook consists of a collection of sample router configurations
for the proper installation, configuration, and optimization of your Juniper Networks routers and is
focused on helping you set up the common components of your router: the network interfaces and
the routing protocols themselves.

JUNOS Cookbook is not intended to replace the detailed feature information available on the Juniper
Networks web site (http://www.juniper.net). This book doesn't have the space to provide details
about how particular protocols actually work, and you can find this information in the Internet
Engineering Task Force (IETF) Request for Comment (RFC) and Internet draft documents
(http://www.ietf.org), as well as in a wide variety of books.

I welcome feedback from readers. If you have comments, suggestions, or ideas for other recipes,
please let me know. If there are future editions of the JUNOS Cookbook, I will include any
suggestions that I think are especially useful. You can reach me at aviva@juniper.net.

Organization

As the name suggests, JUNOS Cookbook is organized as a series of recipes. Each recipe begins with a
problem statement that describes a common situation you might face. After each problem statement
is a brief solution that shows a sample router configuration or script that you can use to resolve that
particular problem. A discussion section then describes the solution, how it works, and when you
should or should not use it.

I have tried to construct the recipes so that you can turn directly to the one that addresses your
specific problem and find a useful solution without needing to read the entire book. If the solution
includes terms or concepts you are not familiar with, the chapter introductions should help bridge the
gap. Many recipes refer to other recipes or chapters that discuss related topics. I have also included a
variety of references to other sources in case you need more background information on a particular
subject.

The chapters are organized by the feature or protocol discussed. If you are looking for information on
a particular feature such as BGP, MPLS, or SNMP, you can turn to that chapter and find a variety of
related recipes. Most chapters list basic problems first and any unusual or complicated situations last.
But there are some exceptions to this, such as where I have instead grouped related recipes
together.

http://www.juniper.net
http://www.ietf.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

What's in This Book

The first chapters cover essential system administration functions of the router:

Chapter 1, Router Configuration and File Management

Covers router configuration and file management issues

Chapter 2, Basic Router Security and Access Control

Focuses on router security, describing user access and privileges on the router and how to
protect your router from undesired access

Chapter 3, IPSec

Describes how to use IPSec to encrypt and secure traffic

The next three chapters focus on managing the router:

Chapter 4, SNMP

Discusses how to use the Internet standard SNMP protocol to remotely manage your router

Chapter 5, Logging

Explains how to log events that occur on the router so you can trace the causes of router and
network malfunctions

Chapter 6, NTP

Explains how to properly set the time on your router, both manually and using NTP, to
synchronize time across all network devices

Chapter 7, Router Interfaces

Discusses router interfaces and how to configure interface properties, including the physical
device itself as well as all network addresses associated with an interface, including IPv4, IPv6,
and ISO addresses

The next six chapters cover various aspects of IP routing:

Chapter 8, IP Routing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Looks at IP routing in general, including routing tables, route preferences, and selecting active
routes

Chapter 9, Routing Policy and Firewall Filters

Discusses routing policy, which control the routes that are stored in and advertised from the
routing tables. This chapter also covers firewall filters, which are applied to traffic entering and
exiting router interfaces

Chapter 10, RIP

Looks at RIP, including both Versions 1 and 2 and RIPng

Chapter 11, IS-IS

Looks at IS-IS

Chapter 12, OSPF

Discusses OSPF

Chapter 13, BGP

Discusses the BGP protocol, which controls all IP routing through the backbone of the Internet

The remaining chapters all cover separate topics:

Chapter 14, MPLS

Discusses MPLS, which is commonly used along with RSVP for traffic engineering

Chapter 15, VPNs

Covers BGP-MPLS (Layer 3) VPNs, which are an application of BGP and MPLS that provides
private virtual networks

Chapter 16, IP Multicast

Covers the IP multicast protocols

Conventions

The following formatting conventions are used throughout this book:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Italic

Used for commands, filenames, directories, script variables, keywords, emphasis, technical
terms, and Internet domain names

Constant width

Used for code sections, interface names, and IP addresses

Constant width italic

Used for replaceable text

Constant width bold

Used for user input and emphasis within code

Constant width bold italic

Used to highlight replaceable items within code

Comments and Questions

Please address comments and questions about this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/junosckbk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/junosckbk
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

I have been a professional technical writer for 25 years, and I never imagined how huge an
undertaking it would be to write a book on JUNOS software as the sole responsible author. Writing
any technical book, especially one like this, is never a project that a single person does by herself.
There are always many people involved to review the topics included in the book, answer questions,
review drafts, and set up and maintain lab equipment. Many people helped me in all these areas,
providing me both with general help and with comments in their particular area or areas of JUNOS
and networking expertise. Without their time and patience, this book would not have been possible.
These people include Zaid Albanna, Arthi Ayyangar, Serpil Bayraktar, Ron Bonica, Avram Dorfman,
Jeff Doyle, Simon Gerraty, Steve Gill, Lenny Giuliano, Walter Goralski, Hannes Gredler, Steve
Holman, Ian Jarrett, Dave Katz, Steven Lin, Julian Lucek, Ivan Lum, Umesh Mangla, Pedro Marques,
Brian Matheson, Scott McIntyre, Ina Minei, Andrew Partan, Prakesh Patil, David Ranch, Yakov
Rehkter, Rich Salaiz, Phil Shafer, Nischal Sheth, Gary Tate, Paras Trivedi, Quaizar Vohra, Jim
Washburn, Chris White, and Kiho Yum. Vijay Gill, John Heasley, and Scott McIntyre helped by
providing JUNOS output used to explain a few of the recipes.

Mike Bushong was a great help in setting up and maintaining the router labs used to develop this
book. Richard Hendricks, Brian Matheson, and Michael Estrada also helped with the lab. Sonia Saruba
considerably improved on my writing by editing the entire manuscript.

I would also like to thank a few key people who encouraged me to undertake and continue this
project, especially Patrick Ames, who kept me focused, and also Michael Taillon, Scott Kriens, and
Allen Lo.

Everybody at O'Reilly was great to work with. I particularly appreciate the input from my editors,
David Brickner and Mike Loukides. They helped to create a book of which we can all be proud.

Finally, I must thank my husband David and my daughter Sage for helping me through this project.

Aviva Garrett Saratoga, California

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Router Configuration and File
Management

Introduction

Recipe 1.1. Configuring the Router for the First Time

Recipe 1.2. Configuring the Router from the CLI

Recipe 1.3. Getting Exclusive Access to Configure the Router

Recipe 1.4. Displaying the Commands to Recreate a Configuration

Recipe 1.5. Including Comments in the Configuration

Recipe 1.6. Checking the Syntax of the Configuration

Recipe 1.7. Activating the Router Configuration

Recipe 1.8. Debugging a Failed Commit

Recipe 1.9. Exiting Configuration Mode

Recipe 1.10. Keeping a Record of Configuration Changes

Recipe 1.11. Determining What Changes You Have Made to the Configuration

Recipe 1.12. Configuring the Router by Copying a File from a Server

Recipe 1.13. Configuring the Router by Copying Text from a Terminal Window

Recipe 1.14. Backing Up the Router's Configuration

Recipe 1.15. Scheduling the Activation of a Configuration

Recipe 1.16. Provisionally Activating a Configuration

Recipe 1.17. Loading a Previous Router Configuration

Recipe 1.18. Creating an Emergency Rescue Configuration

Recipe 1.19. Backing Up Filesystems on M-Series and T-Series Routers

Recipe 1.20. Backing Up Filesystems on J-Series Routers

Recipe 1.21. Restoring a Backed-Up Filesystem

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.22. Installing a Different Software Release on M-Series and T-Series Routers

Recipe 1.23. Installing a Different Software Release on J-Series Routers

Recipe 1.24. Creating an Emergency Boot Disk

Recipe 1.25. Gathering Software Version Information

Recipe 1.26. Gathering Hardware Inventory Information

Recipe 1.27. Finding Out How Long the Router Has Been Up

Recipe 1.28. Gathering Information Before Contacting Support

Recipe 1.29. Managing Routers with Similar Configurations

Recipe 1.30. Managing Redundant Routing Engines

Recipe 1.31. Using the Second Routing Engine to Upgrade to a New Software Version

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

Juniper Networks routers are specialized network devices that run network operating system software,
which is called JUNOS software. In this book, we talk about JUNOS features that run on the J-series,
M-series, and T-series router platforms. The M-series and T-series platforms are larger routers typically
used by network service providers, telephone companies, large enterprise companies, and universities.
The J-series routers are smaller routers designed for use by businesses and other organizations to
connect multiple sites or to connect to the Internet. The JUNOS software is pre-installed on a new
Juniper Networks routers: when you turn the router on, the software automatically starts running. The
first task you have to perform is configuring the router.

JUNOS software is distributed as a set of modular software packages that contain the various
components of the software. A given JUNOS software release runs on all J-series, M-series, and T-
series routers. The examples in this book are based on the JUNOS 7.4 release of the software on either
M20 routers or J2300 routers, but all are applicable for the most recent JUNOS releases and for future
releases on the M-, T-, and J-series families of routers.

This chapter discusses basic router configuration, including how to configure the router for the first
time, configuring from the command-line interface (CLI), loading and saving configuration files, and
working with the filesystems and files used by the JUNOS software. It also discusses how to upgrade
the JUNOS software and how to gather hardware and software inventory information.

When you first start a router, you must configure basic network information, such as the router name,
IP address, and domain name, so that the router is reachable on the network. You then configure the
desired software features. To configure the router, you generally log in to the router and use the
JUNOS CLI. Some routers, including the J-series, also have a web-based interface called J-Web. From
the CLI, you specify the configuration in a plain-text (ASCII) configuration file, which you can read
from the CLI (on the router) or by using any ASCII text editor (on a server). From J-Web, the
configuration is saved in an ASCII file that you can read using J-Web, the CLI, or an ASCII text editor.

JUNOS CLI Modes

Throughout this book, we'll show you how to use the JUNOS CLI to configure and monitor the router.
While it is beyond the scope of this book to describe the design of the CLI and all its capabilities, this
section gives an overview of the CLI modes and describes a few of the basic features. Throughout the
rest of this chapter, we'll give more examples of CLI features. For complete information about the
JUNOS CLI, refer to the JUNOS product documentation on the Juniper Networks web site,
http://www.juniper.net/techpubs .

The underlying operating system for the JUNOS software is FreeBSD. As we talk about the various CLI
commands, if a command is derived from FreeBSD or a standard Unix utility, or is simply the FreeBSD
or Unix command packaged with a JUNOS name, we will mention the command it is based on. If you
are already familiar with the FreeBSD or Unix equivalent, this will help you understand the JUNOS
command.

The CLI has two modes: operational mode and configuration mode. Both modes have distinct

http://www.juniper.net/techpubs
http://lib.ommolketab.ir
http://lib.ommolketab.ir

commands. In operational mode , you monitor everything about the router's hardware and software
and check on network operation. In configuration mode , the commands let you define the behavior of
the router, such as indicating what network addresses to use and protocols to run. It is important for
you to understand the differences between these two modes, what types of actions you can take in
which mode, and how to keep track of which mode you are working in. Throughout the rest of this
book, we'll show you how to work in both modes as you configure the router and verify its operation.

On the router, you can identify which mode you are in by looking at the CLI prompt. The base prompt
has the format username@router-name . When you are in operational mode, the prompt ends with a
>; when you are in configuration mode, the prompt ends with a #. We follow this same convention
throughout this book, so by paying attention to the prompt that precedes each command, you can
determine whether you issue the command in operational or configuration mode.

When you first log in to a JUNOS router, you are in operational mode. The commands available in
operational mode let you monitor router and network operations. For example, you can get information
about the router's hardware and software, the network traffic that is coming to the router, and
configured routing protocols. Throughout this book, we'll show you how to use operational mode
commands to check what is happening on the router.

You can use a number of operational mode commands, grouped together into related commands, to
monitor your router and network. On the router, you can find out what the commands are by typing a
question mark (?) to activate the online help. If you type a ? at the top level of operational mode,

you see the broad types of commands you can use to monitor the router and perform operations not
related to configuring the router:

 aviva@router1> ?
 Possible completions:

clear Clear
information in the system

configure Manipulate software configuration information

file Perform file operations
 help Provide help information
 monitor Show real-time debugging information

mtrace Trace multicast path from source to receiver
 ping Ping remote target

quit Exit the management session

request Make system-level requests

restart Restart software process

set Set CLI properties, date/time, craft interface message
 show Show system information

ssh Start secure shell on another host
 start Start shell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

telnet Telnet to another host

test Perform diagnostic debugging
 traceroute Trace route to remote host

For example, you use the various show commands to display information about the router, router
interfaces, and protocol software, and you use the various request commands to perform operations
on the router, such as rebooting and downloading and installing software upgrades.

Two commands in operational mode are not designed to monitor the router or the network:

quit

Use to log out of the CLI and the router

configure

Use to enter configuration mode so you can configure the router

When you enter configuration mode, the prompt changes from username@router-name> to
username@router-name# , and a line before the prompt, [edit] , indicates that you are in
configuration mode. Specifically, [edit] indicates that you are at the top of the configuration hierarchy,
which is similar to being at the top of a Unix filesystem (/). A synonym for the configure command is
edit . (edit is a hidden command, so you won't see it in the list of possible completions.)

Configuration mode has two basic components:

commands

Use to perform actions within the router's configuration

statements

The actual keywords that define the configuration

To create or modify the router's configuration, use the commands that are available in configuration
mode to add statements to the configuration that define the behavior of the router. If you type a ? at

the top level of configuration mode, you see the broad types of commands you can use while
configuring the router:

 [edit]
 aviva@router1# ?
 Possible completions:
 <[Enter]> Execute this command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 activate Remove the inactive tag from a statement
 annotate Annotate the statement with a comment
 commit Commit current set of changes
 copy Copy a statement
 deactivate Add the inactive tag to a statement
 delete Delete a data element
 edit Edit a sub-element
 exit Exit from this level
 help Provide help information
 insert Insert a new ordered data element
 load Load configuration from ASCII file
 quit Quit from this level
 rename Rename a statement
 rollback Roll back to previous committed configuration
 run Run an operational-mode command
 save Save configuration to ASCII file
 set Set a parameter
 show Show a parameter
 status Show users currently editing configuration
 top Exit to top level of configuration

up Exit one level of configuration
 wildcard Wildcard operations

When creating or modifying a configuration, you primarily use the edit and set commands to control
which configuration statement to include. Use the edit command to move to the portion of the
configuration you want to modify (this is similar to using the Unix cd command to move to a different
directory) and use the set command to configure a specific item. The up command moves up one
hierarchy level, and the top command returns to the top of the hierarchy, [edit] (this command is
similar to the Unix cd / command). At the top level, use the exit or quit command to return to
operational mode.

The show command displays the items in the configuration, starting at the current hierarchy level. If
you start at the [edit] level, you see the entire configuration:

 [edit]
 aviva@router1# show
 version "7.4R1.7";
 groups
{
 re0 {
 system {
 host-name router1;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 …

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are at a lower level, you see just that portion of the configuration. The following example starts
in the OSPF portion of the configuration:

 [edit protocols ospf]
 aviva@router1# show
 export export-statics;
 area 0.0.0.0 {
 interface fe-0/0/1.0;
 interface fe-1/0/1.0;
 }

Why are there curly braces here? The JUNOS software uses curly braces to represent the structure of
the configuration file, delineating related sections of configuration parameters. If you are a C-language
programmer, you will be very familiar with them.

The opposite of the set command is delete, which removes an item from the configuration. You can
delete an individual item from the configuration (such as delete interface fe-1/0/1.0 from the OSPF

configuration above), or you can delete an entire sectionhere the area 0.0.0.0 section from the OSPF
configuration:

 [edit protocols ospf]
 aviva@router1# delete area 0.0.0.0
 aviva@router1# show
 export export-statics;

Another time-saving command is run, which allows you to issue an operational command from within
configuration mode. For example, the run show route command from configuration mode is the same
as the show route command from operational mode:

 [edit]
 aviva@router1# run show route <-- # in prompt indicates configuration mode
 inet.0: 20 destinations, 20 routes (19 active, 0 holddown, 1 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 07:36:18
 Discard
 …
 aviva@router> show route <-- > in prompt indicates operational mode
 inet.0: 20 destinations, 20 routes (19 active, 0 holddown, 1 hidden)
 + = Active Route, - = Last Active, * = Both

 0.0.0.0/0 *[Static/5] 07:36:18
 Discard
 …

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What does it mean to move to a portion of the configuration? You can think of the JUNOS configuration
as a hierarchy of configuration statements and containers, delimited by braces ({}) that define the
scope in which those statements apply. This hierarchy provides a way to organize the large number of
features and functions that you can configure on the router, grouping related functions together so
that you can locate them when configuring the router and when reviewing the configuration. When you
first enter configuration mode, you are at the top of the hierarchy. You see your location in the
hierarchy in the line that precedes the configuration mode prompt. The line [edit] indicates that you
are at the top of the hierarchy. The edit command allows you to move within the configuration
hierarchy so that all configuration commands take place within the current container. As you move
through the hierarchy, the text in square brackets changes to indicate your location in the hierarchy.

The configuration statements that you use to set the router's behavior are also arranged in a
hierarchical fashion. If you type edit ? at the top level of the configuration hierarchy, you see the

broad functional JUNOS software areas that you can control through the configuration:

 [edit]
 aviva@router1# edit ?
 Possible completions:
 > access Network access configuration
 > accounting-options Accounting data configuration
 > applications Define applications by protocol characteristics
 > chassis Chassis configuration
 > class-of-service Class-of-service configuration
 > firewall Define a firewall configuration
 > forwarding-options Configure options to control packet sampling
 > groups Configuration groups
 > interfaces Interface configuration
 > logical-routers Logical routers
 > policy-options Routing policy option configuration
 > protocols Routing protocol configuration
 > routing-instances Routing instance configuration
 > routing-options Protocol-independent routing option configuration
 > security Security configuration
 > services Service PIC applications settings
 > snmp Simple Network Management Protocol configuration
 > system System parameters

Each listed completion is the configuration statement at the top of a particular configuration hierarchy.
For example, the statement protocols is at the top of the hierarchy in which you configure all JUNOS
routing protocols:

 [edit]
 aviva@router1# edit protocols
?
 Possible completions:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <[Enter]> Execute this
command
 > bfd Bidirectional Forwarding Detection (BFD) options
 > bgp BGP options
 > connections Circuit cross-connect configuration
 > dvmrp DVMRP options
 > igmp IGMP options
 > isis IS-IS options
 > l2circuit Configuration for Layer 2 circuits over MPLS
 > ldp LDP options
 > link-management LMP options
 > mld MLD options
 > mpls Multiprotocol Label Switching options
 > msdp MSDP configuration
 > ospf OSPF configuration
 > ospf3 OSPFv3 configuration
 > pgm PGM options
 > pim PIM configuration
 > rip RIP options
 > ripng RIPng options
 > router-advertisement IPv6 router advertisement options
 > router-discovery ICMP router discovery options
 > rsvp RSVP options
 > sap Session Advertisement Protocol options
 > vrrp VRRP options
 | Pipe through a command

If you move down through the hierarchyfor example, into the protocols portionthe prompt changes to
[edit protocols] to show you where you are:

 [edit]
 aviva@router1# edit protocols
 [edit protocols]
 aviva@router1#

Learning About the CLI While on the Router

In some of the command lines in the previous section, we showed how to use the ? to get context-
sensitive help about the CLI and the software. This feature is part of the CLI's built-in help, and you will
find yourself using it regularly. When you type a ? at a prompt, the CLI shows a list of commands or
statements you can use, along with a short description of the command or statement. If you partially
type a command or configuration statement name and then type a ?, you see a subset of the available
commands or statements.

For example, in operational mode, you can find a subset of the show commands:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1> show r?
 Possible completions:
 rip Show Routing Information Protocol information
 ripng Show Routing Information Protocol for IPv6 information
 route Show routing table information
 rsvp Show Resource Reservation Protocol information
 aviva@router1> show r

The CLI displays the list of available commands and then redisplays the portion of the command you
already typed so you do not have to retype it. For example, to show the contents of the routing table,
you would now just type oute:

 aviva@router1> show r?
 Possible completions:
 rip Show Routing Information Protocol information
 ripng Show Routing Information Protocol for IPv6 information
 route Show routing table information
 rsvp Show Resource Reservation Protocol information
 aviva@router1> show r
 aviva@router1> show route

In configuration mode, you can list the subset of available configuration statements:

 [edit system]
 aviva@router1# set s?
 Possible completions:
 saved-core-context Save context information for core files
 saved-core-files Number of saved core files per executable (1..64)
 > services System services
 > static-host-mapping Static hostname database mapping
 > syslog System logging facility
 aviva@router1# set s^

To minimize the amount of typing you have to do, press the spacebar or Tab key to have the CLI
complete a nonambiguous command or statement name. This is similar to how some Unix shells
operate.

 aviva@router1# commit a<space>
 Possible completions:
 and-quit Quit configuration mode if commit succeeds
 at Time at which to activate configuration changes
 aviva@router1# commit an<space>
 aviva@router1# command and-quit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first command above is ambiguous because there are two possible completions. The second
command is unique, so when you press the spacebar key (or Tab key), the CLI automatically
completes the command. Press the Enter key to execute the command.

After you have typed a complete command (but before pressing Enter), another set of commands
becomes available to allow you to control the format of the output. To access these commands, you
first type a | (pipe), which directs the output from the command on the left side of the pipe into the
command on the right side of the pipe, in exactly the same way that a Unix pipe works. The following
commands are available:

 aviva@router1> show route | ?
 Possible completions:
 count Count occurrences
 display Show additional kinds of information
 except Show only text that does not match a pattern
 find Search for first occurrence of pattern
 hold Hold text without exiting the --More-- prompt
 last Display end of output only
 match Show only text that matches a pattern
 no-more Don't paginate output
 request Make system-level requests
 resolve Resolve IP addresses
 save Save output text to file
 trim Trim specified number of columns from start of line

Another way to minimize typing is to use keyboard sequences. The simplest are the up and down
arrows, which scroll through the most recent commands you typed. (The JUNOS software maintains a
command history similar to Unix shell history.) If you want to modify rather than retype a command,
you can use the left and right arrows and the Backspace and Delete keys. There are also a number of
keyboard sequences that are similar or identical to Emacs commands that you can use to move around
on a command line and edit it. Table 1-1 lists some common keystrokes.

Table 1-1. Keystroke sequences

Keystroke sequence Action

Ctrl-p Display previous command history line

Ctrl-n Display next command history line

Ctrl-a Move to beginning of line

Ctrl-e Move to end of line

Ctrl-b Move back one character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Keystroke sequence Action

Ctrl-f Move forward one character

Esc-b Move back one word

Esc-f Move forward one word

Ctrl-k Delete everything from cursor to end of line

Esc-d Delete one word forward (the word after the cursor)

Esc-Backspace Delete one word backward (the word before the cursor)

Ctrl-y Paste the deleted word or text at the cursor

Another aspect of the CLI help is online documentation, which is installed on the router's hard disk.
This documentation is taken from the JUNOS product configuration guides. You can use the online
documentation to get information about configuration statements while you are logged in to the router.
To get high-level information about a configuration statement, you can use the help topic command.
The following example shows how to get high-level help about configuring the domain name on the
router:

 aviva@router1> help topic system domain-name
 Configuring the Router's Domain Name
 For each router, you should configure the name of the domain in which the
 router is located. This is the default domain name that is appended to
 hostnames that are not fully qualified. To configure the domain name,
 include the domain-name statement at the [edit system] hierarchy level:
 [edit system]
 domain-name domain-name;
 Example: Configuring the Router's Domain Name
 Configure the router's domain name:
 [edit]
 user@host# set system domain-name company.net
 [edit]
 user@host# show
 system {
 domain-name company.net;
 }

Use the help reference command to get help about the syntax and options of a configuration
statement, similar to Unix manpages. The following shows the reference help that is displayed for the
domain-name configuration statement:

 aviva@router1> help reference system domain-name
 domain-name
 Syntax
 domain-name domain-name;

Ctrl-f Move forward one character

Esc-b Move back one word

Esc-f Move forward one word

Ctrl-k Delete everything from cursor to end of line

Esc-d Delete one word forward (the word after the cursor)

Esc-Backspace Delete one word backward (the word before the cursor)

Ctrl-y Paste the deleted word or text at the cursor

Another aspect of the CLI help is online documentation, which is installed on the router's hard disk.
This documentation is taken from the JUNOS product configuration guides. You can use the online
documentation to get information about configuration statements while you are logged in to the router.
To get high-level information about a configuration statement, you can use the help topic command.
The following example shows how to get high-level help about configuring the domain name on the
router:

 aviva@router1> help topic system domain-name
 Configuring the Router's Domain Name
 For each router, you should configure the name of the domain in which the
 router is located. This is the default domain name that is appended to
 hostnames that are not fully qualified. To configure the domain name,
 include the domain-name statement at the [edit system] hierarchy level:
 [edit system]
 domain-name domain-name;
 Example: Configuring the Router's Domain Name
 Configure the router's domain name:
 [edit]
 user@host# set system domain-name company.net
 [edit]
 user@host# show
 system {
 domain-name company.net;
 }

Use the help reference command to get help about the syntax and options of a configuration
statement, similar to Unix manpages. The following shows the reference help that is displayed for the
domain-name configuration statement:

 aviva@router1> help reference system domain-name
 domain-name
 Syntax
 domain-name domain-name;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Hierarchy Level
 [edit system]
 Description
 Configure the name of the domain in which the router is located. This is
 the default domain name that is appended to hostnames that are not fully
 qualified.
 Options
 domain-name--Name of the domain.
 Usage Guidelines
 See "Configuring the Router's Domain Name".
 Required Privilege Level
 system--To view this statement in the configuration.
 system-control--To add this statement to the configuration.

How We Show Commands and Configurations in This Book

In the explanation of the JUNOS CLI so far, we have described the different types of commands and
illustrated what they look like when you type them on the router. Because it can be a bit confusing for
newcomers, this section summarizes how we show the commands in this book.

Here is an operational mode command:

 aviva@router1> show route table inet.0

The > tells you that you are in operational mode, and the bold font shows what you type. The
command is show route . The word table is an option for this command, and inet.0 is a variable (the

name of a specific routing table) that is required to complete the table option. The table name is
italicized because you can substitute the desired routing-table name.

Here are two configuration mode commands:

 [edit]
 aviva@router1
edit system
 [edit system]
 aviva@router1#
set login user aviva class operator

You know you are in configuration mode because of the # after the prompt and because the CLI shows
your location in the hierarchy of configuration statements by displaying the [edit] and [edit system]
lines. edit and set are configuration mode commands. system, login, user , and class are
configuration statements. aviva is a variable required for the user statement, and operator is an

option required for the class statement. Again, what you type is shown in bold. The commands and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

statements, which you have to type exactly as shown, are in bold, and the variables, which you
substitute with the proper values for your network, are italicized.

In this book, when we show how to configure the router, we generally show just the commands that
you type and the configuration hierarchy level at which you type them, as shown above. Sometimes,
however, if you have to type several commands to configure a feature or if you type a command that
results in a multilevel hierarchy, we'll show you what the resulting configuration looks like. The
configuration commands that we typed above result in the following configuration:

 [edit system]
 aviva@router1# show
 login {
 user aviva {
 class operator;
 }
 }

When viewed from the top level of the statement hierarchy, it looks like this:

 [edit]
 aviva@router1# show
 system {
 login {
 user aviva {
 class operator;
 }
 }
 }

We show this format for a couple of reasons. When you are on the router and configuring it, you might
get lost or forget what you have already configured. The text in square brackets above the prompt
(here, [edit]) is your road map to your location in the configuration statement hierarchy, and the
show command displays what's already in the configuration. Another reason is that a JUNOS
configuration is, in reality, just a text file. The format of the file is the same as what you see when you
type the show command. The indentions indicate the configuration hierarchy levels, the curly braces ({
and }) indicate related groups of configuration statements, and a semicolon marks the end of an
individual statement. In the book, we'll sometimes use this format as a way to summarize all the
statements you need to include to configure a particular feature. You can compare what's in the book
with what you have configured on the router to make sure that you have included everything.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.1. Configuring the Router for the First Time

Problem

You have just installed and turned on a router and are configuring the JUNOS software for the first
time.

Solution

Use the following commands to configure the router:

 root# cli
 root@>
 cli> configure
 [edit]
 root@# set system host-name router1
 root@# set system domain-name mynetwork.com
 root@# set interfaces fxp0 unit 0 family inet address 192.168.15.1/24
 root@# set system backup-router 192.168.15.2
 root@# set system name-server 192.168.15.3
 root@# set system root-authentication plain-text-password
 New password:
 Retype password:
 root@ show
 system {
 host-name router1
;

 domain-name mynetwork.com;

 backup-router 192.168.15.2;
 root-authentication {
 encrypted-password "1ZUlES4dp$OUwWo1g7cLoV/aMWpHUnC/"; ## SECRET-DATA;
 }
 name-server {

 192.168.15.3;
 }
 interfaces {
 fxp0 {
 unit 0 {
 family inet {
 address 192.168.15.1/24;
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 root@# commit
 root@router1# exit
 root@router1>

Discussion

On most JUNOS routers, the JUNOS software is installed in two places: the flash drive and the hard
disk. When you first turn on the router, it runs the version of the software that is installed on the
flash drive. The copy on the hard disk is a backup. Another backup copy of the software is provided
on removable media, typically a PC card or a compact Flash card.

When you turn on your router for the first time, the JUNOS software automatically boots and starts.
On some routers, a script prompts you for basic information about the router. On other routers, you
use the J-Web browser to perform the initial configuration. At this point, you need to enter enough
basic configuration information so that the router can be on the network and others can log in over
the network. To work on the router to perform the initial configuration, you need to connect a
terminal or laptop computer to the router through the console port, which is a serial port on the front
of the router.

When you first connect to the router's console, you must log in as the user root. The root user is
similar to the Unix superuser and has complete access to all functions on the router. Initially, the root
account has no password. You can see that you are root because the prompt on the router shows
the username root#. Start the JUNOS CLI using the command cli. The prompt root@> shows that
you are the user root and that you are in operational mode. Once you have started the CLI, type the
command configure to enter configuration mode. The prompt root@# indicates that you are now in
configuration mode. If you look at the end of the previous example, you see that after you have
activated the configuration with the commit command, the hostname that you configured is added to
the end of the prompt, so the prompts become root@router1# in configuration mode and
root@router1> in operational mode.

When you first configure the router, you set a number of basic properties for the router:

Name of the router (the router's hostname), with the set system host-name command.

Your domain name, with the set system domain command.

IP address of the router's fxp0 interface, with the set interfaces fxp0 command. fxp0 is an
Ethernet management interface that provides a separate out-of-band management network on
the router. (The J-series routers do not have a dedicated management interface. You use one of
the built-in Fast Ethernet interfaces, fe-0/0/0 or fe-0/0/1, instead.) Juniper Networks
recommends that you manage all M-series and T-series routers using the fxp0 interface, which
is reserved for managing the router, so no traffic is forwarded through it. As part of the physical
setup for the router, you should connect fxp0 to an Ethernet network over which you can
perform management tasks. Optimally, the router should also be able to reach its DNS and NTP
servers through this network. If you prefer, you can use any other interface router as a
management interface. For the remainder of this book, we assume that fxp0 (or fe-0/0/0 on J-
series routers) is configured as the management interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IP address of a backup router, with the set system backup-router command. Choose a router
that is directly connected to the local router. Your router uses this backup router only when it is
booting and only if the JUNOS routing software (called the routing protocol process, or RPD)

does not start. If RPD does not start, the router will have no static or default routes, so you will
not be able to access it directly but will have to go through the backup router. When the router
is booting, it creates a static route to the backup router. This route is removed from the routing
table as soon as the routing software starts.

For routers with two Routing Engines, the backup Routing Engine, RE1, still uses the backup
router as a default gateway after the router has booted, so you can use the backup router to
log in to RE1.(RE0 is the primary, or master, Routing Engine. See Recipe 1.30.)

IP address of one or more DNS name servers on your network, with the set system name-
server command. The router uses the DNS name server to translate hostnames into IP
addresses.

Password for the root account. When you initially start a new router, the root account has no
password. To protect the security of the router and your network, it is critical that you configure
a root password. The easiest way to configure this is by entering a plain-text (ASCII) password
using the plain-text-password statement to configure a password. After you press Enter, the
CLI prompts you for the password and then asks you to retype it but does not display what you
type. The password you use cannot be all lowercase letters, all uppercase letters, or all
numbers. There must be a mixture of cases, letters, digits, and punctuation. If you choose a
password that doesn't meet these criteria, you see an error message:

 error: require change of case, digits or punctuation

When you display the password with the show command, the CLI never shows the actual text
that you type. It immediately encrypts the password string using MD5 and displays the
encrypted version in the show command output. The section "Strategies for Choosing
Passwords" in the Introduction to Chapter 2 discusses ways to choose secure passwords. Recipe
2.2 explains how to use SSH authentication for the root user.

For the initial router configuration to take effectand in fact for any router configuration or
configuration changes to take effectyou use the commit command. This command verifies that there
are no syntax errors in the configuration and then activates it.

 root@# commit

 root@router1#

It's worthwhile to take a moment to comment on the style you use to type configuration statements
on JUNOS routers. In this recipe, you are at the [edit] configuration hierarchy level, which is the
very top level of the hierarchy, so you have to type the full hierarchy to the statement as well as the
statement itself. This hierarchy is fairly shallow, so there is not too much extra typing. When you are
working in deeper hierarchies, you may find it easier to move to that hierarchy level, both so you
have less typing to do and have a better sense of where you are in the configuration. For this recipe,
you could type most of the configuration commands from the [edit system] hierarchy level:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 root# cli
 root@>
 cli> configure
 [edit]
 root@# edit system
 [edit system]

 root@# set host-name router1

 root@# set domain-name mynetwork.com

 root@# set backup-router 192.168.15.2

 root@# set name-server 192.168.15.3
 root@# set root-authentication plain-text-password

 New password: $123poppI

 Retype password: $123poppI

Then when you use the show command, you see only the statements at the [edit system] level:

 [edit system]
 root@#show
 host-name router1;
 domain-name mynetwork.com;
 backup-router 192.168.15.2;
 root-authentication {
 encrypted-password "1ZUlES4dp$OUwWo1g7cLoV/aMWpHUnC/"; ## SECRET-DATA;
 }
 name-server {
 192.168.15.3;
 }

In portions of the configuration where you are using the same configuration command repeatedly
with only minor variations, it is handy to use the keystroke sequences listed in Table 1-1.

While the configuration shown in this recipe provides the minimum needed to access the router from
another system on the network, you should add a few other settings to the configuration to provide a
more robust level of basic network connectivity:

 [edit]
 root@router1#

set system ntp server 192.168.2.100

 root@router1# set system time-zone America/Los_Angeles
 root@router1#
set system services ssh

 root@router1# set interfaces lo0 unit 0 family inet address 207.17.139.42/32

 root@router1# set system login user aviva class superuser
 root@router1# set system log user aviva authentication plain-text-password

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 New password:
 Retype new password:
 root@router1# commit

The first command, set system ntp server, configures the IP address of an NTP server so that the
router can set its time properly. Because we have already configured DNS on the router, you could
specify the name of the time server instead of an IP address and it will be translated to an IP
address. To have the router obtain accurate time from the servers, it is good practice to configure a
minimum of four NTP servers. You can also optionally configure the time zone in which the router is
located (see Recipe 6.2); by default, the time zone is UTC.

To be able to log in to the router over the network using SSH, enable SSH services on the router with
the set system services ssh command. For this to work, SSH must also be configured on the
network servers. SSH is also used to copy files to and from the router.(The JUNOS SSH uses the Unix
scp command.) Note that you can also copy files with FTP or HTTP (see Recipe 2.1), but these are
less secure than SSH. On routers with two Routing Engines, you can copy files between the two (see
Recipe 1.30).

The set interfaces command sets the router's IP address by configuring an address on the loopback
interface (see Recipe 7.3). The last two commands set up a non-root user account so an individual
user can log in to the router (see Recipe 2.5).

If your router has two Routing Engines, you also need to configure a hostname and IP address for the
second Routing Engine (see Recipe 1.30).

Again, issue the commit command for the configuration changes to take effect:

 root@router1# commit

Recipes 1.7, 1.15, and 1.16 explain how the commit operation works, including how to provisionally
commit configuration changes.

At this point, you are logged in to the router as the user root, so you have complete control over the
router. As root, you can perform operational actions that shut down the router or make it
inaccessible to the network. While there are times when you want to legitimately perform these types
of operations, you generally want to make sure that the router continues to operate normally, and
you want to minimize the chance of accidentally interfering with the router's operation.

At this point in configuring the router, you should either load an existing router configuration file, as
described in Recipe 1.12, or add user accounts to the configuration (see Recipe 2.5), including one
for yourself, and then log out and log back in to the router using your user ID.

See Also

Recipes 1.7, 1.12, 1.15, 1.16, 1.17, 1.30, 2.1, 2.2, 2.5, 6.2, and 7.3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.2. Configuring the Router from the CLI

Problem

You need to modify the router's configuration using the JUNOS CLI.

Solution

You need to be in configuration mode to configure the router:

 aviva@router1> configure
 Entering configuration mode
 [edit]
 aviva@router1#

Discussion

When you want to modify the router's configuration, log in to the router, enter configuration mode as
shown in this example, and then create a hierarchy of configuration statements that define the
desired router operation. There are other ways to configure the router, which are discussed later in
the chapter, including loading a configuration file from a remote server or from the local router and
loading a previous router configuration.

When you want the configuration to take effect, you must activate, or commit, it.

See Also

Recipe 1.7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.3. Getting Exclusive Access to Configure the
Router

Problem

More than one person can log in to the router and modify the configuration at one time; you want to
prevent someone from overwriting your configuration changes.

Solution

Use the following version of the configure command to enter configuration mode:

 aviva@router1> configure
exclusive
 warning: uncommitted changes will be discarded on exit
 Entering configuration mode
 [edit]
 aviva@router1#

Discussion

Because more than one person can log in to the router at the same time, several people may be
modifying the configuration simultaneously. You will know that another person is editing the
configuration when you enter configuration mode:

 aviva@router1> configure
 Entering configuration mode
 Users currently editing the configuration:
 mike terminal p3 (pid 1088) on since 2005-02-30 19:47:58 PST, idle 00:00:44
 [edit]
 aviva@router1#

Here you can see that mike is also logged in, is working in configuration mode, and has not typed
anything for 44 seconds. However, if someone enters configuration mode after you do, the CLI does
not display any message, so you will not be notified. Instead, you need to check:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit]
 aviva@router1#
status
 Users currently editing the configuration:
 aviva terminal p0 (pid 3358) on since 2005-06-09 11:22:18 PDT
 [edit]
 mike terminal p1 (pid 3768) on since 2005-06-09 11:48:31 PDT
 [edit]

If you need to ensure that no one else can change the configuration while you are modifying it, use
the configure exclusive command to enter configuration mode. With this option, no other users can
change the configuration as long as you are in configuration mode. If you do not commit the changes
you make, they are lost when you exit from configuration mode.

If another user has locked the configuration, you can forcibly log him out:

 aviva@router1> request system logout user mike

You get the username from the message displayed when you enter configuration mode or from the
status command.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.4. Displaying the Commands to Recreate a
Configuration

Problem

You have a copy of a JUNOS router configuration or you need to duplicate a router configuration on
another router and you want to know the commands to use to create the configuration.

Solution

Use the following command to list the commands for creating a configuration:

 [edit]
 aviva@RouterA# show |
display set

Discussion

The show | display set command is a handy way to reverse-engineer a router configuration when
you are trying to duplicate portions of a configuration on many routers or when you need to write up
configuration, monitoring, or troubleshooting procedures for your network operations staff. This
command is especially useful if the configuration is complex and when setting it up involves many
long commands and lots of typing.

When you pipe the output of the configuration mode show command into the display set command,
the JUNOS CLI prints a list of the commands you need to issue from that hierarchy level to create the
existing configuration. When you use the command at the top level of the configuration (at the
[edit] level), the CLI shows all the commands necessary to configure the router, which for most
routers is a lot of commands. By way of illustration, here's a sample of the output for four interfaces
on the router from the [edit interfaces] level:

 [edit interfaces]
 aviva@RouterA# show | display set
 set interfaces fe-0/0/1 unit 0 family inet address 10.0.15.2/24
 set interfaces se-0/0/2 unit 0 family inet address 10.0.21.1/24
 set interfaces se-0/0/3 serial-options clocking-mode dce
 set interfaces se-0/0/3 unit 0 family inet address 10.0.16.1/24
 set interfaces lo0 unit 0 family inet address 192.168.13.1/32

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can cut and paste these commands individually or all at once. They produce the following
configuration:

 [edit interfaces]
 aviva@RouterA# show
 fe-0/0/1 {
 unit 0 {
 family inet {
 address 10.0.15.2/24;
 }
 }
 }
 se-0/0/2 {
 unit 0 {
 family inet {
 address 10.0.21.1/24;
 }
 }
 }
 se-0/0/3 {
 serial-options {
 clocking-mode dce;
 }
 unit 0 {
 family inet {
 address 10.0.16.1/24;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 192.168.13.1/32;
 }
 }
 }

See Also

Recipe 1.13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.5. Including Comments in the Configuration

Problem

You want to add comments to the router configuration file to help other people reading the file
understand how the router is configured.

Solution

Use the annotate command to add a comment:

 [edit protocols ospf]

 aviva@router1# set area 0.0.0.0 interface fe-0/0/0

 aviva@router1# annotate area 0.0.0.0 "backbone routers"

 aviva@router1# show
 /* backbone routers */
 area 0.0.0.0 {
 interface fe-0/0/0.0;
 }

Discussion

It is generally good practice to include comments in the configuration to clarify what is included for
others who read the configuration. You can add comments for statements at the current hierarchy
level in the configuration. In this recipe, we add a comment for the area statement at the [edit
protocols ospf] level. The comment appears immediately before the statement.

To delete a comment, use the annotate command with an empty string:

 [edit protocols ospf]

 aviva@router1# annotate area 0.0.0.0 ""

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.6. Checking the Syntax of the Configuration

Problem

You want to check the syntax of your configuration to make sure there are no errors or missing
statements.

Solution

Check the syntax of the configuration:

 [edit]
 aviva@router1# commit check
 configuration check succeeds
 [edit]
 aviva@router1#

Discussion

As you are configuring the router, if you mistype a JUNOS configuration statement or command, the
CLI gives you immediate feedback and pesters you until you type it correctly. However, this does not
guarantee that you have spelled all variable names correctly or that you haven't omitted any
required statements. Use the commit check command from time to time to check the syntax of the
configuration. This command only checks the syntax; it does not activate the configuration.

If the syntax has no errors, you see the message configuration check succeeds.

If you have made any mistakes in the configuration, a message reports where in the configuration
hierarchy the mistake is and describes the problem. The following example shows that a RIP neighbor
router has been incorrectly configured in two RIP groups:

 [edit]
 aviva@router1# commit check

 [edit protocols rip group alpha-rip-group]
 'neighbor fe-0/0/0.0'
 Failed to configure neighbor fe-0/0/0.0: already in group alpha-rip-group
 error: configuration check-out failed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This is a mistake because a RIP neighbor can be in only one group. You can see from the output that
the mistake is at the [edit protocols rip group alpha-rip-group] hierarchy level of the
configuration.

Even if the syntax of the configuration is correct, that is no guarantee that the configuration will work
as expected.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.7. Activating the Router Configuration

Problem

You have created or modified the router's configuration using the CLI and you want to put the
configuration into effect.

Solution

Use the following command to activate a router configuration:

 [edit]
 aviva@router1# commit
 commit complete
 [edit]
 aviva@router1#

Discussion

When you modify the configuration on the router, you are editing a copy of the router's configuration.
This copy is called the candidate configuration. Any modifications that you make to the configuration
are recorded only in the copy of the configuration and have no impact on the operation of the router.
When you want the configuration to take effect, you must activate, or commit, it. When you do this,
your configuration file is checked to make sure the syntax is correct. It is then activated, becoming
the running configuration.

The commit process is a batch mode operation. While you are in configuration mode, you can make
any number of changes, but these appear only in the candidate configuration and have no effect on
the running configuration. You can even verify the syntax without activating the changes (with the
commit check command; see Recipe 1.6). The commit command batches up all your changes (as well
as changes made by anyone else who is also in configuration mode) and activates them all at once.
This means that interdependent configuration segments take effect at the same time, so you don't
have to worry about the order in which you add statements to the configuration.

When you activate a configuration, the JUNOS software saves a copy of it on the router. This is
discussed further in Recipe 1.14.

It bears repeating that you must activate a configuration using the commit command for it to take
effect. It is a common mistake to forget to commit your changes, so this is often the first thing to
check when debugging an operational problem on the router. It's very easy to see how this might

http://lib.ommolketab.ir
http://lib.ommolketab.ir

happen. You might make a change in the configuration and then immediately use the run command
to issue an operational mode command to verify that the router behavior matches the changed
configuration, or you might get interrupted or distracted while configuring and issue a run command
without committing.

If you have not committed your changes, you are warned when you try to exit configuration mode
and return to operational mode:

 aviva@router1# exit
 The configuration has been changed but not committed
 Exit with uncommitted changes? [yes,no] (yes)

If you choose to exit without committing the changes by pressing Enter or typing yes, the changes
are retained in the candidate configuration but are not activated. When you again enter configuration
mode, you are reminded of the uncommitted changes:

 aviva@router1> configure
 Entering configuration mode
 The configuration has been changed but not committed
 [edit]
 aviva@router1#

If you decide not to exit configuration mode just yet, you can find out what changes you (and anyone
else in configuration mode) made by comparing the candidate configuration to the one that is active
and running:

 [edit]
 aviva@router1# exit
 The configuration has been changed but not committed
 Exit with uncommitted changes? [yes,no] (yes) no
 Exit aborted
 [edit]
 aviva@router1# show | compare
 [edit system services]
 + telnet;

Use the following command if you are not at the top of the configuration:

 [edit system services]
 aviva@router1# top show | compare
 [edit system services]
 + telnet;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For routers with two Routing Engines, use the commit synchronize command to commit the
configuration simultaneously on both Routing Engines (see Recipe 1.30).

See Also

Recipes 1.6, 1.11, 1.14, 1.15, 1.17, and 1.30

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.8. Debugging a Failed Commit

Problem

You are trying to activate a configuration and the commit command continues to fail.

Solution

Watch each step of the commit operation:

 [edit]
 aviva@router1# commit | display detail
 2005-02-24 11:49:49 PST: exporting juniper.conf
 2005-02-24 11:49:49 PST: expanding groups
 2005-02-24 11:49:49 PST: finished expanding groups
 2005-02-24 11:49:49 PST: setup foreign files
 2005-02-24 11:49:49 PST: propagating foreign files
 2005-02-24 11:49:49 PST: complete foreign files
 2005-02-24 11:49:50 PST: dropping unchanged foreign files
 2005-02-24 11:49:50 PST: daemons checking new configuration
 2005-02-24 11:49:50 PST: commit wrapup…
 2005-02-24 11:49:50 PST: updating '/var/etc/filters/filter-define.conf'
 2005-02-24 11:49:50 PST: activating '/var/etc/keyadmin.conf'
 2005-02-24 11:49:50 PST: activating '/var/etc/gtpcd.conf'
 2005-02-24 11:49:50 PST: activating '/var/etc/certs'
 2005-02-24 11:49:50 PST: executing foreign_commands
 2005-02-24 11:49:50 PST: /bin/sh /etc/rc.ui ui_setup_users (sh)
 2005-02-24 11:49:50 PST: executing ui_commit in rc.ui
 2005-02-24 11:49:51 PST: copying configuration to juniper.save
 2005-02-24 11:49:51 PST: activating '/var/run/db/juniper.data'
 2005-02-24 11:49:51 PST: notifying daemons of new configuration
 2005-02-24 11:49:51 PST: signaling 'Routing protocol daemon', pid 2884, signal 1,
 status 0 with notification errors enabled
 commit complete

Discussion

The previous output shows the results of a successful commit operation. If the configuration contains
a mistake, the output indicates where the mistake is:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit]
 aviva@router1# commit | display detail
 2005-02-24 13:46:03 PST: exporting juniper.conf
 2005-02-24 13:46:03 PST: expanding groups
 2005-02-24 13:46:03 PST: finished expanding groups
 2005-02-24 13:46:03 PST: setup foreign files
 2005-02-24 13:46:03 PST: propagating foreign files
 2005-02-24 13:46:03 PST: complete foreign files
 2005-02-24 13:46:03 PST: dropping unchanged foreign files
 2005-02-24 13:46:03 PST: daemons checking new configuration
 [edit protocols rip group alpha-rip-group]
 'neighbor fe-0/0/0.0'
 Failed to configure neighbor fe-0/0/0.0: already in group alpha-rip-group
 error: configuration check-out failed

In this example, the error is in the RIP routing protocol, and this error is flagged by the software
process (the JUNOS term for a Unix daemon) that checks the configuration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.9. Exiting Configuration Mode

Problem

After you have completed making changes to the configuration, you want to activate the
configuration and return to operational mode.

Solution

From the top hierarchy level, activate the configuration and exit configuration mode:

 [edit]
 aviva@router1# commit
 aviva@router1#
quit
 aviva@router1>

From a lower level in the hierarchy, commit and exit configuration mode:

 [edit system]
 aviva@router1# commit
 aviva@router1# top
 [edit]
 aviva@router1# quit
 aviva@router1>

The following command is a quicker variation:

 [edit system]
 aviva@router1# commit
 aviva@router1# exit configuration-mode
 aviva@router1>

From any hierarchy level, activate the configuration and exit configuration mode with a single

http://lib.ommolketab.ir
http://lib.ommolketab.ir

command:

 [edit system]
 aviva@router1# commit and-quit
 aviva@router1>

Discussion

The commands in this recipe show several variations of quitting configuration mode after you have
committed a configuration. If you issue separate commit and quit (or exit) commands, you must be
at the top level of the hierarchy (at the [edit] level) for the exit command to quit configuration
mode. From a lower level, use the top command to return quickly to the [edit] level. If you use the
exit command at a lower level, it returns you to the highest hierarchy from which you previously
issued an edit command.

Here's an example sequence of edit and exit commands to illustrate this:

 [edit]
 aviva@router1# edit protocols
 [edit protocols]
 aviva@router1# edit ospf
 [edit protocols ospf]
 aviva@router1# edit area 0.0.0.1
 [edit protocols ospf area 0.0.0.1]
 aviva@router1# exit
 [edit protocols ospf]
 aviva@router1# exit
 [edit protocols]
 aviva@router1# exit
 [edit]
 aviva@router1# exit

Exiting configuration mode
 aviva@router1>

A quicker way to commit and then exit configuration mode from a lower level in the hierarchy is to
use the commit command followed by the exit configuration-mode command.

Perhaps the quickest way to commit and get back to operational mode is to use the commit and-quit
command. You can use this command at any hierarchy level. One caveat is that this command
succeeds only if there are no mistakes or syntax errors in the configuration. If the commit fails, the
CLI shows an error message, and you remain in configuration mode.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.10. Keeping a Record of Configuration Changes

Problem

When you activate a configuration, you want to include a short message that describes the changes
you made.

Solution

Include a comment when you activate the configuration:

 aviva@router1# commit comment "turned on telnet"

Discussion

It's good practice to include a short description of the changes you made to each version of a
configuration file so you can keep a history of configuration changes. You do this by using the comment
option with the commit command.

To track down what changed in the configuration and when, you can review the comments:

 aviva@router1> show system commit
 0 2005-03-31 20:26:16 UTC by aviva via cli
 turned on telnet
 1 2005-03-31 11:12:28 UTC by aviva via cli
 set host gildor facility-override local4

See Also

Recipe 1.17

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.11. Determining What Changes You Have Made
to the Configuration

Problem

You want to check what changes you have already made when editing a configuration.

Solution

To find out what changes were made during the current configuration session, use the following
command:

 [edit]
 aviva@RouterG# show | compare
 [edit interfaces]
 - fe-1/0/1 {
 - unit 0 {
 - family inet {
 - address 10.0.1.2/24;
 - }
 - }
 - }

To compare the current configuration to the previous one, use the following command:

 [edit]
 aviva@RouterG# show | compare rollback 1
 [edit protocols ospf]
 - export send-direct;

Discussion

When you are working in a small portion or hierarchy of the configuration, you can issue the show
command from time to time to see the configuration statements that were added or deleted so you
can confirm the configuration. However, when making changes throughout the configuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hierarchy, you generally just want a summary of all the changes so you don't have to dig through the
entire router configuration. The easiest way to see all the changes is to move to the top of the
configuration hierarchy with the top command and then use the show | compare command, which is
equivalent to the show | compare rollback 0 command. This is actually two commands: the show
command displays the entire configuration, and the output is piped to the compare command, which
lists only the differences between the two commands (just like the Unix diff command).

The output shown in the "Solution" indicates that you have deleted the fe-1/0/1 interface from the
[edit interfaces] configuration hierarchy. The first line of the output shows the hierarchy level, and
the minus signs indicate the deletions. Plus signs are used when you have added statements, as in
this example:

 [edit]
 aviva@RouterG#
show | compare
 [edit interfaces lo0 unit 0 family inet]
 address 192.168.19.1/32 { … }

+ address 127.0.0.1/32;

You can also compare the current configuration with a previously committed one. The second
command shows how to do this. rollback 1 is the version of the configuration you committed
immediately before committing the current one. The output shown above indicates that the export
send-direct statement was present at the [edit protocols ospf] hierarchy in the previous
configuration but has been removed.

You can also use a filename with the compare command to compare the candidate configuration to a
saved file. This supports URLs and scp-style filenames, so you can use commands such as the
following:

 [edit]

 aviva@RouterG# show | compare aviva@archives:nightly/my-rtr/2005-12-01.conf
 [edit system login user testuser]
 - class operator;
 + class read-only;

See Also

Recipe 1.17

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.12. Configuring the Router by Copying a File
from a Server

Problem

You have a router configuration file on a server and you want to copy it to the router and activate it.

Solution

Use the following command to copy the configuration to the router:

 aviva@router1> file copy server1: router-

base-configuration

.
 aviva@router1's password:
 router-base-configuration 100% 10KB 10.0KB/s 00:00

Verify that the file has been copied to the router:

 aviva@router1> file list
 /var/home/aviva/:
 .ssh/
 router-base-configuration

Then load the file into the JUNOS CLI:

 [edit]
 aviva@router1#

load override router-base-configuration
 load complete

You should use the show command to review the loaded configuration and make sure it's what you
expect:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1# show

Then activate the configuration:

 [edit]
 aviva@router1# commit
 commit complete

Discussion

JUNOS configuration files are simply formatted text files, so you can create a configuration file on a
server and then load it onto the router. Use the file copy command on the router to copy the file
from the server to the router. This command is similar to the Unix scp command. In this example,
the file is copied from the user's home directory on the server to her home directory on the router.
The home directory is effectively the current directory, so you can type a dot (.) for the directory
name, just as in Unix. The explicit path is /var/home/aviva. No text is shown here for the password
because the CLI does not echo what you type when you enter the password.

Because the file copy command uses SSH, the server must also be running SSH. (You can use the
file copy command because you enabled SSH when you initially configured the router [see Recipe
1.1].)

If the file on the server is not in your home directory, you can specify the full path to the directory. In
this example, the file you want to copy is in the /tmp/config directory:

 aviva@router1> file copy server1:/tmp/config/router-base-configuration .

Including the override option with the load command replaces the entire candidate configuration
with the contents of the file you are loading.

If you are just adding a new section to the configuration, use the load merge command instead. For
instance, if you are setting up router access for a new user, you can create a file that contains the
configuration information. For example, if you create the file router-config-new-user that contains
the following:

 system {
 login {
 user mike {
 class superuser;
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

after you copy this file to the router, use the load merge command to incorporate only this section of
the configuration into the candidate configuration:

 [edit]
 aviva@router1# show system
 host-name router1;
 domain-name mynetwork.com;
 backup-router 192.168.600.1;
 time-zone America/Los_Angeles
 root-authentication {
 encrypted-password "1ZUlES4dp$OUwWo1g7cLoV/aMWpHUnC/"; ## SECRET-DATA;
 }
 name-server {
 192.168.400.1;
 }
 login {
 class superuser-local {
 permissions all;
 }
 user aviva {
 class superuser;
 }
 }

 aviva@router1# load merge router-config-new-user
 aviva@router1# show system
 host-name router1;
 domain-name mynetwork.com;
 backup-router 192.168.600.1;
 time-zone America/Los_Angeles;
 root-authentication {
 encrypted-password "1ZUlES4dp$OUwWo1g7cLoV/aMWpHUnC/"; ## SECRET-DATA;
 }
 name-server {
 192.168.400.1;
 }
 login {
 class superuser-local {
 permissions all;
 }
 user aviva {
 class superuser;
 }
 user mike {
 class superuser;
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can see from this output that the user mike is now in the [edit system] section of the candidate
configuration. Again, remember to use the commit command to activate these changes.

If the file containing the configuration for the new users is on a server, you can load and merge it
directly into the configuration:

 [edit]
 aviva@router1# show system login
 class superuser-local {
 permissions all;
 }
 user aviva {
 class superuser;
 }
 aviva@router1#

load merge relative server1:/tmp/router-config-new-user
 aviva@server1's password:
 router-config-new-users 100% 54 0.1KB/s 00:00
 load complete
 [edit]
 aviva@router1# show system login
 class superuser-local {
 permissions all;
 }
 user aviva {
 class superuser;
 }
 user mike {
 class superuser;
 }

The relative option in the load merge command performs the operation without needing the full
hierarchy level. To use this option, the hierarchy level in the file must be clear and unambiguous.

If the file containing the configuration of the new users is on another router, you can use the same
command to copy it to your router. Specify the router name instead of the server name.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.13. Configuring the Router by Copying Text from
a Terminal Window

Problem

You have a portion of a router configuration displayed in another window on your terminal or
computer and you want to copy it to another router and activate it.

Solution

Use the load merge terminal command:

 aviva@router1> configure
 Entering configuration mode
 [edit]
 aviva@router1# load merge terminal
 [Type ^D at a new line to end input]

Then, cut the configuration snippet and paste it here. When you are done, type Ctrl-d.

Discussion

A time-saver when configuring the router is to cut the configuration text from one window on your
computer and paste it into the router's terminal window with the load merge terminal command.
This is a great technique when you are copying configuration text from a browser or email window or
when you are propagating identical or similar configurations from one router to another. To illustrate
with a simple example, suppose you are configuring PIM-SM on all routers and are copying the
configuration from a browser window. Here's the configuration in the browser:

 protocols {
 pim {
 interface all {
 mode sparse;
 version 2;
 }
 interface fxp0.0 {
 disable;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 }

Copy the text from the browser window; then, in the router's configuration window, go into
configuration mode, move to the correct configuration hierarchy level, and paste the text.

If PIM is not yet configured, merge it into the existing configuration:

 aviva@router1> configure
 Entering configuration mode
 [edit]
 aviva@router1#
load merge terminal
 [Type ^D at a new line to end input]

 cut and paste here to add the lines shown below
 protocols
{
 pim {
 interface all {
 mode sparse;
 version 2;
 }
 interface fxp0.0 {
 disable;
 }
 }
 }
 ^D
 load complete

First type the load merge terminal command and press Enter. Then paste the copied text and press
Ctrl-d when done. This snippet starts at the top level of the configuration, [edit protocol], so you
can drop it in with no typing. If the snippet is at a lower level, you either need to move down to that
hierarchy level in the configuration (using the edit configuration mode command) or type in the
opening hierarchy statements and closing braces yourself. If the PIM configuration you have is just
the two interface commands and you are at the [edit] level, you need to type opening lines for
protocols { and pim { and two lines of closing braces:

 [edit]
 aviva@router1# load merge terminal
 [Type ^D at a new line to end input]
 protocols {
 pim {

 type your paste command here to paste the lines shown below
 interface all {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 mode sparse;
 version 2;
 }
 interface fxp0.0 {
 disable;
 }
 }
 }
 ^D
 load complete

If you forget to include the proper number of closing braces, the CLI displays an error.

Here, the first line of the error shows that one closing brace was omitted, and the second line
indicates the hierarchy level:

 terminal:9:(0) syntax error: }
 [edit protocols pim]
 ''
 syntax error
 load complete (1 errors)

However, for a simple syntactical error like this, the CLI adds the remaining closing brace. You can
verify this by checking the configuration:

 [edit]
 aviva@router1# show protocols
 pim {
 interface all {
 mode sparse;
 version 2;
 }
 interface fxp0.0 {
 disable;
 }
 } <-- CLI added this last brace

 [edit]
 aviva@router1# commit check
 configuration check succeeds

You see that the CLI added the final brace. The commit check command confirms this correction,
indicating that there are no syntax errors in the configuration file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.14. Backing Up the Router's Configuration

Problem

You want to back up the router's configuration to a remote server.

Solution

You can use the following command to copy the active configuration file to a server:

 aviva@router1> file copy /config/juniper.conf.gz server1:/homes/aviva/tmp
 aviva@server1's password:
 juniper.conf.gz 100% 2127 2.1KB/s 00:00

From configuration mode, use the save command to copy the candidate configuration to your home
directory on a server:

 [edit]
 aviva@router1# save server1:configuration-march02
 aviva@server1's password:
 tempfile 100% 11KB 11.2KB/s 00:00
 Wrote 433 lines of configuration to 'server1:configuration-march02'

You can also save it to a file in your home directory on the router:

 [edit]

 aviva@router1# save configuration-march02
 Wrote 433 lines of configuration to 'configuration-march02'
 aviva@router1# run file list
 /var/home/aviva:
 .ssh/
 configuration-march02

Another way to back up configuration files is to automatically transfer the file each time you commit the
configuration:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit system]
 aviva@router1# set archival configuration transfer-on-commit

 aviva@router1# set archival configuration archive-sites ftp: //aviva:password@server1.

 mynetwork.com:/m20-config-archives

Discussion

This recipe shows several ways to save a backup copy of the router's configuration. Use the first
command from operational mode to copy the currently running version of the configuration to a server.
The next two commands are configuration mode commands that save the candidate configuration either
to a server or to your home directory on the router. If you use the save command after committing the
configuration, you are effectively backing up the running configuration. The save command saves the
configuration starting at your current hierarchy level. In this recipe, the commands are issued from the
top hierarchy level (the [edit] level), so the entire configuration is saved. If you issue the command
from a lower level, only that portion of the configuration is saved. The following command saves only the
BGP configuration:

 [edit protocols bgp]

 aviva@router1# save configuration-bgp-march02
 Wrote 15 lines of configuration to 'configuration-bgp-march02'

Use the file show command to verify the contents:

 [edit protocols bgp]

 aviva@router1# run file show configuration-bgp-march02
 protocols {
 replace:
 bgp {
 export send-statics;
 group internal {
 type internal;
 local-address 10.0.0.1;
 neighbor 10.0.0.2;
 neighbor 10.0.0.3;
 neighbor 10.0.0.5;
 neighbor 10.0.0.4;
 neighbor 10.0.0.6;
 }
 }
 }

Notice that the CLI inserts the replace : tag into the file. If you later load this file into the configuration
with the load replace configuration-bgp-march02 command, the CLI replaces the entire [edit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

protocols bgp] portion of the configuration with the contents of the file you are loading.

The last command in this recipe automatically transfers the configuration file each time you commit the
configuration, in this case saving all files in the server's directory m20-config-archives . The file is saved
in a compressed (.gz) format with a name that includes the router name and the date and time of the
commit operation, as in this example:

 router1_juniper.conf.gz_20050627_190538

The numbers at the end of the filename are the date (27 June 2005) and the time (1905 hours, or 7:05
p.m., and 38 seconds). One thing to pay attention to is that the time is always in UTC, even if your
router is set to run local time. A variation is to use the set archival command to save the configuration
at specific time intervalshere, every 1,440 minutes (24 hours):

 [edit system]

 aviva@router1# set archival configuration transfer-interval 1440

 aviva@router1# set archival configuration archive-sites ftp://aviva:password@server1.

 mynetwork.com:/m20-config-archives

You can specify any interval from 15 minutes up to 2,880 minutes (48 hours).

One disadvantage of the set archival command is that the password is not encrypted in the
configuration file but is shown in ASCII (clear text).

The JUNOS software also saves a copy of a configuration each time you activate it with any version of
the commit command. The JUNOS software saves the last 50 versions of the configuration: the currently
active configuration and the last 49 committed ones. The active (currently running) configuration
(juniper.conf.gz) and the three most recent previous configurations (juniper.conf.1.gz, juniper.conf.2.gz
, and juniper.conf.3.gz) are in the /config directory, which is on the router's flash disk. Because space is
limited on the flash disk, the files are stored in a compressed format (.gz).

 aviva@router1> file list /config
 /config:
 juniper.conf.1.gz
 juniper.conf.2.gz
 juniper.conf.3.gz
 juniper.conf.gz
 license/
 rescue.conf.gz

The remaining configurationsnamed juniper.conf.4.gz through juniper.conf.49.gz are in the
/var/db/config directory on the router's hard disk.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These files are also compressed.

 aviva@router1> file list /var/db/config
 /var/db/config:
 juniper.conf++
 juniper.conf.10.gz
 juniper.conf.11.gz
 juniper.conf.12.gz
 juniper.conf.13.gz
 juniper.conf.14.gz
 juniper.conf.15.gz
 …
 juniper.conf.49.gz
 juniper.conf.5.gz
 juniper.conf.6.gz
 juniper.conf.7.gz
 juniper.conf.8.gz
 juniper.conf.9.gz

Each time you commit a configuration, that configuration is named juniper.conf.gz , the existing
juniper.conf.gz file is renamed juniper.conf.1.gz , and all the remaining numbered configurations from
before are renumbered. This means that the JUNOS backup configuration files are continually renamed.
This behavior points out one advantage of using the save command: it allows you to store the
configuration in a file with a fixed name.

A publicly available software tool for archiving and monitoring router hardware and software
configuration is RANCID (http://www.shurbbery.net/rancid). You can also use this tool to track
configuration changes.

See Also

Recipe 1.18

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.15. Scheduling the Activation of a Configuration

Problem

You want to activate a new or modified router configuration at a later time.

Solution

You schedule when the software should activate a configuration:

 [edit]
 aviva@router1# commit at 10:45
 configuration check succeeds
 commit at will be executed at 2005-02-25 10:45:00 PST
 Exiting configuration mode

The time is in 24-hour (military) format, so to specify a time after 12 p.m., use the following
command:

 [edit]
 aviva@router1#
commit at 22:45
 configuration check succeeds
 commit at will be executed at 2005-02-25 22:45:00 PST
 Exiting configuration mode

To schedule the activation of a configuration to occur on another day, use the full date and time:

 [edit]

 aviva@router1# commit at "2005-02-26 10:45"
 configuration check succeeds
 commit at will be executed at 2005-02-26 10:45:00 PST
 Exiting configuration mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To cancel a commit operation scheduled with the commit at command, use the following command:

 aviva@router1>
clear system commit
 Pending commit cleared

Discussion

Sometimes you want to delay the activation of a configuration, scheduling it to occur at some later
time. For example, if you are a network provider and have a service window in which network
changes are made, you want the new configuration to take effect during that window. Or, if you are
making changes on a number of routers, you might want the changes to take effect on all the routers
at the same time or within the same time window, especially if you are making changes to routing
protocols that might affect routing and route convergence across the network.

One way to schedule the activation of a configuration is to use the commit at command. The first two
commands in this recipe commit the configuration at a specific time on the current day, one at 10:45
a.m. and the second at 10:45 p.m. The third command schedules the commit at 10:45 a.m. on
another day.

Verify that the commit command has actually executed by looking at the timestamp on the currently
running configuration file:

 aviva@router1>
file list detail /config

 /config:
 total 34
 -rw-r----- 1 root wheel 2127 Feb 25 03:10 juniper.conf.1.gz
 -rw-r----- 1 root wheel 2127 Feb 25 03:00 juniper.conf.2.gz
 -rw-r----- 1 root wheel 2127 Feb 24 12:56 juniper.conf.3.gz
 -rw-r----- 1 root wheel 2127 Feb 25 10:45 juniper.conf.gz
 drwxr-xr-x 2 root wheel 512 Jan 18 2004 license/

You see that the running configuration file, juniper.conf.gz, was activated February 25 at 10:45 a.m.

When you use the commit at command, you must be at the [edit] hierarchy level in the
configuration. The time and date that you specify are interpreted based on the router's time clock.
Use the show system uptime command to determine the current date and time as set on the router:

 aviva@router1> show system uptime
 Current time: 2005-02-25 10:59:09 PST
 System booted: 2005-02-25 03:07:42 PST (07:51:27 ago)
 Protocols started: 2005-02-25 03:10:07 PST (07:49:02 ago)
 Last configured: 2005-02-25 10:45:12 PST (00:13:57 ago) by aviva

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10:59AM PST up 7:51, 1 user, load averages: 0.01, 0.02, 0.00

To determine whether and when a configuration activation has been scheduled, use the show system
commit command:

 aviva@router1> show system commit
 commit requested by aviva via cli at 2005-02-26 10:00:00 PST
 0 2005-02-25 10:45:12 PST by aviva via cli commit at
 1 2005-02-25 03:10:21 PST by aviva via cli
 2 2005-02-25 03:01:01 PST by aviva via cli

The first line shows that a configuration activation has been requested, who requested it, and when it
will occur. This command also lists the history of all the commit operations that have occurred on the
router and who activated them, and provides you with a history of configuration changes.

Another way you know that a configuration activation has been scheduled is that you see a message
when you enter configuration mode:

 aviva@router1> configure
 Entering configuration mode
 Users currently editing the configuration:
 aviva terminal p0 (pid 6231) on since 2005-02-25 11:55:07 PST, idle 00:15:54
 commit-at

Note that when a delayed configuration activation is scheduled, you cannot commit any changes to
the configuration:

 [edit]
 aviva@router1# commit
 error: Another commit is pending

To cancel a scheduled commit, use the clear system commit command.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.16. Provisionally Activating a Configuration

Problem

You want to activate a new or modified router configuration but you are not sure whether the
configuration will somehow disable the router.

Solution

Use the following command to commit the configuration changes provisionally:

 [edit]
 aviva@router1#
commit confirmed
 commit confirmed will be automatically rolled back in 10 minutes unless confirmed
 commit complete

To make the provisional activation permanent, issue the following command:

 [edit]
 aviva@router1# commit
 commit complete

Discussion

When you need to verify that a new or modified configuration is working properlyand especially if the
changes might lock you out of the routeryou can provisionally commit it using the commit confirmed
command.

By default, the commit confirmed command activates the configuration for 10 minutes. Within this
time, you must explicitly confirm that the configuration is acceptableeither by issuing another commit
command or by entering the commit check commandto make the provisional activation permanent. If
you do not, the router loads and activates the previous configuration when 10 minutes have passed.
You have to keep track of the time yourself, because the CLI doesn't warn you when it is expiring.
The CLI displays a message if you do not confirm the commit when returning to the previous
configuration:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Broadcast Message from root@router1
 (no tty) at 15:05 PDT…
 Commit was not confirmed; automatic rollback complete.

When working on a production router, if you are concerned that the change you are making might
not go as expected, specify an interval of less than 10 minutes. If you are quite worried, one minute
might be as long as you want to wait:

 [edit]
 aviva@router1# commit confirmed 1
 commit confirmed will be automatically rolled back in 1 minutes unless confirmed
 commit complete

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.17. Loading a Previous Router Configuration

Problem

You need to undo the active router configuration and return to a previous configuration.

Solution

The rollback configuration mode command loads a previous router configuration as the candidate
configuration:

 [edit]
 aviva@router1# rollback 1
 load complete
 [edit]
 aviva@router1# show
 [edit]
 aviva@router1# commit
 commit complete

Discussion

You can reload any of the previously committed versions of the configuration file. You identify the
version by the number, which is the number in the filename. In this example, we reload the last
saved configuration file, /config/juniper.conf.1.gz. The rollback command only loads the
configuration, making it the candidate configuration, but does not activate it. The commit command
activates the retrieved configuration. While using the show command here is optional, it's good
practice to verify that the configuration you loaded is what you expect.

To figure out which previous configuration you want to retrieve, you can use a few commands that
we have already discussed, including show system commit and file list detail /config. You can
use the file list detail /var/db/config command to find out when the older configuration files
were activated and by whom. You can also see this information when you issue the rollback
command by using the router's built-in help:

 [edit]
 aviva@router1# rollback ?
 Possible completions:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <[Enter]> Execute this command
 0 2005-02-25 12:31:52 PST by aviva via cli
 1 2005-02-25 10:45:12 PST by aviva via cli commit at
 2 2005-02-25 03:10:21 PST by root via cli
 …
 48 2005-02-19 03:01:04 PST by root via cli
 49 2005-02-18 18:24:21 PST by aviva via cli
 | Pipe through a command

See Also

Recipes 1.10, 1.14, and 1.18

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.18. Creating an Emergency Rescue
Configuration

Problem

You want to store a copy of a known good and working configuration that you can load in case of an
emergency without having to remember which rollback number to use.

Solution

When a known stable and working configuration is loaded and running on the router, save it as the
rescue configuration:

 aviva@router1> request system configuration rescue save

You can also save it directly from configuration mode:

 aviva@router1# run request system configuration rescue save

Discussion

You create a rescue configuration to define a known working configuration or a configuration with a
known state that you can roll back to at any time. This alleviates having to know the rollback number
when you use the rollback command. You use the rescue configuration when you need to roll back
to a known configuration or as a last resort if your router configuration and the backup configuration
files become damaged beyond repair. The JUNOS software does not provide a default rescue
configuration.

To return to the rescue configuration, load it with the following command:

 [edit]
 aviva@router1# rollback rescue
 [edit]
 aviva@router1# commit
 commit complete

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The JUNOS software stores the rescue configuration in the /config directory:

 aviva@router1> file list /config
 /config:
 juniper.conf.1.gz
 juniper.conf.2.gz
 juniper.conf.3.gz
 juniper.conf.gz
 rescue.conf.gz

To save a different configuration as the rescue configuration, just use the request system
configuration rescue save command to overwrite the existing file. If you discover that the existing
rescue configuration is not correct, but you don't have something to replace it with, delete the rescue
configuration so no one accidentally uses it:

 aviva@router1> request system configuration rescue delete

See Also

Recipe 1.17

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.19. Backing Up Filesystems on M-Series and T-
Series Routers

Problem

You are preparing to load a different release of the JUNOS software or reload the current release and
you want to save the files that are already on the router.

Solution

On M-series and T-series routers, use the following command to back up the files in the router's
filesystems:

 aviva@router1>
request system snapshot

Discussion

Before you install any JUNOS software, either upgrading, downgrading, or reinstalling the current
software version, you should always back up the files in the router's filesystem. This operation is
sometimes called taking a snapshot of the software. The request system snapshot command copies the
files and filesystems from the current running active partitions to standby partitions. Specifically, it
copies the / (root) filesystem to /altroot , and the /config filesystem to /altconfig . You see information
about the copying as the command is running:

 aviva@router1> request system snapshot
 Copying '/' to '/altroot' .. (this may take a few minutes)
 Copying '/config' to '/altconfig' .. (this may take a few minutes)
 The following filesystems were archived: / /config

You can take a snapshot of the software at any time, but you should always do so before installing a
new JUNOS software version so that you can recover to a known, stable environment in case something
goes wrong when you load the software. You should also always run it after you have successfully
loaded a new version of the software.

Why do you need to back up the JUNOS filesystems? One seasoned administrator has said that the less
you know about the JUNOS filesystems, the more sane you will bebut still, you have to know at least a
little bit. Routers have two internal storage areas, the flash drive (by default, the primary boot device)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the hard disk (the secondary boot device). A copy of the JUNOS software is stored in both. The flash
drive has two filesystems (or partitions): /config , which contains the active and most recent backup
configurations, the rescue configuration, and software licenses, and /, which contains the JUNOS
software (everything installed by the jinstall or jbundle command), the router's SSH keys, and a few
other files generated from the configuration. The hard disk has one filesystem, /var , which is a large
partition that contains system logfiles, diagnostic dump files, archived configuration files, and user home
directories.(Also on the hard disk are the /altroot and /altconfig partitions, which contain a copy of the
JUNOS software and related files and a swap partition.) When booting from the flash drive, the router
uses the software and files on the flash drive. If the boot fails, it automatically tries the software and
files on the hard disk. For the boot failover process to work, you must have already created a snapshot
from a working version of the software.

There is one additional filesystem on the router, /tmp , which is a RAM disk (a memory filesystem).

To verify that the snapshot was successful, you might want to list the contents of the filesystems (with
the file list command). However, the /altroot and /altconfig filesystems are not mounted, so they are
not visible even though the underlying directories are still present:

 aviva@router1> show system storage
 Filesystem Size Used Avail Capacity Mounted on
 /dev/
ad0s1a 77M 39M 32M 55% /devfs
 16K 16K 0B 100% /dev/
 /dev/vn0 13M 13M 0B 100% /packages/mnt/jbase
 /dev/vn1 37M 37M 0B 100% /packages/mnt/jkernel-7.4R1.7
 /dev/vn2 12M 12M 0B 100% /packages/mnt/jpfe-M40-7.4R1.7
 /dev/vn3 2.3M 2.3M 0B 100% /packages/mnt/jdocs-7.4R1.7
 /dev/vn4 14M 14M 0B 100% /packages/mnt/jroute-7.4R1.7
 /dev/vn5 5.1M 5.1M 0B 100% /packages/mnt/jcrypto-7.4R1.7
 /dev/ad0s1e 12M 16K 11M 0% /config
 procfs 4.0K 4.0K 0B 100% /proc
 /dev/
ad1s1f 9.4G 1.2G 7.4G 14% /var

How do you know from the output of this command which partition is where? /dev/ad0s1a refers to a
portion of a disk. It is drive ad0 (the storage device) slice 1 (the first "slice," and there's generally just
one slice), partition a (which is the first partition on a disk and always refers to the root partition).
Similarly, /dev/ad1s1f refers to drive ad1 , slice 1 , partition f .

On most M-and T-series routers, ad0 is the flash disk. In the case of router1 , an M20 router that has an
RE-2.0, ad0 is the flash disk and ad1 is the hard disk:

 aviva@router1> show chassis hardware detail
 Hardware inventory:
 Item Version Part number Serial number Description
 Chassis 25708 M20
 Backplane REV 03 710-002334 BB9738 M20 Backplane
 Power

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Supply A REV 06 740-001465 005234 AC Power Supply
 Display REV 04 710-001519 BA4681 M20 FPM Board
 Routing Engine 0 REV 06 740-003239 1000224893 RE-2.0
 Routing Engine 0 58000007348d9a01 RE-2.0
 ad0 91 MB SanDisk SDCFB-96 i3238140903 Compact Flash
 ad1 11513 MB IBM-DARA-212000 AH0AHGN1017 Hard Disk
 Routing Engine 1 REV 06 740-003239 9000022146 RE-2.0
 Routing Engine 1 d800000734745701 RE-2.0
 ad0 91 MB SanDisk SDCFB-96 ggbsc410020 Compact Flash
 ad1 8063 MB TOSHIBA MK2016GAP Y0T39909T Hard Disk
 …

The output of this command also shows the manufacturer of the disks.

Use the show system storage command to find out the drive names:

 aviva@router1> show system storage
 Filesystem Size Used Avail Capacity Mounted on
 /dev/ad0s1a 77M 40M 31M 56% /
 devfs 16K 16K 0B 100% /dev/
 /dev/vn0 13M 13M 0B 100% /packages/mnt/jbase
 /dev/vn1 37M 37M 0B 100% /packages/mnt/jkernel-
 7.3-20050504.0
 /dev/vn2 12M 12M 0B 100% /packages/mnt/jpfe-M40-
 7.3-20050504.0
 /dev/vn3 2.3M 2.3M 0B 100% /packages/mnt/jdocs-7.
 3-20050504.0
 /dev/vn4 14M 14M 0B 100% /packages/mnt/jroute-7.
 3-20050504.0
 /dev/vn5 5.1M 5.1M 0B 100% /packages/mnt/jcrypto-
 7.3-20050504.0
 mfs:102 1.5G 12K 1.4G 0% /tmp
 /dev/ad0s1e 12M 24K 11M 0% /config
 procfs 4.0K 4.0K 0B 100% /proc
 /dev/ad1s1f 9.4G 2.4G 6.2G 28% /var

You see that /dev/ad0s1a is mounted at /, and you know that's the flash disk. /config is also on ad0 (the
flash disk again) but on a different partition, and /var is on ad1 (the hard disk). The /dev/vn0 devices
refer to the software installed on the router. All these partitions are stored on / (and /altroot).

The show system storage command output is cluttered and contains more information than you
normally care about. You can shorten by filtering out the installed software devices:

 aviva@router1> show system storage | except /dev/vn
 Filesystem Size Used Avail Capacity Mounted on
 /dev/ad0s1a 77M 39M 32M 55% /

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 devfs 16K 16K 0B 100% /dev/
 mfs:102 1.5G 8.0K 1.4G 0% /tmp
 /dev/ad0s1e 12M 16K 11M 0% /config
 procfs 4.0K 4.0K 0B 100% /proc
 /dev/ad1s1f 9.4G 1013M 7.6G 11% /var

or even more:

 aviva@router1> show system storage | match ad
 /dev/ad0s1a 77M 39M 32M 55% /
 /dev/ad0s1e 12M 16K 11M 0% /config
 /dev/ad1s1f 9.4G 1013M 7.6G 11% /var

If the router boots from the hard disk or if you manually reboot from the hard disk (take a fresh
snapshot first, though), you'll notice that ad0 is still the flash disk and ad1 is still the hard disk, but the
root filesystem is now on the hard disk because you're running on alternate media:

 aviva@router1> request system reboot media disk
 aviva@router1> show system storage
 Filesystem Size Used Avail Capacity Mounted on
 /dev/ad1s1a 107M 37M 61M 38% /
 .
 .
 .
 mfs:172 1.9G 4.0K 1.8G 0% /tmp
 /dev/ad1s1e 12M 21K 11M 0% /config
 procfs 4.0K 4.0K 0B 100% /proc
 /dev/ad1s1f 25G 3.5G 19G 15% /var

The request system reboot media disk command takes a fairly long time to complete, and you need to
log back in to the router when it completes.

See Also

Recipe 1.20

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.20. Backing Up Filesystems on J-Series Routers

Problem

You are preparing to load a different release of the JUNOS software or reload the current release on a
J-series router and you want to save the files that are already on the router.

Solution

On any J-series router, back up the filesystem to a device that is connected to the router's USB port:

 aviva@RouterA> request system snapshot media usb

On J4300 and J6300 routers, you can also back up the files in the router's filesystem to a removable
compact flash disk:

 aviva@RouterA> request system snapshot media removable-compact-flash

Before installing the software upgrade, delete old log- and crashfiles:

 aviva@RouterA> request system storage cleanup

Discussion

The snapshot process on J-series routers differs from the process for M-series and T-series routers
because of hardware differences. You can place a snapshot of the J-series filesystems on a device
connected to the router's USB port or, for J4300 and J6300 routers, on a removable compact flash
disk.

You can take a snapshot of the software at any time, but you should always do so before installing a
new JUNOS software version so that you can recover to a known, stable environment in case
something goes wrong when you load the software. You should also always take a snapshot after you
have successfully loaded a new version of the software.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before installing a new software package, you can use the request system storage cleanup command
to remove older files to free up space in the filesystem. This command deletes any rotating logfiles in
/cf/var/log that are not current files in /cf/var/tmp that have not been modified in the last two days
and all crashfiles in /cf/var/crash. Before you delete files in the directories, you can use the file list
command to check what they contain:

 aviva@RouterA> file list detail /cf/var/tmp
 /cf/var/tmp:
 total 28
 -rw-r--r-- 1 root wheel 6379 Nov 3 00:10 cleanup-pkgs.log
 drwxrwxrwx 2 root wheel 512 Apr 15 2005 install/
 -rw-r----- 1 root wheel 2492 Nov 3 00:10 sampled.pkts

 aviva@RouterA> file list detail /cf/var/log/messages*
 -rw-rw-r-- 1 root wheel 65 Nov 3 00:06 /cf/var/log/messages
 -rw-rw---- 1 root wheel 2587 Nov 3 00:06 /cf/var/log/messages.0.gz
 -rw-rw-r-- 1 root wheel 21746 Apr 16 2005 /cf/var/log/messages.1.gz
 -rw-rw---- 1 root wheel 12381 Dec 9 2004 /cf/var/log/messages.10.gz
 -rw-rw-r-- 1 root wheel 11066 Apr 9 2005 /cf/var/log/messages.2.gz
 -rw-rw-r-- 1 root wheel 12844 Feb 24 2005 /cf/var/log/messages.3.gz
 -rw-rw-r-- 1 root wheel 8751 Feb 18 2005 /cf/var/log/messages.4.gz
 -rw-rw---- 1 root wheel 12280 Feb 17 2005 /cf/var/log/messages.5.gz
 -rw-rw---- 1 root wheel 11486 Feb 10 2005 /cf/var/log/messages.6.gz
 -rw-rw---- 1 root wheel 44407 Feb 8 2005 /cf/var/log/messages.7.gz
 -rw-rw---- 1 root wheel 22260 Dec 10 2004 /cf/var/log/messages.8.gz
 -rw-rw---- 1 root wheel 18618 Dec 9 2004 /cf/var/log/messages.9.gz
 total 12

The show log command is another way to find out when logfiles were last modified:

 aiva@RouterA> show log
 messages Size: 65, Last changed: Nov 03 00:06:10
 messages.0.gz Size: 2587, Last changed: Nov 03 00:06:10
 messages.1.gz Size: 21746, Last changed: Apr 16 2005
 messages.10.gz Size: 12381, Last changed: Dec 09 2004
 messages.2.gz Size: 11066, Last changed: Apr 09 2005
 messages.3.gz Size: 12844, Last changed: Feb 24 2005
 messages.4.gz Size: 8751, Last changed: Feb 18 2005
 messages.5.gz Size: 12280, Last changed: Feb 17 2005
 messages.6.gz Size: 11486, Last changed: Feb 10 2005
 messages.7.gz Size: 44407, Last changed: Feb 08 2005
 messages.8.gz Size: 22260, Last changed: Dec 10 2004
 messages.9.gz Size: 18618, Last changed: Dec 09 2004

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.19

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.21. Restoring a Backed-Up Filesystem

Problem

You want to restore a filesystem that you backed up by taking a snapshot.

Solution

First, reboot the router from the alternate boot media to which you saved the snapshot. On M-series
and T-series routers, this is the hard disk:

aviva@RouterA> request system software reboot media disk

On J-series routers, this is either a removable compact flash card or a device connected to the
router's USB port:

 aviva@RouterA> request system software reboot media removable-compact-flash
 or
 aviva@RouterA> request system software reboot media usb

Then, retake the snapshot to copy the filesystem to the media from which you didn't boot:

 aviva@router1>
request system snapshot

or

 aviva@RouterA> request system snapshot media removable-compact-flash

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The procedure for returning to a snapshot filesystem backup is very straightforward. You boot the
router from the alternate media and then run the snapshot command again, which copies the
filesystem from the alternate media to the media from which you didn't boot.M-series and T-series
routers normally boot from the internal flash drive, and the hard disk is the alternate boot media. J-
series routers also normally boot from an internal flash drive, and the alternate boot media is a
compact flash card that is either installed in the router's compact flash drive or in a USB device
connected to the router.

See Also

Recipes 1.19 and 1.20

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.22. Installing a Different Software Release on M-
Series and T-Series Routers

Problem

You want to install a different release of JUNOS software on an M-series or T-series router.

Solution

First, retrieve the JUNOS install package, jinstall , from the Juniper Networks web site
(http://www.juniper.net/support) and place it on a local server. You can install the software directly from
the server:

 aviva@router1> request system software add validate server1:jinstall-7.4R1.7-domestic
-signed. Tgz

If you want to have a copy of the software on the router, copy it to the router. You can use SSH:

 aviva@router1> file copy server1:jinstall-7.4R1.7-domestic-signed.tgz /var/tmp
 aviva@server1's password:
 jinstall-7.4R1.7-domestic-signed.tgz 100% 64MB 774.5KB/s 01:24
 aviva@router1> file list /var/tmp
 /var/tmp:
 cores/
 install/
 jbundle-7.4jbundle-7.4R1.7-domestic-signed.tgz

You can also use FTP to install the software directly from a server:

 aviva@router1> request system software add validate ftp://aviva:prompt@
server1.mynetwork.com/jinstall-7.4R1.7-domestic-signed.tgz

If you are using anonymous FTP, just specify the name of the server:

 aviva@router1> request system software add validate ftp://server1.mynetwork.com/jinstall-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4R1.7-domestic-signed.tgz

If you want a copy of the software on the router, you can also copy it over with FTP:

 avive@router1> file copy ftp://aviva:prompt@
server1.mynetwork.com/jinstall-7.4R1.7-domestic
-signed.tgz /var/tmp/jinstall-
7.4R1.7-domestic-signed
 Password for aviva@server1.mynetwork.com:
 /var/home/aviva/…transferring.file.........YoE4Qe/
jinstall-7.4R1.7-domestic-signed.
 tgz100% of 63 MB 794 kBps 00m00s

After copying the software to the router, install it:

 aviva@router1> request system software add validate /var/tmp/jinstall-
7.4R1.7-domestic-signed.tgz

Once you have installed the new software version, reboot the router to activate it:

 aviva@router1> request system reboot

You can reboot directly as part of the software download process:

 aviva@router1> request system software add validate /var/tmp/
jinstall-
7.4R1.7-domestic-signed.tgz reboot

Discussion

JUNOS software is distributed as a set of modular software packages that contain the various components
of the software. The packages include the base JUNOS operating system software, the routing software, and
the forwarding software. These packages are bundled together in the jinstall package, which you use to
install the software when you are upgrading. There is a domestic version for use in the United States and
Canada (domestic) and a worldwide version (export) of each package. A given JUNOS software release
runs on all J-series, M-series, and T-series routers, and you use the same jinstall package to upgrade the
software on M-series and T-series router products.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Upgrade to a newer software release or downgrade to an older one by loading a different version of JUNOS
software. You generally never downgrade except when you receive a new router that is running a more
recent version than those of your other routers. Retrieve the JUNOS install package, jinstall , from the
Juniper Networks web site (http://www.juniper.net/support) and copy it to a local server. The install
package is a large file, so you can either install it directly from the server or, if you copy it to the router, put
it on the hard disk, which has a large filesystem. A good place is /var/tmp .

When copying files to the router, you normally use SSH because SSH connections are encrypted, so your
password and files are secure. FTP connections are not encrypted and hence are not secure. However, you
can use FTP if you want, because all JUNOS software packages are signed and the JUNOS software validates
the signature to ensure that the package has not been altered in any way. To use the router as an FTP
server to transfer the files to the router when you are logged in to the server, enable FTP on the router:

 [edit]
 aviva@router1# set system services ftp
 aviva@router1# commit

You need to enable FTP only if you want to FTP something to the routerthat is, when the router is the FTP
server. If the router is the FTP client and you are copying a file from an FTP server, you do not need to
enable FTP on the router. The FTP client on the router is always present and running.

If you enable the FTP server, disable it after you have copied the file to the router:

 [edit]
 aviva@router1# delete system services ftp
 aviva@router1# commit

Use the request system software add command to install the new software. During the installation, the
filesystem on the router's flash disk is rebuilt and all components of the JUNOS software are completely
reinstalled. Configuration information from the previous software installation is retained, but the contents of
logfiles might be erased. This is why you take a snapshot of the software using the request system
snapshot command before you load a new version of the software (see Recipe 1.19).

In the request system software add command, include the validate option to check that the new software
is compatible with your current router configuration file. When you are updating to a different release of the
JUNOS software, the validation check is performed automatically.

In all these commands, the password is not displayed when you type it.

After you have installed the new software version and rebooted the router, verify that the software is
operating properly. Then take another snapshot of the software.

If you don't want to rebuild the entire filesystem each time you upgrade software, you can install the
software using the jbundle package :

 aviva@router1> request system software add validate /var/tmp/jbundle-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4R1.7-domestic-signed.tgz

jbundle installs the new software components and modifies the smallest number of files needed to move the
new software version.

See Also

Juniper Networks web site (http://www.juniper.net/support); Recipes 1.19, 1.23, and 1.31

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.23. Installing a Different Software Release on J-
Series Routers

Problem

You want to install a different release of JUNOS software on a J-series router.

Solution

First, retrieve the JUNOS install package, junos-jseries, from the Juniper Networks web site
(http://www.juniper.net/support) and copy it to a local server. You can install the software directly
from the server:

 aviva@RouterA> request system software add validate unlink reboot server1
:junos-jseries-
7.4R1.7-export-cf256.gz

You can also copy the software to the router and then install that copy:

 aviva@RouterA> file copy server1:
junos-jseries-
7.4R1.7-export-cf256.gz /cf/var/tmp
 aviva@server1's password:
 junos-jseries-7.4R1.7-export-cf256.gz 100% 64MB 774.5KB/s 01:24
 aviva@RouterA>
request system software add validate unlink

reboot /cf/var/tmp/junos-jseries-7.4R1.7-export-cf256.gz

Discussion

To upgrade to a newer software release, first download the J-series install package, junos-jseries,
from the Juniper Networks web site (http://www.juniper.net/support) and copy it to a local server
and then to the router. When moving the package to the router, a good place to put it is /cf/var/tmp.

http://www.juniper.net/support
http://www.juniper.net/support
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The request system software command includes a few options. The validate option checks that the
new software is compatible with your current router configuration file. When you are updating to a
different release of the JUNOS software, the validation check is performed automatically. The unlink
option removes the software package from the router as soon as possible to make more room on the
hard disk for the installation to complete. The final option reboots the router after the validation and
the installation complete and if the upgrade is successful. When the reboot is complete, you see the
login prompt.

Use the request system software add command to install the new software. During the installation,
the filesystem on the router's flash disk is rebuilt and all components of the JUNOS software are
completely reinstalled. Configuration information from the previous software installation is retained,
but the contents of logfiles might be erased. This is why you take a snapshot of the software using
the request system snapshot command before you load a new version of the software (see Recipe
1.19).

See Also

Juniper Networks web site (http://www.juniper.net/support); Recipes 1.19, 1.20, and

http://www.juniper.net/support
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.24. Creating an Emergency Boot Disk

Problem

You want to create a boot disk to use in an emergency if the software and filesystems on the router
become so damaged that you just want to reconfigure the router from scratch.

Solution

Create a PCMCIA boot flash card that contains the JUNOS install media. First, copy the install media
from the JUNOS software download page on the Juniper Networks support site
(http://www.juniper.net/support). On M-series and T-series routers, copy this file to the router's
/var/tmp directory. Then, insert a PC card into the router's drive and copy the install media to the PC
card:

 aviva@router1> start shell
 aviva@router1% cd /var/tmp
 aviva@router1% su
 root@router1%
dd if=/dev/zero of=/dev/rad3 count=20
 root@router1% dd if=install-media-7.4R1.7-domestic of=/dev/rad3 bs=64k

To create a boot flash card for a J-series router, copy the install media to a Windows or Unix PC and
uncompress it with gzip or WinZip. Connect a PCMCIA adapter or USB card reader to the PC and
insert a compact flash card into the device. On a Unix PC, use the following commands to copy the
image to the compact flash:

 root@RouterJ# dd if=junos-jseries-7.4R1.7-export-cf256. of=/dev/hde
 250368+0 records in
 250368+0 records out

On a Windows XP or Windows 2000 PC, use either the Norton Ghost utility or the dd command shown
previously.

Discussion

http://www.juniper.net/support
http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the tasks you can do to prepare for router disaster recovery is to create an emergency
PCMCIA boot media. This is a bootable media that contains an image of a specific JUNOS software
release. When you boot the router from this media, it installs the complete router from scratch, first
doing a full reformat of the hard disk and flash, then completing a full new install of all the JUNOS
software.

Use the PCMCIA boot media in disaster recovery when a router is hosed and you need to execute a
complete reinstall from scratch. To boot from this media, the PCMCIA must first be inserted into the
slot on the Routing Engine. When the router boots, the first thing it looks for is a PCMCIA in the slot.
If it's not there, it moves on to the flash drive. If the PCMCIA is there, the router stops and waits for
a user with console access to the router to press Enter to continue. The router does not automatically
execute the reformat and reinstallation; you must tell it to do so. That way, if someone inserts the
PCMCIA in the slot by mistake, the router doesn't format and reinstall when you didn't plan for it to
do so.

The J-series router follows the same procedure but uses a compact flash card instead of a PCMCIA
card. This recipe shows the commands to use for a 256-MB compact flash.J-series install media are
also available for other sizes, including 128, 512, and 1,024 MB.

See Also

Juniper Networks web site (http://www.juniper.net/support)

http://www.juniper.net/support
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.25. Gathering Software Version Information

Problem

You want to determine which software version is running on the router.

Solution

The following command shows the software version and lists all the software components that are
running on the router:

 aviva@router1>
show version
 Hostname: router1
 Model: m20
 JUNOS Base OS boot [7.4-20051024.0]
 JUNOS Base OS Software Suite [7.4-20051024.0]
 JUNOS Kernel Software Suite [7.4R1.7]
 JUNOS Packet Forwarding Engine Support (M20/M40) [7.4R1.7]
 JUNOS Routing Software Suite [7.4R1.7]
 JUNOS Online Documentation [7.4R1.7]
 JUNOS Crypto Software Suite [7.4R1.7]

On the J-series routers, the software ships as a single package:

 aviva@RouterA> show version
 Hostname: RouterA
 Model: j2300
 JUNOS Software Release [7.4R1.7] (Export edition)

Discussion

The show version command tells you which software version is running on the router. The first two
lines show the name of the router and its type. This is followed by a list of the software packages that
are running. The text in square brackets is the software version. Here, the complete software version
number is 7.4R1.7. The software release number is 7.4. When the release-naming scheme was

http://lib.ommolketab.ir
http://lib.ommolketab.ir

devised, the first number was supposed to indicate the major release and the second number the
minor release, but, in practice, this never came to be. The JUNOS software releases do not
distinguish between major and minor releases. Each release of software, be it 7.4, 7.5, or whatever,
is considered an equivalent collection of new software and hardware features.

From a historical point of view, the initial JUNOS release was 3.0. The first digit in the release number
increments from time to time, typically as a consequence of a new ASIC family, a new hardware
platform family, or an upgrade to the underlying FreeBSD software. The second digit in the release
number starts at 0 and increments with each software release. A new version of JUNOS software is
released quarterly. So, for example, JUNOS releases 6.0 through 6.4 were released quarterly, from
July 2003 through July 2004 (third quarter 2003 through third quarter 2004), and JUNOS 7.0 was
released in the fourth quarter of 2004. In this case, the first digit in the release changed from 6 to 7
to correspond with the introduction of a new platform family, the TX Matrix.

The letter in the version number indicates the type of release. As a customer, you generally see R,
for released software. If you are a beta customer, you receive B (beta) versions during the beta test
periodfor example, 7.4B1 and 7.4B2. If you are working with customer support to resolve a problem,
you may also see I (internal) versions of the software or daily builds, which are named with the
software version and a numeric string that includes the build date and time.

The digits following the letter are the maintenance release number and the build, or spin, of that
maintenance. The first maintenance release number is always 1, and the first spin that is released is
generally a number greater than 1. In the case of the show version command output in this recipe,
the spin number is 7. The names of the JUNOS Base OS Software Suite and the Support Tools
Package include the date that they were created rather than a maintenance release number, because
these packages do not change as often as the others.

When checking the software version, make sure the versions of all the packages are the same. In
this example, the packages are all 7.4. If they are not the same, the router will likely have
operational issues.

The previous output shows all the standard JUNOS packages, which consist of five basic components:

Operating system

The JUNOS Base OS Software Suite, the JUNOS Kernel Software Suite, and the JUNOS Support
Tools Package comprise the JUNOS operating system. The base OS is the underlying operating
system software, which is based on FreeBSD, and the kernel is the software that runs on the
various hardware boards, including the networking cards (the Flexible PIC Concentrators, or
FPCs, and the Physical Interface Cards, or PICs).

Forwarding software

The JUNOS Packet Forwarding Engine Support package is the forwarding software, which runs
on the forwarding board and is responsible for receiving and forwarding network traffic.

Routing software

The JUNOS Routing Software Suite is the routing software. It runs on the Routing Engine,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which you can think of as a separate computer within the router dedicated to handling all
routing functions, such as calculating the best routes to network destinations and managing the
routing tables.

Security software

The crypto (security) software is provided only with JUNOS software shipped within the United
States and Canada.

Online documenation

Online documentation is installed on the hard disk and is available while you are logged in to
the router.

If you are debugging a problem with the JUNOS software and suspect that one of the software
components is not running, use the show version detail command to list all the software processes
that are installed:

 aviva@router1> show version detail
 …
 KERNEL 7.4R1.7 #0 built by builder on 2005-10-24 02:03:37 UTC
 MGD release 7.4R1.7 built by builder on 2005-10-24 02:03:58 UTC
 CLI release 7.4R1.7 built by builder on 2005-10-24 02:03:44 UTC
 CHASSISD release 7.4R1.7 built by builder on 2005-10-24 01:50:01 UTC
 DFWD release 7.4R1.7 built by builder on 2005-10-24 01:52:13 UTC
 DCD release 7.4R1.7 built by builder on 2005-10-24 01:48:04 UTC
 RPD release 7.4R1.7 built by builder on 2005-10-24 02:04:09 UTC
 SNMPD release 7.4R1.7 built by builder on 2005-10-24 01:56:24 UTC
 MIB2D release 7.4R1.7 built by builder on 2005-10-24 01:54:12 UTC
 APSD release 7.4R1.7 built by builder on 2005-10-24 01:49:52 UTC
 VRRPD release 7.4R1.7 built by builder on 2005-10-24 01:57:05 UTC
 ALARMD release 7.4R1.7 built by builder on 2005-10-24 01:49:44 UTC
 PFED release 7.4R1.7 built by builder on 2005-10-24 01:55:25 UTC
 CRAFTD release 7.4R1.7 built by builder on 2005-10-24 01:52:01 UTC
 SAMPLED release 7.4R1.7 built by builder on 2005-10-24 01:56:04 UTC
 ILMID release 7.4R1.7 built by builder on 2005-10-24 01:53:34 UTC
 RMOPD release 7.4R1.7 built by builder on 2005-10-24 01:55:47 UTC
 COSD release 7.4R1.7 built by builder on 2005-10-24 01:51:46 UTC
 KMD release 7.4R1.7 built by builder on 2005-10-24 01:45:24 UTC
 FSAD release 7.4R1.7 built by builder on 2005-10-24 01:52:24 UTC
 SERVICED release 7.4R1.7 built by builder on 2005-10-24 01:56:16 UTC
 IRSD release 7.4R1.7 built by builder on 2005-10-24 01:53:39 UTC
 NASD release 7.4R1.7 built by builder on 2005-10-24 01:55:20 UTC
 FUD release 7.4R1.7 built by builder on 2005-10-24 01:52:27 UTC
 PPMD release 7.4R1.7 built by builder on 2005-10-24 02:04:06 UTC
 LMPD release 7.4R1.7 built by builder on 2005-10-24 02:03:51 UTC
 RTSPD release 7.4R1.7 built by builder on 2005-10-24 01:56:01 UTC
 SMARTD release 7.4R1.7 built by builder on 2005-10-24 01:47:34 UTC
 KSYNCD release 7.4R1.7 built by builder on 2005-10-24 01:53:50 UTC
 LRMUXD release 7.4R1.7 built by builder on 2005-10-24 02:03:54 UTC

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SPD release 7.4R1.7 built by builder on 2005-10-24 01:56:46 UTC
 ECCD release 7.4R1.7 built by builder on 2005-10-24 01:52:23 UTC
 PGMD release 7.4R1.7 built by builder on 2005-10-24 02:04:03 UTC
 BFDD release 7.4R1.7 built by builder on 2005-10-24 02:03:42 UTC
 L2TPD release 7.4R1.7 built by builder on 2005-10-24 01:57:17 UTC
 SDXD release 7.4R1.7 built by builder on 2005-10-24 02:08:36 UTC
 PPPOED release 7.4R1.7 built by builder on 2005-10-24 01:55:39 UTC
 GCDRD release 7.4R1.7 built by builder on 2005-10-24 01:52:33 UTC
 RDD release 7.4R1.7 built by builder on 2005-10-24 01:55:44 UTC
 jkernel-dd release 7.4R1.7 built by builder on 2005-10-24 01:42:10 UTC
 jroute-dd release 7.4R1.7 built by builder on 2005-10-24 01:42:36 UTC
 jcrypto-dd release 7.4R1.7 built by builder on 2005-10-24 01:42:50 UTC

Some of the main processes are MGD, the management process, which communicates between the
CLI and all the other processes; RPD, the routing protocol process; SNMPD, the SNMP process;
MIB2D, the SNMP MIB II process; and PFED, the packet- forwarding software process. The JUNOS
processes are the equivalent of Unix daemons, which is why their names end with the letter d. It is
worth pointing out that all the software processes running on the router are separate and modular,
so if one of them fails, the other processes that make up the router software continue to run.

The show system processes command, which is a repackaged version of the Unix ps command, also
lists the running processes:

 aviva@router1> show system processes
 PID TT STAT TIME COMMAND
 …
 2630 ?? I 0:00.07 /usr/sbin/tnetd -N
 2632 ?? S 5:27.60 /usr/sbin/chassisd -N
 2633 ?? S 0:06.00 /usr/sbin/alarmd -N
 2634 ?? I 0:00.16 /usr/sbin/craftd -N
 2635 ?? I 0:00.32 /usr/sbin/mgd -N
 2636 ?? I 0:00.14 /usr/sbin/inetd -N
 2637 ?? S 0:00.29 /usr/sbin/tnp.sntpd -N
 2641 ?? I 0:00.05 /usr/sbin/smartd -N
 2645 ?? S 0:00.09 /usr/sbin/eccd -N
 2727 ?? S 0:03.54 /usr/sbin/xntpd -j -N (ntpd)
 2728 ?? S 0:07.88 /usr/sbin/snmpd -N
 2729 ?? I 0:10.81 /usr/sbin/mib2d -N
 2730 ?? S 0:03.87 /usr/sbin/rpd -N
 2731 ?? I< 0:00.39 /usr/sbin/apsd -N
 2732 ?? I 0:00.41 /usr/sbin/vrrpd -N
 2733 ?? IN 0:00.51 /usr/sbin/sampled -N
 2734 ?? I 0:00.22 /usr/sbin/ilmid -N
 2735 ?? I 0:00.46 /usr/sbin/rmopd -N
 2736 ?? I 0:00.55 /usr/sbin/cosd
 2737 ?? I 0:00.29 /usr/sbin/nasd -N
 2738 ?? I 0:00.17 /usr/sbin/fud -N
 2739 ?? S 0:01.39 /usr/sbin/ppmd -N
 2740 ?? I 0:00.25 /usr/sbin/lmpd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2741 ?? I 0:00.22 /usr/sbin/rtspd -N
 2742 ?? S 0:00.76 /usr/sbin/fsad -N
 2743 ?? I 0:00.40 /usr/sbin/spd -N
 2744 ?? I 0:00.14 /usr/sbin/pgmd -N
 2745 ?? I 0:00.86 /usr/sbin/bfdd -N
 2746 ?? I 0:00.14 /usr/sbin/sdxd -N
 2747 ?? I 0:00.20 /usr/sbin/rdd -N
 2749 ?? S 0:00.47 /usr/sbin/dfwd -N
 2751 ?? I 0:01.00 /usr/sbin/kmd -N
 2752 ?? S 0:08.86 /sbin/dcd -N
 2753 ?? I 0:01.03 /usr/sbin/pfed -N
 2754 ?? S 0:06.14 /usr/sbin/irsd -N
 …

If you suspect that an installed software process is not running, you can check the process. Here, we
check for RPD, the routing-protocol process:

 aviva@router1> show system processes | match /rpd

We see that RPD is not running. Because the Routing Engine and the forwarding plane in JUNOS
routers are separate processes, even when RPD is not up, the router continues to operate and
forward traffic. However, it cannot perform any routing operations, such as sending routing-protocol
updates and maintaining the routing table.

See Also

Recipe 4.7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.26. Gathering Hardware Inventory Information

Problem

You are taking a hardware inventory to track which hardware components are installed in which
router, along with serial numbers.

Solution

The following command lists all the hardware components installed in the router:

 aviva@router1> show chassis hardware
 Hardware inventory:
 Item Version Part number Serial number Description
 Chassis 25688 M20
 Backplane REV 03 710-002334 BB9683 M20 Backplane
 Power Supply A REV 06 740-001465 005169 AC Power Supply
 Display REV 04 710-001519 BA4667 M20 FPM Board
 Routing Engine 0 REV 06 740-003239 9000016755 RE-2.0
 Routing Engine 1 REV 06 740-003239 9001018324 RE-2.0
 SSB slot 0 REV 02 710-001951 AZ8025 Internet Processor IIv1
 SSB slot 1 N/A N/A N/A Backup
 FPC 0 REV 03 710-003308 BB5185 E-FPC
 PIC 0 REV 08 750-002303 BB5887 4x F/E, 100 BASE-TX
 PIC 1 REV 07 750-004745 BC9318 2x CT3-NxDS0
 PIC 2
 FPC 1 REV 03 710-003308 BF7478 E-FPC
 PIC 0 REV 03 750-002914 BC0119 2x OC-3 ATM, MM

Discussion

When you need to find out what hardware is installed in the router, use the show chassis hardware
command. The first column of the output lists each hardware component installed in the router,
starting with the chassis, which is the router itself. This router, an M20 system, has one power
supply, two Routing Engines, one switching board (the SSB), and two FPCs with a total of four PICs.
PICs are the network interface cards in the router. All these items are field-replaceable units (FRUs),
so you or a service technician can replace them in the field.

The next three columns list the revision number, the Juniper Networks manufacturing part number,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the serial number. This information is very useful if you are tracking what router hardware you
have and if you need to replace or return a defective piece of hardware.

The last column has a brief description of each hardware component. This is especially useful for
finding out which PICs are installed on which FPC and in which location on the FPC. You need this
information when you are configuring the router's interfaces because you must specify the FPC
number and the PIC location to identify the interface (see Chapter 7). Most M-series and T-series
routers have either four or eight slots for FPCs, and each FPC typically has four locations for PICs.
The FPCs are numbered 0 through 7 (or 0 through 3), and the PICs are numbered 0 through 3. The
numbering is always indicated on the router chassis itself, but if your routers are in a secured room,
you likely don't have physical access to them.

The J-series router is a smaller router and has fewer hardware components:

 aviva@RouterA> show chassis hardware
 Hardware inventory:
 Item Version Part number Serial number Description
 Chassis JN002648AA J2300
 Routing Engine REV 07 750-009992 AA04451163 RE-J.1
 FPC 0 REV 04 750-010739 AC04430335 FPC
 PIC 0 2x FE, 2x Serial

You can also get information about the memory storage areas on the router:

 aviva@router1> show chassis hardware detail
 Hardware inventory:
 Item Version Part number Serial number Description
 Chassis 25708 M20
 Backplane REV 03 710-002334 BB9738 M20 Backplane
 Power Supply A REV 06 740-001465 005234 AC Power Supply
 Display REV 04 710-001519 BA4681 M20 FPM Board
 Routing Engine 0 REV 06 740-003239 1000224893 RE-2.0
 Routing Engine 0 58000007348d9a01 RE-2.0
 ad0 91 MB SanDisk SDCFB-96 i3238140903 Compact Flash
 ad1 11513 MB IBM-DARA-212000 AH0AHGN1017 Hard Disk
 Routing Engine 1 REV 06 740-003239 9000022146 RE-2.0
 Routing Engine 1 d800000734745701 RE-2.0
 ad0 91 MB SanDisk SDCFB-96 ggbsc410020 Compact Flash
 ad1 8063 MB TOSHIBA MK2016GAP Y0T39909T Hard Disk
 SSB slot 0 REV 02 710-001951 AZ8112 Internet Processor IIv1
 SSRAM bank 0 REV 02 710-001385 242525 2 Mbytes
 SSRAM bank 1 REV 02 710-001385 242741 2 Mbytes
 SSRAM bank 2 REV 02 710-001385 242886 2 Mbytes
 SSRAM bank 3 REV 02 710-001385 242482 2 Mbytes
 SSB slot 1 N/A N/A N/A Backup
 FPC 0 REV 03 710-003308 BD8455 E-FPC
 SSRAM REV 02 710-001385 241669 2 Mbytes
 SDRAM bank 0 REV 01 710-000099 0003409 64 Mbytes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SDRAM bank 1 REV 01 710-000099 0003408 64 Mbytes
 PIC 0 REV 08 750-002303 AZ5310 4x F/E, 100 BASE-TX
 PIC 1 REV 07 750-004745 BC9368 2x CT3-NxDS0
 PIC 2 REV 03 750-002965 HC9279 4x CT3
 FPC 1 REV 03 710-003308 BB9032 E-FPC
 SSRAM REV 01 710-001385 V00818 2 Mbytes
 SDRAM bank 0 REV 01 710-000099 0003803 64 Mbytes
 SDRAM bank 1 REV 01 710-000099 0003847 64 Mbytes
 PIC 0 REV 03 750-002914 BC0131 2x OC-3 ATM, MM

See Also

Recipe 4.8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.27. Finding Out How Long the Router Has Been
Up

Problem

You want to know how long the router has been up and running.

Solution

Use the following command to find out how long the router has been up:

 aviva@router1>
show system uptime
 Current time:
 2005-03-15 19:05:08 UTC
 System booted:
 2005-03-15 11:09:57 UTC (07:55:11 ago)
 Protocols started:
 2005-03-15 11:11:31 UTC (07:53:37 ago)
 Last configured:
 2005-03-15 19:05:04 UTC (00:00:04 ago) by aviva
 7:05PM up 7:55, 1 user, load averages: 0.07, 0.02, 0.01

Discussion

The show system uptime command is similar to the Unix uptime utility. The first line of output shows

the current time on the router. The second line shows when the router was last booted and how long
it has been up (here, 7 hours, 55 minutes, 11 seconds). The last line also shows how long the router
has been up. The third line shows when the protocol software started, and the last line tells when the
configuration was last changed and by whom.

See Also

Recipe 6.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.28. Gathering Information Before Contacting
Support

Problem

A problem has occurred on the router and you need to gather basic information before contacting
support.

Solution

Use the following command to gather information about the router:

 aviva@router1>
request support information | save support-file

Discussion

The request support information command actually runs a number of JUNOS commands that
provide detailed information and status about the running hardware and software, boot and log
messages, the configuration itself, and the router's interfaces. The output of this command is quite
extensive, so you should always save it to a file. Then copy the file to a server for further analysis or
to send to technical support.

If a problem is occurring on your router, you should check for core dumps, which are files that
contain information about the start of the router or of particular processes just before they crashed.
Core dumps are placed in the /var/tmp directory, and the software also saves a compressed version
of the file that you can provide to support:

 aviva@router1> file list detail /var/tmp
 /var/tmp:
 total 505330
 -rw-------1 root field 185309 Apr 26 00:32 snmpd.core-tarball.0.tgz
 -rw-rw----1 root field 1314816 Apr 26 00:32 snmpd.core.0

If you suspect that faulty hardware is causing or contributing to a problem, use the show chassis
hardware command, or its detail version, to get the serial number, version, and part number for that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

component.

See Also

Recipe 1.26

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.29. Managing Routers with Similar
Configurations

Problem

Some of the configuration sections for many of the routers in your network are identical, and you
want to propagate the common information to all routers so your network operations center (NOC)
staff never has to set it.

Solution

Define the common information in a configuration group:

 [edit]
 aviva@router1# edit groups global

 [edit groups global]
 aviva@router1# set system domain-name mynetwork.com
 aviva@router1# set system backup-router 192.168.15.2
 aviva@router1# set system name-server 192.168.15.3
 aviva@router1# set system root-authentication encrypted-password $123
poppI
 aviva@router1# set system ntp server 192.168.2.100
 aviva@router1# set system services ssh
 aviva@router1# set snmp location "JUNOS cookbook lab"
 aviva@router1# set snmp contact cookbook-lab-admin
 aviva@router1# set snmp interface fxp0.0
 aviva@router1# set snmp community public authorization read-only

Then apply the group to the configuration:

 [edit]
 aviva@router1# set apply-groups global

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JUNOS configuration groups define common configuration snippets in one part of the router
configuration, which you then import, or apply, in other parts of the configuration. This allows you to
define common portions of the configuration once and have them apply in many places in the
configuration, thus minimizing or eliminating the risk of configuration inconsistencies or errors. If you
are a network designer who develops router configurations that are then distributed to a number of
routers in a point of presence (POP) or NOC, configuration groups are a good tool for propagating
common configuration snippets across a number of routers. Having this information in a separate
part of the configuration also lessens the possibility that others might inadvertently modify it. Use
configuration groups for network-wide information, such as the domain name, addresses of name
and authentication servers, router login accounts, and static routes (as we have done in this recipe)
and to make it easier to configure items that have multiple instances, such as all channels on
channelized interfaces.

Create the configuration groups under the [edit groups] hierarchy. The structure of the statements
in the configuration group mirrors that of the complete JUNOS configuration.

In this recipe, we create one configuration group named global that defines the basic router
information discussed in Recipe 1.1, along with pointers to our SNMP NMS system. You can create
any number of group configurations, each with a distinct name.

The apply-groups statement causes the statements in a group be inherited by the proper location in
the configuration. This recipe applies the global group at the top level ([edit] level) of the
configuration because the group includes statements that affect a number of different top-level
hierarchies ([edit system], [edit snmp], and [edit routing-options]).

You can include the configuration group statements in the configuration file of each router or in a
template file that you use when configuring new routers. An easy way to add the information to
existing configurations is to copy the configuration snippet using the load merge terminal command
(see Recipe 1.13).

When you issue a plain show command in configuration mode, you see the statements only where you
actually typed them. This means that you see the configuration group statements in the [edit
groups] portion, not in the hierarchies where they are applied. If you pipe the show output to the
display inheritance command, you see the statements in the hierarchy that inherited them:

 [edit system]
 aviva@router1# show | display inheritance
 host-name router1;
 domain-name mynetwork.com;
 ##
 ## 'backup-router' was inherited from group 'global'
 ## '192.168.71.254' was inherited from group 'global'
 ##
 backup-router 192.168.15.2;
 ##
 ## 'root-authentication' was inherited from group 'global'
 ##
 root-authentication {
 ##
 ## '1ZUlES4dp$OUwWo1g7cLoV/aMWpHUnC/' was inherited from group 'global'
 ##
 encrypted-password "1ZUlES4dp$OUwWo1g7cLoV/aMWpHUnC/"; ## SECRET-DATA

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 name-server {
 ##
 ## '192.168.15.3' was inherited from group 'global'
 ##
 192.168.15.3;
 }
 services {
 ##
 ## 'ssh' was inherited from group 'global'
 ##
 ssh;
 ##
 }
 ##
 ## 'ntp' was inherited from group 'global'
 ##
 ntp {
 ##
 ## '192.168.2.100' was inherited from group 'global'
 ##
 server 192.168.2.100;
 ##
 }

Although this recipe shows how to apply a group at the top level of the configuration, you can apply a
group anywhere in the configuration. For example, if all the serial interfaces on your router act as
data terminal equipment (DCE), you can use groups to configure the common serial options:

 [edit groups serial-dte-options]
 aviva@RouterA# set interfaces <se-*> serial-options clocking-mode
dce
 aviva@RouterA# set interfaces <se-*> serial-options clock-rate 125.0khz

Here, the group is called serial-dte-options. The angle brackets enclose the wildcard se-* to apply
the statements to all serial interfaces. You can then apply the group in the interfaces portion of the
configuration:

 [edit interfaces}
 aviva@routerA# set apply-groups serial-dte-options

Look at the group configuration to verify it:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit groups]
 aviva@RouterA# show
 serial-dte-options {
 interfaces {
 <se-*> {
 serial-options {
 clocking-mode dce;
 clock-rate 125.0khz;
 }
 }
 }
 }

In the interfaces section, set up the basic configuration of the serial interfaces and verify it:

 [edit interfaces]
 aviva@RouterA# show
 se-0/0/2 {
 unit 0 {
 family inet {
 address 10.0.21.1/24;
 }
 }
 }
 se-0/0/3 {
 unit 0 {
 family inet {
 address 10.0.16.1/24;
 }
 }
 }

Finally, check that the DCE configuration is inherited:

 [edit interfaces]
 aviva@RouterA#
show | display inheritance
 se-0/0/2 {
 ##
 ## 'serial-options' was inherited from group 'serial-dte-options'
 ##
 serial-options {
 ##
 ## 'dce' was inherited from group 'serial-dte-options'
 ##
 clocking-mode dce;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ##
 ## '125.0khz' was inherited from group 'serial-dte-options'
 ##
 clock-rate 125.0khz;
 }
 unit 0 {
 family inet {
 address 10.0.21.1/24;
 }
 }
 }
 se-0/0/3 {
 ##
 ## 'serial-options' was inherited from group 'serial-dte-options'
 ##
 serial-options {
 ##
 ## 'dce' was inherited from group 'serial-dte-options'
 ##
 clocking-mode dce;
 ##
 ## '125.0khz' was inherited from group 'serial-dte-options'
 ##
 clock-rate 125.0khz;
 }
 unit 0 {
 family inet {
 address 10.0.16.1/24;
 }
 }
 }

The output confirms that both serial interfaces inherited the serial-options statement into the
configurations.

See Also

Recipe 1.13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.30. Managing Redundant Routing Engines

Problem

Your router has two Routing Engines, and you want them both to have the same configuration.

Solution

Configure a hostname for each Routing Engine and an IP address for each fxp0 interface:

 [edit groups]
 aviva@router1# set re0 system host-name router1
 aviva@router1# set re0 interfaces fxp0 unit 0 family inet address 192.168.15.1/24
 aviva@router1# set re1 system host-name router1-a
 aviva@router1# set re1 interfaces fxp0 unit 0 family inet address 192.168.15.2/24
 [edit]
 aviva@router1# set apply-groups [re0 re1]

Commit the same configuration on both Routing Engines:

 aviva@router1# commit synchronize
 re0:
 configuration check succeeds
 re1:
 configuration check succeeds

Discussion

Most routers, especially those used by network providers, have redundant hardware components,
such as fans, power supplies, and Routing Engines, so that if one of them fails, a backup component
takes over immediately and router operation continues. You can replace most redundant components
without having to power down the router; this is called hot swapping. For most hardware
components, no software configuration is required. They are simply present in the router, which you
can verify with the show chassis hardware command, and if any problems occur, a message or alarm
is logged by the system logging facility (described in Chapter 5). Redundant Routing Engines,
however, require some configuration.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, the Routing Engine in slot 0 is the master (RE0) and is used when the router boots. The
one Routing Engine in slot 1 (RE1) is the backup. You configure hostnames and addresses for the two
Routing Engines using configuration groups (in the [edit groups] hierarchy level). Specifically, you
must use the special configuration group re0 (for the Routing Engine in slot 0) and re1 (for the
Routing Engine in slot 1) to define properties specific to the individual Routing Engines. Configuring
the re0 and re1 groups lets both Routing Engines use the same configuration file. Then use the
apply-groups statement to propagate the configuration group information to the main part of the
configuration.

The commit synchronize command commits the same configuration on both Routing Engines. This
command makes the active or applied configuration for both Routing Engines the same with the
exception of the groups, re0 being applied only to RE0 and re1 being applied only to RE1. If you don't
synchronize the configurations between the two Routing Engines and one of them fails, the router
may end up in a very crippled state if the backup Routing Engine has a different configuration.

If the configuration on the other Routing Engine has been modified but not committed, the commit
synchronize operation fails:

 [edit]
 aviva@router1# commit synchronize
 re0:
 error: configuration database modified
 re1:
 error: remote lock-configuration failed on re1

If you use the show | display inheritance command to see the statements that are inherited from
the re0 and re1 groups, you see only what is inherited from the master Routing Engine, re0; you
won't see anything inherited from the backup:

 [edit]
 aviva@router1# show | display inheritance | match re0
 ## 'router1' was inherited from group 're0'
 ## 'fxp0' was inherited from group 're0'
 ## '0' was inherited from group 're0'
 ## 'inet' was inherited from group 're0'
 ## '192.168.15.1/24' was inherited from group 're0'
 [edit system]
 aviva@router1# show | display inheritance | match re1
 [edit system]
 aviva@router1#

Use the following command to see which Routing Engine is the master and which is the backup:

 aviva@router1>
show chassis routing-engine

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Routing Engine status:
 Slot 0:
 Current state Master
 Election priority Backup
 Temperature 33 degrees C / 91 degrees F
 CPU temperature 38 degrees C / 100 degrees F
 DRAM 768 MB
 Memory utilization 20 percent
 CPU utilization:
 User 11 percent
 Background 0 percent
 Kernel 19 percent
 Interrupt 1 percent
 Idle 69 percent
 Model RE-2.0
 Serial ID 58000007348d9a01
 Start time 2005-04-26 22:31:45 UTC
 Uptime 3 minutes, 13 seconds
 Load averages: 1 minute 5 minute 15 minute
 0.86 0.65 0.28
 Routing Engine status:
 Slot 1:
 Current state Backup
 Election priority Backup (default)
 Temperature 30 degrees C / 86 degrees F
 CPU temperature 30 degrees C / 86 degrees F
 DRAM 768 MB
 Memory utilization 15 percent
 CPU utilization:
 User 0 percent
 Background 0 percent
 Kernel 0 percent
 Interrupt 0 percent
 Idle 100 percent
 Model RE-2.0
 Serial ID d800000734745701
 Start time 2005-02-18 07:48:14 UTC
 Uptime 67 days, 14 hours, 46 minutes, 37 seconds

The highlighted lines show the master and backup information, and the remainder of the output
shows Routing Engine status information.

To find out which software version is running on the backup Routing Engine or to edit its
configuration file, log in to that Routing Engine:

 aviva@router1> request routing-engine login re1
 --- JUNOS 7.4-R1.7
 aviva@router1a>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The prompt shows the hostname you configured for RE1.

Both Routing Engines have an identical filesystem layout, and the filesystems are distinguished by
the identifiers re0 and re1. When you list files, you see the ones on the Routing Engine you are
logged in to. To list files on the other Routing Engine, include the identifier:

 aviva@router1> file list re1:/
 re1:
 /:
 COPYRIGHT
 altconfig/
 altroot/
 bin/
 boot/
 config/
 data/
 dev/
 etc/
 kernel@ -> /packages/jkernel
 mnt/
 modules/
 packages/
 proc/
 root/
 sbin/
 tmp/
 usr/
 var/

The master and backup Routing Engines exchange keepalive messages to detect that each is alive
and well. You can protect the operation of the router by automatically switching from the master to
the backup Routing Engine if the backup has not received keepalives from the master for five
minutes:

 [edit chassis redundancy]
 aviva@router1# set failover on-loss-of-keepalives

The problem with this type of failoverand with manually resetting the master-shipis that the router
stops forwarding packets during the time it takes to start the routing protocol software on the other
Routing Engine. A way to automate the failure without packet loss is to use graceful switchover:

 [edit chassis redundancy]
 aviva@router1#

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set graceful-switchover enable

The CLI prompt then changes to indicate which Routing Engine you are using:

 {master}[edit]
 aviva@router1a#
 {backup}
 aviva@router1>

With graceful switchover, the backup Routing Engine regularly synchronizes its configuration and
state with the master Routing Engine. The master Routing Engine sends keepalives to the backup
every two seconds by default.(You can change this value with the set chassis redundancy
keepalive-time command.) If the backup Routing Engine stops receiving these messages, it assumes
mastership and the router's Packet Forwarding Engine (PFE) breaks its connection with the routing
tables on the old master and connects to the new master. From the point of view of packet
forwarding, the switching of the PFE connection from one router to the next happens immediately, so
no packet loss occurs. One caveat about graceful switchover is that both Routing Engines must be
running the same version of the JUNOS soft-ware. If you are using the backup Routing Engine to
upgrade to a different software release, you need to disable graceful switchover.

If you are using graceful switchover, you can automatically switch to the backup Routing Engine if it
receives a hard disk failure error from the master:

 [edit chassis redundancy]
 aviva@router1# set failover on-disk-failure

By default, when you reboot the router, RE0 is the master. Use the following commands to have RE1
permanently be the master even after a reboot:

 [edit chassis]
 aviva@router1# set
redundancy routing-engine 0 backup
 aviva@router1# set redundancy routing-engine 1 master
 aviva@router1# commit synchronize

See Also

Recipe 8.12

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 1.31. Using the Second Routing Engine to
Upgrade to a New Software Version

Problem

You want to upgrade the JUNOS software version on the router incrementally to protect against
something going wrong during the upgrade.

Solution

If your M-series or T-series router has two Routing Engines and you have configured Routing Engine
redundancy (see Recipe 1.30), place the new software version on the second Routing Engine while
keeping the currently running version on the first Routing Engine.

First, log in to RE0 and enter configuration mode:

 {master}
 aviva@router1> configure

Disable Routing Engine redundancy:

 {master} [edit]
 aviva@router1>
delete chassis redundancy

Save the configuration changes on both Routing Engines:

 {master} [edit]
 aviva@router1> commit synchronize and-quit

Upgrade the JUNOS software version on the backup Routing Engine:

 {master}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1> request routing-engine login other-routing-engine
 aviva@router1-backup> request system software add validate /var/tmp/jinstall-
7.4R1.7-domestic-signed.tgz reboot

When the reboot of the backup Routing Engine begins, you are logged out of this Routing Engine and
return to the master Routing Engine. Wait a few minutes for the backup Routing Engine to reboot.
Then log back in to RE1 and verify that the software is running properly.

At this point, you can also upgrade the JUNOS software version on the master Routing Engine:

 {master}
 aviva@router1> request system software add validate /var/tmp/jinstall-
7.4R1.7-domestic-signed.tgz reboot

This time, you are logged out of the router. Log back in a few minutes after the reboot and
reconfigure redundancy:

{master}
 aviva@router1> configure
 [edit]
 aviva@router1# set chassis redundancy routing-engine 0 master
 aviva@router1# set chassis redundancy routing-engine 1 backup
 aviva@router1# set chassis redundancy routing-engine graceful-switchover enable
 aviva@router1# set chassis redundancy routing-engine 0 master
 aviva@router1# commit synchronize and-quit

Then verify that the router is running properly and that RE0 is again the master.

Discussion

In the upgrade procedure described in Recipe 1.22, you overwrite the existing version of JUNOS
software with the newer version. If something goes wrong during the upgrade process or if the image
you load is damaged in some way, you might not be able to access the router, so you might not be
able to reload the previous working version of the software.

Most M-series or T-series routers have two Routing Engines, and you can take advantage of this
when you are upgrading software releases. You can install the new software release on the backup
Routing Engine while keeping the currently running version on the master Routing Engine. Then make
sure that the new software version is running correctly on the backup Routing Engine before
upgrading the software on the master Routing Engine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipes 1.22 and 1.30

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Basic Router Security and
Access Control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

In the last few years, routers have increasingly become targets of malicious hackers attempting to
launch distributed denial-of-service (DDoS) and other attacks across the Internet. Having control of
a router, especially one with high-speed links, provides an even greater opportunity for mischief than
just controlling PCs. A hacker in control of your router can reconfigure the system and take over your
entire autonomous system (AS). Hackers are often able to log in to and take over routers simply
because of negligence on the part of a router administrator who doesn't implement basic security
precautions, such as setting a password for the root account, or who uses a password that can easily
be discovered, such as juniper, cisco, root, or admin. Given the increasing number of malicious
attacks occurring on the Internet, it is vital for you to secure your router.

This chapter talks about how to configure router access, including setting up login accounts, and
other basic security measures you should take to control access to the router and to protect your
router from undesired access.

There is nothing complicated about what you need to do to protect your router. Basic router security
consists of three components. Two of theselimiting physical access to your router and configuring the
JUNOS software to minimize the vulnerability of your routerare under your control. Properly
configuring the router to be as secure as possible, while at the same time ensuring that you don't
misconfigure the router to increase its vulnerability to attack, is often called hardening the
configuration. The third component of security is some of the default behaviors of the JUNOS
software that help protect the router.

To limit physical access to your router, we strongly recommend keeping your router in an area that
has restricted access, such as a room that is locked or has badge access, and then limiting the
number of people who have access to that area. Anyone who can physically get to a router can do a
lot of damage, from removing hardware or cables from the router to connecting a PC to the router's
console port, which lets them gain access to the router as root and gives full access to and control of
the router's configuration and files. You should also never leave a modem connected to the router's
console port to ensure that no one can gain access this way.

In the basic router configuration that you set up (described in Recipe 1.1), the following default
software behaviors are in place to protect the security of your router:

Only console access to the router is enabled by default. Remote management access to the
router and all management access protocols, including Telnet, FTP, and SSH (secure shell), are
disabled. When you initially configure the router, you connect a terminal to the router's console
port. After this, you want to keep the router in an area that has limited physical access, so you
need to enable a way to remotely log in to the router. For the best security, you should enable
only SSH access.

The JUNOS software does not support the SNMP Set capability for editing configuration data,
although it does support this capability for monitoring and troubleshooting the network. There
are no known security issues associated with this. (You can configure the software to disable the
SNMP Set capability.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The JUNOS software does not forward directed broadcast messages. (Directed broadcasts are
datagrams with a destination address of an IP subnetwork broadcast address.) Directed
broadcasts are open to spoofing, which is used in DoS attacks.

The JUNOS software ignores martian addresses that contain the following prefixes: 0.0.0.0/8,
127.0.0.0/8, 128.0.0.0/16, 191.255.0.0/16, 192.0.0.0/24, 223.255.55.0/24, and
240.0.0.0/4. (Martian addresses are reserved host or network addresses about which all routing
information should be ignored.) You may want to add other prefixes to the martian list, such as
RFC 1918 address space and bogon prefixes (see Recipe 9.5).

A key to router security is controlling who can log in to the router and what they can do once they
are logged in. For each user who is allowed to work on the router, you should create a login account
that defines the user's login name and password and the class of operations that they can perform on
the router.

Strategies for Choosing Passwords

Passwords for the root account and for user accounts are often the weakest links in router security.
For root and for any user who can log in to the router, you should always set a password, and the
password you choose should be a strong password, one that is hard to crack, not a weak one. You
want to make it impossible for a person with malicious intentions to gain login access to your router,
especially as root or any user who has root permission or who has permission to modify the router's
configuration or any files on the router, or to shut down or reboot the router.

All JUNOS passwords are encrypted, but this means only that the password stored on the router or in
a configuration file is stored in an encrypted form. Someone reading the configuration on the router
won't be able to see the plain-text password, and if you copy the file over the network and someone
sniffs the session, they won't see the passwords in the file. Even though the passwords are encrypted
in the configuration, you should take care not to let them circulate. It's still possible to use programs
such as crack to guess clear-text passwords, encrypt them, and compare them to a list of encrypted
strings (although this is not the case with, for example, SSH public keys). For this reason, you always
need to use strong passwords and prevent even encrypted versions of your passwords from falling
into the wrong hands.

To understand what a strong password is, we should look first at what constitutes a weak password.
It should go without saying, but bears repeating anyway, that the weakest password is no password
at all. A number of groups that monitor network security still find routers that have no passwords set
on them. Other weak passwords are those that are easy to guess and include common words such as
the name of your router vendor (such as juniper), the string admin, using the username as the
password (for example, username root, password root, or admin/admin), and using the string
password or Password. Other guessable passwords are words or strings like your birthday, spouse's
name, or the name of any person. Weak passwords are also those that are vulnerable to brute-force
attacks, in which an automated program tries a large number of possible passwords, and to
dictionary attacks, which are automated programs that try all words in a dictionary in an attempt to
crack an account's password. Keep in mind that dictionaries for all languages are now available on
the Internet, as are dictionaries specific to technical and other fields, so all words that might be
present in them are weak passwords, even derivations that substitute numbers for letters.

A strong password is everything a weak password is not, and then some. It should include numbers,
symbols, and a mix of uppercase and lowercase characters. Other suggestions are to pick a couple of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

letters from a phrase you know well or to pick some unrelated words and connect them into a single
string with punctuation marks or other symbols. Remember that a strong password is a good
password only if you can remember it without writing it down.

User Authentication

Each user must have a login account and password to be able to log in to the router. The JUNOS
software supports three methods of user authentication: local password authentication, Remote
Authentication Dial-In User Service (RADIUS), and Terminal Access Controller Access Control System
Plus (TACACS+). With local password authentication, you set a password for each user in the router's
configuration file. RADIUS and TACACS+ are centralized authentication databases for validating users
who attempt to access the router using any access method. They are both distributed client/server
systemsthe RADIUS and TACACS+ clients run on the router, and the server runs on a remote
network system.

You can configure the router to be both a RADIUS and TACACS+ client and can also configure
authentication passwords in the JUNOS configuration file. If you use multiple authentication methods,
you can set the order in which the router tries the different authentication methods when verifying
user access. If you do not set the order, the router uses the local password first.

Password Encryption

All passwords that you enter in a JUNOS configuration are encrypted. The JUNOS software supports
several methods for securing passwords using encryption and hashing algorithms (encryption is a
one-to-one mapping, so it's possible to decrypt, while hashing is a many-to-many mapping, so it's
impossible to unhash):

SHA1

Secure Hash Algorithm 1 is the newest algorithm, developed in 1995. It is a secure hashing
algorithm that produces a 160-bit message digest that is used as a signature for a message
and that must be verified by the recipient. SHA1 is considered secure because it is
computationally infeasible to find a message that corresponds to a given message digest or to
find two different messages that produce the same message digest. Any change to a message
in transit results in a different message digest, so the signature fails to verify. However, SHA1
has recently been proven not to be as strong as originally thought.

MD5

Message Digest 5, developed in 1991, is a message-hashing algorithm that takes a message of
arbitrary length and produces a 128-bit hash function. When developed, it was thought to be
computationally infeasible to produce two messages with the same message digest. The use of
MD5 has recently been deprecated by the U.S. Department of Defense.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DES

Data Encryption Standard, an encryption algorithm developed in 1976, uses a 56-bit key. Many
people never thought DES was very strong in the first place.

SSH

Secure shell, Version 1 (RSA) and Version 2 (DSA), is a security protocol that was originally
developed with the Unix BSD software.

Even when you configure a plain-text password, the JUNOS software encrypts it immediately after
you type it. Also, the software forces you to use a somewhat strong password, because the password
must be at least six characters long and must include either a change of case or a special character.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.1. Allowing Access to the Router

Problem

You just installed your router and can log in to it only through the console port. You want to allow
administrators to securely log in to it over the network.

Solution

You should use SSH to provide secure encrypted sessions to the router:

 aviva@router1# set system services ssh

Discussion

With SSH, both the password you type and the connection itself are encrypted using a well-tested
industry-standard protocol, so both are protected. The systems that you use to connect to the router
must have SSH client software. For greater security, you should use SSH keys on the client. You can
find information about obtaining SSH software at http://www.ssh.com and http://www.openssh.com .

When you log in to the router with SSH, you are prompted for your password:

 aviva-server1% 122: ssh router1
 The authenticity of host 'router1-mycompany.com (192.168.71.246)' can't be
 established.
 DSA key fingerprint is 2c:a9:35:c5:2a:db:12:5b:b6:6e:0b:17:ae:ec:d4:55.
 Are you sure you want to continue connecting (yes/no)? yes
 Warning: Permanently added 'router1-mycompany.com' (DSA) to the list of known hosts.
 aviva@router1-mycompany.com's password:
 --- JUNOS 7.4R1.7 built 2005-10-24 08:10:28 UTC
 aviva@router1>

You can also allow users to connect to the router with Telnet, but if security is your highest priority,
you should not use Telnet. Telnet connections and passwords are not encrypted so they can be
intercepted. However, if your network itself is well protected with firewalls, you can enable Telnet to
let users access the router:

 aviva@router1# set system services telnet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The only user who can never log in using Telnet is root. To log in as root, you must use SSH or the
console.

SSH and Telnet provide terminal sessions to the router so you can log in to the router. The commands
in the JUNOS software that copy files to and from the router use SSH, but they can also use FTP.
Because FTP is not secure in and of itself, if you want to use it to copy files, the best thing to do is to
enable FTP just before you need to copy the files:

 aviva@router1# set system services ftp
 aviva@router1# commit

You need to enable FTP only if you want to FTP something to the routerthat is, when the router is the
FTP server. If the router is the FTP client and you are fetching a file from an FTP server, you do not
need to enable FTP on the router. The FTP client on the router is always present and running.

Then disable FTP after you have copied the files:

 aviva@router1# delete system services ftp
 aviva@router1# commit

One way to secure FTP is to create a firewall filter that uses source address filters to limit access to
the FTP port, particularly if the source addresses are forced to come through an encrypted tunnel.
Recipe 9.8 discusses how to create firewall filters.

If you are using a router that supports the J-Web browser for configuring and monitoring the router,
you can enable secure HTTP on the router:

 [edit system]
 aviva@router1# set services web-mangement https

See Also

Recipes 2.14 and 9.8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.2. Controlling Root Authentication

Problem

When you first installed your router, you created a password for the root user (see Recipe 1.1). With
this initial configuration, anyone who knows the root password can log in to the router using Telnet.
You want to make the root login more secure.

Solution

There are two solutions, depending on the desired level of security. One solution is to use SSH for the
root password. You can specify the root password in plain text as you are configuring the router:

 [edit]
 root@router1# set system root-authentication ssh $1991poppI

You can also load an SSH key file from a server:

 [edit]
 aviva@router1# set system root-authentication load-key-file server1:/homes/aviva

 /.ssh/id_dsa.pub
 .file.19692 | 0 KB | 0.3 kB/s | ETA: 00:00:00 | 100%
 aviva@router1# show
 system {
 root-authentication {

ssh-rsa "1024 35
 9727638204084251055468226757249864241630322207404962528390382038690141584534964170019
 6106083587229615634757849182736033612764418742659468932077391083448101268312595772262
 5461667999278316123500438660915866283822489746732605661192181489539813965561563786211
 94032768780653816960202749164163735913269396344008443
root@mynetwork.com"; # SECRET-
 DATA
 }
 }

The second solution for providing root authentication forces the root user to log in using the router's
console port:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit system]
 aviva@router1# set services ssh root-login deny

Discussion

There are two schools of thought about root access to the router. One suggests using SSH for the root
password because SSH is more secure than using just the password you initially configured on the
router. SSH provides inband access to the router, meaning that the root user can log in from anywhere
in the network, especially if the router is part of a service provider network. A second school of thought
suggests disabling SSH access for root altogether, forcing the root user to log in on the router's console
port. Access using the console port is assumed to be secure in that you must be on the company's
internal network to even have access to the console port.

Generally, there's very little reason to provide access to the root login inband, so unless you really
need this on your network, for strict security you should not provide root SSH access.

If you use SSH to authenticate the root password, you need to first enable SSH services on the router
and be running SSH on your server.

This first command in this recipe sets the root's SSH password by entering it directly in plain text in the
router's configuration file. When you use the show command to view the configuration, you see only an
encrypted version of the password. The second command copies an SSH key file from a server. After
you type the command, the contents of the key file are immediately copied into the configuration file.

Any SSH password you set is in addition to the plain-text password. You should leave a local root
password on the router so you can log in using the console port.

The second command in this recipe disables SSH for the root user altogether. Anyone needing to log in
to the router as root must log in through the router's console. The reason for doing this is not so much
that you want the root user to come in to the router through the console, but rather that you want him
to log in using an individual account and then exit to the shell and use the su command to become root
only if he needs to. There are two reasons for this. First, you want to avoid habitual use of the root
account. Logging in with root is like running with scissors: there are lots of ways to hurt yourself. It's
much better to get in the habit of using a nonroot account and su only when required. Second, and
more importantly, you want to maintain accountability. If you log in to a router, su to root, and then do
something horrible, there will be an audit trail to trace the source of the problem. However, if you had
logged in as root in the first place, the action wouldn't be traceable to an individual router user.

See Also

Recipe 2.3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.3. Logging In to the Router's Console

Problem

You have lost access to the router through other means and you need a way to log in.

Solution

Log in to the router using the console port:

 aviva@server1% telnet router1-con
 Trying 172.19.121.19…
 Connected to router1-con.mycompany.com.
 Escape character is '^]'.
 router1 (ttyd0)
 login:

Discussion

The console port on JUNOS routers is enabled by default. If you ever lose access to the router
through normal login means, you can log in using the console port. While it is possible to disable the
console port, it is really not recommended.

Use of the console port is not really required other than when you are initially installing the router.
However, many people use the console port as the access of last resort. You can set up a terminal
server with console connections to a number of devices in the event that the network fails. Also, if
someone accidentally misconfigures the router and locks themselves out, or if routing has failed, you
can still get into the router remotely using the console port.

Access over the console port is the only method that allows you to remain connected to the router
during a reboot. A reboot logs you out of the session on the router, but you will still be connected and
will be able to halt the reboot or watch the messages as the router reboots.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.4. Setting the Login Authentication Methods

Problem

You want to use a RADIUS or TACACS+ server to authenticate user logins to the router, and you
want to specify a backup login authentication method in case the primary method is unavailable.

Solution

Use the following command to set RADIUS as the primary authentication method and to set as the
backup method the user accounts configured on the local router:

 [edit]
 aviva@router1> set system authentication-order [radius password]

If you are using TACACS+, you can set up something similar:

 [edit]
 aviva@router1# set system authentication-order [tacacs password]

Discussion

When users log in to the router, the JUNOS software can authenticate the username and password
against an account that is configured locally in the router configuration file or against an account that
is configured on a remote RADIUS or TACACS+ server.

There are a number of methods to authenticate users attempting to log in to the router. The default
method is to use the username and password configured on the router and to try no other method if
the authentication fails. This method is the equivalent of using the set system authentication-order
password command with no options. You should always configure passwords in the configuration file
for at least a few users so someone can always log in to the router (see Recipe 2.8).

To have the router use a RADIUS or TACACS+ server as the primary user authentication method,
you must change the order in which the JUNOS software tries different authentication methods. The
first command in the recipe configures RADIUS to be the primary user authentication method, and
the second command configures TACACS+ as the primary method. Both commands set the user
account configured on the router (password) as the backup authentication method. Providing a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

backup method means that users will always be able to log in to the router if there are problems with
the RADIUS or TACACS+ server. (Recipes 2.12 and 2.13 describe how to configure RADIUS and
TACACS+ user authentication.)

With the configuration in this recipe, when a user tries to log in to the router, the router first checks
the username and password against the RADIUS or TACACS+ server. If they match, the user is
authenticated and the router logs her in. If the remote authentication fails, the router checks its local
configuration. If the user has a local account and the password matches, the user is logged in. If
there is no match in either place, the user is denied access to the router.

A slight twist to this recipe is to use only a single authentication, specifying a remote method. The
following command uses only RADIUS authentication:

 [edit]
 aviva@router1> set system authentication-order radius

This configuration allows users to log in to the router only if the RADIUS server has an account for
them and only if the RADIUS server is up. This means that as long as the RADIUS server is up, users
not listed in the RADIUS database won't be able to log in to the router even if there is a configured
account for them on the router. However, if the RADIUS server fails or becomes unreachable, the
JUNOS software authenticates the users locally. If you configure multiple RADIUS servers, the
software checks for locally configured user accounts only after all the servers fail.

Make sure you configure user accounts and assign passwords in the JUNOS configuration for some
users (see Recipe 2.5) so that login access to the router will be possible if the RADIUS or TACACS+
servers fail.

See Also

Recipes 2.5, 2.8, 2.12, and 2.13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.5. Setting Up Login Accounts on the Router

Problem

You want a number of people to be able to work on the router to monitor and configure it.

Solution

Set up a login account for each person who is allowed to log in to the router:

 [edit system login]
 aviva@router1# set user sage class operator
 aviva@router1# set user sage full-name "sage david"
 aviva@router1# set user sage uid 1991
 aviva@router1# set user sage authentication plain-text-password
 New password:
 Retype new password:

Discussion

For each user who you want to log in to the router, create a login account, providing information
about the user that is similar to what you set for Unix accounts. The JUNOS software uses this
account to locally authenticate the user.

Each account requires two pieces of information: a login name (configured with the user statement)
and a login class (configured with the class statement), which associates a set of privileges with the
user, defining the scope of operations that can be performed on the router. As with Unix account
names, the username must be unique on the network and cannot contain spaces, colons, or
commas.

This recipe configures an account for the username sage, who has a privilege level operator, which
allows her to perform most operational commands but not enter configuration mode. operator is one
of the predefined privilege classes. Recipe 2.10 explains the other predefined classes and how to
create custom privilege classes.

The set user sage full-name command configures the user's complete name. Setting this is
optional, but you may find it convenient or easier to read the person's given name rather than her
account name when checking the configuration to see who has access to a router. Enclose the full
name in quotation marks if it contains spaces.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The third command, set user sage uid, assigns a user ID (UID) of 1991. The UID is basically the
same as the Unix UID. It's included in the JUNOS configuration primarily because UIDs are integral to
Unix systems and the JUNOS software runs on FreeBSD. As with Unix, the JUNOS software uses the
UID when establishing and enforcing file permissions and file access. Configuring the UID is optional.
If you do not configure it, the JUNOS software assigns one, generally using the lowest available UID
number, starting at 2000. Here's an example of automatic assignment:

 [edit system
login]
 aviva@router1# set user sage class operator
 aviva@router1# commit check
 configuration check succeeds
 aviva@router1# show
 user sage {
 uid 2006;
 class operator;
 }

You see that UID 2006 has been assigned to the user sage. You might want to explicitly configure the
UID if users will be transferring files to Unix systems to ensure that users have the same UID on both
JUNOS and Unix systems so that there are no file ownership issues.

The last command in this recipe establishes a plain-text password for the login account. You are
prompted for the password, and nothing is displayed when you type and retype it.

To set up a user account, only the username and privilege class are required, but the password and
other information are optional. If you omit the class, the CLI displays a warning:

 [edit system login]
 aviva@router1# set user sage full-name "sage david"
 aviva@router1# show
 user sage {
 full-name "sage david";
 ## Warning: missing mandatory statement(s): 'class'
 }

Also, you will not be able to commit a configuration if you forget to assign a class:

 [edit system
login]
 aviva@router1#
commit check
 [edit system login]
 'user sage'
 Missing mandatory statement: 'class'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 error: configuration check-out failed: daemon file propagation failed

If you configure a password with a user's login account the software authenticates the user against
this password during the login process. This is the default authentication method. You should always
configure passwords in the configuration file for at least a few users so there is always someone who
can log in to the router.

If you configure a password with the user's login account but want the router to have a RADIUS or
TACACS+ database authenticate the user before checking against the password configured on the
router, you must change the authentication order so that the RADIUS or TACACS+ server is checked
before the local user account (see Recipe 2.4). You must also configure RADIUS or TACACS+ user
authentication (see Recipes 2.12 and 2.13). In this situation, users will be able to log in to the router
if the remote authentication server fails.

If you do not configure a password with the user's login account, authentication is done only
remotely, using a centralized RADIUS or TACACS+ authentication database, instead of locally based
on the router configuration file. This type of account is analogous to a Unix account that has a * in
the password field, which does not allow logins based on the password file but can allow logins based
on other valid means of authentication, such as RADIUS. For this to work, you must change the
authentication order so that RADIUS or TACACS+ is checked first (see Recipe 2.4), and you must
configure the RADIUS or TACACS+ user authentication (see Recipes 2.12 and 2.13). Users with this
type of account will not be able to log in to the router if the authentication server is down or if
network problems occur when accessing the server.

You can also create a generic login account (see Recipe 2.8) or a group login account (see Recipe
2.9) instead of configuring individual accounts for each user. These types of accounts authenticate
against the RADIUS or TACACS+ database. Here, too, you must change the authentication order so
that RADIUS or TACACS+ is checked first (see Recipe 2.4), and you must configure the RADIUS or
TACACS+ user authentication (see Recipes 2.12 and 2.13). Users with this type of account will not be
able to log in to the router if the authentication server is not available.

This recipe configures a plain-text password for the user's authentication. The password must be at
least six characters long and must contain at least one case or one letter-to-number change.(Recipe
2.6 explains how to modify the default password format.) Here, you type the plain-text-password
keyword slightly differently than for some other JUNOS configuration statements. After you type
plain-text-password, press Enter. The software then prompts you to type and then retype the
password. Type the password in plain text, and the JUNOS management process, MGD, immediately
encrypts it using SHA1 encryption by default. (To change the default encryption, see Recipe 2.7.) You
then see only the encrypted version of the password. Notice that the keyword plain-text-password
has changed to reflect the fact that the password is now encrypted:

 encrypted-password "1bO1I/WUw$bfaYF0LHxHxVCm7XyS7eG."; ## SECRET-DATA

To insert a previously encrypted DES, MD5, SHA1, SSH Version 1 (RSA), or SSH Version 2 (DSA)
password, cut and paste (or type) the encrypted password into the configuration statement,
enclosing it in quotation marks. Here is an example of an encrypted MD5 password:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1# set user sage authentication encrypted-password
 "1EpZ4gDEb$52KHLKA2QuqfJ83tFUvWd1"

You can define both encrypted and SSH passwords for a single user:

 aviva@router1# show
 user sage {
 authentication {
 encrypted-password "1kfpFHEom$wrWWtk69gvdbWInzsoI0b."; ## SECRET-DATA
 ssh-rsa "1024 35 1463306454911004878538350206193424119843602248584695395
 55532106068887517531015448370922784460860638276095178917479848571459866004412524
 44671184497730460934239780966471256093384818219663350688876263790111832271705295
 56264636153739986671412936949237931460389138872790447839157168037660941582648407
 66391853943503 sage@red.juniper.net"; ## SECRET-DATA
 }
 }

For basic router security considerations, you should limit access to the router to only those people
who really need access, and you should carefully consider which privileges each person is given, so
that a person can perform his job function and responsibilities, and nothing more.

See Also

Recipes 2.4, 2.6, 2.7, 2.8, 2.9, 2.10, 2.12, and 2.13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.6. Changing the Format of Plain-Text Passwords

Problem

You want to require the passwords for user accounts to be longer than six characters and to have
more than one case change.

Solution

Set all plain-text passwords to be from 8 to 20 characters long and to contain at least two case
changes:

 [edit system login]
 aviva@router1# set password maximum-length 20
 aviva@router1# set password minimum-length 8
 aviva@router1# set password minimum-changes 2

Discussion

By default, plain-text passwords must be at least six characters long and must contain one change
from either letters to numbers (or vice versa) or from lowercase to uppercase (or vice versa). You
can harden the router's security even more by increasing the minimum password length and the
minimum number of case and letter-to-number changes.

The commands in this recipe require that all plain-text passwords be from 8 to 20 characters long
and contain at least 2 case changes. The changes take effect when you next configure a plain-text
password for a user:

 [edit system login]
 aviva@router1# set user sage authentication plain-text-password
 New password:T91912
 error: minimum password length is 8
 error: require 2 changes of case, digits or punctuation

This password is not acceptable because it is shorter than eight characters and has only one change
from a letter to a number. An example of a valid password with these conditions is $1991poppI.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you change the requirements for plain-text passwords, the new parameters affect only newly
created passwords, so already existing passwords may not be as secure as your new password
policy.

See Also

Recipe 2.5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.7. Changing the Plain-Text Password Encryption
Method

Problem

When setting up passwords for login accounts on the router, if you assigned plain-text passwords,
the default encryption is SHA1. You want to change this to either DES or MD5.

Solution

Use the following command to change the encryption used for plain-text passwords to DES:

 [edit]
 aviva@router1# set system login password format des

For MD5 encryption, use the following command:

 [edit]
 aviva@router1# set system login password format md5

Discussion

All passwords that you enter in a JUNOS configuration are encrypted. For plain-text passwords, you
can use one of three types of encryption: SHA1 (the default and the strongest), MD5, or DES. The
encryption type that you configure is used for all plain-text passwords. You cannot specify different
encryption types for different users.

See Also

Recipe 2.5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.8. Creating a Login Account for Remote
Authentication

Problem

You want to use a RADIUS or TACACS+ database to authenticate users instead of setting up
individual login accounts for them on the router.

Solution

Create a login account that has the username remote:

 [edit system]
 aviva@router1# set login user remote class operator
 aviva@router1# set login user remote full-name "remote account"
 aviva@router1# set login user remote uid 9999

Then set the authentication order so that the remote authentication server is checked before the
router's configuration file. The following command uses a RADIUS server:

 [edit system]
 aviva@router1# set authentication-order [radius password]

Use the following command for TACACS+:

 [edit system]
 aviva@router1# set authentication-order [tacacs password]

Discussion

When you want users to be able to log in to and work on the router but always want to use a central
authentication server, you can set up a placeholder account named remote instead of creating login

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accounts on the router for these users. When a user with no account in the local configuration files
tries to log in to the router using her regular username, the authentication is handled by the remote
account, which queries the RADIUS or TACACS+ server to authenticate the user. If the user's name
and password match what is on the server, the user is authenticated and the router logs her in.
(Recipes 2.12 and 2.13 explain how to configure the RADIUS and TACACS+ server information.)

As with an individual user account (see Recipe 2.5), you configure a privilege level with the set user
remote class command and a user ID with the set user remote uid command. This recipe sets the
privilege level to operator, which allows these users to perform most operational commands but not
enter configuration mode. (Recipe 2.10 discusses privilege classes.)

This recipe includes the set user remote full-name command to provide a description of this
account. This command is not required.

Users who are authenticated only by the remote account will not be able to log in to the router if the
authentication server is down. You should always configure some individual user accounts with
passwords on the router so someone can always log in to the router (see Recipe 2.5).

You can create only one remote account on the router. This means that all users who don't have an
individual user account on the router and who are authenticated by RADIUS or TACACS+ share the
same privilege level, which is configured in the set user remote class command. Recipe 2.9
describes how to set up remote accounts that have different privilege levels.

See Also

Recipes 2.5, 2.9, 2.10, 2.12, and 2.13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.9. Creating a Group Login Account

Problem

You want to use a RADIUS or TACACS+ database to authenticate a group of users who perform
similar job functions and tasks on the router, instead of setting up individual login accounts for them
on the router.

Solution

Create a group account on the router to allow multiple users to be authenticated by the same
RADIUS or TACACS+ server account:

 [edit system login]
 aviva@router1#
set user noc class operator
 aviva@router1# set user noc full-name "NOC team"

Then set the authentication order so that the remote server is checked before the router's
configuration file. The following command uses TACACS+:

 [edit system]
 aviva@router1# set authentication-order [tacacs password]

Finally, map the users on the server to the account name configured on the router. The following is
the map on a TACACS+ server:

 user = mike {
 service = junos-exec {
 local-user-name = noc
 }
 }
 user = sage {
 service = junos-exec {
 local-user-name = noc
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

Discussion

When you want a group of users to be able to log in to and work on the router but always want to
use a central authentication server, you can set up a common account instead of creating login
accounts on the router for these users. Then in the RADIUS or TACACS+ database, you map the
username to the common account name.

The first command in this recipe creates the group account noc that has operator privileges and can
perform most operational commands but cannot enter configuration mode. This second command,
set user remote full-name, provides a description of the account. This command is optional but is
suggested so that the meaning of the account is clear. The third command sets TACACS+ as the
primary authentication method.

The TACACS+ database in this recipe has two usernames, mike and sage. When these two users try
to log in to the router using their regular login names mike and sage, the login request is
authenticated by the TACACS+ server, which sees that their local username (their login account
name on the router) is noc. The server returns this information to the router, which logs them in
using the noc account and gives them operator privileges.

Users who are authenticated only by a group account will not be able to log in to the router if the
authentication server is down. You should always configure some individual user accounts with
passwords on the router so someone can always log in to the router (see Recipe 2.5).

See Also

Recipes 2.4, 2.5, 2.10, and 2.13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.10. Customizing Account Privileges

Problem

You want to create a custom privilege class to define the operations and actions a user can perform
while logged in to the router.

Solution

Create a privilege class that allows users to read but not modify the configuration and then let them
perform all operational mode commands:

 [edit system login]
 aviva@router1# set class operator-plus-read-config permissions [admin
clear

configure
floppy interface
network
reset routing shell snmp system trace view

maintenance firewall rollback security]

Discussion

When you set up login accounts on the router (see Recipe 2.5), each account must have a privilege
level, or class, which defines the operations and actions the user can and cannot perform on the
router. Each privilege level consists of a collection of permission bits that specifies what a user is
allowed to do. Table 2-1 lists all the permission bits.

Table 2-1. Login class permissions

Permission Bit name

All (superuser) all (can perform all actions)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Permission Bit name

Delete data from system log,
tracing, and other files

clear (using the clear commands)

All control-level operations
(bits ending in -control)

control (can view and change all portions of the configuration)

Configure the router configure (using the configure and commit commands)

Access removable media floppy

Halt and reboot the router;
start a shell and become
superuser

maintenance (using the request system commands, and using the
CLI start shell command and the su root command)

Access the network
network (using the ping, ssh, telnet, and TRaceroute
commands)

Start and stop software
processes

reset (using the restart command, and configure at [edit system
processes])

Return to previous
configuration

rollback (using the rollback command)

Start a local shell shell (using the start shell command)

Display router, routing table,
and protocol values

view (using the show commands)

User account information (
login classes, user IDs)

admin (read-only, using the show configuration command) admin-
control (read, and configure at [edit system login])

Firewall filters
firewall (read-only, using the show configuration command)
firewall-control (read, and configure at [edit firewall])

Interfaces, chassis, class of
service, forwarding options

interface (read-only, using the show configuration command)
interface-control (read, and configure at [edit interfaces],
[edit chassis], [edit class-of-service], [edit forwarding-
options])

Routing, routing protocols,
routing policy

routing (read-only, using the show configuration command)
routing-control (read, and configure at [edit routing], [edit
routing-options], [edit policy-options])

Passwords and authentication
keys

secret (read-only, using the show configuration command)
secret-control (read and configure)

IPSec security
security (read-only, using the show configuration command)
security-control (read, and configure at [edit security])

SNMP
snmp (read-only, using the show configuration command) snmp-
control (read, and configure at [edit snmp])

Router name, RADIUS,
TACACS+, NTP, and other
system-wide information

system (read-only, using the show configuration command)
system-control (read, and configure at [edit system])

Delete data from system log,
tracing, and other files

clear (using the clear commands)

All control-level operations
(bits ending in -control)

control (can view and change all portions of the configuration)

Configure the router configure (using the configure and commit commands)

Access removable media floppy

Halt and reboot the router;
start a shell and become
superuser

maintenance (using the request system commands, and using the
CLI start shell command and the su root command)

Access the network
network (using the ping, ssh, telnet, and TRaceroute
commands)

Start and stop software
processes

reset (using the restart command, and configure at [edit system
processes])

Return to previous
configuration

rollback (using the rollback command)

Start a local shell shell (using the start shell command)

Display router, routing table,
and protocol values

view (using the show commands)

User account information (
login classes, user IDs)

admin (read-only, using the show configuration command) admin-
control (read, and configure at [edit system login])

Firewall filters
firewall (read-only, using the show configuration command)
firewall-control (read, and configure at [edit firewall])

Interfaces, chassis, class of
service, forwarding options

interface (read-only, using the show configuration command)
interface-control (read, and configure at [edit interfaces],
[edit chassis], [edit class-of-service], [edit forwarding-
options])

Routing, routing protocols,
routing policy

routing (read-only, using the show configuration command)
routing-control (read, and configure at [edit routing], [edit
routing-options], [edit policy-options])

Passwords and authentication
keys

secret (read-only, using the show configuration command)
secret-control (read and configure)

IPSec security
security (read-only, using the show configuration command)
security-control (read, and configure at [edit security])

SNMP
snmp (read-only, using the show configuration command) snmp-
control (read, and configure at [edit snmp])

Router name, RADIUS,
TACACS+, NTP, and other
system-wide information

system (read-only, using the show configuration command)
system-control (read, and configure at [edit system])

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Permission Bit name

Tracing and trace files
trace (read tracing files and configuration using the show
configuration command) trace-control (read and configure)

Notice that some bits have two forms, a "simple" form, which gives read-only permission, and a -
control form, which gives read and write permission. Except for the all bit (which grants all
permissions) and the control bit (which grants read/write permission to the entire configuration), the
permission bits are not cumulative, so when you create a custom privilege class, you must list all the
bits that apply. Always include the view bit so users can use the show commands in operational mode.
If you want users to be able to modify the configuration, include the configure bit.

The JUNOS software has four built-in privilege levels:

superuser or super-user

Can perform any operations on the router (equivalent to the all permission bit). This is similar
to the Unix superuser.

operator

Can perform all actions in operational mode available with the clear, network, reset, trace,
and view permission bits. Cannot display or alter the configuration and cannot shut down or
reboot the router.

read-only

Can perform all actions in operational mode available with the view permission bit to show
information about the router or network. Cannot perform any operations that delete or change
files or file contents, clear statistics, or change the information on the router.

unauthorized

Can log in to the router but cannot perform any operations on the router except to log out.

The default privilege levels are not explicitly defined in the configuration, but if you did configure
them, the first three would look like this:

 [edit system login]
 aviva@router1# set class superuser permissions all
 aviva@router1# set class read-only permissions view
 aviva@router1# set class operator permissions [clear network
reset
trace view]

Tracing and trace files
trace (read tracing files and configuration using the show
configuration command) trace-control (read and configure)

Notice that some bits have two forms, a "simple" form, which gives read-only permission, and a -
control form, which gives read and write permission. Except for the all bit (which grants all
permissions) and the control bit (which grants read/write permission to the entire configuration), the
permission bits are not cumulative, so when you create a custom privilege class, you must list all the
bits that apply. Always include the view bit so users can use the show commands in operational mode.
If you want users to be able to modify the configuration, include the configure bit.

The JUNOS software has four built-in privilege levels:

superuser or super-user

Can perform any operations on the router (equivalent to the all permission bit). This is similar
to the Unix superuser.

operator

Can perform all actions in operational mode available with the clear, network, reset, trace,
and view permission bits. Cannot display or alter the configuration and cannot shut down or
reboot the router.

read-only

Can perform all actions in operational mode available with the view permission bit to show
information about the router or network. Cannot perform any operations that delete or change
files or file contents, clear statistics, or change the information on the router.

unauthorized

Can log in to the router but cannot perform any operations on the router except to log out.

The default privilege levels are not explicitly defined in the configuration, but if you did configure
them, the first three would look like this:

 [edit system login]
 aviva@router1# set class superuser permissions all
 aviva@router1# set class read-only permissions view
 aviva@router1# set class operator permissions [clear network
reset
trace view]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is no way to explicitly configure the unauthorized level.

The command in this recipe defines a custom privilege class that allows users to perform all
operational mode commands and to read but not modify the configuration. The clear, network,
reset, trace, and view permission bits allow this class to use all operational mode commands. The
configure bit allows this class to issue the configure command to enter configuration. The remaining
bits are all the read-only bits that allow this class to use the show command in configuration mode.
Users in this class can view all the contents of the configuration file except for passwords and keys
(we have omitted the secret bit). Because this class has no - control bits, users can't change the
configuration, even though the configure bit allows them to issue the commit command:

 [edit]
 aviva@router1# set
 unknown command

To find out what privileges you have, use the show cli authorization command. Here is a user with
superuser privileges:

 aviva@router1> show cli authorization
 Current user: 'aviva' class 'superuser'
 Permissions:
 admin -- Can view user accounts
 admin-control-- Can modify user accounts
 clear -- Can clear learned network information
 configure -- Can enter configuration mode
 control -- Can modify any configuration
 edit -- Can edit full files
 field -- Special for field (debug) support
 floppy -- Can read and write from the floppy
 interface -- Can view interface configuration
 interface-control-- Can modify interface configuration
 network -- Can access the network
 reset -- Can reset/restart interfaces and daemons
 routing -- Can view routing configuration
 routing-control-- Can modify routing configuration
 shell -- Can start a local shell
 snmp -- Can view SNMP configuration
 snmp-control-- Can modify SNMP configuration
 system -- Can view system configuration
 system-control-- Can modify system configuration
 trace -- Can view trace file settings
 trace-control-- Can modify trace file settings
 view -- Can view current values and statistics
 maintenance -- Can become the super-user
 firewall -- Can view firewall configuration
 firewall-control-- Can modify firewall configuration
 secret -- Can view secret configuration
 secret-control-- Can modify secret configuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rollback -- Can rollback to previous configurations
 security -- Can view security configuration
 security-control-- Can modify security configuration
 access -- Can view access configuration
 access-control-- Can modify access configuration
 view-configuration-- Can view all configuration (not including secrets)
 Individual
command authorization:
 Allow regular expression: none
 Deny regular expression: none
 Allow configuration regular expression: none
 Deny configuration regular expression: none

Here is a user with operator privileges:

 mike@router1> show cli authorization
 Current user: 'mike' class 'operator'

Permissions:
 clear -- Can clear learned network information
 network -- Can access the network
 reset -- Can reset/restart interfaces and daemons
 trace -- Can view trace file settings
 view -- Can view current values and statistics
 Individual command authorization:
 Allow regular expression: none
 Deny regular expression: none
 Allow configuration regular expression: none
 Deny configuration regular expression: none

If you do not have permission to perform an operation, you are either "blind" to that operation or you
see some type of indication that you cannot perform it. If you try to view the configuration without
permission, you see the following warnings:

 aviva@router1> show configuration
 version /* ACCESS-DENIED */;
 system { /* ACCESS-DENIED */ };
 interfaces { /* ACCESS-DENIED */ };
 routing-options { /* ACCESS-DENIED */ };
 protocols { /* ACCESS-DENIED */ };
 policy-options { /* ACCESS-DENIED */ };

If you try to enter a command that you don't have permission to use, the CLI acts as if that
command doesn't exist:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1> clear
 unknown command.

You should keep these permission levels in mind when trying to use the commands discussed in this
book. If you cannot enter the command or do not see it with the CLI help, review your authorization
level and check with your system administrator if you need additional permission.

If a user who has a login account but no login class tries to log in, she can get as far as the
operational mode prompt but she can't do anything except log out:

 warning: user "aviva" does not have a valid login class
 aviva@router1> exit

How do you find out which permissions are associated with each command and statement? On the
router, you can use the help reference command to see the permissions for the configuration
statements:

 aviva@router1> help reference interface address
 …
 Required Privilege Level
 interface--To view this statement in the configuration.
 interface-control--To add this statement to the configuration.

For a configuration that already exists on the router, you can see the permissions for the statements
in the configuration. Use this command from operational mode:

 aviva@router1> show configuration system | display detail

and use this command in configuration mode:

 [edit system]
 aviva@router1# show | display detail

Both show the same output:

 ##

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ## system: System parameters
 ## require: admin system
 ## domain-name: Domain name for this router
 ## match (regex): ^[[:alnum:]._-]+$
 ## require: system
 ##
 domain-name mynetwork.com;
 ##
 ## name-server: DNS name servers
 ## require: system
 ##
 name-server {
 ##
 ## DNS name server address
 ##
 192.168.15.2;
 }
 ##
 ## login: Names,
login classes, and passwords for users
 ## require: admin
 ##
 login {
 ##
 ## Login class name
 ## match (regex): ^[[:alnum:]_-]+$
 ##

The only way to find out the permissions for operational mode commands is to look in the JUNOS
product documentation.

Login classes have one more feature to help with basic router security. You can set a time after which
all users in that class are automatically logged out if they have not typed anything at the keyboard.
(By default, a user can remain logged in indefinitely.) Here, the users in the class we created will be
automatically logged out if the keyboard is idle for five minutes:

 [edit system login]
 aviva@router1# set class operator-plus-read-config
permissions idle-
timeout 5

Warning messages are displayed beforehand:

 aviva@router1> show system users
 9:56PM up 18:48, 2 users, load averages: 0.16, 0.09, 0.04
 USER TTY FROM LOGIN@ IDLE WHAT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva p0 server.juniper.net 9:42PM 4 cli

 aviva@router1> Warning: session will be closed in 1 minute if there is no acti
 vity
 Warning: session will be closed in 10 seconds if there is no activity
 Idle timeout exceeded: closing session
 Connection closed by foreign host.

As if all this control weren't enough, you can also control, down to the specific command and
configuration hierarchy level, what commands users in a particular login class can and cannot issue
and what portions of the configuration they can view and modify. For example, you can create a class
that has the standard operator permissions but also can issue the request system support command
to collect information to send when reporting a problem with the router:

 [edit system login]
 aviva@router1# set class operator-plus-support permissions [
clear network reset
 trace view]
 aviva@router1# set class operator-plus-support allow-commands "request support
 information"

Or you can take the basic operator class and modify it so users can issue all clear commands except
clear system commit (which clears pending configuration commit operations) and clear system
reboot (which clears pending router reboots):

 [edit system login]
 aviva@router1# set class operator-plus-support permissions [clear network reset
 trace view]
 aviva@router1# set class operator-plus-support deny-commands "clear system"

Parallel statements allow you to fine-tune what portions of the configuration can be edited or viewed
in configuration mode. This is a way to lock portions of the configuration. The following command
does not allow users to modify the protocols portion of the configuration:

 [edit system login]
 aviva@router1# set class all-but-protocols permissions [all]
 aviva@router1# set class all-but-protocols deny-configuration "protocols"

A user in this permission class can edit all portions of the configuration except for the [edit
protocols] section:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit]
 aviva2@router1# edit protocols
 ^
 syntax error, expecting <statement> or <identifier>.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.11. Creating a Privilege Class that Hides
Encrypted Passwords

Problem

You need to have all permissions on the router but you don't want to have all of the encrypted
passwords displayed.

Solution

Create a new class that explicitly includes all the permission bits except for control and secret :

 [edit system login]
 aviva@router1# set class power-user permissions [admin admin-control clear configure
 field floppy interface interface-control network reset routing routing-control shell
 snmp snmp-control system system-control trace trace-control view maintenance firewall
 firewall-control
secret-control rollback security security-control access access-control
 view-configuration]

Discussion

Many network operators like to trim shared secrets and other encrypted data out of their
configurations before sharing the configurations with others. The JUNOS software uses the secret
permission bit to control viewing access to the passwords and the secret-control permission bit to
control setting them. This recipe still allows shared secrets and passwords to be set on the router, but
the values are not shown, copied, or saved (using the configuration mode save command) by the user
during normal operations.

Password and secret settings are, of course, still preserved with the commit operation, however, and
the full configuration with secret data included is still accessible to the user by virtue of the
maintenance permissions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.12. Setting Up RADIUS User Authentication

Problem

You use RADIUS for user authentication in your network and you want to set up the router to
authenticate against the RADIUS server.

Solution

Configure information about your RADIUS server:

 [edit system]
 aviva@router1# set radius-server 192.168.63.10 secret $1991poppI
 aviva@router1# show
 radius-server {
 192.168.63.10 secret "$9$90m6AO1EcyKWLhcYgaZji"; ## SECRET-DATA
 }

Discussion

The Remote Authentication Dial-In User Service (RADIUS) provides a centralized method for
authenticating users on the router. RADIUS uses a client/server model. A RADIUS server receives
user connection requests, authenticates the user, and returns all configuration information necessary
for the clientin this case, the routerto deliver service to the user. All transactions between the server
and the client are authenticated by a password called a shared secret.

To configure the router as a RADIUS client, you set the IP address of your RADIUS server and the
password (secret) that the router should use to access the server. The secret on the router and the
RADIUS server must be the same. After you type the secret, the CLI never displays it but shows it in
a pseudoencrypted format. The show output is a simple obfuscation to prevent someone from reading
the password over your shoulder.

By default, the JUNOS software sends authentication requests to UDP port 1812 on the RADIUS
server, as defined in RFC 2865. Also by default, the router waits three seconds to receive a response
from the RADIUS server and, if it doesn't hear from the server, tries three more times to connect.
You can modify these values if necessary. Here, we allow just 1 retry and wait 10 seconds to receive
a response from the server:

 [edit system]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1# set radius-server 192.168.63.10 retry 1
 aviva@router1# set radius-server 192.168.63.10 timeout 10

If you use a centralized server, it represents a single point of failure if it should go down. To provide
redundancy, you can configure several servers:

 [edit system]
 aviva@router1#
set
radius-server 192.168.0.23 secret 2lip123
 aviva@router1# set radius-server 10.0.16.1 secret 883roZe

When you configure more than one server, initially the primary server is the one you configured first.
After that, the primary server is the one that last responded. If the router cannot reach this server, it
tries the remaining ones in the order configured. Use the show command to see the order in which the
router tries the servers:

 [edit system]
 aviva@router1# show
 radius-server {
 192.168.63.10 secret "9vs0W7-oJGiqm24fzF3AtKvWL7V"; ## SECRET-DATA
 10.0.16.1 secret "$9$4DojHQFnCp0TzIcrKXxbs2"; ## SECRET-DATA
 192.168.0.23 secret "$9$7edYgq.5QF/iktuB1hcwY2"; ## SECRET-DATA
 }

Notice that this example specifies different secrets for each server to improve network security. If
you suspect that the password of the primary server has been compromised, you can switch to one
of the secondary servers.

The JUNOS software defines vendor-specific RADIUS attributes, which are included in packets sent to
the RADIUS server. You can configure your server to interpret the Juniper-specific information (see
Table 2-2). The Juniper Networks vendor ID is 2636. All the Juniper attributes are used only in
RADIUS Access-Accept packets.

Table 2-2. Juniper-specific RADIUS attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Attribute name Description
Type
field
value

Length
field
value

String

Juniper-Local-

User-Name
Name of user template. 1 3 or more

One or more ASCII
octets

Juniper-Allow-

Commands

Allows user to run operational mode
commands in addition to those
authorized by the user's login class.
Same action as the allow-command
statement.

2 3 or more

One or more ASCII
octets written as an
extended regular
expression

Juniper-Deny-

Commands

Disallows user to run operational
mode commands authorized by the
user's login class. Same action as the
deny-command statement.

3 3 or more

One or more ASCII
octets written as an
extended regular
expression

Juniper-Allow-

Configuration

Allows the user to modify portions of
the configuration in addition to those
authorized by the user's login class.
Same action as the allow-statement
statement.

4 3 or more

One or more ASCII
octets written as an
extended regular
expression

Juniper-Deny-

Configuration

Disallows user to modify portions of
the configuration in addition to those
authorized by the user's login class.
Same action as the deny-statement
statement.

5 3 or more

One or more ASCII
octets written as an
extended regular
expression

See Also

RFC 2865, Remote Authentication Dial In User Service (RADIUS)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.13. Setting Up TACACS+ User Authentication

Problem

You want to use a TACACS+ server to authenticate people who log in to the router.

Solution

Configure information about your TACACS+ server:

 [edit system]
 aviva@router1# set tacacs-server 192.168.62.10 secret $1991poppI
 aviva@router1# show
 tacacs-server {
 192.168.62.10 secret "$9$90m6AO1EcyKWLhcYgaZji"; ## SECRET-DATA
 }

Discussion

TACACS+ is a newer version of the older TACACS authentication software. Like RADIUS, TACACS+
uses a client/server model, with the router being the client. All transactions between the server and
the client are authenticated by a shared secret.

The JUNOS configuration for TACACS+ is almost identical to that for RADIUS. You set the IP address
of your TACACS+ server and the password (secret) that the router should use to access the server.
The secrets on the router and the server must match. For redundancy, you can configure multiple
servers.

There are also JUNOS-specific TACACS+ attributes that you can configure on the TACACS+ server.
These attributes are named local-user-name, allow-commands, deny-commands, allow-
configuration, and deny-configuration and have the same description, length, and string as the
parallel RADIUS attributes (see Table 2-2).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.14. Restricting Inbound SSH and Telnet Access

Problem

You want to allow SSH and Telnet access to the router but you want to restrict the access to make
the router more secure.

Solution

Add a term to an existing firewall filter that restricts SSH and Telnet access:

 [edit firewall filter protect-RE]
 aviva@RouterF# set term ssh-telnet from source-address 10.0.8.0/24
 aviva@routerF# set term ssh-telnet from destination-port [ssh telnet]
 aviva@RouterF# set then accept

Also include a term at the end of the filter to reject access attempts from any other subnets:

 [edit

firewall filter protect-RE]
 aviva@RouterF# set term allow-nothing-else then count reject-counter
 aviva@RouterF# set term allow-nothing-else then log
 aviva@RouterF# set term allow-nothing-else then syslog
 aviva@RouterF# set term allow-nothing-else then reject

For the filter to affect incoming traffic, apply it to the desired interfaces:

 [edit interfaces]
 aviva@RouterF# set lo0 unit 0 family inet filter input protect-RE

Discussion

SSH and Telnet are two very common ways to access the router. However, SSH brute-force attempts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to guess passwords are a very common way to try to compromise routers, and Telnet connections
are not very secure. To protect the router, you should restrict the systems from which people can use
SSH and Telnet to the router. Even though Telnet is not a secure access method, you may want to
allow it because your network management tools use Telnet to access routers, and it is more of a
hassle to change the access method than to just allow restricted access. As much as possible, you
should lock down access to all management services on the routers and on any other systems in your
network to maintain tight security. You can never be sure that people are not using passwords that
are easy to guess, and Telnet sends passwords over the network in clear text, so they could easily be
sniffed. Restricting inbound access to the router also protects against potentially unknown
vulnerabilities with SSH and Telnet.

You restrict Telnet access using a firewall filter. This recipe shows a single term in a firewall filter that
acts on all TCP traffic whose destination port is the Telnet port (port 23), and it accepts Telnet
connections only from the 10.0.0.0/8 subnet and rejects all other connection attempts. Each
interface can have one inbound firewall filter, so you include the term shown in this recipe in the
complete firewall filter that you apply on an incoming interface.

It's important to note that if you use the term in the recipe as the only filter on an interface, it will
block all traffic to the Routing Engine except for Telnet from subnet 10.0.0.0/8. This means that
SNMP, OSPF, IS-IS, PIM, and BGP will all be blocked. Make sure you include this term as part of a
longer firewall filter.

You have to decide where in the filter to place the term. Because the terms in the firewall filter are
evaluated in the order in which they appear, the placement affects the efficiency of the filter.
Generally, terms for operations that need to be performed quickly, such as BGP peering and IGP and
DNS traffic, are at the beginning of the filter. For operations that are less time-critical, including
processing Telnet connections, place the term toward the end of the filter.

Then apply the filter to the desired interfaces. Here, we apply the filter to the lo0 interface because
we want it to apply to all traffic destined to the router's management addresses, even traffic that is
coming to the address of one of the network (PIC) interfaces.

The term in this recipe is just one of several terms in a single firewall filter. As a general point, you
rarely just reject a firewall term without also either logging, syslogging, or running a counter on the
rejections (which gives you data that you can graph). Tracking the rejections is useful for showing
abuse of your router, attacks on the router, or even misconfigurations. For example, if you forget
about an automated process that uses Telnet to read configuration information on your router that
comes from 192.168.0.0/16 and you only permit 10.0.0.0/8, then the then syslog action (and
appropriate syslog configuration statements) can be very handy for resolving issues.

See Also

Recipes 9.8, 9.11, 9.12, and 9.13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.15. Setting the Source Address for Telnet
Connections

Problem

You want to force Telnet to use a specific IP address when connecting from the router to another
system.

Solution

Include the source address in the Telnet command:

 aviva@RouterA> telnet source 172.19.121.15 server1
 Trying 172.19.121.246…
 Connected to server1.mycompany.com.
 Escape character is '^]'.
 server1 (ttyp0)
 login:

Discussion

By default, the source address included in locally generated Telnet and other TCP/IP packets is the
address of the interface on which the Telnet request is sent. This means the source address may
change from connection to connection. If multiple equal-cost next hops are present for a destination,
the lo0 loopback interface address is used as the source address. If you configure the system
default-address-selection statement in the configuration, which uses the lo0 interface address as
the router's system address, this address is used as the source for most Telnet connections (see
Recipe 7.4).

The result of this behavior is that the default Telnet source address is not always the same and not
always deterministic. If the source address matters when using Telnet to access another system,
include it in the telnet command. One instance when you should do so is when filtering the source
address on incoming connections, which may block packets coming to the default source address.
Another instance is when you use Telnet as a generic way to check and troubleshoot other TCP ports
(such as connecting to a server on port 25 to see if it is listening for SNMP mail connections). The
source address that you specify must be an address that's configured on the router.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipes 7.4 and 7.12

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.16. Creating a Login Banner

Problem

You want to display a banner during login that indicates that the router is for authorized users only.

Solution

You define a login banner:

 [edit system login]
 aviva@router1# set message "\n\
 n==\n\nAccess to this device
 is limited to authorized users only.\n\n WARNING: All unauthorized access is
 prohibited.\n\n===
 =========\n\n"

Discussion

A login banner is displayed each time anyone logs in to the router, before the login prompt:

 aviva-server% telnet router1
 ==
 Access to this device is limited to authorized users only.
 WARNING: All unauthorized access is prohibited.
 ==
 router1 (ttyp0)
 login:

It may seem rather trivial to set a login banner, and you may wonder what this has to do with router
security because it doesn't do anything to restrict access to the router. Although this is true, having a
login banner is good practice for legally protect your router. From a legal point of view, you want to
warn unauthorized users that they are not permitted to use the router and you want to do so with a
strongly worded message, as we've shown here. While you might think that you want to welcome
users to the router, you should not use the word "welcome" or any similar words in the login banner.

You can also have a login message that is displayed after users log in to the router:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit system]
 aviva@router1# set announcement "Reminder: maintenance window schedule at 0200 UTC"

These messages are a way to remind authorized users of network or router issues:

 aviva-server1% telnet router1
 router1 (ttyp0)

 login: aviva
 password: ********
 --- JUNOS 7.4R1.7 built by builder on 2005-10-23 02:03:58 UTC
 Reminder: maintenance window schedule at 0200 UTC
 aviva@router1>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.17. Finding Out Who Is Logged In to the Router

Problem

You are logged in to the router and you want to see who else is logged in.

Solution

Use the show system users command to see who is logged in to the router:

 aviva@router1> show system users
 9:10PM up 11 hrs, 2 users, load averages: 0.00, 0.00, 0.00
 USER TTY FROM LOGIN@ IDLE WHAT
 mike p0 server1.juniper.net 9:09PM - -tcsh (csh)
 aviva p1 server1.juniper.net 8:42PM - cli

Discussion

More than one person can log in to the router at one time. Each person can perform various
operations, from viewing router statistics to rebooting the router and changing the router's
configuration. Once you access the router, you might also want to see who else is working on the
router. You display who is logged in using the show system users command, which is basically the
same as the Unix w command. This command shows the username, the terminal number through
which they are connected, the server they have logged in from, when they logged in, how long they
have been idle, and what they are doing. The output in this recipe shows that the user mike is
working in the Unix shell on the router and the user aviva is working in the CLI.

As you are logging in to the router, if others are logged in, the CLI does not display any messages.
However, when you enter configuration mode, the CLI indicates that another user is also configuring
the router:

 aviva@router1> configure
 Entering configuration mode
 Users currently editing the configuration:
 mike terminal p2 (pid 5465) on since 2005-04-06 21:30:42 UTC
 [edit class-
of-service scheduler-maps]
 The configuration has been changed but not committed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here, you see that the user mike is also working in configuration mode and has made changes to the
class-of-service portion of the configuration.

See Also

Recipe 2.19

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.18. Logging Out of the Router

Problem

You are done using the router and want to log out so that no one can sit down at your terminal and
access the router.

Solution

Log out of the router:

 aviva@router1> exit
 [server1.mycompany.com] aviva@server%

Discussion

One of the simplest and most obvious ways to protect the security of the router is to log out when
you have no reason to be logged in or when you have to step away from your terminal for a few
minutes. You must be in operational mode to log out. If you are in configuration mode, exit from it
first:

 [edit]
 aviva@router1# exit
 aviva@router1> exit
 aviva@server1%

When you are not at the top level of configuration mode, you can go there before exiting:

 [edit snmp v3 vacm]
 aviva@router1# top
 [edit]
 aviva@router1# exit
 aviva@router1> exit
 aviva@server1%

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also exit directly from a lower level in the hierarchy:

 [edit snmp v3 vacm]
 aviva@router1# exit configuration-mode
 aviva@router1> exit
 aviva@server1%

By default, a user can remain logged in to the router for an unlimited amount of time when your login
session is idle. You can limit the time by setting an idle timeout value for each login privilege class
(see Recipe 2.10).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 2.19. Forcibly Logging a User Out

Problem

Someone is logged in to the router who shouldn't be and you need to log them out.

Solution

Forcibly log the user out:

 aviva@router1> request system logout user mike

Discussion

There are a number of situations when someone is logged in to the router who shouldn't be. A user
may have walked away from the terminal or may be in configuration mode when you must change
the configuration to deal with a problem situation.

Use the show system users command to list who is logged in to the router:

 aviva@router1> show system users
 5:20AM up 81 days, 6:41, 1 user, load averages: 0.00, 0.00, 0.00
 USER TTY FROM LOGIN@ IDLE WHAT
 mike p0 172.10.28.108 5:20AM 4:07 -cli (cli)
 aviva p1 172.10.28.107 2:06AM - -cli (cli)

If another user is in configuration mode, you see his username in the message displayed when you
enter configuration mode.

If you are logged in as root or have root privileges, you can forcibly log a user out of the router:

 aviva@router1> request system logout user mike

Mike would be logged out:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 mike@router1> Connection closed by foreign host.
 [server1.mycompany.com] mike@server%

You can send the user a message beforehand using a command similar to the Unix write utility:

 aviva@router1> request message user mike message "log out immediately"

You can send the message to a particular user, as we've done here, or to all logged-in users (similar
to the Unix wall utility):

 aviva@router1> request message all message "log out immediately"

You can also specify the terminal (TTY) to forcibly log out a user:

 aviva@router1> request system logout terminal p0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. IPSec

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

IP Security (IPSec) is a protocol suite developed in the late 1990s that provides security services for
Layer 3 IP datagrams, which otherwise have no inherent security. It is defined in RFCs 2401 through
2412. IPSec is optional for IPv4 and mandatory for IPv6. Because it operates at Layer 3, IPSec
provides security for higher-level traffic, including TCP and UDP.

The IPSec suite defines the security protocols, the algorithms used to provide security, and the
cryptographic keys required to provide the services.

Traffic protection is provided by two security protocols, Authentication Header (AH) and
Encapsulation Security Payload (ESP). AH provides connectionless integrity and data origin
authentication for IP packets, authenticating the complete packet, including the IP header, except for
IP header fields that change in transit. It also provides protection against replay attacks, a type of
network attack in which valid data is maliciously transmitted repeatedly. ESP offers encryption to
provide data confidentiality, and it authenticates the packet payload and the ESP header itself, but
not the outer IP header. In the JUNOS software, you can configure either AH or ESP, or a
combination of the two.

IPSec authentication algorithms use a shared key to verify the identity of the sending IPSec device.
The protocol suite defines two algorithms, MD5 and SHA1. MD5 uses a one-way hash function to
convert messages to a 128-bit digest. The calculated digest is compared with one that has been
decrypted with a shared key, and if the two match, the IPSec device is authenticated. SHA1 is a
stronger algorithm, producing a 160-bit digest. The JUNOS software implements the HMAC version of
both these algorithms, and they are available for the AH and ESP protocols and for the Internet Key
Exchange (IKE) protocol, which establishes and maintains SAs and exchanges the authentication and
encryption keys between IPSec devices.

Encryption, which is the encoding of packet data, is also done with algorithms that create and verify
shared keys. The JUNOS software implements DES and Triple-DES for encryption, both with cipher
block chaining (CBC). DES-CBC uses a 64-bit key for encryption (56 bits for encryption and 8 bits for
error checking), and the stronger 3DES-CBC uses three times the number of bits (168 bits) for
encryption.

To identify the traffic to protect, IPSec creates security associations (SAs) to negotiate the desired
security services. Each SA, which is identified by a security parameter index (SPI), defines
preferences for authentication, encryption, and security protocol. SAs can be either unidirectional or
bidirectional and are created either manually or dynamically. For manual SAs, you configure matching
preset shared keys for authentication and encryption, security protocols, and fixed SPI values on both
ends of the IPSec connection. Dynamic SAs are negotiated by IKE, but you can configure
recommended suggestions for all IPSec parameters. As a result of the negotiation with the peer, an
SA pair is set up, one inbound and one outbound. The inbound half of the SA pair de-encrypts and
authenticates the incoming traffic from the IPSec peer, and the outbound half encrypts and
authenticates the outbound traffic going to the peer.

IPSec SAs operate in one of two modes, tunnel mode or transport mode. A tunnel mode SA is
essentially an IP tunnel between two security gateways, which are routers or other devices protecting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the networks behind them. One common way to use tunnel mode is to send secure traffic between
two sites on an intranet (that is, within a corporate network). The router at each end of the tunnel
acts as a security gateway. Any data transferred between the two sites is protected as it traverses
the tunnel between the security gateways. Transport mode provides security between two hosts,
protecting traffic (such as OSPF and BGP traffic) that is destined for the router itself.

For a tunnel mode SA, an IP header specifies the IPsec processing destination and an inner IP header
specifies the packet's ultimate destination. The security protocol header is placed between the outer
and inner headers. If the protocol is AH, portions of the outer IP header and the entire tunneled IP
packet (the inner IP header and the higher-layer protocols) are protected. With ESP, only the
tunneled packet is protected, not the outer header.

To use IPSec with M-series and T-series routers, the router must have either an ES PIC or an
Adaptive Services (AS) PIC. The configuration for these two PICs differs slightly. The J-series routers
also run IPSec but require no additional hardware because they have built-in AS functionality. In this
chapter, we show how to configure IPSec with both PICs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.1. Configuring IPSec

Problem

You need a secure method of sending information between sites.

Solution

Start by defining the IPSec SA between your two intranet sites. On each security router, define identical
SAs:

 [edit security ipsec]

 aviva@router1# edit security-association site1-site2

 [edit security ipsec security-association site1-site2]

 aviva@router1# set description "SA from site1 to site2 "
 aviva@router1# set mode tunnel
 aviva@router1# set manual direction bidirectional protocol bundle

 aviva@router1# set manual direction bidirectional spi 400

 aviva@router1# set manual direction bidirectional auxiliary-spi 400
 aviva@router1# set manual direction bidirectional authentication algorithm hmac-sha1-96
 aviva@router1# set manual direction bidirectional authentication key ascii-text

$1991poPPi
 aviva@router1# set manual direction bidirectional encryption algorithm des-cbc

 aviva@router1# set manual direction bidirectional encryption key ascii-text $1991poPPi

Configuring a firewall filter accepts all traffic returning from the remote site:

 [edit firewall filter traffic-out-of-ipsec-tunnel]

 aviva@router1# set term out-of-ipsec-tunnel from source-address 10.0.97.0/24

 aviva@router1# set term out-of-ipsec-tunnel from destination-address 10.0.12.0/24
 aviva@router1# set term out-of-ipsec-tunnel then accept

Finally, apply the second filter on the ES interface that goes from the local security gateway to the remote
security gateway:

 [edit interfaces es-3/0/0]

 aviva@router1# set unit 0 tunnel source 10.0.12.33

 aviva@router1# set unit 0 tunnel destination 10.0.97.62

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1# set unit 0 family inet ipsec-sa site1-site2

 aviva@router1# set unit 0 family inet filter input traffic-out-of-ipsec-tunnel

Discussion

This recipe shows how to set up IPSec for M-series and T-series routers that have ES PICs. The setup
process is fairly involved. There are three basic components to the configuration: defining the SA and the
tunnel to carry the secured traffic, creating firewall filters to place traffic going from one site to the other
into the tunnel, and configuring the interfaces to apply the filters and create the tunnel on the ES PIC. This
recipe shows how to set up a manual SA, in which you specify all SA parameters in the configuration. While
setting up SAs manually can be manageable in small networks, it does not scale well. As the network size
increases, having IPSec dynamically configure SAs is a better option (see Recipe 3.2).

The SA is bidirectional, so the same encryption and authentication keys are used on incoming and outgoing
traffic through the IPSec tunnel. To use different keys in each direction, use the set direction inbound
and set direction outbound commands.

To start, define the SA. Because you have two routers acting as the security gateways between your two
sites, you use tunnel mode. For the other SA parameters, this example chooses to use both the AH and
ESP protocols (specified with the protocol bundle statement), HMAC-SHA1-96 authentication, DES-CBC
encryption, and a SPI value of 400. The auxiliary SPI is needed because we are using both AH and ESP.
Both security gateway routers must have the same SA configuration.

Next, you create a firewall filter to accept traffic returning from the remote site and you apply it to the ES
interface. You need to set up similar firewall filters on the remote security gateway router.

Finally, you configure the router interfaces. On the ES interface facing the remote security gateway router,
configure the tunnel on the logical unit, and for the IPv4 protocol family, associate the SA and apply the
traffic-out-of-ipsec-tunnel filter. Set up the remote router in a similar fashion.

Use the following command to verify that the SA is active:

 aviva@router1> show ipsec security-associations detail
 Security association: site1-site2, Interface family: Up

 Local gateway: 10.0.12.33, Remote gateway: 10.0.97.62
 Local identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)
 Remote identity: ipv4_subnet(any:0,[0..7]=0.0.0.0/0)

 Direction: inbound, SPI: 400, AUX-SPI: 400
 Mode: tunnel, Type: manual, State: Installed
 Protocol: BUNDLE, Authentication: hmac-sha1-96, Encryption: des-cbc
 Anti-replay service: Disabled

 Direction: outbound, SPI: 400, AUX-SPI: 400
 Mode: tunnel, Type: manual, State: Installed
 Protocol: BUNDLE, Authentication: hmac-sha1-96, Encryption: des-cbc
 Anti-replay service: Disabled

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first line shows that the SA is active (Up), and you see that the inbound and outbound SAs are
installed. This command also shows the configured SA parameters.

You can check the status of the IPSec tunnel with the ping and traceroute commands. You should be able
to ping a system at the remote site:

 aviva@router1> ping 10.0.97.2
 PING 10.0.97.2 (10.0.97.2): 56 data bytes
 64 bytes from 10.0.97.2: icmp_seq=0 ttl=253 time=0.939 ms
 64 bytes from 10.0.97.2: icmp_seq=1 ttl=253 time=0.886 ms
 64 bytes from 10.0.97.2: icmp_seq=2 ttl=253 time=0.826 ms
 ^C
 --- 10.0.97.2 ping statistics ---
 3 packets transmitted, 3 packets received, 0% packet loss
 round-trip min/avg/max/stddev = 0.826/0.884/0.939/0.046 ms

Use the traceroute command to verify that the traffic travels over the tunnel:

 aviva@router1> traceroute 10.0.97.2
 traceroute to 10.0.97.2 (10.0.97.2), 30 hops max, 40 byte packets
 1 10.0.12.2 (10.0.12.2) 0.655 ms 0.549 ms 0.508 ms
 2 10.0.0.3 (10.0.0.3) 0.833 ms 0.786 ms 0.757 ms
 3 10.0.97.2 (10.0.97.2) 0.808 ms 0.741 ms 0.716 ms

In the second line of the traceroute output, you don't see 10.0.97.62 , which is the IP address of the
remote side of the tunnel, but rather 10.0.0.3 , which is the loopback address of the remote security
gateway router.

The configuration is a bit complex, so it's worth looking at the structure of the relevant portions of the
configuration file rather than all the commands that you use to configure it. Some comments have been
added.

 [edit security
ipsec]
 security-association site1-site2 { # <-- define the SA
 description "tunnel from site1 to site2";
 mode tunnel; # <-- use tunnel mode
 manual { # <-- negotiate SA parameters up front
 direction bidirectional {
 protocol bundle;
 spi 400;
 auxiliary-spi 400;
 authentication {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 algorithm hmac-sha1-96;
 key ascii-text "9…"; ## SECRET-DATA
 }
 encryption {
 algorithm des-cbc;
 key ascii-text "9b…"; ## SECRET-DATA
 }
 }
 }
 }

 [edit firewall]
 filter traffic-out-of-
ipsec-tunnel { # <-- receive remote traffic
 term out-of-
ipsec-tunnel {
 from {
 source-address { # <-- remote subnet
 10.0.97.0/24;
 }
 destination-address { # <-- local subnet
 10.0.12.0/24;
 }
 then accept;
 }
 }

 [edit interfaces]
 es-3/0/0 { # <-- interface facing remote security gateway router
 unit 0 {
 tunnel {
 source 10.0.12.33;
 destination 10.0.97.62;
 }
 family inet {
 ipsec-sa site1-site2;
 filter {
 input traffic-out-of-ipsec-tunnel;
 }
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.2. Configuring IPSec Dynamic SAs

Problem

You want IPSec to automatically generate keys and negotiate the SA parameters.

Solution

Use dynamic IPSec to automatically generate keys and negotiate SAs. First, create an IKE SA proposal and
policy:

 [edit security ike proposal site1-site2-ike-proposal]
 aviva@router1# set authentication-method pre-shared-keys
 aviva@router1# set dh-group group1
 aviva@router1# set authentication-algorithm sha1
 aviva@router1# set encryption-algorithm 3des-cbc
 aviva@router1# up
 [edit security ike]

 aviva@router1# edit policy 10.0.97.62

 [edit security ike policy 10.0.97.62]

 aviva@router1# set proposals site1-site2-ike-proposal

 aviva@router1# set pre-shared-key ascii-text $1991poPPix

Next, create an IPSec SA negotiation proposal and policy:

 [edit security ipsec proposal site1-site2-ipsec-proposal]
 aviva@router1# set protocol bundle
 aviva@router1# set authentication-algorithm hmac-sha1-96
 aviva@router1# set encryption-algorithm 3des-cbc
 aviva@router1# up
 [edit security ipsec]

 aviva@router1# edit policy site1-site2-ipsec-policy

 [edit security ipsec policy site1-site2-ipsec-policy]
 aviva@router1# set perfect-forward-secrecy keys group1

 aviva@router1# set proposals site1-site2-ipsec-proposal

Then, associate the policy with the dynamic SA:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit security ipsec]

 aviva@router1# set security-association site1-site2-dynamic mode tunnel

 aviva@router1# set security-association site1-site2-dynamic dynamic replay-window-size 64

 aviva@router1# set security-association site1-site2-dynamic ipsec-policy

site1-site2-policy

Configure two firewall filters. These are the same as those for the manual SA. The first directs all traffic from the
local site into the IPSec tunnel:

 [edit firewall filter traffic-into-ipsec-tunnel]

 aviva@router1# set term into-ipsec-tunnel from source-address 10.0.12.0/24

 aviva@router1# set term into-ipsec-tunnel from destination-address 10.0.97.0/24

 aviva@router1# set term into-ipsec-tunnel then count ipsec-tunnel

 aviva@router1# set term into-ipsec-tunnel then ipsec-sa site1-site2

 aviva@router1# set term last-term then accept

The second firewall filter accepts all traffic returning from the remote site:

 [edit firewall filter traffic-out-of-ipsec-tunnel]
 aviva@router1# set term out-of-ipsec-tunnel from source-address 10.0.97.0/24
 aviva@router1# set term out-of-ipsec-tunnel from destination-address 10.0.12.0/24
 aviva@router1# set term out-of-ipsec-tunnel then accept

Finally, apply the firewall filters as we did with the manual SA. Apply the first one, directing traffic into the tunnel,
on the interface that comes from the local site into the security gateway:

 [edit interfaces fe-0/0/0]
 aviva@router1# set unit 0 family inet address 10.0.12.2/24
 aviva@router1# set unit 0 family inet filter input traffic-into-ipsec-tunnel

Apply the second filter on the ES interface that goes from the local security gateway to the remote security
gateway:

 [edit interfaces es-3/0/0]
 aviva@router1# set unit 0 tunnel source 10.0.12.33
 aviva@router1# set unit 0 tunnel destination 10.0.97.62
 aviva@router1# set unit 0 family inet ipsec-sa site1-site2-dynamic
 aviva@router1# set unit 0 family inet filter input traffic-out-of-ipsec-tunnel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Configure the router at the remote site in the same way, substituting the correct address and interface names.

Discussion

In the IPSec manual SA setup, you predefine all SA parameters. It is generally a bother to manually coordinate
keys with the administrator in charge of the remote site, so it is more common and practical to use dynamic SAs
so that key negotiation and authentication are automated. For a dynamic SA, you define your preferences and
IPSec negotiates the SA parameters, using IKE to establish and exchange keys. So you still define an IPSec SA
and associate the SA with the ES interface. You also have to set up an IKE SA and a firewall filter to direct traffic
into the tunnel. Again, this recipe is for M-series and T-series routers with ES PICs.

The IKE negotiation happens in two phases, Phase 1 and Phase 2. In Phase 1, the IKE SA is negotiated based on
the IKE policy and IKE proposal, and the result is the creation of an IKE SA. This negotiated IKE SA is then used
to secure the Phase 2 exchange, which uses the IPSec proposal and IPSec policy to create an IPSec SA pair (one
SA for inbound and a second for outbound traffic). The IKE policy is used for the negotiation during Phase 1, and
IPSec policy is used for the negotiation in Phase 2. This means that the IKE and IPSec proposals can use different
algorithms.

For IKE, this recipe defines a negotiation proposal, here called site1-site2-ike-proposal , that creates an IKE
SA based on the stated authentication and encryption algorithms. The set dh-group command configures this
proposal to use 768-bit Diffie-Hellman prime modulus group when establishing the IKE session keys. By default,
the IKE SA is valid for 3,600 seconds (1 hour). When it expires, a new one is negotiated. The IKE SA references
an IKE policy (here, policy 10.0.97.62) that defines the preshared key to use for negotiation. The policy is
identified by the IP address of the security gateway at the remote end of the tunnel, which is the tunnel
destination addresses configured on ES interface es-3/0/0 .

For IPSec, also define a proposal (here, site1-site2-ipsec-proposal) and a policy (site1-site2-ipsec-policy).
The proposal uses the same parameters as in the manual SA in Recipe 3.1. By default, the negotiated SA is valid
for 28,800 seconds (8 hours). When it expires, a new one is negotiated. On the ES PIC, anti-replay is disabled by
default. (On the AS PIC, it is enabled by default with a default window size of 64 bits.) This recipe enables anti-
replay with a window size of 64 bits.

The lifetime of both the IKE and IPSec proposals is configurable by using the set lifetime-seconds command.
Here, you change the IKE proposal lifetime to 2 hours and the IPSec proposal lifetime to 10 hours:

 [edit security ike]
 aviva@router1# set proposal site1-site2-ike-proposal lifetime-seconds 7200
 [edit security ipsec]
 aviva@router1# set proposal site1-site2-ipsec-proposal lifetime-seconds 36000

The IPSec policy, site1-site2-ipsec-policy , defines which proposals IKE should consider and in which order (if
you configure more than one). This recipe also enables perfect forward secrecy (PFS) security for keys, which
means that the shared key material can be used to drive the IPSec SA keys only once. With PFS, if an IKE SA is
present (Phase 1 of the negotiation), then during the IPSec SA negotiation (Phase 2 of the negotiation), a Diffie-
Hellman exchange is required for every rekeying to generate the shared key material. Without PFS, a Diffie-
Hellman exchange is done only during the initial keying but is not done again during the rekeying operation. PFS
is considered to be more secure because it gets fresh keying material every time an IPsec SA is renegotiated.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As the last step, associate the dynamic SA with the tunnel on the ES interface.

You create firewall filters to direct traffic into and out of the tunnel and you have to configure the interface on the
security gateway router that faces the local site. These configurations are the same as those shown in Recipe
3.1.

Configure the security gateway router at the remote site in the same way, using the appropriate address and
interface names.

Verification of the dynamic IPSec SA is similar to that for the manual IPSec SA. You can use ping and traceroute
to check the reachability of a host at the remote site and can look at the IPSec SA to verify that it is active and to
see the SA parameters:

 aviva@router1> show ipsec security-associations detail
 Security association: site1-site2-dynamic, Interface family: Up

 Local gateway: 10.0.12.33, Remote gateway: 10.0.97.62
 Local identity: ipv4_subnet(any:0,[0..7]=10.1.12.0/24)
 Remote identity: ipv4_subnet(any:0,[0..7]=10.1.56.0/24)

 Direction: inbound, SPI: 2133029543, AUX-SPI: 0
 Mode: tunnel, Type: dynamic, State: Installed
 Protocol: BUNDLE, Authentication: hmac-sha1-96, Encryption: des-cbc
 Soft lifetime: Expires in 26212 seconds
 Hard lifetime: Expires in 26347 seconds
 Anti-replay service: Enabled

 Direction: outbound, SPI: 1759450863, AUX-SPI: 0
 Mode: tunnel, Type: dynamic, State: Installed
 Protocol: BUNDLE, Authentication: hmac-sha1-96, Encryption: des-cbc
 Soft lifetime: Expires in 26212 seconds
 Hard lifetime: Expires in 26347 seconds
 Anti-replay service: Enabled

The last thing to check is the IKE SA:

 aviva@router1> show ike security-associations detail
 IKE peer 10.0.97.62
 Role: Initiator, State: Matured
 Initiator cookie: b5dbdfe2f9000000, Responder cookie: a24c868410000041
 Exchange type: Main, Authentication method: Pre-shared-keys
 Local: 10.0.12.33:500, Remote: 10.0.97.62:500
 Lifetime: Expires in 401 seconds
 Algorithms:
 Authentication : sha1
 Encryption : des-cbc
 Pseudo random function: hmac-sha1
 Traffic statistics:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Input bytes : 1736
 Output bytes : 2652
 Input packets : 9
 Output packets: 15
 Flags: Caller notification sent
 IPSec security associations: 3 created, 0 deleted
 Phase 2 negotiations in progress: 0

Here's what the relevant portions of the dynamic SA configuration look like, with comments added:

 [edit security ike]
 proposal site1-site2-ike-proposal { # <-- IKE proposal
 authentication-method pre-shared-keys;
 dh-group group1;
 authentication-algorithm sha1;
 encryption-algorithm 3des-cbc;
 }
 policy 10.0.97.62 { # <-- IKE policy to peer security gateway router
 proposals site1-site2-ike-proposal; # <-- pointer to IKE proposal
 pre-shared-key ascii-text "$9$6…"; ## SECRET-DATA
 }

 [edit security ipsec]
 proposal site1-site2-ipsec-proposal { # <-- IPSec proposal
 protocol bundle;
 authentication-algorithm hmac-sha1-96;
 encryption-algorithm 3des-cbc;
 }
 policy site1-site2-ipsec-policy { # <-- IPSec policy
 perfect-forward-secrecy {
 keys group1;
 }
 proposals site1-site2-ipsec-proposal; # <-- pointer to IPSec proposal
 }
 security-association site1-site2-dynamic { # <-- dynamic IPSec SA
 mode tunnel;
 dynamic {
 replay-window-size 64;
 ipsec-policy site1-site2-ipsec-policy;
 }
 }

 [edit interfaces]
 fe-0/0/0 { # <-- interface facing local site
 unit 0 {
 family inet {
 filter {
 input traffic-into-ipsec-tunnel;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 address 10.0.12.2/24;
 }
 }
 }
 es-3/0/0 { # <-- interface facing remote security gateway router
 unit 0 {
 tunnel {
 source 10.0.12.33;
 destination 10.0.97.62;
 }
 family inet { # <-- associate IPSec SA with interface
 ipsec-sa site1-site2-dynamic;
 filter {
 input traffic-out-of-ipsec-tunnel;
 }
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.3. Creating IPSec Dynamic SAs on J-Series
Routers or Routers with AS PICs

Problem

You want to configure basic IPSec on an M-series or T-series router that has an AS PIC, or on a J-series
router, which has built-in software emulation of the AS PIC functionality.

Solution

Use dynamic IPSec to automatically generate keys and negotiate SAs. First, create an IKE policy:

 [edit services ipsec-vpn]

 aviva@RouterA# set ike policy ike-dynamic-policy pre-shared-key ascii-text $1991poPPi

Then, create a rule for a bidirectional dynamic IKE SA that references the IKE policy:

 [edit services ipsec-vpn rule ike-rule]
 aviva@RouterA# set term ike then remote-gateway 10.0.15.2
 aviva@RouterA# set term ike then dynamic ike-policy ike-dynamic-policy
 aviva@RouterA# set match-direction input

To configure IPSec, define a service set:

 [edit services service-set ipsec-dynamic]
 aviva@RouterA# set ipsec-vpn-rules ike-rule
 aviva@RouterA# set ipsec-vpn-options local-gateway 10.1.15.1
 aviva@RouterA# set next-hop-service inside-service-interface sp-1/2/0.1
 aviva@RouterA# set next-hop-service outside-service-interface sp-1/2/0.2

Next, configure the router interfaces. First, set up the service interfaces to use for IPSec:

 [edit interfaces]
 aviva@RouterA# set sp-1/2/0 unit 0 family inet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterA# set sp-1/2/0 unit 1 family inet
 aviva@RouterA# set sp-1/2/0 unit 1 service-domain inside
 aviva@RouterA# set sp-1/2/0 unit 2 family inet
 aviva@RouterA# set sp-1/2/0 unit 2 service-domain outside

Then, configure the physical interface to be used for the IPSec tunnel:

 [edit interfaces]
 aviva@RouterA# set so-0/0/1 unit 0 family inet address 10.1.15.1/30

Finally, configure the domain's IGP traffic to use the IPSec tunnel:

 [edit protocols ospf area 0.0.0.0]
 aviva@RouterA# set interface so-0/0/0
 aviva@RouterA# set interface lo0.0 passive
 aviva@RouterA# set interface sp-1/2/1

Discussion

The JUNOS IPSec configuration for routers with AS PICs is quite a bit different than that for the ES PIC,
because the PIC uses a different ASIC that has its own architecture. Instead of configuring at the [edit
security] hierarchy, you configure IPSec at the [edit services] hierarchy, creating what the JUNOS
software calls service sets , which define IPSec VPN rules for setting up the IPSec and IKE SAs. You also
create service sets and rules for other services that require the AS PIC, such as Network Address
Translation (NAT) and stateful firewalls. The M-series and T-series routers have built-in AS PICs. You use
the same configuration on J-series routers, which don't use an AS PIC but instead have built-in software
emulation of the AS PIC functionality.

The basic requirements for configuring IPSec on an interface with an AS PIC are the same as for the ES
PIC. You define an IKE policy and negotiation proposal and create an IPSec policy and proposal. This
recipe uses the default IKE and IPSec policy and proposal settings (see Table 3-1), so no configuration
commands are necessary.

Table 3-1. IPSec and IKE defaults with AS PIC

Value IKE default IPSec default

Proposal values

Authentication algorithm SHA-1 HMAC SHA-1-96

Authentication method Preshared keys Not applicable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Value IKE default IPSec default

Diffie-Hellman keys
group2 (1,024-bit Diffie-Hellman
scheme)

Not applicable

Encryption algorithm Triple DES CBC Triple DES CBC

Protocol Not applicable ESP

SA lifetime 3,600 seconds 28,800 seconds

Policy values

Proposal name to
reference

Default Default

PFS Diffie-Hellman keys Not applicable
group2 (1,024-bit Diffie-Hellman
scheme)

Policy mode main Not applicable

The first part of this recipe configures IKE. The set ike policy command defines an IKE policy. This
recipe use the default policy settings. Because preshared keys is the default authentication method for
IKE, you have to configure the key itself.

Next, define a rule for the IKE SA. This recipe creates the rule named ike-rule . The rule in this recipe
has two set term commands that are similar in syntax to a policy or firewall then statement. The first
command sends matching packets to the remote end point of the IPSec tunnel (here, 10.0.15.2), and
the second command associates the IKE policy with the SA so that matching packets can be sent across
the IPSec tunnel. The final command in the IKE SA rule, set match-direction , specifies a match
direction for marking which traffic to encrypt or decrypt. This statement is a bit confusing in the IPSec
configuration because all IKE-enabled IPSec VPNs are bidirectional by default. However, you need to issue
either this command or the set match-direction command. The IKE SA rule is effectively a firewall filter,
directing traffic into and out of the IPSec tunnel, so you don't need to configure a separate firewall filter
as you do when configuring the ES PIC.

Next, configure IPSec. You do this by creating a service set that defines IPSec-specific information. (You
can configure multiple services on a single AS PIC, each in its own service set.) The service set in this
recipe is called ipsec- dynamic . The first command associates the IKE SA rule with IPSec, and the
second command defines the address of the local end of the IPSec security tunnel. The last two
commands configure the logical interfaces that participate in the IPSec services. The set next-hop-
service inside-service-interface command configures the inward-facing interfaces, and the set next-
hop-service outside-service-interface command configures the interface that faces the remote IPSec
site. You configure these interfaces at the [edit interfaces] level. The final part of the IPSec
configuration is to define an IPSec proposal and policy. This recipe uses the default values (see Table 3-1
), so no configuration commands are required.

For IPSec to work, you need to configure the interfaces on the AS PIC, which are services (sp-)
interfaces. For J-series routers, configure the sp-0/0/0 interface. You also configure the physical interface
that carries the IPSec tunnel.

For the services interface, you configure logical interfaces. Each service interface has three logical
interfaces. The first, unit 0 , has no special configuration. You just set it to support IPv4 traffic (family

Diffie-Hellman keys
group2 (1,024-bit Diffie-Hellman
scheme)

Not applicable

Encryption algorithm Triple DES CBC Triple DES CBC

Protocol Not applicable ESP

SA lifetime 3,600 seconds 28,800 seconds

Policy values

Proposal name to
reference

Default Default

PFS Diffie-Hellman keys Not applicable
group2 (1,024-bit Diffie-Hellman
scheme)

Policy mode main Not applicable

The first part of this recipe configures IKE. The set ike policy command defines an IKE policy. This
recipe use the default policy settings. Because preshared keys is the default authentication method for
IKE, you have to configure the key itself.

Next, define a rule for the IKE SA. This recipe creates the rule named ike-rule . The rule in this recipe
has two set term commands that are similar in syntax to a policy or firewall then statement. The first
command sends matching packets to the remote end point of the IPSec tunnel (here, 10.0.15.2), and
the second command associates the IKE policy with the SA so that matching packets can be sent across
the IPSec tunnel. The final command in the IKE SA rule, set match-direction , specifies a match
direction for marking which traffic to encrypt or decrypt. This statement is a bit confusing in the IPSec
configuration because all IKE-enabled IPSec VPNs are bidirectional by default. However, you need to issue
either this command or the set match-direction command. The IKE SA rule is effectively a firewall filter,
directing traffic into and out of the IPSec tunnel, so you don't need to configure a separate firewall filter
as you do when configuring the ES PIC.

Next, configure IPSec. You do this by creating a service set that defines IPSec-specific information. (You
can configure multiple services on a single AS PIC, each in its own service set.) The service set in this
recipe is called ipsec- dynamic . The first command associates the IKE SA rule with IPSec, and the
second command defines the address of the local end of the IPSec security tunnel. The last two
commands configure the logical interfaces that participate in the IPSec services. The set next-hop-
service inside-service-interface command configures the inward-facing interfaces, and the set next-
hop-service outside-service-interface command configures the interface that faces the remote IPSec
site. You configure these interfaces at the [edit interfaces] level. The final part of the IPSec
configuration is to define an IPSec proposal and policy. This recipe uses the default values (see Table 3-1
), so no configuration commands are required.

For IPSec to work, you need to configure the interfaces on the AS PIC, which are services (sp-)
interfaces. For J-series routers, configure the sp-0/0/0 interface. You also configure the physical interface
that carries the IPSec tunnel.

For the services interface, you configure logical interfaces. Each service interface has three logical
interfaces. The first, unit 0 , has no special configuration. You just set it to support IPv4 traffic (family

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inet). The other two logical interfaces handle the IPSec traffic. The first one, unit 1 in this recipe, is for
inward-facing traffic (service-domain inside); it is the logical interface you include in the set next-hop-
service inside-service-interface command. The second logical interface, unit 2 , is for outward-facing
traffic; it is the one you include in the service outside-service-interface command.

This recipe uses the so-0/0/1 interface to carry the IPSec tunnel.

To direct traffic from the local domain into the IPSec tunnel, include the services interface when
configuring the IGP. This recipe uses OSPF and adds the services interface with the set interface sp-
1/2/1 command.

Configure the security gateway router at the remote site in the same way, using the appropriate address
and interface names.

You can check that the IKE SA negotiation is successful:

 aviva@RouterA> show services
ipsec-vpn ike security-
associations
 Remote Address State Initiator cookie Responder cookie Exchange type
 10.0.15.2 Matured 03075bd3a0000003 4bff26a5c7000003 Main

Use the following command to check that the IPSec SA is active:

 aviva@RouterA> show services ipsec-vpn ipsec security-associations detail
 Service set: ipsec-
dynamic-service-set

 Rule: ike-rule, Term: term-ike, Tunnel index: 1
 Local gateway: 10.0.15.1, Remote gateway: 10.0.15.2
 Local identity: ipv4_subnet(any:0,[0..7]=10.0.15.30/24)
 Remote identity: ipv4_subnet(any:0,[0..7]=10.0.15.20/24)

 Direction: inbound, SPI: 2666326758, AUX-SPI: 0
 Mode: tunnel, Type: dynamic, State: Installed
 Protocol: ESP, Authentication: hmac-sha1-96, Encryption: 3des-cbc
 Soft lifetime: Expires in 26863 seconds
 Hard lifetime: Expires in 26998 seconds
 Anti-replay service: Enabled, Replay window size: 64

 Direction: outbound, SPI: 684772754, AUX-SPI: 0
 Mode: tunnel, Type: dynamic, State: Installed
 Protocol: ESP, Authentication: hmac-sha1-96, Encryption: 3des-cbc
 Soft lifetime: Expires in 26863 seconds
 Hard lifetime: Expires in 26998 seconds
 Anti-replay service: Enabled, Replay window size: 64

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The output shows that the SA is using the default settings, including ESP for the protocol and HMAC-
SHA1-96 for the authentication algorithm.

To check that traffic is traveling over the IPSec tunnel, use the following command:

 aviva@RouterA> show services ipsec-vpn ipsec statistics
 PIC: sp-1/2/0, Service set: ipsec-dynamic

 ESP Statistics:
 Encrypted bytes: 2248
 Decrypted bytes: 2120
 Encrypted packets: 27
 Decrypted packets: 25
 AH Statistics:
 Input bytes: 0
 Output bytes: 0
 Input packets: 0
 Output packets: 0
 Errors:
 AH authentication failures: 0, Replay errors: 0
 ESP authentication failures: 0, ESP decryption failures: 0
 Bad headers: 0, Bad trailers: 0

Again, it's worthwhile showing all sections of the configuration together, with added comments:

 [edit services]
 service-set ipsec-
dynamic {
 next-hop-service {
 inside-service-interface sp-1/2/0.1; # <--bind IPSec to sp-1/2/0.1 interface
 outside-service-interface sp-1/2/0.2; # <--bind IPSec to sp-1/2/0.2
 interface
 }
 ipsec-vpn-options {
 local-gateway 10.1.15.1: # <-- define local side of IPSec tunnel
 }
 ipsec-vpn-rules ike-rule; # <-- bind IKE rule to service set
 }
 ipsec-vpn {
 rule ike-rule { # <-- policy to allow traffic into IPSec tunnel
 term ike {
 then {
 remote-gateway 10.0.15.2:
 dynamic {
 ike-policy ike-dynamic-policy; # <-- bind IKE policy to IPSec
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 match-direction input;
 }
 ike { # <-- define IKE policy
 policy ike-dynamic-policy {
 pre-shared-key
ascii-text $1991poPPi;
 }
 }
 }

 [edit interfaces]
 so-0/0/1 { # <-- physical interface for IPSec tunnel
 unit 0 {
 family inet {
 address 10.1.15.2/30;
 }
 }
 }
 sp-1/2/0 { # <-- services interface to IPSec
 unit 0 {
 family inet {
 unit 1 { # <-- logical interface for IPSec inward-facing traffic
 family inet;
 service-domain inside;
 }
 unit 2 { # <-- logical interface for IPSec outward-facing traffic
 family inet;
 }
 }

 [edit protocols ospf area 0.0.0.0]
 ospf {
 area 0.0.0.0 {
 interface so-0/0/0;
 interface lo0.0 passive;
 interface sp-1/2/1.0; # <-- direct OSPF traffic into IPSec tunnel
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 3.4. Using Digital Certificates to Create Dynamic
IPSec SAs

Problem

You want an outside certificate authority (CA) to provide a digital certificate that sets the shared keys
instead of using internal preshared keys.

Solution

Before you can configure IPSec, you must request a digital certificate from a trusted CA and put a copy
of it on your router. First, configure a CA profile:

 [edit security]
 aviva@RouterA# set pki ca-profile entrust ca-identity entrust
 aviva@RouterA# set pki ca-profile entrust enrollment url
http://server.ca.com/cgi-bin/pkiclient.exe
 aviva@RouterA# commit and-quit

Then, use the CA profile to request a CA certificate from the CA and load it onto the router:

 aviva@RouterA> request security pki ca-certificate enroll ca-profile entrust
 Received following certificates:
 Certificate: C=us, O=mycompany
 Fingerprint: 00:8e:6f:58:dd:68:bf:25:0a:e3:f9:17:70:d6:61:f3:53:a7:79:10
 Certificate: C=us, O=mycompany, CN=First Officer
 Fingerprint: bc:78:87:9b:a7:91:13:20:71:db:ac:b5:56:71:42:ad:1a:b6:46:17
 Certificate: C=us, O=mycompany, CN=First Officer
 Fingerprint: 46:71:15:34:f0:a6:41:76:65:81:33:4f:68:47:c4:df:78:b8:e3:3f
 Do you want to load the above CA certificate ? [yes,no] (no) yes

Next, generate a public/private key pair, which is required to submit a request for a local certificate:

 aviva@RouterA> request security pki generate-key-pair certificate-id local-entrust
 Generated key pair local-entrust, key size 1024 bits

http://server.ca.com/cgi-bin/pkiclient.exe
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then, send a request for a local certificate to the CA:

 aviva@RouterA> request security pki generate-certificate-request certificate-id
 local-entrust domain-name RouterA.mycompany.com filename entrust-request-RouterA
 subject cn=RouterA.mycompany.com
 Generated
certificate request
 -----BEGIN CERTIFICATE REQUEST-----
 MIIBoTCCAQoCAQAwGjEYMBYGA1UEAxMPdHAxLmp1bmlwZXIubmV0MIGfMA0GCSqG
 SIb3DQEBAQUAA4GNADCBiQKBgQCiUFklQws1Ud+AqN5DDxRs2kVyKEhh9qoVFnz+
 Hz4c9vsy3B8ElwTJlkmIt2cB3yifB6zePd+6WYpf57Crwre7YqPkiXM31F6z3YjX
 H+1BPNbCxNWYvyrnSyVYDbFj8o0Xyqog8ACDfVL2JBWrPNBYy7imq/K9soDBbAs6
 5hZqqwIDAQABoEcwRQYJKoZIhvcNAQkOMTgwNjAOBgNVHQ8BAf8EBAMCB4AwJAYD
 VR0RAQH/BBowGIIWdHAxLmVuZ2xhYi5qdW5pcGVyLm5ldDANBgkqhkiG9w0BAQQF
 AAOBgQBc2rq1v5SOQXH7LCb/FdqAL8ZM6GoaN5d6cGwq4bB6a7UQFgtoH406gQ3G
 3iH0Zfz4xMIBpJYuGd1dkqgvcDoH3AgTsLkfn7Wi3x5H2qeQVs9bvL4P5nvEZLND
 EIMUHwteolZCiZ70fO9Fer9cXWHSQs1UtXtgPqQJy2xIeImLgw==
 -----END CERTIFICATE REQUEST-----
 Fingerprint:
 0d:90:b8:d2:56:74:fc:84:59:62:b9:78:71:9c:e4:9c:54:ba:16:97 (sha1)
 1b:08:d4:f7:90:f1:c4:39:08:c9:de:76:00:86:62:b8 (md5)

After the CA digitally signs the local certificate and returns it to you, copy it to the router and load it:

 aviva@RouterA> request security pki local-certificate load filename /tmp/RouterA-cert
certificate-id local-entrust
 Local certificate local-entrust loaded successfully

Repeat this procedure to obtain and configure the digital certificate on the remote IPSec peer router.

Now you can configure IKE and IPSec to use the digital certificate. First, configure IKE to use the digital
certificate for authentication:

 [edit
services ipsec-vpn]

 aviva@RouterA# set ike proposal ike-proposal authentication-method rsa-signatures

Create an IKE policy:

 [edit services ipsec-vpn ike policy digital-cert-policy]
 aviva@RouterA# set proposals ike-proposal
 aviva@RouterA# set local-id fqdn RouterA.mycompany.com

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterA# set remote-id fqdn RouterB.mycompany.com
 aviva@RouterA# set local-certificate local-entrust

Then, create a rule for a bidirectional dynamic IKE SA that references the IKE policy:

 [edit services ipsec-vpn rule digital-cert-rule]
 aviva@RouterA# set term ike then remote-gateway 10.0.15.2
 aviva@RouterA# set term ike then dynamic ike-policy digital-cert-policy
 aviva@RouterA# set match-direction input

Define a service set for IPSec:

 [edit services service-set digital-cert-service]
 aviva@RouterA# set ipsec-vpn-rules digital-cert-rule
 aviva@RouterA# set ipsec-vpn-options local-gateway 10.1.15.1
 aviva@RouterA# set ipsec-vpn-options trusted-ca entrust
 aviva@RouterA# set next-hop-service inside-service-interface sp-1/2/0.1
 aviva@RouterA# set next-hop-service outside-service-interface sp-1/2/0.2

Then, configure the IPSec tunnel to be established immediately:

 [edit services ipsec-vpn]
 aviva@RouterA# establish-tunnels immediately

Next, configure the router interfaces. First, set up the service interfaces to use for IPSec:

 [edit interfaces]
 aviva@RouterA# set sp-1/2/0 unit 0 family inet
 aviva@RouterA# set sp-1/2/0 unit 1 family inet
 aviva@RouterA# set sp-1/2/0 unit 1 service-domain inside
 aviva@RouterA# set sp-1/2/0 unit 2 family inet
 aviva@RouterA# set sp-1/2/0 unit 2 service-domain outside

Then, configure the physical interface to be used for the IPSec tunnel:

 [edit interfaces]
 aviva@RouterA# set so-0/0/1 unit 0 family inet address 10.1.15.1/30

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, configure the IGP traffic to use the IPSec tunnel:

 [edit protocols ospf area 0.0.0.0]
 aviva@RouterA# set interface so-0/0/0
 aviva@RouterA# set interface lo0.0 passive
 aviva@RouterA# set interface sp-1/2/1

Configure the other IPSec peers in a similar fashion.

Discussion

Digital certificates provide an additional level of security for connections between IPSec peers. They use
a public-key infrastructure (PKI) to provide public-key encryption and digital-signature services for
managing keys and certificates. A trusted third party, called a certificate authority (CA), registers the
identity of PKI users, storing the identities in a digital format called a public-key certificate, also called a
CA certificate. The CA creates a CA certificate that includes your public key and its public key and signs
it with its own private key. You then install the CA certificate, along with a local certificate that you
generate, on your routers. When routers are setting up an IPSec tunnel between each other, each
router receives a copy of its peer's local certificate, which has been signed by the CA's private key. The
router uses the CA's public key to de-encrypt the local certificate and to learn its peer's public key, which
it then uses to encrypt the data it sends. In networks that do not use digital certificates, IPSec encrypts
data with the private key and its peers de-encrypt the data with the public key. This recipe works only
on routers running JUNOS 7.5 and later.

Before you can configure IPSec to use digital certificates, you must request a certificate from the CA.
The first commands in this recipe show how to make the request from the router. First, you configure a
CA profile. This recipe creates a profile named entrust for the CA Entrust. The second command
provides the URL of the CA.

After you have committed the CA profile, use the request security pki ca-certificate enroll
command to request a certificate from the CA and load it onto the router. If you instead obtain the
certificate from the CA in an email or by downloading it from its web site, use the following command
instead to load the certificate onto the router:

 aviva@RouterA> request security pki ca-certificate load filename server1://tmp/
 RouterA-cert certificate-id entrust

To request a local certificate from the CA, you need to first generate a private-/ public-key pair with the
request security pki generate-key-pair command. In the certificate-id option, specify the name
you want to use for the local certificate (here, local-entrust). Once IPSec is operational, the public key
will be included in the local digital certificate and the private key will be used to de-encrypt data received
from peers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The request security pki generate-certificate-request sends a request for a local certificate to the
CA. When the CA returns the digitally signed local certificate, use the request security pki local-
certificate load command to copy the certificate to the router. You can check the digital certificate
with the following command:

 aviva@RouterA> show security pki ca-certificate detail
 Certificate identifier: entrust
 Certificate version: 3
 Serial number: 4355 9235
 Issuer:
 Organization: mycompany, Country: us
 Subject:
 Organization: mycompany, Country: us
 Validity:
 Not before: 2005 Oct 18th, 23:54:22 GMT
 Not after: 2025 Oct 19th, 00:24:22 GMT
 Public key algorithm: rsaEncryption(1024 bits)
 cb:9e:2d:c0:70:f8:ea:3c:f2:b5:f0:02:48:87:dc:68:99:a3:57:4f
 0e:b9:98:0b:95:47:0d:1f:97:7c:53:17:dd:1a:f8:da:e5:08:d1:1c
 78:68:1f:2f:72:9f:a2:cf:81:e3:ce:c5:56:89:ce:f0:97:93:fa:36
 19:3e:18:7d:8c:9d:21:fe:1f:c3:87:8d:b3:5d:f3:03:66:9d:16:a7
 bf:18:3f:f0:7a:80:f0:62:50:43:83:4f:0e:d7:c6:42:48:c0:8a:b2
 c7:46:30:38:df:9b:dc:bc:b5:08:7a:f3:cd:64:db:2b:71:67:fe:d8
 04:47:08:07:de:17:23:13
 Signature algorithm: sha1WithRSAEncryption
 Fingerprint:
 00:8e:6f:58:dd:68:bf:25:0a:e3:f9:17:70:d6:61:f3:53:a7:79:10 (sha1)
 71:6f:6a:76:17:9b:d6:2a:e7:5a:72:97:82:6d:26:86 (md5)
 Distribution CRL:
 C=us, O=mycompany, CN=CRL1
 http://CA-1/CRL/mycompany.crl
 Use for key: CRL signing, Certificate signing

 Certificate identifier: entrust
 Certificate version: 3
 Serial number: 4355 925c
 Issuer:
 Organization: mycompany, Country: us
 Subject:
 Organization: mycompany, Country: us, Common name: First Officer
 Validity:
 Not before: 2005 Oct 18th, 23:55:59 GMT
 Not after: 2008 Oct 19th, 00:25:59 GMT
 Public key algorithm: rsaEncryption(1024 bits)
 c0:a4:21:32:95:0a:cd:ec:12:03:d1:a2:89:71:8e:ce:4e:a6:f9:2f
 1a:9a:13:8c:f6:a0:3d:c9:bd:9d:c2:a0:41:77:99:1b:1e:ed:5b:80
 34:46:f8:5b:28:34:38:2e:91:7d:4e:ad:14:86:78:67:e7:02:1d:2e
 19:11:b7:fa:0d:ba:64:20:e1:28:4e:3e:bb:6e:64:dc:cd:b1:b4:7a

ca:8f:47:dd:40:69:c2:35:95:ce:b8:85:56:d7:0f:2d:04:4d:5d:d8
 42:e1:4f:6b:bf:38:c0:45:1e:9e:f0:b4:7f:74:6f:e9:70:fd:4a:78

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 da:eb:10:27:bd:46:34:33
 Signature algorithm: sha1WithRSAEncryption
 Fingerprint:
 bc:78:87:9b:a7:91:13:20:71:db:ac:b5:56:71:42:ad:1a:b6:46:17 (sha1)
 23:79:40:c9:6d:a6:f0:ca:e0:13:30:d4:29:6f:86:79 (md5)
 Distribution CRL:
 C=us, O=mycompany, CN=CRL1
 http://CA-1/CRL/mycompany.crl
 Use for key: Key encipherment

 Certificate identifier: entrust
 Certificate version: 3
 Serial number: 4355 925b
 Issuer:
 Organization: mycompany, Country: us
 Subject:
 Organization: mycompany, Country: us, Common name: First Officer
 Validity:
 Not before: 2005 Oct 18th, 23:55:59 GMT
 Not after: 2008 Oct 19th, 00:25:59 GMT
 Public key algorithm: rsaEncryption(1024 bits)
 ea:75:c4:f3:58:08:ea:65:5c:7e:b3:de:63:0a:cf:cf:ec:9a:82:e2
 d7:e8:b9:2f:bd:4b:cd:86:2f:f1:dd:d8:a2:95:af:ab:51:a5:49:4e
 00:10:c6:25:ff:b5:49:6a:99:64:74:69:e5:8c:23:5b:b4:70:62:8e
 e4:f9:a2:28:d4:54:e2:0b:1f:50:a2:92:cf:6c:8f:ae:10:d4:69:3c
 90:e2:1f:04:ea:ac:05:9b:3a:93:74:d0:59:24:e9:d2:9d:c2:ef:22
 b9:32:c7:2c:29:4f:91:cb:5a:26:fe:1d:c0:36:dc:f4:9c:8b:f5:26
 af:44:bf:53:aa:d4:5f:67
 Signature algorithm: sha1WithRSAEncryption
 Fingerprint:
 46:71:15:34:f0:a6:41:76:65:81:33:4f:68:47:c4:df:78:b8:e3:3f (sha1)
 ee:cc:c7:f4:5d:ac:65:33:0a:55:db:59:72:2c:dd:16 (md5)
 Distribution CRL:
 C=us, O=mycompany, CN=CRL1
 http://CA-1/CRL/mycompany.crl
 Use for key:
Digital signature

The output shows three certificates. The first one is used to sign the certificate, the second is for
encrypting the key, and the last is the CA's digital signature.

Use the following command to display information about the local certificate:

 aviva@RouterA> show security pki local-certificate
 Certificate identifier: local-entrust
 Issued to: RouterA.mycompany.com, Issued by: mycompany
 Validity:
 Not before: 2005 Nov 21st, 23:28:22 GMT
 Not after: 2008 Nov 21st, 23:58:22 GMT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public key algorithm: rsaEncryption(1024 bits)
 Public key verification status: Passed

The first line of the output shows the name of the certificatehere, local-entrust . The second line shows
the router and company to whom the certificate has been issued. The certificate is valid for three years
from the date of issue.

When you have the signed local certificate, configure IKE and IPSec to use it. The configuration is more
involved than that shown in Recipe 3.3 because this recipe uses fewer of the default values.

In configuring IKE, the set ike proposal command has IKE use the digital certificate for authentication
(with the option authentication-method rsa-signatures) instead of the default preshared keys. In the
IKE policy, the set proposals command references the IKE proposal. The second and third commands
give the fully qualified domain names of the local and remote routers that are the IPSec tunnel peers.
The last command configures the name of the local router's digital certificate. Finally, define a rule for
the IKE SA. This recipe creates a rule named digital-cert-rule . The first set term command defines
the IP address of the remote end of the IPSec tunnel, and the second associates the IKE policy with the
SA so that matching packets can be sent across the tunnel.

Next, configure IPSec. The service set is the same as that shown in Recipe 3.3, with the addition of the
set ipsec-vpn-options trusted-ca command, which points to the CA you defined with the set security
pki ca-profile command. Finally, use the set ipsec-vpn establish-tunnels immediately command to
create the IPSec tunnel immediately after the configuration is activated rather than wait for traffic
before setting it up.

In this recipe, the configuration for the services interface, the physical interface, and the IGP is the same
as in Recipe 3.3. And again, configure the remote security router in the same way.

To check the operation of IKE and IPSec, use the commands shown in Recipe 3.3. Use the show
services ipsec-vpn certificates command to check that the correct digital certificates are being used
to establish the IPSec tunnel:

 aviva@RouterA> show services ipsec-vpn certificates
 Service set: ipsec-domain, Total entries: 3
 Certificate cache entry: 3
 Flags: Non-root Trusted
 Issued to: RouterB.mycompany.com, Issued by: mycompany
 Alternate subject: RouterB.mycompany.com
 Validity:
 Not before: 2005 Nov 21st, 23:33:58 GMT
 Not after: 2008 Nov 22nd, 00:03:58 GMT

Certificate cache entry: 2
 Flags: Non-root Trusted
 Issued to: RouterA.mycompany.com, Issued by: mycompany
 Alternate subject: RouterA.mycompany.com
 Validity:
 Not before: 2005 Nov 21st, 23:28:22 GMT
 Not after: 2008 Nov 21st, 23:58:22 GMT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Certificate cache entry: 1
 Flags: Root Trusted
 Issued to: mycompany, Issued by: mycompany
 Validity:
 Not before: 2005 Oct 18th, 23:54:22 GMT
 Not after: 2025 Oct 19th, 00:24:22 GMT

The three certificates shown in this output map to the three you see with the show security pki ca-
certificate detail command.

Again, this is a fairly complex configuration, so here are all the sections of the configuration in one place,
with added comments:

 [edit security]
 pki { # <-- how to reach
certificate authority
 ca-profile entrust {
 ca-identity entrust;
 enrollment {
 url http://server.ca.com/cgi-bin/pkiclient.exe;
 }
 }
 }

 [edit services]
 service-set
digital-cert-service {
 next-hop-service {
 inside-service-interface sp-1/2/0.1; # <-- bind IPSec to sp-1/2/0.1
 interface
 outside-service-interface sp-1/2/0.2; # <--bind IPSec to sp-1/2/0.2
 interface
 }
 ipsec-vpn-options {
 trusted-ca entrust; # <-- bind service set to CA defined in ca-profile
 local-gateway 10.1.15.1; # <-- local side of IPSec tunnel
 }
 ipsec-vpn-rules digital-cert-rule;
 }
 ipsec-vpn {
 rule digital-cert-rule { # <-- policy to allow traffic into IPSec tunnel
 term ike {
 then {
 remote-gateway 10.1.15.2; # <-- remote side of IPSec tunnel
 dynamic {
 ike-policy digital-cert-policy; # <-- bind IKE policy to IPSec
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 match-direction input;
 }
 ike {
 proposal ike-proposal {
 authentication-method rsa-signatures; # <-- use digital certificates
 }
 policy digital-cert-policy { #<-- define IKE policy
 proposals ike-proposal;
 local-id fqdn RouterA.mycompany.com;
 local-certificate local-entrust;
 remote-id fqdn RouberB.mycompany.com;
 }
 }
 establish-tunnels immediately;
 }

 [edit interfaces]
 so-0/0/0 { #<-- physical interface for IPSec tunnel
 unit 0 {'
 family inet {
 address 10.1.15.1/30;
 }
 }
 }
 sp-1/2/0 { # <-- services interface to IPSec
 unit 0 {
 family inet;
 }
 unit 1 { # <-- logical interface for IPSec inward-facing traffic
 family inet;
 service-domain inside;
 }
 unit 2 { # <-- logical interface for IPSec outward-facing traffic
 family inet;
 service-domain outside;
 }
 }

 [edit protocols ospf area 0.0.0.0]
 interface so-0/0/0.0;
 interface sp-1/2/0.1; # <-- direct OSPF traffic into IPSec tunnel
 interface lo0.0;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. SNMP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

The Simple Network Management Protocol (SNMP) is an Internet standard protocol for remotely
managing routers, switches, servers, workstations, and other devices on an IP network. SNMP was
first introduced in the late 1980s and is now widely supported. The first version of SNMP, Version 1
(SNMPv1; RFC 1157), defines the architecture and framework for SNMP.

SNMP Version 2 (SNMPv2) was proposed in 1993 to improve performance, manager-to-manager
communications, and security. It was defined in RFCs 1155 and 1213. However, SNMPv2 was not
widely accepted because the IETF did not reach consensus on the security features. A revised
version, referred to as Community SNMPv2, or SNMPv2c, was later approved by the IETF (RFCs
1902 and 3416). This version contains all the proposed SNMPv2 enhancements except for the
security features, including more detailed error codes, addition of the GetBulk operation for more
efficient retrieval of large amounts of data, and support for 64-bit counters. For security, this version
supports community strings, which act as text-based passwords for determining how SNMP
managers can access the data on SNMP agents. SNMPv2 is currently the most commonly deployed
version of SNMP.

The newest version, SNMP Version 3 (SNMPv3), introduced in 1999 (RFCs 3410 through 3418),
defines stronger security features, including authentication for accessing network devices and
encryption of SNMP packets. SNMPv3 uses a user-based security model (USM) for authentication,
data integrity, message replay protection, and protection of the message payload, and a view-based
access control model (VACM) to define access to the management information. SNMPv3 is currently
not used much because it is fairly new and only a few network device manufacturers and network
management system (NMS) vendors support it.

SNMP uses UDP port 161, and SNMP traps use UDP port 162.

The JUNOS software supports SNMP Versions 1, 2c, and 3.

This chapter discusses how to configure the SNMP agent on the router with SNMPv2 and SNMPv3 and
illustrates some basic techniques for using SNMP to query the router to collect information. Much of
the information gathering done by SNMP is done from the NMS system, either with GUI or CLI tools.
Discussion of the workings of the NMS systems is beyond the scope of this book; you should refer to
your NMS documentation. For more information about SNMP see SNMP, SNMPv2, SNMPv3, and
RMON 1 and 2 (Addison-Wesley).

SNMP Management Model

SNMP uses a clientserver model. The SNMP client is called a manager, and the server is called an
agent. The managers are centralized systems on the network that actively monitor the agents, which
are the actual network devices, by querying and collecting status and statistics information from
them. Managers can run on PCs or workstations but more often run on dedicated devices called NMS
systems that are developed and sold by third-party companies. An example is the HP OpenView
Network Node Manager product.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Agents are individual processes running on the network devices that are being managed. These
processes gather and store the status and statistics about their host platform and send them to the
managers primarily in one or two ways. When the agent receives an SNMP Get request from the
manager, as a Get, GetBulk, or GetNext request, it responds with the requested information. The
second way is that the agent sends to the manager unsolicited notifications, called traps, that are
triggered by events on the agent. The SNMP manager can also modify information on the agent by
sending SNMP Set requests. A JUNOS router running SNMP is simply an SNMP agent. There are two
JUNOS SNMP processes (daemons in Unix terminology): SNMPD, the SNMP process, and MIB2D, the
MIB-II process. snmpd is the main entry point, or master agent, for dealing with SNMP, and it
communicates with mib2d, which is a subagent.

MIBs and OIDs

SNMP agents store information in a Structure of Management Information (SMI), which is a
hierarchical database that is similar to the directory structure in a filesystem. The individual files that
store the information are called Management Information Bases (MIBs). Each MIB contains nodes of
information that are stored in a tree structure. The tree contains branches, which move down from a
root node. The branches are similar to the directory names in a directory path. Each branch
eventually ends in a leaf, similar to a filename in a filesystem, that contains a specific piece of
information about the SNMP agent. Each branching point in the tree corresponds to a MIB object and
is identified by a number and a text string. The series of numbers that uniquely identifies a node or a
leaf is called the Object Identifier (OID). As examples, OID .1.3.6.1.2.1.1.4 corresponds to
sysContact (system contact information) in the standard MIB-II MIB, and OID .1.3.1.4.1.2636
corresponds to juniperMIB, which is the top node of the Juniper enterprise-specific portion of the MIB
tree. Both these OIDs are absolute references because they start at the root node, which is indicated
by the dot (.) before the first number (.1.3.1.4.1.2636 rather than 1.3.1.4.1.2636). In NMS and
JUNOS software, you can refer to the OIDs by absolute OID or by name; the names are generally
easier to remember and type. Figure 4-1 illustrates a portion of the MIB tree that leads to these OIDs
and shows that each node has both text and a number to identify it.

Figure 4-1. MIB tree with OIDs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SNMP manager targets specific nodes in the MIB tree when gathering status and statistics about
the agent systems.

While the OID relates to the location in the MIB tree, it is the instance that relates to the data object
or value at that location. For example, the OID .1.3.6.1.2.1.1.4 corresponds to sysContact, and
.1.3.6.1.2.1.1.4.0 corresponds to the value in that field, such as "Fred Flintstone."

MIB objects can be defined as being read-only, meaning that the SNMP manager can retrieve its
information only with an SNMP Get command (or with Get derivatives such as GetNext and GetBulk),
or as being read-write, meaning that the manager can change the object's information with an SNMP
Set command.

MIBs are defined using a language called Abstract Syntax Notation 1 (ASN.1). The IETF has defined
a number of MIBs in various RFCs that contain objects common across all network devices. Some of
these MIBs are mandatory, while others are optional. On NMS systems, most of the mandatory MIBs
are typically compiled into the SNMP manager software. If you need standard MIBs that are not
provided with your NMS, you can find them in the IETF RFCs and at other web sites, including
http://www.net-snmp.org, http://www.rfc-editor.org, and http://net-snmp.sourceforge.net. There is
a list of SMI numbers on the IANA web site (http://www.iana.org).

For objects specific to a device, the manufacturer of the device provides enterprise-specific MIBs.
They must have the same structure as standard MIBs. The following example of the beginning
Juniper chassis MIB illustrates the ASN.1 language:

http://www.net-snmp.org
http://www.rfc-editor.org
http://net-snmp.sourceforge.net
http://www.iana.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 -- Juniper Enterprise Specific MIB: Chassis MIB
 JUNIPER-MIB DEFINITIONS ::= BEGIN
 …
 -- Juniper Box Anatomy MIB
 -- Top level objects
 jnxBoxClass OBJECT-TYPE
 SYNTAX OBJECT IDENTIFIER
 MAX-ACCESSread-only
 STATUS current
 DESCRIPTION
 "The class of the box, indicating which product line
 the box is about, for example, 'Internet Router'."
 ::= { jnxBoxAnatomy 1 }

 jnxBoxDescr OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 MAX-ACCESSread-only
 STATUS current
 DESCRIPTION
 "The name, model, or detailed description of the box,
 indicating which product the box is about, for example
 'M40'."
 ::= { jnxBoxAnatomy 2 }

 jnxBoxSerialNo OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 MAX-ACCESSread-only
 STATUS current
 DESCRIPTION
 "The serial number of this subject, blank if unknown
 or unavailable."
 ::= { jnxBoxAnatomy 3 }

These three objects provide information about the physical Juniper Networks router, specifically the
family, model name, and serial number.

Juniper Networks provides several dozen enterprise MIBs for the JUNOS software. For a complete list,
see http://www.juniper.net/techpubs/software/junos/mibs.html. From this page, you can download
the individual MIB files or a complete MIB package that contains the relevant standard MIBs and all
the enterprise MIBs. For JUNOS 7.4, this file is called juniper-mibs-7.4R1.tgz (there is a separate file
for each JUNOS release). You can load this complete MIB package or the individual MIB files onto
your NMS system or MIB browser. MIBs often have dependencies because they reference other MIBs,
so when you load them onto the NMS, you need to load them in the correct sequence. The complete
JUNOS MIB package places all objects into an SMI, which is loaded first. All the other information in
the MIB files reference the SMI, so the files load correctly.

SNMP Security

http://www.juniper.net/techpubs/software/junos/mibs.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

SNMPv2 uses a simple security scheme to control the access between managers and servers.
Security is controlled by a community string, which is a password that the NMS system uses to
access the agent's MIBs. The community string is a very weak password because it is not encrypted
but rather is sent as clear text across the network. All SNMP requests from the manager to the agent
must be configured with the same community name for the manager to be able to collect information
from the agent. Because the password is not encrypted, the JUNOS SNMP implementation does not
support most SNMP Set operations and read-write MIB objects, even those specified as read-write in
the MIB RFCs. The exceptions are the ping and the traceroute MIBs, for which JUNOS supports Set
operations. Some additional security is provided by the fact that you can limit the MIBs and specific
objects that the NMS systems can access on the agent by configuring SNMP views on the router and
granting access to specific views by community (see RFC 3415).

SNMPv3 defines a USM to provide authentication and data encryption. It uses the HMAC with either
MD5 or SHA1 to authenticate users, and CBC-DES to encrypt the message payload.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.1. Configuring SNMP

Problem

You want to set the router up to be an SNMP agent so your network SNMPv2 NMS system can
monitor the router.

Solution

Use the following commands to configure the router to be an SNMP agent:

 [edit]

 aviva@router1# set snmp community public authorization read-only
 aviva@router1# show

snmp {
 community public {
 authorization read-only;
 }
 }

Discussion

To make the router an SNMP agent, configure one or more communities to authorize the NMS to
access your router. Each community has a name, which must be the same name used by the NMS,
and an authorization level (read-only or read-write). Here, we have configured one community
called public with read-only access, which means that the router responds only to Get requests from
the NMS system.

Use the following command to check that SNMP is up and running, that requests are being properly
transmitted, and that the number of requests is incrementing over time:

 aviva@router1> show snmp statistics
 SNMP statistics:
 Input:
 Packets: 24044, Bad versions: 0, Bad community names: 0,
 Bad community uses: 0, ASN parse errors: 0,
 Too bigs: 0, No such names: 0, Bad values: 0,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Read onlys: 0, General errors: 0,
 Total request varbinds: 24041, Total set varbinds: 0,
 Get requests: 3, Get nexts: 24041, Set requests: 0,
 Get responses: 0, Traps: 0,
 Silent drops: 0, Proxy drops: 0, Commit pending drops: 0,
 Throttle drops: 0, Duplicate request drops: 0
 V3 Input:
 Unknown security models: 0, Invalid messages: 0
 Unknown pdu handlers: 0, Unavailable contexts: 0
 Unknown contexts: 0, Unsupported security levels: 0
 Not in time windows: 0, Unknown user names: 0
 Unknown engine ids: 0, Wrong digests: 0, Decryption errors: 0
 Output:
 Packets: 24044, Too bigs: 0, No such names: 3,
 Bad values: 0, General errors: 0,
 Get requests: 0, Get nexts: 0, Set requests: 0,
 Get responses: 24044, Traps: 0

The output shows the number and types of packets the router has received from and sent to the
NMS. If you see any bad (invalid) community names, or if the number of names increases, this can
indicate that one or more community names are configured incorrectly, or that an unauthorized
manager, possibly a malicious user, is trying to access the agent.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.2. Setting Router Information for the MIB-II
System Group

Problem

You need to define specific information about the router, such as its name and location, to pass to the
SNMP manager.

Solution

Set description, location, and contact information about the router:

 [edit snmp]
 aviva@router1# set description "JUNOS cookbook M20, aka router1"
 aviva@router1# set location "JUNOS cookbook kitchen"
 aviva@router1# set contact "aviva at extension 12345"

Discussion

These commands provide general information, which is placed into objects in the MIB-II system
group, about the router to the SNMP manager. The description string identifies the router and is
placed into the sysDescription object. The location describes the router's physical location and is
placed into the sysLocation object. The contact identifies how to contact the router's administrator
and goes into the sysContact object. The name of the router you configured when you installed the
router (the name in the set system host-name command) is placed into the sysName object. You can
set a different router name to be used just for SNMP:

 [edit snmp]
 aviva@router1# set name junos-cookbook-router

You can use a utility like snmpwalk from a Unix workstation to retrieve the agent's information. (
snmpwalk uses SNMP GetNext requests to query a network entity for a tree of information.) The
following command uses the hostname of the agent (router1), but you can also use the IP address:

 aviva-server> snmpwalk -c public router1 system.sysDescr

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 system.sysDescr.0 = JUNOS cookbook M20, aka router1
 aviva-server> snmpwalk -c public router1 system.sysContact
 system.sysContact.0 = aviva at extension 12345

You can also get this information on the router itself. The following command shows all the settings in
the system MIB:

 aviva@router1> show snmp mib walk system
 sysDescr.0 = JUNOS cookbook M20, aka router1
 sysObjectID.0 = jnxProductNameM20
 sysUpTime.0 = 2888368
 sysContact.0 = aviva at extension 12345
 sysName.0 = junos-cookbook-router
 sysLocation.0 = JUNOS cookbook kitchen
 sysServices.0 = 4

You can also look at a single MIB object:

 aviva@router1> show
snmp mib get sysDescr.0
 sysDescr.0 = JUNOS cookbook M20, aka router1

In this command, specify both the name of the object and the instance, which is 0. Similarly, you can
look at more than one object:

 aviva@router1> show snmp mib get "sysUpTime.0 sysName.0"
 sysUpTime.0 = 2865092
 sysName.0 = router1

For this command to work, make sure to enclose the list of objects in quotation marks.

See Also

Recipe 1.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.3. Setting Up SNMP Traps

Problem

You want to create triggers on the router to send unsolicited notifications to the NMS system when a
router event occurs.

Solution

Configure traps by setting up SNMP trap groups:

 [edit snmp]
 aviva@router1# set trap-group authentication-traps targets 10.0.10.1
 aviva@router1# set trap-group authentication-traps targets 192.168.15.27
 aviva@router1# set trap-group authentication-traps categories authentication

Discussion

SNMP traps report significant events that occur on the router, commonly errors or failures. You
always want the SNMP agent to send traps to the manager so that the manager receives current
information without always having to poll for it. To have the router send traps to the SNMP manager,
create one or more trap groups. For each group, set two things: the IP address of the NMS server (or
servers) to receive the trap and the events that trigger the traps. The targets statement identifies
the receiving NMS systems, and the categories statement specifies the triggering event or events
(see Table 4-1). The JUNOS software supports standard trap categories and provides several that are
enterprise-specific. This recipe sends a trap to two NMS systems (our primary system and a backup
one for redundancy) whenever an SNMP manager uses the incorrect community to access data held
by the agent.

Table 4-1. SNMP trap categories

Keyword Type Category description

authentication Standard Agent (router) authentication failures

chassis Enterprise Chassis and router environment notifications

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Keyword Type Category description

configuration Enterprise Configuration mode notifications

link Enterprise
Link-related transitions, such as when hardware transitions
from up to down, or vice versa

rmon-alarm Enterprise RMON event alarms

routing Enterprise Routing protocol notifications

sonet-alarms alarm-
name

Enterprise SONET alarm notifications

startup Standard Router warm and full reboots

vrrp-events Enterprise VRRP events

SNMP traps are defined in the MIBs themselves. The IETF defines the standard traps in various RFCs,
and they are normally compiled into the SNMP manager software that runs on the NMS system.
Juniper Networks defines enterprise-specific traps for SNMPv1 and SNMPv2 and sends both versions
of the traps to the NMS. To find a list and an explanation of the JUNOS traps, look in the enterprise
MIBs, searching for the string NOTIFICATION-TYPE in the MIB. For example, in the Juniper Networks
chassis MIB, the OID for the trap that reports the failure of a power supply, jnxPowerSupplyFailure,
is jnxChassisTraps 1:

 -- definition of chassis related traps
 Traps for chassis alarm conditions
 jnxPowerSupplyFailure NOTIFICATION-TYP
 OBJECTS…
 STATUS current
 DESCRIPTION
 "A jnxPowerSupplyFailure trap signifies that the SNMP entity, acting in an agent
 role, has detected that the specified power supply in the chassis has been in the
 failure (bad DC output) condition."
 ::= { jnxChassisTraps 1 }

configuration Enterprise Configuration mode notifications

link Enterprise
Link-related transitions, such as when hardware transitions
from up to down, or vice versa

rmon-alarm Enterprise RMON event alarms

routing Enterprise Routing protocol notifications

sonet-alarms alarm-
name

Enterprise SONET alarm notifications

startup Standard Router warm and full reboots

vrrp-events Enterprise VRRP events

SNMP traps are defined in the MIBs themselves. The IETF defines the standard traps in various RFCs,
and they are normally compiled into the SNMP manager software that runs on the NMS system.
Juniper Networks defines enterprise-specific traps for SNMPv1 and SNMPv2 and sends both versions
of the traps to the NMS. To find a list and an explanation of the JUNOS traps, look in the enterprise
MIBs, searching for the string NOTIFICATION-TYPE in the MIB. For example, in the Juniper Networks
chassis MIB, the OID for the trap that reports the failure of a power supply, jnxPowerSupplyFailure,
is jnxChassisTraps 1:

 -- definition of chassis related traps
 Traps for chassis alarm conditions
 jnxPowerSupplyFailure NOTIFICATION-TYP
 OBJECTS…
 STATUS current
 DESCRIPTION
 "A jnxPowerSupplyFailure trap signifies that the SNMP entity, acting in an agent
 role, has detected that the specified power supply in the chassis has been in the
 failure (bad DC output) condition."
 ::= { jnxChassisTraps 1 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.4. Controlling SNMP Access to the Router

Problem

You need to improve upon the security offered by the SNMPv2 community password.

Solution

There are two straightforward solutions. One is to identify which NMS systems are allowed to use the
SNMP community:

 [edit snmp]
 aviva@router1# set community public clients 10.0.0.1/32

The second is to limit the router interfaces that can communicate with the NMS system:

 [edit
snmp]
 aviva@router1# set interface [fe-0/0/0]

Discussion

SNMPv2 is inherently insecure because the community string, which acts as the password between
the manager and agent, is sent as clear text across the network. You can improve the security a bit
by limiting SNMP manager access to the router and to the MIB on the router. Perhaps the simplest
way to improve security is to define which NMS systems can or cannot use a particular community
string. The first command in this recipe allows only a single system, 10.0.10.1/32, to access the
router using the community string public. While this example and the examples throughout this
chapter use a community named public, this name is very well known, so for security reasons, it is
recommended that you use a different name, preferably one that's difficult to guess (for example,
mYsnmPcommunitYversioNonE).

You can also disallow access for specific NMS systems. One plausible use of this is to allow access by
all the NMS systems on a subnet and then deny access to just a few:

 [edit snmp]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1# set community public clients 10.0.0.0/8
 aviva@router1# set community public clients 10.0.0.1/32 restrict

This configuration allows all NMS systems on the 10.0.0.0/8 subnet to access the router, with the
exception of 10.0.0.1/32.

Another way to restrict access is to define which router interfaces can receive requests from NMS
systems. The second command in this recipe does this by specifying a physical interface, or you can
name individual logical interfaces to be more specific:

 [edit snmp]
 aviva@router1# set interface [fe-0/0/0.0 fe-0/0/0.1]

See Also

The introduction to Chapter 7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.5. Using a Firewall Filter to Protect SNMP
Access

Problem

You have a firewall filter on your interfaces and want to add a term to restrict NMS system access to
the router.

Solution

You can add a term to the existing firewall filter that allows access to the desired NMS systems:

Add a term to an existing firewall filter that restricts SSH and Telnet access:

 [edit firewall filter protect-RE term allow-

snmp-from-nms-systems]
 aviva@router1# set from source-address 10.0.0.1/32
 aviva@router1# set from source-address 10.0.5.1/32
 aviva@router1# set from source-address 10.0.6.1/34
 aviva@router1# set from source-address 10.10.1.50/32
 aviva@router1# set from protocol udp
 aviva@router1# set from destination-port snmp
 aviva@router1# set then accept

For the filter to affect incoming traffic, apply it to the desired interfaces:

 [edit interfaces]
 aviva@router1# set fe-0/0/0 unit 0 family inet filter input protect-RE

Discussion

An interface can have one inbound and one outbound firewall filter, so if you already have filters in
place that control the incoming and outgoing interface traffic, you can add a term that applies to NMS
access. To filter polling requests from NMS systems, add the term to the inbound filter; to filter the
router's responses, add it to the outbound filter. This term allows four NMS systems, all identified by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IP address, to send SNMP requests to the router. The destination-port option matches the SNMP
port number in the IP packet's destination field, and you include the udp option because SNMP
exchanges use UDP, not TCP.

You then have to decide where in the filter to place the term. Because the terms in the firewall filter
are evaluated in the order in which they appear, the placement affects the efficiency of the filter.
Generally, terms for operations that need to be performed quickly, such as BGP peering and IGP and
DNS traffic, are at the beginning of the filter. For operations that are less time-critical, including
processing SNMP traffic, place the term towards the end of the filter.

For the filter to do anything, you apply it to the desired interface with the set filter input
command.

To create a parallel filter for outbound SNMP traffic, you can incorporate the same term into the
interface's outbound firewall filter and then apply it on the ongoing side:

 [edit interfaces]
 aviva@router1# set fe-0/0/0 unit 0 family inet filter output outgoing-from-me

Fashion the firewall filter for outgoing SNMP a bit differently to allow the router to send SNMP traps.
Specify a source port of snmp (port 161) and a destination port of snmptrap (port 162):

 [edit firewall filter outgoing-from-me]
 aviva@router1# set term allow-
snmp-to-nms-systems source-port snmp
 aviva@router1# set term allow-snmp-to-nms-systems destination-port snmptrap

Instead of listing addresses individually in the from source-address portion of the configuration, a
shortcut creates a prefix list and then just references the list. A prefix list is simply a named list of IP
prefixes created in the [edit policy-options] portion of the configuration and then referred to in
firewall filters and in routing policies.

See Also

Recipes 9.3, 9.15, and 9.16

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.6. Controlling Access to Router MIBs

Problem

You want to limit the access of a group of NMS systems so they can gather only basic system and
chassis information from the router.

Solution

Use the following commands to define the MIB branches that a community can access:

 [edit snmp]
 aviva@router1#
set view chassis-info-only oid jnxBoxAnatomy include
 aviva@router1# set view chassis-info-only oid snmpMIBObjects include
 aviva@router1# set view chassis-info-only oid system include

Then associate the MIB view with the community:

 [edit snmp]
 aviva@router1#
set community chassis-access-only view chassis-info-only

Discussion

By default, an SNMP community can access the whole MIB installed on the router. You can limit the
MIB access that a community has by creating partial views of the MIB. This recipe creates a
community that can view information only about objects in the Juniper Networks chassis MIB and in
the standard MIB-II MIB. Controlling access consists of two steps: create the view itself using the set
view commands and then associate the view with the community using the set community command.

If you want a community to be able to read most but not all of the MIB, you can restrict access to
just a few MIB branches.

You might want to give access to all MIB branches except the two in which the JUNOS software
allows SNMP Set operations, the ping and traceroute MIB branches:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit snmp]
 aviva@router1# set view ping-traceroute-exclude oid jnxPingMIB exclude
 aviva@router1# set view ping-traceroute-exclude oid jnxTraceRouteMIB exclude
 aviva@router1# set community public view ping-traceroute-exclude

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.7. Extracting Software Inventory Information with
SNMP

Problem

You want to use SNMP to retrieve software version information from the router.

Solution

From an NMS system, use the snmpwalk command:

 aviva-server1% snmpwalk 192.168.15.1 public .1.3.6.1.2.1.25.6.3
 …
 host.hrSWInstalled.hrSWInstalledTable.hrSWInstalledEntry.hrSWInstalledName.2 = "JUNOS
 Base OS Software Suite [7.4R1.7.0]"
 host.hrSWInstalled.hrSWInstalledTable.hrSWInstalledEntry.hrSWInstalledName.3 = "JUNOS
 Kernel Software Suite [7.4R1.7.0]"
 host.hrSWInstalled.hrSWInstalledTable.hrSWInstalledEntry.hrSWInstalledName.4 = "JUNOS
 Packet Forwarding Engine Support (M20/M40) [7.4R1.7.0]"
 host.hrSWInstalled.hrSWInstalledTable.hrSWInstalledEntry.hrSWInstalledName.5 = "JUNOS
 Routing Software Suite [7.4R1.7.0]"
 host.hrSWInstalled.hrSWInstalledTable.hrSWInstalledEntry.hrSWInstalledName.6 = "JUNOS
 Online Documentation [7.4R1.7.0]"
 host.hrSWInstalled.hrSWInstalledTable.hrSWInstalledEntry.hrSWInstalledName.7 = "JUNOS
 Crypto Software Suite [7.4R1.7.0]"
 host.hrSWInstalled.hrSWInstalledTable.hrSWInstalledEntry.hrSWInstalledName.9 = "JUNOS
 Support Tools Package [7.4R1.7.0]"

From the router, use the following equivalent command:

 aviva@router1> show snmp mib walk .1.3.6.1.2.1.25.6.3
 hrSWInstalledName.2 = JUNOS Base OS Software Suite [7.4R1.7.0]
 hrSWInstalledName.3 = JUNOS Kernel Software Suite [7.4R1.7.0]
 hrSWInstalledName.4 = JUNOS Packet Forwarding Engine Support (M20/M40) [7.4R1.7.0]
 hrSWInstalledName.5 = JUNOS Routing Software Suite [7.4R1.7.0]
 hrSWInstalledName.6 = JUNOS Online Documentation [7.4R1.7.0]
 hrSWInstalledName.7 = JUNOS Crypto Software Suite [7.4R1.7.0]
 hrSWInstalledName.9 = JUNOS Support Tools Package [7.4R1.7.0]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

The SNMP standard Host Resources MIB, specified in RFC 2790, contains objects that allow you to
retrieve the versions of the software running on the router. The absolute path to the OID for installed
software is .1.3.6.1.2.1.25.6.3 . From the CLI, you get this same information with the show version
command (see Recipe 1.25):

 aviva@router1> show version
 Hostname: router1
 Model: m20
 JUNOS Base OS boot [7.4-20051024.0]
 JUNOS Base OS Software Suite [7.4-20051024.0]
 JUNOS Kernel Software Suite [7.4R1.7]
 JUNOS Packet Forwarding Engine Support (M20/M40) [7.4R1.7]
 JUNOS Routing Software Suite [7.4R1.7]
 JUNOS Online Documentation [7.4R1.7]
 JUNOS Crypto Software Suite [7.4R1.7]

In the SNMP output, the software version is shown as 7.42R1.7.0 , which includes the instance (.0) of
the software package.

See Also

Recipe 1.25

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.8. Extracting Hardware Inventory Information
with SNMP

Problem

You want to use SNMP to find out router hardware information and which field-replaceable units
(FRUs) are present in the router.

Solution

If you are logged in to the router, you can get information using the show snmp mib commands. To
get information about a single router component:

 aviva@router1> show snmp mib get sysObjectID.0
 sysObjectID.0 = jnxProductNameJ230M20

To get information about the next router component in the MIB:

 aviva@router1> show snmp mib get jnxBoxClass.0
 jnxBoxClass.0 = jnxProductLineM20.0
 aviva@router1> show snmp mib get-next jnxBoxClass.0
 jnxBoxDescr.0 = Juniper m20 Internet Backbone Router

For information about a number of router components, list each one separately:

 aviva@router1> show snmp mib get "jnxBoxClass.0 jnxBoxClass.0"
 jnxBoxClass.0 = jnxProductLineM20.0
 jnxBoxClass.0 = jnxProductLineM20.0

To get information about all the router components:

 aviva@router1> show snmp mib walk jnxBoxAnatomy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 jnxBoxClass.0 = jnxProductLineM20.0
 jnxBoxDescr.0 = Juniper m20 Internet Backbone Router
 jnxBoxSerialNo.0 = 25708
 …
 jnxContainersType.1 = jnxChassisM20.0
 jnxContainersType.2 = jnxM20SlotPower.0
 jnxContainersType.4 = jnxM20SlotFan.0
 jnxContainersType.6 = jnxM20SlotSSB.0
 jnxContainersType.7 = jnxM20SlotFPC.0
 jnxContainersType.8 = jnxM20MediaCardSpacePIC.0
 jnxContainersType.9 = jnxM20SlotRE.0
 jnxContainersType.10 = jnxM20SlotFrontPanel.0
 jnxContainersDescr.1 = chassis frame
 jnxContainersDescr.2 = Power Supply slot
 jnxContainersDescr.4 = Fan slot
 jnxContainersDescr.6 = SSB slot
 jnxContainersDescr.7 = FPC slot
 jnxContainersDescr.8 = PIC slot
 jnxContainersDescr.9 = Routing Engine slot
 jnxContainersDescr.10 = Front Panel Display slot
 …

To get information about the FRUs, walk through the jnxContentsTable object:

 aviva@router1> show snmp mib walk jnxContentsTable
 …
 jnxContentsType.1.1.0.0 = jnxBackplaneM20.0
 jnxContentsType.2.1.0.0 = jnxM20Power.0
 jnxContentsType.4.1.0.0 = jnxM20Fan.0
 jnxContentsType.4.2.0.0 = jnxM20Fan.0
 jnxContentsType.4.3.0.0 = jnxM20Fan.0
 jnxContentsType.4.4.0.0 = jnxM20Fan.0
 jnxContentsType.6.1.0.0 = jnxM20SSB.0
 jnxContentsType.6.2.0.0 = jnxM20SSB.0
 jnxContentsType.7.1.0.0 = jnxM20FPC.0
 jnxContentsType.7.2.0.0 = jnxM20FPC.0
 jnxContentsType.8.1.1.0 = jnxM20QuadEther.0
 jnxContentsType.8.1.2.0 = jnxM20DualChDs3toDs0.0
 jnxContentsType.8.1.3.0 = jnxM20QuadChT3.0
 jnxContentsType.8.2.1.0 = jnxM20DualAtmOc3.0
 jnxContentsType.9.1.0.0 = jnxM20RE.0
 jnxContentsType.9.1.1.0 = jnxPCMCIACard.0
 jnxContentsType.9.2.0.0 = jnxM20RE.0
 jnxContentsType.9.2.1.0 = jnxPCMCIACard.0
 jnxContentsType.10.1.0.0 = jnxM20FrontPanel.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

In the Juniper Networks chassis MIB, router family information is in the jnxBoxAnatomy object and
FRU information is in the jnxContentsTable object. On the router, you use the show snmp mib
commands to collect data from these objects.

The three variations, show snmp mib get, show snmp mib get-next, and show snmp mib walk, are
identical to the snmpget, snmpgetnext, and snmpwalk commands, respectively.

For the NMS system to extract this data, it needs to access the Juniper Networks chassis MIB to
parse the MIB objects in the jnxBoxAnatomy and jnxContentsTable objects.

You can collect a range of information for each FRU. Here, we show data about the Routing Engine in
slot 0:

 aviva@router1> show snmp mib get jnxContentsType.9.1.0.0
 jnxContentsType.9.1.0.0 = jnxM20RE.0
 aviva@router1> show snmp mib get jnxContentsDescr.9.1.0.0
 jnxContentsDescr.9.1.0.0 = Routing Engine 0
 aviva@router1> show snmp mib get jnxContentsSerialNo.9.1.0.0
 jnxContentsSerialNo.9.1.0.0 = 58000007348d9a01
 aviva@router1> show snmp mib get jnxContentsRevision.9.1.0.0
 jnxContentsRevision.9.1.0.0 = REV 06

If you are gathering hardware inventory information on the router, you use the show chassis
hardware command (see Recipe 1.26):

 aviva@router1> show chassis hardware

Hardware inventory:
 Item Version Part number Serial number Description
 Chassis 25708 M20
 Backplane REV 03 710-002334 BB9738 M20 Backplane
 Power Supply A REV 06 740-001465 005234 AC Power Supply
 Display REV 04 710-001519 BA4681 M20 FPM Board
 Routing Engine 0 REV 06 740-003239 1000224893 RE-2.0
 Routing Engine 1 REV 06 740-003239 9000022146 RE-2.0
 SSB slot 0 REV 02 710-001951 AZ8112 Internet Processor IIv1
 SSB slot 1 N/A N/A N/A Backup
 FPC 0 REV 03 710-003308 BD8455 E-FPC
 PIC 0 REV 08 750-002303 AZ5310 4x F/E, 100 BASE-TX
 PIC 1 REV 07 750-004745 BC9368 2x CT3-NxDS0
 PIC 2 REV 03 750-002965 HC9279 4x CT3
 FPC 1 REV 03 710-003308 BB9032 E-FPC
 PIC 0 REV 03 750-002914 BC0131 2x OC-3 ATM, MM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.9. Collecting Router Operational Information
with SNMP

Problem

You want the NMS server to check and record operational information about the router.

Solution

Look at the contents of the jnxOperatingTable table in the chassis MIB:

 aviva@router1> show snmp mib walk jnxOperatingTable
 …
 jnxOperatingDescr.1.1.0.0 = backplane
 jnxOperatingDescr.2.1.0.0 = Power Supply A
 jnxOperatingDescr.4.1.0.0 = Front Upper Fan
 jnxOperatingDescr.4.2.0.0 = Front Middle Fan
 jnxOperatingDescr.4.3.0.0 = Front Bottom Fan
 jnxOperatingDescr.4.4.0.0 = Rear Fan
 jnxOperatingDescr.6.1.0.0 = SSB 0 Internet Processor IIv1
 jnxOperatingDescr.6.2.0.0 = SSB 1
 jnxOperatingDescr.7.1.0.0 = FPC: E-FPC @ 0/*/*
 jnxOperatingDescr.7.2.0.0 = FPC: E-FPC @ 1/*/*
 jnxOperatingDescr.8.1.1.0 = PIC: 4x F/E, 100 BASE-TX @ 0/0/*
 jnxOperatingDescr.8.1.2.0 = PIC: 2x CT3-NxDS0 @ 0/1/*
 jnxOperatingDescr.8.1.3.0 = PIC: 4x CT3 @ 0/2/*
 jnxOperatingDescr.8.2.1.0 = PIC: 2x OC-3 ATM, MM @ 1/0/*
 jnxOperatingDescr.9.1.0.0 = Routing Engine 0
 jnxOperatingDescr.9.2.0.0 = Routing Engine 1
 jnxOperatingDescr.10.1.0.0 = Front Panel Display
 jnxOperatingTemp.1.1.0.0 = 22
 jnxOperatingTemp.2.1.0.0 = 22
 jnxOperatingTemp.4.1.0.0 = 0
 jnxOperatingTemp.4.2.0.0 = 0
 jnxOperatingTemp.4.3.0.0 = 0
 jnxOperatingTemp.4.4.0.0 = 0
 jnxOperatingTemp.6.1.0.0 = 30
 jnxOperatingTemp.6.2.0.0 = 0
 jnxOperatingTemp.7.1.0.0 = 28
 jnxOperatingTemp.7.2.0.0 = 27
 jnxOperatingTemp.8.1.1.0 = 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 jnxOperatingTemp.8.1.2.0 = 0
 jnxOperatingTemp.8.1.3.0 = 0
 jnxOperatingTemp.8.2.1.0 = 0
 jnxOperatingTemp.9.1.0.0 = 29
 jnxOperatingTemp.9.2.0.0 = 31
 jnxOperatingTemp.10.1.0.0 = 0
 …

Discussion

The jnxOperatingTable table in the chassis MIB lists all the components installed in the chassis along
with information about their operation state. This table has an absolute OID of
.1.3.6.1.4.1.2636.3.1.13.

The abridged output in the recipe shows the router hardware components and the current
temperature (in degrees Celsius) for each component. This table contains much more information
about the hardware, such as DRAM size (in bytes) for components that have memory:

 jnxOperatingDRAMSize.6.1.0.0 = 67108864
 jnxOperatingDRAMSize.7.1.0.0 = 33554432
 jnxOperatingDRAMSize.7.2.0.0 = 33554432
 jnxOperatingDRAMSize.9.1.0.0 = 805306368
 jnxOperatingDRAMSize.9.2.0.0 = 805306368

Referring back to the list of hardware components, jnxOperatingDRAMSize.6.1.0.0 is the router's
System and Switch Board (SSB), which handles forwarding for M20 routers. The other items are the
FPC0 and FPC1 boards and the two Routing Engines. The output also shows how long a component
has been up:

 jnxOperatingUpTime.1.1.0.0 = 35718300
 jnxOperatingUpTime.2.1.0.0 = 35719533
 jnxOperatingUpTime.4.1.0.0 = 35719534
 jnxOperatingUpTime.4.2.0.0 = 35719535
 jnxOperatingUpTime.4.3.0.0 = 35719536
 jnxOperatingUpTime.4.4.0.0 = 35719537
 jnxOperatingUpTime.6.1.0.0 = 6515160
 jnxOperatingUpTime.6.2.0.0 = 0
 jnxOperatingUpTime.7.1.0.0 = 6511883
 jnxOperatingUpTime.7.2.0.0 = 6511798
 jnxOperatingUpTime.8.1.1.0 = 6509154
 jnxOperatingUpTime.8.1.2.0 = 6509150
 jnxOperatingUpTime.8.1.3.0 = 6509100
 jnxOperatingUpTime.8.2.1.0 = 6508973
 jnxOperatingUpTime.9.1.0.0 = 35718300
 jnxOperatingUpTime.9.2.0.0 = 1978055600

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 jnxOperatingUpTime.10.1.0.0 = 35719549

The output shows that RE0 has been up for 35,718,300 10-second intervals, which is about 99 hours,
or just over 4 days. You can confirm the Routing Engine information shown in the MIB objects with
the following CLI command:

 aviva@router1> show chassis routing-engine
 Routing Engine status:
 Slot 0:
 Current state Master
 Election priority Master (default)
 Temperature 29 degrees C / 84 degrees F
 CPU temperature 30 degrees C / 86 degrees F
 DRAM 768 MB
 Memory utilization 36 percent
 CPU utilization:
 User 0 percent
 Background 0 percent
 Kernel 1 percent
 Interrupt 0 percent
 Idle 99 percent
 Model RE-2.0
 Serial ID 58000007348d9a01
 Start time 2005-12-07 13:28:55 PST
 Uptime 4 days, 3 hours, 57 minutes, 35 seconds
 Load averages: 1 minute 5 minute 15 minute
 0.07 0.05 0.02

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.10. Logging SNMP Access to the Router

Problem

You want to keep a log of SNMP operations that occur on the router and of the NMS systems that
connect to the router to gather status and statistics.

Solution

Use the following command to log SNMP operations and NMS connections:

 [edit snmp]
 aviva@router1# set traceoptions flag pdu

Discussion

You log SNMP access and operations by using SNMP trace logging. By default, the log messages are
saved to a number of tracing files in the /var/log directory, including snmpd.

To see which NMS systems have connected to the router, this recipe sets the PDU tracing flag, which
logs all NMS system request and responses to them, as well as any traps that get generated. To see
the PDU traces, look in the /var/log/snmpd file:

 Apr 27 12:04:34 snmpd[1370dced] >>
 Apr 27 12:04:34 snmpd[1370dced] >>> Get-Request
 Apr 27 12:04:34 snmpd[1370dced] >>> Source: 172.16.20.182
 Apr 27 12:04:34 snmpd[1370dced] >>> Destination: 192.168.15.1
 Apr 27 12:04:34 snmpd[1370dced] >>> Version: SNMPv2
 Apr 27 12:04:34 snmpd[1370dced] >>> Request_id: 0x1370dced
 Apr 27 12:04:34 snmpd[1370dced] >>> Community: public
 Apr 27 12:04:34 snmpd[1370dced] >>> Error: status=0 / vb_index=0
 Apr 27 12:04:34 snmpd[1370dced] >>> OID : sysName.0
 Apr 27 12:04:34 snmpd[1370dced] >>
 Apr 27 12:04:34 snmpd[1370dced] <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
 Apr 27 12:04:34 snmpd[1370dced] <<< Get-Response
 Apr 27 12:04:34 snmpd[1370dced] <<< Source: 192.168.15.1
 Apr 27 12:04:34 snmpd[1370dced] <<< Destination: 172.16.20.182
 Apr 27 12:04:34 snmpd[1370dced] <<< Version: SNMPv2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Apr 27 12:04:34 snmpd[1370dced] <<< Request_id: 0x1370dced
 Apr 27 12:04:34 snmpd[1370dced] <<< Community: public
 Apr 27 12:04:34 snmpd[1370dced] <<< Error: status=0 / vb_index=0
 Apr 27 12:04:34 snmpd[1370dced] <<< OID : sysName.0
 Apr 27 12:04:34 snmpd[1370dced] <<< type : OctetString
 Apr 27 12:04:34 snmpd[1370dced] <<< value: "router1"
 Apr 27 12:04:34 snmpd[1370dced] <<< HEX : 74 61 6e 71 75 65 72 61
 Apr 27 12:04:34 snmpd[1370dced] <<< 79
 Apr 27 12:04:34 snmpd[1370dced] <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

This output shows a Get request from the NMS system 172.16.20.182 for the OID sysName. The
router returned the value of router1 in its Get-Response message.

See Also

Recipe 5.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.11. Logging Enterprise-Specific Traps

Problem

You want to collect Juniper Networks enterprise-specific traps in the router's system logging files.

Solution

Use the following commands to save all log messages to a file called snmp-critical-traps:

 [edit]
 user@router1# edit system syslog file snmp-critical-traps

 [edit system syslog file snmp-critical-traps]
 user@router1# set daemon critical

Discussion

The traps from the Juniper Networks chassis MIB all have a system logging severity level associated
with them. You can take advantage of this to collect these traps in a system logfile. The chassis traps
record chassis component information that is critical to the operation of the router, such as power
supply and fan failures. In this recipe, we collect all critical and alert logging messages generated by
all JUNOS processes, including SNMPD and MIB2D, which captures most of the SNMP chassis traps.

Table 4-2 shows all the chassis traps and their corresponding severity level. In the system logging
file, these messages are prefixed with the identifier CHASSISD_SNMP_TRAP.

Table 4-2. System logging severity levels for Juniper Networks chassis
SNMPv2 traps

Severity level Chassis SNMPv2 trap

Notice jnxFruInsertion

 Insertion of a replaceable chassis component

 jnxFruPowerOff

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Severity level Chassis SNMPv2 trap

 Powering down of a replaceable chassis component

 jnxFruPowerOn

 Powering up of a replaceable chassis component

 jnxFruRemoval

 Removal of a replaceable chassis component

Critical jnxFanFailure

 Chassis fan or impeller failure

 jnxFanOK

 Chassis fan or impeller recovery

 jnxOverTemperature

 Overheating of a hardware component

 jnxPowerSupplyOK

 Power supply recovery

 jnxRedundancySwitchOver

 Chassis component has switched from master to backup, or vice versa

Alert jnxPowerSupplyFailure

 Power supply failure

 jnxTemperatureOK

 Overheating recovery by a hardware component

The Juniper Networks chassis MIB traps are the only enterprise-specific traps that are associated with
a system logging severity level, so they are the only ones that you can specifically log.

See Also

Recipe 5.1

 Powering down of a replaceable chassis component

 jnxFruPowerOn

 Powering up of a replaceable chassis component

 jnxFruRemoval

 Removal of a replaceable chassis component

Critical jnxFanFailure

 Chassis fan or impeller failure

 jnxFanOK

 Chassis fan or impeller recovery

 jnxOverTemperature

 Overheating of a hardware component

 jnxPowerSupplyOK

 Power supply recovery

 jnxRedundancySwitchOver

 Chassis component has switched from master to backup, or vice versa

Alert jnxPowerSupplyFailure

 Power supply failure

 jnxTemperatureOK

 Overheating recovery by a hardware component

The Juniper Networks chassis MIB traps are the only enterprise-specific traps that are associated with
a system logging severity level, so they are the only ones that you can specifically log.

See Also

Recipe 5.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.12. Using RMON Traps to Monitor the Router's
Temperature

Problem

You want to use remote monitoring (RMON) to have the router monitor and proactively report on
overtemperature conditions in the router.

Solution

Create an RMON trap that watches the internal temperature of the router by tracking the backplane
temperature:

 [edit snmp]
 aviva@router1# set trap-group overtemperature
 aviva@router1# set trap-group overtemperature categories rmon-alarm
 aviva@router1# set trap-group overtemperature targets 10.0.10.1
 aviva@router1# edit rmon
 [edit snmp rmon]
 aviva@router1# set alarm 1 description "overtemperature for M20 backplane"
 aviva@router1# set alarm 1 interval 300
 aviva@router1# set alarm 1 variable jnxOperatingTemp.1.1.0.0
 aviva@router1# set alarm 1 sample-type absolute-value
 aviva@router1# set alarm 1 rising-threshold 40
 aviva@router1# set alarm 1 startup-alarm rising-alarm
 aviva@router1# set alarm 1 rising-event-index 1
 aviva@router1# set event 1 description Heap-Events
 aviva@router1# set event 1 type log-and-trap
 aviva@router1# set event 1 community heap-traps

This is an involved configuration, so here's what it looks like when viewed all together:

 [edit snmp]
 aviva@router1# show
 trap-group overtemperature {
 categories {
 rmon-alarm;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 targets {
 10.0.10.1;
 }
 }
 rmon {
 alarm 1 {
 description "overtemperature for M20 backplane";
 interval 300;
 variable jnxOperatingTemp.1.1.0.0;
 sample-type absolute-value;
 rising-threshold 40;
 rising-event-index 1;
 }
 event 1 {
 description Overtemperature-Events;
 type log-and-trap;
 community overtemperature;
 }
 }

Discussion

RMON is an SNMP specification that allows an SNMP agent (your router) to proactively monitor its
system health and performance and then send traps to an SNMP manager. The local SNMP agent
compares MIB values against predefined thresholds and generates exception alarms without the need
for polling by a central SNMP management platform. This is an effective mechanism for proactive
management, provided that you have baselined and set the thresholds correctly. RMON also
decreases the amount of traffic between the manager and the router because the SNMP manager
does not always have to poll for information and it allows the manager to get more timely status
reports because the router reports events as they occur.

You can monitor many things. This recipe monitors the router's backplane temperature. The
backplane is in the center of the router, so the temperature gives you an idea of whether the router
might be overheating. This recipe sets the threshold at 40 degrees Celsius. When this value is
exceeded, an RMON event is triggered, a trap is sent, and the event is logged.

To set up RMON, configure the OID and the threshold values that trigger the alarm (with the set
alarm commands), the router's response to the alarm (with the set event commands), and the NMS
systems to receive the trap (with the set trap-group commands).

The alarm's threshold value can be an actual value, as in these two alarms (set with the sample-type
statement and absolute-value option), or the difference between the current value and the last value
(set with the delta-value option).

Finally, choose a number to identify the alarm and to link the alarm with the event. Specify the
number in the rising-alarm-index statement when monitoring a rising threshold or in the falling-
alarm-index statement when monitoring a falling threshold. For alarm 1, rising-alarm-index 1
associates event 1 with this alarm.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The event statement hierarchy defines the router's response to the alarm. In this recipe, the type
log-and-trap statement logs both sets of traps. The community statement associates the events with
the trap group overtemperature, which sends the traps to the NMS system defined in the targets
statement.

When you configure the trap group to handle the RMON event, the category must be rmon-alarm. The
targets are all the NMS systems to receive the trap.

Events are generated only when the threshold is first crossed in any one direction, not after each
sample period. Once the threshold is crossed, no more events are generated until after the value
crosses back into the normal range and again crosses the threshold. This mechanism considerably
reduces the quantity of alarms produced by the router, making it easier for you to react when alarms
do occur. Keep in mind that because SNMP uses UDP, there is no guarantee of the delivery of the
alarm to the SNMP manager.

To verify that the RMON alarm is set, use the following command on the router:

 aviva@router1> show snmp rmon alarms
 Alarm
 Index Variable description Value State
 1 monitor: overtemperature for M20 backplane
 jnxOperatingTemp.1.1.0.0
 22 falling threshold

The Value column in the output shows the current value of the object, which here is 22 degrees. You
can verify the temperature by looking at the object's value directly:

 aviva@router1> show snmp mib get jnxOperatingTemp.1.1.0.0
 jnxOperatingTemp.1.1.0.0 = 22

You can also see it with the show chassis environment command:

 aviva@router1> show chassis environment
 Class Item Status Measurement
 Power Power Supply A OK
 Power Supply B Absent
 Temp FPC 0 OK 28 degrees C / 82 degrees F
 FPC 1 OK 27 degrees C / 80 degrees F
 Power Supply A OK 22 degrees C / 71 degrees F
 Power Supply B Absent
 SSB 0 OK 30 degrees C / 86 degrees F
 Backplane OK 22 degrees C / 71 degrees F
 Routing Engine 0 OK 30 degrees C / 86 degrees F
 Routing Engine 1 OK 31 degrees C / 87 degrees F
 Fans Rear Fan OK Spinning at normal speed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Front Upper Fan OK Spinning at normal speed
 Front Middle Fan OK Spinning at normal speed
 Front Bottom Fan OK Spinning at normal speed
 Misc Craft Interface OK

To see the events that are set, use this command:

 aviva@router1> show snmp rmon events
 Event
 Index Type Last Event
 1 log and trap

When the backplane temperature crosses the rising threshold, you can see the log using the show
snmp rmon logs command.

From the NMS system and from the router, you can retrieve RMON data from the alarmTable,
eventTable, and logTable MIB objects. Here's what you would see when looking at the alarm table
from the router:

 aviva@router1> show snmp mib walk eventTable
 eventIndex.1 = 1
 eventDescription.1 = Overtemperature-Events
 eventType.1 = 4
 eventCommunity.1 = overtemperature
 eventLastTimeSent.1 = 0
 eventOwner.1
 eventStatus.1 = 1

See Also

RFC 2819, Remote Network Monitoring MIB

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.13. Configuring SNMPv3

Problem

You want to set up the router to be an SNMP agent so your network SNMPv3 NMS system can monitor
it.

Solution

First, define the NMS systems that can access the router and their passwords:

 [edit snmp v3]
 aviva@router1# set
usm local-engine user nms1 authentication-sha authentication-
 password $1991poppI
 aviva@router1# set usm local-engine user nms1 privacy-des privacy-password $1991poppI

Then, define the MIBs to which the users have access:

 [edit snmp]
 aviva@router1# set view chassis-info-only oid jnxBoxAnatomy include
 aviva@router1# set view chassis-info-only oid snmpMIBObjects include
 aviva@router1# set view chassis-info-only oid system include

You create groups and assign users to them and then define access privileges for each group:

 [edit snmp v3]
 aviva@router1# set vacm security-to-group security-model usm security-name nms1 group
 chassis-only
 aviva@router1# set vacm access group chassis-only default-context-prefix security-
 model usm security-level privacy read-view chassis-info-only
 aviva@router1# set vacm access group chassis-only default-context-prefix security-
 model usm security-level privacy notify-view chassis-info-only

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The basic SNMPv3 setup is similar to the SNMPv2 configuration. You define the NMS systems that can
make SNMP requests to the router and which MIBs they can access. In the recipe shown here, we give
access only to the objects related to the hardware chassis components.

SNMPv3 uses a USM for security, which you configure in the usm statement hierarchy. Each NMS
system is a user. For each user, configure an authentication type and password to ensure that the
SNMP messages come from a trusted source. Here we have configured SHA1 authentication. USM also
supports MD5 authentication, which you configure with the authentication-md5 keyword.

To protect the SNMP message payload, you encrypt it, here with DES. The CLI converts both
passwords into keys:

 [edit
snmp v3 usm local-engine]
 aviva@router1# show
 user nms1 {
 authentication-sha {
 authentication-key "$9$5Qz6u0IrlM0OLxN-2gUjH.mTFn/CA0aZFnCtOBNdVbgoGDiPfzGU.
 5TzCAM8LXbs24aZGiM8ZUjHmPRhcyM8-ds2aZVb.
 Pf5F3SrlKLxdVYaJDKMjHqmTQreKMNds24Djq8XGDjkPfylevxN4aZqP5LxDiHqQz369CtOhclKWLz3cyrK8L
 JGUDqm"; ## SECRET-DATA
 }
 privacy-des {
 privacy-key "9bcsYoji.zF/iHAp0OcSM8XN-w24aZGilK24ZUHk0B1ISrvWLdVYvMNbwYZG/
 CAtIEcylKvL/CKM8X-dmf5Q/COBEclK1INdVb2gTzFnApB1hleWn/8X7-wsz3n/
 0BEcyW87CtvW8xdVQF36p0ylK7dbApWLX7sYgoJZUHf5Fn9AYg5QznCAevMW7-"; ## SECRET-DATA
 }
 }

As with SNMPv2, you create views to define which MIB branches the NMS systems can access (use the
view statement at the [edit snmp] level, not at the [edit snmp v3] level). The view we configure,
chassis-info-only , allows access to the Juniper Networks enterprise chassis MIB and to portions of
other MIBs that retrieve chassis-related information. Because we use the notify view for the chassis-
only group, we need to allow the sysUpTime object, which is part of the system OID. The notify view is
used when the router sends SNMPv3 notifications (informational messages and traps) to the NMS
system. We show how to configure notifications in Recipe 4.15.

Next, define the NMS system's access to the router (in the vacm statement hierarchy). SNMPv3 uses a
VACM to grant access privileges to groups. You create groups that are identified by a name, then
assign the desired access. A group is simply a collection of NMS systems (users) that are defined in the
USM and that share the same access privileges (set in the access statement hierarchy). Here, we have
a group called chassis-only that includes our NMS system nms1 .

In the access commands, set the security and access privileges for the group. In our recipe, the
security model is USM and the security level is privacy , which authenticates all messages and encrypts
the message payload. You can also choose authentication , which provides only authentication, and
none , which provides neither. The read-view and notify-view statements set the access privileges for
incoming NMS requests and outgoing notifications, respectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To see the SNMPv3 configuration settings, use the following command:

 aviva@router1> show snmp v3
 Local engine ID: 80 00 0a 4c 01 c0 a8 47 f6
 Engine boots: 123
 Engine time: 24951 seconds
 Max msg size: 2048 bytes
 Engine ID: local
 User Auth/Priv Storage Status
 nms1 sha/3des nonvolatile active
 Group name Security Security Storage Status
 model name type
 chassis-only usm nms1 nonvolatile active
 Access control:
 Group Context Security Read Write Notify
 prefix model/level view view view
 chassis-only usm/privacy chassis-in

The JUNOS structure for configuring SNMPv3 follows the structure of the protocol specification itself.
Because it is a bit complex, it's worthwhile to look at the SNMPv3 portion of the configuration file that
is created by the commands in this recipe, along with some added comments.

 aviva@router1# show | except SECRET-DATA
 v3 {
 usm { # <-- which NMS systems can access the router
 local-engine {
 user nms1 {
 authentication-sha {
 privacy-des {
 }
 }
 }
 }
 vacm { # <-- what the NMS systems can access on the router
 security-to-group { # <-- which access group each NMS is in
 security-model usm {
 security-name nms1 {
 group chassis-only;
 }
 }
 }
 access { # <-- which MIB views the NMS systems can access
 group chassis-only {
 default-context-prefix {
 security-model usm {
 security-level privacy {
 read-view chassis-info-only;
 notify-view chassis-info-only;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 }
 }
 }
 }
 }
 view chassis-info-only { # <-- define a view that allows all chassis objects
 oid jnxBoxAnatomy include;
 oid snmpMIBObjects include;
 oid system include;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.14. Tracking Router Configuration Changes

Problem

You want an NMS system to track when the router's configuration has been changed.

Solution

First, define the NMS system and its password:

 [edit snmp v3]
 aviva@router1# set
usm local-engine user nms2 authentication-sha authentication-
 password $0212roZH
 aviva@router1# set usm local-engine user nms2 privacy-des privacy-password 0212roZH

Then, define two views that allow the NMS access to the configuration information. The first view
defines what the NMS can read from the MIB:

 [edit snmp v3]
 aviva@router1# set view config-info-read oid jnxCfgMgmt include

The second view sets what the router includes in notifications sent to the NMS:

 [edit snmp v3]
 aviva@router1# set view config-info-notify oid jnxCfgMgmt include
 aviva@router1# set view config-info-notify oid jnxCmNotifications include
 aviva@router1# set view config-info-notify oid snmpMIBObjects include
 aviva@router1# set view config-info-notify oid system include

Finally, create groups and their users and assign access privileges for the groups:

 [edit snmp v3]
 aviva@router1# set vacm security-to-group security-model usm security-name nms2 group
 config-only

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1# set vacm access group config-only default-context-prefix security-
 model usm security-level privacy read-view config-info-read
 aviva@router1# set vacm access group config-only default-context-prefix security-
 model usm security-level privacy notify-view config-info-notify

Discussion

To use SNMP to extract the router configuration, use the Juniper Networks configuration management
MIB extension, which tracks who made changes to the configuration and when. This recipe gives the
NMS system called nms2 access to configuration information.

The first commands in this recipe configure USM for security, with SHA1 authentication and DES
message payload encryption. You then create two views, one that defines what nms2 can read from the
MIB and a second that sets what the router can include in notifications. The final commands configure
the VACM to provide access to desired groups.

Again, this recipe is somewhat involved, so here's what the resulting configuration looks like after you
issue the commands in this recipe, with some added comments:

 aviva@router1# show | except SECRET-DATA
 v3 {
 usm { # <-- which NMS systems can access the router
 local-engine {
 user nms2 {
 authentication-sha {
 privacy-des {
 }
 }
 }
 }
 vacm { # <-- what the NMS systems can access on the router
 security-to-group { # <-- which access group each NMS is in
 security-model usm {
 security-name nms2 {
 group config-only;
 }
 }
 }
 access { # <-- which MIB views the NMS systems can access
 group config-only {
 default-context-prefix {
 security-model usm {
 security-level privacy {
 read-view config-info-read;
 notify-view config-info-notify;
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 }
 }
 view config-info-read { # <-- view of enterprise configuration management objects
 oid jnxCfgMgmt include;
 }
 view config-info-notify { # <-- view for objects used by SNMPv3 traps
 oid jnxCfgMgmt include;
 oid jnxCmNotifications include;
 oid snmpMIBObjects include;
 oid system include;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 4.15. Setting Up SNMPv3 Traps

Problem

You want SNMPv3 to generate traps about chassis and configuration events and send the traps to the
NMS system.

Solution

For the chassis events, first configure the trap notification:

 [edit snmp v3]
 aviva@router1# set notify chassis-notification-list type trap
 aviva@router1# set notify chassis-notification-list tag chassis-trap-receivers

Next, define the traps to send:

 [edit snmp v3]
 aviva@router1# set notify-filter chassis-
traps oid jnxChassisTraps include
 aviva@router1# set notify-filter chassis-traps oid jnxChassisOKTraps include

Identify the NMS systems (the targets) to receive the traps:

 [edit snmp v3]
 aviva@router1# edit target-address nms1

 [edit snmp v3 target-address nms1]
 aviva@router1# set address 10.0.10.1
 aviva@router1# set tag-list chassis-trap-receivers
 aviva@router1# set target-parameters nms1-parameters

Finally, configure which traps the NMS systems receive and the security used when sending the
traps:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit snmp v3]
 aviva@router1# edit target-parameters nms1-parameters

 [edit snmp v3 target-parameters nms1-parameters]
 aviva@router1# set parameters message-processing-model v3
 aviva@router1# set parameters security-model usm
 aviva@router1# set parameters security-level privacy
 aviva@router1# set parameters security-name nms1
 aviva@router1# set notify-filter chassis-traps

To set up traps that correspond to the JUNOS configuration management MIB extension we showed
in Recipe 4.14, configure them in a similar way. First, set up the trap notification:

 [edit snmp v3]
 aviva@router1# set notify config-notification-list type trap
 aviva@router1# set notify config-notification-list tag config-trap-receivers

Next, define the trap to send:

 [edit snmp v3]
 aviva@router1# set notify-filter config-traps oid jnxCmNotifications include

Specify the NMS systems to receives the traps:

 [edit snmp v3]
 aviva@router1# set target-address nms2 address 192.168.15.27
 aviva@router1# set target-address nms2 tag-list config-trap-receivers
 aviva@router1# set target-address nms2 target-parameters nms2-parameters

Finally, configure which traps the NMS systems receive and the security used when sending the
traps:

 [edit snmp v3]
 aviva@router1# set target-parameters nms2-parameters notify-filter config-traps
 aviva@router1# set target-parameters nms2-parameters parameters
message-processing-
 model v3
 aviva@router1# set target-parameters nms2-parameters parameters security-model usm
 aviva@router1# set target-parameters nms2-parameters parameters security-level
 privacy
 aviva@router1# set target-parameters nms2-parameters parameters security-name nms2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

The configuration of SNMPv3 traps is much more involved than for SNMPv2, so let's look at each step
of the process. The first part of this recipe sets up traps for the objects related to the hardware
chassis components.

First, configure a notification. SNMPv3 defines two types of notifications: informational and trap. You
want to set type trap. You'll also want to name the notification with the tag statement (here,
chassis-trap-receivers) so that later in the configuration, you can associate the trap type with the
NMS system that will be receiving the traps.

Second, create a filter that identifies which traps are sent to the NMS. Here, the filter named
chassis-traps sends all traps from the Juniper chassis MIB.

Next, define the NMS systems to receive the trap notifications in the target-address statement
hierarchy. Each target has a name, here nms1, which is the username of the NMS (also referred to as
the security name). Then set the NMS system's address and associate a tag list and security
parameters with it. Here, we associate the chassis-trap-receivers tag and the nms1-parameters
security parameters, which we define next.

Finally, associate a trap notification filter with the target NMS system (here, the chassis-traps filter)
and define the security to use in all trap message exchanges. SNMPv3 security has three
components: the message-processing model, the security model, and the security level. The
processing model is SNMPv1, SNMPv2, or SNMPv3, which corresponds to the v1, v2, and v3 options
of the message-processing-model statement. The security model is SNMPv1, SNMPv2, or USM,
corresponding to the v1, v2c, and usm options of the security-model statement. Finally, the security
level can be noAuthnoPriv, authNoPriv, or authPriv, which match the none, authentication, and
privacy options of the security-level statement. Bundled in with defining the security parameters is
the username (security name) of the receiving NMS system. Here, the security-name nms1 statement
associates the security parameters with the system we defined in the target-address nms1 statement
hierarchy.

Check the configuration using the show snmp v3 command. The following output shows only the
portion related to the trap notifications:

 aviva@router1> show snmp v3
 SNMP Target:
 Address Address Port Parameters Storage Status
 name name type
 nms1 10.0.10.1 162 nms1-parame nonvolatile active
 Parameters Security Security Notify Storage Status
 name name model/level filter type
 nms1-parameter nms1 usm/privacy chassis nonvolatile active
 SNMP Notify:
 Notify Tag Type Storage Status
 name type
 trap-notification-li NMS-trap-receiver trap nonvolatile active
 Filter Subtree Filter Storage Status

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 name type type
 chassis-
traps 1.3.6.1.4.1.2636. include nonvolatile active

The Target and Parameters portions of the output list the NMS systems configured to receive traps
and lists the security parameters. The Notify and Filter portions give information about the traps
that will be sent.

Here's the traps portion of the SNMPv3 configuration file; you can see how all the pieces fit together:

 [edit snmp v3]
 target-address nms1 {
 address 10.0.10.1;
 tag-list NMS-trap-receivers;
 target-parameters nms1-parameters;
 }
 target-address nms2 {
 address 10.0.0.1;
 tag-list config-trap-receivers;
 target-parameters nms2-parameters;
 }
 target-parameters nms1-parameters {
 parameters {
 message-processing-model v3;
 security-model usm;
 security-level privacy;
 security-name nms1;
 }
 notify-filter chassis-traps;
 }
 target-parameters nms2-parameters {
 parameters {
 message-processing-model v3;
 security-model usm;
 security-level privacy;
 security-name nms2;
 }
 notify-filter config-traps;
 }
 notify chassis-notification-list {
 type trap;
 tag chassis-trap-receivers;
 }
 notify config-notification-list {
 type trap;
 tag config-trap-receivers;
 }
 notify-filter chassis-traps {
 oid jnxChassisTraps include;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 oid jnxChassisOKTraps include;
 }
 notify-filter config-traps {
 oid jnxCmNotifications include;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Logging

Introduction

Recipe 5.1. Turning On Logging

Recipe 5.2. Limiting the Messages Collected

Recipe 5.3. Including the Facility and Severity in Messages

Recipe 5.4. Changing the Size of a Logging File

Recipe 5.5. Clearing the Router's Logfiles

Recipe 5.6. Sending Log Messages to Your Screen

Recipe 5.7. Sending Logging Messages to a Log Server

Recipe 5.8. Saving Logging Messages to the Other Routing Engine

Recipe 5.9. Turning Off Logging

Recipe 5.10. Turning On Basic Tracing

Recipe 5.11. Monitoring Interface Traffic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

Logging events that occur on the router is an important tool available to router and network
administrators. Logging provides real-time and historical information about router operations, which
you can use to help trace and analyze the sequences of events leading to a problem on the router or
network, or both. The JUNOS software provides two mechanisms for logging events: system logging
(sometimes called syslog) and tracing. With system logging, the JUNOS software generates system
log messages (also called syslog messages) that record events that occur systemwide on the router,
such as a user logging in to the router or an interface starting up; failure and error conditions, such
as a login failure or the unexpected closure of a peer process; and emergency or critical conditions,
such as a router shutting down due to excessive heat. JUNOS system logging is very similar to the
Unix syslog function. Tracing (sometimes also called trace logging) is specific to routing protocols and
records information about protocol operation, such as the exchange of protocol packets when a
protocol is starting or sending regularly scheduled updates.

Both system logging and tracing save log messages to files. These files are stored in the /var/log
directory on the router's hard disk for M-series and T-series routers and in the /cf/var/log directory
on J-series routers. You can redirect system log messages to a remote server that is running a
standard syslogd utility, to the terminal of a user who is logged in to the router, or to the console.

The JUNOS software can generate thousands of different system log messages, from all parts of the
system, including hardware, routing software processes, and forwarding software. The messages are
categorized by source and severity. Because you are almost never interested in saving and reviewing
all system log messages generated by the router, use the source and severity as log message filters.

Each system logging message is identified with a priority, consisting of a facility and a severity level.
The facility is the source of the message, which is the router process or event that generated the
message. Table 5-1 lists all the JUNOS system log facilities.

Some are the same as those used by the Unix syslog utility, and some are specific to the JUNOS
software.

Table 5-1. JUNOS system log facilities

Facility name Facility code Message source

any Any facility

authorization
AUTH,
AUTHPRIV

Authentication and authorization attempts

change-log CHANGE Router configuration changes

conflict-log CONFLICT
Router configuration changes that are inconsistent with the
router hardware

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Facility name Facility code Message source

CONSOLE Kernel messages to the console (/dev/console)

CRON Scheduled processes

daemon DAEMON JUNOS software processes

firewall FIREWALL Packet filtering done by firewall filters

ftp FTP FTP

interactive-

commands
INTERACT

Commands issued at the JUNOS CLI or by a JUNOScript
client application

kernel KERNEL JUNOS kernel

NTP NTP

pfe PFE Packet forwarding software

SYSLOG System logging

user USER User processes

Each system log message has a severity level (see Table 5-2) that reflects the seriousness of the
event that generates the message. Each severity level has a name and number, which are the same
as those used by the Unix syslog utility. The lower the number, the more critical the event.

Table 5-2. JUNOS system log severity levels

Severity
name

Severity
number

Description

any All severity levels

none All severity levels

debug 7 Information normally used in debugging

info 6 Informational events about normal router operations

notice 5
Conditions that are not errors but are of more interest than
normal router events

warning 4 General warnings for events you might want to keep an eye on

error 3 General error conditions

critical 2 Critical errors, such as hard drive failures

alert 1
Errors that require immediate correction, such as corrupted
system files

emergency 0 Conditions that cause the router to stop functioning

CONSOLE Kernel messages to the console (/dev/console)

CRON Scheduled processes

daemon DAEMON JUNOS software processes

firewall FIREWALL Packet filtering done by firewall filters

ftp FTP FTP

interactive-

commands
INTERACT

Commands issued at the JUNOS CLI or by a JUNOScript
client application

kernel KERNEL JUNOS kernel

NTP NTP

pfe PFE Packet forwarding software

SYSLOG System logging

user USER User processes

Each system log message has a severity level (see Table 5-2) that reflects the seriousness of the
event that generates the message. Each severity level has a name and number, which are the same
as those used by the Unix syslog utility. The lower the number, the more critical the event.

Table 5-2. JUNOS system log severity levels

Severity
name

Severity
number

Description

any All severity levels

none All severity levels

debug 7 Information normally used in debugging

info 6 Informational events about normal router operations

notice 5
Conditions that are not errors but are of more interest than
normal router events

warning 4 General warnings for events you might want to keep an eye on

error 3 General error conditions

critical 2 Critical errors, such as hard drive failures

alert 1
Errors that require immediate correction, such as corrupted
system files

emergency 0 Conditions that cause the router to stop functioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Depending on how you configure system logging, the JUNOS system log messages have one of the
following formats. The first format is the default.

 Mar 17 11:12:29 router1 mib2d[2885]:
SNMP_TRAP_LINK_DOWN: ifIndex 2,
 ifAdminStatus up(1), ifOperStatus down(2), ifName t1-0/0/0:1

 Mar 17 11:12:29 router1 mib2d[2885]: %
DAEMON-4-SNMP_TRAP_LINK_DOWN: ifIndex 2,
 ifAdminStatus up(1), ifOperStatus down(2), ifName t1-0/0/0:1

The system log message includes a timestamp, the router's name, and the message itself. The
timestamp indicates the date and time when the message was logged. Missing from the timestamp is
any indication of the time zone. If all your routers are located in a small geographic area, this is not
much of a problem. However, if your operations are more global, you should make sure that you
either configure all routers to use the same time zone (UTC is a good choice) or, less optimally, that
you know which routers are using which time zone. Knowing the time accurately on your network's
routers is critical when you are searching through logfiles to debug a problem between two routers
and are trying determine what happened when. Setting time zones is discussed in Recipe 6.2.

The second part of the log message is the actual log message itself, which shows the source of the
message and the message code and description. The message in the previous example was
generated by the MIB-II process, and the specific process number is 2885. (If the process is still
running, you can see it with the show system processes command.) The message code consists of a
prefix, in this case SNMP_, which is the process that generated the message, and a unique message
identifier (trAP_LINK_DOWN). The text string at the end describes the message. The second message
format above shows two other pieces of information, the facility code name (here, DAEMON, indicating
that the message source is a JUNOS software process) and the numeric severity level (4, which is a
warning message).

A quick way to find out what a system log message means is to use the help syslog command. You
can just cut and paste the message code into the command:

 aviva@router1> help syslog SNMP_TRAP_LINK_DOWN
 Name: SNMP_TRAP_LINK_DOWN
 Message: ifIndex <if-index>, ifAdminStatus <admin-status>, ifOperStatus
 <oper-status>, ifName <interface-name>
 Help: linkDown trap was sent
 Description: The SNMP agent process (snmpd) generated a linkDown trap because
 the indicated interface changed state to 'down'.
 Type: Event: This message reports an event, not an error
 Severity: warning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.1. Turning On Logging

Problem

You want to monitor all systemwide operations by saving all log messages to a file on the router.

Solution

Use the following commands to save all log messages to a file called messages:

 [edit]

 aviva@router1# set system syslog file messages any info

Discussion

The most common place to save system logging messages is on the router. If you do not configure
logging, it is turned on by default and sends messages to the file messages (located in /var/log on M-
series and T-series routers and in /cf/var/log on J-series routers). The messages logged are those
from all facilities that have a severity notice and all authorization messages. If you were to configure
the default settings, the configuration file would look like this:

 [edit system syslog]
 file messages {
 any notice;
 authorization info;
 }

This recipe modifies the default so messages from all facilities (any) and all severities (info) are
logged. Keep in mind that for a given severity level, the software logs all messages at that level and
at all more serious levels, so when you specify the lowest severity level, info, you are in effect
recording all system log messages except for debug messages. You could also specify any instead of
info here.

When you want to review the system log messages, use the show log command. In all system log
message files, the messages are listed in order, from oldest to newest. As the file gets large, you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

have to scroll through a lot of lines to get to the most recent messages. You can shorten the output
by using some of the CLI command filters. For example, you can specify today's date and time to list
only the most recent messages (match is simply the Unix grep utility):

 aviva@router1> show log messages | match "Mar 9 11:5"
 Mar 9 11:54:31 router1 login: LOGIN_INFORMATION: User aviva logged in from host
 172.17.28.19 on device ttyp1
 Mar 9 11:54:34 router1 mgd[29108]: UI_DBASE_LOGIN_EVENT: User 'aviva' entering
 configuration mode
 Mar 9 11:56:13 router1 mgd[29108]: UI_DBASE_LOGOUT_EVENT: User 'aviva' exiting
 configuration mode
 Mar 9 11:57:52 router1 mgd[28332]: UI_DBASE_LOGOUT_EVENT: User 'aviva' exiting
 configuration mode

If you want to find out who has logged in to the router today, you can set up a chain of filters:

 aviva@router1> show log messages | match LOGIN | match "Mar 16"
 Mar 16 11:00:53 router1 login: LOGIN_INVALID_LOCAL_USER: No entry in local password
 file for user pwd
 Mar 16 11:00:54 router1 login:
LOGIN_PAM_AUTHENTICATION_ERROR: PAM auhentication
 error for user pwd
 Mar 16 11:00:54 router1 login: LOGIN_FAILED: Login failed for user pwd from host
 Mar 16 11:00:55 router1 login: LOGIN_INFORMATION: User root logged in from host
 [unknown] on device ttyd0
 Mar 16 21:57:59 router1 login: LOGIN_INFORMATION: User aviva logged in from host
 172.17.28.108 on device ttyp0
 Mar 16 21:58:04 router1 mgd[4102]: UI_DBASE_LOGIN_EVENT: User 'aviva' entering
 configuration mode

You can create multiple system logging files to track messages from different sources and of different
severities. Instead of sifting through the messages file to find out what users and processes have been
logging in to the router, you can configure a system logging file for only those activities.

 [edit system syslog]
 aviva@router1# set file security authorization info

The following are examples of some of the logging messages that are saved as a result of this
configuration:

 aviva@router1> show log security
 Mar 18 01:53:41 router1 init: ntp (PID 4194) exit on SIGHUP, will be restarted to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 get the new config
 Mar 18 01:53:41 router1 init: ntp (PID 4644) started
 Mar 18 01:54:16 router1 login: LOGIN_INFORMATION: User aviva logged in from host
 172.17.28.108 on device ttyp0
 Mar 18 01:55:41 router1 init: ntp (PID 4644) exit on SIGHUP, will be restarted to
 get the new config
 Mar 18 01:55:41 router1 init: ntp (PID 5006) started

By default, only the root user and users with the JUNOS maintenance permission can read the
contents of logfiles (see Recipe 2.10). If a number of people need to be able to read a system logfile,
you should change the permission on the file. This is similar to the Unix chmod utility.

 [edit system syslog]
 aviva@router1# set file messages archive world-readable
 aviva@router1# set file security archive world-readable

To verify that the file permissions have changed, use the file list detail command. The files are
still owned by root, but they are readable by anyone.

 aviva@router1> file list detail /var/log
 -rw-rw-r-- 1 root wheel 5883 Mar 18 02:00 messages
 -rw-rw-r-- 1 root wheel 17638 Mar 18 02:01 security

See Also

Recipe 2.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.2. Limiting the Messages Collected

Problem

You have turned on system logging and are collecting messages from all facilities in your logging files.
You are not interested in the messages from one or two of the facilities and would like to stop
messages from these facilities without configuring each priority.

Solution

Disable the facilities that you don't want showing up in your logfile:

 [edit system syslog file messages]
 aviva@router1# set
any notice
 aviva@router1# set interactive none

Discussion

When you want to capture logging messages from all sources on the router, you can configure this
easily with a single command that specifies the facility as any. When you want to capture all facilities
but one or two, the quickest way is to disable the facilities that you are not interested in. In this case,
you are not interested in collecting any of the commands that users type at the CLI, but you do want
any other commands. These two commands are a shortcut that saves you from having to type 10
commands, one for each facility you want to enable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.3. Including the Facility and Severity in
Messages

Problem

Your system logfiles contain lots of messages, and you want to use the severity levels to distinguish
the important ones from the informational ones.

Solution

Include the severity level in each logging message:

 [edit system syslog file messages]
 aviva@router1# set explicit-priority

Discussion

When you configure each system logfile and include the explicitly-priority statement, all system
log messages contain the priority, which is a combination of the facility and severity level. The
following example highlights the priority for messages in the logfile.

 aviva@router1>
show log messages | match "Mar 9 11:5"
 Mar 9 11:54:31 router1 login: %
AUTH-6-LOGIN_INFORMATION: User aviva logged in from
 host 172.17.28.19 on device ttyp1
 Mar 9 11:54:34 router1 mgd[29108]: %
INTERACT-5-UI_DBASE_LOGIN_EVENT: User 'aviva'
 entering configuration mode
 Mar 9 11:56:13 router1 mgd[29108]: %INTERACT-5-UI_DBASE_LOGOUT_EVENT: User 'aviva'
 exiting configuration mode
 Mar 9 11:57:52 router1 mgd[28332]: %INTERACT-5-UI_DBASE_LOGOUT_EVENT: User 'aviva'
 exiting configuration mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the first message the priority is %AUTH-6, which indicates that this message was generated by the
authorization facility. The severity is 6, so you know that it's an informational message. The
remaining three messages have a priority of %INTERACT-5, so they come from the interactive
commands facility and have a severity of 5, or notice.

You could also match on a specific priority of interest. Here we show only critical messages (severity
of 2):

 aviva@router1> show log messages | match -2-
 Jun 10 03:06:51 router1 /kernel: %KERN-2-CPU: Pentium II/Pentium II Xeon/Celer
 on (331.71-MHz 686-class CPU)
 Jun 10 03:06:51 router1 /kernel: %KERN-2-DEVFS: ready for devices
 Jun 10 03:06:51 router1 /kernel: %KERN-2-DEVFS: ready to run
 Jun 10 03:07:10 router1 snmpd[2722]: %DAEMON-2-SNMPD_TRAP_COLD_START: trap_gen
 erate_cold: SNMP trap: cold start

The message string always reports the original, local facility. If a message belongs to a JUNOS-
specific facility, the JUNOS system logging utility still uses an alternate facility for the message itself
when directing messages to a remote machine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.4. Changing the Size of a Logging File

Problem

You need to change the size of your logfiles.

Solution

You can change the default size of all logfiles with the following command:

 [edit system]
 aviva@router1# set syslog archive size 256k

You can also change the size of an individual logfile:

 [edit system]
 aviva@router1# set syslog log file messages archive size 512k

Discussion

The default maximum size of logging files is 128 KB. You might want to increase the maximum if the
files are filling up too quickly, and you might want to make the files smaller if you are running out of
hard disk space on the router. All JUNOS logging files are the same size. The first command in this
recipe shows how to change the default file size for all syslog files, here changing it to 256 KB. The
second command changes the file size just for the messages logging file.

Depending on how much system logging information you are collecting and what errors and problems
might be occurring on the router, a logging file can reach its maximum size quickly, in just a few
hours, or over the course of several days or weeks. Instead of discarding the oldest information, the
JUNOS software renames the full file and compresses it, and continues collecting new logging
information in the original, now empty file. For the messages file we created, when it fills up, it is
renamed to messages.0.gz. When the messages file fills up a second time, messages.0.gz is renamed
to messages.1.gz and the new file is compressed and renamed to messages.0.gz. This continues until
there are 10 files (the default value):

 aviva@router1> show log messages?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Possible completions:
 <filename> Name of log file
 messages Size: 59682, Last changed: Mar 09 15:13:53
 messages.0.gz Size: 8886, Last changed: Mar 03 04:00:00
 messages.1.gz Size: 7820, Last changed: Feb 22 12:00:00
 messages.10.gz Size: 7834, Last changed: Feb 10 04:00:00
 messages.2.gz Size: 9189, Last changed: Feb 18 04:00:00
 messages.3.gz Size: 7115, Last changed: Feb 17 21:00:01
 messages.4.gz Size: 7191, Last changed: Feb 17 09:00:00
 messages.5.gz Size: 7579, Last changed: Feb 16 22:00:00
 messages.6.gz Size: 7241, Last changed: Feb 16 10:00:01
 messages.7.gz Size: 9059, Last changed: Feb 15 23:00:01
 messages.8.gz Size: 17682, Last changed: Feb 15 11:00:01
 messages.9.gz Size: 14807, Last changed: Feb 15 04:00:01

After the tenth file, the file contents are overwritten. If you want to save the older contents of the
logging message files, you can increase the number of files that the software saves. When you
change the number of logging files, it affects all the logging files maintained by the router. You can't
change this value for an individual logging file.

 [edit system]
 aviva@router1# set syslog archive file 20

Keep an eye on hard disk usage to make sure there is enough storage for all logfiles. The logfiles are
in the /var/log directory, which is mounted on the /var partition:

 aviva@router1> show system storage | match ad
 Filesystem Size Used Avail Capacity Mounted on
 /dev/ad0s1a 77M 39M 32M 55% /
 /dev/ad0s1e 12M 16K 11M 0% /config
 /dev/ad1s1f 9.4G 1.2G 7.4G 14% /var

When space gets low, clear or delete any old or unnecessary logfiles or move them to a file server.

If you are logging to a remote server and are running out of disk space on the server, either change
how many messages you log to the remote server by changing the facilities or levels you log to the
remote server, or reconfigure the remote server to roll over its logfiles faster.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.5. Clearing the Router's Logfiles

Problem

You want to delete the contents of the router's logfiles.

Solution

Use the clear log command to delete the contents of a logging file:

 aviva@router1> clear log messages

Discussion

Logging files fill up with messages very quickly, and if you are trying to debug a recent problem, you
may be overwhelmed with the number of older messages. This command removes the messages
from a file:

 aviva@router1> clear log messages
 aviva@router1> show log mes?
 Possible completions:
 <filename> Name of log file
 messages Size: 59, Last changed: Mar 09 15:24:43
 messages.0.gz Size: 8886, Last changed: Mar 03 04:00:00
 messages.1.gz Size: 7820, Last changed: Feb 22 12:00:00
 messages.10.gz Size: 7834, Last changed: Feb 10 04:00:00
 messages.2.gz Size: 9189, Last changed: Feb 18 04:00:00
 messages.3.gz Size: 7115, Last changed: Feb 17 21:00:01
 messages.4.gz Size: 7191, Last changed: Feb 17 09:00:00
 messages.5.gz Size: 7579, Last changed: Feb 16 22:00:00
 messages.6.gz Size: 7241, Last changed: Feb 16 10:00:01
 messages.7.gz Size: 9059, Last changed: Feb 15 23:00:01
 messages.8.gz Size: 17682, Last changed: Feb 15 11:00:01
 messages.9.gz Size: 14807, Last changed: Feb 15 04:00:01
 aviva@router1> show log messages
 Mar 9 15:24:43 router1 clear-log[29140]: logfile cleared

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To free up disk space, you can also delete logfiles that you are no longer using (for example, if files
are left over from a previous debugging operation) or files that you no longer need. Here, we logged
RIP protocols operations a while ago to debug a problem and now want to delete those logfiles:

 aviva@router1> file list detail /var/log/rip*
 -rw-r----- 1 root 1689 Feb 28 10:05 /var/log/rip-update-log
 -rw-r----- 1 root 7610 Feb 28 10:05 /var/log/rip-update-log.0.gz
 -rw-r----- 1 root 7286 Feb 28 09:39 /var/log/rip-update-log.1.gz
 -rw-r----- 1 root 7427 Feb 28 09:15 /var/log/rip-update-log.2.gz
 -rw-r----- 1 root 7334 Feb 28 08:49 /var/log/rip-update-log.3.gz
 -rw-r----- 1 root 7316 Feb 28 08:25 /var/log/rip-update-log.4.gz
 -rw-r----- 1 root 7382 Feb 28 08:01 /var/log/rip-update-log.5.gz
 -rw-r----- 1 root 7380 Feb 28 07:37 /var/log/rip-update-log.6.gz
 -rw-r----- 1 root 7243 Feb 28 07:12 /var/log/rip-update-log.7.gz
 -rw-r----- 1 root 7346 Feb 28 06:48 /var/log/rip-update-log.8.gz
 total 10
 aviva@router1> file delete /var/log/rip*
 aviva@router1> file list /var/log/rip*
 /var/log/rip*: No such file or directory

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.6. Sending Log Messages to Your Screen

Problem

You log in to the router to try to track a serious problem that is currently happening, and you want to
see logging messages as they are being generated.

Solution

You can use the monitor command to temporarily see logging messages as they are occurring:

 aviva@router1>
monitor start messages
 aviva@router1>
 *** messages ***
 Apr 4 22:00:00 router1 syslogd: %SYSLOG-6: restart
 *** 'messages' has been deleted ***
 *** 'messages' has been created ***
 *** messages ***
 Apr 4 22:00:00 router1 newsyslog[4939]: logfile turned over

To see the messages for a longer period of time, you can configure the router to display them on
your screen:

 [edit]
 aviva@router1# edit system syslog user aviva

 [edit system syslog user aviva]
 aviva@router1# set any critical

Discussion

An easy way to see logging messages as they are occurring without modifying the router's
configuration is to use the monitor start command. Include the name of one of the system logging
files that you have already configured. This operation is similar to the Unix tail -f command.

When you are done, turn off the display:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1> monitor stop

If you want to see the logging messages over a longer period of time, or always want a particular
person to watch logging messages when they are logged in to the router, add that information to the
router's configuration. With the configuration shown above, if the user aviva is logged in to the
router, she will see any critical and more serious messages on her terminal screen as soon as the
router generates them:

 aviva@router1> Mar 18 11:12:30 router1 chassisd[2800]: %DAEMON-2-CHASSISD_SNMP_
 TRAP10: SNMP trap generated: redundancy switchover (jnxRedundancyContentsIndex 6,
 jnxRedundancyL1Index 2, jnxRedundancyL2Index 0, jnxRedundancyL3Index 0,
 jnxRedundancyDescr SSB 1, jnxRedundancyConfig 3, jnxRedundancyState 2,
 jnxRedundancySwitchoverCount 2, jnxRedundancySwitchoverTime 5611,
 jnxRedundancySwitchoverReason 4)

If a number of people are trying to track down a problem on the router, you can have them all
receive logging messages on their screens:

 [edit system syslog]
 aviva@router1# set system syslog user * any critical

Or, if you are logged in through the console, you can see the logging messages on the console:

 [edit system syslog]
 aviva@router1# set system syslog console any critical

To turn off this logging, you need to remove or deactivate the statements in the configuration:

 [edit]
 aviva@router1# deactivate system syslog user aviva

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.7. Sending Logging Messages to a Log Server

Problem

You want to collect and save system logging messages over long periods of time, but you don't want to
constantly manage the disk space availability on your routers.

Solution

You can set up a log server on your network that has many gigabytes of storage space and then
redirect the router's logging messages to that server.

 [edit system syslog]
 aviva@router1# set host 172.17.12.30 any info
 aviva@router1# set host 172.17.12.30 explicit-priority

Discussion

This configuration redirects all logging messages to the file server 172.17.12.30 . You can also specify
the hostname instead of the IP address. The file server must be running a standard syslogd utility. You
find the system logging messages in the /var/log/messages file on the server, unless the server has
been configured to save them some-place else:

 aviva-server1%: tail /var/log/messages
 Mar 23 09:27:29 server1 /kernel: linux: syscall mmap2 is obsoleted or not implemented
 (pid=12624)
 %INTERACT-5-UI_DBASE_LOGIN_EVENT: User 'aviva' entering configuration mode
 Mar 23 17:48:40 router1-fxp0.mycompany mgd[4098]: %INTERACT-5-UI_COMMIT: User 'aviva'
 performed commit: no comment
 Mar 23 17:48:44 router1-fxp0.mycompany xntpd[4860]: %NTP-5: ntpd 4.0.99b Sat Mar 12
 07:43:39 GMT 2005 (1)
 Mar 23 17:48:44 router1-fxp0.mycompany xntpd[4860]: %NTP-5: using kernel phase-lock
 loop 2001
 Mar 23 17:48:44 router1-fxp0.mycompany xntpd[4860]: %NTP-5: using kernel phase-lock
 loop 2041
 Mar 23 17:48:45 router1-fxp0.mycompany mgd[4098]: %INTERACT-5-UI_DBASE_LOGOUT_EVENT:
 User 'aviva' exiting configuration mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The output shows both the server's and the router's logging messages intermixed in the logging file.
You can identify the messages from the router because the field after the timestamp identifies the
router by IP address and router port or, if the server can resolve the IP address, by its DNS name. The
router messages in this output show router1-fxp0.mycompany . The router name is router1 , and the
messages were sent to the log server over port (or interface) fxp0 , which is the router's out-of-band
management interface. The JUNOS software has a tendency to send logging messages out the
interface with the shortest path to the syslog server. This can cause all sorts of problems, depending
on how your log server and firewall filters are set up. To circumvent these problems, specifically include
the interface from which to send the messages:

 [edit system syslog]
 aviva@router1# set source-address 192.168.15.42/32

This command sets the messages to go out 192.168.15.42 , which is the router's loopback address.
You normally use the router's loopback address when sending system logging messages, but you can
use any interface dedicated to management. With this configuration, logging messages from the router
will include the resolved hostname of the IP address for lo0 (for example, lo.router1.mycompany.com)
rather than showing router1-fxp0.mycompany .

Sometimes you want to have more information to identify the source of the message than just the
router name. You can specify a text string that is also included in the logging message:

 [edit system syslog]
 aviva@router1# set host 172.17.12.30 log-prefix M20-JUNOS-cookbook

The messages from your router now contain this string:

 Mar 23 12:01:57 server1 named[45618]: zoneref: Masters for slave zone "mycompany.com"
 REFUSED transfer
 Mar 23 20:15:46 router1-fxp0.mycompany M20-JUNOS-cookbook: xntpd[5633]: %NTP-5: ntpd
 4.0.99b Sat Mar 12 07:43:39 GMT 2005 (1)

How you specify the router identifier string is a little bit different from how you specify other strings in
JUNOS statements. You can use all alphanumeric and special characters except equals signs and
colons, but you cannot include spaces, even if you enclose them in quotation marks.

The syslog utility running on your server understands just the standard syslog message facilities. Many
of the JUNOS system logging facilities map to the standard syslog ones, but some are JUNOS specific.
For example, the JUNOS ftp facility maps to LOG_FTP and kernel maps to LOG_KERNEL , but INTERACT
and PFE don't map to anything in syslog . By default, the JUNOS software maps the facilities to a
syslog alternate facility. Just as in the Unix syslog utility, the JUNOS software has eight alternate
facilities, local0 through local7 . Table 5-3 shows the default mappings of the JUNOS-specific facilities
to alternate facilities.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 5-3. Mappings for JUNOS-specific system logging facilities

JUNOS facility syslogd alternate facility

change-log local6

conflict-log local5

firewall local3

interactive-commands local7

pfe local4

To have the server process messages from the JUNOS-specific logging facility, you direct messages
having these alternate facilities to a file on the server. On a FreeBSD system, you define this mapping
in the /etc/syslog.conf file. To place the interactive messages in a logging file, you could include the
following line in the /etc/syslog.conf file:

 local7.* /var/log/router-command-messages

When you are collecting logs from a number of routers on the same server, the server cannot
distinguish among the different routers and places all messages that have the same facility in the same
file. This can get rather messy when you are trying to sort out which messages came from which
routers, so you should send each router's messages to its own file. To set this up on the router, choose
an alternate facility:

 [edit system syslog]
 aviva@router1# set host 172.17.12.30 facility-override local0

This command causes all messages sent to the remote host to be flagged with the standard local0
facility. On the server, you map to a file in the /etc/syslog.conf file:

 local0.* /var/log/M20-JUNOS-cookbook-messages

A check of the file shows the system log messages from the router:

 aviva-server1%: tail -4 M20-JUNOS-cookbook-messages
 Mar 24 00:45:40 <local0.info> router1-fxp0.mycompany M20-JUNOS-cookbook: mgd[5257]:
 %INTERACT-6-UI_CMDLINE_READ_LINE: User 'aviva', command 'edit system syslog '
 Mar 24 01:00:00 <local0.info> router1-fxp0.mycompany M20-JUNOS-cookbook: CRON[8784]:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 %CRON-6: (root) CMD (newsyslog)
 Mar 24 01:01:00 <local0.info> router1-fxp0.mycompany M20-JUNOS-cookbook: CRON[8787]:
 %CRON-6: (root) CMD (adjkerntz -a)
 Mar 24 01:08:04 <local0.info> router1-fxp0.mycompany M20-JUNOS-cookbook: mgd[5257]:
 %INTERACT-6-UI_CMDLINE_READ_LINE: User 'aviva', command 'edit host server1 '

You can run system logging management software on the central log server to help analyze the
collected log messages. One widely used product is syslog-ng
(http://www.balabit.com/products/syslog_ng), which filters logging messages based on source IP
address and separates messages from different sources into different files instead of placing them into
one file. This is particularly useful for network operators who aggregate messages from several
devices. Another widely used tool is swatch (simple watcher; http://swatch.sourceforge.net), which
actively scans logfiles entries as soon as syslogd receives them and reports what is happening in real
time. swatch can also take action when it encounters certain log messages.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.8. Saving Logging Messages to the Other Routing
Engine

Problem

Your router has a second Routing Engine for redundancy, but the router runs fine off the primary
Routing Engine and never fails over to the second one. You want to take advantage of the storage
space available on the second Routing Engine's hard disk to save some of your logging messages.

Solution

Redirect the logging messages to the other Routing Engine:

 [edit system syslog]
 aviva@router1# set host other-routing-engine authorization notice

Discussion

If you always run your router off the primary Routing Engine (RE0), there is likely a lot of available
hard disk space on the second Routing Engine's hard disk that you can use to store system logfiles.
Here we can see that there's almost nothing on RE1's hard disk (/dev/ad1s1f , mounted on /var):

 aviva@router1a> show system storage | except /dev/vn
 Filesystem Size Used Avail Capacity Mounted on
 /dev/ad0s1a 77M 37M 35M 51% /
 devfs 16K 16K 0B 100% /dev/
 mfs:172 1.5G 4.0K 1.3G 0% /tmp
 /dev/ad0s1e 12M 9.0K 11M 0% /config
 procfs 4.0K 4.0K 0B 100% /proc
 /dev/ad1s1f 17G 622M 15G 4% /var

The messages you save to RE1 are placed in the file /var/log/messages and include the string re0 after
the timestamp and router name to distinguish those messages that originated from RE0 from the
messages from RE1:

 Apr 29 21:39:09 router1a rshd[3811]: root@re0 as root: cmd='mv /var/db/dcd.snmp_ix+
 /var/db/dcd.snmp_ix'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Apr 29 22:30:14 router1a login: LOGIN_INFORMATION: User aviva logged in from host
 re0 on device ttyp0
 Apr 29 22:38:08 router1a login: LOGIN_INFORMATION: User aviva logged in from host
 re0 on device ttyp0
 Apr 29 22:51:51 router1a re0 init: ntp (PID 4752) exit on SIGHUP, will be restarted
 to get the new config
 Apr 29 22:51:51 router1a re0 init: ntp (PID 4977) started
 Apr 29 22:51:51 router1a re0 xntpd[4977]: ntpd 4.1.0-a Wed Apr 27 07:11:10 GMT 2005
 (1)
 Apr 29 22:51:51 router1a re0 xntpd[4977]: kernel time discipline status 2040
 Apr 29 22:52:13 router1a rshd[3829]: root@re0 as root: cmd='rcp -T -t /var/db/dcd.
 snmp_ix+'
 Apr 29 22:51:51 router1a re0 mgd[4791]: UI_DBASE_LOGOUT_EVENT: User 'aviva' exiting
 configuration mode
 Apr 29 22:52:14 router1 rshd[3832]: root@re0 as root: cmd='mv /var/db/dcd.snmp_ix+ /
 var/db/dcd.snmp_ix'
 Apr 29 22:52:22 router1a login: LOGIN_INFORMATION: User aviva logged in from host re0
 on device ttyp0

To have RE1 send its log messages to files on RE0, you configure this in the configuration file on RE1:

 aviva@router1> request routing-engine login re1
 aviva@router1a> configure
 [edit]
 aviva@router1a# set system syslog host other-routing-engine authorization notice
 aviva@router1a# commit and-quit

Because this is the same configuration as on RE0, you can also configure both Routing Engines from
RE0:

 [edit system syslog]
 aviva@router1# set host other-routing-engine authorization notice
 aviva@router1# commit synchronize

Then check for the messages on RE0:

 aviva@router1a> exit
 aviva@router1> show log messages | last
 Apr 29 22:55:16 router xntpd[4977]: kernel time discipline status change 2041
 Apr 29 22:56:47 router re1 mgd[3841]: UI_DBASE_LOGOUT_EVENT: User 'aviva' exiting
 configuration mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 1.30

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.9. Turning Off Logging

Problem

You no longer want to record system log messages in a file.

Solution

To stop recording system log messages, mark the configuration statements so that they do not take
effect:

 [edit system syslog]
 aviva@router1# deactivate system syslog file messages
 aviva@router1# commit

Discussion

The best way to stop recording system log messages to a particular logging file is to deactivate that
portion of the configuration. Doing this leaves the configuration statements in the configuration but
marks them as inactive:

 [edit system syslog]
 aviva@router1# show
 inactive: file messages {
 any notice;
 archive world-readable;
 explicit-priority;
 }

If you type the show command one level lower in the configuration hierarchy, you see an even longer
reminder that this portion of the configuration has been deactivated:

 [edit system syslog file messages]
 aviva@router1# show
 ##

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ## inactive: file messages
 ##

Another way to turn off logging is to delete the configuration statements from the configuration:

 [edit system syslog]
 aviva@router1# delete system syslog file messages
 aviva@router1# commit

The advantage of deactivating rather than deleting is that you can still see the configuration
statements. If the problem you were investigating recurs later, you can remove the inactive: tag to
start collecting those system log messages again:

 [edit system syslog]
 aviva@router1# activate system syslog file messages
 aviva@router1# commit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.10. Turning On Basic Tracing

Problem

The system logging messages give you high-level information about the processes and events that
are occurring on the router, but you need specific information about the operation of a routing
protocol.

Solution

Use tracing to get more details about the operations of your routing protocols. You can start by
collecting global information about all the routing operations occurring on your router:

 [edit routing-options]
 aviva@router1# set traceoptions file traceoptions-routing-all world-readable
 aviva@router1# set traceoptions flag all

Discussion

Basic tracing lets you collect information about all the routing protocols that are actively running on
your router. Configuring tracing is almost the same as configuring system logging. You specify the file
to which you want to direct information, and you decide whether only the root user or all users can
read the file. Here, the filename is traceoptions-routing-all and it is readable by everyone.

This recipe uses the default trace file size of 1 MB and the default of 10 trace files. The JUNOS
software handles the tracing files the same way as logging files. When the file reaches its maximum
size, it is renamed with a .0 extension. When the file again fills up, the .0 file is renamed with a .1
extension, the newly filled file is renamed with a .0 extension, and so on. Where there are 10 files,
the files start getting overwritten.

Use the following commands to change the default file size and number of files:

 [edit routing-options]
 aviva@router1# set traceoptions file size 10M
 aviva@router1# set traceoptions file files 5

The traceoption flags indicate the information to monitor. This recipe traces all routing protocol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

traffic.

For a router running RIP, IS-IS, and MPLS, you would see messages like this in the tracing file:

 Apr 5 16:09:43 mpls LSP update start
 Apr 5 16:09:43 mpls LSP update complete
 Apr 5 16:12:23 task_timer_dispatch: returned from IS-IS I/O./var/run/ppmd_control_
 PPM Keepalive, rescheduled in 40
 Apr 5 16:12:27 task_receive_packet: task RIPv2 I/O.0.0.0.0+520 from 192.168.220
 .18+520 to 224.0.0.9 if t1-0/1/0:0.0 (ix 70) msgix 70 socket 14 length 164

All the messages are timestamped and indicate the protocol or tasks that generated them.

When debugging global routing operations, one or more of the following can be traced:

 [edit routing-options]
 aviva@router1# show traceoptions flag ?
 Possible completions:
 all Trace everything
 config-internal Trace configuration internals
 general Trace general events
 normal Trace normal events
 parse Trace configuration parsing
 policy Trace policy processing
 regex-parse Trace regular-expression parsing
 route Trace routing information
 state Trace state transitions
 task Trace routing protocol task processing
 timer Trace routing protocol timer processing

Generally, when you are trying to debug a problem with a routing protocol, you turn on tracing for
that protocol only. You can do this for BGP, DVMRP, IGMP, IS-IS, LDP, MPLS, MSDP, OSPF, PGM, PIM,
RIP, RIPng, RSVP, SNMP, and VPLS. Throughout this book, in the appropriate protocol chapters, we
show how to use tracing to debug problems. You can also use traceoptions to debug interface
problems. Tracing all routing operations is not recommended on a busy router because the tracing
and routing protocol operations use the same CPU and the processing time required for tracing can
slow down the protocol processing. In this case, you should consider tracing a smaller scope of
operations, or even not using tracing at all.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.11. Monitoring Interface Traffic

Problem

You want to look at the headers of packets transiting an interface to debug protocol operation.

Solution

Use the monitor traffic command:

 aviva@RouterG> monitor traffic interface fe-1/0/1 size 1492 detail

Discussion

The monitor traffic command is equivalent to the Unix tcpdump command and is useful for watching
protocol traffic on an interface when attempting to debug a problem. This recipe watches all traffic on
interface fe-1/0/1, which is an interface in an OSPF backbone area (area 0.0.0.0). The default
packet size for the monitor traffic command is 68 bytes, which captures the beginning of packet
headers, but not much more. We specify a packet size of 1,492 bytes, which is the maximum OSPF
packet size. Here's what the output looks like:

 Listening on fe-1/0/1, capture size 1492 bytes
 05:14:46.915999 In IP (tos 0xc0, ttl 1, id 2843, offset 0, flags [none], prot
 o: OSPF (89), length: 68) 10.0.0.2 > OSPF-ALL.MCAST.NET: OSPFv2, Hello (1), leng
 th: 48
 Router-ID: 192.168.17.1, Backbone Area, Authentication Type: none (0)
 Options: [External]
 Hello Timer: 10s, Dead Timer 40s, Mask: 255.255.255.0, Priority: 128
 Designated Router 10.0.0.2, Backup Designated Router 10.0.0.1
 Neighbor List:
 192.168.19.1
 05:14:50.715849 Out IP (tos 0xc0, ttl 1, id 63978, offset 0, flags [none], pro
 to: OSPF (89), length: 68) 10.0.0.1 > OSPF-ALL.MCAST.NET: OSPFv2, Hello (1), len
 gth: 48
 Router-ID: 192.168.19.1, Backbone Area, Authentication Type: none (0)
 Options: [External]
 Hello Timer: 10s, Dead Timer 40s, Mask: 255.255.255.0, Priority: 128
 Designated Router 10.0.0.2, Backup Designated Router 10.0.0.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Neighbor List:
 192.168.17.1
 …
 ^C
 6 packets received by filter
 0 packets dropped by kernel

Type Ctrl-c to end the monitoring.

One disadvantage of monitoring interface traffic is that it uses a lot of the Routing Engine's CPU and
can degrade performance on the router.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. NTP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

Having the correct time and time zone on your routers and having the time be synchronized across
your network is useful to accurately track events that occur on the router and network and to
correlate events that occur on different routers. The time and date are used to mark when the files
stored on the router, including the active and previous configuration files, the system logging files,
and the tracing files, were created or last updated. The messages in JUNOS logging and tracing files
are timestamped to mark when events, errors, and problems occurred. All these dates and times are
based on the router's time. A number of JUNOS commands, including the ones you use to check the
status and uptime of the router, report the current time and the time at which events occurred.

On JUNOS routers, you can configure the time manually by simply setting it. This is generally
sufficient for smaller or less complex networks. However, for larger or more global networks, you
should use Network Time Protocol (NTP) to set the time for you. NTP is an IETF standard described
in RFC 1305 that synchronizes time across computers and routers on the Internet. The router
synchronizes the system time with an NTP server and periodically accesses the server to maintain the
correct time. NTP uses a hierarchical system of clock strata to derive time. The top-level stratum 1
clock, also called the primary NTP server, is a computer that is connected to a high-precision
accurate clock, such as an atomic clock, or to a radio clock, such as a GPS, Loran, or WWVB, which is
the NIST time signal radio station. NTP stratum 2 systems derive their time from a stratum 1 system
and are one hop away from a stratum 1 system; NTP stratum 3 systems derive their time from a
stratum 2 clock, and are one hop from the stratum 2 machine and two hops from the stratum 1
machine. Note that these hops are NTP hops, not network hops. The systems can be any number of
network hops apart. NTP can have up to 16 strata.

You should not confuse the NTP stratum with the telco concept of clocking stratum, which describes
frequency accuracy.

The JUNOS implementation of NTP is based on the FreeBSD ntpd utility.

For more information about NTP, see http://www.ntp.org, the web site of the NTP research and
development project, as well as the documentation page of the NTP Public Services Project
(http://ntp.isc.org/bin/view/Main/DocumentationIndex).

http://www.ntp.org
http://ntp.isc.org/bin/view/Main/DocumentationIndex
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.1. Setting the Date and Time on the Router
Manually

Problem

You want to manually set the date and the local time on the router.

Solution

You set the date and time from operational mode:

 aviva@router1> set date 200503171626
 Thu Mar 17 16:26:00 UTC 2005

Discussion

On a relatively simple network, you can manually set the date and the local time on the routers in
your network so you can keep an accurate record of all events that occur on the routers.

To set the local time, use the set date command, which is an operational mode command. This
example sets the year, month, date, hour, and minute. For more accuracy, you can include the
seconds:

 aviva@router1> set date 200503151049.30

After you have set the date and time, the router uses these values in any commands that include the
date, in log and tracing files, and in the filesystems when marking files with the date and time. Use
the show system uptime command to find out the current time. This command is similar to the Unix
uptime utility.

 aviva@router1> show system uptime
 Current time: 2005-03-15 19:05:08 UTC
 System booted: 2005-03-15 11:09:57 UTC (07:55:11 ago)
 Protocols started: 2005-03-15 11:11:31 UTC (07:53:37 ago)
 Last configured: 2005-03-15 19:05:04 UTC (00:00:04 ago) by aviva

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 7:05PM up 7:55, 1 user, load averages: 0.07, 0.02, 0.01

This command also shows other information about the router, including when it was last booted (the
first line) and how long it has been up (the last line), when the protocol software started, and when
the configuration was last changed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.2. Setting the Time Zone

Problem

You want to set the time zone.

Solution

Configure the local time zone. You can do this in a number of different styles:

 [edit system]
 aviva@router1#
set time-zone UTC-8

 [edit system]
 aviva@router1# set time-zone PST8PDT

 [edit system]
 aviva@router1# set time-zone America/Los_Angeles

Discussion

When you set the time on the router, the default time zone is UTC (Coordinated Universal Time). You
might be more familiar with UTC's old name, GMT, or Greenwich Mean Time, or with the term zulu,
which is the U.S. military term for the time at the prime meridian, which runs through Greenwich,
England. If you have a global organization and want to run all the routers on your time in a common
global time zone, just leave the default time zone unchanged. You don't have to configure anything
to make this happen.

If you want to change the time zone, use the time-zone statement in configuration mode. You can't
set the local router time and the time zone at the same time because you set the time with an
operational mode command, and you set the time zone in configuration mode.

The JUNOS time-zone statement is based on the FreeBSD time zone function, which is controlled with
the FreeBSD tzsetup utility. The JUNOS time zone list is the same as the FreeBSD list, which you can
find in the file /usr/share/zoneinfo/zone.tab.

You can specify the time zone by hour-offset from UTC, by common time zone three-letter
abbreviation, or by continent/city pairings. There are several dozen different zone names; type set
time-zone ? to get the entire list. This recipe shows three ways to set the local time in California.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To verify that the time zone change has taken effect, use the show system uptime command:

 aviva@router1> show system uptime
 Current time: 2005-03-15 11:10:22 PST
 System booted: 2005-03-15 03:09:57 PST (08:00:25 ago)
 Protocols started: 2005-03-15 03:11:31 PST (07:58:51 ago)
 Last configured: 2005-03-15 11:10:19 PST (00:00:03 ago) by aviva
 11:10AM up 8 hrs, 1 user, load averages: 0.07, 0.02, 0.01

You can see that the time zone has changed to PST, and the current hour has changed from 19:00
UTC to 11:00 Pacific Time.

While consistent time zones aren't really necessary, you will find it helpful if all the routers on your
network use the same time zone, whether it's UTC or the local time zone. All events recorded in
system logging and tracing files that you keep on the router all have a timestamp associated with
them that consists of the date and the time but gives no indication of the time zone. If you are trying
correlate events on different routers, it will be much easier if the routers are in the same time zone.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.3. Synchronizing Time When the Router Boots

Problem

You want the router to synchronize its time when it boots.

Solution

Have the router get the time when it boots:

 [edit system]
 aviva@router1#
set ntp boot-server 172.10.23.196

Discussion

The easiest way to have NTP set the time on your router is to get the time when the router boots.
You include the ntp boot-server statement, and you set the address of an NTP server. Typically, you
want to have at least one time server on the local networkeither another router or a server of some
kindand you want all the other routers to get their time from this router. If the boot server is another
router, you need to make sure that NTP is running on that router and that it is set up as an NTP peer
so it can send its time to other routers.

A good practice is to configure a boot server on any router that is running NTP in case the time is
wildly off when the router starts or has drifted beyond the point where it can be periodically
sychnronized by a boot server (see Recipe 6.4); otherwise, the time is never set. The time might be
off by a lot with a new router or Routing Engine. Once the time is set, the Routing Engine's battery-
powered time-of-day clock keeps running even with the power off, so it seeds the time to within a
few seconds when the router boots. Another common reason for the time to be wildly off is if you
manually set the time without setting the time zone first, so the clock might be off by some number
of hours.

The NTP boot server must be reachable when the router boots, without any routing protocols running
and with any of the interfaces being up. This means it must be directly reachable from the
management Ethernet interface, fxp0. When the Routing Engine boots, the ntpdate utility runs early
in the boot process, before chassisd and rpd are up. The only thing that is up and configured at that
point is fxp0.

With this method of setting up NTP, the router gets the time once, when it boots, and sets its clock
based on the time it receives from the server. While you could choose this as the only method for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getting accurate time on the router, the clock time can drift over long periods, so it is a better idea to
get the time when the router boots and to also synchronize the time periodically with time servers to
slowly correct any drifting.

If the NTP boot server is another router, you cannot boot both routers at once, for instance, if you
are power-cycling all the routers in your POP. You must start the boot server first.

See Also

Recipe 6.4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.4. Synchronizing Time Periodically

Problem

You want to periodically resynchronize the time on the router to limit the effects of clock drift.

Solution

Configure the router to periodically get time updates from an NTP server:

 [edit system]
 aviva@router1#
set ntp server 192.168.27.46
 aviva@router1# show
 system {
 ntp {
 server 192.168.27.46;
 }
 }

Discussion

Setting the router's time by configuring a boot server provides a one-time method for the router to
get time when it boots. However, once a router is up and stable, you will almost never have to reboot
it, so if its time starts to drift from the time on your other network devices, you have to go into the
router and manually reconfigure the time. To automatically keep the router in sync with the rest of
the network, you can have it periodically get time updates from an NTP server. To do this, place the
JUNOS NTP software into NTP server mode with the set ntp server command, specifying the IP
address of the NTP server. The NTP server will then periodically send the correct time to the router,
which then adjusts its system clock.

From a network-wide perspective, you generally want to have a local NTP server that is your main
time server and that stays synchronized with a stratum 1 clock. You then have a number of
redundant NTP peers that keep their time synchronized with this local NTP server. The remainder of
the local routers on your network poll the NTP peers to get accurate time. The local routers that
receive time from an NTP peer run in what is called NTP server mode. This terminology is a bit
confusing, because the local router is passively accepting time from the remote NTP server. The term
server mode applies to the NTP protocol software, which is running in server mode, not to the router,
which is actually running as an NTP client. When the NTP software is in server mode, the clock on the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

router can be synchronized to a remote NTP server, but a remote server can never be synchronized
to the local clock. Thus the time sharing is an asymmetric relationship; server mode is also called
asymmetric mode.

For the routers on your network that are the NTP time servers, you configure them to run in NTP
peer mode so that they actively keep their clocks synchronized. Peer mode is also called active
symmetric mode, because the local and remote routers are willing to synchronize time with each
other. If there is any time drift, the NTP synchronization process slowly corrects the routers' clocks so
that they match up. To configure a router to run NTP peer mode, specify the address of the NTP
peer:

 [edit system]
 aviva@router1# set ntp peer 192.168.1.16

If your network has multiple NTP peers, include additional addresses. You need to configure all the
peer routers to operate in NTP peer mode.

In larger networks, you might have multiple NTP servers for redundancy to ensure that time in
properly synchronized across the network even when a server or a part of the network goes down.
To set up a backup NTP server for a router operating in NTP server mode, configure the address of
the second server. To bias the selection toward a particular server, mark it as preferred:

 [edit system]
 aviva@router1# set ntp server 192.168.27.46 prefer
 aviva@router1# set ntp server 172.10.23.196

If you have multiple NTP servers, configure them in the same way:

 [edit system]
 aviva@router1# set ntp peer 192.168.1.16 prefer
 aviva@router1# set ntp peer 172.10.23.196

When you configure multiple servers and peers, an NTP relationship is established with all of them.
The candidates are sorted by NTP stratum (the smallest stratum is always selected). If multiple
candidates are at the smallest stratum, NTP chooses based on perceived accuracy, round-trip time,
and jitter. The prefer keyword weights the selection, but does not guarantee that the said system
will be selected. It is even possible for multiple systems to be selected and an integration of their
times to be performed.

You can also have all the routers synchronize time (chime) with each other. This is only practical for
relatively small networks of, say, less than 50 routers. (For larger networks, you may want to have
all the routers in a region or POP chime with each other.) You still want to have some stratum 1
clocks someplace in the mix. This arrangement allows the entire network to keep reasonable time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

even if some or all of the stratum 1 clocks go down for a while.

Note that you can configure both server and peer statements on the same router.

NTP automatic time synchronization works only if the times on the two systems are very close. Very
close means between 128 milliseconds and 128 seconds apart. Time differences less than 128
milliseconds are dealt with by slowly slewing the time (speeding up or slowing down the clock), which
means that the time is always monotonically increasing. Between 128 milliseconds and 128 seconds,
the time is stepped, which means that it may go backward. Above this, the time is not changed at all.
If the time is more than 1,000 seconds off, NTP records a system log message:

 Mar 16 16:41:41 5htp-fxp0 xntpd[28243]: time error 4217 over 1000 seconds; set
 clock manually

If the time is this far off, you need to reset the clock manually:

 aviva@router1# set date ntp

This command uses the NTP servers that you have configured. You do not have to reboot the router
for the new time to take effect.

On an operational note, one system will not synchronize to another that is not itself synchronized.
Because the synchronization process is recursive, there must be an authoritative time source as the
stratum 1 clock or all systems will be free running. An NTP purist will ensure that there are at least
three or, better yet, four, independent sources of time available (traceable to three different stratum
1 servers) because this allows " false tickers" to be detected and discarded. At least two independent
sources are needed for robustness, because if that one stratum 1 server goes down, the entire
synchronization tree will basically come apart and all systems will free run in the mean time.
Normally this isn't too serious, but if the stratum 1 server never comes back, there will be no time
synchronization whatsoever.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.5. Authenticating NTP

Problem

You want to make sure that the router gets time updates only from known and trusted NTP servers.

Solution

Set up NTP authentication:

 [edit system
ntp]
 aviva@router1#
set authentication-key 12 type md5 value $1991poppI
 aviva@router1# set server 172.10.23.196 key 12
 aviva@router1#
set trusted-key 12
 aviva@router1# show
 authentication-key 12 type md5 value "9G4UjHqmfT365TIEhcMW4aZGHmP5Fn/A"; ## SECRET-
 DATA
 server 172.10.23.196 key 12;
SECRET-DATA
 trusted-key 12;

Discussion

By default, your router queries time to whichever NTP servers appear to be most accurate. To ensure
that routers receive time only from known and trusted sources, enable NTP authentication. The JUNOS
implementation of NTP uses MD5 for authentication. You set up one or more trusted keys. Each key is
identified by a number, here 12, and you establish a password for each key in the value option of the
authentication-key statement. We are using a password of $1991poppI . When you configure the NTP
server's address, you also set which NTP key the local router will send in all NTP updates. Finally, you
configure in the trusted-key statement which NTP keys the router accepts so that when it receives NTP
updates, it can authenticate and accept them. You have to configure the same trusted keys and
passwords on all the NTP server and peer routers on your network. Based on the example here, you
need to configure the router 172.10.23.196 to accept trusted key 12 and you need to configure the
same MD5 password ($1991poppI) so that it can exchange NTP updates with your local router.

After you type the plain-text version MD5 password, when you display the configuration, you see the
encrypted version of the password. You can use the encrypted version (the string that starts with 9G
) when you configure the same password on other routers, or you can also use the plain-text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

password. In the configuration, the JUNOS software marks all encrypted information with the string ##
SECRET-DATA . You can use this additional text as a way to hide these portions of the configuration
when you have to share the configuration file with an insecure source or when you want to locate and
remove this information before archiving the configuration in a location that might not be secure.

 aviva@router1> show configuration system ntp | except SECRET-DATA
 server 172.10.23.196;
 trusted-key 123456;

Notice that while the authentication-key statement is not shown at all, the server statement is
shown, but you see only the server's address. The password information is removed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 6.6. Checking NTP Status

Problem

You want to check that NTP is working properly on your network, and you want to check which NTP
peers your router is getting time information from.

Solution

Use the show ntp associations command to verify that NTP is operating correctly:

 aviva@router1> show ntp associations
 remote refid st t when poll reach delay offset
jitter
 ==
 *ntpserver.mynet .
GPS. 1 u 108 256 377 6.915 3.977 0.078

Discussion

You can verify that NTP operation and status from any router on the network. The show ntp
associations command output is the same as that of the FreeBSD ntpqp utility. The first column in
the output, remote, shows the servers and peers that you have configured on the router, either by
name or IP address. The asterisk (*) before the server name indicates that this is the NTP server
that is being used for time synchronization. If you had multiple NTP servers configured, a plus sign
(+) would indicate alternate NTP servers that the router could use for time synchronization.

The second, third, and fourth columnsthe reference ID, stratum, and typeshow that the current
source of the time synchronization is a GPS and that the remote server is a stratum 1 time source
sending in unicast. (The remote server is a directly tied to a GPS receiver, which is an authoritative
source of time. The GPS is effectively a stratum 0 device.) The next fields tell you when the router
last received an NTP message (in seconds), how often the local router polls the NTP server (in
seconds), the status of the NTP reachability register (in octal). The last three fields show specific
information pertaining to the accuracy of clocks (the latest time delay, offset, and jitter), which NTP
peers use to correct their clocks as they attempt to synchronize time.

You can also check the NTP operation and the clock on the local router:

 aviva@router1> show ntp status

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 status=0664 leap_none, sync_ntp, 6 events, event_peer/strat_chg,
 processor="i386", system="JUNOS7.2-20050317.0", leap=00, stratum=2,
 precision=-28, rootdelay=7.058, rootdispersion=11.410, peer=27124,
 refid=ntpserver.mynetwork.com,
 reftime=c5e45c16.17eb399f Thu, Mar 17 2005 19:42:14.093, poll=7,
 clock=c5e45c74.a72fba01 Thu, Mar 17 2005 19:43:48.653, state=4,
 phase=1.340, frequency=75.783, jitter=0.411, stability=0.004

A detailed explanation of all these fields is beyond the scope of this discussion. Most of the variables
are defined in RFC 1305. However, there are a few fields are of general interest. The value sync_ntp
in the first line tells you that this router has synchronized its time with an NTP server. If the output
shows sync_alarm or sync_unspec, it means that the router is not synched. This could mean that it
was more than 128 seconds off and never synched, but assuming that it was synched at least once
since it was manufactured, it more likely means that none of its NTP servers are themselves synched
or they are unreachable. Having multiple stratum 1 servers minimizes the chances of this latter case
happening. If the router's time has drifted more than 128 seconds from the time on the NTP server,
manually reset the time on the router with the set date ntp command.

Another field of interest is stratum. This output shows that the NTP server is a stratum 2 time source,
so it is one hop from a stratum 1 server. The refid field lists the stratum 1 server. If the value in this
field shows 0.0.0.0, it provides another indication that the router's clock is not synchronized with the
NTP server.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Router Interfaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

JUNOS routers have three types of interfaces: network, services, and special interfaces. As you might
expect, network interfaces physically connect to the network and carry network traffic. Services
interfaces manipulate the traffic before transmitting or receiving it, for example, to perform Network
Address Translation (NAT), IPSec functions, or monitoring traffic flows. Special interfaces include two
internal Ethernet management interfaces and the loopback interface, which is not used for
performance monitoring but as a place to define an IP address for the router as a whole. The naming
conventions for the three types of interfaces are the same, and you configure them the same way.

For interfaces to work, you must configure them. Simply installing the hardware in the router is not
sufficient. The router detects that network hardware is present and you can list the hardware and
interfaces with the show chassis hardware and show interfaces terse commands, but they will not
carry traffic. You can also configure interfaces that are not present in the router, which is a handy
feature when you are preparing to receive new hardware or to move a Flexible PIC Concentrator
(FPC) or a Physical Interface Card (PIC) to another slot. When checking the configuration during a
commit operation, MGD, the management process (daemon), checks whether the hardware
corresponding to the configuration is present in the router. If it is, MGD hands that portion of the
configuration over to the proper processes for activation. If the hardware is not present, MGD ignores
that portion of the configuration.

When configuring interfaces on the router, you identify the interface by media type and location in
the router. The media type is a string, typically two letters, that identifies the network device. Table
7-1 lists some of the common interface media names.

Table 7-1. Some interface media names

Interface type Identifier Name

Network at ATM over SONET/SDH

fe Fast Ethernet

ge Gigabit Ethernet

se Serial

so SONET/SDH

t1 T1

Services es Encryption Services

gr Generic Route Encapsulation tunnel interface

mo Monitoring Services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interface type Identifier Name

mt Multicast tunnel interface

sp Services (for ES and AS PICs)

Special lo0 Loopback

fxp0 Out-of-band management

fxp1 Internal management

The location portion of the interface name identifies which slot the FPC is in, which PIC slot on the
FPC the media is installed on, and the specific port on the PIC. Most M-series and T-series routers
have either four or eight FPC slots, and each slot has either two or four PIC locations. On J-series
routers, there can be up to six FPC slots.

To illustrate interface naming, the interface name for the first port of a Fast Ethernet PIC installed on
the FPC in slot 2, in the first PIC position, would be:

 fe-2/0/0

For channelized interfaces, such as T1, the interface name includes the channel number. The name
for the first channel on a T1 interface would be:

 t1-1/1/0:0

When numbering the slots, ports, and channels in an interface name, the first item is 0, not 1. For
routers that have eight FPC slots, the slots are numbered from 0 through 7. Most PICs have four
locations, numbered 0 through 3, and port and channel numbering starts at 0. You can find the FPC
and PIC slot numbers on the router chassis, and the port numbers on the PIC faceplate.

JUNOS interfaces consist of a number of layers that affect how you configure them. Like an onion
with an outer skin and inner layers, the outer skin of the interface is the physical interface, which
generally encompasses the entire physical device. On the physical interface, you set properties that
control the behavior of the device itself. These properties typically correspond to OSI Reference Model
Layer 1 and Layer 2 properties. As examples, Ethernet physical interface properties include the speed
(10 Mbps or 100 Mbps) and half-duplex or full-duplex operation; T1 interface properties include
framing, encoding, loopback, and setting up a Bit Error Rate Test (BERT); and for SONET, Automatic
Protection Switching (APS) is a physical property. You configure the physical properties of an
interface in two places: directly under the name of the interface and in an interface-specific -options
section directly under the name of the interface. So for a Fast Ethernet interface to run at 100 Mbps,
use the set fe-2/0/0 speed 100m command, which in the configuration looks like this:

 [edit]

mt Multicast tunnel interface

sp Services (for ES and AS PICs)

Special lo0 Loopback

fxp0 Out-of-band management

fxp1 Internal management

The location portion of the interface name identifies which slot the FPC is in, which PIC slot on the
FPC the media is installed on, and the specific port on the PIC. Most M-series and T-series routers
have either four or eight FPC slots, and each slot has either two or four PIC locations. On J-series
routers, there can be up to six FPC slots.

To illustrate interface naming, the interface name for the first port of a Fast Ethernet PIC installed on
the FPC in slot 2, in the first PIC position, would be:

 fe-2/0/0

For channelized interfaces, such as T1, the interface name includes the channel number. The name
for the first channel on a T1 interface would be:

 t1-1/1/0:0

When numbering the slots, ports, and channels in an interface name, the first item is 0, not 1. For
routers that have eight FPC slots, the slots are numbered from 0 through 7. Most PICs have four
locations, numbered 0 through 3, and port and channel numbering starts at 0. You can find the FPC
and PIC slot numbers on the router chassis, and the port numbers on the PIC faceplate.

JUNOS interfaces consist of a number of layers that affect how you configure them. Like an onion
with an outer skin and inner layers, the outer skin of the interface is the physical interface, which
generally encompasses the entire physical device. On the physical interface, you set properties that
control the behavior of the device itself. These properties typically correspond to OSI Reference Model
Layer 1 and Layer 2 properties. As examples, Ethernet physical interface properties include the speed
(10 Mbps or 100 Mbps) and half-duplex or full-duplex operation; T1 interface properties include
framing, encoding, loopback, and setting up a Bit Error Rate Test (BERT); and for SONET, Automatic
Protection Switching (APS) is a physical property. You configure the physical properties of an
interface in two places: directly under the name of the interface and in an interface-specific -options
section directly under the name of the interface. So for a Fast Ethernet interface to run at 100 Mbps,
use the set fe-2/0/0 speed 100m command, which in the configuration looks like this:

 [edit]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@
router1# show

interfaces {
 fe-2/0/0 {
 speed 100m; # <--physical property of the interface
 }
 }

You see that the speed statement is directly under the name of the interface. An example of including
the statement in an -options grouping is when setting a SONET interface to run APS. In this case,
you use commands that place statements under the sonet-options hierarchy, as in this example
configuration:

 [edit]
 aviva@t320# show
 interfaces {
 so-3/1/0 {
 sonet-options { # <-- options group of physical interface properties
 aps {
 working-circuit APS-at-my-colo;
 authentication key $1991poPPi;
 }
 }
 }
 }

The next layer of our interface onion is the logical interface (sometimes also referred to as a
subinterface), which is the mechanism that divides a single interface into one or more virtual devices.
Logical interfaces take all the traffic traversing the physical interface and create separate streams or
flows that can have different properties. Virtual device properties include Frame Relay DLCIs and ATM
virtual paths (VPs) and virtual circuits (VCs). For a physical interface to function, you must create at
least one logical interface on it. Each logical interface is identified by a unit statement under each
physical interface and a number that identifies the specific instance. The first logical interface is 0. So,
to configure a Frame Relay DLCI, use the set t1-0/0/3 unit 0 dlci 100 command, which results in
the following configuration:

 [edit]
 aviva@router1# show
 interfaces {
 t1-0/0/3 {
 encapsulation frame-relay; # <-- physical interface property
 unit 0 { # <-- logical interface opener
 dlci 100; # <-- logical interface property
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

When you configure an IGP to run over an interface, the JUNOS software forms IGP adjacencies over
the logical interface.

The third layer of the interface onion is the protocol family, which is where you start tying together
the routing protocols on the routers and the interfaces on which they can run. For IPv4 protocols to
run on an interface, an inet family must be present on the logical interface. Other common families
are inet6, for IPv6 protocols, iso for IS-IS, mpls for MPLS, and vpls for VPLS. Multiple protocol
families can run on a single logical interface. If you do not configure the appropriate family on the
logical interface, the router will not recognize any packets in that protocol family and will discard
them even though you have configured the interface in the routing protocol's configuration.

The final layer is the address, which associates the network address with the protocol family and
controls other address properties. For any protocol family to operate, an address must be configured.
For example, for an IPv4 protocol such as BGP or RIP to work on an interface, you must assign an
IPv4 address for the logical interface's inet family with a command such as set interfaces fe-0/0/0
unit 0 family inet address 10.0.16.1/32. For IS-IS to also run on this logical interface, add the
family iso:

 [edit]
 aviva@router1# show
 interfaces {
 fe-0/0/0 {
 unit 0 {
 family inet { # <-- set the IPv4 protocol family
 address 10.0.16.1/32; # <-- set an IPv4 address
 }
 family iso; # <-- set for IS-IS
 }
 }
 }

This chapter is organized into three groups of recipes. The first group shows how to view interface
status. This is something you do regularly to check on the operation of the router and to troubleshoot
problems with the interfaces themselves or with the protocol software. The second group of recipes
shows how to set various addresses and families on logical interfaces. The final group shows how to
configure and troubleshoot specific network and special interfaces.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.1. Viewing Interface Status

Problem

You want to check the status of an interface.

Solution

Use the show interfaces command to see the status of the interfaces on the router. With no options,
this command shows the status of all interfaces on the router:

 aviva@router1> show interfaces

You can also look at the status for a particular interface:

 aviva@router1> show interfaces fe-0/0/0

If you want shorter summaries of the status, use one of these command versions:

 aviva@router1>
show interfaces brief
 aviva@router1> show interfaces terse

For maximum information for debugging purposes, use one of these commands:

 aviva@router1>
show interfaces detail
 aviva@router1> show interfaces extensive

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because the operation of the router revolves around the network interfaces, you often need to get
information about the interfaces to check status or to troubleshoot a router or network problem. The
basic commands for doing this are variations of the show interfaces command. To just find out what
PICs are installed and which interfaces are configured, use the show interfaces terse command (see
Recipe 7.12). For basic information about the physical and logical interface settings, use the show
interfaces command, or for an abridged view, use the show interfaces brief command. The show
interfaces detail command adds traffic statistics and queue counters, and the show interfaces
extensive command adds alarms, error statistics, and additional counters.

The output of these commands varies depending on the type of interface. However, the general
format of the information is the same for all interfaces, so it's worth examining the output of one so
you can become familiar with what to expect in the output. Here's the information displayed by the
show interfaces command for a Fast Ethernet interface:

 aviva@router1> show interfaces fe-0/0/0
 Physical interface: fe-0/0/0, Enabled, Physical link is Up
 Interface index: 128, SNMP ifIndex: 79
 Description: to nutmeg fe-000
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps 16384
 Link flags : 4
 CoS queues : 4 supported
 Current address: 00:05:85:02:a4:00, Hardware address: 00:05:85:02:a4:00
 Last flapped : 2005-05-12 14:58:08 PDT (05:04:29 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 Active alarms : None
 Active defects : None

 Logical interface fe-0/0/0.0 (Index 66) (SNMP ifIndex 84)
 Flags: SNMP-Traps Encapsulation: ENET2
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.168.220.0/30, Local: 192.168.220.1,
 Broadcast: 192.168.220.3
 Protocol iso, MTU: 1497
 Flags: Is-Primary

Here's the same interface with the show interfaces brief command:

 aviva@router1> show interfaces brief fe-0/0/0
 Physical interface: fe-0/0/0, Enabled, Physical link is Up
 Description: to nutmeg fe-000
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Device flags : Present Running
 Interface flags: SNMP-Traps 16384
 Link flags : 4

 Logical interface fe-0/0/0.0
 Flags: SNMP-Traps Encapsulation: ENET2
 inet 192.168.220.1/30
 iso

The output has two parts. The top part shows information about the physical interface, and the
bottom shows information about the logical interface, including the protocol family and the interface
addresses.

The first line of the output shows the most important information when you are checking interface
status:

 Physical interface: fe-0/0/0, Enabled, Physical link is Up

This line tells whether the interface is operational. Enabled means that the interface has been
configured and is administratively up. The output shows Disabled if it's not. The physical link
(connection) is up, which means that the interface is receiving the correct Layer 1 physical signaling
from the other side of the link, indicating that the interface at the other end of the link is configured
and operational. This line of the output is one of the first things to check when you are
troubleshooting routing or connectivity problems.

The next line gives indexing information about the physical interface:

 Interface index: 137, SNMP ifIndex: 29

The interface index is the physical interface's index number, which is based on the order in which it
was initialized. The SNMP ifIndex is the SNMP index number of the physical interface. It allows you
to correlate the values in the interface MIB OIDs with actual interfaces. You can also see this
information on the router:

 aviva@router1> show snmp mib walk ifTable
 ifDescr.29 = fe-0/0/0

The next line gives more information about the physical properties of the interface:

 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This shows the Layer 2 (link-level) encapsulation type and Maximum Transmission Unit (MTU) of the
interface. Both are using the default encapsulations for their interface types. For the IPv4 address
family, Ethernet is the only allowed link-level type. If you look in the logical interface section of the
output, you see the encapsulation that is being used on the logical interface. The physical
encapsulation applies to all protocols running on the interface, and logical interface encapsulation
applies only to that address family. You can use the encapsulation statement in both portions of the
configuration to modify the defaults:

 [edit interfaces fe-0/0/0]
 aviva@router1#
set encapsulation vlan-ccc

 [edit interfaces fe-0/0/0 unit 0]
 aviva@router1# set encapsulation ppp-over-ether

The MTU is 1,514 bytes. This is the default media (Layer 2) MTU size, which is the size of the largest
packet that the router can transmit through this interface. It applies to all protocols that use this
interface. The protocol MTU size is in the logical interfaces portion of the output. Both logical
interfaces are running IPv4 (Protocol inet), and the IPv4 MTU size is the standard 1,500 bytes for
both interfaces. The media MTU is the sum of the IP MTU and the encapsulation overhead, which is
14 bytes for Ethernet interfaces. All devices on the Ethernet LAN must support the same MTU size. If
you notice that a device is dropping traffic, check its MTU.

The speed for the Ethernet shows that this is Fast Ethernet, running at 100 Mbps.

The next line of output shows whether source filter and flow control are configured on the interface:

Source filtering: Disabled, Flow control: Enabled

Source address filtering blocks traffic from specific Ethernet MAC addresses. This is off by default.
Flow control, which is on by default on Fast Ethernet interfaces, regulates the amount of traffic sent
out on a full-duplex interface. (Flow control, also called pause frames, is an optional clause on the
specification for full-duplex Ethernet, defined by the IEEE 802.3x Task Force in Annex 31B.) Source
filtering and flow control are explained more in Recipe 7.13.

The device flags list information about the physical device. You see this line for all router interfaces:

 Device flags : Present Running

The output shows that the PIC has been recognized by the router software and is operating normally.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the output shows Down instead of Running, check that the interface is configured. If the Present flag
is missing, it might indicate that the PIC is not installed properly or is broken.

The next several lines show that SNMP trap notifications are enabled, the number of link flags set on
the interface, the number of class-of-service (CoS) queues supported by the PIC, and the PIC's MAC
address. The first address is the one currently being used and the second is the one hard-coded on
the PIC.

 Interface flags: SNMP-Traps 16384
 Link flags : 4

CoS queues : 8 supported
 Current address: 00:05:85:ca:ca:70, Hardware address: 00:05:85:ca:ca:70

The last lines about the physical interface show how long it has been up, the traffic rates in and out
the interface, and whether any interface alarms are active:

 Last flapped : 2005-04-23 05:16:57 UTC (1w4d 00:49 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 Active alarms : None
 Active defects : None

The logical interfaces portion of the output starts with the logical interface name and indexing
information. The second line shows that SNMP trap notifications are also enabled on the logical
interface, and the encapsulation is Ethernet II (RFC 894):

 Logical interface fe-0/0/0.0 (Index 66) (SNMP ifIndex 39)
 Flags: SNMP-Traps Encapsulation: ENET2

The final portion shows the protocol families configured on the interface. Here, IPv4 (inet) and ISO
are configured. For IPv4, the MTU size is 1,500 bytes (for Ethernet, this is the default), and no logical
interface flags are set. You then see the IPv4 address flags, here showing that this is default local
address for packets originating from the local router and sent to destinations on the subnet (Is-
Preferred) and the default address for broadcast and multicast packets (Is-Primary). For ISO, the
MTU size is 1,497 bytes (the default), and this is the default local address for broadcast addresses.

See Also

Recipes 7.12 and 7.13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.2. Viewing Traffic Statistics on an Interface

Problem

You want to check how much traffic is passing through an interface.

Solution

The show interfaces extensive command shows detailed statistics about the traffic on an interface:

 aviva@router1# show interfaces extensive fe-0/0/0

Discussion

When you need to get traffic statistics about an interface, use either the show interfaces extensive
command for maximal information or the show interfaces detail for a slightly abridged view. The
extensive version displays quite a bit of information. Again, the specifics of the output vary
depending on the interface type. Here is the relevant output for a Fast Ethernet interface:

 aviva@router1> show interfaces extensive fe-0/0/0
 …
 Traffic statistics:
 Input bytes : 302512 672 bps
 Output bytes : 0 0 bps
 Input packets : 2081 0 pps
 Output packets : 0 0 pps
 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Policed discards: 0,
 L3 incompletes: 1682, L2 channel errors: 0, L2 mismatch timeouts: 0,
 FIFO errors: 0, Resource errors: 0
 Output errors:
 Carrier transitions: 1, Errors: 0, Drops: 0, Collisions: 0, Aged packets: 0,
 FIFO errors: 0, HS link CRC errors: 0, MTU errors: 0, Resource errors: 0
 Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 0 0 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 0 0 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Active alarms : None
 Active defects : None
 MAC statistics: Receive Transmit
 Total octets 466604 0
 Total packets 3763 0
 Unicast packets 0 0
 Broadcast packets 1686 0
 Multicast packets 2077 0
 CRC/Align errors 0 0
 FIFO errors 0 0
 MAC control frames 0 0
 MAC pause frames 0 0
 Oversized frames 0
 Jabber frames 0
 Fragment frames 0
 VLAN tagged frames 0
 Code violations 0
 Filter statistics:
 Input packet count 3763
 Input packet rejects 0
 Input DA rejects 1682
 Input SA rejects 0
 Output packet count 0
 Output packet pad count 0
 Output packet error count 0
 CAM destination filters: 5, CAM source filters: 0

The traffic statistics show input and output counters in both bytes and packets. You then see errors
and counters specific for this Fast Ethernet interface.

The show interfaces extensive command takes a snapshot in time of the traffic statistics. To watch
the traffic in real time, use the monitor interface command. This can be very useful when you are
watching traffic flow through the interfaces or are tracking down a traffic flow issue. This command is
just the FreeBSD iftop utility. Again, what you see depends on the type of interface. Here's the
sample for the same Fast Ethernet interface:

 aviva@router1> monitor interface fe-0/0/0
 router1 Seconds: 134 Time: 16:35:302
 Delay: 2/0/9
 Interface: fe-0/0/0, Enabled, Link is Up
 Encapsulation: Ethernet, Speed: 100mbps
 Traffic statistics: Current delta
 Input bytes: 304124 (672 bps) [892]
 Output bytes: 0 (0 bps) [0]
 Input packets: 2092 (0 pps) [6]
 Output packets: 0 (0 pps) [0]
 Error statistics:
 Input errors: 0 [0]
 Input drops: 0 [0]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Input framing errors: 0 [0]
 Policed discards: 0 [0]
 L3 incompletes: 1691 [5]
 L2 channel errors: 0 [0]
 L2 mismatch timeouts: 0 [0]
 Carrier transitions: 1 [0]
 Output errors: 0 [0]
 Output drops: 0 [0]
 Aged packets: 0 [0]
 Active alarms : None
 Active defects: None
 Input MAC/Filter statistics:
 Unicast packets 0 [0]
 Broadcast packets 1695 [5]
 Multicast packets 2088 [6]
 Oversized frames 0 [0]
 Packet reject count 0 [0]
 DA rejects 1691 [5]
 SA rejects 0 [0]
 Output MAC/Filter Statistics:
 Unicast packets 0 [0]
 Broadcast packets 0 [0]
 Multicast packets 0 [0]
 Packet pad count 0 [0]
 Packet error count 0 [0]
 Next='n', Quit='q' or ESC, Freeze='f', Thaw='t', Clear='c', Interface='i'

The output updates every second, so you can see we've been watching for 134 seconds and the
current time is 16:35. The second line shows the delay, which is how many milliseconds it took to
display the statistics. The first number, here 2, is the time difference for the currently displayed
statistics. The second number, here 0, is the shortest time difference since the monitoring started,
and the third number, here 9, is the longest time difference since monitoring started.

The next two lines briefly describe the interface. The traffic and error statistics and the active alarm
and defects sections parallel the fields in the show interfaces extensive command output. The input
and output MAC/filter statistics show some of the information that's in the MAC and filter statistics
sections of the show command output.

The bottom line contains commands you can issue. You can scroll through all the router's interfaces
(Next='n')they appear in the same order as in the show interfaces terse commandor you can name
a specific interface to display (Interface='i'):

 New interface:
 Next='n', Quit='q' or ESC, Freeze='f', Thaw='t', Clear='c', Interface='i'

The remaining commands freeze (f) and unfreeze (t) the display, zero the statistics (c), and return
to the CLI (q).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

FreeBSD, http://www.freebsd.org/ports/net-mgmt.html

http://www.freebsd.org/ports/net-mgmt.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.3. Setting an IP Address for the Router

Problem

You want to assign an address to the router itself so that you can reach it at all times, even when a
particular interface is not available and so that applications such as SNMP can always reach the
router.

Solution

Use the following command to configure a permanent address for the router:

 [edit]
 aviva@RouterA# set interfaces lo0 unit 0 family inet address 192.168.16.1/32

Discussion

Most of the IP addresses you configure on a router are for physical network interfaces, such as an
Ethernet or T1 interface. While these interfaces are generally present and operating in the router,
you don't want to use them to find out the status of the router, because someone might remove the
PIC from the router or because the physical interface may not be up or may not be configured
properly even though the router is up and running fine. The solution is to configure an IP address
that uniquely identifies your router. You do this by configuring the lo0, or loopback, address.

In the JUNOS software, the loopback address is named lo0. This name doesn't follow the standard
JUNOS interface naming conventions. It is just the same name as the Unix loopback interface. You
don't need to specify a PIC, FPC, or slot number because the loopback address is not associated with
hardware, but is just an internal address on the router. You configure the loopback address on logical
unit 0, and the address is an IPv4 address (set with the keyword inet). In this recipe, we set the
loopback address to 192.168.16.1/32.

The loopback address on a JUNOS router is used as the IP address of the router itself and is similar to
the Unix localhost, which is the address of the local system. The JUNOS software uses this address
when it needs to talk to itself using IP.

To see that the loopback address has been configured, you can look at its status:

 aviva@RouterA> show interfaces lo0
 Physical interface: lo0, Enabled, Physical link is Up

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Interface index: 6, SNMP ifIndex: 6
 Type: Loopback, MTU: Unlimited
 Device flags : Present Running Loopback
 Interface flags: SNMP-Traps
 Link flags : None
 Last flapped : Never
 Input packets : 19
 Output packets: 19

 Logical interface lo0.0 (Index 69) (SNMP ifIndex 16)
 Flags: SNMP-Traps Encapsulation: Unspecified
 Input packets : 0
 Output packets: 0
 Protocol inet, MTU: Unlimited
 Flags: None
 Addresses, Flags: Is-Default Is-Primary
 Local: 192.168.16.1

 Logical interface lo0.16385 (Index 64) (SNMP ifIndex 21)
 Flags: SNMP-Traps Encapsulation: Unspecified
 Input packets : 5
 Output packets: 5
 Protocol inet, MTU: Unlimited
 Flags: None
 Addresses, Flags: Is-Default Is-Primary
 Local: 10.0.0.1
 Addresses
 Local: 10.0.0.16

You see the loopback interface address in the logical interface portion of the output. You can see that
the lo0 interface is operational (from the Present and Running device flags) and that it is a loopback
interface (from the Loopback device flag) with an unlimited MTU size. SNMP traps are enabled on the
router, no link flags are set (these flags are only for network interfaces, which lo0 is not), and the
interface has never gone down and come back up (flapped). The input and output fields show the
number of packets that have passed through the interface. One interesting thing to notice is the
existence of logical interface lo0.16385. This is a nonconfigurable interface created by the JUNOS
software for routing platform control traffic. The two addresses shown for this logical interface are
used internally.

Because the address is just an address for the router and is not used for a software loopback
mechanism, it can be any /32 address. You are not limited to using the standard loopback address of
127.0.0.1. Some JUNOS applications, including NTP, RADIUS, TACACS+, and SSL for the JUNOScript
API, require a loopback address of 127.0.0.1. You either can set this as your primary loopback
address or can configure multiple loopback addresses:

 [edit]
 aviva@RouterA# set interfaces lo0 unit 0 family inet address 192.168.16.1/32
 aviva@RouterA# set interfaces lo0 unit 0 family inet address 127.0.0.1/32

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You see that this address is configured, but is not the default or primary address:

 aviva@RouterA# run show interfaces lo0.0
 Logical interface lo0.0 (Index 69) (SNMP ifIndex 16)
 Flags: SNMP-Traps Encapsulation: Unspecified
 Input packets : 0
 Output packets: 0
 Protocol inet, MTU: Unlimited
 Flags: None
 Addresses
 Local: 127.0.0.1
 Addresses, Flags: Is-Default Is-Primary
 Local: 192.168.42.1

See Also

Recipes 7.1 and 7.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.4. Setting the Router's Source Address

Problem

All IP traffic that is sourced from the router includes a source address in the IP header. The address
chosen for packets depends on the interface that is used to reach the destination when the connection
is established. You want to configure the router to used a fixed address.

Solution

Use the following command to always uses lo0 loopback address as the source address in IP packets:

 [edit]
 aviva@router1# set system default-address-selection

Discussion

When selecting an address to include in the source address field of IP packets, the JUNOS software
chooses from among the addresses configured on the router. The first candidate to use is the first
non-127.0.0.1 address configured on the lo0 interface. However, this means that the software
usually, but not always, chooses the loopback address. To ensure that the software always uses the
router's IP address, use the set system default-address-selection command. Including this
command is considered good practice so that when other systems on the network receive traffic from
the local router, the packets always have the same address in the IP packet's source address field.
This command forces the router to use one specific address, the lo0 address, for most of the traffic
that originates from the router. The source address never affects traffic that is forwarded by the
router, only packets that are sourced from the router. If multiple addresses are configured for lo0 ,
the software chooses the one with the lowest address. However, if you assign the parameter primary
or preferred to a higher IP address, the software uses the higher IP address. The following command
makes one of the loopback addresses the primary one:

 [edit]
 aviva@RouterA# set interfaces lo0 unit 0 family inet address 192.168.16.1/32 primary

Figure 7-1 illustrates why you should set the router's source address. In this topology, if you ping
1.0.2.1 from Mars, Mars normally sends the packet out the so-0/0/0 interface and uses 1.0.2.2 as
the source address for that ping packet. Venus receives the ping and sends a response back to
1.0.2.2 (the source address).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If Mars, Venus, and Earth have lo0 addresses 1.1.0.1/32, 1.1.0.2/32 , and 1.1.0.3/32 , and you
have the default address selection configured on Mars, what happens is different. If you ping 1.0.2.1
from Mars, Mars uses 1.1.0.1 (its lo0 address) as the source address. It still sends the packet out so-
0/0/0 , and Venus still receives it and sends a response back to the source address of the ping,
1.1.0.1 .

Figure 7-1. Topology for setting the router's source address

Venus needs to know how to get back to 1.1.0.1 . Venus knows how to get to 1.0.2.2 , because it's a
connected network. It's going to need a route back to 1.1.0.1 , however. You can set this up by
distributing lo0 addresses with an IGP, such as OSPF. Let's say that all three routers are distributing
their loopback addresses using OSPF on all the interfaces in the figure so that all three know how to
reach all the loopback addresses of each other. Venus is still trying to send its echo response back to
Mars and might send it out either so-0/0/0 or so-1/0/0 . Either way, it gets to Mars, and the ping
application sees the response.

Now, if you ping 1.1.0.2 (venus-lo0) from Mars, Mars sends it out either so-0/0/0 or so-1/0/0 .
Venus receives the ping and replies back, again over either link. If so-0/0/0 goes down for some
unknown reason, the ping still works because there's still a path using so-1/0/0 . However, pinging
1.0.2.1 does not work because that interface is down.

If both so-0/0/0 and so-1/0/0 go down, the ping still works, because Mars sends the packet to Earth,
Earth forwards it to Venus, and Venus sees it and replies back, going through Earth. In other words,
you can still get to Venus with the same IP address even if all your direct links to Venus are down.

In a large network with hundreds of routers and dozens of links per router (any number of which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

might be down or congested), figuring out which address to ping is a hassle you can avoid by setting
the router's source address. One disadvantage of doing this, however, is that it tends to hide network
outages.

There are some other side benefits to using the lo0 address as the router's source address. When you
are stringing together IP addresses to use for DNS, it's often convenient to use some
hostnameinterface name combination for it, such as Bellagio-ge-1-1-0-Gash2-link.jnpr.net or
0.so-1-0-0.XL2.SJC2.ALTER.NET . But if you just want to ping Bellagio, it's nice to have an lo0 address
around to which to assign the ping request. Also, when you save system logfiles on a remote log
server, syslog does a reverse lookup on the log's source address. If you don't use lo0 as the source
address, the logfile entries would start with the interface name, such as venus-fe-0-0-0 , instead of
the router's name and would be much harder to read and interpret.

For some applications, including NTP and ping, you can explicitly set the source address to include in
IP packet headers. For a router acting as an NTP time server, the set system ntp source-address
command specifies the address to use in the router's responses to NTP client requests. The ping
command source option includes a source address to be used by the ping responses.

See Also

Recipe 7.3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.5. Configuring an IPv4 Address on an Interface

Problem

You want to configure an interface to work on an IPv4 network.

Solution

Use the following command to configure an IPv4 address on an interface:

 [edit]
 aviva@router1# set interfaces fe-0/0/0 unit 0 family inet address 192.168.220.1/24

Discussion

For any IPv4 routing protocol such as BGP, OSPF, RIP, and ICMP to work, not only do you have to
configure the protocol, but you also have to configure the interfaces on which the protocol can run.
You configure the address under the logical interfaces portion. For IPv4 addresses, the address family
is inet.

To see that the IPv4 address has been set, you can look at the logical interface:

 aviva@router1> show interfaces fe-0/0/0.0 brief
 Logical interface fe-0/0/0.0
 Flags: SNMP-Traps Encapsulation: ENET2
 inet 192.168.220.1/24

The JUNOS software allows more than one address on a logical interface. Issuing a second set
command does not overwrite an existing address, but simply adds the second address. To correct an
IP address, use the rename command:

 [edit interfaces fe-0/0/0]
 aviva@router1# rename unit 0 family inet address 192.168.220.1/24 to address
192.168.220.2/24

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To remove an extra IP address, use the delete command:

 [edit interfaces fe-0/0/0]
 aviva@router1# delete unit 0 family inet address 192.168.220.1/24

If you have many interfaces to configure and need to conserve IP addresses, you do not have to
assign an address to the logical interface:

 [edit interfaces]
 aviva@router1# set fe-1/0/0 unit 0 family inet

This command creates what is called an unnumbered interface. When packets are sent out this
interface, their source address contains the router's default address, which is the address you set on
the loopback (lo0) interface. If you have not set an address on lo0, make sure that you have
configured an address on another interface on the router.

See Also

Recipes 7.3, 7.4, and 7.12

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.6. Configuring an IPv6 Address on an Interface

Problem

You want to configure an interface to work on an IPv6 network.

Solution

The IPv6 address configuration is very similar to that for IPv4:

 [edit]
 aviva@router1# set interfaces fe-0/0/3 unit 0 family
inet6 address fec0:1:1:1::2/64

Discussion

For an interface to operate on an IPv6 network, it needs an IPv6 address in the inet6 address family.
To see that the IPv6 address has been set, look at the logical interface:

 aviva@router1> show interfaces fe-0/0/3.0 brief
 Logical interface fe-0/0/3.0
 Flags: SNMP-Traps Encapsulation: ENET2
 inet6 fe80::205:85ff:fe02:a403/64
 fec0:1:1:1::2/64

See Also

Recipe 7.12

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.7. Configuring an ISO Address on an Interface

Problem

You want to configure an interface to support IS-IS.

Solution

Configure the ISO protocol family on the interface running IS-IS:

 [edit]
 aviva@RouterA# set interfaces fe-0/0/0 unit 0 family iso

Discussion

IS-IS is an OSI protocol, so you need to create an OSI family on the interface for IS-IS to work. You
also need to configure one or more addresses for the loopback interface, which IS-IS uses for its
interface addresses (see Recipe 7.3). Here's how to check the configuration:

 aviva@router1# show interfaces fe-0/0/0.0 brief
 Logical interface fe-0/0/0.0
 Flags: SNMP-Traps Encapsulation: ENET2
 inet 192.168.220.1/30
 iso

See Also

Recipes 7.3, 7.12, and 11.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.8. Creating an MPLS Protocol Family on a
Logical Interface

Problem

You want to configure an interface to support Multiprotocol Label Switching (MPLS).

Solution

Set up the MPLS protocol family on the interface running MPLS:

 [edit]
 aviva@RouterA# set interfaces fe-0/0/0 unit 0 family mpls

Discussion

For MPLS traffic to transit an interface, you must create an MPLS protocol family on the logical
interface. You don't need to configure an address. Here's how to check the configuration:

 aviva@router1# show interfaces fe-0/0/0.0 brief
 Logical interface fe-0/0/0.0
 Flags: SNMP-Traps Encapsulation: ENET2
 inet 192.168.220.1/30
 mpls

See Also

Recipes 7.12, 14.1, 14.6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.9. Configuring an Interface Description

Problem

You want to include a description of an interface in the configuration.

Solution

Use the following command to configure a description of the interface:

 [edit interfaces fe-0/0/0]
 aviva@router1# set interfaces fe-0/0/0 description "to router2 fe-0/0/0"

Discussion

It's often convenient to include a short description of the interface to make a note of any
administrative information that is useful to you or your staff, such as the remote interface. This
recipe sets a description of the interface that describes the remote router and interface that is at the
other end of this link.

The configured interface description script shows up in the show interfaces command output:

 aviva@router1> show interfaces fe-0/0/0
 Physical interface: fe-0/0/0, Enabled, Physical link is Up
 Interface index: 128, SNMP ifIndex: 79
 Description: to router2 fe-0/0/0
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps 16384
 …

You can use the show interfaces descriptions command to list the descriptions for all interfaces:

 aviva@router1> show interfaces descriptions
 Interface Admin Link Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fe-0/0/0 up up to router2 fe-0/0/0
 fe-0/0/1 up up to router2 fe-0/0/1
 fe-0/0/2 up up to router2 fe-0/0/2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.10. Choosing Primary and Preferred Interface
Addresses

Problem

You have an Ethernet or other point-to-multipoint interface and have to set up multiple addresses on
the interfacefor example, so you can treat class of service for each flow differentlybut you need to
always use one of the addresses first.

Solution

Use the following commands to pick one address to always be the source address for traffic on the
same subnet:

 [edit interfaces fe-0/0/0]
 aviva@router1# set unit 0 family inet address 192.168.220.1/24
 aviva@router1# set unit 0 family inet address 192.168.220.2/24
preferred

Use the following commands to choose one address that is used as the source address in broadcast
and unnumbered traffic sent out an interface:

 [edit interfaces fe-0/0/1]
 aviva@router1# set unit 0 family inet address 192.168.220.1/24
 aviva@router1# set unit 0 family inet address 192.168.220.2/24
primary

Discussion

Each JUNOS interface has a preferred address, which is the default local address used when there is
more than one address in the same subnet on the same interface. Each JUNOS interface also has a
primary address, which is used by default as the source address when you originate packets out the
interface where the destination gives no hint about the subnet. By default, the software chooses the
numerically lowest address as the preferred and primary address. The show interfaces command
output indicates which addresses are the preferred and primary:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1> show interfaces fe-0/0/0.0
 Logical interface fe-0/0/0.0 (Index 66) (SNMP ifIndex 84)
 Flags: SNMP-Traps Encapsulation: ENET2
 Protocol inet, MTU: 1500
 Flags: None

Addresses, Flags: Is-Preferred Is-
Primary
 Destination: 192.168.220.0/24, Local: 192.168.220.1,
 Broadcast: 192.168.220.3

Here we see that the address configured on the Fast Ethernet logical interface, 192.168.220.1/30, is
both the preferred and primary address for the interface.

For some point-to-multipoint and other applications, you configure multiple address on a single logical
interface:

 [edit interfaces fe-0/0/0]
 aviva@router1# set unit 0 family inet address 192.168.220.2/24
 aviva@router1# show
 unit 0 {
 family inet {
 address 192.168.220.1/24;
 address 192.168.220.2/24;
 }
 }

With this configuration, the first address continues to be the preferred and primary address because,
numerically, it is the lower of the two:

 aviva@router1> show interfaces fe-0/0/0.0
 Logical interface fe-0/0/0.0 (Index 66) (SNMP ifIndex 84)
 Flags: SNMP-Traps Encapsulation: ENET2
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.168.220.0/24, Local: 192.168.220.1,
 Broadcast: 192.168.220.3
 Addresses
 Destination: 192.168.220.0/24, Local: 192.168.220.2,
 Broadcast: 192.168.220.3

To have the higher address be the primary or preferred address, use the commands shown in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

recipe:

 aviva@router1# show
 unit 0 {
 family inet {
 address 192.168.220.1/24;
 address 192.168.220.2/24 {
 primary;
 preferred;
 }
 }
 }
 aviva@router1> show interfaces fe-0/0/0.0
 Logical interface fe-0/0/0.0 (Index 66) (SNMP ifIndex 84)
 Flags: SNMP-Traps Encapsulation: ENET2
 Protocol inet, MTU: 1500
 Flags: None
 Addresses
 Destination: 192.168.220.0/24, Local: 192.168.220.1,
 Broadcast: 192.168.220.3

Addresses, Flags:
Primary
Preferred Is-Preferred Is-Primary
 Destination: 192.168.220.0/24, Local: 192.168.220.2,
 Broadcast: 192.168.220.3

It's helpful to expand the configuration a bit to illustrate how the source addresses are used. Let's
say we have:

 [edit interfaces fe-0/0/0 unit 0 family inet]
 address 192.168.220.1/24;
 address 192.168.220.2/24 {
 primary;
 preferred;
 }
 address 192.168.222.1/24;
 address 192.168.222.2/24 {
 preferred;
 }

IP traffic bound for 192.168.220.10 uses 192.168.220.2 as the source address because this is the
preferred address. Traffic for, say, 100.0.0.1 also uses 192.168.220.2 (if there is a route to that
network pointing out fe-0/0/0) because this is the interface's primary address. Traffic for
192.168.222.10 uses 192.168.222.2 as the source address, again because this is the interface's
preferred address.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another situation is to have multiple addresses on the loopback interface, which you might want for
any number of reasons. You might want a public address for the router's IP address, a private one for
management access, and 127.0.0.1 as the traditional loopback address.

Yet another reason to have multiple address on an interface is to increase the number of IP
addresses on an Ethernet network without renumbering devices that are already there. While this is
often not considered good practice, sometimes it's the easiest way to deal with the growing number
of addresses. Say you have interface fe-0/0/0 with IP address 205.134.233.254/24. When you've
used all the addresses in that /24 address space, you can either renumber all 250 or so devices on
that network, grow that network (which requires planning ahead; in this case you could just make
the network a /23 if you're not using 205.134.232.0/24 for anything else), or just add another
network. As an interim measure, you can just add the second address for the new network address
space to the interface and set the desired one to be the primary and preferred address.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.11. Using the Management Interface

Problem

You want to enable out-of-band management access to the router.

Solution

Configure the router's management interface:

 [edit interfaces]
 aviva@router1# set fxp0 unit 0 family inet address 192.168.70.246/24

Use the following command to configure the J-series management interface:

 [edit interfaces]
 aviva@RouterA> set fe-0/0/0 unit 0 family inet address 10.0.15.1/24

Discussion

JUNOS routers provide a separate out-of-band management interface for monitoring the router
independently of the network links. This interface is named fxp0 and is an internal Ethernet interface
that is permanently installed in the router. The router does not route traffic from network and
services interfaces over fxp0, and traffic arriving on this interface is never directed to network
interfaces, so you cannot use it to route traffic.

You can connect to the management interface over the network using SSH and Telnet, and SNMP
NMS systems can connect to the router using this interface to query for router status and statistics.

This recipe shows how to configure an address for the fxp0 interface. Because it is an Ethernet
interface, you can configure a subnet address. You cannot configure a host (/32) address.

Use the show interfaces command to get status about the management interface:

 aviva@router1> show interfaces fxp0
 Physical interface: fxp0, Enabled, Physical link is Up

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Interface index: 1, SNMP ifIndex: 1
 Type: Ethernet, Link-level type: Ethernet, MTU: 1514, Speed: 100mbps
 Device flags : Present Running
 Interface flags: SNMP-Traps
 Link type : Half-Duplex
 Link flags : 4
 Current address: 00:a0:a5:12:2f:04, Hardware address: 00:a0:a5:12:2f:04
 Last flapped : Never
 Input packets : 217004
 Output packets: 2808

 Logical interface fxp0.0 (Index 2) (SNMP ifIndex 13)
 Flags: SNMP-Traps Encapsulation: ENET2
 Protocol inet, MTU: 1500
 Flags: Is-Primary
 Addresses, Flags: Is-Default Is-Preferred Is-Primary
 Destination: 192.168.64/21, Local: 192.168.71.246,
 Broadcast: 192.168.71.255

The output shows that this is a 100-Mbps Ethernet interface running in half-duplex mode.

The hardware architecture of the J-series routers differs from the M-series and T-series routers, so
instead of fxp0 being the management interface, it is one of the nonremovable Fast Ethernet
interfaces, fe-0/0/0. The interface status shows the same basic information as on the M- and T-
series routers:

 aviva@RouterA> show interfaces fe-0/0/0
 Physical interface: fe-0/0/0, Enabled, Physical link is Up
 Interface index: 137, SNMP ifIndex: 29
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps 16384
 Link flags : 4
 CoS queues : 8 supported
 Current address: 00:05:85:ca:ca:70, Hardware address: 00:05:85:ca:ca:70
 Last flapped : 2005-05-04 23:37:59 PDT (1w0d 18:17 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 304 bps (0 pps)
 Active alarms : None
 Active defects : None

 Logical interface fe-0/0/0.0 (Index 66) (SNMP ifIndex 39)
 Flags: SNMP-Traps Encapsulation: ENET2
 Protocol inet, MTU: 1500
 Flags: Is-Primary
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.0.16/24, Local: 10.0.15.1, Broadcast: 10.0.15.255

http://lib.ommolketab.ir
http://lib.ommolketab.ir

While you can actually configure the fxp0 interface on a J-series router, the values are applied to the
fe-0/0/0 interface and show up under fe-0/0/0 in the show interfaces output. The recommended
procedure is to place all management interface configuration at the [edit interfaces fe-0/0/0]
hierarchy level.

The process for configuring many of the JUNOS protocols is to associate one or more interfaces with
the protocol to make the interfaces aware that they will be receiving packets for that protocol, and
vice versa. You can do this by calling out specific interfaces in the configuration, such as here:

 [edit protocols]
 aviva@RouterA# set pim interface fe-0/0/1

It's often faster and easier just to configure all the interfaces at once:

 [edit protocols]
 aviva@RouterA# set pim interface all

When you do this, you end up configuring the protocol on the out-of-band interface also. It's not
considered good practice to do this, so in these cases, you should turn off the protocol on that
interface with a disable command.

On an M-series or a T-series router, the command looks like this:

 [edit protocols]
 aviva@router1# set pim interface fxp0 disable

On a J-series router, use a command like this:

 [edit protocols]
 aviva@RouterA# set pim interface fe-0/0/0 disable

The primary reason you want to turn off the protocol is because this is the management interface,
and you most likely are not using any routing protocols on it. Disabling the protocol leaves you with a
"clean" configuration, because you are configuring only the functionality that you actually want the
router to use. If you choose not to disable the protocol on the management interface, routing
protocols may establish adjacencies to the fxp0 or fe-0/0/0 interface, but there is no negative impact
on the performance of the Routing Engine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.12. Finding Out What IP Addresses Are Used on
the Router

Problem

You want to find out the IP addresses assigned to router interfaces.

Solution

Use the following command to find out what IP addresses have been assigned on the router:

 aviva@RouterB> show interfaces terse
 Interface Admin Link Proto Local Remote
 fe-0/0/0 up up
 fe-0/0/0.0 up up inet 10.0.24.2/24
 gr-0/0/0 up up
 ip-0/0/0 up up
 ls-0/0/0 up up
 lt-0/0/0 up up
 mt-0/0/0 up up
 pd-0/0/0 up up
 pe-0/0/0 up up
 sp-0/0/0 up up
 sp-0/0/0.16383 up up inet
 fe-0/0/1 up up
 fe-0/0/1.0 up up inet 10.0.29.2/24
 t1-0/0/2 up up
 t1-0/0/2.0 up down inet 10.0.31.1/24
 t1-0/0/3 up down
 dsc up up
 gre up up
 ipip up up
 lo0 up up
 lo0.0 up up inet 192.168.14.1 --> 0/0
 lo0.16385 up up inet 10.0.0.1 --> 0/0
 10.0.0.16 --> 0/0
 lsi up up
 mtun up up
 pimd up up
 pime up up
 pp0 up up

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tap up up

Another way to display IP addresses quickly is to always include the interface's IP address when
configuring the interfaces:

 [edit interfaces]
 aviva@RouterD# set fe-0/0/0 description "10.0.24.2/24; to RouterH's fe-1/0/1"

Then use the following command to list the addresses:

 aviva@RouterD> show interfaces descriptions
 Interface Admin Link Description
 fe-0/0/0 up up 10.0.24.2/24; to RouterH's fe-1/0/1
 fe-0/0/1 up up 10.0.29.2/24; to RouterC's fe-0/0/1
 t1-0/0/2 up up 10.0.31.1/24; to RouterF's t1-0/0/2
 lo0 up up 192.168.14.1/32; local loopback

Discussion

When you are modifying a router configuration or trying to debug a problem, sometimes you need a
quick way to find out what IP addresses are configured on the router. You can read through the
interfaces portion of the configuration file, which is where all IP addresses are configured, but if you
have a number of PICs and ports or if you have many logical interfaces, the information will likely be
spread out over many screens. A simple way to get a list of configured IP addresses is to use the
show interfaces terse command. The IP address is shown in the Local column. The output in this
recipe shows IP addresses for three network interfaces, fe-0/0/0, fe-0/0/1, and t1-0/0/2, and for
the lo0 interface.

Another strategy for displaying IP addresses quickly is to always include the inter-face's IP address in
the description statement when configuring the interfaces. Then use the show interfaces
descriptions command to list all interface IP addresses.

The output of the show interfaces terse command also provides a quick view of which slot each of
the PICs is installed in. When PICs are installed in the router, the JUNOS software detects their
presence and displays them in the output of the show interfaces command. In this example, the
router (a J-series box) has two Fast Ethernet PICs in slot 0 (interfaces fe-0/0/0 and fe-0/0/1) and
two serial cards in slot 0 (interfaces se-0/0/2 and se-0/0/3).

You can confirm the presence of these PICs with the show chassis hardware command, but this
command does not tell you which slot the PICs are in:

 aviva@RouterB> show chassis hardware

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Hardware inventory:
 Item Version Part number Serial number
Description
 Chassis JN002447AA J2300
 Routing Engine REV 07 750-009992 AA04350171 RE-J.1
 FPC 0 REV 04 750-010739 AC04430288 FPC
 PIC 0 2x FE, 2x Serial

Some of the interfaces (gr-0/0/0, ip-0/0/0, ls-0/0/0, lt-0/0/0, mt-0/0/0, pd-0/0/0, and pe-
0/0/0) are virtual interfaces that are used for tunneling. They are virtual in that they are not
necessarily tied to a specific network card. gr-0/0/0 and ip-0/0/0 are for unicast tunnels with GRE or
IP-IP encapsulation, ls-0/0/0 is a link services interface, lt-0/0/0 is a logical tunnel interface, mt-
0/0/0 is a multicast tunnel, and pd-0/0/0 and pe-0/0/0 are PIM tunnels. lo is the loopback interface
(see Recipe 7.3), and the remaining are nonconfigurable interfaces used internally by the JUNOS
software (see Recipe 7.23).

See Also

Recipes 7.3 and 7.23

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.13. Configuring Ethernet Interfaces

Problem

Your router has an Ethernet interface and you want to configure it.

Solution

Use the following command to activate a Fast Ethernet interface:

 [edit interfaces]
 aviva@router1# set fe-0/0/3 unit 0 family inet address 192.168.220.13/24

Use the following commands to activate a Gigabit Ethernet interface:

 [edit interfaces]
 aviva@M5# set ge-0/2/0 unit 0 family inet6 address 3010::2/64
 aviva@M5# set ge-0/2/0 unit 0 family iso

Discussion

The basic configuration for Ethernet interfaces is very straightforward. Just assign the desired
addresses, and the interface is up and running. Here, for the Fast Ethernet interface, we configure an
IPv4 address, and for the Gigabit Ethernet interface, we configure an IPv6 address and the iso family
(for IS-IS). You can also configure other address families depending on the protocols that the
interface needs to support.

With this configuration, the show interfaces output displays the default JUNOS settings for Ethernet
interfaces. The Fast Ethernet defaults are highlighted:

 aviva@router1> show interfaces fe-0/0/3
 Physical interface: fe-0/0/3, Enabled, Physical link is Up
 Interface index: 131, SNMP ifIndex: 82
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled
 Device flags : Present Running

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Interface flags: SNMP-Traps 16384
 Link flags : 4
 CoS queues : 4 supported
 Current address: 00:05:85:02:a4:03, Hardware address: 00:05:85:02:a4:03
 Last flapped : 2005-05-12 14:58:08 PDT (04:58:52 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 Active alarms : None
 Active defects : None

 Logical interface fe-0/0/3.0 (Index 69) (SNMP ifIndex 87)
 Flags: SNMP-Traps Encapsulation: ENET2
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.168.220.12/24, Local: 192.168.220.13,
 Broadcast: 192.168.220.255
 Protocol iso, MTU: 1497
 Flags: None

The Gigabit Ethernet defaults are the same except for the link speed:

 aviva@M5> show interfaces ge-0/2/0
 Physical interface: ge-0/2/0, Enabled, Physical link is Up
 Interface index: 134, SNMP ifIndex: 29
 Link-level type: Ethernet, MTU: 1514, Speed: 1000mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps 16384
 Link flags : None
 CoS queues : 4 supported
 Current address: 00:90:69:69:6c:3e, Hardware address: 00:90:69:69:6c:3e
 Last flapped : 2005-05-16 16:11:53 PDT (3d 01:07 ago)
 Input rate : 456 bps (0 pps)
 Output rate : 0 bps (0 pps)
 Active alarms : None
 Active defects : None

 Logical interface ge-0/2/0.0 (Index 66) (SNMP ifIndex 22)
 Flags: SNMP-Traps Encapsulation: ENET2
 Protocol iso, MTU: 1497
 Flags: Is-Primary
 Protocol inet6, MTU: 1500
 Flags: Is-Primary
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 3010::/64, Local: 3010::2
 Addresses, Flags: Is-Preferred
 Destination: fe80::/64, Local: fe80::290:69ff:fe69:6c3e

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For both types of interfaces, the family MTU size is the default for that family (1,500 bytes for IPv4
and IPv6, and 1,497 bytes for ISO).

Source filtering, off by default, is a security feature for accepting traffic only from a specific MAC
interface and rejecting all other traffic. If you want to enable it, set in on the physical interface:

 [edit interfaces fe-0/0/2 fastether-options]
 aviva@router1# set source-filtering
 aviva@router1# set source-address-filter 00:05:85:02:38:02

Flow control, which is enabled by default, allows the receiving devices on the link to detect when they
are experiencing congestion and notify their neighboring devices of this. The neighboring devices can
moderate the flow of traffic to reduce or eliminate the congestion.

One interface default not shown in the output is whether the interface operates full duplex or half
duplex. By default, Fast Ethernet interfaces run in full-duplex mode. You can configure half-duplex
mode with the following command:

 [edit interfaces fe-0/0/3]
 aviva@router1# set link-mode half-duplex

Gigabit Ethernet interfaces operate only full duplex. For interoperability the remote end of the link
must also be full duplex.

Each Ethernet interface has a Layer 2 MAC address that is hard-coded on the hardware, and this is
the default MAC address used for the interface:

 Current address: 00:05:85:02:a4:03, Hardware address: 00:05:85:02:a4:03

There may be security or other reasons to change this hard-coded address, which you can do with
following command

 [edit interfaces fe-0/0/3]
 aviva@router1# set mac 00.11.22.33.44.55.66

Checking in the show interfaces command output again, you see that the interface's MAC address is
now different from its hardware address:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Current address: aa:bb:cc:dd:ee:ff, Hardware address: 00:05:85:02:a4:03

The show interfaces command output displays the IPv4 broadcast address, here 192.168.220.255.
This is the default broadcast address, in which the host portion of the subnet (which is
192.168.220.12/24) is set to all ones (for a /24 network, the last 8 bits of the address are ones, which
is 255 in decimal).

Both the physical and logical interfaces have encapsulations. The default for both is Ethernet II (RFC
894).

The physical interface shows the encapsulation in the Link-level type field, and the logical interface
shows it in the Encapsulation field:

 Physical interface: fe-0/0/3, Enabled, Physical link is Up
 Interface index: 131, SNMP ifIndex: 82
 Link-level type: Ethernet, MTU: 1514, Speed: 100mbps, Loopback: Disabled,

 Logical interface fe-0/0/3.0 (Index 69) (SNMP ifIndex 87)
 Flags: SNMP-Traps Encapsulation: ENET2

The JUNOS software supports IEEE 802.1Q VLAN tagging on Ethernet interfaces, which channelizes
an Ethernet interface, allowing it to carry traffic from different Ethernet segments over the same
physical link but keeping the traffic on separate logical interfaces. VLAN tagging works on an entire
physical Ethernet interface, and you configure each logical interface to carry traffic from different
Ethernet segments, as shown in this example:

 [edit interfaces fe-2/1/2]
 aviva@router1# set vlan-tagging
 aviva@router1# set unit 0 vlan-id 0
 aviva@router1# set unit 0 family inet address 10.10.1.0/24
 aviva@router1# set unit 1 vlan-id 1
 aviva@router1# set unit 1 family inet address 10.10.1.1/24
 aviva@router1# set unit 2 vlan-id 0
 aviva@router1# set unit 2 family inet address 10.10.1.2/24

You see the VLAN configuration parameters in the logical portion of the show interfaces command
output:

 aviva@router1# show interfaces fe-2/1/2.2
 Logical interface fe-2/1/2.2 (Index 75) (SNMP ifIndex 214)
 Flags: SNMP-Traps 16384 VLAN-Tag [0x8100.2] Encapsulation: ENET2
 Input packets : 0
 Output packets: 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.10.1/24, Local: 10.10.1.2, Broadcast: 10.10.1.255

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.14. Using VRRP on Ethernet Interfaces

Problem

You want to set up a router to be a backup default gateway to provide redundancy in case the
primary default gateway router goes down.

Solution

Use the Virtual Router Redundancy Protocol (VRRP) to set up a master and a backup gateway. First
set up the master gateway on one router:

 [edit interfaces fe-1/0/0 unit 0 family inet address 10.0.2.2/24]
 aviva@RouterJ# set vrrp-group 1 virtual-address 10.0.2.100
 aviva@RouterJ# set vrrp-group 1 priority 254
 aviva@RouterJ# set vrrp-group 1 authentication-type md5
 aviva@RouterJ# set vrrp-group 1 authentication-key $1991poPPi

Then set up the backup gateway on a second router:

 [edit interfaces fe-1/0/0 unit 1 family inet address 10.0.2.1/24]
 aviva@RouterH# set vrrp-group 1 virtual-address 10.0.2.100
 aviva@RouterH# set vrrp-group 1 authentication-type md5
 aviva@RouterH# set vrrp-group 1 authentication-key $1991poPPi

Discussion

With VRRP, you create a master default gateway router, which is active, on the LAN and one or more
backup gateways that can take over automatically if the master goes down. The master and backup
gateways share the same virtual IP address, which is the address that is advertised to the hosts on
the LAN. If one of the backups takes over, the hosts on the LAN can still reach the default gateway
without needing to be reconfigured.

This recipe sets up VRRP group 1 that has one backup gateway. The shared virtual address is
10.0.2.100. The priority value (a value from1 to 255, with a default of 100) determines which router
is the master and the order in which the backups take over. The router with the highest priority

http://lib.ommolketab.ir
http://lib.ommolketab.ir

becomes the master. Notice that the backups must be on different routers than the master and than
each other.

To check the configuration, use the show vrrp detail command. The following output shows that
RouterJ is the master:

 aviva@RouterJ> show vrrp
 Interface Unit Group Type Address Int state VR state Timer
 fe-1/0/0 0 1 lcl 10.0.2.2 up master A 0.736
 vip 10.0.2.100

RouterH is the backup:

 aviva@RouterH> show vrrp
 Interface Unit Group Type Address Int state VR state Timer
 fe-1/0/0 0 1 lcl 10.0.2.1 up backup D 3.443
 vip 10.0.2.100
 mas 10.0.2.2

The output on both routers shows the real (local) IP address and the virtual address (VIP). The
backup's output also shows the real IP address of the master.

The show vrrp extensive command displays the protocol exchanges and master-backup transitions
among the VRRP group. Here's the output on the current master:

 aviva@RouterJ>
show vrrp extensive
 Interface: fe-1/0/0.0, Interface index: 68, Groups: 1, Active : 1
 Interface VRRP PDU statistics
 Advertisement sent : 392
 Advertisement received : 0
 Packets received : 0
 No group match received : 0
 Interface VRRP PDU error statistics
 Invalid IPAH next type received : 0
 Invalid VRRP TTL value received : 0
 Invalid VRRP version received : 0
 Invalid VRRP PDU type received : 0
 Invalid VRRP authentication type received: 0
 Invalid VRRP IP count received : 0
 Invalid VRRP checksum received : 0

 Physical interface: fe-1/0/0, Unit: 0, Address: 10.0.2.2/24
 Index: 68, SNMP ifIndex: 42, VRRP-Traps: disabled
 Interface state: up, Group: 1, State: master

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Priority: 254, Advertisement interval: 1, Authentication type: md5
 Preempt: yes, Accept-data mode: no, VIP count: 1, VIP: 10.0.2.100
 Advertisement timer: 0.658s, Master router: 10.0.2.2
 Virtual router uptime: 00:08:22, Master router uptime: 00:08:19
 Virtual MAC: 00:00:5e:00:01:01
 Tracking: disabled
 Group VRRP PDU statistics
 Advertisement sent : 392
 Advertisement received : 0
 Group VRRP PDU error statistics
 Bad authentication type received: 0
 Bad password received : 0
 Bad MD5 digest received : 0
 Bad advertisement timer received: 0
 Bad VIP count received : 0
 Bad VIPADDR received : 0
 Group state transition statistics
 Idle to master transitions : 0
 Idle to backup transitions : 1
 Backup to master transitions : 1
 Master to backup transitions : 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.15. Connecting to an Ethernet Switch

Problem

The router connects to an Ethernet switch, and you want to aggregate a number of the switch's
Ethernet interfaces onto a single JUNOS Ethernet interface.

Solution

There are three steps to setting up an aggregated Ethernet interface. First, enable Ethernet
aggregation on the router:

 [edit chassis]
 aviva@router1# set aggregated-devices ethernet device-count 24

Second, enable aggregation on the Ethernet interface:

 [edit interfaces fe-0/0/3]
 aviva@router1# set fastether-options 802.3ad ae0

Finally, configure the aggregated Ethernet interface:

 [edit interfaces ae0]
 aviva@router1# set vlan-tagging
 aviva@router1# set unit 0 vlan-id 1
 aviva@router1# set unit 0 family inet address 10.10.10.1/24

Discussion

Link aggregation of Ethernet interfaces, defined in the IEEE 802.3ad standard, is a way to aggregate
multiple connections from a switch into a single logical interface on a Fast Ethernet or Gigabit
Ethernet interface on an M-series or T-series router. (J-series boxes do not support Ethernet
aggregation). The JUNOS software balances traffic across all member links within an aggregated

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ethernet bundle.

This recipe configures a bundle of 24 aggregated logical interfaces. The set aggregated-devices
ethernet command tells the router chassis process to treat the Ethernet logical interfaces configured
for aggregation as separate virtual devices. On the Fast Ethernet interface, the set fastether-
options 802.3ad ae0 command turns on aggregation on the interface and associates the interface
with aggregated Ethernet interface 0. Because the aggregation creates virtual links on the interface,
do not configure a logical interface on the Fast Ethernet interface.

To set up the aggregated Ethernet interface itself, configure VLAN tagging and a logical interface with
an IP address on interface ae0.

Verify the configuration by looking at the Fast Ethernet and aggregated Ethernet interfaces. On the
Fast Ethernet interface, you see the logical interface points to the aggregated Ethernet bundle:

 aviva@router1> show interfaces fe-0/0/3
 Physical interface: fe-0/0/3, Enabled, Physical link is Up
 Interface index: 131, SNMP ifIndex: 82
 Description: to nutmeg fe-003
 Link-level type: Ethernet, MTU: 1518, Speed: 100mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Enabled
 Device flags : Present Running
 Interface flags: SNMP-Traps 16384
 Link flags : 4
 CoS queues : 4 supported
 Current address: 00:05:85:02:a7:f0, Hardware address: 00:05:85:02:a4:03
 Last flapped : 2005-05-26 03:10:25 PDT (05:39:39 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 Active alarms : None
 Active defects : None

 Logical interface fe-0/0/3.0 (Index 72) (SNMP ifIndex 87)
 Flags: SNMP-Traps 16384
VLAN-Tag [0x8100.1] Encapsulation: ENET2
 Input packets : 0
 Output packets: 0

Protocol aenet, AE bundle: ae0.0

 Logical interface fe-0/0/3.32767 (Index 73) (SNMP ifIndex 88)
 Flags: SNMP-Traps 16384 VLAN-Tag [0x0000.0] Encapsulation: ENET2
 Input packets : 0
 Output packets: 0

The first logical interface points to the ae0.0 aggregated Ethernet bundle. The JUNOS software
creates a second logical interface, fe-0/0/3.32767, for handling traffic that is not part of the
aggregate, such as the Link Aggregation Control Protocol (LACP) traffic exchanged by the aggregated
partners.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

On the aggregated Ethernet interface, you see information about the bundle and traffic statistics:

 aviva@router1> show interfaces ae0
 Physical interface: ae0, Enabled, Physical
link is Up
 Interface index: 302, SNMP ifIndex: 89
 Link-level type: Ethernet, MTU: 1518, Speed: 100mbps, Loopback: Disabled,
 Source filtering: Disabled, Flow control: Disabled, Minimum links needed: 1
 Device flags : Present Running
 Interface flags: SNMP-Traps 16384
 Current address: 00:05:85:02:a7:f0, Hardware address: 00:05:85:02:a7:f0
 Last flapped : Never
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)

 Logical interface ae0.0 (Index 69) (SNMP ifIndex 211)
 Flags: SNMP-Traps 16384 VLAN-Tag [0x8100.1] Encapsulation: ENET2
 Statistics Packets pps Bytes bps
 Bundle:
 Input : 0 0 0 0
 Output: 0 0 0 0
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.10.10/24, Local: 10.10.10.1, Broadcast: 10.10.10.255

Notice that the VLAN tag on the aggregated Ethernet interface matches that of the fe-0/0/3.0 logical
interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.16. Configuring T1 Interfaces

Problem

You want to configure the T1 interface on your router.

Solution

Use the following commands to configure a T1 interface:

 [edit interfaces]
 aviva@RouterF# set t1-0/0/3 unit 0 family inet address 10.0.13.1/24
 aviva@RouterF# set t1-0/0/3 description "J2300 T1 line in local office"

Discussion

The basic configuration to get a T1 interface is very straightforward. You just set the interface's IP
address. T1 interfaces can handle 24 simultaneous connections, called channels or timeslots, running
at a combined 1.544 Mbps. Each T1 or DS1 packet is 193 bits and consists of 24 8-bit frames that
carry data, plus one framing bit. Each port on a T1 or DS1 PIC can have a maximum of 24 channels.

Once the interface is configured, check its status:

 aviva@RouterF> show interfaces t1-0/0/3
 Physical interface: t1-0/0/3, Enabled, Physical link is Up
 Interface index: 140, SNMP ifIndex: 38
 Description: J2300 T1 line in local office
 Link-level type: PPP, MTU: 1504, Clocking: Internal, Speed: T1,
 Loopback: None, FCS: 16, Framing: ESF
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps 16384
 Link flags : Keepalives
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 164568 (00:00:06 ago), Output: 164561 (00:00:03 ago)
 LCP state: Opened
 NCP state: inet: Opened, inet6: Not-configured, iso: Not-configured, mpls:
 Not-configured
 CHAP state: Not-configured

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 CoS queues : 8 supported
 Last flapped : 2005-04-15 21:13:25 PDT (5w3d 11:12 ago)
 Input rate : 40 bps (0 pps)
 Output rate : 48 bps (0 pps)
 DS1 alarms : None
 DS1 defects : None

 Logical interface t1-0/0/3.0 (Index 69) (SNMP ifIndex 40)
 Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.0.13/24, Local: 10.0.13.2, Broadcast: 10.0.13.255

This output shows some of the default settings on T1 interfaces. The first highlighted line shows that
the connection is point to point (PPP), the MTU size is 1,504 bytes, the clocking is internal, and the
interface speed is T1, or 1.544 Mbps. The second line shows that loopback mode is disabled, the
frame checksum size (FCS) is 16 bits, and the framing mode is extended superframe. Two other
defaults not shown in the output are a byte encoding of 8 bites per byte (nx64) and B8ZS line
encoding. In the last line of the output, you see the interface address that you configured.

To change the FCS to 32 bits to provide more reliable packet verification, use this command:

 [edit interfaces t1-0/0/3]
 aviva@RouterF# set t1-options fcs 32

T1 has two framing modes, D4 super frame (SF) and extended super frame (ESF). An SF frame
consists of 192 data bits, arranged into 24 8-bit channels, and a single framing bit. That single
framing bit is used as part of a 12-bit framing sequence. ESF extends the super frame from 12
frames to 24 frames. To change the framing mode to SF, use this command:

 [edit interfaces t1-0/0/3]
 aviva@RouterF# set t1-options framing sf

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.17. Performing a Loopback Test on a T1
Interface

Problem

A new T1 interface has been installed and configured, and you want to perform a loopback test to
make sure the interface is operating properly.

Solution

Set up a T1 loopback configuration:

 [edit interfaces t1-0/0/3]
 aviva@RouterF# set t1-options loopback local
 aviva@RouterF# set no-keepalives
 aviva@RouterF# set encapsulation cisco-hdlc
 aviva@RouterF# commit

Make sure the interface is up:

 aviva@RouterF> show interfaces t1-0/0/3 terse
 Interface Admin Link Proto Local Remote
 t1-0/0/3 up up

Then zero all the statistics on the interface:

 aviva@RouterF> clear interfaces statistics t1-0/0/3

Run the loopback test, which sends 1,000 ping messages rapidly and reports the results in a single
message:

 aviva@RouterF> ping interface t1-0/0/3 10.0.13.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bypass-routing count 1000 rapid
 PING 10.0.13.2 (10.0.13.2): 56 data bytes
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 !!
 --- 10.0.13.2 ping statistics --
 1000 packets transmitted, 1000 packets received, 0% packet loss
 round-trip min/avg/max/stddev = 2.376/19.102/369.920/35.795 ms

Discussion

To perform a loopback test on the T1 interface, first configure the T1 interface to use local loopback
mode. Also include the encapsulation cisco-hdlc and no-keepalives statements to force the
interface to stay up so you can run the ping loopback test. Then you need to create a physical
loopback at the T1 port by connecting a T1 loopback plug to the T1 port. You can make a T1
loopback plug by connecting pin 1 to pin 4 and pin 2 to pin 5 on an RJ-48 plug.

The first commands in this recipe configure the loopback. After making sure the interface is up and
zeroing all interfaces statistics, run the loopback test, which sends 1000 ping messages rapidly and
reports the results in a single message. Include the bypass-routing option in the ping command to
directly ping a system on an attached network, bypassing normal routing tables. This option forces
the packets to be transmitted out the interface, because they have a local destination address and
from an IP point of view, they are already at their destination.

If there are any problems on the link, you see input and output errors in the show interfaces
extensive command output. This output also shows that 1,000 ping messages were sent (in Output
packets) and 1,000 responses were received (in Input packets).

 aviva@RouterF> show interfaces t1-0/0/3 extensive
 Physical interface: t1-0/0/3, Enabled, Physical link is Up
 Interface index: 140, SNMP ifIndex: 38, Generation: 21
 Description: J2300 T1 line in local office
 Link-level type: Cisco-HDLC, MTU: 1504, Clocking: Internal, Speed: T1,

Loopback: Local, FCS: 16, Framing: ESF
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps 16384
 Link flags : No-Keepalives

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Hold-times : Up 0 ms, Down 0 ms
 CoS queues : 8 supported
 Last flapped : 2005-05-25 20:57:42 PDT (00:02:13 ago)
 Statistics last cleared: 2005-05-25 20:58:04 PDT (00:01:51 ago)
 Traffic statistics:
 Input bytes : 84000 0 bps
 Output bytes : 89000 0 bps
 Input packets : 1000 0 pps
 Output packets: 1000 0 pps
 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Policed discards: 0,
 L3 incompletes: 0, L2 channel errors: 0, L2 mismatch timeouts: 0,
 HS link CRC errors: 0, SRAM errors: 0, Resource errors: 0
 Output errors:
 Carrier transitions: 0, Errors: 0, Drops: 0, Aged packets: 0, MTU errors: 0,
 Resource errors: 0
 Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 1000 1000 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 1284 1284 0
 DS1 alarms : None
 DS1 defects : None
 T1 media: Seconds Count State
 SEF 0 0 OK
 BEE 0 0 OK
 AIS 0 0 OK
 LOF 0 2 OK
 LOS 0 1 OK
 YELLOW 2 1 OK
 BPV 0 0
 EXZ 1 1
 LCV 1 1
 PCV 0 0
 CS 0 0
 LES 1
 ES 0
 SES 0
 SEFS 0
 BES 0
 UAS 0
 …

The later part of the command output shows any active alarms and T1 media defects, which you can
also use to troubleshoot interface problems.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.18. Setting Up a BERT Test on a T1 Interface

Problem

You want to run a bit error rate test (BERT) to test the quality of a T1 link.

Solution

First, configure the BERT test parameters on the local interface:

 [edit interfaces t1-0/0/3]
 aviva@RouterF# set t1-options
bert-algorithm repeating-3-in-24
 aviva@RouterF# set t1-options bert-period 180
 aviva@RouterF# set disable

Then, put the interface at the far end of the link into loopback:

 [edit interfaces t1-0/0/3]
 aviva@RouterE# set t1-options loopback remote

Then run the BERT test on the local router:

 aviva@RouterF> test interface t1-0/0/3 t1-bert-start

Use the following command to stop a BERT test:

 aviva@RouterF> test interface t1-0/0/3 t1-bert-stop

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BERT testing checks the quality of a link by sending out a known bit pattern and verifying that the
received pattern matches. Bit errors occur when the pattern doesn't match and indicates noise or
other problems on the physical circuit. The higher the bit error rate, the worse the problem. The link
you are testing is in loopback mode so the transmitted packets are looped back to the same
interface.

This recipe shows how to configure BERT on a local T1 interface. You can also configure it similarly on
other interfaces, including T3, E1, E3, DS, OC3, OC12, and STM1. Choose a bit pattern to send out in
the set bert-algorithm command. There are about 20 patterns, including all ones, all zeros,
alternating ones and zeros, and setting one bit out of a group of bits. Use the set t1-options bert-
algorithm ? command to see the full list. In this recipe, we set 3 bits out of each 24 bits. By default,
a BERT test runs for 10 seconds. We change this to 3 minutes (180 seconds). Finally, the T1
interface must be disabled for the BERT test to work.

On the remote end, the link must be in remote loopback mode. Verify that the remote end of the link
is in remote loopback mode:

 aviva@RouterE> show interfaces t1-0/0/3
 Physical interface: t1-0/0/3, Enabled, Physical link is Up
 Interface index: 140, SNMP ifIndex: 38
 Link-level type: PPP, MTU: 1504, Clocking: Internal, Speed: T1,
 Loopback: Remote, FCS: 16, Framing: ESF
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps 16384
 Link flags : Keepalives
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 0 (never), Output: 0 (never)
 LCP state: Conf-req-sent
 NCP state: inet: Down, inet6: Not-configured, iso: Not-configured, mpls:
 Not-configured
 CHAP state: Not-configured
 CoS queues : 8 supported
 Last flapped : 2005-05-26 10:21:08 PDT (00:00:07 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 72 bps (0 pps)
 DS1 alarms : None
 DS1 defects : None

 Logical interface t1-0/0/3.0 (Index 69) (SNMP ifIndex 39)
 Flags: Hardware-Down Point-To-Point SNMP-Traps Encapsulation: PPP
 Protocol inet, MTU: 1500
 Flags: Protocol-Down
 Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 10.0.13/24, Local: 10.0.13.1, Broadcast: 10.0.13.255

The physical interface is marked Loopback: Remote. In addition, a number of fields in the logical
interface section indicate that the T1 interface at the remote side of the link is down.

Run the BERT test from operational mode. Because this is a T1 interface, use the t1- bert-start

http://lib.ommolketab.ir
http://lib.ommolketab.ir

option. For other interfaces, use the test interface ? command to determine the proper option.

The show interfaces extensive command shows the results of the BERT test. Here, the test is in
progress:

 aviva@RouterF> show interfaces extensive t1-0/0/3 | find bert
 DS1 BERT configuration:
 BERT time period: 180 seconds, Elapsed: 96 seconds (in progress)
 Induced Error rate: 10e-0, Algorithm: 3 in 24, Repetitive (26)

Bit count : 146557240
 Error bit count: 0
 …

The following output shows the results of the completed test, which found no bit errors on the T1
link:

 aviva@RouterF> show interfaces extensive t1-0/0/3 | find bert
 DS1 BERT configuration:
 BERT time period: 180 seconds, Elapsed: 180 seconds (completed)
 Induced Error rate: 10e-0, Algorithm: 3 in 24, Repetitive (26)
 Bit count : 273186232
 Error bit count: 0
 …

You can configure an error rate to force errors in the bit stream:

 [edit interfaces t1-0/0/3]
 aviva@RouterF# set t1-options
bert-error-rate 3

This configuration generates one error in every 1,000 packets (10e-3). The show interfaces
command output shows the number of errors and the error rate:

 aviva@RouterF> show interfaces t1-0/0/3 extensive | find
bert
 DS1
BERT configuration:
 BERT time period: 10 seconds, Elapsed: 10 seconds (completed)
 Induced Error rate: 10e-3, Algorithm: 3 in 24, Repetitive (26)
 Bit count : 15369016
 Error bit count: 15355

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Error rate: 10e-3.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.19. Configuring Frame Relay on a T1 Interface

Problem

You have a router that provides Frame Relay circuits to your customers. You want to set up a back-
to-back connection between your router and that of a customer.

Solution

Use the following commands to configure Frame Relay:

 [edit interfaces t1-0/0/3]
 aviva@RouterF# set description "J2300 T1 line in local office"
 aviva@RouterF# set encapsulation
frame-relay
 aviva@RouterF#
set dce
 aviva@RouterF# set unit 0 description "Customer A"
 aviva@RouterF# set unit 0
dlci 100
 aviva@RouterF# set unit 0 family inet address 10.0.13.2/24

Discussion

Frame Relay is a point-to-point technology that switches packets through a network instead of
routing them. The paths through the network are called virtual circuits (VCs). Each VC is identified by
a Data Link Connection Identifier (DLCI), which is a number from 0 to 1023. In the JUNOS software,
DLCIs 0 through 15 are reserved, so you can use 16 through 1023 to carry traffic. Generally, you
might want to configure Frame Relay on slower interfaces, such as T1, serial, or ISDN.

You configure each VC on a separate logical interface, setting a DLCI number and IP address. You
also set the encapsulation to frame-relay on the physical interface itself. On the remote side of the
VC, you configure a DLCI that has the same number. Because the two router interfaces are in a
back-to-back configuration, include the set dce command on one end of the link to have the router
look like a Frame Relay switch.

Use the show interfaces command to verify that the DLCI is up and running:

 aviva@RouterF> show interfaces t1-0/0/3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Physical interface: t1-0/0/3, Enabled, Physical link is Up
 Interface index: 140, SNMP ifIndex: 38
 Description: J2300 T1 line in local office
 Link-level type: Frame-Relay, MTU: 1504, Clocking: Internal, Speed: T1,
 Loopback: None, FCS: 16, Framing: ESF
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps 16384
 Link flags : No-Keepalives DCE
 ANSI LMI settings: n392dce 3, n393dce 4, t392dce 15 seconds
 LMI: Input: 0 (never), Output: 0 (never)
 CoS queues : 8 supported
 Last flapped : 2005-05-26 05:50:29 PDT (03:45:59 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 DS1 alarms : None
 DS1 defects : None

 Logical interface t1-0/0/3.0 (Index 71) (SNMP ifIndex 40)
 Description: Customer A
 Flags: Point-To-Point SNMP-Traps Encapsulation: FR-NLPID
 Input packets : 0
 Output packets: 0
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.0.13/24, Local: 10.0.13.2, Broadcast: 10.0.13.255
 DLCI 100
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Input packets : 0
 Output packets: 0

The physical interface properties show the Frame Relay encapsulation on the link layer (Link-level
type: Frame-Relay). Under logical interfaces, the logical interface is up (no flags are set; if it were
down, you would see Device-Down) and the DLCI is operational (Flags: Active).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.20. Configuring a SONET Interface

Problem

Your want to configure a SONET OC192 interface.

Solution

Use the following commands for a basic configuration:

 [edit interfaces so-4/0/0]
 aviva@t320# set description "JUNOS cookbook SONET OC192 interface"
 aviva@t320# set unit 0 family inet address 192.0.4.1/24

Discussion

Synchronous Optical Network (SONET) is a high-speed fiber-optic transmission that was developed
in the 1980s by Bellcore and is the American standard of the CCITT Synchronous Digital Hierarchy
(SDH) standard for a hierarchy of optical transmission rates. SONET uses LEDs or lasers to transmit
bits with pulses of light.

The basic building block of the SONET/SDH hierarchy in the optical domain is an OC1; in the electrical
domain, it is an STS1. An OC1 operates at 51.840 Mbps. Common SONET speeds are OC3 (155.52
Mbps), OC12 (622.08 Mbps), OC48 (2.488 Gbps), and OC192 (9.953 Gbps), and the JUNOS software
supports a variety of SONET PICs for all these interface speeds.

In this recipe, we are configuring the SONET OC192 PIC in slot 4 of a T320 router:

 aviva@t320> show chassis hardware
 Hardware inventory:
 Item Version Part number Serial number Description
 Chassis 19086 T320
 …
 FPC 4 REV 01 710-005803 AZ2121 FPC Type 3
 CPU REV 09 710-001726 AY4902 FPC CPU
 PIC 0 REV 01 750-004535 HC0276 1x OC-192 SM SR1
 PIC 1 REV 03 750-003336 HJ9955 4x OC-48 SONET, SMSR
 MMB 1 REV 01 710-005555 AZ2192 MMB-288mbit
 …

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The basic configuration is straightforward. You just need an IP address. Use the show interfaces
terse command to check that the interface is up:

 aviva@t320> show interfaces so-4/0/0 terse
 Interface Admin Link Proto Local Remote
 so-4/0/0 up up
 so-4/0/0.0 up up inet 198.0.4.1/24

The output shows that both the physical and logical interfaces are up and running.

To verify the configuration and operation, look at the interface status:

 aviva@t320> show interfaces so-4/0/0
 Physical interface: so-4/0/0, Enabled, Physical link is Up
 Interface index: 131, SNMP ifIndex: 24
 Description: JUNOS cookbook SONET OC192 interface
 Link-level type: PPP, MTU: 4474, Clocking: Internal, SONET mode, Speed: OC192
 Loopback: None, FCS: 16, Payload scrambler: Enabled
 Device flags : Present Running
 Interface flags: Point-To-Point SNMP-Traps 16384
 Link flags : Keepalives
 Keepalive settings: Interval 10 seconds, Up-count 1, Down-count 3
 Keepalive: Input: 1688 (00:00:01 ago), Output: 1693 (00:00:05 ago)
 LCP state: Opened
 NCP state: inet: Opened, inet6: Not-configured, iso: Not-configured, mpls:
 Opened
 CHAP state: Not-configured
 CoS queues : 8 supported
 Last flapped : 2005-05-26 10:41:53 PDT (07:29:52 ago)
 Input rate : 40 bps (0 pps)
 Output rate : 48 bps (0 pps)

SONET alarms : None

SONET defects : None

 Logical interface so-4/0/0.0 (Index 67) (SNMP ifIndex 22)
 Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
 Protocol inet, MTU: 4470
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 192.0.4/24, Local: 192.0.4.1, Broadcast: 192.0.4.255

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Highlighted in this output are some of the default SONET interface settings. The link-level type is PPP,
the default for interfaces with permanent virtual circuits. The default SONET media MTU for T320
routers is 4,474 bytes, and the default IPv4 MTU size (displayed in the logical interface section) is
4,470 bytes. SONET interfaces uses the router's internal stratum 3 clock as the default source of the
transmit clock. The default FCS is 16 bites, and payload scrambling is enabled by default to improve
link stability.

To see traffic statistics and debug issues with the SONET frames, use the show interfaces extensive
command:

 aviva@t320> show interfaces so-4/0/0 extensive
 …
 Statistics last cleared: Never
 Traffic statistics:
 Input bytes : 2981660896 40 bps
 Output bytes : 114715226202 48 bps
 Input packets: 34674367 0 pps
 Output packets: 1333901910 0 pps
 Input errors:
 Errors: 0, Drops: 0, Framing errors: 0, Runts: 0, Giants: 0,
 Bucket drops: 0, Policed discards: 0, L3 incompletes: 0,
 L2 channel errors: 0, L2 mismatch timeouts: 0, HS link CRC errors: 0,
 HS link FIFO overflows: 0
 Output errors:
 Carrier transitions: 1, Errors: 0, Drops: 0, Aged packets: 0,
 HS link FIFO underflows: 0, MTU errors: 0
 Queue counters: Queued packets Transmitted packets Dropped packets
 0 best-effort 1333890630 1333890630 0
 1 expedited-fo 0 0 0
 2 assured-forw 0 0 0
 3 network-cont 11280 11280 0
 SONET alarms : None
 SONET defects : None
 SONET PHY: Seconds Count State
 PLL Lock 22 1 OK
 PHY Light 22 1 OK
 SONET section:
 BIP-B1 0 0
 SEF 22 182 OK
 LOS 22 1 OK
 LOF 22 1 OK
 ES-S 22
 SES-S 22
 SEFS-S 22

SONET line:
 BIP-B2 0 0
 REI-L 0 0
 RDI-L 0 0 OK
 AIS-L 22 1 OK
 BERR-SF 0 0 OK

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BERR-SD 0 0 OK
 ES-L 22
 SES-L 22
 UAS-L 12
 ES-LFE 0
 SES-LFE 0
 UAS-LFE 0

SONET path:
 BIP-B3 0 0
 REI-P 0 0
 LOP-P 0 0 OK
 AIS-P 22 1 OK
 RDI-P 0 0 OK
 UNEQ-P 0 0 OK
 PLM-P 0 0 OK
 ES-P 22
 SES-P 22
 UAS-P 12
 ES-PFE 0
 SES-PFE 0
 UAS-PFE 0
 Received SONET overhead:
 F1 : 0x00, J0 : 0x01, K1 : 0x00, K2 : 0x00
 S1 : 0x00, C2 : 0xcf, C2(cmp) : 0xcf, F2 : 0x00
 Z3 : 0x00, Z4 : 0x00, S1(cmp) : 0x00
 Transmitted SONET overhead:
 F1 : 0x00, J0 : 0x01, K1 : 0x00, K2 : 0x00
 S1 : 0x00, C2 : 0xcf, F2 : 0x00, Z3 : 0x00
 Z4 : 0x00
 Received path trace: tercel so-3/1/0
 74 65 72 63 65 6c 20 73 6f 2d 33 2f 31 2f 30 00 tercel so-3/1/0.
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 0d 0a
 Transmitted path trace: neon so-4/0/0
 6e 65 6f 6e 20 73 6f 2d 34 2f 30 2f 30 00 00 00 neon so-4/0/0...
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.21. Using APS to Protect Against SONET Circuit
Failures

Problem

One of your routers has two SONET interfaces that connect to the same add/drop multiplexer (ADM).
You want to make sure that if one of the PICs or FPCs fails, the router does not lose its connection
with the ADM.

Solution

To set up basic APS, first configure the working circuit:

 [edit
interfaces so-3/1/0 sonet-options]
 aviva@t320# set aps working-circuit APS-at-my-colo
 aviva@t320# set aps authentication-key $1991poPPi

Then configure the protect circuit:

 [edit interfaces so-1/1/0 sonet-options]
 aviva@t320# set aps protect-circuit APS-at-my-colo
 aviva@t320# set aps authentication-key $1991poPPi

Discussion

APS allows a SONET circuit to switch over to a backup (protect) circuit in the event that the active
(working) circuit fails. If the working circuit fails or degrades, the ADM and protect router switch the
traffic to the protect circuit, which becomes active. JUNOS software uses APS 1+1 switching, which
pairs a working circuit with a protect circuit. It supports both revertive and nonrevertive modes, but
only bidirectional mode. The APS specification (GR-253-CORE, SONET Transport Systems: Common
Generic Criteria) requires that the working and protect circuits transmit identical data, but the JUNOS
software does not do this, which turns out to have no operational impact.

When protecting the PIC or FPC, configure two SONET interfaces on different FPCs. In this recipe, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

working circuit is on FPC3 and the protect circuit is on FPC1. The APS group name, here APS-at-my-
colo, and the authentication key must be the same to associate the two interfaces. On the ADM side,
the router's working circuit must be connected to the ADM's working circuit, and the router's protect
circuit must likewise be connected to the ADM's protect circuit.

When using APS to protect the entire router, use the same configuration on SONET interfaces in two
different routers and also specify the address of the other router:

 [edit interfaces so-3/1/0 sonet-options]
 aviva@t320# set aps neighbor 192.0.8.2/24

Use the show aps command to check that the APS circuits are up:

 aviva@t320>
show aps
 Interface Group Circuit Intf state
 so-1/1/0 APS-at-my-colo Protect disabled, up
 so-3/1/0 APS-at-my-colo Working enabled, up

The output shows that in the group APS-at-my-colo, the working circuit, so-3/0/1, is operational and
the backup circuit, so-1/1/0, is down. You can also see this in the show interfaces command output:

 aviva@t320> show interfaces so-1/1/0
 Physical interface: so-1/1/0,
Administratively down, Physical link is Up
 …
 Logical interface so-1/1/0.0 (Index 67) (SNMP ifIndex 63)
 Flags: Hardware-Down Device-Down Point-To-Point SNMP-Traps
 Encapsulation: PPP
 Protocol inet, MTU: 4470
 Flags: Protocol-Down
 Addresses, Flags: Dest-route-down Is-Preferred Is-Primary
 Destination: 192.0.2/24, Local: 192.0.2.2, Broadcast: 192.0.2.255

This output shows that the physical link is up, but the physical interface is administratively down
because you have configured it as a backup. The logical interface is also down.

The show aps group command gives detailed status of the two circuits:

 aviva@t320> show aps group APS-at-my-colo
 Interface Group Circuit Intf state
 so-1/1/0 APS-at-my-colo Protect disabled, up

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Neighbor 0.0.0.0, adj up,neighbor interface enabled,dead 2.912
 Channel state Working
 Working circuit is on interface so-3/1/0
 local-mode bidirectional(5),neighbor-mode bidirectional(5)
 Req K1 0x00, rcv K1 0x00, xmit K1 0x00,nbr K1 0x00, nbr paired req 0
 Revert time 0, neighbor revert time 0
 Hello due in 0.632
 so-3/1/0 APS-at-my-colo Working enabled, up
 Neighbor 0.0.0.0, adj up,neighbor interface disabled,dead 2.672
 Channel state Working
 Protect circuit is on interface so-1/1/0
 local-mode bidirectional(5),neighbor-mode bidirectional(5)
 Req K1 0x00, rcv K1 0x00, xmit K1 0x00,nbr K1 0x00, nbr paired req 0
 Revert time 0, neighbor revert time 0
 Hello due in 0.861

By default, APS is nonrevertive, which means that if the protect circuit becomes active, traffic is not
switched back to the working circuit unless the protect circuit fails or you manually configure a switch
to the working circuit. You can set the circuit to switch back after a specified amount of time, here 15
minutes:

 [edit interfaces so-3/1/0 sonet-options]
 aviva@t320# set aps revert-time 9000

The ADM must also be in revertive mode. You can also manually switch the circuit back to being the
working circuit:

 [edit interfaces so-3/1/0 sonet-options]
 aviva@t320# set
aps request working

See Also

GR-253-CORE, SONET Transport Systems: Common Generic Criteria

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.22. Configuring an ATM Interface

Problem

You need to get the ATM interface in your router up and running.

Solution

Set up the ATM interface with one virtual path identifier (VPI) and one virtual circuit identifier (VCI):

 [edit interfaces at-1/0/0]
 aviva@M10i#
set atm-options pic-type atm2
 aviva@M10i# set atm-options
vpi 0
 aviva@M10i# set unit 0 vci 0.32
 aviva@M10i# set unit 0 family inet address 136.1.1.1/24

Discussion

ATM connections are set up over virtual paths and virtual circuits. The virtual path, represented by a
VPI, establishes a route between two devices in a network. Each VPI can contain multiple virtual
circuits, each with a VCI. There can be a maximum of 4,090 VCIs, starting at number 32. (Numbers
0 through 31 are reserved.) The VPI can range from 0 through 255. VPIs and VCIs are local to the
router, so only the two devices connected by them need know the details of the connection.

This recipe sets up a basic ATM interface for a one-port ATM2 OC-12 PIC that is in slot 1. The ATM
interface has a VPI of 0 and a VCI of 32. You configure the virtual circuit on the logical interface
because, as the name implies, it's a virtual, not a physical, interface. It is also important to include
the set atm-options command to explicitly configure the PIC as an ATM2 PIC type, not an ATM1.
Some statements for configuring ATM PICs work either with the ATM1 PIC or the ATM2 PIC, but not
both. If you do not use the set atm-options command, and if you use an ATM1-only statement with
an ATM2 interface, the JUNOS software assumes that the PIC is an ATM1 and configures it
accordingly, but the interface will not operate as you expect it to. The same thing happens if you use
ATM2-only statements with an ATM1 interface. In either case, the JUNOS CLI provides no warning or
commit error. If, however, you use the set atm-options command and include statements for the
other type of ATM PIC, the configuration won't commit and JUNOS CLI error messages will tell you
where the problem is.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This recipe is for the newer ATM2 PICs. The configuration for ATM1 PICs is more involved.

Use the show chassis hardware command to check the ATM PIC type:

 aviva@M10i> show chassis hardware
 Hardware inventory:
 Item Version Part number Serial number Description
 Chassis 19155 M10i
 …
 FPC 1 E-FPC
 PIC 0 REV 02 750-005718 BG0216 1x OC-12 ATM-II IQ, MM
 PIC 1 REV 09 750-008425 HX1881 Adaptive Services
 PIC 2 REV 02 750-003748 HC2155 2x OC-3 SONET, SMIR
 PIC 3 REV 05 750-005726 CC3987 1x OC-12 ATM-II IQ, MM

Use the show interfaces command to check that the ATM interface is correctly configured and is
running:

 aviva@M10i> show interfaces at-1/0/0
 Physical interface: at-1/0/0, Enabled, Physical link is Up
 Interface index: 132, SNMP ifIndex: 49
 Link-level type: ATM-PVC, MTU: 4482, Clocking: Internal, SONET mode,
 Speed: OC12, Loopback: None, Payload scrambler: Enabled
 Device flags : Present Running
 Link flags : None
 CoS queues : 4 supported
 Current address: 00:05:85:70:a4:7e
 Last flapped : 2005-05-24 17:46:05 PDT (1d 05:11 ago)
 Input rate : 0 bps (0 pps)
 Output rate : 0 bps (0 pps)
 SONET alarms : None
 SONET defects : None

VPI 0
 Flags: Active
 Total down time: 0 sec, Last down: Never
 Traffic statistics:
 Input packets: 8918
 Output packets: 8999

 Logical interface at-1/0/0.0 (Index 66) (SNMP ifIndex 30)
 Flags: Point-To-Point SNMP-Traps 16384 Encapsulation: ATM-SNAP
 Input packets : 8918
 Output packets: 8999
 Protocol inet, MTU: 4470
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 136.1.1/24, Local: 136.1.1.1, Broadcast: 136.1.1.255

http://lib.ommolketab.ir
http://lib.ommolketab.ir

VCI 0.32
 Flags: Active, 1024
 Total down time: 0 sec, Last down: Never
 EPD threshold: 4259, Transmit weight cells: 0
 Input packets : 8918
 Output packets: 8999

 Logical interface at-1/0/0.32767 (Index 67) (SNMP ifIndex 29)
 Flags: Point-To-Multipoint No-Multicast SNMP-Traps 16384
 Encapsulation:
ATM-VCMUX
 Input packets : 0
 Output packets: 0

VCI 0.4
 Flags: Active, 1024
 Total down time: 0 sec, Last down: Never
 EPD threshold: 0, Transmit weight cells: 0
 Input packets : 0
 Output packets: 0

For the physical interface, the device flags Present, Running indicate that the physical ATM interface
is operating properly. For the logical interface, the lack of a Down flag indicates that the logical portion
of the interface is up. The Active flag under the VCI shows that the VCI is working.

The configuration of a basic ATM interface is straightforward, and the show interfaces command
output illustrates some of the default ATM interface settings. The link-level type is ATM-PVC, the
default for interfaces with permanent virtual circuits. The default SONET media MTU for M10i routers
is 4,482 bytes, and the default IPv4 MTU size (displayed in the logical interfaces section) is 4,470
bytes. SONET interfaces use the router's internal stratum 3 clock as the default source of the
transmit clock. Payload scrambling is also enabled by default to improve link stability.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.23. Dealing with Nonconfigurable Interfaces

Problem

You see interfaces in the show interfaces command output that you didn't configure, and you want
to know what to do with them.

Solution

The JUNOS software internally generates a number of interfaces that you cannot configure:

 aviva@router1> show interfaces terse
 Interface Admin Link Proto Local Remote
 dsc up up
 fxp0 up up
 fxp0.0 up up inet 192.168.71.246/21
 fxp1 up up
 fxp1.0 up up inet 10.0.0.4/8
 tnp 4
 gre up
 ipip up
 lo0 up up
 lo0.0 up up inet 127.0.0.1 --> 0/0.
 lo0.16385 up up inet
 inet6 fe80::2a0:a5ff:fe12:3ed5
 lsi up up
 mtun up up
 pimd up up
 pime up up
 tap up up

Description

Toward the end of the show interfaces output, you see a number of interfaces that don't correspond
to any of the physical interfaces you have configured on the router. Most of these special interfaces
are internal interfaces that are created and used by the JUNOS software to route traffic within the
router. The fxp0 (the out-of-band management) and loopback (lo0) interfaces, which are
configurable, provide connection to the Routing Engine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The fxp1 interface is an internal Ethernet interface that connects the Packet Forwarding Engine (all
the chassis hardware components) to the Routing Engine, which handles all routing protocol
operations. The output in this recipe shows that fxp1 has an internal IPv4 address of 10.0.0.5/8 and
a Trivial Network Protocol (TNP) address of 5. JUNOS software uses the proprietary TNP internally to
communicate between the forwarding and Routing Engines.

As a side note, the fxp0 and fxp1 interfaces take their names from the FreeBSD fxp Ethernet device
driver.

On J-series routers, the Packet Forwarding Engine and Routing Engine functionality is on the same
chip, so there is no fxp1 interface or its equivalent. Also, because the fe-0/0/0 serves the function of
the fxp0 interface, it isn't listed at the end of the show interfaces terse command output with the
nonconfigurable interfaces:

 aviva@RouterA> show interfaces terse
 Interface Admin Link Proto Local Remote
 fe-0/0/0 up up
 fe-0/0/0.0 up up inet 10.0.16.1/24
 172.19.121.142/24
 gr-0/0/0 up up
 ip-0/0/0 up up
 ls-0/0/0 up up
 lt-0/0/0 up up
 mt-0/0/0 up up
 pd-0/0/0 up up
 pe-0/0/0 up up
 sp-0/0/0 up up
 sp-0/0/0.16383 up up inet
 fe-0/0/1 up up
 fe-0/0/1.0 up up inet 10.0.15.2/24
 se-0/0/2 up down
 se-0/0/3 up up
 se-0/0/3.0 up up inet 10.0.21.1/24
 dsc up up
 gre up up
 ipip up up
 lo0 up up
 lo0.0 up up inet 192.168.42.1 --> 0/0
 lo0.16385 up up inet 10.0.0.1 --> 0/0
 10.0.0.16 --> 0/0
 lsi up up
 mtun up up

pimd up up

pime up up
 pp0 up up
 tap up up

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dsc is a virtual interface that is used to discard packets, which you might want to do if the router is
experiencing a denial-of-service (DoS) attack. You can configure one discard interface. If you
associate an output filter with the interface, you can log or count DoS traffic before discarding it to
determine the source of the attack.

The remaining interfaces are created by the kernel and are used internally by the JUNOS software.
Some have corresponding configurable interfaces for setting up tunnels on Tunnel Services PICs. You
set up unicast tunnels with the gr- or ip-physical interfaces, in place of the nonconfigurable gre and
ipip interfaces, to use generic route encapsulation or IP-IP encapsulation, respectively. PIM tunnels,
used by PIM sparse mode, have two interfaces, pe- and pd-, for encapsulating and deencapsulating
PIM Register messages. When the router has a Tunnel Services PIC installed, the software
automatically configures one multicast tunnel interface, mt- (corresponding to mtun), for each virtual
private network (VPN) you configure.

The lo0.16385 interface is created by the Internet Routing process (irsd) and is used for internal
routing. The tap interface is used to copy discarded packets. lsi is a label-switched interface that is
used by MPLS label-switched paths (LSPs).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 7.24. Configuring Interfaces Before the PICs Are
Installed

Problem

You are expecting new PICs and want to prepare the configuration file in advance.

Solution

Add the new interface to the router configuration but keep it deactivated:

 [edit
interfaces]
 aviva@router1# set ge-1/1/0 unit 0 family inet address 172.19.121.3/24
 aviva@router1# set ge-1/1/0 description "172.19.121.3/24; to router2's ge-0/0/1"
 aviva@router1# deactivate ge-1/1/0

Use the following command to activate the interface:

 [edit interfaces]

 aviva@router1# activate ge-1/1/0

Discussion

When you are preparing the router for new hardware, either a new PIC or a new FPC with one or
more PICs, or when you have a maintenance window in which you will be rearranging the FPCs or
PICs in the router, you can preconfigure the interfaces before the hardware has arrived or is in the
new location. This recipe shows how to configure a Gigabit Ethernet interface before the PIC is in the
router.

The management process, MGD, ignores all inactive portions of the configuration when you issue a
commit command. The deactivated configuration is effectively commented out of the configuration
file, and the interface control daemons will not see the configuration data. One downside to this is
that if there are mistakes in your configuration, you won't see the errors messages from MGD.

Because no physical hardware is installed in the router, you don't see this interface with any of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

show interfaces commands. The only way to know that it's there is to look at the configuration. If
you are outside the deactivated hierarchy, the CLI marks it with the string inactive:

 [edit interfaces]
 aviva@router1# show
 inactive: ge-1/1/0 {
 description "172.19.121.3/24; to router2's ge-0/0/1";
 unit 0 {
 family inet {
 address 172.19.121.3/24;
 }
 }
 }

If you issue the show command from a hierarchy that is within the deactivated statement, the CLI
shows a three-line notice to catch your attention:

 [edit interfaces]
 aviva@router1# show ge-1/1/0

 ##

 ## inactive: interfaces ge-1/1/0

 ##
 description "172.19.121.3/24; to router2's ge-0/0/1";
 unit 0 {
 family inet {
 address 172.19.121.3/24;
 }
 }

While you can set the ge-1/1/0 interface configuration without issuing the deactivate command, you
are leaving yourself open for possible problems if someone installs the PIC unexpectedly.

Deactivating an interface's configuration rather than deleting is also a good practice when the
hardware fails and you are waiting for a replacement PIC. When the new PIC arrives, you don't need
to reconfigure the interface. Just reactivate it:

 [edit
interfaces]
 aviva@router1# activate ge-1/1/0

For all interfaces, you can configure a disable statement. While this might look like a way to
deactivate an interface, it actually does something quite different: it activates the interface, but
treats it as being down or administratively disabled. When you commit a configuration that contains a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

disabled interface, the interface control daemon, DCD, sees the interface and the configuration data,
but does not configure the interface. Here, you disable interface fe-0/0/0:

 [edit interfaces]
 aviva@router1# set fe-0/0/0 disable

The configuration shows this:

 [edit interfaces]
 aviva@router1# show fe-0/0/0
 disable;
 unit 0 {
 family inet {
 address 192.168.20.1/30;
 {
 }

When you check the status of the interface, you see that the physical interface is administratively
down, but the link to the remote side is up. The logical interface is also down.

 aviva@router1> show interfaces fe-0/0/0 terse
 Interface Admin Link Proto Local Remote
 fe-0/0/0 down up
 fe-0/0/0.0 up down inet 192.168.20.1/30

This output illustrates that when an interface is disabled instead of being deactivated, you see
information about the interface in the show interfaces output instead of seeing nothing at all, which
is the case with the deactivated interface.

To get the interface back up, you might think that it's logical to enable it:

 [edit interfaces fe-0/0/0]
 aviva@router1# set enable

While this does what you want, it may not be what you expect:

 [edit interfaces]
 aviva@router1# show fe-0/0/0
 enable;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 unit 0 {
 family inet {
 address 192.168.220.1/30;
 }
 }

You generally don't need or want to explicitly enable an interface. The better way to get the interface
back up is to remove the disable statement:

 [edit interfaces fe-0/0/0]
 aviva@router1# delete disable
 edit interfaces]
 aviva@router1# show fe-0/0/0
 unit 0 {
 family inet {
 address 192.168.220.1/30;
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 8. IP Routing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

Routing is the act of forwarding packets toward a given destination from one network segment or
interface to the next. Routing tables, also sometimes called routing information bases (RIBs), are
the databases that routers use to route traffic toward their destination. These tables contain the
network addresses and prefixes that have been learned from dynamic routing protocols such as RIP,
IS-IS, OSPF, and BGP; that have been learned statically from static (configured) routing-table
entries; and that have been learned from the router's network interfaces. Each address and prefix in
a routing table has a next hop associated with it that takes the packet one hop closer to its
destination.

Each IP packet that a router receives contains two types of information: the packet data itself (the
packet's payload) and information that identifies the packet. In IP packets, the identifying information
is at the beginning of the packet, in the header. One of these header fields is the source address,
which states the packet's origin; another, which is key to the routing tables, is the destination
address, which tells where the packet is going when the router uses standard destination-based
forwarding. (Routing policy can alter the path toward a destination.) When the router is determining
the path toward the destination, it checks the routing table for a route that matches the packet's
destination and then sends the packet to the next hop associated with that route. If there is no exact
match, the router locates a more general route, selecting the longest match, which is the route that
matches the most bits in the network portion of the address. For example, if the packet's destination
is 10.0.16.2 and the routing table contains a route to 10.0.16.2/32, which is the address of the
specific host, the packet is sent using the next hop associated with that route. If the only matching
routes in the table are 10.0.0.0/8 and 10.0.16.0/24, the latter route is used because it is the longest
match.

If no match is found in the routing table, the default route of 0.0.0.0/0 is used if it exists. If no
default route is configured or learned, the traffic is dropped.

When a single routing protocol provides equal-cost paths to a single prefix, the JUNOS default is to
randomly choose one path on a per-prefix basis.

The JUNOS routing-protocol process (RPD) maintains a number of different routing tables to separate
information learned from or used by different protocols. Table 8-1 lists the default routing tables that
RPD maintains. You cannot rename the default routing tables or use them for different purposes but
you can create routing tables for other purposes. All IPv4 routing tables are named inet.n, and all
IPv6 routing tables are named inet6.n, where n is an integer.

Table 8-1. JUNOS default routing tables

Name Description

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Name Description

inet.0

IPv4 unicast routes. BGP, IS-IS, OSPF, and RIP store their routing information in this table
and use the routes in this table when advertising routes to their neighbors. Configured
static routes are also stored in this table.

inet.1 Multicast forwarding cache. DVMRP and PIM store their routing information in this table.

inet.2 Used by MBGP to provide reverse path forwarding (RPF) checks.

inet.3 Traffic engineering paths. Stores path and label information.

inet6.0 IPv6 unicast routes.

iso.0 ISO routes for IS-IS.

mpls.0 MPLS label-switched path (LSP) next hops.

From the routes in each routing table, RPD determines active routes toward network destinations. For
unicast routes, RPD chooses the route with the lowest preference value. For multicast traffic, RPD
determines active routes based on traffic flow and other parameters specified by the multicast
routing-protocol algorithms.

RPD installs the active routes into the Routing Engine's forwarding table (also sometimes called a
forwarding information base, or FIB), and the Routing Engine's kernel copies this table to a
forwarding table maintained by the Packet Forwarding Engine (PFE). This forwarding table maps each
next-hop router IP address with the physical interface through which that router is reached.
Forwarding-table entries are used to physically direct traffic out a router interface and toward its
destination.

In addition to storing a superset of the routes that are installed into the forwarding tables, the
routing-table routes also contain control information that is not relevant to forwarding. This
information includes the metric, AS path, and BGP communities.

Juniper Networks M-series and T-series routers architecturally and physically separate the routing
and forwarding processes. Routing is done by RPD, which runs on the Routing Engine, a small form-
factor PC that is built into the router. The RE encompasses the control plane and performs all routing
operations. Routing means discovering the network topology and sharing this information with
neighboring routers. Routing protocols, both interior gateway protocols (IGPs)such as RIP, IS-IS, and
OSPF, and the exterior gateway protocol (EGP) BGP, learn network topology by talking with other
routers and advertising routing information to them. A number of other software modules run in the
router's control plane, including the CLI and accounting processes such as SNMP. Each of these
modules runs as a separate process in the JUNOS software, and, in some cases, multiple instances of
a module might be running (for instance, if two users are logged in to the router, two CLI processes
run).

The PFE is the router's forwarding plane, housing the forwarding table and handling most forwarding
processing. Forwarding is the process of receiving a packet on an inbound interface, de-encapsulating
it, executing a number of packet-processing activities (such as filtering, accounting, and next-hop
determination), encapsulating it, and queuing it on the outbound interface toward the packet's
destination. The PFE consists of custom ASICs and the router's input and output interfaces. The
ASICs use the forwarding table to perform route lookup, looking up the IP address prefix and
determining the output interface (next hop) for the packet. The link between the Routing Engine and

inet.0

IPv4 unicast routes. BGP, IS-IS, OSPF, and RIP store their routing information in this table
and use the routes in this table when advertising routes to their neighbors. Configured
static routes are also stored in this table.

inet.1 Multicast forwarding cache. DVMRP and PIM store their routing information in this table.

inet.2 Used by MBGP to provide reverse path forwarding (RPF) checks.

inet.3 Traffic engineering paths. Stores path and label information.

inet6.0 IPv6 unicast routes.

iso.0 ISO routes for IS-IS.

mpls.0 MPLS label-switched path (LSP) next hops.

From the routes in each routing table, RPD determines active routes toward network destinations. For
unicast routes, RPD chooses the route with the lowest preference value. For multicast traffic, RPD
determines active routes based on traffic flow and other parameters specified by the multicast
routing-protocol algorithms.

RPD installs the active routes into the Routing Engine's forwarding table (also sometimes called a
forwarding information base, or FIB), and the Routing Engine's kernel copies this table to a
forwarding table maintained by the Packet Forwarding Engine (PFE). This forwarding table maps each
next-hop router IP address with the physical interface through which that router is reached.
Forwarding-table entries are used to physically direct traffic out a router interface and toward its
destination.

In addition to storing a superset of the routes that are installed into the forwarding tables, the
routing-table routes also contain control information that is not relevant to forwarding. This
information includes the metric, AS path, and BGP communities.

Juniper Networks M-series and T-series routers architecturally and physically separate the routing
and forwarding processes. Routing is done by RPD, which runs on the Routing Engine, a small form-
factor PC that is built into the router. The RE encompasses the control plane and performs all routing
operations. Routing means discovering the network topology and sharing this information with
neighboring routers. Routing protocols, both interior gateway protocols (IGPs)such as RIP, IS-IS, and
OSPF, and the exterior gateway protocol (EGP) BGP, learn network topology by talking with other
routers and advertising routing information to them. A number of other software modules run in the
router's control plane, including the CLI and accounting processes such as SNMP. Each of these
modules runs as a separate process in the JUNOS software, and, in some cases, multiple instances of
a module might be running (for instance, if two users are logged in to the router, two CLI processes
run).

The PFE is the router's forwarding plane, housing the forwarding table and handling most forwarding
processing. Forwarding is the process of receiving a packet on an inbound interface, de-encapsulating
it, executing a number of packet-processing activities (such as filtering, accounting, and next-hop
determination), encapsulating it, and queuing it on the outbound interface toward the packet's
destination. The PFE consists of custom ASICs and the router's input and output interfaces. The
ASICs use the forwarding table to perform route lookup, looking up the IP address prefix and
determining the output interface (next hop) for the packet. The link between the Routing Engine and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the PFE is a standard Fast Ethernet link (the fxp1 interface).

On the smaller J-series routers, the control and data planes are handled by the same CPU, which
runs the software for both the RE and PFE.

RPD installs all active routes from the routing tables into the forwarding table. The JUNOS kernel
maintains a master copy of the forwarding table and copies the table to the PFE. The operation to
update the forwarding table is done atomically, one route at a time. This ensures that the forwarding
table always has a single view of how to forward traffic on the network.

IPv4 and IPv6 Addresses

IPv4 addresses are 32 bits long and are written in a dotted quad notation. Originally, IPv4 addresses
were divided into four classes, Classes A, B, C, and D. This type of addressing is called classful.
Classful addresses require an address and a network mask. The address consists of a network portion
and a host portion. The subnetwork mask defines how to interpret the address bits in order to know
which are being used for the network portion and which for the host portion.

The IETF developed classless addresses in the late 1990s with the introduction of Classless
Interdomain Routing (CIDR). This was done as one way to increase the number of network
addresses available on the Internet. All IPv4 addresses on JUNOS routers are expressed in CIDR
format. Instead of network and host portions and subnetwork masks, CIDR addresses have a prefix
that represents the network address, followed by a slash and the prefix length, which identifies the
number of bits being used for the network address. For example, one of the groups of routers used
as examples in this book has interface addresses in the network 10.0.1.0/24. Here, the prefix is
10.0.1.0, and 24 bits are used for the network prefix. The remaining 8 bits are available for host
addresses, so this network can have up to 256 hosts.

IPv6 uses 128-bit addresses that consist of 8 groups of 16-bit hexadecimal values separated by
colons, followed by a slash and a mask, or prefix length, that indicates which bits are the network
address. An example of an address is fe80:0000:0205: 85ff:feca:ca70/128. You can omit any
leading zeros in a group, so you can shorten this address to fe80::205:85ff:feca:ca70/128.

A complete discussion of the structure of IP addresses is beyond the scope of this book. For more
information, see IP Routing and IPv6 Essentials (both from O'Reilly).

Default Route Preferences

A route's preference is a value from 0 through 255 that ranks a route with respect to other routes to
the same prefix. When RPD learns about routes to the same destination from different sources,
including routing protocols, it chooses the one that has the lowest preference value as the active
route and installs it in the forwarding table. The default preference value depends on how the route
was learned (see Table 8-2).

Table 8-2. JUNOS default route preferences

http://lib.ommolketab.ir
http://lib.ommolketab.ir

How route is learned Default preference value

Directly connected router or network 0

Static routes 5

MPLS 7

LDP 9

OSPF internal routes 10

IS-IS Level 1 internal routes 15

IS-IS Level 2 internal routes 18

SNMP 50

RIP, RIPng 100

PIM 105

DVMRP 110

Aggregate 130

OSPF external routes 150

IS-IS Level 1 external routes 160

IS-IS Level 2 external routes 165

BGP 170

MSDP 175

If more than one route exists with the same preference, secondary criteria are used to select which is
the active one.

Selecting Active Routes

For each destination (prefix) in the routing table, RPD selects the best route, called the active route,
and installs it into the forwarding table. The algorithm that RPD uses to select the active route is
fairly involved, but there will be times when you will be analyzing the flow of traffic through your
network and you will need to understand how and why RPD has chosen a particular path. The
following is the JUNOS algorithm for selecting the active route:

Choose the route with the lowest preference value.1.

For BGP routes, prefer the one with the higher local preference value. Otherwise, choose the
path with the lowest preference2 value. (This is a secondary preference you can set for some
protocols to use as a tiebreaker when the primary preferences are identical.)

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

If the route includes an AS path:

Prefer the route with a shorter AS path. (Confederation sequences are assigned a path
length of 0, and AS and confederation sets have a path length of 1.)

a.

Prefer the route with the lower origin code. Routes learned from an IGP have a lower
origin code than those learned from an EGP, and both have lower origin codes than
incomplete routes (routes whose origin is unknown).

b.

If you are not using BGP nondeterministic routing-table path selection behavior, for paths
with the same neighboring AS numbers at the beginning of the AS path, prefer the path
with the lowest multiple exit discriminator (MED) metric. Confederation AS numbers are
not considered when deciding what the neighbor AS number is.

If you are using nondeterministic routing-table path selection behavior, prefer the path
with the lowest MED metric.

In both cases, confederations are not considered when determining neighboring ASs, and a
missing metric is treated as a MED of 0.

c.

3.

Prefer strictly internal routes, which include IGP routes and locally generated routes (such as
static and direct).

4.

Prefer strictly EBGP routes over external paths learned through IBGP.5.

For BGP, prefer the route whose next hop is resolved through the IGP route with the lowest
metric.

6.

For BGP, prefer the route with the greatest number of BGP next hops.7.

For BGP, prefer the route with the shortest route reflection cluster list. Routes without a cluster
list are considered to have a cluster list of length 0.

8.

For BGP, prefer the route with the lowest IP address value for the BGP router ID.9.

Prefer the path that was learned from the neighbor with the lowest peer IP address.10.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.1. Viewing the Routes in the Routing Table

Problem

You want to check the routing table to see that it contains the routes you expect to other routers in
your domain and to routers in other ASs.

Solution

The show route command shows the contents of the routing table:

 aviva@RouterA> show route
 inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.16.0/24 *[Direct/0] 5d 17:37:05
 > via fe-0/0/0.0
 10.0.16.1/32 *[Local/0] 1w0d 15:51:30
 Local via fe-0/0/0.0
 10.0.21.0/24 *[Direct/0] 1w0d 17:32:48
 > via se-0/0/3.0
 10.0.21.1/32 *[Local/0] 1w0d 17:32:53
 Local via se-0/0/3.0
 192.168.42.1/32 *[Direct/0] 5d 18:02:37
 > via lo0.0
 __juniper_private1__.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0
 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.1/32 *[Direct/0] 1w0d 19:02:26
 > via lo0.16385
 10.0.0.16/32 *[Direct/0] 1w0d 19:02:26
 > via lo0.16385

If IPv6 is running on the router, the routing table contains its routes. These are listed at the end of
the show route command, or you can display them separately with the following command:

 aviva@RouterA> show route table inet6.0
 inet6.0: 6 destinations, 8 routes (6 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 9009:1::/64 *[Direct/0] 00:01:08

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > via se-0/0/3.0
 [Direct/0] 00:01:08
 > via fe-0/0/0.0
 9009:1::1/128 *[Local/0] 00:01:08
 Local via fe-0/0/0.0
 9009:1::3/128 *[Local/0] 00:01:08
 Local via se-0/0/3.0
 fe80::/64 *[Direct/0] 00:01:08
 > via se-0/0/3.0
 [Direct/0] 00:01:08
 > via fe-0/0/0.0
 fe80::205:85ff:feca:ca70/128
 *[Direct/0] 00:01:08
 > via lo0.0
 feee::10:255:71:4/128
 *[Direct/0] 00:01:08
 > via lo0.0

When the router is running IS-IS, the show route command lists entries in the ISO routing table,
iso.0, or you can view them separately with this command:

 aviva@RouterA> show route table iso.0
 iso.0: 1 destinations, 1
routes (1 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 49.0020.1921.6804.2001/72
 *[Direct/0] 13:16:30
 > via lo0.0

Discussion

The show route command is the basic command for listing routes in the routing table. The first
command in this recipe, without any options, shows the contents of all the routing tables that RPD is
currently using. This output shows the contents of two routing tables, inet.0, which is the default
routing table for IPv4 unicast routes, and __juniper_private1__, which is an internal routing table
used by the JUNOS software. If IPv6, IS-IS, multicast, or traffic engineering is configured on the
router, the show route command lists the routes in the routing tables used by these protocols,
including inet6.0, iso.0, inet.2, inet.3, and mpls.0.

The first two lines of the show route output summarize the entries in the inet.0 table:

 inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This table has five routes. Of these, five are active, none are in the hold-down state prior to being
deleted from the routing table, and none are hidden as a result of a configured routing policy.

The left column of the table shows the IP addresses of the routing entries. The direct routes are those
to the prefixes (subnetwork addresses) assigned to an interface on the router. In the inet.0 table,
you see three direct routes: two are to physical interface subnetworks, 10.0.16.0/24 and
10.0.21.0/24, and one is to the router's loopback interface, 192.168.42.1/32. The local routes are the
/32 interface addresses on the directly connected interfaces, and there are two in the routing table,
10.0.16.1/32 and 10.0.21.1/32.

The right column of the output gives some details about each route. The asterisk (*) indicates that
the route is the active route, which is the route currently installed in the forwarding table.

The text within the square brackets indicates how the route was learned and the route's preference
value. All routes in the inet.0 table are either local on the router or learned as a result of a direct
network connection to a neighboring router. If a route is learned from a dynamic routing protocol,
such as BGP or IS-IS, or is statically configured, you see this in the square brackets. Here is a static
route:

 192.168.12.1/32 *[Static/5] 3d 21:43:37
 > to 10.0.16.1 via fe-1/0/0.0

Here is a route learned from IS-IS:

 10.0.24.0/24 *[IS-IS/18] 22:53:36, metric 20
 > to 10.0.1.1 via fe-0/0/1.0

The preference values shown in the output in this recipe are all default values.

The numbers following the brackets show how long the routing table has known about the route. The
first route in the table has been known for 5 days, 17 hours, 37 minutes, and 5 seconds:

 10.0.16.0/24 *[Direct/0] 5d 17:37:05

For routes learned from dynamic routing protocols, such as the IS-IS, the route's cost, or metric, is
listed after the time. This value is calculated by the routing protocol.

The second line for each route shows the IP address of the next hop toward the destination and the
router interface to use to reach that destination. Because no routing protocols are currently
configured on the router, the routing table contains only local and direct routes, and you see only the
router interface to the destination. If a routing protocol is running, the IP address precedes the
interface, as you can see in the static and IS-IS routes shown above. The IP address doesn't always
precede the interface. Exceptions include routes that point to unnumbered interfaces and routes with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

non-IP next hops, such as MPLS routes.

The second part of the show route output shows the routes for the other routing table RPD is
currently usingthe internal JUNOS routing table, __juniper_private1__. Both routes listed travel on
interface lo0.16385, which is an internal loopback interface created and used only by the JUNOS
software.

To display only the IPv4 unicast routes without the internal JUNOS routes, use this command:

 aviva@RouterA> show route table inet.0
 inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.16.0/24 *[Direct/0] 5d 17:37:05
 > via fe-0/0/0.0
 10.0.16.1/32 *[Local/0] 1w0d 15:51:30
 Local via fe-0/0/0.0
 10.0.21.0/24 *[Direct/0] 1w0d 17:32:48
 > via se-0/0/3.0
 10.0.21.1/32 *[Local/0] 1w0d 17:32:53
 Local via se-0/0/3.0
 192.168.42.1/32 *[Direct/0] 5d 18:02:37
 > via lo0.0

For a quickly skimmable view of the routing-table entries, use the terse version of the show route
command:

 aviva@RouterA>
show route terse
 inet.0: 5 destinations, 5
routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 A Destination P Prf Metric 1 Metric 2 Next hop AS path
 * 10.0.16.0/24 D 0 >fe-0/0/0.0
 * 10.0.16.1/32 L 0 Local
 * 10.0.21.0/24 D 0 >se-0/0/3.0
 * 10.0.21.1/32 L 0 Local
 * 192.168.42.1/32 D 0 >lo0.0
 __juniper_private1__.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0
 hidden)
 + = Active Route, - = Last Active, * = Both
 A Destination P Prf Metric 1 Metric 2 Next hop AS path
 * 10.0.0.1/32 D 0 >lo0.16385
 * 10.0.0.16/32 D 0 >lo0.16385

You may wonder how the router has any addresses in its routing tables when no routing protocols
are running and you haven't configured any static routes. When you configure interfaces, the JUNOS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

software automatically puts routes in the routing table. For the routing-table examples in this recipe,
the following interfaces and interface addresses are configured:

 aviva@RouterA> show configuration interfaces
 fe-0/0/0 {
 unit 0 {
 family inet {
 address 10.0.16.1/24;
 }
 family iso;
 family inet6 {
 address 9009:1::1/64;
 }
 }
 }
 se-0/0/3 {
 unit 0 {
 family inet {
 address 10.0.21.1/24;
 }
 family iso;
 family inet6 {
 address 9009:1::3/64;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 192.168.42.1/32;
 }
 family iso {
 address 49.0020.1921.6804.2001.00;
 }
 family inet6 {
 address feee::10:255:71:4/128;
 }
 }
 }

Looking at the inet.0 routing table, you see it contains entries for each of these interfaces and for
the subnetworks (the /24 address) to which they are connected:

 10.0.16.0/24 *[Direct/0] 5d 17:37:05
 > via fe-0/0/0.0
 10.0.16.1/32 *[Local/0] 1w0d 15:51:30
 Local via fe-0/0/0.0
 10.0.21.0/24 *[Direct/0] 1w0d 17:32:48

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > via se-0/0/3.0
 10.0.21.1/32 *[Local/0] 1w0d 17:32:53
 Local via se-0/0/3.0
 192.168.42.1/32 *[Direct/0] 5d 18:02:37
 > via lo0.0

This output shows entries for the three configured interfaces. For fe-0/0/0, there is an entry for the
interface itself (10.0.16.1/32) and an entry for a summary of all the addresses on the subnetwork
(10.0.16.0/24). There are similar entries for the serial interface. A route to the loopback address,
192.168.42.1/32, which is the address of the router itself, is also included.

The opening lines of the show route output always indicate the number of hidden routes in a routing
table. Because the routes are hidden, they are not listed in this output:

 aviva@reflector> show route
 inet.0: 163481 destinations, 163481 routes (163479 active, 0 holddown, 2 hidden)
 + = Active Route, - = Last Active, * = Both

Hidden routes are prefixes that cannot be used for routing. These routes have been rejected by an
inbound routing policy (a policy applied with a set import command), they may have an unresolvable
next hop, or there may be a forwarding-table export filter that keeps them from being used. Hidden
routes can never become the active route even if they are the best path toward a destination, so
they can never be installed in the forwarding table. Hidden routes are marked as Unusable in the
routing table:

 aviva@Router3> show route hidden table inet.0
 inet.0: 168242 destinations, 168253 routes (168240 active, 0 holddown, 2 hidden)
 + = Active Route, - = Last Active, * = Both
 3.0.0.0/8 [BGP/170] 00:05:20, MED 0, localpref 100, from 172.158.5.125
 AS path: 65500 65510 I
 Unusable
 172.16.10.0/24 [BGP/170] 00:05:20, MED 0, localpref 100, from 172.158.5.125
 AS path: I
 Unusable

To find out why the route is unusable, get more details about it:

 aviva@Router3> show route hidden 172.16.0.0/24 extensive
 inet.0: 168242 destinations, 168253
routes (168240 active, 0 holddown, 2 hidden)
 172.16.10.0/24 (1 entry, 0 announced)
 BGP Preference: 170/-101
 Next hop type: Unusable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Next-hop reference count: 1
 State: <Hidden Int Ext>
 Local AS: 65000 Peer AS: 65000
 Age: 6:59 Metric: 0
 Task: BGP_65000.172.158.5.125+25464
 AS path: I
 Communities: 65500:340
 Localpref: 100
 Router ID: 172.158.5.125
 Indirect next hops: 1
 Protocol next hop: 192.168.251.1
 Indirect next hop: 0 -

The Next hop type: Unusable line of the output indicates that the route has been hidden because the
next hop is unreachable. To find out why it's unreachable, check the network topology and network
links. Consult the routing table for a route covering the next hop. If that route is not resolved, check
that route's next hop. Recurse until you get to a directly connected next hop. Then determine
whether the directly connected next hop's interface and address are up and reachable. Making this
determination may require diagnosing the health of Layer 2 and Layer 1 connectivity.

Prefixes that have no active routes are marked as inactive:

 aviva@Router3> show route inactive-prefix table inet.0
 inet.0: 163307 destinations, 163307 routes (163305 active, 0 holddown, 2 hidden)
 + = Active Route, - = Last Active, * = Both
 127.0.0.1/32 [Direct/0] 5w1d 23:32:04
 > via lo0.0
 207.16.0.0/14 [BGP/170] 4d 01:53:05, localpref 100, from 207.17.136.29
 AS path: 14203 2914 701 I
 Unusable

The inactive prefixes do not have an asterisk at the beginning of the second column of output. In this
case, the inactive and hidden routes are the same, but this is just a coincidence. For both prefixes,
the routing table has no active route that will reach either destination.

See Also

Recipes 14.2, 14.7, and 15.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.2. Viewing Routes to a Particular Prefix

Problem

You need to check to make sure the local router has a route to another router in the network.

Solution

Use the following version of the show route command:

 aviva@RouterG> show route 10.0.8.1
 inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.8.0/24 *[IS-IS/18] 00:11:18, metric 20
 > to 10.0.0.2 via fe-1/0/1.0

Discussion

Often you may want to find out whether the local routing table has a route to a particular destination,
such as when you are trying to figure out the path that traffic is taking toward a destination. If you
include the destination's address in the show route command, you see only that route. This recipe
shows the route to 10.0.8.1, which was learned from an IS-IS Level 2 internal route, has a metric
value of 20, and goes through the next hop of 10.0.0.2 over the router's interface fe-1/0/1. The
header lines for the inet.0 routing table are also displayed, so you see that this routing table has a
total of 18 routes to 18 destinations.

For more information about the route, use the detail option:

 aviva@RouterG> show route 10.0.8.1 detail
 inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
 10.0.8.0/24 (1 entry, 1 announced)
 *IS-IS Preference: 18
 Level: 2
 Next-hop reference count: 4
 Next hop: 10.0.0.2 via fe-1/0/1.0, selected
 State: <Active Int>
 Age: 11:41 Metric: 20
 Task: IS-IS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Announcement bits (1): 0-KRT
 AS path: I

This output shows a few more fields of interest. The Next hop field shows that this next hop has been
selected for inclusion in the forwarding table. The State field shows that this route is active and is an
interior route. The AS path field also shows that the route was learned internally.

The output in this recipe is straightforward because there is only one route to the destination and it is
active. Some routes have multiple next hops:

 aviva@RouterG> show route protocol 10.0.2.0/24
 inet.0: 18 destinations, 18
routes (18 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.2.0/24 *[IS-IS/18] 00:45:17, metric 20
 > to 10.0.1.1 via fe-0/0/1.0
 to 10.0.0.2 via fe-1/0/1.0

The destination 10.0.2.0/24 has two next hops, one reachable through interface fe-0/0/1 and the
second through a different router interface, fe-1/0/1. The asterisk indicates that this route, learned
from IS-IS, is active. The metric for both next hops is 20, so there are two equal-cost paths to
10.0.2.0/24. Because both routers have been learned from the same protocol, by default the JUNOS
software randomly chooses one of them. The > indicates the path being used.

Routes can also be learned from multiple routing protocols:

 aviva@Router3> show route 10.1.1.0/24
 inet.0: 28 destinations, 48 routes (28 active, 0 holddown, 0 hidden)
 Restart Complete
 + = Active Route, - = Last Active, * = Both
 10.1.1.0/24 *[OSPF/10] 00:16:20, metric 65
 via so-0/2/0.0
 > via so-0/2/1.0
 [IS-IS/18] 00:16:08, metric 126
 to 10.1.2.1 via so-0/2/0.0
 > to 10.1.6.1 via so-0/2/1.0

Here, both OSPF and IS-IS have learned routes to 10.1.1.0/24. The OSPF routes are chosen over the
IS-IS ones because of the lower preference value (10 versus 18). The two routes learned by each
protocol are both equal-cost paths to the destination, so the JUNOS software randomly chooses one
of them, again indicating the selected path with a >.

If you expect a prefix to be in the routing table but it is not, look at the first two lines of the show
route output to check for hidden routes. If the routing table contains some, check for the prefix with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the show route hidden command. If the prefix is hidden, examine the router's routing policies to see
if an inbound policy is rejecting the route. If necessary, set up policy tracing to log how policies are
being evaluated (see Recipe 9.7). Another possibility is that there is no next hop toward the
destination. Check the network topology and physical links between your network systems.

See Also

Recipe 9.7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.3. Viewing Routes Learned from a Specific
Protocol

Problem

You have configured a routing protocol and you want to make sure the router is learning routes from
that protocol.

Solution

Include the protocol name in the show route command:

 aviva@RouterG>
show route protocol isis
 inet.0: 18 destinations, 18 routes (18 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.2.0/24 *[IS-IS/18] 00:45:17, metric 20
 > to 10.0.1.1 via fe-0/0/1.0
 to 10.0.0.2 via fe-1/0/1.0
 10.0.8.0/24 *[IS-IS/18] 00:45:17, metric 20
 > to 10.0.0.2 via fe-1/0/1.0
 10.0.21.0/24 *[IS-IS/15] 00:45:17, metric 20
 > to 10.0.16.1 via fe-1/0/0.0
 10.0.24.0/24 *[IS-IS/18] 00:45:17, metric 20
 > to 10.0.1.1 via fe-0/0/1.0
 10.0.29.0/24 *[IS-IS/18] 00:45:17, metric 30
 > to 10.0.1.1 via fe-0/0/1.0
 192.168.14.1/32 *[IS-IS/18] 00:45:17, metric 20
 > to 10.0.1.1 via fe-0/0/1.0
 192.168.17.1/32 *[IS-IS/18] 00:45:17, metric 10
 > to 10.0.0.2 via fe-1/0/1.0
 192.168.18.1/32 *[IS-IS/18] 00:45:17, metric 10
 > to 10.0.1.1 via fe-0/0/1.0
 192.168.42.1/32 *[IS-IS/15] 00:45:17, metric 10
 > to 10.0.16.1 via fe-1/0/0.0

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you are setting up routing protocols on your network, use the show route protocol command
to make sure that each router has a route to each other router and that the routes are being directed
out the proper interface on the router. In this recipe, we are setting up an IS-IS network and
checking that the local IS-IS router has learned routes to all IS-IS destinations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.4. Displaying the Routes in the Forwarding Table

Problem

You want to see the routes that RPD has installed in the forwarding table and that the router is
actually using to forward packets.

Solution

Use the show route forwarding-table command to see the active routes in the Routing Engine's
forwarding table:

 aviva@RouterA>
show route forwarding-table
 Routing table: inet
 Internet:
 Destination Type RtRef Next hop Type Index NhRef Netif
 default user 1 0:10:db:ff:20:80 ucst 335 3 fe-0/0/0.0
 default perm 0 rjct 14 1
 10.17.214.0/26 intf 0 rslv 329 1 fe-0/0/1.0
 10.17.214.0/32 dest 0 10.17.214.0 recv 327 1 fe-0/0/1.0
 10.17.214.27/32 intf 0 10.17.214.27 locl 328 2
 10.17.214.27/32 dest 0 10.17.214.27 locl 328 2
 10.17.214.63/32 dest 0 10.17.214.63 bcst 320 1 fe-0/0/1.0
 172.19.121.0/24 intf 0 rslv 326 1 fe-0/0/0.0
 172.19.121.0/32 dest 0 172.19.121.0 recv 324 1 fe-0/0/0.0
 172.19.121.1/32 dest 0 0:10:db:ff:20:80 ucst 335 3 fe-0/0/0.0
 172.19.121.113/32 intf 0 172.19.121.113 locl 325 2
 172.19.121.113/32 dest 0 172.19.121.113 locl 325 2
 172.19.121.142/32 dest 0 0:5:85:ca:dd:60 ucst 336 1 fe-0/0/0.0
 172.19.121.255/32 dest 0 172.19.121.255 bcst 323 1 fe-0/0/0.0
 192.168.10.7/32 intf 0 192.168.10.7 locl 330 1
 224.0.0.0/4 perm 0 mdsc 13 1
 224.0.0.1/32 perm 0 224.0.0.1 mcst 9 1
 255.255.255.255/32 perm 0 bcst 10 1

 Routing table: __juniper_private1__.inet
 Internet:
 Destination Type RtRef Next hop Type Index NhRef Netif
 default perm 0 rjct 46 1
 10.0.0.1/32 intf 1 10.0.0.1 locl 321 2
 10.0.0.16/32 intf 0 10.0.0.16 locl 322 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 224.0.0.0/4 perm 0 mdsc 45 1
 224.0.0.1/32 perm 0 224.0.0.1 mcst 41 1
 255.255.255.255/32 perm 0 bcst 42 1

 Routing table: iso
 ISO:
 Destination Type RtRef Next hop Type Index NhRef Netif
 default perm 0 rjct 38 1

 Routing table: inet6
 Internet6:
 Destination Type RtRef Next hop Type Index NhRef Netif
 default perm 0 rjct 22 1
 ff00::/8 perm 0 mdsc 21 1
 ff02::1/128 perm 0 ff02::1 mcst 17 1

 Routing table: __juniper_private1__.inet6
 Internet6:
 Destination Type RtRef Next hop Type Index NhRef Netif
 default perm 0 rjct 54 1
 ff00::/8 perm 0 mdsc 53 1
 ff02::1/128 perm 0 ff02::1 mcst 49 1

Routing table: mpls
 MPLS:
 Destination Type RtRef Next hop Type Index NhRef Netif
 default perm 0 dscd 28 1

To see the forwarding entries that the PFE uses to forward packets, you must use the show pfe route
command:

 aviva@RouterA> show pfe route ip
 IPv4 Route Table 0, default.0, 0x0:
 Destination NH IP Addr Type NH ID Interface
 --------------------------------- --------------- -------- ----- ---------
 default 172.19.121.1 Unicast 335 fe-0/0/0.0
 10.17.214.0/26 Resolve 329 fe-0/0/1.0
 10.17.214.0 10.17.214.0 Receive 327 fe-0/0/1.0
 10.17.214.27 10.17.214.27 Local 328
 10.17.214.63 Bcast 320 fe-0/0/1.0
 172.19.121/24 Resolve 326 fe-0/0/0.0
 172.19.121.0 172.19.121.0 Receive 324 fe-0/0/0.0
 172.19.121.1 172.19.121.1 Unicast 335 fe-0/0/0.0
 172.19.121.113 172.19.121.113 Local 325
 172.19.121.142 172.19.121.142 Unicast 336 fe-0/0/0.0
 172.19.121.255 Bcast 323 fe-0/0/0.0
 192.168.10.7 192.168.10.7 Local 330
 224/4 MDiscard 13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 224.0.0.1 Mcast 9
 255.255.255.255 Bcast 10

 IPv4 Route Table 1, __juniper_private1__.1, 0x2:
 Destination NH IP Addr Type NH ID Interface
 --------------------------------- --------------- -------- ----- ---------
 default Reject 46 .local..1
 10.0.0.1 10.0.0.1 Local 321 .local..1
 10.0.0.16 10.0.0.16 Local 322 .local..1
 224/4 MDiscard 45 .local..1
 224.0.0.1 Mcast 41 .local..1
 255.255.255.255 Bcast 42 .local..1

Discussion

Both the Routing Engine and the PFE maintain forwarding tables. The one on the Routing Engine
contains the active routes that have been installed by RPD, and the show route forwarding-table
command displays its contents. This command is similar to the FreeBSD netstat -rn command. The
Routing Engine's kernel copies this table to the PFE. The PFE's forwarding table maps each next-hop
router IP address with the physical interface through which that router is reached. The show pfe
route command displays the contents of this forwarding table.

The show route forwarding-table output shows routes from all routing tables, so it includes IPv4,
IPv6, ISO, and MPLS routes, as well as routes from the internal JUNOS routing table. The output in
this recipe shows sections for each type of routing table. You can also look at just the forwarding
table for one of the routing families:

 aviva@RouterA> show route forwarding-table family ?
 Possible completions:
 inet IP version 4 (IPv4)
 inet6 IP version 6 (IPv6)
 iso International Standards Organization protocol
 mpls Multiprotocol Label Switching
 tnp Trivial Network Protocol
 unix UNIX

The Destination column in each section lists network-layer addresses on which the router is
forwarding traffic, and the last column, Netif, shows the interfaces that are being used to send traffic
toward those addresses.

The Next hop column lists the next hop to the destination. If you compare the inet routing-table
entries in the forwarding table to the entries in the routing table (see Recipe 8.1), which has routes
to the interface addresses 10.0.16.0/24, 10.0.16.1/32, 10.0.21.0/24, and 10.0.21.1/32, and to the
router (loopback) address 192.168.42.1/ 32, the forwarding table contains entries to reach all these
destinations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first Type column immediately gives an indication of how the route was placed into the routing
table. perm are permanent routes installed by the JUNOS kernel when the routing table is initialized,
intf are routes learned when an interface was configured, and dest are remote addresses that are
directly connected to an interface. When a routing protocol is running on the router, you also see the
type ucst. Here, you see a route learned by IS-IS:

 aviva@RouterA> show route 10.0.1.0/24
 inet.0: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.1.0/24 *[IS-IS/15] 00:11:07, metric 20
 > to 10.0.16.2 via fe-0/0/0.0

 aviva@RouterA> show route forwarding-table destination 10.0.1.0/24
 Routing table: inet
 Internet:
 Destination Type RtRef Next hop Type Index NhRef Netif
 10.0.1.0/24 user 0 10.0.16.2 ucst 337 5 fe-0/0/0.0

A route that is unreachable is marked iddn if the interface to that destination is down.

The Next hop column is the address used to reach the next hop toward the destination, and the
second Type column gives more information about the next hop. The last column shows the router's
interface that will be used to send traffic toward the destination.

The actual forwarding tables that the router is using to forward traffic are in the PFE, so instead of a
show route command, use a show pfe command to see the contents. Unlike the show route
forwarding-table command, the show pfe route command lets you see only one forwarding table at
a time:

 aviva@RouterA> show pfe route ?
 Possible completions:
 inet6 Show IP version 6 routing tables
 ip Show IP version 4 routing tables
 mpls Show Multiprotocol Label Switching routing table
 summary Show summary version of routing tables

The PFE has three tables, one each for IPv4, IPv6, and MPLS routes. All tables have a similar format
and contents. The output in this recipe is for the IPv4 forwarding table. For each destination, the
forwarding table shows the IP address of the next type, the type of route, and the interface out which
traffic will be sent, which is pretty much the same information as in the Routing Engine's forwarding
table.

You can also look at the entries for a particular destination:

 aviva@RouterA> show route forwarding table destination 10.17.214.0/32

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Routing table: inet
 Internet:
 Destination Type RtRef Next hop Type Index NhRef Netif
 10.17.214.0/32 dest 0 10.17.214.0 recv 327 1 fe-0/0/1.0

 aviva@RouterA> show pfe route ip prefix 10.17.214.0/32
 IPv4 Route Table 0, default.0, 0x0:
 Destination NH IP Addr Type NH ID Interface
 --------------------------------- --------------- -------- ----- ---------
 10.17.214.0 10.17.214.0 Receive 327 fe-0/0/1.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.5. Creating Static Routes

Problem

You want to be able to connect your router to the Internet.

Solution

Create a default static route:

 [edit routing-options]
 aviva@router1# set static route 0.0.0.0/0 next-hop 10.0.21.2

Discussion

Static routes are routes that you explicitly add to your routing table. Static routes are always
available and do not change as a result of dynamic routing updates. For an enterprise network, a
static route can be simply a default route that points to the ISP, as shown in this recipe. Here, you
create a default route, 0.0.0.0/0. The next hop is the address of the interface to which you connect
on the ISP's router. This route then forwards all Internet-bound traffic through the ISP and out to the
Internet.

Check the routing table to see the route:

 aviva@router1> show route table inet.0
 inet.0: 20 destinations, 20 routes (19 active, 0 holddown, 1 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 00:06:50
 > to 10.0.21.2 via se-0/0/3

Another reason to use static routes is when your network connects to a router or other system
outside the network and either that system can't run a routing protocol or you don't want to run a
routing protocol on it. In this situation, create a static route from your edge router to the outside
system and then, on the edge router, redistribute static routes into your IGP. Here's what the static
route configuration might look like on the edge router:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit routing-options]
 aviva@router1# set static route 172.168.17.6 next-hop 10.1.16.4

Here, 172.168.17.6 is the address of the system outside your network, and 10.1.16.4 is the address
of the other router to which the interface on your router connects.

See Also

Recipes 11.8 and 12.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.6. Blackholing Routes

Problem

You don't want to route any traffic to particular networks.

Solution

Define static routes to these networks that discard the traffic:

 [edit routing-options]
 aviva@router1# set static route 1.0.0.0/8 discard
 aviva@router1# set static route 2.0.0.0/8 discard

Discussion

There are some network addresses to which the router should never send traffic, and you never want
routes to these networks to be installed in the routing table by one or all routing protocols. A good
practice for dealing with these routes is to blackhole them. You do this by defining static routes to
them with a next hop of discard. Packets being sent to these networks are then dropped. Also, the
router does not send an ICMP (or ICMPv6) unreachable message in response to traffic sent to these
networks, and the traffic to these networks is dropped silently. (When there is a reason to have the
router send ICMP unreachable messages, use a next hop of reject instead.) Routes with a discard
next hop are placed in the forwarding table with a next-hop type of dscd (discard).

Verify that the routes are in the routing table:

 aviva@router1> show route
 inet.0: 23 destinations, 23 routes (22 active, 0 holddown, 1 hidden)
 + = Active Route, - = Last Active, * = Both
 1.0.0.0/8 *[Static/5] 00:03:41
 Discard
 2.0.0.0/8 *[Static/5] 00:00:02
 Discard

They are installed in the forwarding table as discard routes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1> show route forwarding-table
 Routing table: inet
 Internet:
 Destination Type RtRef Next hop Type Index NhRef Netif
 1.0.0.0/8 user 0 dscd 12 3
 2.0.0.0/8 user 0 dscd 12 3

A good security practice is to blackhole addresses that have not yet been allocated by one of the
domain registries, such as ARIN or RIPE (see http://www.iana.org/assignments/ipv4-address-space).
This recipe shows two of those addresses. For a complete list, see
http://www.cymru.com/gillsr/documents/junos-discard-routes.txt. Because these addresses are not
allocated and no traffic should be destined for them anyway, you might wonder why you should
bother blackholing traffic to them. One reason is to limit a malicious hacker's ability to attack your
router with a DoS attack from external spoofed sources. It also reduces the potential for outbound
spoofing from your network. Certain spammers may also use unallocated space to send spam, first
by announcing a prefix from unallocated space and sending their spam, then quickly withdrawing the
route. Another reason to blackhole unallocated addresses is to reduce the possibility of prefix
hijacking. For example, an AS might announce a /16, and the spammer can announce some unused
(or even used) space within the /16.

As a note of caution, unallocated-addresses space changes from time to time as new allocations are
made. You need to pay close attention to the changes and change your filters accordingly so as not
to block legitimate traffic.

See Also

Internet Assigned Numbers Authority (IANA) (http://www.iana.org/assignments/ipv4-address-space)
and Team Cymru (http://www.cymru.com/gillsr/documents/junos-discard-routes.txt)

http://www.iana.org/assignments/ipv4-address-space
http://www.cymru.com/gillsr/documents/junos-discard-routes.txt
http://www.iana.org/assignments/ipv4-address-space
http://www.cymru.com/gillsr/documents/junos-discard-routes.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.7. Filtering Traffic Using Unicast Reverse-Path
Forwarding

Problem

You want to more adequately filter traffic that is not coming through the proper interfaces to better
prevent spoofing.

Solution

Turn on unicast reverse-path forwarding (RPF) on the router:

 [edit routing-options]
 aviva@router1# set forwarding-table unicast-reverse-path active-paths

Then enable it on the desired interface:

 [edit interfaces so-0/0/0 unit 0 family inet]
 aviva@router1# set
rpf-check

Discussion

Unicast RPF is an extension of RPF, which is used by IP multicast routing protocols to prevent
multicast routing loops. As the name implies, unicast RPF verifies unicast source addresses. When a
router receives a packet, unicast RPF performs a route lookup on the source address to determine
the interface closest to the source address (the reverse path to the source). If the receiving interface
is not the closest interface, the packet is dropped.

Unicast RPF is one mechanism for dealing with address- spoofing DoS attacks. In these attacks, an
intruder floods its target with packets that contain a spoofed source address, essentially
impersonating another system's IP address. The flooding results in a DoS at the target, and because
the source address is spoofed, the true source of the traffic is difficult to trace. UDP applications are
more vulnerable to spoofing attacks than TCP applications because, though TCP uses sequence
numbers and handshakes that require more than a single packet to establish and maintain a session,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UDP applications perform their own internal verification to ensure that a given source is who it says it
is and that the IP headers in the source of the packets have not been forged. rlogin and other Unix
r-utilities and X Windows are commonly subject to spoofing attacks. DNS servers are also vulnerable
to spoofing, because they regularly send queries to obtain the IP addresses of hosts, and cache this
information, but do not authenticate the source of the answers they receive. This operation makes it
possible for an attacker to send false or improper answers to DNS queries, thus poisoning the cache.

Figure 8-1 illustrates how a spoofing attack might work. The attacker, somewhere on the Internet at
10.0.0.1, sends packets through your router to one of your customers at 172.16.0.2.

Figure 8-1. DoS attack scenario

In a normal packet, the source address in the packet's header would be 10.0.0.1. The attacker
modifies the packet's header, spoofing the source address and changing it to 172.16.0.3. The
attacker then floods your customer with spoofed packets. The flood can look like it's coming from
several compromised hosts all spoofing random addresses, or the source addresses will remain. To
protect your customer from attacks, you configure unicast RPF on the router's interface A.

Configuring unicast RPF is a two-step process. First, enable it on the router with the unicast-
reverse-path statement in the [edit routing-options] hierarchy. With the active-paths option,
unicast RPF considers all active routes in the routing table when checking how to reach the packet's
destination. Use this option if the routing paths through your network are generally symmetrical.
However, if paths are asymmetrical, unicast RPF might drop legitimate packets. In this case, use the
feasible-paths option to consider both active and nonactive routes in the routing table.

Then, select the interfaces on which to run unicast RPF. Use the set rpf-check command when
configuring the interface's address family. This command places unicast RPF in strict mode, which, as
the name suggests, performs the most stringent examination of incoming packets. Strict-mode
unicast RPF checks that the source address in each incoming packet matches a prefix in the routing
table and verifies that the interface is the closest to the source address and is the interface the router
would use when sending packets to that address. An interface drops any packets that do not meet
both these criteria.

A second mode, loose mode, performs only one of these checks, making sure that the source address
matches a routing-table prefix but not verifying that the incoming interface as the one closest to the
source address:

 [edit interfaces so-0/0/0 unit 0 family inet]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1# set rpf-check mode loose

Loose-mode unicast RPF is good for filtering traffic that is sourced from bogon (invalid) address space
and can be used in conjunction with or instead of routing policy filters that block specific bogon
addresses. A key point to keep in mind when using loose-mode unicast RPF is whether your network
uses a 0.0.0.0/0 (default) route. The router automatically accepts all packets when loose-mode
unicast RPF is configured on interfaces that the default route uses, so it may not be a good fit in your
network for this reason.

To verify the configuration, look at the statistics on the logical interface:

 aviva@router1> show interfaces so-0/0/0.0 statistics
 Logical interface so-0/0/0.0 (Index 67) (SNMP ifIndex 41)
 Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
 Protocol inet, MTU: 4470
 Flags:
uRPF

RPF Failures: Packets: 23, Bytes: 2492
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.1.12.0/30, Local: 10.1.12.1, Broadcast: 10.1.12.3
 Protocol iso, MTU: 4470
 Flags: Is-Primary
 Protocol mpls, MTU: 4458
 Flags: Is-Primary

The Flags field shows that unicast RPF is enabled, and the next line shows the number of packets and
bytes dropped because of unicast RPF checks.

When you think the router is experiencing a DoS attack, set up a firewall filter to count the packets
dropped by the interface. Create a separate filter to count the unicast RPF traffic:

 [edit firewall]
 aviva@router1# set filter rpf-filter term default then count rpf-failed-count
 aviva@router1# set filter rpf-filter term default then reject
 aviva@router1# show
 filter rpf-filter {
 term default {
 then {
 count rpf-failed-count;
 reject;
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This filter has no from clause, so it applies to all incoming packets. The then clause creates a file
named rpf-failed-count and rejects all packets. Then apply the filter to the interface:

 [edit interfaces so-0/0/0]
 aviva@router1# set unit 0 family inet rpf-check
fail-filter rpf-filter

Reference the filter you created in the fail-filter option of the rpf-check statement. Unicast RPF
filters are not part of the normal firewall filter on an interface but are handled separately. They are
evaluated after input filters and before output filters. Unicast RPF looks only in the inet.0 routing
table for IPv4 packets and the inet6.0 table for IPv6 packets, so if an interface's input filter forwards
packets to a different routing table, the unicast RPF check is not performed.

Check the firewall filter counts with the following command:

 aviva@
router1> show firewall filter
rpf-failed-count
 Filter:
rpf-filter
 Counters:
 Name Bytes Packets
 rpf-failed-count 2492 23

See Also

Recipe 9.8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.8. Aggregating Routes

Problem

You want to aggregate some of the routes in the routing table to reduce the size of the tables and to
minimize the amount of routing-information advertisements between routers.

Solution

Configure an aggregate route that covers the specific routes beneath it:

 [edit routing-options]
 aviva@router1# set aggregate route 10.20.8.0/21

Discussion

In this recipe, the routing table contains prefixes for 10.20.13.0/24 and 10.20.15.0/24, which
aggregate as 10.20.8.0/21. Unlike static routes, you do not specify a next hop in the set aggregate
route command, because aggregate routes are not "real" routes but rather are just route
summaries. The default next hop is reject. Aggregate routes become active if a more specific route
beneath them becomes active. For example, if 10.20.13.0/24 becomes active, the aggregate
10.20.8.0/21 also becomes active, and you then see it in the routing table:

 aviva@RouterJ> show route
 inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.20.8.0/21 *[Aggregate/130] 00:00:03
 Reject
 10.20.13.0/24 *[Direct/0] 00:01:30
 > via fe-1/0/1.0
 10.20.13.1/32 *[Local/0] 00:01:30
 Local via fe-1/0/1.0
 10.20.15.0/24 *[Direct/0] 00:01:30
 > via fe-1/0/0.0
 10.20.15.1/32 *[Local/0] 00:01:30
 Local via fe-1/0/0.0
 172.19.121.0/24 *[Direct/0] 1d 21:12:45
 > via fe-0/0/0.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 172.19.121.117/32 *[Local/0] 1d 21:12:45
 Local via fe-0/0/0.0
 192.168.17.1/32 *[Direct/0] 00:01:30
 > via lo0.0

This output shows that the aggregate route has a default next hop of Reject, which drops any traffic
addressed to it and sends an ICMP unreachable message back to the sender. If you are concerned
about malicious hackers using the ICMP messages to gain information about your network and
routers, change the next hop to discard so that no ICMP unreachable messages are sent:

 [edit routing-options]
 aviva@router1# set aggregate route 10.20.8.0/21 discard

Use the show route command to verify the change:

 aviva@RouterJ> show route protocol aggregate
 inet.0: 11 destinations, 11
routes (11 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.20.8.0/21 *[Aggregate/130] 00:01:45
 Discard

When the aggregate route is active, it is installed in the forwarding table as a discard route:

 aviva@RouterJ> show route forwarding-table matching 10.20.8.0/21
 Routing table: inet
 Internet:
 Destination Type RtRef Next hop Type Index NhRef Netif
 10.20.8.0/21 user 0 dscd 12 1
 10.20.13.0/24 intf 0 rslv 338 1 fe-1/0/1.0
 10.20.13.0/32 dest 0 10.20.13.0 recv 336 1 fe-1/0/1.0
 10.20.13.1/32 intf 0 10.20.13.1 locl 337 2
 10.20.13.1/32 dest 0 10.20.13.1 locl 337 2
 10.20.13.255/32 dest 0 10.20.13.255 bcst 335 1 fe-1/0/1.0
 10.20.15.0/24 intf 0 rslv 334 1 fe-1/0/0.0
 10.20.15.0/32 dest 0 10.20.15.0 recv 332 1 fe-1/0/0.0
 10.20.15.1/32 intf 0 10.20.15.1 locl 333 2
 10.20.15.1/32 dest 0 10.20.15.1 locl 333 2
 10.20.15.255/32 dest 0 10.20.15.255 bcst 327 1 fe-1/0/0.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.9. Load-Balancing Traffic Flows

Problem

You want the JUNOS software to choose the path on a per-packet basis when there are multiple equal-
cost paths to a destination.

Solution

Create a routing policy that load-balances traffic on a per-flow basis:

 [edit policy-options]
 aviva@router1# set policy-statement balance-traffic from route-filter 192.168.10.0/24
 orlonger
 aviva@router1# set policy-statement balance-traffic then load-balance per-packet

Then apply the policy to the forwarding table:

 [edit routing-options]
 aviva@router1# set forwarding-table export balance-traffic

Discussion

The routing protocols populate the routing table with the routes they know about and learn from their
neighbors. For each prefix, or destination, RPD chooses one active route and installs its next hop into
the forwarding table. If a route points to an indirect next hop, RPD downloads all the next hops of the
indirect next hop, and the PFE selects a single next hop to use.

When there are multiple paths to a single destination, the routing protocols install the next hops for
each path into the routing table. The protocols do have some degree of freedom when populating the
routing table. A protocol can opt to install multiple routes, each with the same next hop, a single route
with multiple next hops, or even multiple routes with multiple next hops. BGP, for example, can use any
of these variations depending on how many peers advertise a prefix, how those peers can be reached,
and whether BGP multipath is enabled.

When an active route has multiple equal-cost paths, the default behavior is for RPD to use a hash
algorithm to choose a single gateway and install it into the forwarding table. If multiple prefixes have a
common set of next hops, this gateway selection process should result in uniform distribution of
prefixes across the next hops. For example, if prefixes A, B, C, and D all have gateways 1 and 2, RPD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

may install A and D with gateway 1 and B and C with gateway 2, so half the prefixes go through one
link and half through the other.

To instead have RPD install all the next hops for a prefix into the forwarding table, you turn on load
balancing for that prefix. Load balancing distributes the traffic to the prefix across all the paths, evening
out the traffic flow across different interfaces and circuits.

Configuring load balancing is a two-step process. First, create a routing policy to define which packets
to load-balance. In this recipe, the from clause matches the prefix 192.168.10.0/24 and any longer
prefixes. The then clause has the load-balance per-packet action to turn on load balancing:

 [edit policy-options]
 aviva@router1# set policy-statement load-balance then load-balance per-packet

Even though the JUNOS CLI uses per-packet , the term is misnamed. This command is actually
enabling per-flow load balancing.

The second step is to apply the policy to routes exported from the routing table to the forwarding
engine. In the [edit routing-options] hierarchy, use a set export command:

 [edit routing-options]
 aviva@router1# set forwarding-table export balance-
traffic

The result of this policy is that all equal-cost paths to destinations are installed in the forwarding table
and traffic to these destinations is load-balanced on a per-flow basis. The exact balancing behavior
depends on the ASICs in your router. For older routers with the Internet Processor I ASIC, load
balancing uses a round-robin method across up to eight next hops. On newer routers with the Internet
Processor II ASIC, packets for each individual flow are kept on a single interface and can be spread
across up to 16 next hops.

A flow is defined as packets whose headers have the same source and destination addresses and the
same protocol. Use the following commands to check for more information in the packet headers:

 [edit forwarding-options]
 aviva@router1# set hash-key family inet layer-3
 aviva@router1# set hash-key family inet layer-4

With these two commands, the source and destination port numbers, source interface index, and type
of service are also checked to determine whether packets are in the same flow. When you have more
detailed knowledge of your network's traffic patterns and the network types, these two commands
allow you to load-balance traffic flows more precisely.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipes 9.1 and 13.14

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.10. Adding Martian Addresses

Problem

You want to add a martian address to the JUNOS default martian list.

Solution

Specify the martian address in the [edit routing-options] hierarchy:

 [edit routing-options]
 aviva@router1# set martians 1.0.0.0/0 tHRough 1.0.0.0/32

Discussion

Martian addresses are prefixes reserved for a specific purpose and not subject to future allocation by
the IANA. You should never see traffic from these prefixes; if you do, it generally indicates that a
system somewhere on the network is misconfigured. By default, the JUNOS software ignores all
martian addresses and does not install them in the routing table. The JUNOS software maintains the
following martian addresses by default:

 aviva@router1> show route martians
 inet.0:
 0.0.0.0/0 exact -- allowed
 0.0.0.0/8 orlonger --
disallowed
 127.0.0.0/8 orlonger -- disallowed
 128.0.0.0/16 orlonger -- disallowed
 191.255.0.0/16 orlonger -- disallowed
 192.0.0.0/24 orlonger -- disallowed
 223.255.255.0/24 orlonger -- disallowed
 240.0.0.0/4 orlonger -- disallowed
 …
 inet6.0:
 ::1/128 exact -- disallowed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These correspond to the all-zeros and all-ones classful network numbers, as well as the Class E
network space. All of the former addresses were reserved by IANA (and many still are), and routing
for the latter is undefined.

There is no permanent list of martian addresses because the address spaces that IANA chooses to
reserve and make available for allocation change over time. Some martian addresses are not
included in the JUNOS defaults, and some of the address blocks included in the JUNOS software
default martian list have since been made available for allocation by IANA (see RFC 3330).

This recipe adds an address to the martian list on a router. Look at the martian routes in the routing
table to verify that the address has been added:

 aviva@router1> show route martians table inet.0
 inet.0:
 0.0.0.0/0 exact -- allowed
 0.0.0.0/8 orlonger -- disallowed
 127.0.0.0/8 orlonger -- disallowed
 128.0.0.0/16 orlonger -- disallowed
 191.255.0.0/16 orlonger -- disallowed
 192.0.0.0/24 orlonger -- disallowed
 223.255.255.0/24 orlonger -- disallowed
 240.0.0.0/4 orlonger -- disallowed
 1.0.0.0/0 through 1.0.0.0/32-- disallowed

The disallowed keyword in the output means that the route is treated like a martian and is blocked.

As the IANA allocations change, you will want to remove some of the prefix blocks from the list to
override the defaults. To change the JUNOS defaults so the only martians are 0.0.0.0/8 (addresses
on this network), 127.0.0.0/8 (loopback address), and 240.0.0.0/4 (experimental address block,
formerly the Class E addresses), configure the martian addresses to allow the remaining defaults:

 [edit routing-options]
 aviva@router1# set martians 128.0.0.0/16 orlonger allow
 aviva@router1# set martians 191.255.0.0/16 orlonger allow
 aviva@router1# set martians 192.0.0.0/24 orlonger allow
 aviva@router1# set martians 223.255.255.0/24 orlonger allow

You can verify that these prefixes are now accepted:

 aviva@router1> show route martians table inet.0
 inet.0:
 0.0.0.0/0 exact --
allowed
 0.0.0.0/8 orlonger -- disallowed
 127.0.0.0/8 orlonger -- disallowed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 128.0.0.0/16 orlonger -- allowed
 191.255.0.0/16 orlonger -- allowed
 192.0.0.0/24 orlonger -- allowed
 223.255.255.0/24 orlonger -- allowed
 240.0.0.0/4 orlonger -- disallowed

The allowed keyword in the output means that the routes are now accepted.

RFC 3330, Special-Use IPv4 Addresses, describes specialized IPv4 address blocks that have been
assigned to IANA to manage. Team Cymru maintains information about other prefixes that you might
want to mark as martians (see http://www.cymru.com/gillsr/documents/junos-bgp-template.pdf and
http://www.cymru.com/gillsr/documents/junos-martians.txt).

See Also

RFC 3330, Special-Use IPv4 Addresses and Team Cmyru
(http://www.cymru.com/gillsr/documents/junos-bgp-template.pdf and
http://www.cymru.com/gillsr/documents/junos-martians.txt)

http://www.cymru.com/gillsr/documents/junos-bgp-template.pdf
http://www.cymru.com/gillsr/documents/junos-martians.txt
http://www.cymru.com/gillsr/documents/junos-bgp-template.pdf
http://www.cymru.com/gillsr/documents/junos-martians.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.11. Changing Route Preferences to Migrate to
Another IGP

Problem

You are migrating the IGP on your network from OSPF to IS-IS and you want to do this in a
controlled manner.

Solution

After configuring both OSPF and IS-IS on the routers you are migrating, change the route preference
on the OSPF routes to be higher than the IS-IS preference:

 [edit protocols ospf]
 aviva@Router3#
set preference 175

Discussion

While you can change the preference values for all dynamic routing protocols and user-configured
routes using the set preference and set external-preference commands when configuring the
protocols, it is generally not a good idea. The changes you make affect only the router you are
configuring, and the local router will end up with a different idea of relative route preferences than
the other routers on the network. Also, changing route preferences could affect which routes become
active, which, in turn, would affect which routes are used to forward traffic.

However, one situation where you might want to change route preferences is when migrating IGPs.
In this recipe, we are migrating from using OSPF as the IGP to using IS-IS. A preference of 175 for
OSPF is greater than that of any IS-IS routes. From Table 8-2, you see that IS-IS internal routes
have a preference of either 15 (for Level 1) or 18 (for Level 2), and external routes have a
preference of 160 (for Level 1) or 165 (for Level 2).

The command shown in this recipe is actually the last step in an OSPF-to-IS-IS migration strategy.
The first step is to configure IS-IS on the same interfaces that are running OSPF (see Recipe 11.1),
then verify that IS-IS adjacencies are established on the same interfaces that have OSPF
adjacencies:

 aviva@Router3> show isis adjacency

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Interface System L State Hold (secs) SNPA
 so-0/2/0.0 R1 2 Up 20
 so-0/2/1.0 R2 2 Up 21
 so-0/2/2.0 R4 2 Up 19
 so-0/2/3.0 R10 2 Up 19

 aviva@Router3> show ospf neighbor
 Address Interface State ID Pri Dead
 10.1.2.1 so-0/2/0.0 Full 10.10.255.1 128 36
 10.1.6.1 so-0/2/1.0 Full 10.10.255.2 128 38
 10.1.7.2 so-0/2/2.0 Full 10.10.255.4 128 34
 10.1.8.2 so-0/2/3.0 Full 10.10.255.10 128 38

You then need to ensure that IS-IS calculates the same paths as OSPF. The default IS-IS metrics
must be changed so that they give the same relative cost to each path as does OSPF. You can do this
by manually assigning appropriate interface metrics or by configuring a reference bandwidth. (See
Recipe 11.10 for IS-IS and Recipe 12.11 for OSPF.)

Unlike OSPF, for which the JUNOS software has an automatic costing algorithm based on interface
bandwidth, for IS-IS JUNOS software assigns a default metric of 10 to all IS-IS interfaces. If this
default is left unchanged, the shortest paths calculated by IS-IS are essentially shortest-hop paths.

With IS-IS enabled and metrics configured correctly, the routing table should have the same number
of IS-IS entries as OSPF entries for each destination, and they should point to the same outgoing
next hops. That is, if there is one OSPF route to a prefix, there should be one IS-IS route to the same
prefix and with the same outgoing interface. If there are two OSPF routes to a prefix, there should be
two IS-IS routes, and so on.

 aviva@Router3> show route
 inet.0: 28 destinations, 48 routes (28 active, 0 holddown, 0 hidden)
 Restart Complete
 + = Active Route, - = Last Active, * = Both
 10.1.1.0/24 *[OSPF/10] 00:16:20, metric 65
 via so-0/2/0.0
 > via so-0/2/1.0
 [IS-IS/18] 00:16:08, metric 126
 to 10.1.2.1 via so-0/2/0.0
 > to 10.1.6.1 via so-0/2/1.0
 10.1.3.0/24 *[OSPF/10] 00:16:20, metric 65
 via so-0/2/0.0
 > via so-0/2/2.0
 [IS-IS/18] 00:16:08, metric 126
 > to 10.1.2.1 via so-0/2/0.0
 to 10.1.7.2 via so-0/2/2.0
 …

The output shows that for each destination prefix, OSPF and IS-IS have the same number of routes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the same outgoing interfaces. The preferred route for each prefix (marked with an *) is the OSPF
route. If there are equal-cost paths, the next hop chosen by OSPF (>) is not always the same as that
chosen by IS-IS. This will not cause routing problems as long as the equal-cost paths are consistent
between the protocols.

At this point, you change the route preference using the set protocols ospf preference command
shown in this recipe. Here, you increase the OSPF preference to a value higher than any of the IS-IS
preferences because OSPF is the protocol that you are migrating away from. You could instead
change the IS-IS route preference so that its routes are more preferred than OSPF. However, leaving
the IS-IS preference at its default value simplifies any future addition of routers to the network.
Another alternative at this point would be to delete OSPF from the configuration altogether. However,
you should leave it in for a short period of time to test the migration. If there are any problems and
you need to back out of the migration, all you need to do is return to the default OSPF preference
value:

 [edit protocols ospf]
 aviva@Router3# delete preference
 aviva@Router3# commit

To verify the preference change, look at the routing table to check that IS-IS is the preferred protocol
for all the routes:

 aviva@Router3> show route
 inet.0: 28 destinations, 48 routes (28 active, 0 holddown, 0 hidden)
 Restart Complete
 + = Active Route, - = Last Active, * = Both
 10.1.1.0/24 *[IS-IS/18] 00:32:24, metric 126
 to 10.1.2.1 via so-0/2/0.0
 > to 10.1.6.1 via so-0/2/1.0
 [OSPF/175] 00:01:48, metric 65
 via so-0/2/0.0
 > via so-0/2/1.0
 10.1.3.0/24 *[IS-IS/18] 00:32:24, metric 126
 > to 10.1.2.1 via so-0/2/0.0
 to 10.1.7.2 via so-0/2/2.0
 [OSPF/175] 00:01:48, metric 65
 > via so-0/2/0.0
 via so-0/2/2.0

When you are sure that IS-IS is working properly, remove the OSPF configuration from the router:

 [edit
protocols]
 aviva@Router3# delete ospf
 aviva@Router3# commit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipes 11.1, 11.10, 12.1, and 12.11

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 8.12. Configuring Routing Protocols to Restart
Without Losing Adjacencies

Problem

You want to control when routers calculate new paths so that temporary routing-protocol failures
don't cause unnecessary recalculations.

Solution

Enable graceful restart for all routing protocols on the router:

 [edit routing-options]
 aviva@RouterG# set graceful-restart

Discussion

From time to time, something happens to interrupt the operation of the routing protocols. The
interruption might be a planned reinstallation of the routing software to fix a problem. The
interruption might also be unplanned because a routing protocol stops running or a network link goes
down but is something you might be able to respond to and repair quickly. When this happens, the
routing protocols stop sending keepalive messages to their neighbors. After a short while (the actual
time depends on the protocol and how it's configured), the neighbor will declare that the local router
is down and, because the network topology has changed, will start calculating new paths to network
destinations. This recalculation floods a lot of protocol traffic, which can disrupt the operation of the
network. If you know that the downtime for the routing protocols will generally be brief, you really
don't want the routing protocols to recalculate paths, only to recalculate them again once the routing
protocols are back up.

Graceful restart is a way to hide the fact that a routing protocol has restarted and thus prevent path
recalculations. With graceful restart, if the router or routing protocol has to restart, it informs its
adjacent neighbors and requests a grace period from them. During this grace period, the neighbor
acts as a helper, masking the fact that the local router is down. The restarting router continues to
forward traffic during the restart period, and convergence in the network is not disrupted. The restart
is not visible to the portion of the network that is not communicating directly with the local router.
The neighboring routers are aware of the restart. Also, the restarting router is not removed from the
network topology. Because the network's topology is "frozen" during the restart period, you should
use graceful restart only when you know that your topology is stable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You turn on graceful restart globally, as shown in this recipe. You generally leave graceful restart
running all the time in case of an unplanned failure. The global configuration applies to all routing
protocols, including BGP, IS-IS, OSPF, PIM SM, RIP, and RIPng, and to all MPLS-related protocols,
including RSVP, LDP, CCC, and TCC.

Configuring graceful restart is just a request. The JUNOS software honors the request only when the
network topology is stable and the neighboring routers cooperate.

Now you see that graceful restart settings are different for the different protocols. For BGP, use the
show bgp neighbor command:

 aviva@RouterG> show bgp neighbor 10.0.0.2
 Peer: 10.0.0.2+2098 AS 64555 Local: 10.0.0.1+179 AS 64550
 Type: External State: Established Flags: <Sync>
 Last State: OpenConfirm Last Event: RecvKeepAlive
 Last Error: None
 Options: <Preference HoldTime GracefulRestart PeerAS Refresh>
 Holdtime: 90 Preference: 170
 Number of flaps: 1
 Error: 'Cease' Sent: 0 Recv: 1
 Peer ID: 10.0.0.1 Local ID: 192.168.19.1 Active Holdtime: 90
 Keepalive Interval: 30 Peer index: 0
 Local Interface: fe-1/0/1.0
 NLRI for restart configured on peer: inet-unicast
 NLRI advertised by peer: inet-unicast
 NLRI for this session: inet-unicast
 Peer supports Refresh capability (2)
 Restart time configured on the peer: 120
 Stale routes from peer are kept for: 300
 Restart time requested by this peer: 120
 NLRI that peer supports restart for: inet-unicast
 NLRI peer can save forwarding state: inet-unicast
 NLRI that peer saved forwarding for: inet-unicast
 NLRI that restart is negotiated for: inet-unicast
 NLRI of received end-of-rib markers: inet-unicast
 NLRI of all end-of-rib markers sent: inet-unicast
 Table inet.0 Bit: 10000
 RIB State: BGP restart is complete
 Send state: in sync
 Active prefixes: 0
 Received prefixes: 0
 Suppressed due to damping: 0
 Advertised prefixes: 0
 Last traffic (seconds): Received 19 Sent 19 Checked 19
 Input messages: Total 3 Updates 1 Refreshes 0 Octets 97
 Output messages: Total 3 Updates 0 Refreshes 0 Octets 116

The Options line shows that graceful restart is enabled. The two Restart time lines and the Stale
routes line show the default graceful restart parameters. Here, the router allows a grace period of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

120 seconds for a neighboring router to restart and requests a grace period of 120 seconds from its
neighbors. The router will continue to advertise stale routes from the down neighbors for 300
seconds. The NLRI lines indicate which routing tables are involved in the graceful restart operation.

For IS-IS, you see the graceful restart settings in the show isis adjacency detail output:

 aviva@RouterF> show isis adjacency detail
 RouterF
 Interface: fe-0/0/1.0, Level: 2, State: Up, Expires in 7 secs
 Priority: 64, Up/Down transitions: 1, Last transition: 00:01:05 ago
 Circuit type: 3, Speaks: IP, IPv6, MAC address: 0:5:85:c4:72:d1
 Topologies: Unicast
 Restart capable: Yes
 LAN id: RouterF.02, IP addresses: 10.0.8.1

The Restart capable line indicates that graceful restart is configured.

For OSPF, there is no specific command to see that graceful restart is configured.

For all protocols, there are two commands that show that graceful restart is configured. The first is
the show route command:

 aviva@RouterF> show route
 inet.0: 9 destinations, 9 routes (9 active, 0 holddown, 0 hidden)
 Restart Complete
 + = Active Route, - = Last Active, * = Both

The Restart line at the top of the output shows that graceful restart is enabled.

The second command is show route instance detail:

 aviva@RouterF> show route instance detail
 master:
 Router ID: 192.168.12.1
 Type: forwarding State: Active
 Restart State: Pending Path selection timeout: 300
 Tables:
 inet.0 : 8 routes (8 active, 0 holddown, 0 hidden)
 Restart Complete
 iso.0 : 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Complete

The Restart State: Pending entry tells you that graceful restart is enabled and that the router is
ready to perform a graceful restart operation, if necessary. When the router is in the process of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

restarting, you can see the routing component that is restarting. For IS-IS, here is the restart
operation in progress:

 aviva@RouterF> show route instance detail
 master:
 Router ID: 10.0.0.1
 Type: forwarding State: Active
 Restart State: Pending Path selection timeout: 300
 Tables:
 inet.0 : 8 routes (8 active, 0 holddown, 0 hidden)
 Restart Pending: IS-IS
 iso.0 : 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Pending: IS-IS

For OSPF, the output is similar:

 aviva@RouterF> show route instance detail
 master:
 Router ID: 10.0.0.1
 Type: forwarding State: Active
 Restart State: Pending Path selection timeout: 300
 Tables:
 inet.0 : 10 routes (9 active, 1 holddown, 0 hidden)
 Restart Pending: OSPF(TED done)
 iso.0 : 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Complete

When the restart operation completes, the output changes to Restart Complete:

 aviva@RouterF> show route instance detail
 master:
 Router ID: 10.0.0.1
 Type: forwarding State: Active
 Restart State: Pending Path selection timeout: 300
 Tables:
 inet.0 : 8 routes (8 active, 0 holddown, 0 hidden)
 Restart Complete
 iso.0 : 1 routes (1 active, 0 holddown, 0 hidden)
 Restart Complete

This recipe shows how to enable graceful restart for all routing protocols. If you do not want to use it
on a particular protocol, disable it for that protocol. Here's how to disable it for IS-IS:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit protocols isis]
 aviva@RouterF# set graceful-restart disable

See Also

RFC 3478, Graceful Restart Mechanism for LDP; RFC 3623, Graceful OSPF Restart; RFC 3847, Restart
signaling for IS-IS; Internet draft draft-ietf-idr-restart-10.txt, Graceful Restart Mechanism for BGP
(expires December 2004); Internet draft draft-ietf-mpls-bgp-mpls-restart-03.txt, Graceful Restart
Mechanism for BGP with MPLS (expires August 2004) at http://www.ietf.org

http://www.ietf.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 9. Routing Policy and Firewall
Filters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

The JUNOS software policy framework provides a mechanism for controlling the flow of traffic into
and out of the router. The policy framework has two broad components:

Routing policy

Controls routing information that routing protocols place into the routing and forwarding tables
and advertise based on the routes in the routing table.

Firewall filters

Control packets passing through a router's interface, either coming into the router or being
transmitted out.

The architectural design and configuration of JUNOS routing policy and firewall filters and how you
configure them are nearly identical, so we discuss them together in a single chapter. However,
because they are so similar, it's sometimes easy to confuse the two. The most important point to
remember is that routing policy applies to routing protocols and affects how routes are stored in the
routing table and how routes are advertised to peers, while firewall filters affect which packets a
router's interfaces accept and send.

The process for configuring policies and filters always has two basic steps:

Define the policy or filtering conditions in one part of the configuration ([edit policy-options]
for routing policies and [edit firewall] for firewall filters).

1.

Apply the conditions by referencing them when configuring either a specific routing protocol or a
specific interface.

2.

Separating the specification of policy and firewall conditions from their actual application means that
you can set up common policy and firewall conditions that encompass your organization's business,
security, and peering policies. You can then apply the same conditions to different peers, customers,
or interfaces.

Because the policy and filter conditions are referenced, you don't have to repeat the same
information in many places throughout a configuration but can instead modify the conditions in a
single place and reuse them as needed. This modularity is useful, especially when you consider that
for larger ISPs, the routing policy and firewall filter sections of the JUNOS configuration file make up a
very large percentage of the router's configuration, sometimes 50 percent or more.

Defining Policies and Filters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the JUNOS configuration, routing policies and firewall filters have the same basic structure:

Name

Identifies each policy and filter. You specify and use this name to reference the policy or filter
when configuring a routing protocol or interface. You set the name like this:

 [edit policy-options]
 aviva@router1#
edit policy-statement add-community

 [edit firewall]
 aviva@router1#
edit filter incoming-to-me

Here, the edit policy-statement command creates a routing policy named add-community, and the
edit filter command creates a filter called incoming-to-me.

Term

Groups match conditions with corresponding actions. Policies and filters can have one or more
terms, which are evaluated in order. Terms are also identified by name, such as:

 [edit policy-options filter incoming-to-me]
 aviva@router1# edit term allow-snmp-from-nms-systems

The edit term command creates a term called allow-snmp-from-nms-system.

Match conditions

For policies, the match conditions apply to routes; for firewall filters, they apply to packets.
Match conditions are generally identified by a from clause to indicate information in the
received route or packet. Here, the from clause matches UDP packets:

 [edit policy-options filter incoming-to-me term allow-snmp-from-nms-systems]
 aviva@router1#
set from protocol udp

Match conditions sometimes have a to clause to match information about the route or packet
destination.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Action

Specifies what to do when a match occurs. The action is identified by a then clause:

 [edit policy-options filter incoming-to-me term allow-snmp-from-nms-systems]
 aviva@router1# set then accept

Here, the action is to accept the packet.

If the route or packet does not match any of the conditions when the end of the policy or filter is
reached, a default action is taken.

A routing policy can have several match conditions, with multiple conditions in a single term, with
several terms in the same policy, or with several policies chained together. Similarly, a firewall filter
can have a number of match conditions. However, you can apply only one firewall filter on an input or
output interface. To have a series of match conditions, you define multiple matches in a term or
multiple terms in a single filter.

Applying Policies and Filters

After defining a policy or filter, you apply it to a protocol or interface. For a policy, you use import and
export statements. An import policy applies when the router is evaluating routes received from a
routing protocol before placing them into the routing table. An export policy applies when an active
route in the routing table is sent in a routing-protocol advertisement. For a firewall filter, you use
filter input and filter output statements for incoming and outgoing traffic on an interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.1. Creating a Simple Routing Policy

Problem

You want to advertise configured static routes to adjacent OSPF neighbors, going beyond the OSPF default
of advertising only the routes learned from an OSPF neighbor.

Solution

To modify the route advertisement behavior, create and apply a routing policy. First, create the policy:

 [edit]
 aviva@router1# set policy-options policy-statement send-statics term 1 from protocol
 static
 aviva@router1# set policy-options policy-statement send-statics term 1 then accept

Then, apply it to OSPF:

 [edit]
 aviva@router1# set protocols ospf export send-statics

Here's what the policy looks like in the configuration:

 [edit]
 aviva@router1# show
 policy-options {
 policy-statement send-statics {
 term 1 {
 from protocol static;
 then accept;
 }
 }
 }
 protocols {

ospf {
 export send-statics;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

Discussion

From a structural point of view, this routing policy is very straightforward and illustrates the basic
components of how to configure a policy. The JUNOS policy language is similar to standard programming
languages or pseudocode, so you can read through the show output in this recipe to get the gist of the
policy. If you are not a programmer, you can read the policy language as if it were a paragraph written in
an outline format. Looking through the show output in this recipe, you see it creates a policy named send-
statics that looks for static routes and accepts them. OSPF applies the policy to routes it advertises to its
OSPF neighbors. Rephrased, this recipe allows OSPF to advertise static routes in addition to the default
OSPF behavior, which is to advertise routes learned from OSPF.

Before looking at the policy configuration, one question you might ask is why you need to create routing
policies at all. What happens if you don't configure any? By default, all routing protocols accept any routes
they learn from their protocol neighbors or peers and place them into one of the routing tables (see Table
9-1). This means that without a routing policy, BGP accepts all routes from all its BGP neighbors, IS-IS
accepts all routes from all its IS-IS neighbors, OSPF from all its OSPF neighbors, and so on. Routing policy is
how you modify this behavior. In most cases, you use routing policy with BGP to enforce peering
agreements and your company's administrative policies because they provide explicit control over which
routes are installed in the routing table. These routes are eligible to become active routes, which are used
for forwarding traffic. Routing policy also provides explicit control over which routes are advertised to the
router's neighbors.

Table 9-1. Default routing-policy actions

Protocol
Routing

table
Default import action Default export action

BGP inet.0
Accept all BGP routes. Do not modify BGP route
properties.

Accept and export active
BGP routes. Do not modify
BGP route properties.

DVMRP inet.1 Accept all DVMRP routes.
Accept and export active
DVMRP routes.

IS-IS
inet.0 and

inet6.0

Accept all IS-IS routes. Policy cannot be modified
because IS-IS requires that all routers in an area
have the same linkstate database to maintain a
stable, loop-free network.

Reject everything (IS-IS
uses LSPs to advertise its
routes).

LDP inet.3 Accept all LDP routes.
Accept and export active
LDP routes.

MPLS inet.3 Accept all MPLS routes.
Accept and export active
MPLS routes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Protocol
Routing

table
Default import action Default export action

OSPF inet.0

Accept all OSPF routes. Policy cannot be modified
because OSPF requires that all routers in an area
have the same linkstate database to maintain a
stable, loop-free network.

Reject everything (OSPF
uses LSAs to advertise its
routes).

PIM dense
mode

inet.1 Accept all PIM DM routes.
Accept and export active
PIM DM routes.

PIM sparse
mode

inet.1 Accept all PIM SM routes.
Accept and export active
PIM SM routes.

RIP inet.0 Accept all RIP routes learned from RIP neighbors. Reject everything.

RIPng inet6.0
Accept all RIPng routes learned from RIPng
neighbors.

Reject everything.

Direct and
static routes

inet.0 Accept all routes. Do not export.

What are some reasons to modify the default routing-policy behavior? This recipe illustrates one reason,
which is to redistribute routes learned from one protocol (here, static routes) to another protocol (here,
OSPF). This type of policy affects which routes the protocol advertises (or exports) from the routing table,
so you configure it with a set export command. Another reason is to keep a route out of the routing table
so that it can never become the active route. Active routes are placed in the forwarding table and are used
to forward traffic. For these types of policy, you use a set import command to control the routes placed
into (imported into) the routing table. Another reason specific to BGP is to change the BGP properties
associated with a route, such as the AS path and community, and to configure route flap damping.
Depending on your purposes, you use the set import or set export commands to apply policies.

For the link-state IGPs (IS-IS and OSPF), you should never modify the default policy behavior for incoming
routes (with a set import command). These protocols use link-state databases to keep track of their
routes, and the databases on all routers in an area must be identical for the protocol to work properly.

Now let's look at this recipe to understand how the policy is configured. The policy, being a simple one, has
only one term, called 1 . While you could name the term with a text string that describes what the term
does, it is common practice to use a number to name the term, especially in simple policies. The term name
is not referenced by other parts of the configuration. It is, however, used in logfiles created when tracing
routing-policy operation (see Recipe 9.7), so, for more complex networks and policies, identify each term
with a meaningful name so you can identify them in the logfiles.

The first command in the recipe defines the policy match condition. The from clause, from protocol static ,
looks for routes from the static protocolin other words, static routes that are configured on the local router.
Routing policies can match various routing information (see Table 9-2).

Table 9-2. Routing-information match conditions used in routing policies

Match term Match description

OSPF inet.0

Accept all OSPF routes. Policy cannot be modified
because OSPF requires that all routers in an area
have the same linkstate database to maintain a
stable, loop-free network.

Reject everything (OSPF
uses LSAs to advertise its
routes).

PIM dense
mode

inet.1 Accept all PIM DM routes.
Accept and export active
PIM DM routes.

PIM sparse
mode

inet.1 Accept all PIM SM routes.
Accept and export active
PIM SM routes.

RIP inet.0 Accept all RIP routes learned from RIP neighbors. Reject everything.

RIPng inet6.0
Accept all RIPng routes learned from RIPng
neighbors.

Reject everything.

Direct and
static routes

inet.0 Accept all routes. Do not export.

What are some reasons to modify the default routing-policy behavior? This recipe illustrates one reason,
which is to redistribute routes learned from one protocol (here, static routes) to another protocol (here,
OSPF). This type of policy affects which routes the protocol advertises (or exports) from the routing table,
so you configure it with a set export command. Another reason is to keep a route out of the routing table
so that it can never become the active route. Active routes are placed in the forwarding table and are used
to forward traffic. For these types of policy, you use a set import command to control the routes placed
into (imported into) the routing table. Another reason specific to BGP is to change the BGP properties
associated with a route, such as the AS path and community, and to configure route flap damping.
Depending on your purposes, you use the set import or set export commands to apply policies.

For the link-state IGPs (IS-IS and OSPF), you should never modify the default policy behavior for incoming
routes (with a set import command). These protocols use link-state databases to keep track of their
routes, and the databases on all routers in an area must be identical for the protocol to work properly.

Now let's look at this recipe to understand how the policy is configured. The policy, being a simple one, has
only one term, called 1 . While you could name the term with a text string that describes what the term
does, it is common practice to use a number to name the term, especially in simple policies. The term name
is not referenced by other parts of the configuration. It is, however, used in logfiles created when tracing
routing-policy operation (see Recipe 9.7), so, for more complex networks and policies, identify each term
with a meaningful name so you can identify them in the logfiles.

The first command in the recipe defines the policy match condition. The from clause, from protocol static ,
looks for routes from the static protocolin other words, static routes that are configured on the local router.
Routing policies can match various routing information (see Table 9-2).

Table 9-2. Routing-information match conditions used in routing policies

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Match term Match description

area area-id Routes learned from an OSPF area.

as-path as-path-
string

Routes containing the BGP AS path, which you specify as a regular expression.

community [names] One or more BGP communities.

external [type

metric]
OSPF external routes.

interface name
interface address

In a from clause, routes received on an interface or address. In a to clause,
routes advertised out of an interface or to an address. Do not use with BGP.

level level
In a from clause, routes from an IS-IS level. In a to clause, routes advertised to
an IS-IS level.

local-preference

value
BGP LOCAL_PREF attribute.

metric value meTRic2
value

Routes with the metric value. For BGP, metric is the MED and metric2 is the IGP
metric of the BGP next hop.

neighbor address
In a from clause, routes from a neighbor. In a to clause, routes advertised to a
neighbor.

origin value BGP ORIGIN attribute.

preference value Preference value.

protocol name
Sending protocol (aggregate, bgp, direct, dvmrp, isis, local, ospf, pim-dense, pim-
sparse, rip, ripng, or static).

tag value tag2 value Tag and tag2 values in OSPF external LSAs.

A single term can match one or several conditions. Here's an example of a term with two conditions:

 [edit policy-options policy-statement ospf-policy term 1]
 aviva@router1# set from area 0.0.0.1
 aviva@router1# set from metric 1

For a route to match this term, it must match both conditions. OSPF must have learned it from area 0.0.0.1
, and it must have a metric value of 1. This operation is similar to a logical AND operation.

The second command in the recipe specifies the action to take when a match occurs. Here, the action is to
accept the packet (set then accept). Table 9-3 lists possible policy actions.

Table 9-3. General actions to take on matching routes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Action
term

Description Additional action taken

accept
Accept the route and
propagate it.

Evaluation of the policy statement ends. If the policy has more
terms, they are ignored. If the policy is part of a chain of
policies, any subsequent policies are ignored.

reject
Reject the route and do not
propagate it.

Evaluation of the policy statement ends. If the policy has more
terms, they are ignored. If the policy is part of a chain of
policies, any subsequent policies are ignored.

next

term

Take any actions in the then
clause that modify the route
properties.

Any accept or reject action is ignored, and evaluation of the
policy statement jumps to the next term in the policy.

next

policy

Take any actions in the then
clause that modify the route
properties.

Any accept or reject action is ignored, any subsequent terms
in the policy are ignored, and evaluation of the policy
statement jumps to the next policy in the chain.

Because the policy in this recipe has one term, if the packet matches all the conditions (similar to a logical
AND action), the action is taken. If there are no actions or if a route does not match all the conditions, the
default accept or reject action is taken, which for OSPF is to reject the route and not advertise it. If a
routing policy has multiple terms, they are evaluated sequentially. As soon as the route matches a term, the
action in that term is taken and policy evaluation completes. If the route does not match any of the terms,
the default action for that protocol is taken.

The then clause can include additional actions that modify the route properties. These are discussed in
Recipe 9.2.

The third command in the recipe, set export send-statics , applies the policy to OSPF, referencing it by
name. The set export command affects routes that OSPF advertises to its peers. By default, OSPF
advertises only routes learned from other OSPF routers. This policy configures OSPF to also advertise any
static routes configured on the local router.

Use the show policy command to see which policies are configured:

 aviva@router1> show policy
 Configured policies:
 send-statics

For just one policy, the output is not very interesting. However, if the configuration contains a number of
routing policies, this command is a good way to get a quick list of the policies.

Because all routing policies are in a common place in the configuration (in the [edit policy-options]
hierarchy), you can refer to them more than once when configuring a routing protocol. For example, you
can use the policy in this recipe to redistribute static routes into an EBGP group. Because the policy is
already defined, you need to just reference the EBGP group:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit]
 aviva@router1# set protocols bgp group external group export send-statics

It's worthwhile to take a moment to comment on the style you use to type configuration statements for
routing policies (and also for firewall filters). In this recipe, you are at the [edit] configuration hierarchy
level, which is the very top level of the hierarchy, so you have to type the full hierarchy to the statement as
well as the statement itself. This recipe has a fairly deep hierarchy level, as do most policy and firewall
configurations, so the method shown here involves a lot of typing:

 [edit]
 aviva@router1# set policy-options policy-statement send-statics term 1 from protocol
 static
 aviva@router1# set policy-options policy-statement send-statics term 1 then accept

You may find it a better practice to move to that hierarchy level, both so you have less typing to do and so
you have a better sense of where you are in the configuration. For this recipe, you could type most of the
configuration commands from the [edit policy-options policy-statement send-statics term 1]

hierarchy level:

 [edit]
 aviva@router1# edit policy-options policy-statement send-statics term 1

 [edit policy-options policy-statement send-statics term 1]
 aviva@router1# set from protocol static
 aviva@router1# set then accept

Another configuration shortcut to minimize typing is to use the keystroke sequences listed in Table 1-1 .
Ctrl-p (or sometimes the up arrow on the keyboard) displays the previous CLI command:

 [edit]
 aviva@router1# set policy-options policy-statement send-statics term 1 from protocol
 static
 aviva@router1# Ctrl-p
 [edit]
 aviva@router1# set policy-options policy-statement send-statics term 1 from protocol
 static

Then delete from protocol static and type then accept . To delete the previous statements, use the

Backspace key or the sequence Ctrl-b to move back one character or Esc-b to move back one word, along
with Ctrl-k to delete all characters from the cursor to the end of the line:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit]

 aviva@router1# set policy-options policy-statement send-statics term 1 backspace to here
 aviva@router1# set policy-options policy-statement send-statics term 1 then accept

See Also

Recipes 9.2 and 9.7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.2. Changing a Route's Routing Information

Problem

You want to enforce your company's BGP peering relationships and control the traffic you receive
from BGP peers by modifying the BGP LOCAL_PREF attribute and associating a community with
certain BGP routes.

Solution

Another function of routing policy is to modify the routing information associated with BGP routes.
First, match the routes to be affected:

 [edit policy-options policy-statement from-my-customers term 1]
 aviva@router1# set from neighbor 10.0.31.2/32

Use the then clause to modify the route's routing information:

 [edit policy-options policy-statement from-my-customers term 1]
 aviva@router1# set then local-preference 300
 aviva@router1# set then community set 65500:12345
 aviva@router1# set then accept

Finally, apply the policy to a BGP group:

 [edit protocols bgp]
 aviva@router1# set group external-group import from-my-customers

Discussion

For BGP routes, routing policy allows you to modify the BGP routing information associated with each
route, including the BGP local preference, community, and origin attributes, and the AS paths in each
route. You typically do this to manage customer traffic and peering arrangements with other ISPs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 9-4 lists the actions you can include in a policy to change a route's routing information. Most of
these actions are specific to BGP.

Table 9-4. Actions that change routing information in matching routes

Action term Description

as-path-prepend path Add AS numbers to the beginning of the BGP AS path.

as-path-expand last-as

count number
Add the last AS number to the BGP AS path the specified number of
times before adding the local AS number.

community + names

community add names
Add BGP community names.

communitynames

community delete names
Delete BGP community names.

community = names

community setnames
Set the specific BGP community name.

damping name Configure BGP route flap damping.

external type metric External metric for exported OSPF routes.

local-preference value Set the value of the BGP LOCAL_PREF attribute.

local-preference add

number

local-preference

subtractnumber

Increment or decrement the BGP LOCAL_PREF value.

metric value

meTRic2 value
Set the metric value. For BGP, metric is MED and metric2 is the IGP

metric igp value

metric minimum-igp value

Change the MED by the specified value for EBGP routes being
exported.

origin value Set the BGP ORIGIN attribute.

preference value Set the preference value.

tag value

tag2 value
Set the tag and tag2 values in OSPF external LSAs.

tag add number

tag subtract number

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Action term Description tag subtract number

tag2 add number

tag2 subtract number

Increment or decrement the OSPF tag or tag2 value.

This recipe changes two attributes in a BGP route, the local preference and community. The first
command in the then clause sets the LOCAL_PREF attribute to 300. The second command changes
the community string in the route to 65500:12345. The policy affects all routes received from the BGP
neighbor at 10.0.31.2/32 (configured with the set from neighbor command). The last command in
the recipe applies the policy to the BGP group external.

tag subtract number

tag2 add number

tag2 subtract number

Increment or decrement the OSPF tag or tag2 value.

This recipe changes two attributes in a BGP route, the local preference and community. The first
command in the then clause sets the LOCAL_PREF attribute to 300. The second command changes
the community string in the route to 65500:12345. The policy affects all routes received from the BGP
neighbor at 10.0.31.2/32 (configured with the set from neighbor command). The last command in
the recipe applies the policy to the BGP group external.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.3. Filtering Routes by IP Address

Problem

You need to reject all routes to certain IP addresses because you don't want to install them into the
routing table.

Solution

Create a list of all the IP address prefixes:

 [edit policy-options]
 aviva@router1# set prefix-list PREFIX-LIST-1 10.0.0.1/24
 aviva@router1# set prefix-list PREFIX-LIST-1 10.10.0.0/16
 aviva@router1# show
 prefix-list PREFIX-LIST-1 {
 10.0.0.1/24;
 10.10.0.0/16;
 }

Then create a policy that references the list of prefixes:

 [edit policy options policy-statement addresses-to-reject]
 aviva@router1# set term 1 from prefix-list PREFIX-LIST-1
 aviva@router1# set term 1 then reject

Finally, apply the policy to a protocol, here to EBGP:

 [edit protocols bgp]
 aviva@router1# set group external-group import addresses-to-reject

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One of the most common uses of routing policies is to filter routes based on the IP address prefix.
You create a prefix list and then reference it in the from clause of a routing policy. Instead of looking
at the protocol information in routes, the policy examines the route prefix itself. This provides you
with fine-grained control for identifying routes that you want to act on. A prefix list is simply a list, so
it contains no information about what actions to take. You can create various lists in the [edit
policy-options] hierarchy and then reference them as needed in different routing policies and also in
firewall filters.

Prefix lists are a great way to reuse IP addresses in a JUNOS configuration. They are handy for
keeping lists of all your customers or separate lists of customers to whom you apply the same routing
policies. For firewall filters, prefix lists are handy for listing network servers, such as DNS, NTP, and
RADIUS or TACACS+ servers, in a single place. They are also handy for keeping a single list of your
BGP peers and SNMP systems. Because the lists are defined only once, they help restrict the number
of places you have to change, add, or manipulate IP addresses for network management and other
tasks. Both routing policies and firewall filters can reference the same prefix lists.

This recipe creates a list of prefixes that are rejected when they are received from EBGP peers. They
are prefixes BGP should never install in the routing table or advertise to its peers. As a first step,
create a list of prefixes by creating a named prefix list in the [edit policy-options] hierarchy. In this
recipe, the prefix list named PREFIX-LIST-1 has two prefixes.

Then define a policy that references the prefix list and specifies the action to take when a match
occurs. This recipe creates a policy named addresses-to-reject. The from clause references the
prefix list, which consists of the prefixes to match. If the prefix in a received packet exactly matches
one of the prefixes, the action in the then clause is taken. This behavior is similar to a logical OR
operation and differs from how matching is done for routing information, where all the conditions in
the from clause have to match before an action is taken (similar to a logical AND operation). With a
prefix list, when the packet's prefix matches one of the listed prefixes, the action in the then clause is
taken. When the JUNOS software evaluates a prefix to see if it matches one in the list, it searches
through the entire list for the longest prefix (called longest-match lookup), so the order of the
prefixes in the list does not matter. This is different from how the JUNOS software handles policy
evaluation, which is to look at policy terms and chained policies in order, from beginning to end, and
perform the action immediately when a match occurs.

The then clause in this recipe has a reject action, which rejects the route. When applying this policy
with a set import command, the routes will not be installed into the routing table. When applying it
with a set export command, the routes will not be advertised to peer routers. The set import
command in this recipe applies the policy to routes received from neighbors in an EBGP peer group,
so the routes are not installed in the inet.0 routing table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.4. Filtering Long Prefixes

Problem

You do not want to install IP address prefixes longer than 172.18.20.0/19 in the routing table.

Solution

Create a filter that identifies the long prefixes:

 [edit policy-options policy-statement long-prefixes term 1]
 aviva@router1#
set from route-filter 172.18.20.0/19 longer
 aviva@router1#
set then reject

Then apply the policy to an EBGP group:

 [edit protocols bgp]
 aviva@router1# set group external-group import long-prefixes

Discussion

A second way to filter routes based on their IP address prefixes is to create a route list. Unlike prefix
lists, route lists are embedded in the routing policy, not maintained in a separate list, so it can be
somewhat harder to maintain them because the same prefixes may be used in different policies. This
recipe creates a simple policy that an EBGP group uses to reject all incoming prefixes longer than
172.18.20.0/19. This policy keeps longer prefixes out of the routing table and is somewhat similar to
aggregating routes.

In the recipe, the set from route-filter command defines the prefix (172.18.20.0/19) and how to
match it (longer). The set then command is a simple action clause to reject matching prefixes. We
apply the policy with a set import command to an EBGP group to prevent BGP from installing the
long prefixes into the routing table.

Route lists have two advantages over prefix lists. The first is that route lists match prefix ranges

http://lib.ommolketab.ir
http://lib.ommolketab.ir

instead of the exact matching performed by prefix lists. This recipe uses the longer option to match
all prefixes longer than 172.18.20.0/19for example, 172.18.20.0/24. A variation of this uses the
orlonger keyword instead of the longer keyword to match the specified prefix and all longer prefixes:

 [edit policy-options policy-statement long-prefixes term 1]
 aviva@router1# set route-filter 172.18.20.0/19 orlonger

The difference between this command and the one in the recipe is that this command will match
172.18.20.0/19, while the set from route-filter 172.18.20.0/19 longer command will not.

There are two other ways to specify address ranges. The upto keyword is, in some sense, the
opposite of the longer and orlonger keywords, looking at the high-order bits of the IP address
instead of the low-order bits:

 [edit policy-options policy-statement prefixes-to-exclude term 1]
 aviva@router1# set route-filter 0.0.0.0/0 upto /7

The following command matches prefixes 0.0.0.0/0, 0.0.0.0/1, and so on, up to 0.0.0.0/7. The
final keyword is prefix-length-range:

 [edit policy-options policy-statement prefixes-to-exclude term 1]
 aviva@router1# set route-filter 0.0.0.0/0 prefix-length-range /25-/30

The following command matches IP prefixes in the range 0.0.0.0/25, 0.0.0.0/26, 0.0.0.0/27,
0.0.0.0/28, 0.0.0.0/29, and 0.0.0.0/30 only.

Route lists can also match exactly one prefix, just as prefix lists can:

 [edit policy-options policy-statement long-prefixes term 1]
 aviva@router1# set route-filter 172.18.20.0/24 exact

A second advantage of route lists over prefix lists is that each prefix can include an action. When a
match occurs, the action is taken immediately instead of waiting to reach the then clause. (The action
can be any of those listed in Table 9-3.) When the list of prefixes is long, this speeds up the
processing of routing traffic. The following simple policy illustrates how this works:

 [edit policy-options policy-statement prefix-policy term 1]
 aviva@router1# set from route-filter 0.0.0.0/0 upto /7 accept
 aviva@router1# set from route-filter 0.0.0.0/0 or longer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1# set then reject

This policy accepts prefixes up to /7 and rejects everything longer.

You can also use route lists as another way to manipulate the routing information in a route. Instead
of screening routes by protocol or by other routing information they contain, you filter by destination
prefix:

 [edit policy-statement set-metric-igp]
 aviva@router1# set term 1 from route-filter 10.12.0.0/16 exact
 aviva@router1# set term 1 from route-filter 172.64.0.0/16 exact
 aviva@router1# set term 1 from route-filter 192.168.0.0/24 exact
 aviva@router1# set term 1 then local-preference 300
 aviva@router1# set term 1 then accept
 aviva@router1# set term 2 then reject
 aviva@router1# show
 policy-statement set-metric-igp {
 term 1 {
 from {
 route-filter 10.12.0.0/16 exact;
 route-filter 172.64.0.0/16 exact;
 route-filter 192.168.0.0/24 exact;
 }
 then {
 preference 300;
 accept;
 }
 }
 term 2 {
 then reject;
 }
 }

This configuration sets the BGP local preference value on three specific prefixes and rejects any other
prefixes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.5. Filtering Unallocated Prefix Blocks

Problem

You do not want to accept prefixes from address spaces that have not yet been allocated by IANA.

Solution

Define a policy that rejects routes from unallocated address space:

 [edit policy-options policy-statement no-

bogons term 1]
 aviva@router1# set route-filter 1.0.0.0/8
orlonger reject
 aviva@router1# set route-filter 2.0.0.0/8 orlonger reject
 aviva@router1# set route-filter 5.0.0.0/8 orlonger reject
 aviva@router1# set route-filter 7.0.0.0/8 orlonger reject
 aviva@router1# set route-filter 23.0.0.0/8 orlonger reject
 …

Then apply the policy to a BGP group:

 [edit protocols bgp]
 aviva@router1# set group external-group import no-bogons

Discussion

Bogons are prefixes in the IP address space that have not been allocated by IANA or that have been
allocated but are marked as being reserved. About 40 percent of the total possible IPv4 address
space is bogon. One subset of addresses that are reserved, and thus bogon, are the RFC 1918
private IPv4 addresses 10.0.0.0/8, 172.16.0.0/12, and 192.168.0.0/16. Malware, which is malicious
software designed to damage or disrupt network equipment, often targets random IP addresses and
chooses bogon prefixes to launch or propagate network attacks. Because of this, and because you
should never receive legitimate traffic from unallocated prefixes, it is good preventive security
practice to put in place routing policies that reject bogon routes so that they are never added to the
routing table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This recipe shows a snippet of a routing policy that uses route lists to identify each unallocated bogon
prefix. Each set route-filter command includes a reject action to quickly and immediately reject
any matching incoming prefix. The recipe applies this policy to an EBGP group with an import
command so that the policy is evaluated when incoming routes are received by the EBGP group.

The bogon filter in this example uses routing policy. Another way to filter them is with firewall filters
(see Recipe 9.8), providing bogon filters on the network's ingress and egress interfaces. Firewall
filters let you log and syslog traffic (see Recipe 9.13) and maintain SNMP counters about traffic that
comes from bogon space (see Recipe 9.12), giving you data to graph network attacks that come
from bogon space, which is a very common occurrence, and helping you be more aware of what's
happening on your network. With a firewall filter, you can do bogon filtering by referring to bogon
prefixes in prefix lists and then counting and discarding any matches.

Over time, the list of bogons changes, mostly because IANA allocates IP prefixes and less often
because of changes to reserved addresses. If a configuration includes a policy to filter bogons, you
must update it to keep it in sync with current address allocations. Every time a bogon is allocated,
many people, including big ISPs, forget to update their filters for some reason or another and they
often need specific reminders sent directly to them. If you do not actively monitor for bogon changes
on a regular basis, you will be blocking future allocations from functioning properly. One way to
update the bogon list automatically is to peer with Team Cymru, which maintains a current list of
JUNOS bogon route lists, as well as a list of reserved prefixes. See
http://www.cymru.com/BGP/bogon-rs.html for information about the BGP bogon project.

One caveat in using the Team Cymru bogon lists is that you should examine the prefixes to make
sure they are not blocking traffic that you want to receive. For example, one of the bogon lists,
http://www.cymru.com/Documents/bogon-bn-agg.txt, contains 224.0.0.0/3 as an entry. If you do
not specify that your firewall terms are for unicast IPv4 traffic only, using this prefix in a prefix list for
a firewall filter will break OSPF, because this is the OSPF multicast address and must be present for
OSPF to operate (see Recipe 12.1).

See Also

IANA, http://www.iana.org/assignments/ipv4-address-space; Team Cymru,
http://www.cymru.com/gillsr/documents/junos-bogon-route-filters.txt and
http://www.cymru.com/gillsr/documents/junos-reserved-prefix-list.txt; Recipes 9.8, 9.12, 9.13, and
12.1

http://www.cymru.com/BGP/bogon-rs.html
http://www.cymru.com/Documents/bogon-bn-agg.txt
http://www.iana.org/assignments/ipv4-address-space
http://www.cymru.com/gillsr/documents/junos-bogon-route-filters.txt
http://www.cymru.com/gillsr/documents/junos-reserved-prefix-list.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.6. Creating a Chain of Routing Policies

Problem

You need to perform a series of actions on routes.

Solution

The JUNOS routing-policy language has several different ways of chaining policies together. One way is to
list more than one policy in the import or export command:

 [edit protocols bgp group external-group]
 aviva@router1# set export [block-private remove-communities send-statics]

A second way is to configure policy evaluation so that it explicitly jumps to the next policy when a match
occurs:

 [edit policy-options policy-statement from-my-customers term 1]
 aviva@router1# set then local-preference 300
 aviva@router1# set then community set 65500:12345
 aviva@router1# set then next policy

Discussion

Larger networks typically require a number of routing policies to handle an ISP's peer and customer
relationship or to handle different organizations within a large enterprise network. You have to make the
design decision about whether to create longer policies with many terms or whether to create a number of
smaller policies and chain them together. Because policy language is so critical to the operation of your
network and your business, and because policy language can get complex quickly and might have
unexpected results, it is good practice to design policies to be as straightforward as possible.

This recipe illustrates two ways of creating a number of smaller policies and chaining them together. The
first command, set export , chains together three policies that have been configured in the [edit policy-
options] hierarchy when configuring a BGP group. The JUNOS policy language evaluates the three policies
in order. If a route does not match the conditions in block-private , evaluation continues with the remove-
communities policy. If a route does not match the conditions in remove-communities , the policy language
looks at the send-statics policy. When a route does match the conditions in one of the policies, the action is
taken immediately. If a route matches none of the policies, no action is taken.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's take a look at the three routing policies to see how they are evaluated when chained together:

 [edit]
 aviva@router1> show configuration policy-options
 policy-statement block-private {
 term 1 {
 from {
 route-filter 0.0.0.0/0 upto /7;
 route-filter 0.0.0.0/0 prefix-length-range /25-/32;
 route-filter 10.0.0.0/8 orlonger;
 route-filter 127.0.0.0/8 orlonger;
 route-filter 172.16.0.0/12 orlonger;
 route-filter 192.168.0.0/16 orlonger;
 route-filter 224.0.0.0/4 orlonger;
 }
 then reject;
 }
 }
 }
 policy-statement remove-communities {
 term 1 {
 then {
 community delete all-communities;
 }
 }
 }
 policy-statement send-statics {
 term 1 {
 from protocol [static direct];
 then accept;
 }
 }
 community all-communities members *:*;

For routes being exported by the BGP group external-group , the policy evaluation first checks against the
prefix ranges listed in the block-private policy, which keeps private addresses from being advertised to
external ASs. Routes matching any one of the prefixes are rejected, and policy evaluation stops. Otherwise,
routes are checked against the remove-communities policy. This policy has no match conditions, so all routes
match and all community strings are removed from the route. Because this policy has no action that
terminates policy evaluation (accept or reject), the evaluation continues with the next policy in the chain,
send-statics , which redistributes static and direct routes to the BGP peers. At this point, if a route does not
match any of the three routing policies, the default BGP export action is taken, which is to export only those
routes learned from BGP and reject everything else.

You can also design routing policies that are implicitly chained together. If a policy has no flow control action
(then accept, then reject, then next term , or then next policy) and has no more terms, policy
evaluation automatically continues with the next policy if one is configured. The second two policies, remove-
communities and send-statics , illustrate how this works. After the remove-communities policy removes the
community string from the route, no action is taken and evaluation automatically continues with the send-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

statics policy, which has an accept action to terminate policy evaluation.

When chaining policies together in this way, make sure that the last policy in the chain has a terminating
action (either then accept or then reject). One trick for ensuring that there's always a terminating action
is to create a policy that is nothing more than the action itself and place it at the end of the chain:

 [edit policy-options policy-statement final-accept]
 aviva@router1# set then accept

 [edit protocols bgp group external-group]
 aviva@router1# set export [block-private remove-communities send-statics final-accept]

You would no longer need the set then accept command at the end of the send-statics policy, so the
configured policies would look like this:

 edit]
 aviva@router1> show configuration policy-options
 policy-statement remove-communities {
 term 1 {
 then {
 community delete all-communities;
 }
 }
 }
 policy-statement send-statics {
 term 1 {
 from protocol [static direct];
 }
 }
 policy-statement final-accept {
 term 1 {
 then accept;
 }
 }
 community all-communities members *:*;

The second configuration in this recipe chains policies using the next policy action in a then clause. This
forces policy evaluation to continue with the next policy after a match occurs. The next policy action is
optional because it is the default action that the policy evaluation takes when a match occurs; when you do
not include an accept, reject , or next term action; and when there are no more terms in the routing
policy. However, using it can speed up policy evaluation when a policy contains several terms and the
import or export command references a number of policies.

It is also possible to explicitly jump to the next term in a policy when a match occurs:

 [edit policy-options policy-statement from-my-customers]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@router1# set term 1 from protocol direct
 aviva@router1# set term 1 then local-preference 300
 aviva@router1# set term 1 then community set 65500:12345
 aviva@router1# set term 1 then
next term
 aviva@router1# set term 2 from protocol static
 aviva@router1# set term 2 then local-preference 300
 aviva@router1# set term 2 then community set 65500:10300
 aviva@router1# set term 2 then next term
 aviva@router1# set final-term then reject

Once again, explicitly configuring this action is optional because it is the default when a match occurs and
you haven't specified an accept, reject , or next term action.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.7. Making Sure a Routing Policy Is Functioning
Properly

Problem

You want to ensure that a configured policy is working as intended by logging its actions.

Solution

There are two steps to setting up tracing to see how a configured routing policy is being applied to
routes. First, include a trace action in the policy's then clause:

 [edit policy-options policy-statement outbound-policy term 1]
 aviva@Router3#
set then trace

Then, set up a tracing file for capturing the output:

 [edit routing-options]
 aviva@Router3# set traceoptions file policy-trace-log size 10m files 10
 aviva@Router3# set traceoptions flag policy

Discussion

When checking whether a routing policy is working, the first and easiest step is to check the entries in
the routing table. Use the show route command on the local router to verify the effects of an
imported routing policy and use the command on the neighboring router to check the effect of an
export policy (see Recipe 8.1). This command shows the real-time effect of the configured routing
policies. If, in examining the routing tables, you find routes you don't expect or that routes are
missing, use the JUNOS tracing function to keep a log of which routes a policy has analyzed and
taken action on. This is a common way to debug problems that appear to be caused by a routing
policy not being applied or not being applied properly.

This recipe shows how to set up policy tracing. The set then trace command adds a tracing action to
the policy. This command is part of a larger policy that is being used to verify that the router is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

matching prefixes on its outbound EBGP links. This policy is already in place on the router, and the
trace action is added to help with debugging:

 [edit
policy-options policy-statement outbound-policy term peer-routes]
 aviva@Router3# show
 from {
 route-filter 192.168.0.0/16 exact;
 route-filter 192.168.72.0/21 exact;
 route-filter 192.168.194.0/21 orlonger;
 route-filter 192.168.157.0/24 exact;
 route-filter 192.168.228.0/24 exact;
 }
 then {
 as-path-prepend "65520 65520";
 trace;
 accept;
 }

The set traceoptions command configures a logging file to receive the policy-tracing information.
Because routing policy is handled by RPD, you set up a general routing-protocol trace file in the [edit
routing-options] hierarchy, not in the [edit policyoptions] hierarchy. This recipe creates a 10 MB
file named policy-trace-log. The flag policy is necessary to trace the routing-policy operations. You
can also use the all flag, which traces all RPD-related operations, but this can quickly fill the logfile
with many messages not related to policy.

The logfile shows the routes that the policy is evaluating:

 aviva@Router3> show log policy-trace-log
 Sep 2 20:13:10 trace_on: Tracing to "/var/log/policy-trace-log" started
 Sep 2 20:13:10 export: Dest 172.16.32.0 proto BGP
 Sep 2 20:13:10 policy_match_qual_or: Qualifier proto Sense: 0
 Sep 2 20:13:10 policy_match_qual_or: Qualifier proto Sense: 0
 Sep 2 20:13:10 export: Dest 192.168.0.0 proto BGP
 Sep 2 20:13:10 policy_match_qual_or: Qualifier community Sense: 0
 Sep 2 20:13:10 policy_match_qual_or: Qualifier community Sense: 0
 Sep 2 20:13:10 policy_match_qual_or: Qualifier community Sense: 0
 Sep 2 20:13:10 policy_export_trace: Prefix 192.168.0.0/16 term peer-routes -->
 accept

This output shows an evaluation of two export policies that have been applied to BGP. No routes
match the first export policy, but 192.168.0.0/16 matches. The policy_export_trace line shows the
policy term that the route matches and the action that was taken (here, accept) as a result of the
match.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 8.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.8. Creating a Simple Firewall Filter that Matches
Packet Contents

Problem

The default router interface behavior is to allow connections from anywhere on the network, but you want
to restrict access so connections can be made only from known subnetworks.

Solution

Use firewall filters to control which packets an interface allows to enter the router. You know that
connections to the router use Telnet or SSH, so create a filter that checks for these packets. First, create
the firewall filter:

 [edit firewall]
 aviva@router1# set filter incoming-to-me term restrict-telnet-ssh from protocol tcp
 aviva@router1# set filter incoming-to-me term restrict-telnet-ssh
 from destination-port[telnet ssh]
 aviva@router1# set filter incoming-to-me term restrict-telnet-ssh

from source-address 10.0.0.0/8 aviva@router1# set filter incoming-to-me term restrict-
telnet-ssh then accept

Then, apply the filter to the router's interface:

 [edit interfaces]
 aviva@router1# set fe-0/0/0 unit 0 family inet filter input incoming-to-me

Here's what the firewall filter looks like in the configuration:

 [edit]
 aviva@router1# show
 firewall {
 filter incoming-to-me {
 term restrict-telnet-ssh {
 from {
 protocol tcp;
 destination-port [telnet ssh];
 source-address {
 10.0.0.0/8;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 then accept;
 }
 }
 }
 }
 interfaces {
 fe-0/0/0 {
 unit 0 {
 family inet {
 filter input incoming-to-me;
 }
 }
 }
 }

Discussion

Placing firewall filters on the router's interfaces is one of the most critical actions you can take to protect
the security of the router and the integrity of traffic received and sent by the router. Firewall filters also
provide a mechanism for counting different types of packets received or sent over an interface. What
happens if you don't configure a firewall filter? By default, interfaces accept all incoming traffic and
transmit all outgoing traffic.

Unlike routing policy, which is part of RPD running on the Routing Engine and which looks at routing-
protocol traffic, firewall filters look at all traffic on router interfaces, working as part of the PFE.

The firewall filter in this recipe has the same basic structure and components as a routing policy. It uses
the same JUNOS policy language, and you can read through the show command output to understand what
the firewall filter does.

The configuration creates a filter named incoming-to-me that has one term named restrict-telnet-ssh .
This term accepts TCP packets if the IP packet header has a destination port or either Telnet (port 23) or
SSH (port 22) and a source address that falls in the subnetwork 10.0.0.0/8 . By default, this filter rejects
all other packets. This recipe applies the filter to all IPv4 traffic on one of the router's physical interfaces,
fe-0/0/0 .

It's important to remember that this recipe shows only one term in a longer firewall filter as a way of
illustrating how to configure a firewall filter. (Recipe 9.15 shows a complete filter.) If you were to apply
only this filter to an interface, you would be able to use the interface only for Telnet and SSH connections
from subnet 10.0.0.0/8 , and all other incoming traffic would be dropped. Although it's possible that this is
what you might want to do, it's not likely that you would want to do exactly this. However, this recipe does
illustrate the point that you need to very carefully design and construct firewall files so that they do what
you want and what you expect.

Because firewall filters apply to logical interfaces, not physical interfaces, each address family on an
interface can have one filter for incoming traffic and one for outgoing traffic. This means you can have
different filters for different logical interfaces. For this recipe, it also means that if this is the only interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

on which you restrict SSH and Telnet access, using them to access the router through any other interfaces
is unrestricted. This might be exactly the action you want. However, if your intent is to restrict SSH and
Telnet access for all interfaces on the router, you must apply this firewall filter to all the router's interfaces.
Again, you have a design choice to make here. You can certainly apply the filter to all the interfacesor to
any number of interfaces. Another option in this case is to associate this filter with the router's loopback
interface, lo0, which filters traffic going to the Routing Engine:

 [edit interfaces]
 aviva@router1# set lo0 unit 0 family inet filter input incoming-to-me

Because SSH requests are handled by the Routing Engine, instead of applying the filter to many or all of
the router's physical interfaces, you can effect the same filtering by setting it on the loopback interface.

As defined, this filter works only on IPv4 traffic, because you configure it at the [edit firewall] level. To
have it work for IPv6 traffic, you need to configure the filter at the [edit firewall family inet6]
hierarchy:

 [edit firewall family inet6]
 aviva@router1# set filter incoming-to-me term restrict-telnet-ssh from protocol tcp
 …

Then apply the filter to IPv6 traffic when configuring the interface's IPv6 address family:

 [edit]
 aviva@router1# set interfaces fe-0/0/0 unit 0 family inet6 filter input incoming-to-me

If your router has filters for both IPv4 and IPv6 traffic, you should define the IPv4 firewall filters at the
[edit firewall family inet] hierarchy so it will be clear to someone reading through the configuration
which filters apply to IPv4 and which apply to IPv6:

 [edit firewall family inet]
 aviva@router1# set filter ipv4-incoming-to-me term restrict-telnet-ssh from protocol tcp
 [edit firewall family inet6]
 aviva@router1# set filter ipv6-incoming-to-me term restrict-telnet-ssh from protocol tcp

The first three commands in the recipe, which form the from clause, set the filter's match conditions,
defining which fields in the packet headers to examine. Firewall filters can match various fields in the
headers (see Table 9-5).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 9-5. Header match conditions used in firewall filters

Match term Match description

Address
matches

address

prefix
IP address in the source or destination field.

destination-

address

prefix

IP address in the destination field.

source-

address

prefix

IP address in the source field.

destination-

prefix-list

prefix-list

IP destination address of one of the prefixes in the prefix
list.

source-

prefix-list

prefix-list

IP source address of one of the prefixes in the prefix list.

prefix-list

prefix-list

IP source or destination address of one of the prefixes in
the prefix list.

Port
matches

destination-

port number

destination-

port name

TCP or UDP destination port field, specified as a number
or name. Use with the protocol match condition to
determine the protocol being used on a port.

Port names and numbers: afs, bgp, biff (512), bootpc
(68), bootps (67), cmd (514), cvspserver (2401), dhcp
(67), domain (53), eklogin (2105), ekshell (2106), exec
(512), finger (79), ftp (21), ftp-data (20), http (80), https
(443), ident, imap, kerberos-sec (88), klogin (543),
kpasswd (761), krb-prop (754), krbupdate (760), kshell
(544), ldap (389), login (513), mobileip-agent (434),
mobilip-mn (435), msdp (639), netbios-dgm, netbios-ns,
netbios-ssn, nfsd (2049), nntp, ntalk (518), ntp pop3,
pptp, printer (515), radacct, radius, rip (520), rkinit
(2108), smtp (25), snmp, snmptrap, snpp (444), socks,
ssh (22), sunrpc, syslog (514), tacacs-ds (65), talk (517),
telnet(23), tftp (69), timed (525), who (513), xdmcp,
zephyr-clt (2103), zephyr-hm (2104)

source-port

number

source-port

name

TCP or UDP source port field, specified as a number or
name. Use with the protocol match condition to
determine the protocol being used on a port.

Port names and numbers same as those listed for
destination-port .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Match term Match description

Protocol and
packet
matches

icmp-type

number

icmp-type

name

ICMP packet type field, specified as a number or name.
Use with the protocol match condition to determine the
protocol being used on a port.

Type names and numbers: echo-reply (0), echo-request
(8), info-reply, info-request, mask-request, mask-reply,
parameter-problem, redirect (5), router-advertisement
(9), router-solicit, source-quench (4), time-exceeded,
timestamp, timestamp-reply, unreachable (3)

packet-length

bytes

Length of the IP portion of the packet, including the
header but excluding Layer 2 encapsulation overhead.

protocol

number
protocol name

IP protocol
field,
specified
as a
number or
name.

Names and
numbers: ah,
egp (8), esp
(50), gre (47),
icmp, igmp (2),
ipip (4), ipv6
(41), ospf (89),
pim, rsvp (46),
tcp (6), udp

Packet field
matches

fragment-

flags number

IP fragmentation flag field, specified as a number or
name.

Flag names and numbers: dont-fragment (0x4000),
more-fragments (0x2000), reserved (0x8000)

fragment-

offset number

Fragment offset from the beginning of the original packet,
in 8-byte units. Use to identify all fragmented packets.
The More Fragments (MF) flag is set for all fragmented
packets except the last. To identify fragments, set
fragment offset != 0 (or more fragments=1).

ip-options

number

IP option field, specified as a number or name.

Option names and numbers: loose-source-route, record-
route (7), router-alert, strict-source-route, timestamp
(68)

tcp-flags

number

TCP flag field, specified as a number or name. Use with
the protocol match condition to determine the protocol
being used on a port.

Flag names and numbers: ack (0x10), fin (0x01), push
(0x08), rst (0x04), syn (0x02), urgent (0x20)

first-

fragment
First fragment of a fragmented packet.

is-fragment Packet fragment other than the first one.

Protocol and
packet
matches

icmp-type

number

icmp-type

name

ICMP packet type field, specified as a number or name.
Use with the protocol match condition to determine the
protocol being used on a port.

Type names and numbers: echo-reply (0), echo-request
(8), info-reply, info-request, mask-request, mask-reply,
parameter-problem, redirect (5), router-advertisement
(9), router-solicit, source-quench (4), time-exceeded,
timestamp, timestamp-reply, unreachable (3)

packet-length

bytes

Length of the IP portion of the packet, including the
header but excluding Layer 2 encapsulation overhead.

protocol

number
protocol name

IP protocol
field,
specified
as a
number or
name.

Names and
numbers: ah,
egp (8), esp
(50), gre (47),
icmp, igmp (2),
ipip (4), ipv6
(41), ospf (89),
pim, rsvp (46),
tcp (6), udp

Packet field
matches

fragment-

flags number

IP fragmentation flag field, specified as a number or
name.

Flag names and numbers: dont-fragment (0x4000),
more-fragments (0x2000), reserved (0x8000)

fragment-

offset number

Fragment offset from the beginning of the original packet,
in 8-byte units. Use to identify all fragmented packets.
The More Fragments (MF) flag is set for all fragmented
packets except the last. To identify fragments, set
fragment offset != 0 (or more fragments=1).

ip-options

number

IP option field, specified as a number or name.

Option names and numbers: loose-source-route, record-
route (7), router-alert, strict-source-route, timestamp
(68)

tcp-flags

number

TCP flag field, specified as a number or name. Use with
the protocol match condition to determine the protocol
being used on a port.

Flag names and numbers: ack (0x10), fin (0x01), push
(0x08), rst (0x04), syn (0x02), urgent (0x20)

first-

fragment
First fragment of a fragmented packet.

is-fragment Packet fragment other than the first one.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Match term Match description

tcp-

established

TCP packets other than the first one in a connection
(equivalent to "(ack | rst)"). Use with protocol tcp to
match TCP packets.

tcp-initial
First packet of a TCP connection (equivalent to "(syn &
!ack)"). Use with protocol tcp to match TCP packets.

Packet field
operators

& or +

| or ,

!

()

Logical AND

Logical OR

Negation

Grouping

The fourth command in the recipe is the then clause, which specifies the action to take when a route
matches the condition (or conditions) in the from clause, which is to accept the packet (then accept).
Table 9-6 lists the actions you can use in a firewall filter.

Table 9-6. Actions to take on matching packets

Action
term

Description

accept Accept the packet and send it to its destination. This is the default action.

reject
Do not accept the packet and send an ICMP unreachable message. Rejected packets can be
logged.

discard
Discard a packet silently, without sending an ICMP unreachable message. Discarded packets
can be counted but not logged.

next term Evaluate the next term in the filter.

counter

name
Count the packet, keeping track of the count in the named counter.

log Log the packet's header.

policer

name
Rate-limit traffic on an interface.

syslog Keep a record of the packet in a system logfile.

As with routing policy, the JUNOS software evaluates a firewall filter term by term, and, when a term
matches, the action is taken and evaluation ends. If the packet matches none of the terms, the default
action is to discard the packet, which is equivalent to the following:

tcp-

established

TCP packets other than the first one in a connection
(equivalent to "(ack | rst)"). Use with protocol tcp to
match TCP packets.

tcp-initial
First packet of a TCP connection (equivalent to "(syn &
!ack)"). Use with protocol tcp to match TCP packets.

Packet field
operators

& or +

| or ,

!

()

Logical AND

Logical OR

Negation

Grouping

The fourth command in the recipe is the then clause, which specifies the action to take when a route
matches the condition (or conditions) in the from clause, which is to accept the packet (then accept).
Table 9-6 lists the actions you can use in a firewall filter.

Table 9-6. Actions to take on matching packets

Action
term

Description

accept Accept the packet and send it to its destination. This is the default action.

reject
Do not accept the packet and send an ICMP unreachable message. Rejected packets can be
logged.

discard
Discard a packet silently, without sending an ICMP unreachable message. Discarded packets
can be counted but not logged.

next term Evaluate the next term in the filter.

counter

name
Count the packet, keeping track of the count in the named counter.

log Log the packet's header.

policer

name
Rate-limit traffic on an interface.

syslog Keep a record of the packet in a system logfile.

As with routing policy, the JUNOS software evaluates a firewall filter term by term, and, when a term
matches, the action is taken and evaluation ends. If the packet matches none of the terms, the default
action is to discard the packet, which is equivalent to the following:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterF# set term last-term then discard

The default firewall action, to discard packets, is the opposite of the default policy action of accepting
routes. You would not be alone in thinking that this behavior is counterintuitive. However, understanding
this behavior is critical in designing filters and tracing problems if the router stops receiving certain types of
traffic. Be especially careful when implementing filters that limit access to the router to ensure that you
don't lock yourself out of the router. A common mistake is to block Telnet access to the router. One way to
protect against lockout is to use the commit confirmed command.

The default time to revert to the previous configuration is 10 minutes. Choose a rollback time of one
minute to minimize how long you have to wait to reconnect to the router if you lock yourself out:

 [edit firewall]
 aviva@RouterF# commit confirmed 1
 commit confirmed will be automatically rolled back in 1 minutes unless confirmed
 commit complete

When using the commit confirmed command, especially with firewall filters, another good practice is to
include a comment, which is saved to the router's commit logfile:

 [edit firewall]
 aviva@RouterF# commit confirmed 1 comment "added filter to discard remaining
packets"
 commit confirmed will be automatically rolled back in 1 minutes unless confirmed
 commit complete

Use the show system commit command to see the comments:

 aviva@RouterF> show system commit
 0 2005-11-07 20:31:03 UTC by aviva via cli
 added filter to discard remaining packets
 1 2005-11-02 23:42:38 UTC by root via cli
 2 2005-11-02 23:35:11 UTC by root via cli

Adding a comment is a handy way to keep track of reasons for commits if for some reason you lock
yourself out of the router.

Another counterintuitive behavior of JUNOS firewalls is that filters do not have a then clause to accept
packets that match the from conditions. To verify this, create a one-term filter with no action:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit firewall]
 aviva@RouterF# set filter one-term-filter term bgp-peers
 from destination-address 10. 0.31.1/24

Look in the file /var/etc/filters/dfwc.out to see the actions taken by the term:

 aviva@RouterF> file show /var/etc/filters/dfwc.out
 rule "bgp-peers" matches 3
 match destination-port unreferenced type range
 ranges 1
 179
 match source-address unreferenced type addrmask
 number of address-masks: 1
 10.0.8/24
 match action unreferenced type action
 accept

The output shows the filter (or rule) bgp-peers matched and accepted three packets.

See Also

The firewall match conditions and how you specify them are far too numerous to include in this book. For a
complete list, see the JUNOS Policy Framework Configuration Guide at http://www.juniper.net/techpubs ;
Recipes 1.5, 1.16, and 9.12.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.9. Creating a Firewall Filter that Negates a Match

Problem

The default router interface behavior is to allow connections from anywhere on the network, but you
want to restrict access so connections can be made fom all subnetworks except for a particular one.

Solution

Allow Telnet and SSH connections from all subnetworks except 10.0.0.0/8 :

 [edit firewall filter incoming-to-me]
 aviva@router1# set term restrict-telnet-ssh from source-address 10.0.0.0/8 except
 aviva@router1# set term restrict-telnet-ssh then accept

Then apply the filter to the router's interface:

 [edit interfaces]
 aviva@router1# set fe-0/0/0 unit 0 family inet filter input incoming-to-me

Discussion

When you want to be less restrictive with a filter's conditions, instead of defining the address, port, or
protocol to match, you can do the inverse and define what not to match. This recipe, which is a
variation of Recipe 9.8, adds the except keyword to the from term to allow Telnet and SSH connections
from all subnetworks except 10.0.0.0/8 .

You can use the except keyword to negate all firewall match terms. Sometimes, you use a separate
keyword, as shown in this recipe. Other times, the keyword is built into the match condition, as in the
following example, which matches packets from all protocols except TCP, counts them so you can
determine the rate of this type of traffic, and then accepts the packets:

 [edit firewall filter incoming-to-me term not-TCP]
 aviva@RouterF# set from protocol-except tcp
 aviva@RouterF# set then count packets-not-tcp
 aviva@RouterF# set then accept

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The filter looks like this:

 [edit firewall filter incoming-to-me term not-TCP]
 aviva@RouterF# show
 from {
 protocol-
except tcp;
 }
 then {
 count packets-not-tcp;
 accept;
 }

The best way to determine when to use a separate except keyword or whether there is a built-in
keyword is to use the CLI online help:

 [edit firewall filter incoming-filter term 1]
 aviva@router1# set from ?
 Possible completions:
 > address Match IP source or destination address
 + ah-spi Match IPSec AH SPI value
 + ah-spi-except Do not match IPSec AH SPI value
 + apply-groups Groups from which to inherit configuration data
 + apply-groups-except Don't inherit configuration data from these groups
 > destination-address Match IP destination address
 + destination-class Match destination class
 + destination-class-except Do not match destination class
 + destination-port Match TCP/UDP destination port
 + destination-port-except Do not match TCP/UDP destination port
 > destination-prefix-list Match IP destination prefixes in named list
 + dscp Match Differentiated Services (DiffServ) code point
 + dscp-except Do not match Differentiated Services (DiffServ) code point
 + esp-spi Match IPSec ESP SPI value
 + esp-spi-except Do not match IPSec ESP SPI value
 first-fragment Match if packet is the first fragment
 + forwarding-class Match forwarding class
 + forwarding-class-except Do not match forwarding class
 fragment-flags Match fragment flags
 + fragment-offset Match fragment offset
 + fragment-offset-except Do not match fragment offset
 + icmp-code Match ICMP message code
 + icmp-code-except Do not match ICMP message code
 + icmp-type Match ICMP message type
 + icmp-type-except Do not match ICMP message type
 > interface Match interface name
 + interface-group Match interface group

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 + interface-group-except Do not match interface group
 > interface-set Match interface in set
 + ip-options Match IP options
 + ip-options-except Do not match IP options
 is-fragment Match if packet is a fragment
 + packet-length Match packet length
 + packet-length-except Do not match packet length
 + port Match TCP/UDP source or destination port
 + port-except Do not match TCP/UDP source or destination port
 + precedence Match IP precedence value
 + precedence-except Do not match IP precedence value
 > prefix-list Match IP source or destination prefixes in named list
 + protocol Match IP protocol type
 + protocol-except Do not match IP protocol type
 > source-address Match IP source address
 + source-class Match source class
 + source-class-except Do not match source class
 + source-port Match TCP/UDP source port
 + source-port-except Do not match TCP/UDP source port
 > source-prefix-list Match IP source prefixes in named list
 tcp-established Match packet of an established TCP connection
 tcp-flags Match TCP flags
 tcp-initial Match initial packet of a TCP connection

You use the separate keyword with all match conditions that do not have an -except version.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.10. Reordering Firewall Terms

Problem

You want to change the order of terms in a firewall filter.

Solution

Use the CLI insert command to rearrange the terms in a firewall filter:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# insert term restrict-bgp before term restrict-telnet-ssh

Discussion

One difference between routing policies and firewall filters is that while you can apply several routing
policies to a routing protocol, chaining them together as necessary, you can apply only one incoming
and one outgoing firewall filter to an interface. This means that firewall filters generally contain a
large number of terms.

As with routing policies, the order of the terms in a firewall filter is significant. Packets are tested
against each term in the order. For performance and packet-handling efficiency, design each filter so
the most important or time-critical packets are processed first. When you add a term to an existing
filter, it appears at the end:

 [edit firewall filter incoming-to-me]
 aviva@router1# set term restrict-bgp from protocol tcp
 aviva@router1# set term restrict-bgp from port bgp
 aviva@router1# set term restrict-bgp from source-address 10.0.31.0/24
 aviva@router1# set term restrict-bgp then accept
 aviva@router1# show
 term restrict-telnet-ssh {
 from {
 source-address {
 10.0.0.0/8;
 }
 protocol tcp;
 destination-port [telnet ssh];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 then accept;
 }
 term restrict-bgp {
 from {
 source-address {
 10.0.31.0/24;
 }
 protocol tcp;
 port bgp;
 }
 then accept;
 }

Use the insert command to rearrange the terms. The command in this recipe moves the restrict-
bgp term so that it precedes the restrict-telnet-ssh term. Check that the order is what you expect:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# show
 term restrict-bgp {
 from {
 source-address {
 10.0.31.0/24;
 }
 protocol tcp;
 port bgp;
 }
 then accept;
 }
 term restrict-telnet-ssh {
 from {
 source-address {
 10.0.0.0/8;
 }
 protocol tcp;
 destination-port [telnet ssh];
 }
 then accept;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.11. Filtering Traffic Transiting the Router

Problem

For traffic transiting through the router, you want to accept packets only from trusted hosts and
routers.

Solution

Create a firewall filter for all incoming traffic to the router that will be used on interfaces facing the
Internet. The filter contains a number of terms for different types of packets and for specific
addresses.

The first term discards unwanted traffic from specific addresses:

 [edit firewall incoming-to-me]
 aviva@RouterF# set term reject-addresses from source-address 172.68.0.0/16
 aviva@RouterF# set term reject-addresses from source-address 192.168.0.0/24
 aviva@RouterF# set term reject-addresses then discard

The second term accepts traffic from BGP peers:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# set term bgp-peers from destination-address 10.0.31.0/24
 aviva@RouterF# set term bgp-peers from protocol tcp
 aviva@RouterF# set term bgp-peers from port bgp
 aviva@RouterF# set term bgp-peers from tcp-established
 aviva@RouterF# set term bgp-peers then accept

The third term accepts all ICMP traffic:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# set term icmp from protocol icmp
 aviva@RouterF# set term icmp then accept

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The last term accepts all other packets:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# set term final-accept then accept

For the filter to take effect, apply it to an Internet-facing interface:

 [edit interfaces t1-0/0/3]
 aviva@RouterF# set unit 0 family inet filter input incoming-to-me

Discussion

There are two basic ways to design a firewall filter. One way is to block packets and traffic that the
router shouldn't receive and accept everything else, which is how the filter in this recipe operates.
This type of filter design is fairly intuitive and, as you can see from this recipe, these filters are
reasonably short and fairly easy to configure. One downside to this approach is that if you forget to
block a particular type of traffic, you are opening yourself up to security breaches. The second design
philosophy, of accepting only desired traffic and blocking everything else, is discussed in Recipe 9.15.

This recipe is for an EBGP edge router that connects to the Internet. The filter is very straightforward,
accepting all packets except for traffic coming from a few IP prefixes.

Firewall filter terms are evaluated in order, so place the terms at the beginning of the filter that you
want executed first. The first term in this recipe, reject-addresses, looks for packets from two
networks that you never want to accept traffic from and immediately discards them, dropping them
without sending any notification to the sender. Placing this term at the top of the filter improves the
packet-processing efficiency of the interface.

The second term, bgp-peers, accepts BGP traffic only from the specified peer. The conditions in this
term look for TCP protocol traffic from the BGP port and match TCP connections that have been
established. Again, all BGP traffic is accepted by the final term, so including a separate term for the
router's BGP peer just speeds up the processing of traffic from the peer.

The final term, ospf, accepts all OSPF traffic. You might wonder why you need this term when the
final term will also accept OSPF traffic. The only reason to do this is that you want OSPF traffic to be
handled more quickly than the other remaining traffic. If other operations on your network are time-
critical, include them early in the filter. If you are going to apply this filter to a high-speed interface or
to traffic flowing at a high rate, you gain efficiency from this type of firewall filter design.

The last term in the filter accepts all other traffic. It is important to note that you must be very
cognizant of what you are enabling and what the other protocols are that run on the router when you
design firewall filters that, as a last term, accept all other traffic. While this example illustrates a way
to design filters that is easy and intuitive, it is generally better practice to explicitly accept what you
want and discard everything else. Recipe 9.15 illustrates this firewall filter design approach.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As the last step in the configuration, apply the filter to an interface, here the t1-0/0/3 interface. The
set filter input command applies the filter to incoming traffic. To apply a filter to traffic going out
of the interface, use the set filter output command.

Here's the entire configuration to show all the contents together:

 [edit firewall]
 aviva@RouterF# show
 filter incoming-to-me {
 term reject-addresses {
 from {
 source-address {
 172.68.0.0/16;
 192.168.0.0/24;
 }
 then {
 discard;
 }
 }
 term ospf {
 from {
 protocol ospf;
 }
 then accept;
 }
 term bgp-peers {
 from {
 destination-address {
 10.0.31.0/24;
 }
 protocol tcp;
 port bgp;
 tcp-established;
 }
 then accept;
 }
 term final-accept {
 then accept;
 }
 }
 [edit interfaces]
 t1-0/0/3 {
 unit 0 {
 family inet {
 filter {
 input incoming-to-me;
 }
 address 10.0.31.2/24;
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the show interfaces command to check that the filter is configured:

 aviva@RouterF> show interfaces t1-0/0/3.0 detail
 Logical interface t1-0/0/3.0 (Index 70) (SNMP ifIndex 40) (Generation 24)
 Flags: Point-To-Point SNMP-Traps Encapsulation: PPP
 Protocol inet, MTU: 1500, Generation: 31, Route table: 0
 Flags: None
 Filters: Input: incoming-to-me
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.0.31/24, Local: 10.0.31.2, Broadcast: 10.0.31.255,
 Generation: 63

Looking at the logical interface, which is where information about the address family is displayed, you
can see which firewall filters are applied to the interface.

See Also

Recipe 9.15

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.12. Using a Firewall Filter to Count Traffic on an
Interface

Problem

You want to find out how much traffic is passing through an interface.

Solution

To check how much traffic is successfully passing through an interface, add the count option to a then
clause that accepts traffic:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# set term final-accept then count incoming-accepted
 aviva@RouterF# set term final-accept then accept

To track unwanted traffic, use the count option and a then clause that discards traffic:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# set term reject-addresses then count bad-addresses
 aviva@RouterF# set term final-accept then discard

To look at the counters, use the show firewall filter command:

 aviva@RouterF> show firewall filter incoming-to-me
 Filter: incoming-to-me
 Counters:
 Name Bytes Packets
 incoming-accepted 246 4

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Either as part of your standard network practices or while tracking a problem, you often want to
know how much traffic has either successfully passed through an interface or how much traffic
attempted but failed to pass through an interface. You do this by counting the packets that match
each term in a firewall filter.

The first command in this recipe counts all the traffic accepted by the interface other than the ICMP
and BGP traffic. Each counter is identified by name, and this counter is called incoming-accepted.

Use the show firewall filter command to see the counters. The output is very straightforward,
showing how many bytes and packets have matched the final-accept term in the filter.

The second command in this recipe shows how to count unwanted traffic. As a general point, you
rarely just reject a firewall term without also either counting the rejections or logging or syslogging it
(see Recipe 9.13). Tracking the rejections is useful for documenting abuse of your router, attacks on
the router, or even misconfigurations.

As with routing policy, you define firewall filters in a common location in the configuration and then
apply them where needed. Designing filters that apply to several interfaces in the router can help
minimize your administrative overhead. If you do use the same filter on more than one interface, the
packet counts from the two interfaces are stored in the same counter. Use the following configuration
command to create separate counters for packets from the different interfaces:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# set interface-specific

Again, use the show firewall filter command to see the counters:

 aviva@RouterF> show firewall filter ?
 Possible completions:
 counter Counter name
 incoming-to-me-fe-0/0/1.0-i
 incoming-to-me-t1-0/0/3.0-i
 aviva@RouterF> show firewall filter incoming-to-me-t1-0/0/3.0-i
 Filter: incoming-to-me-t1-0/0/3.0-i
 Counters:
 Name Bytes Packets
 incoming-accepted-t1-0/0/3.0-i 6474 105

The interface name andi are appended to the filter name to separate the counters into two different
buckets.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.13. Logging the Traffic on an Interface

Problem

You want to keep a log of the traffic passing through an interface.

Solution

In the then clause, include the log option to capture information about filter activity:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# set term final-accept then log
 aviva@RouterF# set term final-accept then accept

Use the show firewall log command to display the firewall logs:

 aviva@RouterF> show firewall log
 Log :
 Time Filter Action Interface Protocol Src Addr
 Dest Addr
 04:59:13 pfe A t1-0/0/3.0 TCP 10.0.31.1
 10.0.31.2
 04:59:11 pfe A t1-0/0/3.0 TCP 10.0.31.1
 10.0.31.2
 04:58:43 pfe A t1-0/0/3.0 TCP 10.0.31.1
 10.0.31.2
 04:58:41 pfe A t1-0/0/3.0 TCP 10.0.31.1
 10.0.31.2

You can also save the activity records to a standard system logfile:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# set term final-accept then syslog
 aviva@RouterF# set term final-accept then accept

Then configure a system logfile to accept the log messages:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit system syslog]
 aviva@RouterF# set file messages firewall any

Discussion

You can log the activity of a term in a firewall filter using the log facility that is built into the firewall
filter software itself. Configure this with a set then log command. You can log accepted and rejected
packets but not discarded ones. This configuration stores all the activity in real time on the router, not
in a file, so use it when you want to actively watch traffic or debug a problem.

The show firewall log command displays the firewall logs. The detail option of this command shows
an expanded version of the same information:

 aviva@RouterF> show firewall log detail
 Time of Log: 2005-09-07 05:00:13 UTC, Filter: pfe, Filter action: accept, Name of
 interface: t1-0/0/3.0
 Name of protocol: TCP, Packet Length: 71, Source address: 10.0.31.1:1390, Destination
 address: 10.0.31.2:179
 Time of Log: 2005-09-07 05:00:11 UTC, Filter: pfe, Filter action: accept, Name of
 interface: t1-0/0/3.0
 Name of protocol: TCP, Packet Length: 52, Source address: 10.0.31.1:1390, Destination
 address: 10.0.31.2:179
 Time of Log: 2005-09-07 04:59:43 UTC, Filter: pfe, Filter action: accept, Name of
 interface: t1-0/0/3.0
 Name of protocol: TCP, Packet Length: 71, Source address: 10.0.31.1:1390, Destination
 address: 10.0.31.2:179
 Time of Log: 2005-09-07 04:59:41 UTC, Filter: pfe, Filter action: accept, Name of
 interface: t1-0/0/3.0
 Name of protocol: TCP, Packet Length: 52, Source address: 10.0.31.1:1390, Destination
 address: 10.0.31.2:179

In the output, the first field shows when the packet was received. Looking at the times in this output,
you see that the firewall log facility places the latest messages at the beginning of the output. This is
the opposite of system logfiles, which have the newest entries at the end. The Filter field shows pfe ,
which means that the packet was handled by the JUNOS PFE. The Action and Filter action fields
show the fate of the packet. In this output, all packets were accepted (in the standard output, this
shows as an A). Packets can also be Discard (D) or Reject (R).

The next two files show the interface on which the filter is configured and the protocol type of the
packet. The last two fields show the packet's source and destination addresses. In the detail output,
the address also includes the port number being used.

You can also save the activity records to a standard system logfile with a set then syslog command.
Then configure a system logfile to accept the log messages. This recipe places all firewall logging
messages in the messages file. The firewall facility captures firewall-related messages. Use the show

http://lib.ommolketab.ir
http://lib.ommolketab.ir

log command to view the messages:

 aviva@RouterF> show log messages
 Sep 7 04:59:13 RouterF
fwdd[2498]:
PFE_FW_SYSLOG_IP: FW: t1-0/0/3.0 A tcp
 172.19.121.114 172.17.28.108 5888 18695 (1 packets)
 Sep 7 04:59:13 RouterF last message repeated 5 times
 Sep 7 04:59:13 RouterF fwdd[2498]: PFE_FW_SYSLOG_IP: FW: t1-0/0/3.0 A tcp
 192.168.14.1 192.168.18.1 54532 45824 (1 packets)

The fwdd after the router name means that the message was generated by the JUNOS forwarding
process (daemon). The message code for firewall logs is PFE_FW_SYSLOG_IP , and the FW : indicates that
the message is present in the logs as the result of a firewall configuration. Some of the remaining
information in the system log message is similar to what is displayed by the show firewall log
command. First is the interface name, followed by an A to report that the packet was accepted, and
tcp , which is the type of packet. The two IP addresses are the packet's source and destination
addresses, respectively, and the last two numbers are the source and destination ports.

See Also

Recipe 5.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.14. Limiting Traffic on an Interface

Problem

You want to throttle traffic to make sure that the Routing Engine and protocol adjacencies won't go
down because the router is being overwhelmed by other types of traffic.

Solution

Create a policer to limit the rate of traffic:

 [edit firewall]
 aviva@RouterF# set policer limit-icmp if-exceeding bandwidth-limit 1m
 aviva@RouterF# set policer limit-icmp if-exceeding burst-size-limit 50k
 aviva@RouterF# set policer limit-icmp then discard

Then apply the policer to a filter term:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# set term icmp then policer limit-icmp

Discussion

A more secure way to protect an interface is to rate-limit the incoming traffic, especially the
nonessential traffic. Rate limiting is an additional mechanism that prioritizes which traffic is more
important and which traffic should just be discarded when congestion occurs. It also provides
protection against DoS attacks. You set up packet rate limiting by configuring policers that define the
conditions under which traffic is dropped.

This recipe sets up rate limiting for ICMP traffic. These policers traffic can be dropped if the flow
exceeds a set bandwidth or if a burst of packets exceeds a certain size. The first command accepts
ICMP traffic flowing at a sustained rate of up to 1 Mbps and drops all packets when this rate is
exceeded (if-exceeding bandwidth-limit 1m).

The second command accepts traffic bursts up to 50 Kbps and drops all packets when this rate is
exceeded (if-exceeding burst-size-limit 50k). When the flow of ICMP packets exceeds either limit,
all ICMP traffic will be discarded until the flow rate subsides. To verify the configuration and see if any

http://lib.ommolketab.ir
http://lib.ommolketab.ir

traffic has been discarded, use the show firewall filter command:

 aviva@RouterF>
show firewall filter incoming-to-me
 Filter: incoming-to-me
 Counters:
 Name Bytes Packets
 incoming-accepted 160 2
 Policers:
 Name Packets
 limit-icmp-icmp 0

The policer counters are shown at the end of the output. The policer name is a concatenation of the
policer name (limit-icmp) and the term in which it is used (icmp). At this point, no congestion has
occurred, so no packets have been discarded as a result of the policer.

Before configuring a policer, you need to have some idea of what normal traffic loads are on your
network and on your router. You generally do this with your network traffic management tools. You
can also gather some of this data from the router itself by configuring counters for each term in the
firewall filter over a representative period of time, generally several days or weeks. The following
command adds a counter to the icmp term:

 [edit firewall filter incoming-to-me]
 aviva@RouterF# set term icmp then count icmp-counter

Then use the show firewall filter command to see the statistics:

 aviva@RouterF> show firewall filter incoming-to-me
 Filter: incoming-to-me
 Counters:
 Name Bytes Packets
 icmp-counter 0 0
 incoming-accepted 1680 25

A disadvantage of this method is that you have to log in to each router and no timestamp information
is included, but it is a useful way to supplement your other management tools.

If you don't have tools to determine the size and duration of traffic bursts, as a first-order
approximation you can select a value by multiplying the interface bandwidth by the burst duration.
The maximum value for the burst-size limit is 100 Mbps.

How you select the thresholds at which to start dropping traffic is a function of your business and
network design models. Some factors might include how variable the traffic flow is, how critical the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

traffic is or how damaging an excess of it could be, and how conservative or liberal you want to be
about controlling the flow.

You need to define a policer for each type of traffic you want to rate-limit and then reference the
policer in the proper term.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.15. Protecting the Local Routing Engine

Problem

You want to protect the Routing Engine by ensuring that it accepts traffic only from trusted network
systems.

Solution

Protecting the Routing Engine involves filtering incoming routing protocol traffic on the router's lo0
interface. The first step is to create the filter:

 [edit
firewall]
 aviva@RouterF# edit filter protect-RE

This filter contains terms for the different protocols running on the router. The first terms allow the
router to accept routing-protocol traffic from BGP peers and OSPF neighbors:

 [edit firewall filter protect-RE]
 aviva@RouterF# edit term bgp-peers
 [edit firewall filter protect-RE term bgp-peers]
 aviva@RouterF# set from source-address 10.0.8.0/24
 aviva@RouterF# set from source-address 10.0.13.0/24
 aviva@RouterF# set from destination-port bgp
 aviva@RouterF# set then accept
 aviva@RouterF# up
 [edit firewall filter protect-RE]
 aviva@RouterF# edit term ospf-neighbors
 [edit firewall filter protect-RE term ospf-neighbors]
 aviva@RouterF# set from source-address 10.0.8.0/24
 aviva@RouterF# set from source-address 10.0.13.0/24
 aviva@RouterF# set from protocol ospf
 aviva@RouterF# set then accept

The next term allows TCP traffic:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit

firewall filter protect-RE]
 aviva@RouterF# edit term tcp-traffic

 [edit firewall filter protect-RE term tcp-traffic]
 aviva@RouterF# set from source-address 10.0.0.0/8
 aviva@RouterF# set from protocol tcp
 aviva@RouterF# set then accept

The following term allows DNS traffic:

 [edit firewall filter protect-RE]
 aviva@RouterF# edit term dns-servers

 [edit firewall filter protect-RE term dns-servers]
 aviva@RouterF# set from source-address 10.0.0.0/8
 aviva@RouterF# set from protocol udp
 aviva@RouterF# set from port domain
 aviva@RouterF# set then accept

The next two terms allow RADIUS, SSH, and Telnet connections to the router:

 [edit firewall filter protect-RE]
 aviva@RouterF# edit term radius

 [edit firewall filter protect-RE term radius]
 aviva@RouterF# set from source-address 10.1.0.1/32
 aviva@RouterF# set from source-address 10.3.0.1/32
 aviva@RouterF# set from source-port radius
 aviva@RouterF# set then accept

 [edit firewall filter protect-RE term radius]
 aviva@RouterF# up

 [edit firewall filter protect-RE]
 aviva@RouterF# edit term ssh-telnet

 [edit firewall filter protect-RE term ssh-telnet]
 aviva@RouterF# set from source-address 10.0.8.0/24
 aviva@RouterF# set from source-address 10.0.13.0/24
 aviva@routerF# set from destination-port [ssh telnet]
 aviva@RouterF# set then accept

Two terms accept traffic from SNMP NMS systems:

 [edit firewall filter protect-RE]
 aviva@RouterF# edit term xnm-from-nms

 [edit firewall filter protect-RE term xnm-from-nms]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterF# set from source-address 10.0.0.1/32
 aviva@RouterF# set from source-address 10.0.5.1/32
 aviva@RouterF# set from protocol tcp
 aviva@RouterF# set then accept
 aviva@RouterF# up

 [edit firewall filter protect-RE]
 aviva@RouterF# edit term allow-snmp-from-nms

 [edit firewall filter protect-RE term allow-snmp-from-nms]
 aviva@RouterF# set from source-address 10.0.0.1/32
 aviva@RouterF# set from source-address 10.0.5.1/32
 aviva@RouterF# set from protocol udp
 aviva@RouterF# set from destination-port snmp
 aviva@RouterF# set then accept

Two terms accept traffic from the network's NTP servers and from ICMP:

 [edit

firewall filter protect-RE]
 aviva@RouterF# edit term allow-ntp

 [edit firewall filter protect-RE term allow-ntp]
 aviva@RouterF# set from source-address 10.10.0.1/32
 aviva@RouterF# set from source-address 10.10.5.1/32
 aviva@RouterF# set from port ntp
 aviva@RouterF# set then accept
 aviva@RouterF# up

 [edit firewall filter protect-RE]
 aviva@RouterF# edit term allow-icmp

 [edit firewall filter protect-RE term allow-icmp]
 aviva@RouterF# set from protocol icmp
 aviva@RouterF# set from icmp-type [echo-request echo-reply
unreachable time-exceeded
 source-quench]
 aviva@RouterF# set then accept

The last term explicitly rejects all other traffic:

 [edit firewall filter protect-RE]
 aviva@RouterF# edit term allow-nothing-else

 [edit firewall filter protect-RE term allow-nothing-else]
 aviva@RouterF# set then count reject-counter
 aviva@RouterF# set then log
 aviva@RouterF#
set then syslog
 aviva@RouterF# set then reject

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Create a system logfile for the messages that will be generated by the set then syslog command:

 [edit system syslog]
 aviva@RouterF# set file messages firewall any

Finally, apply the filter to the router's loopback interface:

 [edit interfaces lo0]
 aviva@RouterF# set unit 0 family inet filter input protect-RE

Discussion

This recipe illustrates the second broad firewall filter design philosophy mentioned in Recipe 9.11that
of creating a filter that allows only the desired traffic and blocks everything else. This design requires
more planning than the reverse strategy of blocking traffic that the router should not receive first and
then allowing everything else, but it ensures maximum security. You need to spend time up front
looking at your network and router configurations and analyzing the flow of traffic through your
network to determine the types of traffic the router should expect to receive and the addresses and
ports from which it should receive the traffic. Another factor working in favor of improving the
security of this design is that, by default, if a packet does not match any term in a firewall filter, it is
discarded.

This "allow known, block everything else" design is good practice for protecting the router's Routing
Engine. Because the JUNOS routing-protocol software runs on the Routing Engine, you want to make
sure that all the traffic it receives is from known and trusted sources.

This recipe is for a router running the routing protocols BGP and OSPF. The router can be accessed
by SSH and Telnet, and by DNS, RADIUS, and NMS servers. The firewall filter has a term that
handles each type of protocol traffic. A design decision you have to make is the order of the terms in
the filter. As with routing policy, the terms in the firewall filter are evaluated in the order in which
they appear in the configuration, so the placement affects the efficiency of the filter. You need to
decide which packet-filtering operations need to be performed quickly and which are not so time-
critical. Generally, protocol packets and possibly address resolution should be handled quickly so that
the actual process of routing traffic occurs efficiently. The terms for other less important or
background tasks, such as user connections to the router and SNMP polling, are placed towards the
end of the filter.

The first terms in this firewall filter accept BGP and OSPF protocol traffic. The AS has two
subnetworks, 10.0.8.0/24 and 10.0.13.0/24, so the filter allows protocol traffic only from these
specific addresses. For OSPF, we can match on the protocol, but there is no BGP protocol option, so
you need to match packets destined for a BGP port. The third term accepts TCP traffic. Because BGP
runs over TCP, this term ensures that TCP connections can be set up.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The term dns-servers filters DNS traffic for resolving hostnames and addresses. DNS runs over UDP
and uses the domain source port, and the filter uses this information to identify DNS traffic. DNS
traffic can come from any server on the 10.0.0.0/8 subnetwork. The terms radius and ssh-telnet
accept traffic from the network's RADIUS servers and from SSH and Telnet connections. Both these
filters identify packets by looking at their destination port. The RADIUS servers are on two subnet-
works, 10.1.0.1/32 and 10.3.0.1/32, and SSH and Telnet sessions are allowed on the 10.0.8.0/24
and 10.0.13.0/24 subnetworks.

The terms xnm-from-nms and allow-snmp-from-nms allow the network's two management systems,
10.0.0.1/32 and 10.0.5.1/32, to access the router. These two servers are both running JUNOScript
software, which establishes TCP-based SSL connections to the router, and SNMP. The xnm-from-nms
term accepts SSL connections from the JUNOScript software, and the second term accepts SNMP
queries.

The final term in the filter, allow-nothing-else, drops all other packets. In this case, we want to
know how many packets are dropped, so nonmatching packets are counted in the counter named
reject-counter. The set then log command logs these packets to the firewall counter, and the set
then syslog command logs them to a system logfile. The recipe configures the system logfile
messages to contain the system log messages, using the firewall facility to capture firewall-related
messages.

Use the show firewall log command to see how many packets are being rejected or look in the
logfile with the show low messages command. You can also look in the file /var/etc/filters/dfwc.out to
see the actions taken by the different terms in the filter. The following is some of the output for the
protect-RE filter:

 aviva@RouterF> file show /var/etc/filters/dfwc.out
 **
 * filter "protect-RE" protocol ip: 8 rules, 24 matches
 * Stage: after match reduction and useless match elimination
 * Optimizations: max-reduction,skip,flatness,level-compress,
 * max-level-compress,branch,action-elimination
 **
 rule "ospf-neighbors" matches 3
 match protocol unreferenced type range
 ranges 1
 89
 match source-address unreferenced type addrmask
 number of address-masks: 2
 10.0.8/24
 10.0.13/24
 match action unreferenced type action
 accept
 rule "dns-servers" matches 4
 match protocol unreferenced type range
 ranges 1
 17
 match port unreferenced type range
 ranges 1
 53
 match source-address unreferenced type addrmask

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 number of address-masks: 1
 10/8
 match action unreferenced type action
 accept

The header shows the name of the filter and the number of rules (terms) it has, along with the
number of packets that have matched:

 * filter "protect-RE" protocol ip: 8 rules, 24 matches

Again, because the firewall filter is fairly complicated, here is the complete configuration so you can
see the structure:

 [edit firewall]
 aviva@RouterF# show
 filter protect-RE {
 term bgp-peers {
 from {
 source-address {
 10.0.8.0/24;
 10.0.13.0/24;
 }
 destination-port bgp;
 }
 then accept;
 }
 term ospf-neighbors {
 from {
 source-address {
 10.0.8.0/24;
 10.0.13.0/24;
 }
 protocol ospf;
 }
 then accept;
 }
 term tcp-traffic {
 from {
 source-address 10.0.0.0/8;
 protocol tcp;
 }
 then accept:
 }
 term dns-servers {
 from {
 source-address {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10.0.0.0/8;
 }
 protocol udp;
 port domain;
 }
 then accept;
 }
 term radius {
 from {
 source-address {
 10.1.0.1/32;
 10.3.0.1/32;
 }
 destination-port radius;
 }
 then accept;
 }
 term ssh-telnet {
 from {
 source-address {
 10.0.8.0/24;
 10.0.13.0/24;
 }
 destination-port [ssh telnet];
 }
 then accept;
 }
 term xnm-from-nms {
 from {
 source-address {
 10.0.0.1/32;
 10.0.5.1/32;
 }
 protocol tcp;
 }
 then accept;
 }
 term allow-ntp {
 from {
 source-address {
 10.10.0.1/32;
 10.10.5.1/32;
 }
 port ntp;
 }
 then accept;
 }
 term allow-icmp {
 from {
 protocol icmp;
 icmp-type [echo-request echo-reply unreachable time-exceeded source
quench];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 then accept;
 }
 term allow-snmp-from-nms {
 from {
 source-address {
 10.0.0.1/32;
 10.0.5.1/32;
 }
 protocol udp;
 destination-port snmp;
 }
 then accept;
 }
 term allow-nothing-else {
 then {
 count reject-counter;
 log;
 syslog;
 reject;
 }
 }
 }
 [edit interfaces]
 lo0 {
 unit 0 {
 family inet {
 filter input protect-RE;
 address 192.168.16.1
 }
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.16. Rate-Limiting Traffic Flow to the Routing
Engine

Problem

You need to ensure the availability of the Routing Engine during times of heavy traffic.

Solution

Configure policers to use with the firewall filter that you apply to the Routing Engine. First, create
policers for control and low-priority traffic. The first policer is for SSH connections to the Routing
Engine:

 [edit firewall]
 aviva@RouterF# set policer ssh if-exceeding bandwidth-limit 1m
 aviva@RouterF# set policer ssh if-exceeding burst-size-limit 100k
 aviva@RouterF# set policer ssh then discard

Two additional policers limit ICMP and TCP traffic:

 [edit firewall]
 aviva@RouterF# set policer icmp if-exceeding bandwidth-limit 1m
 aviva@RouterF# set policer icmp if-exceeding burst-size-limit 100k
 aviva@RouterF# set policer icmp then discard
 aviva@RouterF# set policer tcp if-exceeding bandwidth-limit 1m
 aviva@RouterF# set policer tcp if-exceeding burst-size-limit 100k
 aviva@RouterF# set policer tcp then discard

A final policer affects various background applications, including SNMP, NTP, and RADIUS:

 [edit firewall]
 aviva@RouterF# set policer utility if-exceeding bandwidth-limit 3m
 aviva@RouterF# set policer utility if-exceeding burst-size-limit 300k
 aviva@RouterF# set policer utility then discard

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Then, apply the policers in the then clause of the firewall terms that affect TCP, SSH, ICMP, SNMP,
NTP, and RADIUS packets:

 [edit firewall filter protect-RE2]
 aviva@RouterF# set term tcp from source-prefix-list ssh-prefixes
 aviva@RouterF# set term tcp from source-prefix-list bgp-prefixes
 aviva@RouterF# set term tcp from protocol tcp
 aviva@RouterF# set term tcp from tcp-flags "(syn & !ack) | fin | rst"
 aviva@RouterF# set term tcp then policer tcp
 aviva@RouterF# set term tcp then accept
 aviva@RouterF# set term ssh from prefix-list ssh-prefixes
 aviva@RouterF# set term ssh from protocol tcp
 aviva@RouterF# set term ssh from destination-port ssh
 aviva@RouterF# set term ssh then policer ssh
 aviva@RouterF# set term ssh then accept
 aviva@RouterF# set term utility from source-prefix-list utility-prefixes
 aviva@RouterF# set term utility from protocol udp
 aviva@RouterF# set term utility from port [snmp ntp radius]
 aviva@RouterF# set term utility then policer utility

 aviva@RouterF# set term utility then accept
 aviva@RouterF# set term icmp from protocol icmp
 aviva@RouterF# set term icmp from icmp-type [echo-request echo-reply
unreachable time-exceeded source-quench]
 aviva@RouterF# set term icmp then policer icmp
 aviva@RouterF# set term icmp then accept

A final term in the filter counts and discards all remaining traffic:

 [edit firewall filter protect-RE2]
 aviva@RouterF# set term final-term then count discarded-packets
 aviva@RouterF# set term final-term then discard

To have the filter take effect, apply it to the router's lo0 interface:

 [edit interfaces]
 aviva@RouterF# set lo0 unit 0 family inet filter input protect-RE2

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is considered good practice to apply policers to Routing Engine firewall filter terms to keep
unwanted traffic and possible attacks from overwhelming the routing-protocol software, which runs
on the Routing Engine. You want to police control traffic and traffic that is not time-dependent and
you don't want to police critical traffic, such as BGP protocol exchanges. This section provides a
second example of a Routing Engine firewall filter that includes policers. It is based on a JUNOS
secure template publicly available from Team Cymru at http://www.cymru.com.

First, create policers for control and low-priority traffic. The first policer, configured with the set
policer ssh commands, discards all SSH traffic when the bandwidth exceeds 1 MB or when the traffic
burst size is greater than 100 Kbps. The second and third policers provide similar limits for ICMP and
TCP traffic.

The terms of the first three policers are the same, so you might wonder why you should bother
creating separate policers. You could use just one, which is fine if you know that you will always want
to use the same bandwidth and burst-size limits for these three types of traffic. However, if you think
you might need to tweak the policers individually, this will be easier to do if you create separate
policers initially. When you change the values, you will just need to reconfigure the policer.
Otherwise, you will have to reconfigure both the policer and the firewall term in which the policer is
used.

The last policer in this recipe, configured with the set policer utility commands, is for background
applications, including SNMP, NTP, and RADIUS. This policer drops traffic when the bandwidth is
greater than 3 MB or a traffic burst exceeds 300 Kbps.

You then apply the policers in the then clause of the firewall terms. You need a term for each type of
traffic. The first term, configured with the set term tcp commands, accepts TCP control traffic only
from trusted sources and rate-limits this traffic. The first two commands match prefix lists defined in
the [edit policy] section of the configuration. As with the routing-policy prefix lists, you use these to
keep a single list of IP addresses in one place in the configuration. The ssh-prefixes list has all the
SSH servers in your network, and the bgp-prefixes list has all your BGP peers. The last from clause
command matches bits found in TCP control traffic. The first option, (syn & !ack), matches TCP
synchronize packets that are being used to establish connections. For connections that are already
established and operating normally, these packets also have the ACK bit set, so we exclude these
packets from the policer limits. The RST option is present in packets resetting a TCP session, and FIN
indicates that a session has closed and there is no more data from the sender. You must enclose the
bits in quotation marks so the CLI interprets them correctly. The final two commands in this term
configure the action. The first command applies the tcp policer, and the second accepts the packets.

After the tcp term, you should add the following filter term to accept BGP traffic from trusted
sources:

 [edit firewall filter protect-RE2]
 aviva@RouterF# set term bgp from source-prefix-list bgp-prefixes
 aviva@RouterF# set term bgp from protocol tcp
 aviva@RouterF# set term bgp from port bgp
 aviva@RouterF# set term bgp then accept

The first three commands match packets from a prefix list configured in the [edit policy] section
that lists the router's BGP peers, and this traffic is TCP protocol traffic sent from the BGP port. The

http://www.cymru.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

then clause accepts these packets. You don't rate-limit BGP traffic, because it must be received and
handled by the Routing Engine.

The ssh, utility, and icmp terms in the filter are similar, accepting and rate-limiting SSH, SNMP,
NTP, RADIUS, and ICMP packets. The last term, final-term, counts and discards all remaining traffic.

Finally, to have the filter take effect, apply it to the lo0 interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 9.17. Using Counters to Determine Whether a
Router Is Under Attack

Problem

You want to count traffic on an interface to help determine whether a router is under attack.

Solution

If you suspect that an attack includes TCP packets, add a counter to the firewall term that counts all
TCP traffic:

 [edit firewall filter protect-RE2]
 aviva@RouterF# set term tcp then count tcp-counter

To have the counter take effect, apply the firewall filter to the router's lo0 interface:

 [edit interfaces]
 aviva@RouterF# set lo0 unit 0 family inet filter input protect-RE2

For more fine-grained counting of the TCP traffic, define additional filter terms:

 [edit firewall filter tcp-flooding]
 aviva@RouterF# set term syn from protocol tcp
 aviva@RouterF# set term syn from tcp-flags syn
 aviva@RouterF# set term syn then count packets-syn
 aviva@RouterF# set term syn then log
 aviva@RouterF# set term syn then accept
 aviva@RouterF# set term
rst from protocol tcp
 aviva@RouterF# set term rst from tcp-flags rst
 aviva@RouterF# set term rst then count packets-rst
 aviva@RouterF# set term rst then log
 aviva@RouterF# set term rst then accept
 aviva@RouterF# set term fin from protocol tcp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterF# set term fin from tcp-flags fin
 aviva@RouterF# set term fin then count packets-fin
 aviva@RouterF# set term fin then log
 aviva@RouterF# set term fin then accept
 aviva@RouterF# set term tcp then count packets-tcp
 aviva@RouterF# set term tcp then accept

Discussion

If the router comes under attack, the best way to spot the attack is by watching network flows and
sampling traffic if necessary. Firewall filters also provide some clues about what is happening. If the
attack packets match one of the rate-limited terms, the router will start dropping traffic. If they don't
match any term, you will see a sudden increase in any counters that reject traffic (in Recipe 9.16,
this is the discarded-packets counter). To determine what types of attack packets the router is
receiving, add a counter to the appropriate firewall term.

If your traffic sampling indicates that the attack includes TCP packets, start by counting all the TCP
packets. The set term tcp then count tcp-counter command in this recipe adds a counter to the
tcp term in Recipe 9.16.

If you determine that a TCP flooding attack of some kind might be underway, you can replace the tcp
term with a series of terms that count each type of TCP control packet or you can create a separate
filter that does this and apply it to the interface insteadhere, the filter tcp-flooding. The first term,
configured with the set term syn commands, matches, counts, logs, and accepts TCP SYN packets.
The second and third terms do the same for TCP RST and FIN packets. A final term accepts and
counts all the TCP packets.

To help you figure out what's going on with the attack, look at the amount of TCP SYN, RST, and FIN
packets received as a percentage of all TCP traffic received (counted in the packets-tcp counter). If
the router already has a number of established TCP connections and you suddenly see that TCP RST,
FIN, or SYN packets start to make up more than 10 percent of the total TCP packet, this is an
indication of unusual and unexpected router activity. You should also check the rate at which the
counters are changing. If you use a filter like this to monitor your standard day-to-day traffic when
you are not under attack, you will have a better handle on what the normal and unusual TCP packet
ratios are on the router.

See Also

Recipe 9.16

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 10. RIP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

The Routing Information Protocol (RIP) is an interior gateway protocol (IGP) that was developed as
part of the ARPANET project and was included in the Unix BSD operating system in the early 1980s.
RIP was widely deployed in the 1980s and became the industry standard for interior routing. It was
standardized by the IETF in 1988, in RFC 1058. This version is referred to as RIP Version 1. RIP
Version 2, defined in RFC 2453, added support for Classless Interdomain Routing (CIDR) and
authentication. RIP Version 2 MD5 authentication is defined in RFC 2082. RFCs 2080 and 2081 define
RIPng, which is designed for IPv6 networks. JUNOS software supports RIP Versions 1 and 2, and
RIPng.

RIP is a relatively simple protocol. It uses a distance-vector algorithm (also called the Bellman-Ford
algorithm) to determine the best route to a destination. The distance is measured in hops, which is
the number of routers that a packet must pass through to reach the destination. The best route is
the one with the shortest number of hops. In the routing table, the router maintains two basic pieces
of information for RIP routes: the IP address of the destination network or host and the hop count
(metric) to that destination.

Every 30 seconds, devices on a RIP network broadcast RIP route information, which describes their
view of the network topology and generates a lot of traffic on the network. RIP uses two techniques
to reduce the amount of traffic:

Split horizon

A device receives a route advertisement on an interface but does not retransmit that
advertisement back on the same interface. This limits the amount of RIP traffic by eliminating
information that its RIP neighbor has already learned.

Poison reverse

If a RIP device learns from an interface that a device is no longer connected or reachable, it
advertises that device's route back on the same interface, setting the number of hops to 16,
which means infinite or unreachable. Poison reverse improves the convergence time on a RIP
network.

By default, the JUNOS software implements both split horizon and poison reverse.

For service provider networks that use Juniper Networks routers, IS-IS or OSPF are generally used
for the IGP because they are more powerful routing protocols and have more features for the larger
service provider networks. You might have to use RIP for part of your network if it still has devices
running RIP or for one of your customers if they still have devices running RIP. You might choose to
use RIP because it is a relatively simple protocol, has very few advanced features, and is relatively
straightforward to configure and manage. RIP can be useful in a small, reasonably homogeneous
network, which might be served by some of the newer, smaller J-series routers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This chapter discusses how to enable RIP on the router, how to set it up to receive and send both
Version 1 and Version 2 protocol update packets, how to set up some simple routing policies to filter
the traffic that RIP sends and receives, and how to perform basic troubleshooting of RIP traffic.

If you use RIP, you should remember that the protocol itself has some inherent limitations. RIP can
be used only in small networks because the maximum number of hops to a destination is 16. If a RIP
device is more than 15 hops away, it is considered to be unreachable. In practice, this is often a
serious limitation. From a route convergence point of view, you should use RIP only if your network is
small, with no devices more than four hops from each other. If the network diameter is larger than
this, the route convergence time increases to about two to four minutes, which can lead to network
instabilities and routers becoming unreachable. In comparison, OSPF and IS-IS typically converge in
about 40 seconds. Although it is possible to influence the convergence times by altering RIP timers, if
you find yourself having to do this, you should consider using OSPF or IS-IS instead of RIP.

RIP Version 1 has two additional limitations. First, it uses only classful routing, so it cannot handle
subnet and network mask information. Second, it uses clear-text password authentication, which is
vulnerable to attack. RIP Version 2 was developed to address these two limitations, supporting CIDR
and MD5 authentication. However, the hop-count limit of 15 was retained to maintain interoperability
with Version 1.

The JUNOS implementation of RIP also has a design point of note. By default, the JUNOS RIP only
listens to RIP updates. The router does not send RIP updates unless you explicitly tell RIP to do so.
You do this by creating a routing policy, which can be a fairly simple policy, to advertise the routes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.1. Configuring RIP

Problem

You want network devices running RIP Version 2 to be able to communicate with the rest of your
network.

Solution

You configure basic RIP functionality on your router:

 [edit protocols]
 aviva@RouterA# set
rip group alpha-rip-group neighbor fe-0/0/0
 aviva@RouterA# show
 protocols {
 rip {
 group alpha-rip-group {
 neighbor fe-0/0/0.0;
 }
 }
 }

Discussion

To have your RIP systems communicate with the rest of your network, you enable RIP on each
interface that is directly connected to a RIP neighbor. You do this by defining a group in which you
identify each RIP device by the name of the interface that is directly connected to the RIP device. In
this example, the Fast Ethernet interface fe-0/0/0 is the connection to your RIP device.

For the connection to the RIP neighbor to work, you must configure an IPv4 address on the interface
that is connected to the neighbor (see Recipe 7.5).

We said that we were configuring RIP Version 2, but nowhere in this configuration is there any
mention of the RIP version. By default, the JUNOS software configures both versions of RIP when you
enable RIP. Most modern devices support and run RIP Version 2, so this shouldn't be an issue.

Why does the JUNOS software force you to put your RIP neighbors in groups instead of just letting
you just define them individually? There are a few reasons for this. First, if one of your customers has
multiple links to their site or sites, groups let you keep all these links together. Second, if you need to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set up different authentication passwords or routing policies, or if you need to control traffic flow
differently across different parts of the RIP network by modifying metrics or route preferences, it can
be easier for you to configure these changes for an entire group of RIP neighbors rather than for
individual neighbors.

If you have a number of RIP devices, you configure each interface that is connected to a RIP
neighbor:

 [edit protocols]

 aviva@RouterA# set rip group alpha-rip-group neighbor fe-0/0/1

 aviva@RouterA# set rip group alpha-rip-group neighbor se-0/0/3
 protocols {
 rip {
 group alpha-rip-group {
 neighbor se-0/0/3.0;
 neighbor fe-0/0/0.0;
 neighbor fe-0/0/1.0;
 }
 }
 }

After you have configured RIP, you can see that the connections to the RIP neighbors are active:

 aviva@RouterA>
show rip neighbor
 Source
Destination Send Receive In
 Neighbor State Address Address Mode Mode Met
 -------- ----- ------- ----------- ---- ------- ---
 fe-0/0/1.0 Up 10.0.15.2 224.0.0.9 mcast both 1
 fe-0/0/0.0 Up 10.0.16.1 224.0.0.9 mcast both 1
 se-0/0/3.0 Up 10.0.21.1 224.0.0.9 mcast both 1

You see the three RIP neighbors that you configured. The first column shows the interface that is
directly connected to the RIP neighbor. The second column shows that the interface to the neighbor is
operational, or Up, and is listening to RIP traffic. The source address is the IPv4 address of the
interface, and the destination address is the address of the neighbor's RIP interface. Here, the
destination address is the well-known multicast group assigned to RIP Version 2, which is 224.0.0.9.

The Send Mode column tells how the router's RIP update packets are sent and received. The JUNOS
implementation of RIP can multicast or broadcast both Version 1 and Version 2 packets (multicast is
the default) or can broadcast only Version 1 packets. You should always use the default multicast
mode to reduce the amount of RIP protocol update packets traveling on your network. The Receive
Mode column indicates which type of RIP update packets the router can receive: Version 1, Version 2,
or both (the default).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The last column shows the inbound metric, which is how many hops away the neighbor is. Here, each
neighbor is directly connected and is one hop away, so the inbound metrics are 1. The metric value is
included in the RIP route to the neighbor that is placed in the routing table.

If the interface to the RIP neighbor is not operational, the Source Address and Destination Address
columns would show Dn (down):

 aviva@RouterA> show rip neighbor
 Source Destination Send Receive In
 Neighbor State Address Address Mode Mode Met
 -------- ----- ------- ----------- ---- ------- ---
 fe-0/0/1.0 Up 10.0.15.2 224.0.0.9 mcast both 1
 fe-0/0/0.0 Up 10.0.16.1 224.0.0.9 mcast both 1
 se-0/0/3.0 Dn (null) (null) mcast both 1

To find out what the problem is, first check whether the interface to the neighbor is running:

 [edit interfaces]
 aviva@RouterE# run ping 10.0.15.1 count 5
 PING 10.0.15.1 (10.0.15.1): 56 data bytes
 ping: sendto: No route to host

The ping command here shows that no IPv4 address is configured on the interface. If the interface is
configured properly on the local router, log in to the neighboring router and make sure that RIP is
enabled and configured properly.

After RIP is running on the local router, you can check whether it is learning routes from its
neighbors:

 [edit]
 aviva@RouterA#
run show rip statistics

RIPv2 info: port 520; update interval 30s; holddown 180s; timeout 120s.
 rts learned rts held down rqsts dropped resps dropped
 6 0 0 0
 fe-0/0/1.0: 4 routes learned; 0 routes advertised
 Counter Total Last 5 min Last minute
 ------- ----------- ----------- -----------
 Updates Sent 0 0 0
 Triggered Updates Sent 0 0 0
 Responses Sent 0 0 0
 Bad Messages 0 0 0
 RIPv1 Updates Received 0 0 0
 RIPv1 Bad Route Entries 0 0 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RIPv1 Updates Ignored 0 0 0
 RIPv2 Updates Received 14 11 2
 RIPv2 Bad Route Entries 0 0 0
 RIPv2 Updates Ignored 0 0 0
 Authentication Failures 0 0 0
 RIP Requests Received 0 0 0
 RIP Requests Ignored 0 0 0

From this output, you see that RIP has learned six routes and that the fe-0/0/1 interface has learned
four routes. The other two routes have been learned by one or both of the other two interfaces, but
we have abridged the command output to save space.

One thing to notice from this output is that RIP has not sent any protocol update messages. The
values in the Updates Sent line are all 0. This is the default JUNOS RIP behavior. With the basic RIP
configuration of this recipe, RIP only listens to updates but does not send any.

You can find out which routes RIP learned by looking in the unicast routing table:

 aviva@RouterA> show route table inet.0
 inet.0: 13 destinations, 14 routes (14 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 2w4d 23:08:21
 > to 172.19.121.1 via fe-0/0/0.0
 10.0.0.0/24 *[Direct/0] 2w4d 23:05:23
 > via fe-0/0/1.0
 10.0.0.2/32 *[Local/0] 2w4d 23:05:23
 Local via fe-0/0/1.0
 10.0.1.0/24 *[
RIP/100] 00:04:40, metric 2, tag 0
 > to 10.0.2.1 via fe-0/0/0.0
 to 10.0.0.1 via fe-0/0/1.0
 10.0.2.0/24 *[Direct/0] 2w4d 23:05:23
 > via fe-0/0/1.0
 10.0.2.2/32 *[Local/0] 2w4d 23:05:23
 Local via fe-0/0/1.0
 10.0.8.0/24 *[Direct/0] 2w4d 23:08:59
 > via fe-0/0/0.0
 10.0.8.1/32 *[Local/0] 2w4d 23:08:59
 Local via fe-0/0/0.0
 10.0.16.0/24 *[
RIP/100] 00:02:48, metric 2, tag 0
 > to 10.0.0.1 via fe-0/0/1.0
 10.0.24.0/24 *[RIP/100] 00:04:40, metric 2, tag 0
 > to 10.0.2.1 via fe-0/0/0.0
 192.168.0.1/32 *[RIP/100] 00:02:48, metric 2, tag 0
 > to 10.0.0.1 via fe-0/0/1.0
 192.168.2.1/32 *[RIP/100] 00:04:40, metric 2, tag 0
 > to 10.0.2.1 via fe-0/0/0.0
 192.168.5.1/32 *[Direct/0] 2w4d 19:43:23

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > via lo0.0
 224.0.0.9/32 *[RIP/100] 02:02:08, metric 1
 MultiRecv

The route entries starting with [RIP/100] are those learned from RIP. The router has learned six
routes from RIP:

10.0.1.0/24, 10.0.16.0/24, and 10.0.24.0/24, which are subnetworks

192.168.0.1/32 and 192.168.2.1./32, which are router loopback addresses

The RIP Version 2 multicast address

The value of 100 in the brackets is the JUNOS default value for the RIP administrative distance, also
called the preference, which is used to select which route is installed in the forwarding table when
several protocols calculate routes to the same destination. You can change the preference value by
configuring the preference statement for the RIP group. The numbers following the brackets show
how long the routing table has known about the route. The metric value (either 1 or 2) indicates the
distance (number of hops) to this address. Understanding the routing table is discussed in more
detail in Recipe 8.1.

You might find it strange that a multicast address, 224.0.0.9/32, is present in the inet.0 routing
table, which is the unicast routing table. This is simply a result of a JUNOS design decision. Instead of
establishing a separate routing table for the few multicast routes used by routing protocols, which are
well-known addresses, the JUNOS software places these routes in the unicast routing table.

See Also

Recipes 7.5 and 8.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.2. Having RIP Advertise Its Routes

Problem

You want your RIP-enabled router to share routes with its neighbors and learn routes from them.

Solution

To have RIP advertise RIP routes to its neighbors, you need to configure a routing policy that accepts
all RIP packets:

 [edit policy-options]
 aviva@RouterA# set policy-statement advertise-rip-routes term 1 from protocol direct
 aviva@RouterA# set policy-statement advertise-rip-routes term 1 from protocol rip
 aviva@RouterA# set policy-statement advertise-rip-routes term 1 then accept
 user@router1# show
 policy-options {
 policy-statement advertise-rip-routes {
 term 1 {
 from protocol [direct rip];
 then accept;
 }
 }
 }

Then you apply the policy to all updates sent by RIP:

 [edit protocols rip]
 aviva@RouterA# set group alpha-rip-group export advertise-rip-routes

Discussion

When you simply enable RIP, the default JUNOS behavior is to only receive RIP traffic but not learn
any of the routes or send any RIP routes. To have RIP send routing information to its neighbors, you
need to configure a routing policy that has RIP export routes to its neighbors. An easy way to do this
is to have RIP send both the direct and the RIP routes it knows about. Sending the RIP routes is
obvious, but why do you need to send the direct routes? Direct routes, which are routes directly to a
subnet, are automatically created when you configure the subnet on an interface address. Because

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RIP does not exchange routes by default, when you first configure RIP on your network, your routers
might not have learned any RIP routes. You use the direct routes to catalyze the route-learning
process. Once the RIP routers have exchanged direct routes, they can start to exchange their RIP
routes.

The routing policy you set up is a simple one. It has one term, which accepts all direct routes and all
RIP routes. You apply the policy on the entire group of RIP neighbors, using an export statement to
apply the policy to all outgoing RIP traffic. You can apply a RIP export policy only on an entire group of
neighbors, so when you are designing your network and have decided which neighbors to place in
which group, you need to consider that you have to apply the same routing policies to the entire
group.

You see that RIP is now advertising routes to its neighbors. The fe-0/0/1 interface has sent two
updates and has advertised four routes:

 [edit protocols rip]
 aviva@RouterA# run show rip statistics
 RIPv2 info: port 520; update interval 30s; holddown 180s; timeout 120s.
 rts learned rts held down rqsts dropped resps dropped
 6 0 0 0
 fe-0/0/1.0: 4 routes learned; 4 routes advertised
 Counter Total Last 5 min Last minute
 ------- ----------- ----------- -----------
 Updates Sent 2 1 1
 Triggered Updates Sent 1 1 1
 Responses Sent 0 0 0
 Bad Messages 0 0 0
 RIPv1 Updates Received 0 0 0
 RIPv1 Bad Route Entries 0 0 0
 RIPv1 Updates Ignored 0 0 0
 RIPv2 Updates Received 16 11 2
 RIPv2 Bad Route Entries 0 0 0
 RIPv2 Updates Ignored 0 0 0
 Authentication Failures 0 0 0
 RIP Requests Received 0 0 0
 RIP Requests Ignored 0 0 0

For RIP to work properly on your network, you need to configure this same routing policy on all the
RIP neighbors.

See Also

Recipe 9.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.3. Configuring RIP for IPv6

Problem

You want to add a JUNOS router running RIP to your IPv6 network.

Solution

The configuration for the IPv6 version of RIP, called RIPng, is basically the same as for the IPv4
version of RIP. RIPng has a separate configuration hierarchy:

 [edit protocols ripng]
 aviva@RouterH#

set group v6-rip-group neighbor t1-4/0/0.0

 aviva@RouterH# set group v6-rip-group neighbor fe-1/0/1.0

You also need to configure the interfaces to support IPv6 traffic:

 [edit interfaces]
 aviva@RouterH# set t1-r/0/0 unit 0 family
inet6
 aviva@RouterH# set fe-1/0/1 unit 0 family inet6

To have the router advertise RIPng routes to its neighbors, configure a routing policy and apply it to
the RIPng group:

 [edit policy-options]
 aviva@RouterH# set policy-statement advertise-rip-routes term 1 from protocol direct
 aviva@RouterH# set policy-statement advertise-rip-routes term 1 from protocol rip
 aviva@RouterH# set policy-statement advertise-rip-routes term 1 then accept

 [edit protocols ripng]
 aviva@RouterH# set group v6-rip-group neighbor export advertise-rip-routes

Discussion

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JUNOS RIPng configuration for IPv6 networks is almost identical to the IPv4 RIP configure
configuration. You configure the protocol with set ripng commands instead of set rip commands and
use show ripng commands instead of show rip commands to check the RIP status. Also, make sure to
set the IPv6 address with the inet6 family on the interfaces running RIPng and on the loopback
interface, lo0 .

To have RIPng advertise its RIPng routes, you create a routing policy as you did with RIPv4. This
recipe uses the same policy configured in Recipe 10.2.

To check that the RIPng configuration is working and the router knows about its neighbors, use the
show ripng neighbor command:

 aviva@RouterG> show ripng neighbor
 Source Dest In
 Neighbor State Address Address Send Recv Met
 -------- ----- ------- ------- ---- ---- ---
 fe-1/0/1.0 Up fe80::205:85ff:fec2:2ef5 ff02::9 yes yes 1
 t1-4/0/0.0 Up fe80::205:85ff:fec2:2ed0 ff02::9 yes yes 1

This output shows the two configured RIPng interfaces. The first column shows the interface that
connects to the neighbor, and the second column shows that the neighbor is operational, or Up , and is
listening to RIPng traffic. The Send and Recv columns indicate that the router is both sending RIPng
packets to and receiving packets from its neighbors. The last column shows the inbound metric, which
is how many hops away the neighbor is. Here, each neighbor is directly connected and is one hop
away, so the inbound metrics are 1. The metric value is included in the RIPng route to that neighbor
that is placed in the routing table.

Check that the router has learned RIPng routes:

 aviva@RouterG> show route table inet6 protocol ripng
 inet6.0: 7 destinations, 8 routes (7 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 1080::8:800:200c:2/128
 *[RIPng/100] 00:13:36, metric 2, tag 0
 > to fe80::205:85ff:fec4:72d0 via t1-4/0/0.0
 1080::8:800:200c:3/128
 *[RIPng/100] 00:12:43, metric 2, tag 0
 > to fe80::205:85ff:fec1:d1f5 via fe-1/0/1.0
 ff02::9/128 *[RIPng/100] 00:12:03, metric 1
 MultiRecv

Finally, verify that RIPng is sending protocol updates to and receiving updates from its neighbors:

 aviva@RouterG> show ripng statistics
 RIPng info: port 521; update interval 30s; holddown 180s; timeout 120s.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 rts learned rts held down rqsts dropped resps dropped
 2 0 0 0
 fe-1/0/1.0: 1 routes learned; 1 routes advertised
 Counter Total Last 5 min Last minute
 ------- ----------- ----------- -----------
 Updates Sent 30 11 2
 Triggered Updates Sent 0 0 0
 Responses Sent 0 0 0
 Bad Messages 0 0 0
 Updates Received 32 11 2
 Bad Route Entries 0 0 0
 Updates Ignored 0 0 0
 RIPng Requests Received 1 0 0
 RIPng Requests Ignored 0 0 0

 t1-4/0/0.0: 1 routes learned; 1 routes advertised
 Counter Total Last 5 min Last minute
 ------- ----------- ----------- -----------
 Updates Sent 30 11 2
 Triggered Updates Sent 0 0 0
 Responses Sent 0 0 0
 Bad Messages 0 0 0
 Updates Received 34 11 2
 Bad Route Entries 0 0 0
 Updates Ignored 0 0 0
 RIPng Requests Received 0 0 0
 RIPng Requests Ignored 0 0 0

See Also

Recipe 7.6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.4. Enabling RIP Authentication

Problem

You want to ensure that all RIP protocol traffic your router accepts comes from devices known to you
so that only trusted routers participate in determining how traffic is routed through your network.

Solution

Configure MD5 authentication for RIP:

 aviva@RouterA> configure
 [edit protocols]
 aviva@RouterA# set rip authentication-type md5
 aviva@RouterA# set rip authentication-key 123456
 rip {
 authentication-type md5;
 authentication-key "1$9$CuWOtBIhSrc8XcS24JGiH"; ## SECRET-DATA
 group alpha-rip-group {
 neighbor fe-0/0/0.0;
 }
 }

Discussion

It is a good security measure to authenticate all RIP protocol exchanges to ensure that only trusted
routers participate in your RIP network and in the exchange of traffic and protocol updates. RIP
authentication was added to Version 2 of the protocol standard, so you cannot authenticate RIP
Version 1 traffic.

This example shows how to configure RIP to use MD5 authentication. You do this with two
statements, one to set the authentication type and another to set the key, or password, that is
included in all transmitted RIP packets. MD5 creates an encoded checksum that is included in the
transmitted RIP packets. The receiving router verifies this checksum before accepting the packet.

When you display the router's configuration after you have typed the password, the password is
displayed in encrypted form. This ensures that someone casually glancing through the configuration
does not see the actual password.

You can also configure a simple password for RIP authentication, which includes a plain-text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

password in the transmitted RIP packets. Plain-text passwords are easy to break by devices that sniff
network traffic, so you should never use them when your goal is network security.

For authentication to work across your entire RIP network, you need to configure MD5 authentication
and the same password on all your routers in the same way as we show in this recipe. Once you have
the encrypted version of the password, you can use it in the authentication-key statement instead
of the password itself. This is one way to minimize the number of people who see the actual
password.

 aviva@RouterB#
set rip authentication-key "9CuWOtBIhSrc8XcS24JGiH"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.5. Routing RIP Traffic over Faster Interfaces

Problem

You want to force RIP to route traffic over a faster physical link even if using that link has more hops
than a slower link.

Solution

Use the following command to make the path through the slower interface less preferable:

 [edit protocols rip]
 aviva@RouterA# set group alpha-rip-group neighbor se-0/0/3.0 meTRic-in 2

Discussion

By default, each directly connected neighbor in a RIP network has a metric value of 1. If there are
two equal-cost routes to a destination, RIP considers them equivalent and uses one or the other at
any given time. You cannot control RIP's choice of paths. If all the links on your network are the
same speed, the path taken by RIP traffic is not an issue and you can leave the default metric values
unchanged. However, if one of the paths includes a slower or faster link, you probably want to route
the RIP traffic along the faster path. In our example, all routers are linked with faster Ethernet
interfaces except for one, which has a slower serial link (see Figure 10-1).

Figure 10-1. Topology for controlling RIP traffic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you are controlling the path taken by RIP traffic from RouterA to RouterD, you want to make sure
it never goes through RouterB but always goes through RouterE and RouterF. If you do not change
the default metric configuration, RIP traffic can go along either path. You can check the path it has
chosen at this moment, which is the path through RouterB:

 aviva@RouterA> traceroute 192.168.24.1
 traceroute to 192.168.24.1 (192.168.24.1), 30 hops max, 40 byte packets
 1 10.0.21.2 (10.0.21.2) 23.712 ms 29.928 ms 31.495 ms
 2 10.0.22.2 (10.0.22.2) 49.921 ms 68.857 ms 100.153 ms
 3 192.168.24.1 (192.168.24.1) 100.107 ms 100.417 ms 99.953 ms

To control the path selected between RouterA and RouterD, you set the inbound metric on RouterA's
serial interface to 2. Whenever RouterA receives a route on the se-0/0/3 interface, it sets the metric
in that route to 2:

 aviva@RouterA> show rip neighbor
 Source Destination Send Receive In
 Neighbor State Address Address Mode Mode Met
 -------- ----- ------- ----------- ---- ------- ---
 fe-0/0/1.0 Up 10.0.15.2 224.0.0.9 mcast both 1
 se-0/0/3.0 Up 10.0.21.1 224.0.0.9 mcast both 2

You use the traceroute command again to see that you are forcing traffic through RouterE:

 aviva@RouterA> traceroute 192.168.24.1
 traceroute to 192.168.24.1 (192.168.24.1), 30 hops max, 40 byte packets
 1 10.0.15.1 (10.0.15.1) 20.245 ms 11.334 ms 17.559 ms
 2 10.0.13.2 (10.0.13.2) 19.916 ms 19.534 ms 18.065 ms
 3 192.168.24.1 (192.168.24.1) 21.769 ms 29.599 ms 19.960 ms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You check the routing table to see that the route to RouterD through RouterB has a metric of 4, while
the route through RouterE has a metric of 3:

 aviva@RouterA> show route table inet.0
 10.0.29.0/24 *[RIP/100] 00:16:27, metric 4, tag 0
 to 10.0.15.1 via fe-0/0/1.0
 > to 10.0.21.2 via se-0/0/3.0
 10.0.31.0/24 *[RIP/100] 02:56:55, metric 3, tag 0
 > to 10.0.15.1 via fe-0/0/1.0

Changing the inbound metric on a router's interface modifies only how the local router, RouterA,
sends traffic. It has no effect on how any remote routers control their traffic flow. You can look in the
routing table of RouterD to see that when it sends traffic to RouterA, the two paths (through RouterC
and RouterF) both have a metric value of 3, which is the value you expect because RouterA is three
hops away from RouterD:

 aviva@RouterD> show route table inet.0
 10.0.15.0/24 *[RIP/100] 03:39:30, metric 3, tag 0
 > to 10.0.31.2 via t1-0/0/2.0
 10.0.21.0/24 *[RIP/100] 03:41:18, metric 3, tag 0
 > to 10.0.29.1 via fe-0/0/1.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.6. Sending Version 1 Update Messages

Problem

You want your router to send route updates that can be understood by legacy RIP Version 1 devices.

Solution

You configure RIP to send update messages that the RIP Version 1 routers can understand:

 [edit protocols]
 aviva@RouterA# set rip group alpha-rip-group neighbor fe-0/0/0 send broadcast

Discussion

When you enable RIP on an interface, the router receives both RIP Version 1 and Version 2 update
messages but sends only RIP Version 2 updates. If you have devices in your network that are still
using RIP Version 1, you want them to be able to receive update messages. The send broadcast
configuration statement sets RIP to send both Version 1 and Version 2 update packets.

When you look at the RIP interfaces now, you see that the send mode for interface fe-/0/00 has
changed from mcast to bcast:

 aviva@RouterA> show rip neighbor fe-0/0/0
 Source Destination Send Receive In
 Neighbor State Address Address Mode Mode Met
 -------- ----- ------- ----------- ---- ------- ---
 fe-0/0/0.0 Up 10.0.16.1 10.0.16.255 bcast both 1

You can verify that the neighboring router is receiving RIP Version 1 updates by issuing the show rip
statistics command on the RIP neighbor:

 aviva@RouterE> run show rip statistics fe-1/0/0.0
 RIPv2 info: port 520; update interval 30s; holddown 180s; timeout 120s.
 rts learned rts held down rqsts dropped resps dropped
 18 0 0 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fe-1/0/0.0: 4 routes learned; 17 routes advertised
 Counter Total Last 5 min Last minute
 ------- ----------- ----------- -----------
 Updates Sent 2690 11 2
 Triggered Updates Sent 10 0 0
 Responses Sent 0 0 0
 Bad Messages 2 1 1
 RIPv1 Updates Received 2 1 1
 RIPv1 Bad Route Entries 0 0 0
 RIPv1 Updates Ignored 0 0 0
 RIPv2 Updates Received 2753 10 1
 RIPv2 Bad Route Entries 57 0 0

RIPv2 Updates Ignored 0 0 0
 Authentication Failures 0 0 0

RIP Requests Received 0 0 0
 RIP Requests Ignored 0 0 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 10.7. Tracing RIP Protocol Traffic

Problem

You are setting up RIP on your network and want to keep a running log of RIP protocol updates that
the router is sending to help you track any problems that might occur during the configuration
process.

Solution

You set up a trace file that captures all information about RIP protocol update messages:

 [edit protocols rip]
 aviva@RouterA# set traceoptions file rip-update-log
 aviva@RouterA# set traceoptions flag update
 aviva@RouterA# show
 traceoptions {
 file rip-update-log;
 flag update;
 }

Discussion

When you need to debug RIP operations, you can use the JUNOS tracing facility to track the packets
that RIP is sending. You specify the name of the file to which you want to collect the information and
the type of information you want to trace. In this example, we are logging RIP update traffic
information in the file named rip-update-log, which is on the router's hard disk in the directory
/var/log.

To see the RIP protocol update messages, look at the contents of the file:

 aviva@RouterA> show log rip-update-log
 Mar 31 10:10:47 trace_on: Tracing to "/var/log/rip-update-log" started
 Mar 31 10:10:51 received response: command 2, version 2, mbz: 0; 5 routes.
 Mar 31 10:11:00 received response: command 2, version 2, mbz: 0; 8 routes.
 Mar 31 10:11:13 Preparing to send RIPv2 updates.
 Mar 31 10:11:13 Update job: sending 20 msgs; group: alpha-rip-group.
 Mar 31 10:11:13 nbr se-0/0/3.0; msgp: 0x866ee00.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Mar 31 10:11:13 sending msg 0x866ee04, 6 rtes
 Mar 31 10:11:13 nbr se-0/0/3.0 done.
 Mar 31 10:11:13 Group alpha-rip-group done.
 Mar 31 10:11:13 New group beta-rip-group.
 Mar 31 10:11:13 New nbr fe-0/0/1.0; msgp 0x8672000.
 Mar 31 10:11:13 sending msg 0x8672004, 8 rtes
 Mar 31 10:11:13 nbr fe-0/0/1.0 done.
 Mar 31 10:11:13 Group beta-
rip-group done.
 Mar 31 10:11:13 Update job done!
 Mar 31 10:11:20 received response: command 2, version 2, mbz: 0; 5 routes.

What you are seeing here is the standard RIP message update process. Every 30 seconds, RIP sends
an unsolicited update message that contains the complete routing table to every neighboring router.
This router has two RIP neighbors, reachable through interfaces se-0/0/3 and fe-0/0/1. In this
update, the router sends six routes to the neighbor on the serial interface and eight routes to the
neighbor of the Fast Ethernet interface. The second and third lines of the file show that the local
router has received two updates from its two RIP neighbors, one with five and the other with eight
routes.

Over time, logfiles can get very large. RIP is a very chatty protocol. You can see from the timestamps
in this example that tracing has been on for about 40 seconds. Similar information is added to the file
every 30 seconds. If you want to save the logfile for future analysis, you can copy the file to a
server:

 aviva@RouterA> file copy /var/log/rip-update-log server1:rip-update-log-20050227

If you no longer need the information in the file, you can delete the contents:

 aviva@RouterA> clear log rip-update-log

Deleting the file's contents does not turn off tracing. To stop the tracing altogether, you need to
either deactivate or remove the traceoptions statement from the configuration:

 [edit protocols rip]
 aviva@RouterA# deactivate traceoptions
 aviva@RouterA# show protocols rip
 inactive: traceoptions {
 file rip-update-log;
 flag update;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

or:

 [edit protocols rip]
 aviva@RouterA# delete traceoptions

When debugging RIP, you can set one or more of the following trace flags to capture RIP information:

 [edit protocols rip traceoptions]
 aviva@RouterA# set flag ?
 Possible completions:
 all Trace everything
 auth Trace RIP authentication
 error Trace RIP errors
 expiration Trace RIP route expiration processing
 general Trace general events
 holddown Trace RIP hold-down processing
 normal Trace normal events
 packets Trace all RIP packets
 policy Trace policy processing
 request Trace RIP information packets
 route Trace routing information
 state Trace state transitions
 task Trace routing protocol task processing
 timer Trace routing protocol timer processing
 trigger Trace RIP triggered updates
 update Trace RIP update packets

See Also

Recipe 5.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 11. IS-IS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

The Intermediate System-to-Intermediate System (IS-IS) protocol is an IGP that routes packets
within a single autonomous system (AS), or domain. IS-IS is based on the DECNET Phase V network
technology, which was developed at Digital Equipment Corporation (DEC) in the 1980s and was
initially standardized by ANSI as the International Organization for Standardization (ISO) intradomain
protocol in ISO/IEC 10589. The first version of IS-IS was designed to work on the OSI
Connectionless Network Protocol (CNLP). RFC 1195, published in 1990, added extensions to support
IP routes.

As an IGP, IS-IS works within a routing domain, which usually corresponds to an administrative
boundary, and focuses on determining the most efficient routes to destinations within a domain. This
is in contrast with EGPs, whose primary focus is on policy rather than on the most efficient routing.
An IS-IS routing domain consists of end systems, which send and receive packets, and intermediate
systems (the ISO term for a router), which receive and forward packets.

IS-IS is a link-state protocol and uses link-state protocol data units (link-state PDUs, or LSPs) to
describe the network topology. Each IS-IS router generates LSPs that describe the topology, along
with IP routes, checksums, and other information, and floods the LSPs throughout the domain. Each
router ends up with a link-state database that describes the same network topology. Once the router
has the complete network topology, it runs the Dijkstra shortest-path first (SPF) calculation to
determine the shortest path to each destination in the network. The calculation results in
destination/next-hop pairs that are placed in the IS-IS routing database. Each router performs the
SPF calculation independently, and each IS-IS router has an identical database as a result.

Unlike other IP routing protocols, IS-IS runs directly on the data link layer (Layer 2 of the OSI model)
and does not need addresses on each interface, just on the router itself. This makes IS-IS
configuration simpler.

Because IS-IS was developed as part of the OSI network protocols, not as part of TCP/IP, it uses a
different network-addressing scheme. Instead of the IP 32-bit addresses, IS-IS addresses, called
network entity titles (NETs), are generally 10 bytes long (they can be from 8 to 20 bytes long) and
are written as shown in the following example:

 49.0001.1921.6801.9001.00

The first three bytes of the address (here, 49.0001) form the area identifier, or area ID. The area ID
can be up to 13 bytes long. The first byte of the area ID is the address family identifier (AFI) of the
authority, which is the space assigned to a particular enterprise (equivalent to an IP address space
that is assigned to an enterprise). The value of 49 is the well-known AFI used for private addressing,
which is the equivalent of RFC 1918 addressing for IP protocols. The last two bytes in the area ID
identify an IS-IS area within the AS, here 0001, or area 1.

The next six bytes (here, 1921.6801.9001) are the system identifier, which identifies each node

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(router) on the network. Although IS-IS supports a variable-length system field, in practice this field
is always six bytes. The method of allocating system identifiers is up to the network designer. One of
the simpler methods, and the one used in this chapter, is binary-coded decimal (BCD), which takes
the router's IP address (the lo0 address), fills in all the leading zeros, and repositions the decimal
points to form three two-byte numbers. Here, the router's lo0 address is 192.168.19.1. Adding the
leading zeros gives 192.168.019.001, and rearranging the decimal points gives 1921.6801.9001. A
second common method is to use the router's media access control (MAC) address, regrouping the
six-byte address into three groups. For a router with a MAC address of 00:05:85:c2:2e:d0, the
system identifier would be 0005.85c2.2ed0. To see the router's MAC address, use the show chassis
mac-address command.)

The final two bytes of the NET are the NET selector (NSEL) and, for IS-IS, they must always be zero
to indicate "this system."

IS-IS divides each AS into one or more smaller segments called areas. Each area is a set of networks
and hosts that are administratively grouped together. Routers within an area run the link-state
algorithm in parallel and store the results in their link-state databases. They share this information
with each other by exchanging LSPs and thus have identical link-state databases. They can also inject
a summary of that area's routes into other areas.

Routers within an IS-IS area are divided into two types. Level 1 systems route within an area, and
Level 2 systems route between areas and toward other ASs. When a Level 1 router needs to route a
packet to a destination outside its area, it sends the packet toward a Level 2 system. Systems that
run both Level 1 and Level 2 are similar to OSPF area border routers (ABRs). One difference between
IS-IS and OSPF is that an IS-IS router resides completely within an area, and the area borders are
on the links; while with OSPF, the ABR is a router that connects to all the areas on its boundary. This
means that the IS-IS Level 2 systems have to maintain only two link-state databases, one for the
Level 1 area and the second for the Level 2 area, as compared to the OSPF ABR, which maintains a
link-state database for each connected area.

On broadcast, multiaccess networks, IS-IS elects a designated intermediate system (DIS), also
referred to as a designated router (DR), which advertises links to all routers in the level. IS-IS elects
a separate DIS for Level 1 and Level 2 areas (although they could be on the same router). DIS
election is based on priority, which is a number between 0 and 127, with the router with the highest
value becoming the DIS. IS-IS does not have a backup designated router.

For more background information about IS-IS, see The Complete IS-IS Routing Protocol (Springer)
and OSPF and IS-IS: A Comparative Anatomy (http://www.nanog.org/mtg-0006/katz.html).

http://www.nanog.org/mtg-0006/katz.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.1. Configuring IS-IS

Problem

You want to configure IS-IS on a JUNOS router.

Solution

There are three steps to setting up IS-IS. First, define the interfaces on which IS-IS will run and the
levels to which the interfaces will be attached:

 [edit protocols isis]
 aviva@RouterG# set interface fe-0/0/1
 aviva@RouterG# set interface fe-1/0/0 level 2 disable
 aviva@RouterG# set interface
lo0.0

Second, enable the ISO protocol family on the interfaces:

 [edit interfaces]
 aviva@RouterG# set fe-0/0/1 unit 0 family iso
 aviva@RouterG# set fe-1/0/0 unit 0 family iso

Finally, configure a NET on the lo0 interface:

 [edit interfaces]
 aviva@RouterG# set lo0 unit 0 family iso address 49.0020.1921.6801.9001.00

Discussion

The basic setup to get IS-IS up and running on your router is straightforward. Enable the protocol on
all router interfaces that will participate in the IS-IS domain and specify the level at which they
should run. This recipe configures the IS-IS on the router topology shown in Figure 11-1. Here,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

because interface fe-0/0/1 is a border node between areas 20 and 30, you need to specify only the
interface name because, by default, all IS-IS interfaces are both Level 1 and Level 2 interfaces.

The other interface, fe-1/0/0, is only in area 20, so it is a Level 1 router. For this interface, you
disable Level 2 operation.

Figure 11-1. IS-IS network topology with one area

In addition to the network interfaces, you should also run IS-IS on the lo0.0 interface because this is
the most straightforward way to ensure that your loopback address (or addresses) is advertised into
IS-IS. IS-IS automatically treats the loopback interface as passive, which means that the interface
advertises its direct addresses but does not form adjacencies. (In older versions of JUNOS software,
you had to include the passive statement on the loopback interface to have the interface be passive,
but this has changed in newer versions.) However, to have other interfaces be passive, you must
configure them explicitly by including the passive statement; for example:

 [edit protocols isis]
 aviva@RouterG# set interface fe-1/0/1.0 level 2 passive

In the interfaces portion of the configuration, configure the interfaces that will be running IS-IS, here
fe-0/0/1 and fe-1/0/0, so that they recognize and accept ISO packets. Do this by including family
iso in the logical interface. Interfaces can have multiple address families on them, as you can see for
fe-0/0/1:

 aviva@RouterG> show configuration interfaces fe-0/0/1
 unit 0 {
 family inet {
 address 10.0.1.2/24;
 }
 family iso;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Also, you must set a NET for the router. Technically, you can set this address on any interface but, in
practice, you set it on the router's loopback interface, lo0. This address is stable, and, as long as the
router is up, this interface is accessible. If you assign the NET on a network interface and that
interface goes down, IS-IS will stop functioning on the router. You can assign multiple NETs to the
lo0 interface, which might be useful when migrating two previously independent IS-IS domains into a
single domain.

After this simple configuration, the IS-IS protocol takes over. You do not have to configure neighbors.
IS-IS automatically discovers them and establishes adjacencies with its neighbors by first sending IS-
IS Hello (IIH) packets to ensure that the two ends of the link can communicate.

To check that IS-IS is running on the router interfaces, use the show isis interface command:

 aviva@RouterG> show isis interface
 IS-IS interface database:
 Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric
 fe-0/0/1.0 3 0x2 RouterG.02 RouterG.02 10/10
 fe-1/0/0.0 1 0x3 RouterG.03 Disabled 10/10
 lo0.0 0 0x1 Passive Passive 0/0

This output shows the two Fast Ethernet interfaces we configured for IS-IS, as well as the lo0
interface. The second column, L, shows that fe-0/0/1 is a Level 1Level 2 interface (represented by
the number 3) and fe-1/0/0 is a Level 1 interface. The loopback address is also listed because a NET
is configured on it but it does not participate in any IS-IS level (shown as 0 in the L column). The two
DR columns show the name of the router that has been elected as the DIS for that level. Interface fe-
1/0/0 has no Level 2 DR (Disabled) because it is a Level 1 interface. You may wonder how IS-IS
discovers the name of the neighbor because it is not an IP routing protocol and hence doesn't support
DNS. The answer is that the JUNOS software supports dynamic mapping of ISO system identifiers to
the hostname. If you have configured a router name with the set system host-name command, this
name, and not the router's NET, is displayed in all IS-IS output. The JUNOS implementation of IS-IS
includes the hostname in the LSP, using the dynamic hostname TLV, type 137, to cache the symbolic
name of the router.

In the DR columns for the lo0.0 interface, the interface is shown as Passive, which is the default
when you configure IS-IS on the loopback interface.

The last column shows the link's Layer 1 and Layer 2 metrics, which are 10 by default.

You can see a brief summary of the adjacencies the router has established with the show isis
adjacencies command:

 aviva@RouterG> show isis adjacency
 Interface System L State Hold (secs) SNPA
 fe-0/0/1.0 RouterH 2 Up 21 0:5:85:c1:d1:d1
 fe-1/0/0.0 RouterA 1 Up 6 0:5:85:ca:ca:70

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The output shows the two interfaces we configured. The interface fe-0/0/1 participates in a Level 2
area, connecting to RouterH, and interface fe-1/0/0 connects to RouterA. Notice that the lo0
interface is not listed because it doesn't form any adjacencies. The State column shows that both
adjacencies are operational (Up). The Hold column shows the amount of time remaining before the
router closes the adjacency. By default, IS-IS sends Hello packets, which act as adjacency
keepalives, every three seconds for DIS routers and every nine seconds for Level 1 routers. Non-DIS
routers send Hello packets less frequently in case IS-IS needs to re-elect a DIS. While a DIS is being
elected, there is likely to be traffic loss. Having a longer hello timer interval on the non-DIS systems
remedies this problem. The default hold time is three times the hello interval, or 9 seconds, and 27
seconds for DIS and Level 1 routers, respectively. The SNPA column shows the subnetwork point of
attachment, which is the MAC address of the next hop.

The detail version of this command gives a bit more insight into the adjacencies:

 aviva@RouterG> show isis adjacency detail
 RouterH
 Interface: fe-0/0/1.0, Level: 2, State: Up, Expires in 21 secs
 Priority: 64, Up/Down transitions: 1, Last transition: 17:16:43 ago
 Circuit type: 3, Speaks: IP, IPv6, CLNS, MAC address: 0:5:85:c1:d1:d1
 Topologies: Unicast
 Restart capable: Yes
 LAN id: RouterG.02, IP addresses: 10.0.1.1
 RouterA
 Interface: fe-1/0/0.0, Level: 1, State: Up, Expires in 7 secs
 Priority: 64, Up/Down transitions: 1, Last transition: 16:57:54 ago
 Circuit type: 1, Speaks: IP, IPv6, MAC address: 0:5:85:ca:ca:70
 Topologies: Unicast
 Restart capable: Yes
 LAN id: RouterA.02, IP addresses: 10.0.16.1

The output shows the other two IS-IS routers. RouterG reaches RouterH over interface fe-0/0/1, and
it connects to RouterA over interface fe-1/0/0. The State field shows that the adjacencies are
operational (Up), and the Expires field shows the amount of time remaining before the router closes
the adjacency. The second line shows the router's DR priority, how many times the adjacency has
gone down and come back up, and when the last up-down transition occurred. The third line shows
the Circuit type, which is the IS-IS level. A value of 3 indicates the router is a Level 1Level 2 router,
a value of 2 is a Level 2only router, and a value of 1 is a Level 1only router. The Speaks field shows
the protocols that the router is running, and the MAC address field shows the subnetwork point of
attachment, which is the MAC address of the next hop. The last line shows the IS-IS identifier of the
router on the LAN and the router's IP address.

If the IS-IS adjacency doesn't come up, there are a few things to check when trouble-shooting. First,
make sure the physical interface is operational. Here, the adjacency with RouterH is down:

 aviva@RouterG> show isis adjacency

 Interface System L State Hold (secs) SNPA
 fe-0/0/1.0 RouterH 2 Down 0 0:5:85:c1:d1:d1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fe-1/0/0.0 RouterA 1 Up 8 0:5:85:ca:ca:70

RouterG's interface to RouterH is up:

 aviva@RouterG> show interfaces fe-0/0/1 terse
 Interface Admin Link Proto Local Remote
 fe-0/0/1 up up
 fe-0/0/1.0 up up inet 10.0.1.2/24
 iso

but the interface on RouterH is not:

 aviva@RouterH> show interfaces fe-0/0/1 terse
 Interface Admin Link Proto Local Remote
 fe-0/0/1 down up
 fe-0/0/1.0 up down inet 10.0.1.1/24
 iso

Checking the configuration, you see that the interface has been disabled:

 aviva@RouterH> show configuration interfaces fe-0/0/1
 disable;
 unit 0 {
 family inet {
 address 10.0.1.1/24;
 }
 family iso;
 }

Delete the disable statement to activate the interface.

Next, check that all interfaces in a Level 1 area are configured with the same area identifier. You can
check this on the local router:

 aviva@RouterG> show interfaces terse lo0.0
 Interface Admin Link Proto Local Remote
 lo0.0 up up inet 192.168.19.1 --> 0/0
 iso 49.0020.1921.6801.9001

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Also check on the Level 1 neighbor:

 aviva@RouterA> show interfaces terse lo0.0
 Interface Admin Link Proto Local Remote
 lo0.0 up up inet 192.168.42.1 --> 0/0
 iso 49.0020.1921.6804.2001

You see that both routers are in area 20.

You can also find the area identifier in the IS-IS TLV field in the database:

 aviva@RouterG> show isis database extensive level 1

IS-IS level 1 link-state database:
 RouterG.00-00 Sequence: 0x63, Checksum: 0xfe33, Lifetime: 549 secs
 …

 TLVs:
 Area address: 49.0020 (3)
 …

Check the interface's MTU to make sure that it is at least 1,492 bytes:

 aviva@RouterG> show interfaces fe-0/0/1.0
 Logical interface fe-0/0/1.0 (Index 64) (SNMP ifIndex 40)
 Flags: SNMP-Traps Encapsulation: ENET2
 Protocol inet, MTU: 1500
 Flags: None
 Addresses, Flags: Is-Preferred Is-Primary
 Destination: 10.0.1/24, Local: 10.0.1.2, Broadcast: 10.0.1.255
 Protocol iso, MTU: 1497
 Flags: Is-Primary

Another common mistake that results in adjacency being down is that the IP addresses on either end
of the connection are in different subnets and do not match. An example is having one router
interface with an IP address of 192.168.0.1/24 connect to another router with an interface IP address
of 192.168.1.2/24.

Finally, check that each interface includes an ISO family and that the lo0 interface has an NET
address:

 aviva@RouterG> show interfaces terse

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Interface Admin Link Proto Local Remote
 …
 fe-0/0/1.0 up up inet 10.0.1.2/24
 iso
 fe-1/0/0 up up
 fe-1/0/0.0 up up inet 10.0.16.2/24
 iso
 …
 lo0.0 up up inet 192.168.19.1 --> 0/0
 iso 49.0020.1921.6801.9001
 …

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.2. Viewing the IS-IS Link-State Database

Problem

You want to look at each router's link-state database to make sure that all the IS-IS routers know
about each other.

Solution

Use the show isis database command to view the contents of the link-state database:

 aviva@RouterG> show isis database

IS-IS level 1 link-state database:
 LSP ID Sequence Checksum Lifetime Attributes
 RouterG.00-00 0x65 0xfa35 851 L1 L2 Attached
 RouterA.00-00 0x5e 0xf289 661 L1 L2

 RouterA.02-00 0x59 0xeda9 632 L1 L2
 3 LSPs
 IS-IS level 2 link-state database:
 LSP ID Sequence Checksum Lifetime Attributes
 RouterH.00-00 0x61 0xa315 923 L1 L2
 RouterG.00-00 0x61 0x125e 741 L1 L2
 RouterG.02-00 0x5e 0x79f0 741 L1 L2
 3 LSPs

Discussion

IS-IS routers exchange LSPs that describe each individual router's view of the network topology and
they store the LSPs in a link-state database. The SPF algorithm then runs on the link-state database
to create the IS-IS routing table. Use the show isis database command to look at the contents of
the link-state database. In this recipe, RouterG is a Level 1Level 2 router, so you see two link-state
databases, one for each level.

The first part of the output shows that the Level 1 link-state database has three LSPs. The entry for
RouterG includes the attach bit (Attached), which indicates that it is connected to another IS-IS area.
From the configuration, you know that this router is connected to area 30.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If you check on the other Level 2 router, its Level 2 database is identical to that of RouterG:

 aviva@RouterH> show isis database level 2
 IS-IS level 2 link-state database:
 LSP ID Sequence Checksum Lifetime Attributes
 RouterH.00-00 0x61 0xa315 988 L1 L2
 RouterG.00-00 0x61 0x125e 802 L1 L2
 RouterG.02-00 0x5e 0x79f0 802 L1 L2
 3 LSPs

Use the extensive version of the show isis database command to see all the information carried in
the LSP:

 aviva@RouterG>
show isis database extensive level 2 RouterH.00-00
 IS-IS level 2 link-state database:
 RouterH.00-00 Sequence: 0x62, Checksum: 0xa116, Lifetime: 1121 secs
 IS neighbor: RouterG.02 Metric: 10
 IP prefix: 10.0.1.0/24 Metric: 10 Internal Up
 IP prefix: 10.0.24.0/24 Metric: 10 Internal Up
 Header: LSP ID: RouterH.00-00, Length: 134 bytes
 Allocated length: 284 bytes, Router ID: 192.168.18.1
 Remaining lifetime: 1121 secs, Level: 2,Interface: 64
 Estimated free bytes: 170, Actual free bytes: 150
 Aging timer expires in: 1121 secs
 Protocols: IP, IPv6
 Packet: LSP ID: RouterH.00-00, Length: 134 bytes, Lifetime : 1198 secs
 Checksum: 0xa116, Sequence: 0x62, Attributes: 0x3 <L1 L2>
 NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 20, Packet version: 1, Max area: 0

 TLVs:
 Area address: 49.0030 (3)
 Speaks: IP
 Speaks: IPv6
 IP router id: 192.168.18.1
 IP address: 192.168.18.1
 Hostname: RouterH
 IP prefix: 10.0.24.0/24, Internal, Metric: default 10, Up
 IP prefix: 10.0.1.0/24, Internal, Metric: default 10, Up
 IP extended prefix: 10.0.24.0/24 metric 10 up
 IP extended prefix: 10.0.1.0/24 metric 10 up
 IS neighbor: RouterG.02, Internal, Metric: default 10
 IS extended neighbor: RouterG.02, Metric: default 10
 IP address: 10.0.1.1
 No queued transmissions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first section of the output shows the entries (IS-IS neighbors and IP prefixes) in the link-state
database:

 RouterH.00-00 Sequence: 0x62, Checksum: 0xa116, Lifetime: 1121 secs
 IS neighbor: RouterG.02 Metric: 10
 IP prefix: 10.0.1.0/24 Metric: 10 Internal Up
 IP prefix: 10.0.24.0/24 Metric: 10 Internal Up

RouterG has one IS-IS neighbor, RouterH, and the metric to reach this neighbor is 10 (the default).
RouterG has learned two prefixes, both from a Level 1 (internal) IS-IS area, and both prefixes have
the default metric cost of 10. Any routes learned from outside the area would be marked External.

The remaining three sections correspond to portions of the LSP. The Header section shows the packet
length, the router ID (which is the address configured on the lo0 interface), and various timer
information. The Packet section shows the PDU length, remaining lifetime, checksum, sequence
number, and other information. The TLV section shows the TLV information carried in the LSP. The
first line shows TLV 1, the address of the area in which the router is located:

 Area address: 49.0030 (3)

RouterH is in area 49.0030. The next two lines list the protocols that RouterH supports (TLV 129):

 Speaks: IP
 Speaks: IPv6

The router is running both IPv4 and IPv6. Next, you see two router IDs:

 IP router id: 192.168.18.1
 IP address: 192.168.18.1

The first line corresponds to TLV 134, the traffic-engineering router ID (defined in RFC 3784), and
the second is TLV 132, which is defined as the interface address. In the JUNOS IS-IS implementation,
the IP address field shows the configured router ID, not all interface addresses. The sixth line shows
the router's dynamic (symbolic) hostname:

 Hostname: RouterH

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next four lines show the IP prefixes in the LSP:

 IP prefix: 10.0.24.0/24, Internal, Metric: default 10, Up
 IP prefix: 10.0.1.0/24, Internal, Metric: default 10, Up
 IP extended prefix: 10.0.24.0/24 metric 10 up
 IP extended prefix: 10.0.1.0/24 metric 10 up

The first two prefixes map to TLV 128, IP internal reachability, and are the IP addresses within the
routing domain that are directly reachable through RouterH interfaces. This TLV can carry metrics in
the range of 0 through 63. The second two prefixes map to TLV 135, the extended reachability TLV,
defined in RFC 3784. This TLV can carry metric values greater than 63.

The last two lines provide information about reaching IS-IS neighbors:

 IS neighbor: RouterG.02, Internal, Metric: default 10
 IS extended neighbor: RouterG.02, Metric: default 10
 IP address: 10.0.1.1

The first line, IS neighbor, corresponds to TLV 2, which carries IS reachability information, including
the one-octet default metric. The second line maps to TLV 22, for extended IS reachability
information (also defined in RFC 3784). This TLV carries three-octet metric values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.3. Viewing Routes Learned by IS-IS

Problem

You want to check the routes that are being generated by the link-state algorithm to make sure that
the router is learning the expected routes.

Solution

Use the show isis route command to see the contents of the IS-IS routing table:

 aviva@RouterG> show isis route
 IS-IS routing table Current version: L1: 85 L2: 85
 IPv4/IPv6 Routes

 Prefix L Version Metric Type Interface Via
 10.0.24.0/24 2 85 20 int fe-0/0/1.0 RouterH

Discussion

IS-IS uses the information in its link-state database to calculate the best route to a destination and
places these routes in its routing table. The show isis route command displays what's in the IS-IS
routing table. In this recipe, the output shows that IS-IS has learned one route, to network
10.0.24.0/24, the interface to which RouterH is connected. This is an internal route accessible over
interface fe-0/0/1, and the next hop is RouterH (shown in the Via column). The Metric column
shows the cost of the route.

You can find out which routes the router has learned from IS-IS by looking in the unicast routing
table:

 aviva@RouterG> show route
 inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.0/24 *[Direct/0] 3d 19:05:01
 > via fe-1/0/1.0
 10.0.0.1/32 *[Local/0] 3d 19:05:01
 Local via fe-1/0/1.0
 10.0.1.0/24 *[Direct/0] 3d 19:05:01

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > via fe-0/0/1.0
 10.0.1.2/32 *[Local/0] 3d 19:05:01
 Local via fe-0/0/1.0
 10.0.16.0/24 *[Direct/0] 3d 18:41:06
 > via fe-1/0/0.0
 10.0.16.2/32 *[Local/0] 3d 18:41:06
 Local via fe-1/0/0.0
 10.0.24.0/24 *[
IS-IS/18] 22:53:36, metric 20
 > to 10.0.1.1 via fe-0/0/1.0
 172.19.121.0/24 *[Direct/0] 3d 19:05:01
 > via fe-0/0/0.0
 172.19.121.119/32 *[Local/0] 3d 19:05:01
 Local via fe-0/0/0.0
 192.168.18.1/32 *[
IS-IS/18] 22:53:36, metric 10
 > to 10.0.1.1 via fe-0/0/1.0
 192.168.19.1/32 *[Direct/0] 3d 19:05:01
 > via lo0.0

 __juniper_private1__.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0
 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.1/32 *[Direct/0] 3d 19:05:01
 > via lo0.16385
 10.0.0.16/32 *[Direct/0] 3d 19:05:01
 > via lo0.16385
 iso.0: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 49.0020.1921.6801.9001/72
 *[Direct/0] 1d 20:46:39
 > via lo0.0

This output shows the contents of three routing tables. The first is inet.0, which is the unicast
routing table. The second, __juniper_private1__inet.0, is a table of private routes within the router
itself. The third is the ISO routing table, iso.0.

In the inet.0 table, the route entries starting with [IS-IS/18] are learned from IS-IS. The router
has learned one route from IS-IS, to network 10.0.24.0, which we also saw in the IS-IS routing
table. The value of 18 in the brackets is the JUNOS default value for the external IS-IS administrative
distance, also called the preference, which is used to select which route is installed in the forwarding
table when several protocols calculate routes to the same destination. You can change the preference
value by configuring the preference statement for the IS-IS level. The numbers following the
brackets indicate how long the routing table has known about the route. The metric value is the cost
to this address. The default IS-IS metric is 10. For example, in the route to 10.0.24.0, the metric is
20 because that network is two hops away.

The inet.0 table also contains a route to 192.168.19.1/32, which is this router's loopback address.
This route appears in the routing table because you configured IS-IS on the router's loopback
interface, lo0.0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ISO address family creates a separate routing table, iso.0, which is for the ISO routes to the
NET destinations. Here, this table contains one route, to the Level 2 neighbor, which is the only NET
destination in the network.

You can also see just the routes learned by IS-IS:

 aviva@RouterG> show route protocol isis
 inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.24.0/24 *[IS-IS/18] 22:58:48, metric 20
 > to 10.0.1.1 via fe-0/0/1.0
 192.168.18.1/32 *[IS-IS/18] 22:58:48, metric 10
 > to 10.0.1.1 via fe-0/0/1.0

See Also

Recipe 9.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.4. Configuring IS-IS for IPv6

Problem

You want to use IS-IS on an IPv6 network.

Solution

The IS-IS configuration for an IPv6 network is the same as for IPv4. Configure the interfaces, enable
ISO on the IS-IS interfaces, and configure a NET on lo0:

 [edit protocols isis]
 aviva@RouterG# set interface fe-0/0/1
 aviva@RouterG# set interface fe-1/0/1
 aviva@RouterG# set interface lo0.0

 [edit interfaces]
 aviva@RouterG# set fe-0/0/1 unit 0 family iso
 aviva@RouterG# set fe-1/0/1 unit 0 family iso
 aviva@RouterG# set lo0 unit 0 family iso address 49.0020.1921.6801.9001.00

Discussion

Because IS-IS runs directly on the data-link layer (Layer 2), from an IS-IS point of view, there is
nothing different or special about configuring it for an IPv6 environment. The only thing you do
differently is set IPv6 addresses on the physical interfaces instead of IPv4 addresses. This recipe
configures a router that connects to two other Level 1Level 2 IS-IS routers.

Again, use the show isis interface command to see the configured IS-IS interfaces:

 aviva@RouterG> show isis interface
 IS-IS interface database:
 Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric
 fe-0/0/1.0 3 0x2 RouterG.02 RouterG.02 10/10
 fe-1/0/1.0 3 0x3 RouterJ.03 RouterJ.03 10/10
 lo0.0 0 0x1 Passive Passive 0/0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When looking at the adjacencies, you can see the IPv6 addresses configured on the router:

 aviva@RouterG> show isis adjacency detail
 RouterH
 Interface: fe-0/0/1.0, Level: 2, State: Up, Expires in 19 secs
 Priority: 64, Up/Down transitions: 1, Last transition: 00:18:55 ago
 Circuit type: 3, Speaks: IP, IPv6, CLNS, MAC address: 0:5:85:c1:d1:d1
 Topologies: Unicast
 Restart capable: Yes
 LAN id: Incredible-Hulk.02, IP addresses: 192.168.18.1
 IPv6 addresses: fe80::205:85ff:fec1:d1d1
 …

The IS-IS database output is also unchanged. If you look at the detail version of the output, you
now see the IPv6 address prefixes:

 aviva@RouterG> show isis database level 2 detail
 IS-IS level 2 link-state database:

 RotuerJ.00-00 Sequence: 0x5, Checksum: 0x9645, Lifetime: 647 secs
 IS neighbor: RouterJ.02 Metric: 10
 IS neighbor: RouterJ.03 Metric: 10
 V6 prefix: 9009:1::/64 Metric: 10 Internal Up
 V6 prefix: 9009:2::/64 Metric: 20 Internal Up
 V6 prefix: 9009:3::/64 Metric: 10 Internal Up
 …

See Also

Recipes 7.6 and 11.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.5. Configuring a Level 1Only Router

Problem

You want to set up the Level 1only routers.

Solution

For routers that participate only in a Level 1 area, disable Level 2 on the router:

 [edit protocols isis]
 aviva@RouterA# set level 2 disable
 aviva@RouterA# set interface fe-0/0/0.0
 aviva@RouterA# set interface lo0.0

Discussion

To configure routers that are only in a Level 1 area, just disable Level 2 routing for all of IS-IS, not
for a specific interface. The configuration looks like this:

 [edit protocols]
 aviva@RouterA# show
 isis {
 level 2 disable;
 interface fe-0/0/0.0;
 interface lo0.0;
 }

These routers have only a Level 1 link-state database:

 aviva@RouterA>
show isis database

IS-IS level 1 link-state database:
 LSP ID Sequence Checksum Lifetime Attributes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RouterG.00-00 0x198 0x3ea3 2389 L1 L2 Attached
 RouterA.00-00 0x1ad 0xee5f 1190 L1
 RouterA.02-00 0x1a6 0x4efc 1190 L1
 3 LSPs
 IS-IS level 2 link-state database:
 0 LSPs

The Level 1 link-state database has three LSPs, while the Level 2 database is empty.

Level 1 IS-IS routers know only about paths to routers within their level. For routes outside the level,
they install a default route that points to the closest Level 1Level 2 router. To confirm that the router
knows about other levels, first check the link-state database for an LSP that has the Attached (ATT)
bit set. The show isis database output above shows that RouterG is connected to another level:

 LSP ID Sequence Checksum Lifetime Attributes
 RouterG.00-00 0x198 0x3ea3 2389 L1 L2 Attached

Then check that the default route is installed:

 aviva@RouterA>
show isis route

IS-IS routing table Current version: L1: 328 L2: 322
 IPv4/IPv6 Routes

 Prefix L Version Metric Type Interface Via
 0.0.0.0/0 1 328 10 int fe-0/0/0.0 RouterG
 10.0.0.0/24 1 328 20 int fe-0/0/0.0 RouterG
 10.0.1.0/24 1 328 20 int fe-0/0/0.0 RouterG
 192.168.12.1/32 1 328 10 int fe-0/0/0.0 RouterG
 192.168.19.1/32 1 328 10 int fe-0/0/0.0 RouterG

You see from this output that all the routes are Level 1 routes and the default route 0.0.0.0/0 is
directed to RouterG, which is the nearest Level 1Level 2 router. (In this example, it also happens to
be the only Level 1Level 2 router in area 20.)

Also check that the default route is installed in the main routing table, inet.0:

 aviva@RouterA> show route table inet.0
 inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[
IS-IS/15] 00:30:06, metric 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > to 10.0.16.2 via fe-0/0/0.0
 10.0.0.0/24 *[IS-IS/15] 00:30:06, metric 20
 > to 10.0.16.2 via fe-0/0/0.0
 10.0.1.0/24 *[IS-IS/15] 00:30:06, metric 20
 > to 10.0.16.2 via fe-0/0/0.0
 10.0.16.0/24 *[Direct/0] 2d 20:28:21
 > via fe-0/0/0.0
 10.0.16.1/32 *[Local/0] 4d 18:42:46
 Local via fe-0/0/0.0
 10.0.21.0/24 *[Direct/0] 4d 20:24:04
 > via se-0/0/3.0
 10.0.21.1/32 *[Local/0] 4d 20:24:09
 Local via se-0/0/3.0
 192.168.12.1/32 *[IS-IS/160] 00:30:06, metric 10
 > to 10.0.16.2 via fe-0/0/0.0
 192.168.19.1/32 *[IS-IS/15] 00:30:06, metric 10
 > to 10.0.16.2 via fe-0/0/0.0
 192.168.42.1/32 *[Direct/0] 2d 20:53:53
 > via lo0.0

The output above shows that the static route via interface fe-0/0/0 goes to RouterG (10.0.16.2) and
was learned from IS-IS. The default route is advertised as an internal Layer 1 route and has a default
routing preference value of 15 rather than 18, which is the default for external Layer 2 routes.
Because the JUNOS software chooses routes with the lowest preference, it will select an IS-IS
internal route over an external one.

In both the show isis route and show route command outputs, the only routes included are those
with the area. There is no information about links outside the area.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.6. Controlling DIS Election

Problem

You want to force IS-IS to use a specific router as the designated router.

Solution

Increase the priority on the desired router:

 [edit protocols isis]
 aviva@RouterH# set interface fe-0/0/1 level 2 priority 65

Discussion

With the IS-IS configuration we have shown in previous recipes, all IS-IS routers have the default
priority value (64), which IS-IS uses to elect the DR in each area. In this situation, the router with
the higher MAC address is elected as the DR.

In the previous recipes, RouterG is elected DR because it has a higher MAC address
(0:5:85:c2:2e:d1, compared to 0:5:85:c1:d1:d1 for RouterH):

 aviva@RouterG> show isis adjacency
 Interface System L State Hold (secs) SNPA
 fe-0/0/1.0 RouterH 2 Up 7 0:5:85:c1:d1:d1
 fe-1/0/0.0 Captain-Caveman1 Up 7 0:5:85:ca:ca:70

 aviva@RouterH> show isis adjacency
 Interface System L State Hold (secs) SNPA
 fe-0/0/1.0 RouterG 2 Up 20 0:5:85:c2:2e:d1
 fe-1/0/1.0 RouterA 1 Up 7 0:5:85:ca:e7:d0

Looking at the IS-IS interfaces, you see the default priority value of 64 for all interfaces at both Level
1 and Level 2 and that RouterG is the DR for the Level 2 area:

 aviva@RouterG>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

show isis interface detail
 IS-IS interface database:
 fe-0/0/1.0
 Index: 64, State: 0x6, Circuit id: 0x2, Circuit type: 3
 LSP interval: 100 ms, CSNP interval: 10 s
 Level Adjacencies Priority Metric Hello (s) Hold (s) Designated Router
 1 0 64 10 9.000 27
 2 1 64 10 3.000 9 RouterG.02 (us)
 fe-1/0/0.0
 Index: 68, State: 0x6, Circuit id: 0x3, Circuit type: 1
 LSP interval: 100 ms, CSNP interval: 10 s
 Level Adjacencies Priority Metric Hello (s) Hold (s) Designated Router
 1 1 64 10 9.000 27 RouterA.02
 (not us)
 lo0.0
 Index: 70, State: 0x6, Circuit id: 0x1, Circuit type: 0
 LSP interval: 100 ms, CSNP interval: disabled

 Level Adjacencies Priority Metric Hello (s) Hold (s) Designated Router
 1 0 64 0 Passive
 2 0 64 0 Passive

Unlike OSPF, which has a " sticky" DR, in IS-IS, if a new router with a higher priority than the
existing DR becomes active, or if the new router has an equal priority and a higher MAC address, it
becomes the new DR. In this recipe, for RouterH to become the DR, its priority needs to be greater
than 64. After changing the value, you see that RouterH has become the Level 2 DR:

 aviva@RouterG> show isis interface

IS-IS interface database:
 Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric
 fe-0/0/1.0 3 0x2 RouterG.02 RouterH.02 10/10
 fe-1/0/0.0 1 0x3 RouterA.02
Disabled 10/10
 lo0.0 0 0x1 Passive Passive 0/0

Looking at RouterH, you see it has a DR priority of 65:

 aviva@RouterH> show isis interface fe-0/0/1 detail

IS-IS interface database:
 fe-0/0/1.0
 Index: 67, State: 0x6, Circuit id: 0x2, Circuit type: 3
 LSP interval: 100 ms, CSNP interval: 10 s
 Level Adjacencies Priority Metric Hello (s) Hold (s) Designated Router
 1 0 64 10 9.000 27

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 2 1 65 10 3.000 9 RouterH.02 (us)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.7. Enabling IS-IS Authentication

Problem

You want to ensure that all IS-IS protocol traffic that your router accepts comes from devices known
to you so that only trusted routers participate in determining the contents of the IS-IS routing
database.

Solution

Configure MD5 authentication for IS-IS:

 [edit protocols isis]
 aviva@RouterG# set level 2 authentication-type md5
 aviva@RouterG# set level 2 authentication-key $1991poPPi

Discussion

It is a good security measure to authenticate IS-IS protocol packet exchanges to ensure that only
trusted routers participate in the IS-IS network and in the exchange of LSA packets.

This recipe shows how to configure IS-IS to use MD5 authentication for the Level 2 area. First you
configure MD5 authentication for the entire area, then you set the key, or password, for each
interface. MD5 creates an encoded checksum that is included in all transmitted IS-IS packets. The
receiving router verifies this checksum before accepting the packet. By default, the JUNOS
implementation of IS-IS authenticates all PDU types, including link-state PDUs (LSPs), IIH PDUs, and
complete and partial sequence number PDUs (CSNPs and PSNPs). This is why the software has only
one command for establishing authentication.

To configure authentication for all Level 1 areas that the router participates in, use the following
commands:

 [edit protocols isis]
 aviva@RouterG# set level 1
authentication-type md5
 aviva@RouterG# set level 1
authentication-key $SuMPasswRD

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You cannot configure authentication for IS-IS Level 2 and Level 1 areas globally with a single
command. You must configure the two authentications separately.

When you display the router's configuration after you have typed the password, you do not see the
password itself but the encrypted form of the password. This safeguard means that someone casually
glancing through the configuration does not see the actual password.

You can also configure a simple password for IS-IS authentication, which includes a plain-text
password in the transmitted IS-IS packets. Plain-text passwords are easy to break by devices that
sniff network traffic, so you should never use them when your goal is network security.

For authentication to work across the entire IS-IS domain, you need to configure MD5 authentication
and the same password on all IS-IS interfaces in the same way as shown in this recipe. Once you
have the encrypted version of the password, you can use it in the authentication-key statement
instead of the password itself. This is one way to minimize the number of people who see the actual
password.

 aviva@RouterG# set interface fe-1/0/1 authentication-key
 "9dEbgoZUjqP5GUApO1hcgoaJHq"

When you are looking at the configuration contents, pipe the output to hide the passwords:

 [edit protocols isis]
 aviva@RouterG# show | except SECRET-DATA
 level 2 {
 }
 interface fe-0/0/1.0;
 interface fe-1/0/0.0 {
 level 2 disable;
 }
 interface lo0.0 {
 passive;
 }

If the same authentication type and password are not configured across the area, IS-IS cannot
establish adjacencies and you will see errors. Here, Level 2 authentication is configured on RouterH
but not on RouterG:

 aviva@RouterH> show isis adjacency extensive
 RouterG
 Interface: fe-0/0/1.0, Level: 2, State: Down, Expires in 0 secs
 Priority: 64, Up/Down transitions: 2, Last transition: 00:00:37 ago
 Circuit type: 3, Speaks: IP, IPv6, MAC address: 0:5:85:c2:2e:d1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Topologies: Unicast
 Restart capable: Yes
 LAN id: RouterH.02, IP addresses: 10.0.1.2
 Transition log:
 When State Event Down reason
 Tue Jun 21 19:51:33 Up Seenself
 Tue Jun 21 23:51:01 Down Error Bad Hello
 RouterA
 Interface: fe-1/0/1.0, Level: 1, State: Up, Expires in 7 secs
 Priority: 64, Up/Down transitions: 1, Last transition: 21:37:54 ago
 Circuit type: 1, Speaks: IP, IPv6, MAC address: 0:5:85:ca:e7:d0
 Topologies: Unicast
 Restart capable: Yes
 LAN id: RouterA.02, IP addresses: 10.0.24.2
 Transition log:
 When State Event Down reason
 Tue Jun 21 02:13:44 Up Seenself

For tighter security, you can also define separate authentication passwords for the IS-IS Hello packet
exchanges on interfaces. The following commands set the hello password on interface fe-0/0/1:

 [edit protocols isis interface fe-0/0/1.0]
 aviva@RouterG# set level 2 hello-authentication-type
md5
 aviva@RouterG# set level 2 hello-authentication-key $NutherPaSSwd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.8. Redistributing Static Routes into IS-IS

Problem

You have a single, low-speed link to a small customer and instead, of having the customer run IS-IS
(or even RIP), you want to set up a static route to the customer.

Solution

Create a routing policy to redistribute static routes into IS-IS:

 [edit policy-options]
 aviva@RouterG# set policy-statement export-statics term 1 from protocol static
 aviva@RouterG# set policy-statement export-statics term 1 then accept
 aviva@RouterG# show
 policy-statement export-statics {
 term 1 {

 from protocol static;
 then accept;
 }
 }

Then apply the policy to IS-IS:

 [edit protocols isis]
 aviva@RouterG# set export export-statics

Discussion

Routing policy is normally applied to BGP to filter the entries in the routing table rather than to IS-IS
or another IGP. This is because the main purpose of an IGP is to determine the best route to a
destination. However, occasionally you need to use routing policies with an IGP, generally to
redistribute routes into that IGP from another protocol. For example, this might be done for a small
customer who doesn't need to run a dynamic routing protocol, such as IS-IS, but just connect to you
using a static route. You create a routing policy to redistribute these customer's routes into your IS-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IS network. This recipe creates a simple routing policy to do this, accepting all static routes. For the
policy to take effect, you must apply it to IS-IS.

RouterG has one configured static route:

 aviva@RouterG> show route protocol static table inet.0
 inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.12.1/32 *[Static/5] 00:10:41
 > to 10.0.16.1 via fe-1/0/0.0

When the static route is redistributed into IS-IS, it is incorporated into the IS-IS link-state database
and is marked as being an external prefix:

 aviva@RouterG> show isis database extensive
 IS-IS level 1 link-state database:
 RouterG.00-00 Sequence: 0xe5, Checksum: 0x912c, Lifetime: 492 secs
 IP prefix: 10.0.1.0/24 Metric: 10 Internal Up
 IP prefix: 10.0.16.0/24 Metric: 10 Internal Up
 IP prefix: 192.168.12.1/32 Metric: 0 External Up
 IP prefix: 192.168.19.1/32 Metric: 0 Internal Up
 Header: LSP ID: RouterG.00-00, Length: 175 bytes
 Allocated length: 1492 bytes, Router ID: 192.168.19.1
 Remaining lifetime: 492 secs, Level: 1,Interface: 0
 Estimated free bytes: 1317, Actual free bytes: 1317
 Aging timer expires in: 492 secs
 Protocols: IP, IPv6
 Packet: LSP ID: RouterG.00-00, Length: 175 bytes, Lifetime : 1200 secs
 Checksum: 0x912c, Sequence: 0xe5, Attributes: 0xb <L1 L2 Attached>
 NLPID: 0x83, Fixed length: 27 bytes, Version: 1, Sysid length: 0 bytes
 Packet type: 18, Packet version: 1, Max area: 0
 TLVs:
 Area address: 49.0020 (3)
 Speaks: IP
 Speaks: IPv6

 IP router id: 192.168.19.1
 IP address: 192.168.19.1
 Hostname: RouterG
 IP prefix: 10.0.1.0/24, Internal, Metric: default 10, Up
 IP prefix: 10.0.16.0/24, Internal, Metric: default 10, Up
 IP prefix: 192.168.19.1/32, Internal, Metric: default 0, Up
 IP extended prefix: 10.0.1.0/24 metric 10 up
 IP extended prefix: 10.0.16.0/24 metric 10 up
 IP extended prefix: 192.168.19.1/32 metric 0 up
 IP external prefix: 192.168.12.1/32, Internal, Metric: default 0, Up
 IP extended prefix: 192.168.12.1/32 metric 0 up
 Authentication data: 17 bytes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 No queued transmissions
 …

The show isis database extensive command output shows that the metric for the static route
redistributed into IS-IS is 0. To lower the preference for the route, change the metric in the routing
policy to increase the cost. Here, we increase the metric to 500:

 [edit policy-options]
 aviva@RouterG# set policy-statement export-statics term 1 then metric 500

The policy now looks like this:

 aviva@RouterG# show
 policy-statement export-statics {
 term 1 {
 from protocol static;
 then {
 metric 500;
 accept;
 }
 }
 }

Looking in the IS-IS link-state database shows that the metric value has changed from 0:

 aviva@RouterG> show isis database extensive
 IS-IS level 1 link-state database:
 RouterG.00-00 Sequence: 0xe5, Checksum: 0x912c, Lifetime: 492 secs
 IP prefix: 10.0.1.0/24 Metric: 10 Internal Up
 IP prefix: 10.0.16.0/24 Metric: 10 Internal Up
 IP prefix: 192.168.12.1/32 Metric: 63 External Up
 IP prefix: 192.168.19.1/32 Metric: 0 Internal Up

It's true that the metric has changed, but instead of being 500, it's 63. Looking in the routing table
on the neighboring router shows that it has learned the static route:

 aviva@RouterA> show route
 inet.0: 6 destinations, 7 routes (6 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.12.1/32 *[IS-IS/160] 00:14:56, metric 73

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > via se-0/0/3.0

Again, we expect the metric to change from the default of 10 to 500, but it's showing a metric of 73.
Why isn't the metric value changing to 500? The reason is because IS-IS uses two kinds of metrics,
narrow and wide. By default, the JUNOS software uses the IS-IS narrow metrics, which are defined in
the original IS-IS standards documents as 8-bit values. With narrow metrics, the router can't
advertise a metric greater than 63. If it receives a metric value greater than 63, IS-IS clips it to 63.
This is why the link-state database shows a metric of 63 and the neighbor's routing table shows a
metric of 73 (the default metric of 10 plus 63). To resolve this problem, configure IS-IS to use wide
metrics:

 [edit protocols isis]
 aviva@RouterG# set level 1 wide-metrics-only

Wide metrics, defined in RFC 3784, can be values greater than 63. Looking again at the link-state
database shows that IS-IS is now advertising the metric value of 500:

 aviva@RouterG> show isis database extensive
 IS-IS level 1 link-state database:
 RouterG.00-00 Sequence: 0xe5, Checksum: 0x912c, Lifetime: 492 secs
 IP prefix: 10.0.1.0/24 Metric: 10 Internal Up
 IP prefix: 10.0.16.0/24 Metric: 10 Internal Up
 IP prefix: 192.168.12.1/32 Metric: 500 External Up
 IP prefix: 192.168.19.1/32 Metric: 0 Internal Up
 TLVs:
 …
 IP external prefix: 192.168.12.1/32, Internal, Metric: 500, Up

The neighbor's routing table also reflects the change:

 aviva@RouterA> show route
 inet.0: 6 destinations, 7
routes (6 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.12.1/32 *[IS-IS/160] 00:14:56, metric 500
 > via se-0/0/3.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.9. Leaking IS-IS Level 2 Routes into Level 1

Problem

Your IS-IS network has several areas, some which have multiple exit points to your core area, and
you want to increase the routing efficiency of your Level 1 routers.

Solution

On the Level 1Level 2 router, create a policy to leak a specific Level 2 route into the Level 1 link-state
database:

 [edit policy-options policy-statement level2-

leaking term 1]
 aviva@RouterJ# set from protocol isis
 aviva@RouterJ# set from level 2
 aviva@RouterJ# set from route-filter 10.0.21.0/24 prefix-length-range /32-/32

 aviva@RouterJ# set to protocol isis
 aviva@RouterJ# set to
level 1
 aviva@RouterJ# set then accept
 aviva@RouterJ# show
 term 1 {
 from {
 protocol isis;

level 2;
 route-filter 10.0.21.0/24 prefix-length-range /32-/32;
 }
 to {
 protocol isis;
 level 1;
 }
 then accept;
 }

Then apply the policy to IS-IS:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit protocols isis]
 aviva@RouterJ# set export level2-
leaking

Discussion

Unlike OSPF, which combines all routes from all areas into a single link-state database, IS-IS keeps
separate databases for its Level 2 and Level 1 routes. Because a Level 1 router knows only about the
routers in its area, it routes traffic that is destined for another area to the nearest Level 1Level 2
router, and that router then forwards the traffic to the external area. Under most circumstances, this
is what you want to happen because it minimizes the number of routes on which the SPF calculation
needs to be performed. In some situations, however, this behavior results in traffic going through
more links than necessary as it travels from a Level 1 router to its destination. Figure 11-2 shows
such a case. To reduce the number of links, you can inject, or leak, an external route from the Level
2 link-state database into an area's Level 1 database.

In this network, traffic sent from the Level 1 RouterH to RouterE, which is in an external network,
goes through RouterF because it is the closest Level 1Level 2 router. You can see this in the RouterH
routing table:

 aviva@RouterH> show route 10.0.21.2
 inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[IS-IS/15] 00:31:53, metric 10
 > to 10.0.8.1 via fe-0/0/1.0

RouterF then routes the traffic through all three routers in Area 1, taking a total of seven hops for the
packet to travel from RouterH to RouterE. If you could route the traffic from RouterH to RouterG,
which is the other Level 1Level 2 router in Area 2, the path would be only four hops.

Figure 11-2. IS-IS topology for leaking routes from Level 2 to Level 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You do this is by creating a routing policy on RouterG that leaks the route to the external network
10.0.21.0/24 into the Level 1 routers in Area 2. The policy in this recipe contains a route filter that
matches all /32 addresses in this external network and redistributes all IS-IS Level 2 routes from the
network into IS-IS Level 1. Matching the /32 addresses captures all the addresses you are interested
in, which are the loopback addresses. After you apply the policy on the Level 1Level 2 router, you see
on RouterH, the Level 1 router, that the route to 10.0.21.0/24 has leaked into its routing table:

 aviva@RouterH> show route 10.0.21.2
 inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.21.0/24 *[IS-IS/18] 00:00:09, metric 40
 > to 10.0.8.1 via fe-0/0/1.0

Instead of having a cost of 15, which is the default cost of an intra-area IS-IS route, the route has a
cost of 18, which is the default for an interarea IS-IS route.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.10. Adjusting IS-IS Link Costs

Problem

You want to direct traffic within an IS-IS area toward a particular router.

Solution

Increase the cost on one of the IS-IS interfaces to force traffic to use a lower-cost interface:

 [edit protocols isis]
 aviva@RouterG# set interface fe-0/0/1.0 level 2 metric 30

Discussion

By default, each IS-IS physical interface has a cost, or metric, of 10. (The lo0 interface has a default
metric of 0.) Adding a third IS-IS router to our network (see Figure 11-3), we want to force RouterG
to send traffic destined for RouterD (interface address of 10.0.24.2) tHRough RouterJ instead of
RouterH.

Figure 11-3. OSFP network topology with three areas

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With the default metric values, the cost through RouterH is 20 (a cost of 10 for each interface
transited) while the cost through RouterJ is 30 (a cost of 10 for each of the three interfaces), so the
router chooses the path through RouterH:

 aviva@RouterG> show route 10.0.24.2
 inet.0: 14 destinations, 14 routes (14 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.24.0/24 *[IS-IS/18] 00:04:10, metric 20
 > to 10.0.1.1 via fe-0/0/1.0

Use the TRaceroute command to confirm the path taken:

 aviva@RouterG> traceroute 10.0.24.2
 traceroute to 10.0.24.2 (10.0.24.2), 30 hops max, 40 byte packets
 1 10.0.1.1 (10.0.1.1) 10.977 ms 9.131 ms 29.827 ms
 2 10.0.24.2 (10.0.24.2) 9.763 ms 9.670 ms 29.863 ms

Increasing the IS-IS cost of RouterG's fe-0/0/1 interface to 30 reroutes the traffic through RouterJ.
Here, we see that the cost to 10.0.24.0/24 has increased from 20 to 30:

 aviva@RouterG> show route 10.0.24.2
 inet.0: 14 destinations, 14 routes (14 active, 0 holddown, 0 hidden)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 + = Active Route, - = Last Active, * = Both
 10.0.24.0/24 *[
IS-IS/18] 00:00:06, metric 30
 > to 10.0.0.2 via fe-1/0/1.0

This increase occurs because traffic is now going via RouterJ, across three interfaces that each have
a metric of 10:

 aviva@RouterG> traceroute 10.0.24.2
 traceroute to 10.0.24.2 (10.0.24.2), 30 hops max, 40 byte packets
 1 10.0.0.2 (10.0.0.2) 11.747 ms 8.741 ms 10.099 ms
 2 10.0.2.1 (10.0.2.1) 9.783 ms 19.964 ms 19.541 ms
 3 10.0.24.2 (10.0.24.2) 20.068 ms 19.382 ms 20.051 ms

If the IS-IS interfaces are running at significantly different speeds, each interface still has the same
default metric of 10. When there are equal-cost paths to the same destination, instead of traffic being
routed across the fastest interface, the default behavior is to equally distribute traffic across the
different interfaces in a round-robin fashion. To have IS-IS calculate interface metrics that accurately
reflect the actual interface speeds, you need to configure a reference bandwidth value. Instead of
using the default metric, IS-IS uses the following formula to calculate the metric on each interface:

For IS-IS, the default reference bandwidth value is 10 Mbps, which is the speed of a regular Ethernet
interface. To illustrate how the reference bandwidth affects the metric, consider a router that has
Fast Ethernet and Gigabit Ethernet interfaces running IS-IS. For IS-IS to choose the best path, you
can set the reference bandwidth to 1 Gbps:

 [edit protocols isis]
 aviva@RouterJ# set reference-bandwidth 1g

With this configuration, IS-IS assigns the Fast Ethernet interface a metric of 10 and the Gigabit
Ethernet interface a metric of 1. Because the Gigabit Ethernet interface has the lowest metric, IS-IS
selects it when routing traffic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.11. Improving IS-IS Convergence Times

Problem

You want to speed convergence of IS-IS routes in case a path fails with no hardware indication,
which might happen on an Ethernet network.

Solution

Have IS-IS perform the SPF calculation more often:

 [edit protocols isis]
 aviva@RouterG# set spf-delay 100

Discussion

One of the most important factors that affects the convergence of IS-IS routes is how often the
software performs the SPF calculation. By default, IS-IS performs the SPF calculation 200
milliseconds after a topology change is detected. The command in this recipe halves the time to 100
milliseconds:

 [edit protocols isis]
 aviva@RouterG# set spf-delay 100

Another way to improve link failure detection times is to use the Bidirectional Forwarding Protocol (
BFD), which provides a mechanism to detect communication failures with a forwarding-plane next
hop. BFD is a simple hello protocol. A pair of systems exchange BFD packets periodically, and if a
system stops receiving the packets for long enough, some component in that particular bidirectional
path to the neighboring system is assumed to have failed. If you want to shorten the IS-IS link
failure detection time to about 1 second, set the BFD packet exchange interval to 333 milliseconds:

 [edit protocols isis]
 aviva@RouterG# set interface fe-0/0/1 bfd-liveness-detection minimum-interval 333

http://lib.ommolketab.ir
http://lib.ommolketab.ir

By default, BFD multiplies the packet-exchange interval by three to determine the link detection
failure time. Configuring an interval of 333 milliseconds results in a failure time of just under 1
second.

You also need to configure BFD using the same command on the interface at the other end of the
link. Use the show bfd session command to see BFD information:

 aviva@RouterG> show bfd session detail
 Address State Interface Detect Time Interval Multiplier
 10.0.1.1 Up fe-0/0/1.0 0.999 0.333 3
 Client ISIS L2, TX interval 0.300, RX interval 0.300, multiplier 3
 Session up time 00:00:37
 Local diagnostic None, remote diagnostic None
 Remote heard, hears us
 1 sessions, 1 clients
 Cumulative transmit rate 3.0 pps, cumulative receive rate 3.0 pps

If the link goes down, the BFD session fails and you no longer see the link:

 aviva@RouterG> show bfd session detail
 Transmit
 Address State Interface Detect Time Interval Multiplier
 0 sessions, 0 clients
 Cumulative transmit rate 0.0 pps, cumulative receive rate 0.0 pps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.12. Moving IS-IS Traffic off a Router

Problem

You are getting ready to perform router maintenance and you want to move all IS-IS traffic off the
router.

Solution

Configure the router so that it appears to be overloaded with IS-IS traffic:

 [edit protocols isis]
 aviva@RouterG#
set overload

Discussion

As you are preparing to perform maintenance on a router in a production network, you want to move
traffic off that router so that network services are not interrupted during your maintenance window.
The set overload command tricks the router into believing that it is overloaded and can't handle any
more IS-IS transit traffic, and the result is that IS-IS transit traffic is sent to other routers. IS-IS
traffic destined to interfaces directly attached to the local router continues to reach the router.

To check that the IS-IS traffic has moved off the router, use show interfaces commands to verify
that traffic has moved off the upstream interfaces. The detail and extensive versions of this
command report traffic statistics for most interface types. If the router is part of an LSP, use the show
mpls lsp transit command to verify that transit LSPs have moved off the router.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.13. Disabling IS-IS on an Interface

Problem

You want to temporarily turn off IS-IS on an interface.

Solution

Disable IS-IS on the interface:

 [edit protocols isis]
 aviva@RouterG# set interface fe-1/0/1 disable

To start IS-IS again, remove the disable statement from the configuration:

 [edit protocols isis]
 aviva@RouterG# delete disable
 aviva@RouterG# commit

Discussion

To remove an interface from the IS-IS network, you can disable it. Because you are only removing
the interface temporarily, you don't want to remove the configuration statements entirely. You see
that the interface is down:

 aviva@RouterG> show isis interface

IS-IS interface database:
 Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric
 fe-0/0/1.0 3 0x2 RouterG.02 RouterG.02 10/10
 fe-1/0/0.0 1 0x3 RouterA.02 Disabled 10/10
 fe-1/0/1.0 3 0x1 Disabled Disabled 10/10
 lo0.0 0 0x1 Passive Passive 0/0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Also, the adjacency to the neighbor is down:

 aviva@RouterG> show isis adjacency
 Interface System L State Hold (secs) SNPA
 fe-0/0/1.0 RouterH 2 Up 26 0:5:85:c1:d1:d1
 fe-1/0/0.0 RouterA 1 Up 6 0:5:85:ca:ca:70
 fe-1/0/1.0 RouterJ 2 Down 0 0:5:85:c4:72:f5

Another way to disable IS-IS on an interface is with the deactivate command:

 [edit protocols isis]
 aviva@RouterG# deactivate interface fe-1/0/1.0
 aviva@RouterG# commit
 aviva@RouterG# show
 interface fe-0/0/1.0;
 interface fe-1/0/0.0 {
 level 2 disable;
 }
 inactive: interface fe-1/0/1.0;
 interface lo0.0;
 }

To start IS-IS again on the interface, reactivate it:

 [edit protocols isis]
 aviva@RouterG# > activate interface fe-1/0/1
 aviva@RouterG# commit

You can also temporarily disable OSPF on the router:

 [edit protocols isis]
 aviva@RouterG# set disable
 aviva@RouterG# commit and-quit
 aviva@RouterG> show isis interface
 IS-IS instance is not running

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 11.14. Tracing IS-IS Protocol Traffic

Problem

You are setting up IS-IS on your network and want to keep a running log of IS-IS protocol packets
that the router is sending to help you track any problems that might occur during the configuration
process.

Solution

Set up a tracing file that captures information about IS-IS protocol operations:

 [edit protocols isis]
 aviva@RouterJ# set traceoptions file isis-logs
 aviva@RouterJ# set traceoptions flag error
 aviva@RouterJ# set traceoptions flag general
 aviva@RouterJ# set traceoptions flag normal

To stop the tracing, remove the traceoptions statement from the configuration:

 [edit protocols isis]
 aviva@RouterJ# delete traceoptions

Discussion

To debug IS-IS operations, use the JUNOS tracing facility to track the packets that IS-IS is sending
and receiving. You specify the name of the file to which you want to collect the information and the
type of information you want to trace. In this example, we set three flags to track normal operations
and errors in the file isis-logs , which is on the router's hard disk in the directory /var/log (on M-series
and T-series routers) and /cf/var/log (on J-series routers).

When you are first bringing up an IS-IS network, you may find that an adjacency is not establishing
between two Level 1 routers:

 aviva@RouterJ> show isis adjacency
 Interface System L State Hold (secs) SNPA
 fe-0/0/1.0 RouterF 1 Down 0 0:5:85:c1:86:31
 fe-1/0/0.0 RouterH 2 Up 22 0:5:85:c1:d1:f4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fe-1/0/1.0 RouterG 2 Up 24 0:5:85:c2:2e:f5

The logfile shows where the problem is:

 aviva@RouterJ> show log isis-logs | last
 Jun 25 12:47:15 ERROR: IIH from RouterG with no matching areas, interface fe-1/0/1.0
 Jun 25 12:47:15 local area 49.0050
 Jun 25 12:47:15 remote area 49.0020 (3 bytes)
 Jun 25 12:47:15 ERROR: IIH from RouterF with no matching areas, interface fe-0/0/1.0
 Jun 25 12:47:15 local area 49.0050
 Jun 25 12:47:15 remote area 49.0051 (3 bytes)

The second error shows that the adjacency to the Level 1 router RouterF is down because RouterJ is
in Area 50, while RouterF has been accidentally misconfigured to be in Area 51. You might wonder
why we are not concerned with the first error in the file, which also reports an area mismatch. We
don't care about this because RouterG is another Level 2 router and is in a different area (Area 20),
so it's fine for it to have a different area number.

Over time, the IS-IS logfiles can become very large and fill up the router's hard disk. To save the
logfile for future analysis, you can copy the file to a server:

 aviva@RouterJ> file copy /cf/var/log/isis-logs server1:isis-logs-20050625

If you no longer need the information in the file, you can delete the contents:

 aviva@RouterJ> clear log isis-logs

Deleting the file's contents does not turn off tracing.

To stop the tracing altogether, you can remove the traceoptions statement from the configuration
with the delete traceoptions command or you can leave the statements in the configuration and
simply deactivate them so that they do not take effect when you commit the configuration:

 [edit protocols isis]
 aviva@RouterJ# deactivate traceoptions

To delete the logfiles and the rolled-over version of the file, use the file delete command:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterJ> file delete isis-logs*

When debugging IS-IS, you can set one or more of the following trace flags to capture IS-IS
information:

 [edit protocols isis traceoptions]
 aviva@RouterA# set flag ?
 Possible completions:
 all Trace everything
 csn Trace complete sequence number (CSN) packets
 error Trace errored packets
 general Trace general events
 graceful-restart Trace graceful restart events
 hello Trace hello packets
 lsp Trace link-state packets
 lsp-generation Trace LSP generation
 normal Trace normal events
 packets Trace
IS-IS packets
 policy Trace policy processing
 psn Trace partial sequence number (PSN) packets
 route Trace routing information
 spf Trace SPF events
 state Trace state transitions
 task Trace routing protocol task processing
 timer Trace routing protocol timer processing

Using some of the other flags, you can see IS-IS protocol packet exchanges:

 Jun 25 13:06:31 Sending L2 CSN on interface fe-1/0/0.0
 Jun 25 13:06:31 LSP range 0000.0000.0000.00-00 to ffff.ffff.ffff.ff-ff
 Jun 25 13:06:31 packet length 131
 Jun 25 13:06:31 Received L1 LAN IIH, source id RouterH on fe-1/0/0.0
 Jun 25 13:06:31 ERROR: IIH from RouterH with no matching areas, interface fe-1/0/0.0
 Jun 25 13:06:31 local area 49.0050
 Jun 25 13:06:31 remote area 49.0030 (3 bytes)
 Jun 25 13:06:31 ISIS L2 periodic xmit to 01:80:c2:00:00:15 interface fe-1/0/1.0
 Jun 25 13:06:31 ISIS L2 periodic xmit to 01:80:c2:00:00:15 interface fe-1/0/0.0
 Jun 25 13:06:31 ISIS L2 hello from RouterH interface fe-1/0/0.0 absorbed
 Jun 25 13:06:32 Sending L2 CSN on interface fe-1/0/1.0
 Jun 25 13:06:32 LSP range 0000.0000.0000.00-00 to ffff.ffff.ffff.ff-ff
 Jun 25 13:06:32 packet length 131
 Jun 25 13:06:32 Sending L1 CSN on interface fe-0/0/1.0
 Jun 25 13:06:32 LSP range 0000.0000.0000.00-00 to ffff.ffff.ffff.ff-ff
 Jun 25 13:06:32 packet length 83
 Jun 25 13:06:32 Received L1 LAN IIH, source id RouterG on fe-1/0/1.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Jun 25 13:06:32 ERROR: IIH from RouterG with no matching areas, interface fe-1/0/1.0
 Jun 25 13:06:32 local area 49.0050
 Jun 25 13:06:32 remote area 49.0020 (3 bytes)
 Jun 25 13:06:33 ISIS L1 hello from RouterF interface fe-0/0/1.0 absorbed
 Jun 25 13:06:33 ISIS L1 periodic xmit to 01:80:c2:00:00:14 interface fe-0/0/1.0
 Jun 25 13:06:33 ISIS L2 hello from RouterG interface fe-1/0/1.0 absorbed

This logfile snippet shows that IS-IS exchanges complete sequence number (CSN) LSPs with one of its
Level 2 and one of its Level 1 neighbors. You also see the periodic transmission of IS-IS Hello packets.

See Also

Recipe 5.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 12. OSPF

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

The Open Shortest Path First (OSPF) protocol is an IGP that routes packets within a single AS, or
domain. The IETF began work on OSPF in the late 1980s to develop a replacement for RIP, which was
the only routing protocol at the time, because people felt that a stronger routing protocol was needed
and the link-state algorithm looked promising. OSPF was implemented by router vendors in the early
1990s and was eventually standardized by the IETF in 1997 as OSPF Version 1. The current standard
is Version 2, defined in RFC 2328. Much of the OSPF design was lifted from IS-IS, which is an ISO
routing-protocol standard developed at the same time. OSPF was designed specifically for TCP/IP and
explicitly supports IP subnetting and the tagging of externally derived routing information. OSPF also
provides for the authentication of routing updates. RFC 2740 defines OSPF for IPv6.

As an IGP, OSPF works within a domain, which usually corresponds to an administrative boundary
and focuses on determining the most efficient routes to destinations within a domain. EGPs, on the
other hand, primarily focus on policy rather than on the most efficient routing.

OSPF is a link-state protocol and uses link-state advertisements (LSAs) to describe the network
topology. Each OSPF router generates LSAs that describe the topology it sees and floods the LSAs
throughout the domain. As a result, each router ends up with a link-state database that describes the
same network topology. Once the router has the complete network topology, it runs the Dijkstra SPF
calculation to determine the shortest path to each destination in the network. The calculation results
in destination/next-hop pairs that are placed in the OSPF routing database. Each router performs the
SPF calculation independently, and the result is that each OSPF router has an identical routing
database (though each router has different next hops for the destinations).

OSPF runs directly over IP, using IP protocol 89. It does not use a transport layer protocol such as
TCP or UDP.

OSPF views routers as nodes, which are named by a router ID (one per router) that is unique within
the domain. The router ID is a 32-bit number written in dotted decimal notation that looks a lot like
an IP address but isn't necessarily one. The router ID need not be a routable IP address (although it
can be) and is typically the lo0 interface address.

OSPF divides each AS into one or more smaller segments called areas. Each area is a set of networks
and hosts that are administratively grouped together. Routers in an area run the link-state algorithm
in parallel and store the results in their link-state databases. They share this information with each
other by exchanging LSAs and thus have identical link-state databases.

To exchange routing information between areas, OSPF has area border routers (ABRs), which are
routers connected to two or more areas. ABRs run a separate SPF calculation and maintain a
separate link-state database for each area to which they are connected. ABRs summarize link-state
information from one area before passing it to the next, which increases the overall stability of the
network. An OSPF ABR is similar to an IS-IS router that is a Level 1Level 2 system. However, one
difference is that for OSPF, the router itself is at the area boundary, while for IS-IS the link between
two routers is the area boundary.

Routers that exchange routing information with other ASs are called AS boundary routers (ASBRs).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

They advertise externally learned routes throughout the AS.

On each multiaccess network, OSPF elects a DR, which originates network LSAs on behalf of the
network and establishes adjacencies with all routers on the network, thus participating in
synchronizing the link-state databases. DR election is based on priority, which is an number between
0 and 255, with the router with the highest value becoming the DR. For OSPF, DR election is sticky.
This means that once a couple of routers have agreed on a DR, if you add another router with higher
priority to the network, it will not become the DR. If two routers have equal priority, the one with the
lower router ID is selected. OSPF also elects a backup designated router (BDR).

OSPF defines several different types of areas. The core of an OSPF network is the backbone area,
which is the area 0 (written as the 32-bit 0.0.0.0). All ABRs are attached to the backbone area, as
are any networks that have an area ID of 0.0.0.0. The backbone area is a transit area that
distributes traffic between other areas. The routers that make up the backbone must be physically
contiguous. If they are not, you create OSFP virtual links so that the backbone routers appear to be
contiguous.

In a straightforward OSPF network, all areas connect directly to the backbone area. All these areas,
including the backbone, are referred to as regular areas.

OSPF stub areas are areas through which or into which AS external advertisements are not flooded. A
stub area receives detailed or summarized routing information about other areas but receives no
information about external ASs. It can receive a default summary from an ABR to reach external ASs.
Because a stub area has no external routes, it cannot connect to an external area (that is, it cannot
contain an ASBR) and you cannot redistribute routes from another protocol into the stub area. You
might use stub areas when much of the topological database consists of AS external advertisements
because it reduces the size of the topological databases and therefore the amount of memory
required on the internal routers in the stub area. Another restriction on stub areas is that you cannot
create a virtual link through them.

Not-so-stubby areas (NSSAs) are a variant of stub areas that allows a stub area to connect to an
external network. This allows external routes originated by ASBRs within the areas to be flooded in
Type 7 LSAs and then leaked into other areas. However, external routes from other areas are not
flooded into the NSSA.

For more background information about OSPF, see OSPF and IS-IS: A Comparative Anatomy at
http://www.nanog.org/mtg-0006/katz.html.

http://www.nanog.org/mtg-0006/katz.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.1. Configuring OSPF

Problem

Your want to configure OSPF on a JUNOS router.

Solution

You enable OSPF by defining the interfaces on which it will run and the area to which the interfaces
will be attached:

 [edit protocols]
 aviva@RouterG# set ospf area 0.0.0.0 interface fe-0/0/1.0
 aviva@RouterG# set ospf area 0.0.0.0 interface fe-1/0/1.0

Discussion

The basic setup for configuring a single OSPF area is straightforward. Enable the protocol on all
router interfaces that will participate in the OSPF domain and specify which area the interfaces are in.
In this recipe, area 0 has three routers (see Figure 12-1).

In this recipe, we configure OSPF on two interfaces of a router that is in the backbone area, which
has an area identifier of 0.0.0.0. In addition, the router must have a router ID to identify the router
from which OSPF packets originate. In this recipe, we don't set one explicitly because we have
configured a unicast IP address on the router's lo0 interface and this address is used as the router
ID:

 aviva@RouterG> show configuration interfaces lo0
 unit 0 {
 family inet {
 address 192.168.19.1/32;
 }
 }

Figure 12-1. OSPF single-area topology

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You do not need to explicitly configure OSPF to run on lo0, because the JUNOS software
automatically configures lo0 as a stub network if the router ID is the same as the address on the lo0
interface (which is what is recommended). Use the following command to set the router ID:

 [edit routing-options]
 aviva@RouterG# set router-id 192.168.19.1

In this recipe, using the lo0 as the router ID is implicit. Having the router ID be the same as the lo0
address provides a way for OSPF packets to get to the Routing Engine. If the router ID is different
from the lo0 address, OSPF does not automatically run on the router's lo0 interface. The result is
that LSAs will use the router ID as the originator, but the routing table will have a route to the lo0
address but not to the router ID.

However, it is good practice to configure the lo0 interface as a passive interface:

 [edit protocols]
 aviva@RouterG# set ospf area 0.0.0.0 interface lo0.0 passive

Passive interfaces advertise their addresses but do not form adjacencies.

With this simple configuration, the OSPF protocol takes over. You do not have to configure neighbors;
OSPF automatically discovers them. (The exception to this is running OSPF on multipoint
nonbroadcast, multiaccess [NBMA] networks, such as ATM and Frame Relay. For these, you must
explicitly configure neighbors.) OSPF then establishes adjacencies with its neighbors, first sending
OSPF Hello packets to ensure that the two ends of the link can communicate. All point-to-point
neighbors become adjacent to each other, and, on LANs, all interfaces become adjacent to the DR
and BDR. In the process of establishing adjacencies, the routers synchronize their link-state
databases. Once the adjacencies are established, OSPF floods LSAs to establish consistent routing
databases.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To check that OSPF is running on the router interfaces, use the show ospf interface command:

 aviva@RouterG> show
ospf interface
 Interface State Area DR ID BDR ID Nbrs
 fe-0/0/1.0 DR 0.0.0.0 192.168.19.1 192.168.18.1 1
 fe-1/0/1.0 BDR 0.0.0.0 192.168.17.1 192.168.19.1 1

This output shows the two interfaces we configured, fe-0/0/1 and fe-1/0/1. Both interfaces are in
the backbone area, Area 0.0.0.0, and each has one neighbor. The State field indicates that interface
fe-/0/0/1 is the DR for this network and interface fe-1/0/1 is the BDR, which is used if the DR
becomes unavailable. The DR-ID and BDR-ID fields show the router ID of the DR and BDR. With this
configuration, OSPF chooses as the designated router the interface with the highest router ID
because all routers are using the default priority (which you see with the show ospf neighbor
command, described below). If the router has not yet determined which router is the DR, the state is
Waiting:

 aviva@RouterJ>
show ospf interface
 Interface State Area DR ID BDR ID Nbrs
 fe-1/0/0.0 BDR 0.0.0.0 192.168.18.1 192.168.17.1 1
 fe-1/0/1.0 Waiting 0.0.0.0 0.0.0.0 0.0.0.0 0

Use the show ospf neighbor command to see who the OSPF neighbors are:

 aviva@RouterG> show ospf neighbor
 Address Interface State ID Pri Dead
 10.0.1.1 fe-0/0/1.0 Full 192.168.18.1 128 34
 10.0.0.2 fe-1/0/1.0 Full 192.168.17.1 128 34

The Interface column lists the two interfaces we configured. Interface fe-0/0/1 connects to the
neighbor's interface address 10.0.1.1, and this neighbor has a router ID of 192.168.18.1. The other
interface, fe-1/0/1, goes to the neighbor's interface at IP address 10.0.0.2, and this neighbor has a
router ID of 192.168.17.1. You see from this output that both neighbors have a router priority of 128,
which is the default OSPF priority. OSPF uses this value to select the DR, choosing the router with the
highest priority to be the DR. In the event of a tie, OSPF chooses the router with the highest router
ID.

The State column shows the state of each OSPF neighbor. When OSPF network connectivity has
established and the network is up and running, the state is Full. As OSPF connectivity is establishing,
you may see Attempt, Init, or 2way in this field. (If either end of an adjacency on a LAN is not a DR
or a BDR, the final state is 2Way.) If the state does not show as Full after about 30 seconds, check
that the OSPF connectivity between the two neighbors is working correctly. Use the show interfaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

command to make sure that the interface is operational. On the neighboring router, use the show
configuration protocols ospf command to make sure that OSPF is configured, properly, and use
the show ospf neighbor and show ospf interface commands to verify that OSPF is running on the
interfaces.

Another common problem in establishing adjacencies is an MTU mismatch between the end points of
the adjacency. This causes the adjacency to get stuck in the ExState state. The show interfaces
command shows the MTU sizes for the physical and logical interfaces.

The last column of the output shows the OSPF dead interval, which is the amount of time remaining
before the router closes the adjacency with its neighbor. OSPF sends Hello packets, which act as
adjacency keepalives, every 10 seconds (this is the default). If there are no problems with the
connection or the routers, the dead interval never drops below 31 seconds. The default dead time is
four times the hello interval, or 40 seconds.

In the show ospf interface output, you can see that OSPF has automatically chosen DRs and a BDR:

 aviva@RouterG> show
ospf interface
 Interface State Area DR ID BDR ID Nbrs
 fe-0/0/1.0 DR 0.0.0.0 192.168.19.1 192.168.18.1 1
 fe-1/0/1.0 BDR 0.0.0.0 192.168.17.1 192.168.19.1 1

How does OSPF elect the DR? It chooses the DR based on the priority. However, the default priority
value (128) is the same for all OSPF interfaces, and we haven't changed it in the configuration:

 aviva@RouterG>
show ospf neighbor
 Address Interface State ID Pri Dead
 10.0.1.1 fe-0/0/1.0 Full 192.168.18.1 128 34
 10.0.0.2 fe-1/0/1.0 Full 192.168.17.1 128 34

When an OSPF interface comes up, one of the things it checks is whether the network already has a
DR. If it does, the interface simply accepts that DR regardless of its own router priority. In other
words, the assignment of the DR is sticky. This is done by design because it's relatively traumatic for
the network to switch DRs (except to promote the BDR). So, even if you were to configure a DR
priority (the priority can be a value from 1 to 255, with a higher number taking priority), it is
effectively ignored once a DR is elected. Typically, there is no reason to care which router is the DR,
because all JUNOS routers are powerful enough to handle the LSA load.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.2. Viewing Routes Learned by OSPF

Problem

You want to check the routes that are being generated by the Dijkstra SPF calculation to make sure
that the router is learning the expected routes.

Solution

Use the show ospf route command to see the contents of the OSPF routing table:

 aviva@RouterG>
show ospf route
 Prefix Path Route NH Metric NextHop Nexthop
 Type Type Type Interface addr/label
 192.168.17.1 Intra Router IP 1 fe-1/0/1.0 10.0.0.2
 192.168.18.1 Intra Router IP 1 fe-0/0/1.0 10.0.1.1
 10.0.0.0/24 Intra Network IP 1 fe-1/0/1.0
 10.0.1.0/24 Intra Network IP 1 fe-0/0/1.0
 10.0.2.0/24 Intra Network IP 2 fe-0/0/1.0 10.0.1.1
 fe-1/0/1.0 10.0.0.2
 192.168.17.1/32 Intra Network IP 1 fe-1/0/1.0 10.0.0.2
 192.168.18.1/32 Intra Network IP 1 fe-0/0/1.0 10.0.1.1

Discussion

OSPF routers perform an SPF calculation to determine the best route to a destination and places
these routes in its routing table. The show ospf route command displays what's in the OSPF routing
table. The Prefix column shows the destinations on the network, and you also see the interface used
to reach the next hop toward the destination and the IP address of that next hop.

You can find out which routes the router has learned from OSPF by checking the unicast routing
table:

 aviva@RouterG> show route table inet.0
 inet.0: 11 destinations, 11 routes (11 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.0/24 *[Direct/0] 3d 01:42:24

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > via fe-1/0/1.0
 10.0.0.1/32 *[Local/0] 3d 01:42:24
 Local via fe-1/0/1.0
 10.0.1.0/24 *[Direct/0] 3d 01:42:24
 > via fe-0/0/1.0
 10.0.1.2/32 *[Local/0] 3d 01:42:24
 Local via fe-0/0/1.0
 10.0.2.0/24 *[OSPF/10] 00:18:28, metric 2
 to 10.0.1.1 via fe-0/0/1.0
 > to 10.0.0.2 via fe-1/0/1.0
 10.0.16.0/24 *[Direct/0] 3d 01:42:24
 > via fe-1/0/0.0
 10.0.16.2/32 *[Local/0] 3d 01:42:24
 Local via fe-1/0/0.0
 192.168.17.1/32 *[OSPF/10] 00:18:28, metric 1
 > to 10.0.0.2 via fe-1/0/1.0
 192.168.18.1/32 *[OSPF/10] 00:18:28, metric 1
 > to 10.0.1.1 via fe-0/0/1.0
 192.168.19.1/32 *[Direct/0] 3d 01:40:56
 > via lo0.0
 224.0.0.5/32 *[OSPF/10] 2d 20:52:32, metric 1
 MultiRecv

The route entries starting with [OSPF/10] are those learned from OSPF. The router has learned four
routes from OSPF:

192.168.17.1/32 and 192.168.18.1./32 are router loopback addresses that are the two OSPF
neighbors we saw in the OSPF routing table.

10.0.2.0/24 is a subnetwork that is the subnet between our two neighbors (which we also saw
in the OSPF database).

224.0.0.5/32 is the OSPF multicast address.

The routes to the two loopback addresses show up in the routing table because the router ID is
configured on the routers' lo0 addresses, not with the set routing-options router-id command.

The value of 10 in the brackets is the JUNOS default value for the OSPF administrative distance, also
called the routing preference, which is used to select what route is installed in the forwarding table
when several protocols calculate routes to the same destination. A preference of 10 is the default for
internal OSPF routes, which are those within the domain. The preference value for routes outside the
domain that OSPF advertises is 150. You can change the preference value by configuring the
preference statement for the OSPF area. The numbers following the brackets show how long the
routing table has known about the route. The metric value (either 1 or 2) is the cost to this address.
Understanding the routing table is discussed more in Recipe 9.1.

You might find it strange that a multicast address, 224.0.0.5/32, is present in the inet.0 routing
table, which is the unicast routing table. This is simply a result of a JUNOS design decision. Instead of
establishing a separate routing table for the few multicast routes used by routing protocols for
receiving protocol packets, which are well-known addresses, the JUNOS software places these routes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in the unicast routing table.

You can also see just the routes learned by OSPF:

 aviva@RouterG> show route protocol ospf table inet.0
 inet.0: 14 destinations, 14 routes (14 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.2.0/24 *[OSPF/10] 00:00:26, metric 2
 to 10.0.1.1 via fe-0/0/1.0
 > to 10.0.0.2 via fe-1/0/1.0
 192.168.17.1/32 *[OSPF/10] 00:00:26, metric 1
 > to 10.0.0.2 via fe-1/0/1.0
 192.168.18.1/32 *[OSPF/10] 00:00:31, metric 1
 > to 10.0.1.1 via fe-0/0/1.0
 224.0.0.5/32 *[OSPF/10] 00:00:42, metric 1
 MultiRecv

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.3. Viewing the OSPF Link-State Database

Problem

You want to look at the router's link-state database to make sure that all the OSPF routers know
about each other.

Solution

Use the show ospf database command to view the contents of the link-state database:

 aviva@RouterG> show ospf database
 OSPF link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router 192.168.17.1 192.168.17.1 0x800000d0 986 0x2 0xebd2 60
 Router 192.168.18.1 192.168.18.1 0x80000083 986 0x2 0xbd4a 60
 Router *192.168.19.1 192.168.19.1 0x8000009f 656 0x2 0x46a5 60
 Network *10.0.0.1 192.168.19.1 0x80000010 56 0x2 0x9b2e 32
 Network *10.0.1.2 192.168.19.1 0x80000030 356 0x2 0x5353 32
 Network 10.0.2.1 192.168.18.1 0x80000005 1454 0x2 0x993b 32

Discussion

OSPF routers exchange LSAs that describe that router's view of the network topology, and the
routers store the LSAs in a link-state database. The SPF algorithm then runs on the link-state
database to create the OSPF routing table, which contains the shortest path to each destination.

Use the show ospf database command to look at the OSPF LSAs in the link-state database. Table 12-
1 explains the different types OSPF LSAs.

Table 12-1. OSPF LSA types

Type Name Description

1 Router
All routers originate these LSAs, flooding them within a single area, to
describe the state and cost of router interfaces within the area.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Name Description

2 Network
DRs originate these LSAs, flooding them within a single area, to describe all
routers attached to the network, including the DR.

3
Summary
(network)

ABRs originate a single Summary LSA for each known interarea destination,
flooding them within a single domain. Type 3 Summary LSAs are sent when
the destination is an IP network.

4
Summary
(ASBR)

ABRs originate a single Summary LSA for each known interarea destination,
flooding them within a single domain. Type 4 summary LSAs are sent when
the destination is an ASBR.

5 AS External
ASBRs originate these LSAs to describe destinations external to the OSPF
domain (AS).

7
NSSA
External

NSSA ASBRs originate these LSAs, flooding them within the NSSA, to
describe destinations in the other parts of the OSPF domain.

In the command output in this recipe, the database has three Router (Type 1) and three Network
(Type 2) LSAs. The lines with an asterisk in the ID are database entries that originated from the local
router. The router also knows about its two neighbors, 192.168.17.1 and 192.168.18.1, and about
the subnetwork that connects these two neighbors (10.0.2.1).

If you check on the other two routers in the area, you see that they have identical databases:

 aviva@RouterJ> show
ospf database
 OSPF link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router *192.168.17.1 192.168.17.1 0x8000010a 170 0x2 0x760e 60
 Router 192.168.18.1 192.168.18.1 0x800000ae 377 0x2 0x6775 60
 Router 192.168.19.1 192.168.19.1 0x80000007 372 0x2 0xdf32 48
 Network 10.0.0.1 192.168.19.1 0x80000002 372 0x2 0xb720 32
 Network 10.0.1.2 192.168.19.1 0x80000002 378 0x2 0xaf25 32
 Network 10.0.2.1 192.168.18.1 0x8000002a 481 0x2 0x4f60 32

 aviva@RouterH>
show ospf database
 OSPF link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router 192.168.17.1 192.168.17.1 0x8000010a 45 0x2 0x760e 60
 Router *192.168.18.1 192.168.18.1 0x800000ae 250 0x2 0x6775 60
 Router 192.168.19.1 192.168.19.1 0x80000007 247 0x2 0xdf32 48
 Network 10.0.0.1 192.168.19.1 0x80000002 247 0x2 0xb720 32
 Network 10.0.1.2 192.168.19.1 0x80000002 251 0x2 0xaf25 32
 Network *10.0.2.1 192.168.18.1 0x8000002a 354 0x2 0x4f60 32

The only thing different is which LSAs are marked as originated from the router.

2 Network
DRs originate these LSAs, flooding them within a single area, to describe all
routers attached to the network, including the DR.

3
Summary
(network)

ABRs originate a single Summary LSA for each known interarea destination,
flooding them within a single domain. Type 3 Summary LSAs are sent when
the destination is an IP network.

4
Summary
(ASBR)

ABRs originate a single Summary LSA for each known interarea destination,
flooding them within a single domain. Type 4 summary LSAs are sent when
the destination is an ASBR.

5 AS External
ASBRs originate these LSAs to describe destinations external to the OSPF
domain (AS).

7
NSSA
External

NSSA ASBRs originate these LSAs, flooding them within the NSSA, to
describe destinations in the other parts of the OSPF domain.

In the command output in this recipe, the database has three Router (Type 1) and three Network
(Type 2) LSAs. The lines with an asterisk in the ID are database entries that originated from the local
router. The router also knows about its two neighbors, 192.168.17.1 and 192.168.18.1, and about
the subnetwork that connects these two neighbors (10.0.2.1).

If you check on the other two routers in the area, you see that they have identical databases:

 aviva@RouterJ> show
ospf database
 OSPF link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router *192.168.17.1 192.168.17.1 0x8000010a 170 0x2 0x760e 60
 Router 192.168.18.1 192.168.18.1 0x800000ae 377 0x2 0x6775 60
 Router 192.168.19.1 192.168.19.1 0x80000007 372 0x2 0xdf32 48
 Network 10.0.0.1 192.168.19.1 0x80000002 372 0x2 0xb720 32
 Network 10.0.1.2 192.168.19.1 0x80000002 378 0x2 0xaf25 32
 Network 10.0.2.1 192.168.18.1 0x8000002a 481 0x2 0x4f60 32

 aviva@RouterH>
show ospf database
 OSPF link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router 192.168.17.1 192.168.17.1 0x8000010a 45 0x2 0x760e 60
 Router *192.168.18.1 192.168.18.1 0x800000ae 250 0x2 0x6775 60
 Router 192.168.19.1 192.168.19.1 0x80000007 247 0x2 0xdf32 48
 Network 10.0.0.1 192.168.19.1 0x80000002 247 0x2 0xb720 32
 Network 10.0.1.2 192.168.19.1 0x80000002 251 0x2 0xaf25 32
 Network *10.0.2.1 192.168.18.1 0x8000002a 354 0x2 0x4f60 32

The only thing different is which LSAs are marked as originated from the router.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the following version of the show ospf database command to get a quick summary of the entries
LSA database:

 aviva@RouterG> show ospf database summary
 Area 0.0.0.0:
 3 Router LSAs
 3 Network LSAs
 Externals:
 Interface fe-0/0/1.0:
 Interface fe-1/0/0.0:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.4. Configuring OSPF for IPv6

Problem

You want to use OSPF on an IPv6 network.

Solution

The configuration for OSPFv3 is the same as for OSPFv2, the IPv4 version of OSPF, except that you
use set ospf3 commands instead of set ospf commands:

 [edit protocols]
 aviva@RouterJ#
set ospf3 area 0.0.0.0 interface fe-1/0/0.0
 aviva@RouterJ# set ospf3 area 0.0.0.0 interface lo0.0 passive

Discussion

JUNOS OSPFv3 configuration for IPv6 networks is basically identical to OSPFv2 configuration. You
configure the protocol with set ospf3 commands instead of set ospf commands and use show ospf3
commands instead of show ospf commands to check on the OSPF status. Also, make sure to set IPv6
address on the interfaces running OSPFv3 and on the loopback interface, lo0.

This recipe shows how to configure an OSPFv3 backbone router. All backbone routers have the same
basic configuration. As with OSPFv2, define which interfaces are in the area. Again, include the lo0
interface, configured as a passive interface, so that it advertises its address into OSPF.

To check that OSPF is running on the router interfaces, use the show ospf3 interface command:

 aviva@RouterH> show ospf3 interface
 Interface State Area DR-ID BDR-ID Nbrs
 fe-1/0/0.0 DR 0.0.0.0 192.168.18.1 10.0.0.1 1
 lo0.0 DRother 0.0.0.0 0.0.0.0 0.0.0.0 0

The output shows that OSPFv3 is running on the configured interfaces, fe-1/0/0 and lo0, and that
the Fast Ethernet interface is the DR. The DR-ID and BDR-ID columns show the OSPF router ID of the
DR and BDR routers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use the following command to see the neighbors with which the router has formed OSPFv3
adjacencies:

 aviva@RouterH> show ospf3 neighbor
 ID Interface State Pri Dead
 10.0.0.1 fe-1/0/0.0 Full 128 36
 Neighbor-address fe80::205:85ff:fec4:72f4

You see one adjacency, with the router ID 10.0.0.1, which is the neighbor via interface fe-1/0/0. As
with OSPFv2, Full in the State column indicates that the OSPFv3 adjacency is up and running. The
neighbor has a default priority of 128, the same default as OSPFv2, which is used to elect the DR.

To see the OSPF routing table on the router, use the show ospf3 route command:

 aviva@RouterH> show ospf3 route
 Prefix Path Route NH Metric
 type type type
 10.0.0.1 Intra Router IP 1
 NH-interface fe-1/0/0.0, NH-addr fe80::205:85ff:fec4:72f4
 192.168.18.1;0.0.0.3 Intra Transit IP 1
 NH-interface fe-1/0/0.0
 9009:3::/64 Intra Network IP 1
 NH-interface fe-1/0/0.0

The prefix column shows the routes to the other Area 0 router. One difference in the output for
OSPFv3 is that the loopback address, 192.168.18.1, shows up as type TRansit instead of as Network
to indicate that the loopback address is not on a real OSPF network. Route 192.168.18.1:0.0.0.3
actually represents a route to the pseudonode corresponding to the fe-1/0/0 link. (In OSPFv3, a LAN
link is called a transit link.) Any multiaccess link, such as a LAN or an NBMA link, is represented by a
fake node, or pseudonode, in the IGP. This route is used for debugging and is not installed in the
forwarding table.

The OSPFv3 link-state database contains more information than for OSPFv2:

 aviva@RouterH> show ospf3 database
 OSPF3 link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Cksum Len
 Router 0.0.0.0 10.0.0.1 0x80000422 933 0x3338 40
 Router *0.0.0.0 192.168.18.1 0x80000013 327 0x1fee 40
 Router 0.0.0.0 192.168.19.1 0x80000012 3399 0x98e4 56
 Network *0.0.0.3 192.168.18.1 0x80000003 27 0x31ee 32
 Network 0.0.0.1 192.168.19.1 0x8000000e 3399 0x4352 36
 IntraArPfx *0.0.0.4 192.168.18.1 0x80000002 932 0x2602 44
 IntraArPfx 0.0.0.2 192.168.19.1 0x8000000d 3399 0xe937 44

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 OSPF3 Link-Local link state database, interface fe-1/0/0.0
 Type ID Adv Rtr Seq Age Cksum Len
 Link 0.0.0.4 10.0.0.1 0x80000001 933 0xd6af 56
 Link *0.0.0.3 192.168.18.1 0x80000005 627 0x3f76 56

In addition to listing the entries in this area, Area 0.0.0.0, the second part of the output shows the
entries in the link-local, link-state database for this interface. These are the database entries learned
over the specific OSPFv3 interface and they are visible only by nodes that are directly on this link.

See Also

Recipes 7.6 and 12.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.5. Configuring a Multiarea OSPF Network

Problem

Your OSPF network has a number of physical and departmental boundaries, and, for administrative
purposes and for scalability, you want to divide the network into a number of areas.

Solution

Configure a second OSPF area on the router:

 [edit protocols]
 aviva@RouterG# set ospf area 0.0.0.1 interface fe-1/0/0.0

Discussion

To create additional areas in the OSPF network, configure the second area on the router's interface
(or interfaces) that connects to the second area. In this recipe, we configure the second area, Area
0.0.0.1, on our router. This router acts as the ABR between the backbone area and Area 0.0.0.1.
See Figure 12-2.

Figure 12-2. OSPF two-area topology

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Check that the interface is configured:

 aviva@RouterG> show ospf interface
 Interface State Area DR ID BDR ID Nbrs
 fe-0/0/1.0 DR 0.0.0.0 192.168.19.1 192.168.18.1 1
 fe-1/0/1.0 BDR 0.0.0.0 192.168.17.1 192.168.19.1 1
 fe-1/0/0.0 BDR 0.0.0.1 192.168.42.1 192.168.19.1 1

You see that interface fe-1/0/0 is up and is in Area 0.0.0.1.

Again, check that the neighbor is active:

 aviva@RouterG>
show ospf neighbor detail
 Address Interface State ID Pri Dead
 10.0.1.1 fe-0/0/1.0 Full 192.168.18.1 128 33
 area 0.0.0.0, opt 0x42, DR 10.0.1.2, BDR 10.0.1.1
 Up 01:11:30, adjacent 01:11:30
 10.0.0.2 fe-1/0/1.0 Full 192.168.17.1 128 39
 area 0.0.0.0, opt 0x42, DR 10.0.0.1, BDR 10.0.0.2
 Up 01:11:30, adjacent 01:11:25
 10.0.16.1 fe-1/0/0.0 Full 192.168.42.1 128 31
 area 0.0.0.1, opt 0x42, DR 10.0.16.1, BDR 10.0.16.2
 Up 00:00:55, adjacent 00:00:55

In addition to showing that the neighbor is up (State is Full), the detail version of the show ospf
neighbor command shows how long the interface and adjacency have been up, as well as the area

http://lib.ommolketab.ir
http://lib.ommolketab.ir

number and the router IDs of the DR and BDR for the area.

Checking on RouterA at the other end of the connection, you see the connection to our router,
RouterG, and that it is the designated router for Area 0.0.0.1:

 aviva@RouterA> show
ospf neighbor detail
 Address Interface State ID Pri Dead
 10.0.16.2 fe-0/0/0.0 Full 192.168.19.1 128 39
 area 0.0.0.1, opt 0x42, DR 10.0.16.1, BDR 10.0.16.2
 Up 00:03:56, adjacent 00:03:56
 10.0.21.2 se-0/0/3.0 Full 192.168.12.1 128 33
 area 0.0.0.1, opt 0x42, DR 0.0.0.0, BDR 0.0.0.0
 Up 03:24:41, adjacent 03:24:41

OSPF collects topology information for each of the areas in their respective databases:

 aviva@RouterG> show
ospf database
 OSPF link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router 192.168.17.1 192.168.17.1 0x800000d0 1481 0x2 0xebd2 60
 Router 192.168.18.1 192.168.18.1 0x80000083 1481 0x2 0xbd4a 60
 Router *192.168.19.1 192.168.19.1 0x800000a1 78 0x2 0x45a3 60
 Network *10.0.0.1 192.168.19.1 0x80000010 551 0x2 0x9b2e 32
 Network *10.0.1.2 192.168.19.1 0x80000030 851 0x2 0x5353 32
 Network 10.0.2.1 192.168.18.1 0x80000005 1949 0x2 0x993b 32
 Summary *10.0.16.0 192.168.19.1 0x80000002 77 0x2 0xa81b 28
 Summary *10.0.21.0 192.168.19.1 0x80000001 77 0x2 0xebc7 28
 Summary *10.0.22.0 192.168.19.1 0x80000001 77 0x2 0x594d 28
 Summary *172.19.121.0 192.168.19.1 0x80000001 77 0x2 0x69e 28
 Summary *172.100.1.0 192.168.19.1 0x80000001 319 0x2 0x6368 28
 Summary *192.168.12.1 192.168.19.1 0x80000001 77 0x2 0x1646 28
 Summary *192.168.42.1 192.168.19.1 0x80000001 77 0x2 0x52f7 28

 OSPF link state database, area 0.0.0.1
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router 192.168.12.1 192.168.12.1 0x80000054 1223 0x2 0x1540 72
 Router *192.168.19.1 192.168.19.1 0x80000002 77 0x2 0x771a 48
 Router 192.168.42.1 192.168.42.1 0x8000005b 78 0x2 0x870d 96
 Network 10.0.16.1 192.168.42.1 0x80000001 78 0x2 0x5147 32
 Summary *10.0.0.0 192.168.19.1 0x80000001 77 0x2 0x5b79 28
 Summary *10.0.1.0 192.168.19.1 0x80000001 77 0x2 0x5083 28
 Summary *10.0.2.0 192.168.19.1 0x80000001 77 0x2 0x4f82 28
 Summary *192.168.17.1 192.168.19.1 0x80000001 77 0x2 0x66fc 28
 Summary *192.168.18.1 192.168.19.1 0x80000001 77 0x2 0x5b07 28

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notice that the link-state database now contains summary advertisements, which summarize routing
information from one area into another.

The OSPF routing table now shows destinations in Area 0.0.0.1:

 aviva@RouterG> show ospf route
 Prefix Path Route NH Metric NextHop Nexthop
 Type Type Type Interface addr/label
 192.168.12.1 Intra Router IP 13 fe-1/0/0.0 10.0.16.1
 192.168.17.1 Intra Router IP 1 fe-1/0/1.0 10.0.0.2
 192.168.18.1 Intra Router IP 1 fe-0/0/1.0 10.0.1.1
 192.168.42.1 Intra Router IP 1 fe-1/0/0.0 10.0.16.1
 10.0.0.0/24 Intra Network IP 1 fe-1/0/1.0
 10.0.1.0/24 Intra Network IP 1 fe-0/0/1.0
 10.0.2.0/24 Intra Network IP 2 fe-0/0/1.0 10.0.1.1
 fe-1/0/1.0 10.0.0.2
 10.0.16.0/24 Intra Network IP 1 fe-1/0/0.0
 10.0.21.0/24 Intra Network IP 13 fe-1/0/0.0 10.0.16.1
 10.0.22.0/24 Intra Network IP 25 fe-1/0/0.0 10.0.16.1
 172.19.121.0/24 Intra Network IP 2 fe-1/0/0.0 10.0.16.1
 172.100.1.0/24 Intra Network IP 2 fe-1/0/0.0 10.0.16.1
 192.168.12.1/32 Intra Network IP 13 fe-1/0/0.0 10.0.16.1
 192.168.17.1/32 Intra Network IP 1 fe-1/0/1.0 10.0.0.2
 192.168.18.1/32 Intra Network IP 1 fe-0/0/1.0 10.0.1.1
 192.168.42.1/32 Intra Network IP 1 fe-1/0/0.0 10.0.16.1

These routes are also in the router's routing table:

 aviva@RouterG> show route table inet.0
 inet.0: 19 destinations, 20 routes (19 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 5w4d 20:51:01
 > to 172.19.121.1 via fe-0/0/0.0
 10.0.0.0/24 *[Direct/0] 3d 01:53:17
 > via fe-1/0/1.0
 10.0.0.1/32 *[Local/0] 3d 01:53:17
 Local via fe-1/0/1.0
 10.0.1.0/24 *[Direct/0] 3d 01:53:17
 > via fe-0/0/1.0
 10.0.1.2/32 *[Local/0] 3d 01:53:17
 Local via fe-0/0/1.0
 10.0.2.0/24 *[
OSPF/10] 00:05:31, metric 2
 > to 10.0.1.1 via fe-0/0/1.0
 to 10.0.0.2 via fe-1/0/1.0
 10.0.16.0/24 *[Direct/0] 3d 01:53:17
 > via fe-1/0/0.0
 10.0.16.2/32 *[Local/0] 3d 01:53:17

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Local via fe-1/0/0.0
 10.0.21.0/24 *[
OSPF/10] 00:05:31, metric 13
 > to 10.0.16.1 via fe-1/0/0.0
 10.0.22.0/24 *[OSPF/10] 00:05:31, metric 25
 > to 10.0.16.1 via fe-1/0/0.0
 172.19.121.0/24 *[Direct/0] 5w4d 20:51:01
 > via fe-0/0/0.0
 [OSPF/10] 00:05:31, metric 2
 > to 10.0.16.1 via fe-1/0/0.0
 172.19.121.119/32 *[Local/0] 5w4d 20:51:04
 Local via fe-0/0/0.0
 172.100.1.0/24 *[OSPF/10] 00:07:48, metric 2
 > to 10.0.16.1 via fe-1/0/0.0
 192.168.12.1/32 *[OSPF/10] 00:05:31, metric 13
 > to 10.0.16.1 via fe-1/0/0.0
 192.168.17.1/32 *[OSPF/10] 00:05:31, metric 1
 > to 10.0.0.2 via fe-1/0/1.0
 192.168.18.1/32 *[OSPF/10] 00:05:31, metric 1
 > to 10.0.1.1 via fe-0/0/1.0
 192.168.19.1/32 *[Direct/0] 3d 01:51:49
 > via lo0.0
 192.168.42.1/32 *[OSPF/10] 00:05:31, metric 1
 > to 10.0.16.1 via fe-1/0/0.0
 224.0.0.5/32 *[OSPF/10] 2d 21:03:25, metric 1
 MultiRecv

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.6. Setting Up Stub Areas

Problem

You want to optimize OSPF performance in an area that connects only to the OSPF backbone.

Solution

Configure the area as a stub area:

 [edit protocols ospf]
 aviva@RouterE# set area 0.0.0.3 interface t1-0/0/3.0
 aviva@RouterE# set area 0.0.0.3 stub

Discussion

When some areas of your network have no external connections, you can make them into stub
areas. This reduces the amount of OSPF protocol traffic that is flooded through the area, which
improves performance on the router by decreasing the size of the OSPF routing database and thus
decreasing the amount of CPU needed to perform the SPF calculations. Another common reason to
set up a stub area is to allow legacy routers that don't have enough memory or CPU horsepower to
participate in the OSPF network. A stub area receives OSPF routing-database information from all the
other areas in the network. However, instead of receiving all AS external advertisements, the stub
area gets only a default summary (0.0.0.0/0) from ABRs to reach external destinations and gets
summaries for destinations in other OSPF areas.

You configure each router in the stub area as a stub router by including the stub statement when
configuring the area. In our recipe, Area 0.0.0.3 is a stub area (see Figure 12-3). Configure the stub
area on each router that is part of this area.

Check that the stub area is up and running:

 aviva@RouterE> show ospf interface detail
 Interface State Area DR ID BDR ID Nbrs
 t1-0/0/3.0 PtToPt 0.0.0.3 0.0.0.0 0.0.0.0 1
 Type: P2P, Address: 0.0.0.0, Mask: 0.0.0.0, MTU: 1500, Cost: 65
 Adj count: 1
 Hello: 10, Dead: 40, ReXmit: 5, Stub
 Auth type: None

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 12-3. OSPF stub area topology

Type 4 (ASBR Summary) and Type 5 (AS External) LSAs are not flooded into stub areas. When Area
0.0.0.3 is a regular area, not a stub area, the routers in that area receive Type 4 and Type 5 LSAs.
Here are the entries in RouterE's link-state database:

 aviva@RouterE> show ospf database summary
 Area 0.0.0.3:
 3 Router LSAs
 1 Network LSAs
 9 Summary LSAs
 1 ASBRSum LSAs
 Externals:
 2 Extern LSAs
 Interface lo0.0:
 Interface t1-0/0/3.0:
 Interface t1-0/0/3.0:

The output shows one ASBR Summary and two External LSAs. After you configure the area as a stub,
these routes are no longer sent from Area 0.0.0.0 so are not in the router's link-state database:

 aviva@RouterE> show ospf database summary
 Area 0.0.0.3:
 3 Router LSAs
 1 Network LSAs
 9 Summary LSAs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Externals:
 Interface lo0.0:
 Interface t1-0/0/3.0:
 Interface t1-0/0/3.0:

You can further reduce the number of LSA packets flooded through the stub area by configuring the
ABR so that it does not flood Type 3 (Network Summary) LSAs to the routers in the stub area:

 [edit protocols ospf]
 aviva@RouterJ# set area 0.0.0.3 stub no-summaries

The routers in the stub area no longer receive the Type 3 LSAs:

 aviva@RouterE> show ospf database summary
 Area 0.0.0.3:
 3 Router LSAs
 1 Network LSAs <-- No Type 3 LSAs are listed after the Type 2 LSAs
 Externals:
 Interface t1-0/0/3.0:
 Interface t1-0/0/3.0:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.7. Creating a Not-So-Stubby Area

Problem

You want to configure a stub area for an area that has an ASBR to connect it to an external network.
This area already sends AS External LSAs to the backbone area and doesn't need to receive them
from the backbone.

Solution

Configure the area as an NSSA. Include this configuration on each router in the NSSA area.

 [edit protocols ospf]
 aviva@RouterJ# set area 0.0.0.3 nssa

Discussion

The configuration for NSSA is similar to that for stub areas. Include the nssa statement when
configuring each area. Once you commit the configuration, you can see that the router is in an NSSA:

 aviva@RouterJ> show ospf interface fe-0/0/1.0 detail
 Interface State Area DR ID BDR ID Nbrs
 fe-0/0/1.0 BDR 0.0.0.3 192.168.16.1 192.168.17.1 1
 Type: LAN, Address: 10.0.8.1, Mask: 255.255.255.240, MTU: 1500, Cost: 1
 DR addr: 10.0.8.2, BDR addr: 10.0.8.1, Adj count: 1, Priority: 128
 Hello: 10, Dead: 40, ReXmit: 5, Stub NSSA
 Auth type: None

Before you configure the stub area, the OSPF link-state database contains two Type 5 (AS External)
LSAs for the external routes that are coming from the ASBR, which is RouterE (192.168.15.1):

 aviva@RouterJ> show ospf database area 0.0.0.3
 OSPF link state database, area 0.0.0.3
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router 192.168.15.1 192.168.15.1 0x80000004 163 0x2 0x4156 60

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Router 192.168.16.1 192.168.16.1 0x80000007 49 0x2 0xbd74 84
 Router *192.168.17.1 192.168.17.1 0x80000004 290 0x2 0x47ea 36
 Network *10.0.8.1 192.168.17.1 0x80000002 699 0x2 0x4e86 32
 Summary *10.0.0.0 192.168.17.1 0x80000003 289 0x2 0xe7ac 28
 Summary *10.0.0.1 192.168.17.1 0x80000002 289 0x2 0x5830 28
 Summary *10.0.1.0 192.168.17.1 0x80000007 22 0x2 0xdeaf 28
 Summary *10.0.2.0 192.168.17.1 0x80000002 289 0x2 0xd3bf 28
 Summary *10.0.16.0 192.168.17.1 0x80000002 289 0x2 0xb1c7 28
 Summary *192.168.13.1 192.168.17.1 0x80000002 289 0x2 0x9982 28
 Summary *192.168.17.1 192.168.17.1 0x80000002 289 0x2 0x68fc 28
 Summary *192.168.18.1 192.168.17.1 0x80000002 289 0x2 0xe939 28
 Summary *192.168.19.1 192.168.17.1 0x80000002 289 0x2 0xde43 28
 OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Extern 0.0.0.0 192.168.15.1 0x80000001 590 0x2 0x67f1 36
 Extern 172.19.121.0 192.168.15.1 0x80000001 590 0x2 0x859a 36

With the NSSA configured, these Type 5 routes are injected into the area as Type 7 (NSSA) LSAs:

 aviva@RouterJ> show ospf database area 0.0.0.3
 OSPF link state database, area 0.0.0.3
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router 192.168.15.1 192.168.15.1 0x80000002 29 0x0 0x6338 60
 Router 192.168.16.1 192.168.16.1 0x80000004 2 0x0 0xe155 84
 Router *192.168.17.1 192.168.17.1 0x80000003 1 0x0 0x6dc5 36
 Network *10.0.8.1 192.168.17.1 0x80000001 1 0x0 0x6e69 32
 Summary *10.0.0.0 192.168.17.1 0x80000001 55 0x0 0xa8e 28
 Summary *10.0.0.1 192.168.17.1 0x80000001 55 0x0 0x7813 28
 Summary *10.0.1.0 192.168.17.1 0x80000002 1 0x0 0x78e 28
 Summary *10.0.2.0 192.168.17.1 0x80000001 55 0x0 0xf3a2 28
 Summary *10.0.16.0 192.168.17.1 0x80000001 55 0x0 0xd1aa 28
 Summary *192.168.13.1 192.168.17.1 0x80000001 55 0x0 0xb965 28
 Summary *192.168.17.1 192.168.17.1 0x80000001 55 0x0 0x88df 28
 Summary *192.168.18.1 192.168.17.1 0x80000001 55 0x0 0xa1c 28
 Summary *192.168.19.1 192.168.17.1 0x80000001 55 0x0 0xfe26 28
 NSSA 0.0.0.0 192.168.15.1 0x80000001 29 0x8 0xf2e4 36
 NSSA 172.19.121.0 192.168.15.1 0x80000001 29 0x8 0x118d 36
 OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Extern 0.0.0.0 192.168.15.1 0x80000001 711 0x2 0x67f1 36
 Extern 172.19.121.0 192.168.15.1 0x80000001 711 0x2 0x859a 36

The output shows that the Type 7 NSSAs still originate from the ASBR, RouterE (192.168.15.1).

As with stub areas, you can configure the ABR in the NSSA to not flood Type 3 (Network Summary)
LSAs to the routers in the stub area:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit protocols ospf]
 aviva@RouterJ# set area 0.0.0.3 nssa no-summaries

Looking at a router in Area 0.0.0.3, where before its link-state database would have contained Type
3 (Summary) LSAs:

 aviva@RouterE> show ospf database
 OSPF link state database, area 0.0.0.3
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router *192.168.15.1 192.168.15.1 0x80000004 429 0x0 0x4167 60
 Router 192.168.16.1 192.168.16.1 0x8000000b 7 0x0 0x94d3 72
 Router 192.168.17.1 192.168.17.1 0x80000006 8 0x0 0xd8ca 48
 Network 10.0.8.2 192.168.16.1 0x80000006 7 0x0 0xbd6 32
 Summary 10.0.0.0 192.168.17.1 0x80000002 8 0x0 0x8552 28
 Summary 10.0.1.0 192.168.17.1 0x80000002 8 0x0 0x8451 28
 Summary 10.0.2.0 192.168.17.1 0x80000002 8 0x0 0x795b 28
 Summary 192.168.18.1 192.168.17.1 0x80000001 17 0x0 0x91d3 28
 NSSA *10.0.15.0 192.168.15.1 0x80000001 429 0x8 0xcaf3 36
 NSSA *172.19.121.0 192.168.15.1 0x80000001 429 0x8 0x118d 36
 NSSA *192.168.15.1 192.168.15.1 0x80000001 429 0x8 0x91cc 36

The Summary LSAs are no longer present:

 aviva@RouterE> show ospf database
 OSPF link state database, area 0.0.0.3
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router *192.168.15.1 192.168.15.1 0x80000004 338 0x0 0x4167 60
 Router 192.168.16.1 192.168.16.1 0x80000008 283 0x0 0x9ad0 72
 Router 192.168.17.1 192.168.17.1 0x80000004 278 0x0 0xdcc8 48
 Network 10.0.8.2 192.168.16.1 0x80000004 283 0x0 0xfd4 32
 NSSA *10.0.15.0 192.168.15.1 0x80000001 338 0x8 0xcaf3 36
 NSSA *172.19.121.0 192.168.15.1 0x80000001 338 0x8 0x118d 36
 NSSA *192.168.15.1 192.168.15.1 0x80000001 338 0x8 0x91cc 36

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.8. Summarizing Routes in OSPF

Problem

You want to minimize the size of a backbone router's link-state database by summarizing the routes
sent to the backbone area.

Solution

Summarize the routes that are flooded into the backbone area by the ABR:

 [edit protocols ospf]
 aviva@RouterJ# set area 0.0.0.3 area-range 10.0.0.0/16

Discussion

OSPF route summarization aggregates routes sent by nonbackbone areas to the backbone routers so
that the size of their link-state databases is reduced. In this recipe, the networks in Area 0.0.0.3 are
10.0.8.1/28, 10.0.8.2/28, 10.0.13.1/28, and 10.0.13.2/28 (see Figure 12-3), which can be
summarized as 10.0.0.0/24.

If we check on one of the backbone routers before configuring route summarization, we see four
Type 3 (Summary) LSAs in the link-state database:

 aviva@RouterG> show ospf database
 OSPF link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router 192.168.17.1 192.168.17.1 0x80000189 16 0x2 0x926e 60
 Router 192.168.18.1 192.168.18.1 0x80000124 2601 0x2 0x97cd 60
 Router *192.168.19.1 192.168.19.1 0x8000009c 126 0x2 0xb4c7 48
 Network *10.0.0.1 192.168.19.1 0x80000090 726 0x2 0x9aae 32
 Network *10.0.1.2 192.168.19.1 0x80000090 426 0x2 0x92b3 32
 Network 10.0.2.1 192.168.18.1 0x8000009b 1651 0x2 0x6cd1 32
 Summary 10.0.8.0 192.168.17.1 0x80000009 16 0x2 0xa62f 28
 Summary 10.0.13.0 192.168.17.1 0x80000002 16 0x2 0xa8c 28
 Summary 192.168.15.1 192.168.17.1 0x80000002 16 0x2 0x1510 28
 Summary 192.168.16.1 192.168.17.1 0x80000002 16 0x2 0x7de7 28
 ASBRSum 192.168.15.1 192.168.17.1 0x80000002 16 0x2 0x71d 28

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Extern 10.0.15.0 192.168.15.1 0x80000001 161 0x2 0x3f01 36
 Extern 172.19.121.0 192.168.15.1 0x80000001 161 0x2 0x859a 36
 Extern 172.19.121.0 192.168.17.1 0x80000003 472 0x2 0x73a8 36
 Extern 192.168.15.1 192.168.15.1 0x80000001 161 0x2 0x6d9 36
 Extern 192.168.17.1 192.168.17.1 0x80000003 240 0x2 0xddfb 36

After the ABR for Area 0.0.0.3 begins aggregating the routes, the number of Type 3 LSAs sent to the
backbone area decreases to three, and two LSAs from that area, 10.0.8.0 and 10.0.13.0, are
combined into one, 10.0.0.0:

 aviva@RouterG> show
ospf database
 OSPF link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router 192.168.17.1 192.168.17.1 0x8000018c 20 0x2 0x8c71 60
 Router 192.168.18.1 192.168.18.1 0x80000124 2842 0x2 0x97cd 60
 Router *192.168.19.1 192.168.19.1 0x8000009c 367 0x2 0xb4c7 48
 Network *10.0.0.1 192.168.19.1 0x80000091 67 0x2 0x98af 32
 Network *10.0.1.2 192.168.19.1 0x80000090 667 0x2 0x92b3 32
 Network 10.0.2.1 192.168.18.1 0x8000009b 1892 0x2 0x6cd1 32
 Summary 10.0.0.0 192.168.17.1 0x80000001 20 0x2 0xf59f 28
 Summary 192.168.15.1 192.168.17.1 0x80000005 20 0x2 0xf13 28
 Summary 192.168.16.1 192.168.17.1 0x80000005 20 0x2 0x77ea 28
 ASBRSum 192.168.15.1 192.168.17.1 0x80000005 20 0x2 0x120 28
 OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Extern 10.0.15.0 192.168.15.1 0x80000002 10 0x2 0x3d02 36
 Extern 172.19.121.0 192.168.15.1 0x80000001 402 0x2 0x859a 36
 Extern 172.19.121.0 192.168.17.1 0x80000004 117 0x2 0x71a9 36
 Extern 192.168.15.1 192.168.15.1 0x80000001 402 0x2 0x6d9 36
 Extern 192.168.17.1 192.168.17.1 0x80000003 481 0x2 0xddfb 36

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.9. Enabling OSPF Authentication

Problem

You want to ensure that all OSPF protocol traffic that your router accepts comes from devices known to
you so that only trusted routers participate in determining the contents of the OSPF routing database.

Solution

You configure MD5 authentication for OSPF:

 [edit protocols

ospf area 0.0.0.0]
 aviva@RouterG# set authentication-type md5
 aviva@RouterG# set interface fe-0/0/1 authentication md5 1 key $1991poPPi
 aviva@RouterG# set interface fe-1/0/1 authentication md5 1 key $1991poPPi
 aviva@RouterG# show
 authentication-type md5;
 interface fe-0/0/1.0 {
 authentication {
 md5 1 key "9dEbgoZUjqP5GUApO1hcgoaJHq"; ## SECRET-DATA
 }
 }
 interface fe-1/0/1.0 {
 authentication {
 md5 1 key "9dEbgoZUjqP5GUApO1hcgoaJHq"; ## SECRET-DATA
 }
 }

Discussion

It is a good security measure to authenticate OSPF protocol packet exchanges to ensure that only
trusted routers participate in the OSPF network and in the exchange of Hello and LSA packets.

This recipe shows how to configure OSFP to use MD5 authentication. First, configure MD5
authentication for the entire area, then set the key, or password, for each interface. Each key has an
identifier; here, it is 1. MD5 creates an encoded checksum that is included in all transmitted OSPF
packets. The receiving router verifies this checksum before accepting the packet.

When you display the router's configuration after you have typed the password, you do not see the
password itself, only the encrypted form of the password. Someone casually glancing through the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

configuration would not see the actual password.

You can also configure a simple password for OSPF authentication, which includes a plain-text password
in the transmitted OSPF packets. Plain-text passwords are easy to break by devices that sniff network
traffic, so you should never use them when your goal is network security.

For authentication to work across the entire OSPF domain, you need to configure MD5 authentication
with the same key identifier and the same password on all OSPF interfaces, as shown in this recipe.
Once you have the encrypted version of the password, you can use it in the authentication-key
statement instead of the password itself. This is one way to minimize the number of people who see the
actual password.

 aviva@RouterG# set interface fe-1/0/1 authentication 1 key
 "9dEbgoZUjqP5GUApO1hcgoaJHq"

When you are looking at the configuration contents, pipe the output to hide the passwords:

 [edit]
 aviva@RouterG#
show protocols
ospf | except SECRET-DATA
 area 0.0.0.0 {

authentication-type md5;
 interface fe-0/0/1.0 {
 authentication {
 }
 }
 interface fe-1/0/1.0 {
 authentication {
 }
 }
 }

You can do the same thing in operational mode:

 aviva@RouterG> show configuration protocols
ospf | except SECRET-DATA
 area 0.0.0.0 {
 authentication-type md5;
 interface fe-0/0/1.0 {
 authentication {
 }
 }
 interface fe-1/0/1.0 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 authentication {
 }
 }
 }

As part of your security measures, you may, from time to time, want to transition from using one MD5
key to another. You can do this by configuring multiple MD5 keys, each with a unique key ID, and
setting the date and time to switch to the new key. Here, the new keys take effect at 12:01 a.m. on
the first day of the month for the next several months:

 [edit protocols ospf area 0.0.0.0]
 aviva@RouterG# set interface fe-0/0/1 authentication md5 1 key $1991poPPi
 aviva@RouterG# set interface fe-0/0/1 authentication md5 2 key NeWpsswdFEB start-time
 2006-02-01.00:01
 aviva@RouterG# set interface fe-0/0/1 authentication md5 3 key NeWpsswdMAR start-time
 2006-03-01.00:01
 aviva@RouterG# set interface fe-0/0/1 authentication md5 4key NeWpsswdAPR start-time
 2006-04-01.00:01

The start time specifies the time at which the router starts using the MD5 key for transmission. When
receiving packets, the router accepts packets with any MD5 key as long as the key ID specified in the
packet corresponds to a currently configured key, regardless of the key's start time.

Use the show ospf interface detail command to see which key is currently active:

 aviva@RouterG# run
show ospf interface detail
 Interface State Area DR ID BDR ID Nb
 rs
 t1-0/2/1.0 PtToPt 0.0.0.0 0.0.0.0 0.0.0.0
 0
 Type P2P, address 0.0.0.0, mask 0.0.0.0, MTU 1500, cost 2604
 adj count 0
 Hello 10, Dead 40, ReXmit 5, Not Stub
 Auth type MD5, Active key id 3, Start time 2002 Nov 19 10:00:00 PST
 t1-0/2/1.0 PtToPt 0.0.0.0 0.0.0.0 0.0.0.0
 0
 Type P2P, address 192.168.37.16, mask 255.255.255.255, MTU 1500, cost 2604
 adj count 0, Passive
 Hello 10, Dead 40, ReXmit 5, Not Stub
 Auth type MD5, Active key id 3, Start time 2006 Mar 1 00:01:00 PST

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.10. Redistributing Static Routes into OSPF

Problem

You have a single, low-speed link to a small-size customer and, instead of having the customer run
OSPF (or even RIP), you want to set up a static route to the customer.

Solution

Create a routing policy to redistribute static routes into OSPF:

 [edit policy-options]
 aviva@RouterG# set policy-statement export-statics term 1 from protocol static
 aviva@RouterG# set policy-statement export-statics term 1 then accept
 aviva@RouterG# show
 policy-statement export-statics {
 term 1 {
 from protocol static;
 then accept;
 }
 }

Then apply the policy to OSPF:

 [edit protocols ospf]
 aviva@RouterG# set export export-statics

Discussion

If you have small-size customers who don't need to run a dynamic routing protocol, such as OSPF or
RIP, and only need to connect to you using a static route, you create a routing policy to get their
routes into your OSPF network.

As an ISP, you might use static routes to represent your customer links and networks, especially for
small-size customers that you connect to with just a single link or a low-speed link. In these cases,
you want to redistribute these static links into your OSPF network. Create a simple routing policy that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accepts all static routes and then apply it as an export policy to OSPF. This adds Type 7 (AS External)
routes to the link-state database:

 aviva@RouterG> show ospf database
 OSPF link state database, area 0.0.0.0
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Router 192.168.17.1 192.168.17.1 0x800001c6 1633 0x2 0x13b3 60
 Router 192.168.18.1 192.168.18.1 0x8000015f 384 0x2 0xf833 60
 Router *192.168.19.1 192.168.19.1 0x800000f3 11 0x2 0x180b 48
 Network 10.0.0.2 192.168.17.1 0x80000004 1633 0x2 0xbf17 32
 Network 10.0.1.1 192.168.18.1 0x80000004 84 0x2 0xc014 32
 Network 10.0.2.1 192.168.18.1 0x800000b4 684 0x2 0x3aea 32
 OSPF AS SCOPE link state database
 Type ID Adv Rtr Seq Age Opt Cksum Len
 Extern *0.0.0.0 192.168.19.1 0x80000001 11 0x2 0x4b0a 36
 Extern *192.168.42.1 192.168.19.1 0x80000001 11 0x2 0xbf01 36

The only drawback is that if the link between the customer and the ISP goes down, the network still
appears to be reachable to the world, and you would need to stop advertising it if this occurred.
However, short links between a customer and an ISP should rarely or never fail.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.11. Adjusting OSPF Link Costs

Problem

You want to direct traffic within an OSPF area toward a particular interface.

Solution

Increase the cost on one interface to have OSPF use a different interface:

 [edit protocols ospf area 0.0.0.0]
 aviva@RouterJ# set interface fe-1/0/0.0 meTRic 3

Discussion

When choosing paths to a destination, OSPF uses the one with the lowest metric. By default, all links
faster than 100 Mbps have a metric of 1. This recipe shows how to adjust the metric in our three-
router backbone area so that traffic from RouterH always goes through RouterG instead of directly to
RouterJ. You might want to do this if the interface between RouterH and RouterJ is congested with
other traffic (see Figure 12-1).

With the default metric, traffic from RouterH to RouterJ goes out interface fe-1/0/0, which is one hop
away:

 aviva@RouterJ> show route 192.168.18.1
 inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.18.1/32 *[
OSPF/10] 00:26:19, metric 1
 > to 10.0.2.1 via fe-1/0/0.0

Use the traceroute command to verify this:

 [edit protocols ospf area 0.0.0.0 interface fe-1/0/0.0]
 aviva@RouterJ# run traceroute 192.168.18.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 traceroute to 192.168.18.1 (192.168.18.1), 30 hops max, 40 byte packets
 1 192.168.18.1 (192.168.18.1) 10.905 ms 9.060 ms 9.807 ms

If you change the metric value on the fe-1/0/0 interface to 2, you create an equal-cost path to
RouterH:

 [edit protocols ospf area 0.0.0.0]
 aviva@RouterJ# show
 interface fe-1/0/1.0;
 interface fe-1/0/0.0 {
 metric 2;
 }

The cost is 2, whether packets go through interface fe-1/0/0 or interface fe-1/0/1:

 [edit protocols ospf area 0.0.0.0]
 aviva@RouterJ# run show route 192.168.18.1
 inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.18.1/32 *[OSPF/10] 00:00:08, metric 2
 to 10.0.2.1 via fe-1/0/0.0
 > to 10.0.0.1 via fe-1/0/1.0

Because we want traffic to always go through RouterG, we need to set the metric to something
greater than 2, so in this recipe we set it to 3. The traffic now goes along the desired path:

 [edit protocols ospf area 0.0.0.0]
 aviva@RouterJ# run show route 192.168.18.1
 inet.0: 12 destinations, 12 routes (12 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.18.1/32 *[OSPF/10] 00:00:06, metric 2
 > to 10.0.0.1 via fe-1/0/1.0

The TRaceroute shows the path through interface 10.0.0.1 on RouterG:

 [edit protocols ospf area 0.0.0.0 interface fe-1/0/0.0]
 aviva@RouterJ# run traceroute 192.168.18.1
 traceroute to 192.168.18.1 (192.168.18.1), 30 hops max, 40 byte packets
 1 10.0.0.1 (10.0.0.1) 12.170 ms 8.826 ms 9.798 ms
 2 192.168.18.1 (192.168.18.1) 10.313 ms 15.829 ms 13.332 ms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The interfaces in this recipe are all Fast Ethernet interfaces (100 Mbps), so their default metric is 1.
This metric is assigned by OSPF using the following formula:

OSPF uses this formula for all "real" interfaces, which are interfaces that correspond to a physical
PIC. In the formula, the default reference bandwidth value is 100 Mbps, which is why Fast Ethernet
interfaces have a default metric of 1. For a 10 Mbps Ethernet interface, OSPF assigns a default metric
of 10 based on this formula. For interfaces faster than 100 Mbps, OSPF assigns a metric of 1 to them
all because the calculated value is a fraction that is less than 1 and OSPF rounds up to 1. Here's the
calculation for a Gigabit Ethernet (1,000 Mbps) interface:

The calculation for a SONET OC-192 interface looks like this:

OSPF would assign a default metric of 1 to both these interfaces because all fractions less than 1 are
rounded up to 1.

Having the same default metric is not necessarily a problem if all the interfaces are running at the
same speed. But if they operate at different speeds, when there are equal-cost paths to the same
destination, instead of traffic being routed across the fastest interface, the default behavior is to
equally distribute traffic across the different interfaces in a round-robin fashion. To have the interface
metrics that OSPF calculates accurately reflect the actual speeds of the interfaces, modify the default
reference bandwidth value. As an example, if your router has Fast Ethernet, Gigabit Ethernet, and
OC192 interfaces running OSPF, you can set the reference bandwidth to 10 Gbps:

 [edit protocols ospf]
 aviva@RouterJ# set reference-bandwidth 10g

With this configuration, OSPF assigns the Fast Ethernet interface a metric of 100, the Gigabit
Ethernet interface a metric of 10, and the OC192 interface a metric of 1. Because the OC192
interface has the lowest metric, OSPF selects it when routing traffic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.12. Improving OSPF Convergence Times

Problem

You want to speed up convergence of OSPF routes in case a path fails with no hardware indication,
which might happen on an Ethernet network.

Solution

Reduce the interval at which OSPF exchanges Hello messages and, in parallel, decrease the dead
interval:

 [edit protocols ospf area 0.0.0.0]
 aviva@RouterG# set interface fe-0/0/1 hello-interval 2
 aviva@RouterG# set interface fe-0/0/1 dead-interval 8
 aviva@RouterG# set interface fe-1/0/1 hello-interval 2
 aviva@RouterG# set interface fe-1/0/1 dead-interval 8

Discussion

The OSPF protocol specifications were developed when routers and network interfaces were slower to
allow enough time for LSAs to reach all nodes and for the SPF calculation to run on all routers.
Modern routers and interfaces are much faster, so one strategy for speeding up route convergence is
to modify the default OSPF timers. The base JUNOS OSPF code already optimizes convergence times
by doing fast link detection and flooding, by quickly regenerating LSAs, and by quickly scheduling SPF
calculations, so you don't often need to modify the timers.

When changing OSPF timers, you must modify each interface, changing the hello timer and dead
timer intervals. The default timer settings, as defined in the OSPF specification, are 10 seconds for
sending periodic Hello packets and 40 seconds for declaring the adjacency dead, or down (four times
the hello interval):

 aviva@RouterG> show ospf interface detail
 Interface State Area DR ID BDR ID Nbrs
 fe-0/0/1.0 DR 0.0.0.0 192.168.19.1 192.168.18.1 1
 Type: LAN, Address: 10.0.1.2, Mask: 255.255.255.0, MTU: 1500, Cost: 1
 DR addr: 10.0.1.2, BDR addr: 10.0.1.1, Adj count: 1, Priority: 128
 Hello: 10, Dead: 40, ReXmit: 5, Not Stub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Auth type: None
 fe-1/0/1.0 DR 0.0.0.0 192.168.19.1 192.168.17.1 1
 Type: LAN, Address: 10.0.0.1, Mask: 255.255.255.0, MTU: 1500, Cost: 1
 DR addr: 10.0.0.1, BDR addr: 10.0.0.2, Adj count: 1, Priority: 128
 Hello: 10, Dead: 40, ReXmit: 5, Not Stub
 Auth type: None

This recipe lowers the hello timer interval to two seconds and the dead timer interval to eight
seconds. You have to change the timers on each interface and on all routers in the area because
adjacencies can be established only between systems with the same timer values (as required by the
OSPF specifications). If you do not change the timers on all interfaces, OSPF cannot establish the
adjacency. Here, you see that the adjacency to the router at 10.0.1.1 through interface fe-0/0/1 has
broken because the timers are different:

 aviva@RouterG> show ospf neighbor
 Address Interface State ID Pri
Dead
 10.0.0.2 fe-1/0/1.0 Full 192.168.17.1 128 38

When the timers are the same, the adjacency comes back up:

 aviva@RouterG> show ospf neighbor
 Address Interface State ID Pri Dead

 10.0.1.1 fe-0/0/1.0 Full 192.168.18.1 128 33
 10.0.0.2 fe-1/0/1.0 Full 192.168.17.1 128 37

For data traveling at gigabit rates, even decreasing the OSPF hello timer may not detect failures fast
enough. An alternative to adjusting the OSPF timer intervals is to use the BFD, which detects
communication failures with a forwarding-plane next hop. BFD is useful on interfaces where you can't
detect failure quickly, such as Ethernet interfaces. Other interface types, such as SONET interfaces,
already have built-in failure detection, so you don't need to use BFD.

BFD is a simple hello protocol. A pair of systems exchange BFD packets periodically, and if a system
stops receiving the packets for long enough, some component in that particular bidirectional path to
the neighboring system is assumed to have failed. If you want to shorten the OSPF link failure
detection time to 1.5 seconds, set the BFD packet exchange interval to 500 milliseconds:

 [edit protocols ospf area 0.0.0.0]
 aviva@RouterG# set interface fe-0/0/1 bfd-liveness-detection minimum-interval 500

By default, BFD multiplies the packet exchange interval by three to determine the link detection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

failure time. Configuring an interval of 500 milliseconds results in a failure time of 1.5 seconds.

You also need to configure BFD on the interface at the other end of the link. Unlike the OSPF timers,
you do not have to enable BFD on all interfaces in the area. Use the show bfd session command to
see BFD information:

 aviva@RouterG>
show bfd session detail
 Transmit
 Address State Interface Detect Time Interval Multiplier
 10.0.1.1 Up fe-0/0/1.0 1.500 0.500 3
 Client OSPF, TX interval 0.500, RX interval 0.500, multiplier 3
 Session up time 00:13:02
 Local diagnostic None, remote diagnostic None
 Remote heard, hears us
 10.0.0.2 Up fe-1/0/1.0 1.500 0.500 3
 Client OSPF, TX interval 0.500, RX interval 0.500, multiplier 3
 Session up time 00:01:25
 Local diagnostic None, remote diagnostic CtlExpire
 Remote heard, hears us
 2 sessions, 2 clients
 Cumulative transmit rate 4.0 pps, cumulative receive rate 4.0 pps

This output shows two BFD sessions on the router's two interfaces. The BFD client is OSPF, and the
timers that we configured are shown. The last line for each interface, Remote heard, hears us,
indicates that the OSPF link is operating properly. If the link fails, neither side initially hears the
other:

 aviva@RouterG> show bfd session detail
 Transmit
 Address State Interface Detect Time Interval Multiplier
 10.0.1.1 Up fe-0/0/1.0 1.500 0.500 3
 Client OSPF, TX interval 0.500, RX interval 0.500, multiplier 3
 Session up time 00:16:55
 Local diagnostic None, remote diagnostic None
 Remote heard, hears us
 10.0.0.2 AdminDown fe-1/0/1.0 3.000 1.000 3
 Session down time 00:00:09, previous up time 00:05:09
 Local diagnostic NbrSignal, remote diagnostic AdminDown
 Remote not heard, doesn't hear us

Once the link is completely down and the BFD session fails, the link is no longer shown:

 aviva@RouterG> show bfd session detail
 Transmit

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Address State Interface Detect Time Interval Multiplier
 10.0.1.1 Up fe-0/0/1.0 1.500 0.500 3
 Client OSPF, TX interval 0.500, RX interval 0.500, multiplier 3
 Session up time 00:18:10
 Local diagnostic None, remote diagnostic None
 Remote heard, hears us
 1 sessions, 1 clients
 Cumulative transmit rate 2.0 pps, cumulative receive rate 2.0 pps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.13. Moving OSPF Traffic off a Router

Problem

You are getting ready to perform router maintenance and you want to move all OSPF traffic off the
router.

Solution

Configure the router so that it appears to be overloaded with OSPF traffic:

 [edit protocols ospf]
 aviva@RouterG#
set overload

Discussion

As you are preparing to perform maintenance on a router in a production network, you want to move
traffic off that router so that network services are not interrupted during your maintenance window.
The set overload command tricks the router into believing that it is overloaded and can't handle any
more OSPF transit traffic, and the result is that OSPF transit traffic is sent to other routers. OSPF
traffic destined to interfaces directly attached to the local router continues to reach the router.

To check that the OSPF traffic has moved off the router, use show interfaces commands to verify
that traffic has moved off the upstream interfaces. The detail and extensive versions of this
command report traffic statistics for most interface types. If the router is part of an LSP, use the show
mpls lsp transit command to verify that transit LSPs have moved off the router.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.14. Disabling OSPF on an Interface

Problem

You want to temporarily turn off OSPF on an interface.

Solution

Disable OSPF on the interface:

 [edit protocols ospf]
 aviva@RouterG# set area 0.0.0.0 interface fe-0/0/1.0 disable

To start OSPF again, remove the disable statement from the configuration:

 [edit protocols ospf]
 aviva@RouterG# delete area 0.0.0.0 interface fe-0/0/1.0 disable
 aviva@RouterG# commit

Discussion

To remove an interface from the OSPF network, you can disable it. Because you are removing the
interface only temporarily, you don't want to remove the configuration statements entirely. You see
that the adjacency to that interface's neighbor is no longer listed:

 aviva@RouterG> show ospf neighbor
 Address Interface State ID Pri Dead
 10.0.0.2 fe-1/0/1.0 Full 192.168.17.1 128 32

Also, the metric to that neighbor has increased from 1 to 2 because the neighbor is no longer directly
connected, and that traffic is being directed out the router's only active OSPF interface, fe-1/0/1:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterG> show route table inet.0 show route table inet.0 192.168.18.1
 192.168.18.1/32 *[OSPF/10] 00:00:45, metric 2
 > to 10.0.0.2 via fe-1/0/1.0

Another way to disable OSPF on an interface is with the deactivate command:

 [edit protocols ospf]
 aviva@RouterG# deactivate area 0.0.0.0 interface fe-0/0/1.0
 aviva@RouterG# commit
 aviva@RouterG# show
 area 0.0.0.0 {
 inactive: interface fe-0/0/1.0;
 interface fe-1/0/1.0;
 }

To start OSPF again on the interface, reactivate it:

 [edit protocols
ospf]
 aviva@RouterG# activate area 0.0.0.0 interface fe-0/0/1.0
 aviva@RouterG# commit

You can also temporarily disable OSPF on the router:

 [edit protocols ospf]
 aviva@RouterG# set disable
 aviva@RouterG# commit and-quit
 aviva@RouterG> show ospf neighbor
 OSPF instance is not running

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 12.15. Tracing OSPF Protocol Traffic

Problem

You are setting up OSPF on your network and want to keep a running log of OSPF protocol packets
that the router is sending to help track any problems that might occur during the configuration
process.

Solution

Set up a tracing file that captures information about OSPF protocol operations:

 [edit protocols ospf]
 aviva@RouterG# set traceoptions file ospf-log
 aviva@RouterG# set traceoptions flag hello
 aviva@RouterG# set traceoptions flag error
 aviva@RouterG# set traceoptions flag general

To stop the tracing, remove the traceoptions statement from the configuration:

 [edit protocols ospf]
 aviva@RouterG# delete traceoptions

Discussion

To debug OSPF operations, use the JUNOS tracing facility to track the packets that OSPF is sending.
You specify the name of the file to which you want to collect the information and the type of
information you want to trace. In this example, we are logging general OSPF traffic information as
well as Hello packets and errors in the ospf-log file, which is on the router's hard disk in the
directories /var/log (on M-series and T-series routers) and /cf/var/log (on J-series routers).

Some things you see in the logfile are Hello packets sent to and received from neighbors:

 Jun 14 21:49:36
OSPF rcvd Hello 10.0.16.2 -> 224.0.0.5 (fe-0/0/0.0, IFL 0x42)
 Jun 14 21:49:36 Version 2, length 48, ID 192.168.19.1, area 0.0.0.1
 Jun 14 21:49:36 checksum 0x0, authtype 0
 Jun 14 21:49:36 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Jun 14 21:49:36 dead_ivl 40, DR 10.0.16.1, BDR 10.0.16.2
 Jun 14 21:49:36
OSPF sent Hello 10.0.16.1 -> 224.0.0.5 (fe-0/0/0.0, IFL 0x42)
 Jun 14 21:49:36 Version 2, length 48, ID 192.168.42.1, area 0.0.0.1
 Jun 14 21:49:36 checksum 0x0, authtype 0
 Jun 14 21:49:36 mask 255.255.255.0, hello_ivl 10, opts 0x2, prio 128
 Jun 14 21:49:36 dead_ivl 40, DR 10.0.16.1, BDR 10.0.16.2

This log shows the values for two of the OSPF timers, the hello interval of 10 seconds (hello_ivl 10)
and the dead interval of 40 seconds (dead_ivl 40), as well as the address of the DR and BDR and the
priority to become the DR (128).

You also see changes to the adjacency changes when neighbors come up:

 Jun 14 21:49:36 RPD_
OSPF_NBRUP:
OSPF neighbor 10.0.16.2 (fe-0/0/0.0) state changed
 from Loading to Full due to OSPF loading done
 Jun 14 21:49:36 CHANGE 10.0.0.0/24 gw 10.0.16.2 OSPF pref 10/0
 metric 2/0 fe-0/0/0.0 <Active Int>
 Jun 14 21:49:36 ADD 10.0.0.0/24 gw 10.0.16.2 OSPF pref 10/0
 metric 2/0 fe-0/0/0.0 <Active Int>
 Jun 14 21:49:36 CHANGE 10.0.1.0/24 gw 10.0.16.2 OSPF pref 10/0
 metric 2/0 fe-0/0/0.0 <Active Int>
 Jun 14 21:49:36 ADD 10.0.1.0/24 gw 10.0.16.2 OSPF pref 10/0
 metric 2/0 fe-0/0/0.0 <Active Int>
 Jun 14 21:49:36 CHANGE 10.0.2.0/24 gw 10.0.16.2 OSPF pref 10/0
 metric 4/0 fe-0/0/0.0 <Active Int>
 Jun 14 21:49:36 ADD 10.0.2.0/24 gw 10.0.16.2 OSPF pref 10/0
 metric 4/0 fe-0/0/0.0 <Active Int>

Here are the adjacency changes when neighbors go down:

 Jun 14 22:00:26 RPD_OSPF_NBRDOWN: OSPF neighbor 10.0.16.2 (fe-0/0/0.0)
state changed from Full to Down due to Kill all neighbors
 Jun 14 22:00:26 RPD_OSPF_NBRDOWN: OSPF neighbor 10.0.21.2 (se-0/0/3.0) state changed
 from Full to Down due to Kill all neighbors
 Jun 14 22:00:26 OSPF: multicast address 224.0.0.5/32, route ignored
 Jun 14 22:00:26 OSPF: multicast address 224.0.0.5/32, route ignored
 Jun 14 22:00:26 CHANGE 10.0.0.0/24 gw 10.0.16.2 OSPF pref 10/0
 metric 2/0 fe-0/0/0.0 <Delete Int>
 Jun 14 22:00:26 CHANGE 10.0.1.0/24 gw 10.0.16.2 OSPF pref 10/0
 metric 2/0 fe-0/0/0.0 <Delete Int>
 Jun 14 22:00:26 CHANGE 10.0.2.0/24 gw 10.0.16.2 OSPF pref 10/0
 metric 4/0 fe-0/0/0.0 <Delete Int>
 Jun 14 22:00:26 RELEASE 10.0.21.0/24 gw (null) OSPF pref 10/0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 metric 12/0 se-0/0/3.0 <Release Int>
 Jun 14 22:00:26 CHANGE 10.0.22.0/24 gw (null) OSPF pref 10/0
 metric 24/0 se-0/0/3.0 <Delete Int>
 Jun 14 22:00:26 CHANGE 192.168.12.1/32 gw (null) OSPF pref 10/0
 metric 12/0 se-0/0/3.0 <Delete Int>
 Jun 14 22:00:26 CHANGE 192.168.17.1/32 gw 10.0.16.2
OSPF pref 10/0
 metric 2/0 fe-0/0/0.0 <Delete Int>
 Jun 14 22:00:26 CHANGE 192.168.18.1/32 gw 10.0.16.2
OSPF pref 10/0
 metric 2/0 fe-0/0/0.0 <Delete Int>
 Jun 14 22:00:26 rt_close: 8/11 routes proto
OSPF
 Jun 14 22:00:26
 Jun 14 22:00:26 CHANGE 224.0.0.5/32
OSPF pref 10/0 metric 1/0 <Delete
 NoReadvrt Int>
 Jun 14 22:00:26 rt_close: 1/1 route proto OSPF
 Jun 14 22:00:26
 Jun 14 22:00:26 Terminating OSPFv2 I/0

Over time, the OSPF logfiles can become very large and fill the router's hard disk. To save a logfile for
future analysis, you can copy the file to a server:

 aviva@RouterG> file copy /cf/var/log/ospf-log server1:ospf-log-20050614

If you no longer need the information in the file, you can delete the contents:

 aviva@RouterG> clear log ospf-log

Deleting the file's contents does not turn off tracing.

To stop the tracing altogether, you can remove the traceoptions statement from the configuration
with the delete traceoptions command or leave the statements in the configuration and simply
deactivate them so that they do not take effect when you commit the configuration:

 [edit protocols ospf]
 aviva@RouterG# deactivate traceoptions

To delete the logfiles and the rolled-over version of the file, use the file delete command:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterG> file delete ospf-log*

When debugging OSPF, you can set one or more of the following trace flags to capture OSPF
information:

 [edit protocols ospf traceoptions]
 aviva@RouterG# set flag ?
 Possible completions:
 all Trace everything
 database-description Trace database description packets
 error Trace errored packets
 event Trace OSPF state machine events
 flooding Trace LSA flooding
 general Trace general events
 hello Trace hello packets
 lsa-ack Trace LSA acknowledgement packets
 lsa-request Trace LSA request packets
 lsa-update Trace LSA update packets
 normal Trace normal events
 packet-dump Dump the contents of selected packet types
 packets Trace all OSPF packets
 policy Trace policy processing
 route Trace routing information
 spf Trace SPF calculations
 state Trace state transitions
 task Trace routing protocol task processing
 timer Trace routing protocol timer processing

Using some of these other flags, you can debug adjacencies to see whether they come up:

 Jun 14 22:22:02
OSPF rcvd LSUpdate 10.0.16.1 -> 224.0.0.5 (fe-1/0/0.0, IFL 0x44)
 Jun 14 22:22:02 Version 2, length 124, ID 192.168.42.1, area 0.0.0.1
 Jun 14 22:22:02 checksum 0x0, authtype 0
 Jun 14 22:22:02 adv count 1
 Jun 14 22:22:02 id 192.168.42.1, type Router (0x1), age 3
 Jun 14 22:22:02 options 0x2
 Jun 14 22:22:02 adv rtr 192.168.42.1, seq 0x80000015, cksum 0x8c54, len 96
 Jun 14 22:22:02 bits 0x0, link count 6
 Jun 14 22:22:02 id 10.0.16.2, data 10.0.16.1, type Transit (2)
 Jun 14 22:22:02 TOS count 0, TOS 0 metric 1
 Jun 14 22:22:02 id 172.19.121.0, data 255.255.255.0, type Stub (3)
 Jun 14 22:22:02 TOS count 0, TOS 0 metric 1
 Jun 14 22:22:02 id 172.100.1.0, data 255.255.255.0, type Stub (3)
 Jun 14 22:22:02 TOS count 0, TOS 0 metric 1
 Jun 14 22:22:02 id 192.168.12.1, data 10.0.21.1, type PointToPoint (1)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Jun 14 22:22:02 TOS count 0, TOS 0 metric 12
 Jun 14 22:22:02 id 10.0.21.0, data 255.255.255.0, type Stub (3)
 Jun 14 22:22:02 TOS count 0, TOS 0 metric 12
 Jun 14 22:22:02 id 192.168.42.1, data 255.255.255.255, type Stub (3)
 Jun 14 22:22:02 TOS count 0, TOS 0 metric 0

You can also check that the SPF calculation is performed:

 Jun 13 16:55:20
OSPF SPF start, area 0.0.0.0
 Jun 13 16:55:20
OSPF add LSA Router (192.168.19.1, 192.168.19.1) distance 0 to SPF
 list
 Jun 13 16:55:20 Considering router link Transit 10.0.1.2 10.0.1.2
 Jun 13 16:55:20 Examining network link 192.168.19.1
 Jun 13 16:55:20 Back link found
 Jun 13 16:55:20 Added to candidate list at distance 1
 Jun 13 16:55:20 No nexthops, parent is root
 Jun 13 16:55:20 Network LSA, adding interface nexthop
 Jun 13 16:55:20 IP Nexthop #1 (null):0.0.0.0 (fe-0/0/1.0) added
 Jun 13 16:55:20 Considering router link Transit 10.0.0.1 10.0.0.1
 Jun 13 16:55:20 Examining network link 192.168.19.1
 Jun 13 16:55:20 Back link found
 Jun 13 16:55:20 Added to candidate list at distance 1
 Jun 13 16:55:20 No nexthops, parent is root
 Jun 13 16:55:20 Network LSA, adding interface nexthop
 Jun 13 16:55:20 IP Nexthop #1 (null):0.0.0.0 (fe-1/0/1.0) added
 Jun 13 16:55:20 Adding SPF route 10.0.1.0/24
 Jun 13 16:55:20 IP Nexthop #1 (null):0.0.0.0 (fe-0/0/1.0) added
 Jun 13 16:55:20 IP Route added with cost 1 (fresh)
 …
 Jun 13 16:55:20 SPF elapsed time 0.002172s
 Jun 13 16:55:20 Adding stub route 192.168.19.1/32
 Jun 13 16:55:20 IP Route added with cost 0
 Jun 13 16:55:20 IP Nexthop #1 10.0.1.1:0.0.0.0 (fe-0/0/1.0) added
 …
 Jun 13 16:55:20 Stub elapsed time 0.000567s
 Jun 13 16:55:20 Interarea elapsed time 0.000007s
 Jun 13 16:55:20 External elapsed time 0.000003s
 Jun 13 16:55:20 NSSA elapsed time 0.000002s
 Jun 13 16:55:20 Route 10.0.0.0/24 is unchanged
 Jun 13 16:55:20 Route 10.0.1.0/24 is unchanged
 Jun 13 16:55:20 CHANGE 10.0.2.0/24 gw 10.0.1.1 OSPF pref 10/0
 metric 10001/0 fe-0/0/1.0 <Delete Int>
 Jun 13 16:55:20 CHANGE 10.0.2.0/24 gw 10.0.0.2 OSPF pref 10/0
 metric 2/0 fe-1/0/1.0 <Active Int>
 Jun 13 16:55:20 ADD 10.0.2.0/24 gw 10.0.0.2 OSPF pref 10/0
 metric 2/0 fe-1/0/1.0 <Active Int>
 Jun 13 16:55:20 Route 10.0.2.0/24 has changed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Jun 13 16:55:20 Considering autosummary for 10.0.2.0/24, summary possible=1
 Jun 13 16:55:20 Considering NSSA autosummary for 10.0.2.0/24
 Jun 13 16:55:20 CHANGE 192.168.17.1/32 gw 10.0.1.1 OSPF pref 10/0
 metric 10001/0 fe-0/0/1.0 <Delete Int>
 Jun 13 16:55:20 CHANGE 192.168.17.1/32 gw 10.0.0.2 OSPF pref 10/0
 metric 1/0 fe-1/0/1.0 <Active Int>
 Jun 13 16:55:20 ADD 192.168.17.1/32 gw 10.0.0.2 OSPF pref 10/0
 metric 1/0 fe-1/0/1.0 <Active Int>
 Jun 13 16:55:20 Route 192.168.17.1/32 has changed
 Jun 13 16:55:20 Considering autosummary for 192.168.17.1/32, summary possible=1
 Jun 13 16:55:20 Considering NSSA autosummary for 192.168.17.1/32
 Jun 13 16:55:20 Route 192.168.18.1/32 is unchanged
 Jun 13 16:55:20 Route 192.168.19.1/32 has been deleted
 Jun 13 16:55:20 Considering autosummary for 192.168.19.1/32, summary possible=0
 Jun 13 16:55:20 All autosummaries deleted
 Jun 13 16:55:20 Considering NSSA autosummary for 192.168.19.1/32
 Jun 13 16:55:20 Route 192.168.17.1 has changed
 Jun 13 16:55:20 Considering autosummary for 192.168.17.1, summary possible=0
 Jun 13 16:55:20 All autosummaries deleted
 Jun 13 16:55:20 Considering NSSA autosummary for 192.168.17.1
 Jun 13 16:55:20 Route 192.168.18.1 is unchanged
 Jun 13 16:55:20 rt_close: 4/3 routes proto OSPF
 Jun 13 16:55:20
 Jun 13 16:55:20 Cleanup elapsed time 0.001236s
 Jun 13 16:55:20 Total elapsed time 0.004206s

See Also

Recipe 5.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 13. BGP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

The IGPs OSPF, IS-IS, and RIP maintain the mapping for the topology within a single administrative
domain or AS, along with the set of best paths between systems within the domain. Each AS uses
one or more common IGPs and common metrics to determine how to route packets within the AS.
The administration of an AS appears to other ASs to have a single coherent interior routing scheme
and presents a consistent picture of what destinations are reachable through it.

To handle inter-AS routing, IGPs use an EGP. EGPs keep track of how routing domains are connected
to each other and the sequence of domains that must be traversed to reach a particular destination.
Although a number of EGPs were developed in the late 1980s, the Border Gateway Protocol (BGP) is
the only one currently being used on IP networks and the Internet. Version 1 of BGP was introduced
in 1989, and the current iteration, Version 4, is defined in RFC 1771 and has been in use since 1995.
A number of additional RFCs define extensions to the base BGP protocol (see
http://www.bgp4.as/rfc).

BGP is the routing protocol that holds the Internet together, providing the mesh-like connectivity of
Internet service provider (ISP) networks that forms what we call the Internet. ISPs use BGP to
connect to each other, forming the virtual backbone of the Internet. Large enterprises also
sometimes use BGP to connect to their ISPs, as well as to connect portions of their internal corporate
network.

BGP uses a path vector algorithm to determine network topology and paths to destinations. This
algorithm defines a route as a pairing between a destination and the attributes of the path to that
destination. It considers multiple attributes of the path in order to choose the best route to the
destination. In comparison, a distance-vector protocol uses a single distance metric to choose the
best route. BGP routing updates carry path information, which is a full list of the transit ASs that
must be traversed between the AS receiving the update and the AS that can deliver the packet using
its IGP. BGP uses this list to eliminate loops in the path because a router can check the list of ASs to
see whether a route has already passed through it. BGP treats each AS equally when considering the
path, no matter how big or small it is. BGP does not know how many routers or what type of links are
in an AS.

BGP uses TCP port 179 for transport. BGP relies on basic TCP connections to reach its peers, using
the fragmentation, retransmission, acknowledgment, and sequencing functions in TCP. If two routers
cannot establish a TCP connection between them, they will not be able to establish BGP peering.

BGP requires that all peering sessions be configured explicitly between BGP neighbors. There are two
types of BGP peerings, external BGP (EBGP) and internal BGP (IBGP). The basic distinction between
them is that an EBGP peering is between two ASs that have different AS numbers and an IBGP
peering is within a single AS so the peers have the same AS number. An EBGP peering is between
two BGP routers that are directly connected to each other. IBGP peerings can be among multiple
routers within an AS. IBGP routers must create a full mesh of IBGP peering sessions to communicate
BGP routing information with each other. This full mesh can be physical connections, where all IBGP
routers are directly connected and adjacent to each other. Typically, though, the full mesh is virtual,
created in the router software configuration, and the connectivity is provided by an IGP. A third type

http://www.bgp4.as/rfc
http://lib.ommolketab.ir
http://lib.ommolketab.ir

of BGP peering, called multihop or EBGP multihop, allows BGP to set up sessions with neighbors in
other ASs that are not directly connected.

BGP requires that each AS have a 16-bit AS number. AS numbers range from 0 tHRough 65535 and
are globally unique across the Internet. BGP uses the AS number to prevent routing loops. AS
numbers are doled out in blocks to each of the regional Internet registries (ARIN, APNIC, RIPE,
AfriNIC, and LatNIC), and the regional registries assign AS numbers to individual organizations. The
AS numbers 64512 tHRough 65534 are reserved for private use, but you can use these on internal
enterprise networks as long as the numbers are unique within your network. The examples in this
chapter use private AS numbers as well as RFC 1918 private IP addresses. This is purely for
demonstration purposesyou should never allow private AS numbers or private IP addresses to reach
the public Internet.

By default, BGP routers accept all BGP information from EBGP peers and advertise all BGP
information to all EBGP peers. BGP routers advertise all BGP information to IBGP peers if it comes
from an EBGP peer and advertise paths learned from IBGP peers only to external peers. BGP does
not advertise its internal paths to IBGP peers. This is done instead by IGP. To prevent routing loops,
a BGP router does not, by default, accept routes that contain its own AS number.

BGP makes extensive use of routing policy to allow ISPs to enforce administrative policies. The
JUNOS software provides both inbound and outbound policy controls at different levels: for all BGP
peers, for groups of peers, and for individual peers. A policy with a narrower scope overrides one with
a broader scope. Stated another way, a policy applied to a group overrides a BGP-wide policy, and a
policy applied to a peer overrides both a group and BGP-wide policy.

Multiprotocol BGP (MBGP), defined in RFC 2858, is an extension to BGP that supports other
protocols, including IPv6, MPLS, and VPNs.

In choosing routes toward a destination, if there is more than one route to the same destination, BGP
uses an algorithm to select a single route to use (see the Introduction to Chapter 8). Note that other
router vendors may follow a slightly different set of rules to determine the active route.

For more information about BGP, see BGP4: Inter-Domain Routing in the Internet (Addison-Wesley).

BGP Attributes

BGP routers exchange routes, or NLRI, with their neighbors. An NLRI consists of a route prefix and
the BGP attributes associated with the route. Attributes contain information about a route, such as
where it came from and how to reach it, that BGP uses to choose the best path to a destination. A
number of attributes were defined in the original BGP specification, and, over time, attributes have
been added to extend the functionality of BGP. Compared to IGP routes, which generally just carry
the route, a next hop, metric, and an optional tag, BGP routes typically have about a dozen attributes
associated with them.

There are several types of attributes. Well-known attributes are supported by all BGP
implementations. Mandatory attributes are included with every prefix. If they are missing, the
receiving BGP router will generate an error message. Discretionary attributes are those that BGP
routers must recognize and support but don't have to be included with every prefix. When a BGP
router passes a prefix to its peers, it includes all well-known, mandatory, and discretionary attributes
associated with the prefix, either in the state they were received or in the state after they were

http://lib.ommolketab.ir
http://lib.ommolketab.ir

modified when they passed through the local AS.

BGP routers can also include optional attributes with prefixes, or those that are not necessarily
supported by all BGP routers. Optional attributes can be transitive, which means that BGP must
include the information when sending the prefix to another router even if the sending router doesn't
understand the option, or nontransitive, which allows a router that doesn't understand the option to
silently drop it when advertising the prefix.

The following are some of the common BGP attributes. Most BGP implementations understand these
attributes.

ORIGIN (well-known, mandatory)

Designates how BGP learned about the route. It can be one of the following:

I

Route was originally learned from an IGP in the originating AS.

E

Route was originally learned from an EGP.

Incomplete

Route's source is unknown or BGP doesn't have complete knowledge of its origin.

AS_PATH (well-known, mandatory)

Contains a list of AS numbers that form the path to a destination network. There are two types
of AS path attributes. The AS_SEQUENCE attribute indicates the networks that the route has
transited from the originating AS to the local AS. When advertising a prefix to an EBGP peer, a
BGP router modifies the AS path, prepending its AS by adding it to the beginning of the list.
The last AS in the path sequence is the originator of the route. For example, in the AS path
65500 65505 65100, the route originated at AS 65100 and the last AS it passed through was
65500. BGP uses the AS path for loop avoidance among ASs. The second type of AS path
attribute is AS_SET, which is an unordered list of AS numbers along the path to the
destination.

NEXT_HOP (well-known, mandatory)

Contains the IP address of the BGP router that is the next hop toward the destination. The BGP
router selects the next hop based on its local routing table. For routes learned from a different
AS, the next hop is the IP address of the physical interface to a remote router. If the
advertising and receiving routers are in the same AS and the route is in the same AS, the BGP
next hop is the IP address of the advertising router. If the route is in a different AS, the BGP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

next hop is the IP address of a remote BGP router.

LOCAL_PREF (well-known, optional)

Indicates the degree of preference for routes learned by IBGP within an AS. BGP uses this
information to choose or favor an exit point from the AS. The higher the preference, the more
preferred a route is. This attribute is distributed only in IBGP routing updates.

MED or MULTI_EXIT_DESC (optional, nontransitive)

The multiple exit discriminator is used to determine the exit point from one AS to another AS
when there are multiple equivalent paths between the ASs and when all other factors in
determining the exit point are equal. The MED is effectively the BGP metric and is a common
way for one ISP to make another ISP use the desired link between the two ISPs. Because the
MED is nontransitive, it is sent only to adjacent ASs.

ATOMIC_AGGREGATE (well-known, optional)

Indicates that the route is an aggregate of several route prefixes. BGP sets this attribute to
indicate that some route information has been lost in the aggregation process.

AGGREGATOR (optional, transitive)

Indicates that the BGP router has summarized a range of prefixes.

COMMUNITY (optional, transitive)

Identifies an administrative or logical grouping of routes that share routing policies.
Communities are represented by an identifier that includes the 16-bit AS number and a 16-bit
community number. For example, in 65500:1001, the AS number is 65500 and the community
number is 1001. BGP has three well-known communities:

NO_EXPORT

Routes cannot be advertised to EBGP peers but can be advertised within a BGP
confederation.

NO_ADVERTISE

Routes cannot be advertised at all.

LOCAL_AS

Routes cannot be advertised to EBGP peers, even if the peers are in the same
confederation.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MP_REACH_NLRI and MP_UNREACH_NLRI (optional, nontransitive)

Carry IPv6 NLRI information in MBGP.

ORIGINATOR_ID (optional, nontransitive)

Identifies a route reflector for IBGP. It is a 32-bit value that indicates the originator of the
route within an AS.

CLUSTER_LIST (optional, nontransitive)

Lists route reflection identifiers of the clusters through which the route has passed. If a cluster
sees its own identifier in the list, a loop has occurred and the route is ignored.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.1. Configuring a BGP Session Between Routers
in Two ASs

Problem

You want to configure BGP on the border routers that connect the two different ASs.

Solution

Configure the autonomous system number and router ID on each router:

 [edit routing-options]
 aviva@RouterF# set autonomous-system 65500
 aviva@RouterF# set router-id 192.168.16.1

Then configure an EBGP session to the border router in the other AS:

 [edit protocols bgp]
 aviva@RouterF# set group session-to-AS65505 type external
 aviva@RouterF# set group session-to-AS65505 peer-as 65505
 aviva@RouterF# set group session-to-AS65505 neighbor 10.0.31.1
 [edit protocols]
 aviva@RouterF# show
 bgp {
 group session-to-AS65505 {
 type external;
 peer-as 65505;
 neighbor 10.0.31.1;
 }
 }

Discussion

The basic configuration of EBGP is very straightforward, and the configuration of the two EBGP peers
is pretty much identical. This recipe shows how to configure a session between the two border

http://lib.ommolketab.ir
http://lib.ommolketab.ir

routers shown in Figure 13-1.

Figure 13-1. EBGP network

You define the router's AS number and its router ID. You don't configure these in the [edit
protocols bgp] hierarchy but rather in the [edit routing-options] hierarchy because these two
properties are not specific to BGP and can be used by other routing protocols. BGP includes the 32-bit
router ID in Open messages when establishing a BGP connection. If you don't manually set the router
ID, the JUNOS software uses the IP address on the lo0 interface. However, it is good practice to
configure the router ID so the address included in Open messages is always clear.

For an EBGP peering connection, the AS numbers must be different on the two routers. In this recipe,
RouterF is in AS 65500 and RouterD is in AS 65505.

In the JUNOS BGP configuration, you place BGP neighbors into peer groups so you can apply the
same policies and other characteristics to an entire group of neighbors. Each peer group is identified
by a name. In this recipe, the group name is session-to-AS65505. While multiple peers can be
members of the same group, it is good practice to configure a separate group for each external peer,
especially if the external peer is untrusted.

Within a group, you need to configure three things to set up the EBGP session:

Use the type external statement to define the session as an external one.1.

Set the AS number of the remote peer AS (here, 65505).2.

Specify the address of the neighboring border router (here, 10.0.31.1).3.

For EBGP sessions, use the peer router's interface address. You can use the interface address instead
of the router's lo0 address because, in most cases, the link between ASs is a point-to-point WAN link.
If this link goes down, the peer router is unreachable anyway, so the remote AS would also be
unreachable.

To establish the EBGP session, configure a similar EBGP group on the other border router:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit routing-options]
 aviva@RouterD# show
 router-id 192.168.14.1;
 autonomous-system 65505;

 [edit protocols]
 aviva@RouterD# show
 bgp {
 group session-to-AS65500 {
 type external;
 peer-as 65500;
 neighbor 10.0.31.2;
 }
 }

Another useful bit of information to set for each neighbor is a text description of the peering session:

 [edit protocols bgp]
 aviva@RouterF# set group session-to-AS65505 description "EBGP to Customer A"

This is especially useful to help identify peering sessions when many sessions are configured on a
single router.

After you have configured the two peer routers, check that they have established a BGP connection:

 aviva@RouterF>
show bgp neighbor
 Peer: 10.0.31.1+1778 AS 65505 Local: 10.0.31.2+179 AS 65500
 Description: EBGP to Customer A
 Type: External State: Established Flags: <Sync>
 Last State: OpenConfirm Last Event: RecvKeepAlive
 Last Error: None
 Options: <Preference HoldTime PeerAS Refresh>
 Holdtime: 90 Preference: 170
 Number of flaps: 0
 Peer ID: 192.168.14.1 Local ID: 192.168.16.1 Active Holdtime: 90
 Keepalive Interval: 30 Peer index: 0
 Local Interface: t1-0/0/3.0
 NLRI advertised by peer: inet-unicast
 NLRI for this session: inet-unicast
 Peer supports Refresh capability (2)
 Table inet.0 Bit: 10000
 RIB State:
BGP restart is complete
 Send state: in sync

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Active prefixes: 0
 Received prefixes: 0
 Suppressed due to damping: 0
 Advertised prefixes: 0
 Last traffic (seconds): Received 19 Sent 19 Checked 19
 Input messages: Total 12 Updates 0 Refreshes 0 Octets 254
 Output messages: Total 13 Updates 0 Refreshes 0 Octets 273
 Output Queue[0]: 0

The third line of the output shows that the session has been established. The current state of the BGP
connection is Established. If the connection isn't up, but is in the process of establishing itself, this
field shows the current state of the BGP session. These states correspond to the session
establishment states defined in RFC 1771:

Idle

This is the initial stage of establishing a connection, when BGP is waiting for a start event.

Connect

BGP is waiting for TCP to establish its connection between the two peers.

Active

BGP is actively attempting to connect to its peer.

OpenSent

The local BGP peer has sent an open request to the peer and is waiting to receive an open
message back.

OpenConfirm

BGP acknowledges that it has received an open message from the peer and is waiting to
receive a keepalive message.

When a BGP session doesn't get established, the state often remains as Connect or Active. To
troubleshoot the problem, use the show interfaces terse and show interfaces commands to check
that the interfaces between the two routers are up and configured properly. Check the BGP
configuration on both routers, making sure that the AS numbers are correct. Also, check the current
state of the TCP session with the show system connections extensive command (see Recipe 13.3).

The remainder of the third line and the next two lines provide additional information about the
session. The Last State field shows the previous state of the BGP session, which is OpenConfirm, the
BGP message the two peers exchange when they have confirmed that they will indeed establish a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

connection.

This command also shows other information about the BGP session. The first line shows the
addresses and AS number of the peer border router and the address and AS number of the local
router:

 Peer: 10.0.31.1+1778 AS 65505 Local: 10.0.31.2+179 AS 65500

The number following the remote peer's address is the TCP port number used for the connection. The
second line shows the peer description that you configured with the set description command.

The Options line shows the BGP options that the peers have agreed to use for the session:

 Options: <Preference HoldTime PeerAS Refresh>

The next lines of the output show the specific values of options and other information about the
session:

 Holdtime: 90 Preference: 170

Holdtime is the hold timer value, which is the maximum length of time that one peer will wait to get a
BGP message from the other side (either an update or a keepalive message) before assuming that
this session is down. RPD uses the Preference value to select among routes learned from different
sources (see Table 8-2). These two output fields report the values configured with the hold-time and
preference statements. Because we haven't configured these values, both fields show the default
values: 170 for the route preference and 90 seconds for the hold time (three times the default
keepalive message interval of 30 seconds).

A few lines down in the output, you see the keepalive interval. The Number of flaps field tells you
whether the BGP session has gone down and come back up:

 Number of flaps: 0

Because we just established the session, the value is 0. You can use this field to track whether the
session has been interrupted. The Peer ID and Local ID fields show the router ID of each peer, which
are configured with the set routing-options router-id command. The Active Holdtime field is the
hold timer that has been negotiated between the BGP peers and is actually being used on the
session.

 Peer ID: 192.168.14.1 Local ID: 192.168.16.1 Active Holdtime: 90

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The next several lines show the NLRI learned from the BGP update messages sent on this session.
These two lines show the address family that is being advertised by the peer and used by the
session, which can be either unicast (as shown here) or multicast:

 NLRI advertised by peer: inet-unicast
 NLRI for this session: inet-unicast

The route refresh line shows that the peer supports the BGP route refresh capability, defined in RFC
2918, which allows BGP peers to readvertise their prefixes to the peer. Route refresh facilitates
nondisruptive routing-policy changes.

Next is information about routes learned from BGP in the inet.0 routing table:

 Table inet.0 Bit: 10000
 RIB State:
BGP restart is complete
 Send state: in sync
 Active prefixes: 0
 Received prefixes: 0
 Suppressed due to damping: 0
 Advertised prefixes: 0

The last few lines show traffic statistics for the session:

 Last traffic (seconds): Received 19 Sent 19 Checked 19
 Input messages: Total 12 Updates 0 Refreshes 0 Octets 254
 Output messages: Total 13 Updates 0 Refreshes 0 Octets 273
 Output Queue[0]: 0

The show bgp summary command also shows information about the BGP connection that you can use
to determine whether the session has been established:

 aviva@RouterF> show bgp summary
 Groups: 1 Peers: 1 Down peers: 0
 Table Tot Paths Act Paths Suppressed History Damp State Pending
 inet.0 0 0 0 0 0 0
 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#A
 ctive/Received/Damped…
 10.0.31.1 65505 29 30 0 0 13:56 0/0/0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 0/0/0

The first line shows the number of groups configured (here, 1) and the number of peers that are up
(1) and down (0). Because our router currently has just one peer, this line tells us that the peer is up.
The Table portion of the output provides a summary of the BGP route information in each routing
table. This output shows that the inet.0 routing table doesn't yet have any BGP routes.

The Peer portion of the output shows the address of the BGP peer (10.0.31.1), its AS number
(65505), and traffic statistics for the session. The State column shows three values separated by
slashes that correspond to the states Active/Received/Damped. If the session with the neighbor is
actively establishing itself but is not yet up, the State column shows Active. If the state is Connect or
Idle and has remained that way for more than several minutes (the Last Up/Dwn field tells how long
the neighbor has been in the particular state), this is a sign that the connection is not establishing.
Use the show interfaces terse command to check that the physical connection to the peer is
physically up and the show chassis hardware command to make sure that the network interface card
is still installed and present in your router. If you determine that the Layer 1 and Layer 2 portions of
the connection are functioning, move up the protocol stack. Try pinging the remote IP address to
help identify if any filters are in place that might block the connection. You can also try ICMP tests
and a Telnet test from the local IP address to port 179 on the remote IP address to determine
whether you can establish a socket between the two IP addresses.

When the State column shows three numbers separated by slashes, the BGP session is up. The
values are the number of routes received from the neighbor, the number of routes accepted as active
and being used in the forwarding table, and the number of routes that have been damped. The
current state is 0/0/0, and the previous state of the session, on the second line of output, is 0/0/0.

The remaining columns for the peer show the number of packets received from (InPkt) and sent to
(OutPkt) the peer; the number of packets queued to be sent to the peer (OutQ), which is usually 0
because the queue is emptied quickly; the number of times the BGP session has flapped (gone down
and then come back up); and how long it has been since the neighbor was established (Last Up/Dwn).

Why does the State column show that there are no BGP routes? Looking at the routing table confirms
that the router hasn't learned any routes from BGP:

 aviva@RouterF> show route
 inet.0: 10 destinations, 10 routes (10 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 1w0d 22:18:02
 > to 172.19.121.1 via fe-0/0/0.0
 10.0.8.0/24 *[Direct/0] 1w0d 22:17:55
 > via fe-0/0/1.0
 10.0.8.2/32 *[Local/0] 1w0d 22:18:05
 Local via fe-0/0/1.0
 10.0.13.0/24 *[Direct/0] 05:30:25
 > via t1-0/0/2.0
 10.0.13.2/32 *[Local/0] 05:30:27
 Local via t1-0/0/2.0
 10.0.31.0/24 *[Direct/0] 05:30:27
 > via t1-0/0/3.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10.0.31.2/32 *[Local/0] 05:30:27
 Local via t1-0/0/3.0
 172.19.121.0/24 *[Direct/0] 1w0d 22:18:02
 > via fe-0/0/0.0
 172.19.121.116/32 *[Local/0] 1w0d 22:18:05
 Local via fe-0/0/0.0
 192.168.16.1/32 *[Direct/0] 1d 22:22:13
 > via lo0.0

Sure enough, no routes have been learned from BGP. You need a routing policy to redistribute the
desired information from AS 65505 into the local AS. Create a routing policy on each peer so that it
exports static routes into BGP:

 [edit policy-options policy-statement send-statics]
 aviva@RouterF# set term 1 from protocol static
 aviva@RouterF# set term 1 then accept

Then apply this policy to the EBGP group:

 [edit protocols bgp group session-to-AS65505]
 aviva@RouterG# set export send-statics

Looking at the remote peer router, you now see routes learned from BGP:

 aviva@RouterD> show route
 inet.0: 11 destinations, 15 routes (11 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 1w0d 22:33:16
 > to 172.19.121.1 via t1-0/0/3.0
 [BGP/170] 00:07:27, localpref 100
 AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 10.0.24.2/32 *[Local/0] 1d 23:00:04
 Reject
 10.0.29.0/24 *[Direct/0] 05:31:20
 > via fe-0/0/1.0
 10.0.29.2/32 *[Local/0] 05:31:20
 Local via fe-0/0/1.0
 10.0.31.0/24 *[Direct/0] 05:31:20
 > via t1-0/0/3.0
 [BGP/170] 00:05:02, localpref 100
 AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10.0.31.1/32 *[Local/0] 05:31:20
 Local via t1-0/0/3.0
 172.19.121.0/24 *[Direct/0] 4d 20:23:23
 > via fe-0/0/0.0
 [BGP/170] 16:47:48, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0
 172.19.121.116/32 *[Local/0] 4d 20:23:23
 Local via fe-0/0/0.0
 192.168.14.1/32 *[Direct/0] 1w0d 22:33:44
 > via lo0.0
 192.168.16.1/32 *[BGP/170] 00:05:02, localpref 100
 AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0

The BGP route entries start with [BGP/170], and the router has learned four routes from BGP:

10.0.31.0/24 is the subnet that the BGP session is running on.

192.168.16.1/32 is the peer's loopback address.

0.0.0.0/0 is the default gateway address.

172.19.121.1 goes to another network internal to the lab.

Each BGP route also contains specific BGP information. localpref is the value of the BGP local
preference (LOCAL_PREF) attribute, which is the metric that BGP assigns to the route. Because BGP
learned these routes as a result of the send-statics policy, which you defined to export static routes
into BGP, the JUNOS BGP software assigns them a local preference of 100 by default. If these routes
were learned from BGP and already had a local preference value, that value would not be changed.

The AS path line lists all AS paths from the AS_PATH attribute, which shows the ASs through which
the announcement for the prefix has traveled. The first AS in the path is the most recent AS, and the
last AS is the originating AS. All routes in this output have come directly from the peer AS, so there is
just one AS number in the path, AS 65500.

Following the path is the information from the BGP ORIGIN attribute, which indicates how BGP
learned the prefix. The I here means that the prefix was learned from an IGP. Routes learned from
an EGP peer would have an E, and those learned some other way would show as INCOMPLETE. The
final line for each BGP route entry shows the next hop toward the destination and the interface the
router will use to reach that next hop. Of the three BGP routes, the one to 192.168.16.1/32 is active
and is marked with an asterisk.

Checking the BGP connection status on the peer, you now see the BGP routes:

 aviva@RouterD> show bgp summary
 Groups: 1 Peers: 1 Down peers: 0
 Table Tot Paths Act Paths Suppressed History Damp State Pending
 inet.0 4 1 0 0 0 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#A
 ctive/Received/Damped…
 10.0.31.2 65500 721 718 0 0 5:57:50 1/4/0
 0/0/0

The Table section of the output shows that the inet.0 routing table has four BGP routes, which
matches what we saw in the routing-table entries above. In the Peer section, the State column
indicates that four BGP routes have been received from peer 10.0.31.2 and that one is active. Again,
this corresponds with the routing-table entries.

Another way to find out about BGP routes is to look at what the routing table has received from BGP:

 aviva@RouterD> show route receive-protocol bgp 10.0.31.2
 inet.0: 11 destinations, 15 routes (11 active, 0 holddown, 0 hidden)
 Prefix Nexthop
MED Lclpref AS path
 0.0.0.0/0 10.0.31.2 65500 I
 10.0.31.0/24 10.0.31.2 65500 I
 172.19.121.0/24 10.0.31.2 65500 I
 * 192.168.16.1/32 10.0.31.2 65500 I

Again, you see the four routes learned from BGP but in a format that is much easier to scan. For
each route, you also see the value of four BGP attributes: NEXT_HOP, MED, LOCAL_PREF, and
AS_PATH. The active route is marked with an asterisk.

Use the following command to see which routes the router has advertised:

 aviva@RouterF> show route advertising-protocol bgp 10.0.31.1
 inet.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
 Prefix Nexthop MED Lclpref AS path
 * 0.0.0.0/0 Self I
 * 10.0.31.0/24 Self I
 * 172.19.121.0/24 Self I
 * 192.168.16.1/32 Self I

See Also

Recipe 13.3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.2. Configuring BGP on Routers Within an AS

Problem

You want to propagate the routes learned by your EBGP peering sessions to your IBGP routers.

Solution

Configure IBGP on the border router and on all the routers within your AS. On each router, configure
an IBGP group:

 [edit protocols bgp]
 aviva@RouterF# set group internal-within-AS65500 type internal
 aviva@RouterF# set group internal-within-AS65500 local-address 192.168.16.1
 aviva@RouterF# set group internal-within-AS65500 neighbor 192.168.15.1
 aviva@RouterF# set group internal-within-AS65500 neighbor 192.168.17.1

Discussion

Once you have set up an external BGP connection that runs between two different ASs, the two
border routers are able to exchange routing information, but you still need a way to propagate these
routes within your AS. One way to do this is to inject all the external routes into your IGP. Generally,
you do not want to use this approach, especially if you are an ISP and are carrying the full Internet
routing table; there are too many routes (on the order of 170,000 and climbing), and they change
too often, so you would end up overwhelming the IGP. The standard way to inject external routes
into your AS is to set up IBGP sessions on all routers in your AS. The connections between all IBGP
routers must be fully meshed to prevent routing loops within the AS. This full mesh is a virtual mesh,
completely independent of any actual physical connections. To do this, you create an IBGP group in
which you list as neighbors all the IBGP routers in the AS. You must also use an IGP, such as OSPF or
IS-IS, to distribute the IBGP routing information to all the routers in the AS. This recipe configures
the routers shown in Figure 13-2.

The configuration for IBGP is very similar to that for EBGP. You create a BGP group with the set
protocols bgp group command. This time, however, the type is internal, not external. Because the
group is within the AS, you do not need to configure the peer's AS number. In the group, you list all
the IBGP peers, one in each neighbor statement. These are all the IBGP routers in the AS, both the
ones that the router is directly connected to and the ones that it is not directly connected to. These
neighbor statements effectively create the full-mesh peering among all the IBGP routers. For IBGP
peers, when you specify the addresses, you don't use the physical interface but rather the loopback

http://lib.ommolketab.ir
http://lib.ommolketab.ir

address of the router. You can do this because even if a link to the router is down, it might still be
reachable through the IGP. Finally, the local-address statement sets the loopback address as the
source address of all IP packets sent by BGP to all destination routers.

Figure 13-2. IBGP network

The configuration for all the IBGP routers is basically the same, with each router using the
appropriate local address and listing all the other IBGP routers in the AS as neighbors.

Define the AS number and router ID on each IBGP router just as you did on the border router:

 [edit routing-options]
 aviva@RouterE# set autonomous-system 65500
 aviva@RouterE# set router-id 192.168.15.1

Be sure to configure the same AS number on all the IBGP routers.

Finally, an IGP must run among all the IBGP routers. For the examples in this chapter, we use a
simple OSPF configuration. Here is the configuration on RouterF, the border router:

 [edit protocols]
 aviva@RouterF# show ospf
 area 0.0.0.0 {
 interface lo0.0 {
 passive;
 }
 interface t1-0/0/2.0;
 interface fe-0/0/1.0;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When all routers are configured for the IBGP mesh, use the show bgp summary command to check
that all the sessions are up and running. Here's what you see on one of the internal routers:

 aviva@RouterE> show
bgp summary
 Groups: 1 Peers: 2 Down peers: 0
 Table Tot Paths Act Paths Suppressed History Damp State Pending
 inet.0 5 5 0 0 0 0
 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#A
 ctive/Received/Damped…
 192.168.16.1 65500 1985 1977 0 1 16:27:39 5/5/0
 0/0/0
 192.168.17.1 65500 15 17 0 0 7:36 0/0/0
 0/0/0

The first line of output shows that this IBGP router has one BGP group and two peers, which are both
up. The Table portion shows five active BGP paths in the inet.0 routing table. The Peer portion
shows that the router received these routes from 192. 168.16.1, which is the border router. Use the
show route command to verify this. The summary version provides an overview of routes learned from
BGP and other protocols:

 aviva@RouterE>
show route summary
 Autonomous system number: 65500
 Router ID: 192.168.15.1
 inet.0: 15 destinations, 16 routes (15 active, 0 holddown, 0 hidden)
 Direct: 3 routes, 3 active
 Local: 2 routes, 2 active
 OSPF: 5 routes, 4 active
 BGP: 5 routes, 5 active
 Static: 1 routes, 1 active

The show route protocol bgp command gives more detail about the routes learned from BGP:

 aviva@RouterE> show route protocol bgp
 inet.0: 15 destinations, 16 routes (15 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.24.0/24 *[BGP/170] 00:07:14, localpref 100, from 192.168.16.1
 AS path: 65505 I
 > to 172.19.121.1 via fe-0/0/0.0
 10.0.29.0/24 *[BGP/170] 00:07:14, localpref 100, from 192.168.16.1
 AS path: 65505 I
 > to 172.19.121.1 via fe-0/0/0.0
 192.168.11.1/32 *[BGP/170] 00:07:14, MED 1, localpref 100, from 192.168.16.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AS path: 65505 I
 > to 172.19.121.1 via fe-0/0/0.0
 192.168.14.1/32 *[BGP/170] 00:07:14, localpref 100, from 192.168.16.1
 AS path: 65505 I
 > to 172.19.121.1 via fe-0/0/0.0
 192.168.18.1/32 *[BGP/170] 00:07:14, MED 65, localpref 100, from 192.168.16.1
 AS path: 65505 I
 > to 172.19.121.1 via fe-0/0/0.0

The five BGP routes are marked with an asterisk to indicate that they are active routes. These routes
are all to systems in the remote AS, 65505. The 192.168/32 addresses are the loopback addresses of
the BGP routers (192.168.14.1 is the border router, and 192.168.11.1 and 192.168.14.1 are its IBGP
peers), and the two 10.0/24 prefixes are the subnets connecting the remote IBGP peers.

Notice that from BGP, the router learns only about destinations in the remote AS. It learns routes to
destinations within the local AS from OSPF:

 aviva@RouterE> show route protocol ospf
 inet.0: 15 destinations, 16 routes (15 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.8.0/24 *[OSPF/10] 00:12:15, metric 66
 > via t1-0/0/3.0
 10.0.13.0/24 [OSPF/10] 00:12:15, metric 65
 > via t1-0/0/3.0
 192.168.16.1/32 *[OSPF/10] 00:12:15, metric 65
 > via t1-0/0/3.0
 192.168.17.1/32 *[OSPF/10] 00:12:15, metric 66
 > via t1-0/0/3.0
 224.0.0.5/32 *[OSPF/10] 17:32:17, metric 1
 MultiRecv

OSPF has routes to the two internal subnets, 10.0.8.0/24 and 10.0.13.0/24, and to the loopback
addresses of the other two routers in the AS (the 192.168 addresses).

Looking at the BGP sessions on the border router, here's what you see:

 aviva@RouterF> show bgp summary
 Groups: 2 Peers: 3 Down peers: 0
 Table Tot Paths Act Paths Suppressed History Damp State Pending
 inet.0 8 5 0 0 0 0
 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#A
 ctive/Received/Damped…
 192.168.15.1 65500 1994 2006 0 0 16:37:18 0/0/0
 0/0/0
 192.168.17.1 65500 37 44 0 0 18:19 0/0/0
 0/0/0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 10.0.31.1 65505 2002 2006 0 0 16:37:26 5/8/0
 0/0/0

The Groups line shows that this router has two BGP groups (one for the EBGP session, the second for
the IBGP peerings) and has three peers that are all up. The Table section shows that the router has
eight BGP routes in the inet.0 table. The Peer section shows where the router is learning the BGP
routes, which is only from its EBGP peer, 10.0.31.1. It is not receiving any routes from its IBGP
peers, 192.168.15.1 and 192.168.17.1, as expected. Looking in the routing table confirms that the
only routes learned from BGP are those from the remote AS:

 aviva@RouterF> show route protocol bgp
 inet.0: 18 destinations, 22 routes (18 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 [BGP/170] 15:23:37, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0
 10.0.24.0/24 *[BGP/170] 01:23:48, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0
 10.0.29.0/24 *[
BGP/170] 01:19:38, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0
 10.0.31.0/24 [
BGP/170] 15:23:37, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0
 172.19.121.0/24 [BGP/170] 15:23:37, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0
 192.168.11.1/32 *[BGP/170] 01:18:52,
MED 1, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0
 192.168.14.1/32 *[BGP/170] 15:23:37, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0
 192.168.18.1/32 *[BGP/170] 01:23:38, MED 65, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0

The BGP routes in the routing table now include the value of the BGP multiple exit discriminator
(MED) attribute that was advertised with the prefix:

 192.168.11.1/32 *[BGP/170] 01:18:52, MED 1, localpref 100
 AS path: 65505 I

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > to 10.0.31.1 via t1-0/0/3.0
 192.168.18.1/32 *[BGP/170] 01:23:38, MED 65, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0

The output shows the MED in the prefixes to the IBGP routers in the immediately adjacent AS. The
MED is the BGP metric and is used as a tie-breaker to pick the path to an AS when there are multiple
equivalent paths between the ASs and when all other factors in determining the exit point are equal.

The show bgp group command shows information about the two BGP groups on the router:

 aviva@RouterF> show bgp group
 Group Type: External Local AS: 65500
 Name: session-to-AS65505 Index: 0 Flags: <>
 Export: [send-statics]
 Total peers: 1 Established: 1
 10.0.31.1+179
 inet.0: 5/8/0
 Group Type: Internal AS: 65500 Local AS: 65500
 Name: internal-within-AS65500 Index: 1 Flags: <Export Eval>
 Total peers: 2 Established: 2
 192.168.15.1+179
 192.168.17.1+179
 inet.0: 0/0/0
 Groups: 2 Peers: 3 External: 1 Internal: 2 Down peers: 0 Flaps: 0
 Table Tot Paths Act Paths Suppressed History Damp State Pending
 inet.0 8 5 0 0 0 0

The first group is the external group session-to-AS65505, and the second is the IBGP group
internal-within-AS65500. The output shows the local AS number and the export policies that have
been applied to this group (here, send-statics). Because a group is a collection of peers with the
same export characteristics, the show bgp group command shows just the configured export policy.
Any import policies you might have configured are not displayed, because each peer in a group can
have a different import policy. This command also shows the number of peers in the group and their
addresses, and the number of routes active and received from this peer. This group has one peer,
which is the remote border router 10.0.31.1, and it has received six routes from the peer, three of
which are active (3/6/0).

The last three lines of the output summarize the BGP groups and the routes that have been placed
into the routing table. It shows the two groups (one external and one internal) and three peers that
are up and have never gone down. The routing table has learned eight total paths from its BGP peers
and five of them are active in the inet.0 routing table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.3. Diagnosing TCP Session Problems

Problem

You want to figure out why the BGP session is not being established.

Solution

Start by looking at the current state of the TCP sessions on the router:

 aviva@RouterF> show system connections extensive

Also look at the information in the system logging files:

 aviva@RouterF> show log messages

Check that the TCP session can pass Internet control packets:

 aviva@RouterF> ping tos 0xc0 RouterD

Discussion

When two BGP peers have a problem establishing a BGP session, one of the first indications is that you
see BGP hold-time expired error messages on the routers in the router's system logging files. You also
see that the State field in the show bgp neighbor command output is not Established and that the
State field in the show bgp summary command is Active or Connect , indicating that the BGP session is
not established.

The hold-time expired errors usually occur because the TCP session between a pair of peers cannot
effectively transmit data between the routers, not because of a problem with BGP itself. When the TCP
session doesn't work properly, the BGP session times out, and BGP signals the problem by sending
hold-time expired messages and generating a BGP Notification message to the remote peer.
Notification messages are logged at the system logging severity level warning .

Some of the most frequent causes of hold-time expired errors are MTU issues on a directly connected
link, issues related to forwarding of Internet control packets, and IGP failures on IBGP sessions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Looking at the TCP MTU path behavior, first let's look at the TCP session. By default, a TCP session
transmits 576 bytes in a single packet to minimize the chances that the packet will be fragmented at a
device along the path to the destination. Most links use an MTU of at least 1,500 bytes. Path MTU
discovery, which is disabled by default in the JUNOS BGP, allows BGP to dynamically determine how
large the packets can be in a TCP session without being fragmented. This means that BGP tries to use
576-byte packets for the TCP sessions. However, on directly connected EBGP sessions, TCP uses MTU-
sized packets. If there is an MTU mismatch between the two sides of the TCP connection, the BGP
session cannot be established. One workaround is to enable path MTU discovery within the BGP group:

 [edit protocols bgp group external]
 aviva@RouterF# set mtu-discovery

When path MTU discovery is enabled, the don't fragment (DF) bit is set on all TCP packets sent by the
BGP session.

When you are testing session connectivity, in addition to the standard ping command, send packets in
which the Internet control CoS bit is set:

 aviva@RouterF> ping tos 0xc0 RouterD

If the QoS parameters are misconfigured on a transit router, TCP connectivity can work for regular
best-effort traffic but will break for Internet control traffic. The same behavior can happen when you
are testing new software or new PICs.

Another way to get information about the TCP session and what might be malfunctioning is to look at
the current state of TCP sessions:

 aviva@RouterF> show system connections extensive | find tcp
 tcp4 0 2 192.168.70.143.23 172.17.28.108.3350 ESTABLISHED
 sndsbcc: 2 sndsbmbcnt: 256 sndsbmbmax: 266432
 sndsblowat: 2048 sndsbhiwat: 33304
 rcvsbcc: 0 rcvsbmbcnt: 0 rcvsbmbmax: 463360
 rcvsblowat: 1 rcvsbhiwat: 57920
 iss: 2677798142 sndup: 2677853922 sndcc: 0
 snduna: 2677853922 sndnxt: 2677853924 sndwnd: 57920
 sndmax: 2677853924 sndcwnd: 65535 sndssthresh: 1073725440
 irs: 1577022682 rcvup: 1577023284 rcvcc: 0
 rcvnxt: 1577023292 rcvadv: 1577081212 rcvwnd: 57920
 rtt: 200130618 srtt: 301 rttv: 12
 rttmin: 100 duration: 0 mss: 1448
 flags: REQ_SCALE RCVD_SCALE REQ_TSTMP RCVD_TSTMP [0x1e0]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Also, use the information in the system logging files, which is very extensive and is similar to the
output of the show system connections extensive command:

 Aug 24 13:15:46 RouterF rpd[2797]: bgp_traffic_timeout: NOTIFICATION sent to 192.168.
 14.1 (Internal AS 3356): code 4 (Hold Timer Expired Error), Reason: holdtime expired
 for 192.168.14.1 (Internal AS 3356), socket buffer
sndcc: 0
rcvcc: 0 TCP state: 4,

snd_una: 1404695285
snd_nxt: 1404695285
snd_wnd: 16384
rcv_nxt: 4086106368
rcv_adv:
 4086157473, keepalive timer 0

You can learn a lot of information about the TCP connection from the socket buffer information in the
system logging message, which is a subset of BSD transmission control block (TCB) parameters:

sndcc

Bytes on send buffer. A full send buffer typically means that packets from this host are not being
acknowledged.

rcvcc

Bytes on receive buffer. Expect 0 bytes here because RPD should not declared a hold time
expired if information is available about the buffer.

snd_una

snd_nxt

The difference between these two (snd_nxtsnd_una) is the amount of unacknowledged data on
the TCP session.

snd_wnd

Size of the window advertised by the peer.

rcv_adv

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rcv_nxt

The difference between these two (rcv_advrcv_nxt) is the size of the window advertised by the
local TCP stack.

It is important to try to collect the information on both sides of the session. This gives an indication
about whether the data path failure is unidirectional, bidirectional, or dependent on packet size.

If you are seeing hold-time expired errors between IBGP peers, check the IGP logs. If this correlates to
a link failure in your IGP, this should probably be your starting point for diagnostics.

See Also

For information about BSD TCBs, see TCP/IP Illustrated (Addison-Wesley).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.4. Adjusting the Next-Hop Attribute

Problem

Your IBGP routers need to be able to resolve the BGP next hop of routes that are in external ASs.

Solution

To have IBGP routers reach addresses in external ASs, you change the BGP next-hop attribute on
routes when it is distributed from EBGP into IBGP so that the routes always point to a next-hop
address inside the local AS. You do this with a routing policy that defines the next hop as self (that
is, this router):

 [edit policy-options]
 aviva@RouterF# set policy-statement next-hop-self term 1 from protocol bgp
 aviva@RouterF# set policy-statement next-hop-self term 1 then next-hop self

Then apply the policy as an export policy in the IBGP group on the border router:

 [edit protocols bgp]
 aviva@RouterF# set group internal-within-AS65500 export next-hop-self

Discussion

When an EBGP route arrives from another AS, it contains the physical address of the remote
interface as the BGP next hop. If the EBGP router advertises this route within its IBGP network, the
IGP routing table may not know about that next hop because it is a physical interface in another AS
and might not have a way to reach it. Setting up a next-hop self policy allows the EBGP router that is
advertising the route to IBGP to use itself as the next hop for the EBGP routes.

This recipe creates a simple routing policy that takes all BGP routes and defines the next hop of the
route as self, which is the router on which the route resides. As with all JUNOS routing policies, you
need to apply ithere, to the IBGP peer group as an export policy. It would be a mistake to apply the
policy as an import policy in the EBGP group, because then all EBGP routes would be installed in the
routing table with the local router as the BGP next hop, which would make the routes unusable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipe 9.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.5. Adjusting Local Preference Values

Problem

You want to change the value of the BGP local preference attribute to control which routes the router
uses.

Solution

There are two ways to change the local preference value. The first method changes the value for all
routes distributed into IBGP from the router:

 [edit protocols bgp]
 aviva@RouterF# set group internal-within-AS65500 local-preference 140

The second method allows you to change the preference of specific routes:

 [edit policy-options policy-statement set-local-pref]
 aviva@RouterF# set from route-filter 192.168.14.1/32 exact
 aviva@RouterF# set then local-preference 140
 aviva@RouterF# set then accept

 [edit protocols bgp group session-to-AS65505]
 aviva@RouterF# set import set-local-pref

Discussion

When IBGP routers exchange prefix information, one of the attributes associated with each prefix is
its local preference (LOCAL_PREF) value. This attribute is not advertised to EBGP peers. IBGP
routers use the local preference value as a metric to decide which routes should exit the AS, choosing
the route with the highest local preference value. The default local preference value is 100. BGP
includes the local preference value only when advertising prefixes to IBGP peers. It is not advertised
to EBGP peers.

When the router is determining the active route to a destination (see the Introduction to Chapter 8),
one of the first things it considers is the BGP local preference, so changing the local preference is a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

useful way to manipulate route selection. By selecting from multiple routes to a destination, the local
preference is the first BGP path attribute checked, even before the AS path length, the origin, and the
MED.

Don't confuse the BGP local preference with the JUNOS software routing-protocol preference (see
Table 8-2). The JUNOS routing preference is local to each router, and the software uses it to choose
the active route when there are a number of paths to the same prefix. The BGP local preference is
used only by BGP, and only by IBGP routers within an AS. Also, the choice is between two different
types of preference values that are the reverse of each other. For the JUNOS routing-protocol
preference, the route with the lowest value is chosen, but with the BGP local preference, the route
with the highest value is chosen.

The first configuration in this recipe changes the local preference for all routes in the IBGP group to
140, making them more preferred over unaltered routes, which have a default local preference of
100. The second configuration creates a routing policy that changes the local preference value just on
the one route, 192.168.14.1/32. Another variation of this policy is to change the value on all routes
coming from a particular AS:

 [edit policy-options]
 aviva@RouterF# set as-path local-pref-path "65505 .*"
 aviva@RouterF# set policy-statement AS-local-pref from as-path local-pref-path
 aviva@RouterF# set policy-statement AS-local-pref then local-preference 140
 aviva@RouterF# set policy-statement AS-local-pref then accept

This policy modifies the preference only for routes that have 65505 as the first AS in the AS path. No
other BGP routes are affected by this routing policy.

Looking again at the original policy in this recipe, before applying the policy, the route has the default
local preference of 100:

 [edit policy-options]
 aviva@RouterF> show route 192.168.14.1/32
 inet.0: 24 destinations, 28 routes (24 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.14.1/32 *[BGP/170] 00:05:48, localpref 100
 AS path: 65505 I
 > to 10.0.31.1 via t1-0/0/3.0

After applying the policy, the local preference changes to 140:

 aviva@RouterF> show route 192.168.14.1/32
 inet.0: 24 destinations, 28 routes (24 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.14.1/32 *[BGP/170] 00:08:15, localpref 140
 AS path: 65505 I

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > to 10.0.31.1 via t1-0/0/3.0

See Also

The Introduction to Chapter 8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.6. Removing Private AS Numbers from the AS
Path

Problem

You are using private AS numbers within your AS and want to remove them on advertisements going
out to the public Internet.

Solution

Configure the border router to remove private AS numbers:

 [edit protocols bgp]
 aviva@Router3# set group ISP remove-private

Discussion

When BGP advertises prefixes to remote systems, it includes the AS_PATH attribute, which lists all
the ASs along the path to the prefix. BGP routers use this information to determine the path to the
route's origin. As a route passes through each AS, the BGP router adds its AS number to the
beginning of the AS path. In this way, each AS is a single hop in the path. The BGP specification
prohibits removing information from the AS path attribute. However, if on your internal network you
are using private AS numbers (numbers in the range from 64512 tHRough 65534), you shouldn't be
passing these numbers to the Internet because they are reserved for private use only. If another
network happens to be using the same private AS numbers, the two ASs will not be able
communicate with each other because BGP will see the same AS numbers and conclude that there is
a routing loop.

Use the set remove-private command to remove private AS numbers when the local border router
advertises its prefixes to remote border routers. One case when you might want to do this is if your
customers are using private AS numbers within the networks and, as the ISP, you want to remove
the private AS numbers from the path. You include this configuration in the EBGP group that faces
the Internet or other EBGP peers.

Looking in the routing table of the receiving router before the remove-private configuration, you see
that the routes contain private AS numbers. The following route contains the private number 64555:

 aviva@Router3> show route advertising-protocol bgp 172.0.0.34

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 inet.0: 164830 destinations, 164838 routes (164829 active, 0 holddown, 1 hidden)
 Prefix Nexthop MED Lclpref AS path
 * 172.0.0.0/24 Self 0 64555 65534 I
 172.0.0.0/24 *[BGP/170] 00:04:55, MED 0, localpref 100, from 172.0.0.127
 AS path: 64555 65534 I
 > to 172.0.0.11 via ge-1/3/0.2

After the configuration is applied, BGP strips the private AS number from the AS path, and the
receiving router no longer sees it in the routing table:

 aviva@Router3> show route advertising-protocol bgp 172.0.0.34
 inet.0: 164830 destinations, 164838 routes (164829 active, 0 holddown, 1 hidden)
 Prefix Nexthop MED Lclpref AS path
 * 172.0.0.0/24 Self 0 65534 I
 172.0.0.0/24 *[BGP/170] 00:04:55, MED 0, localpref 100, from 172.0.0.127
 AS path: 65534 I
 > to 172.0.0.11 via ge-1/3/0.2

The remove-private statement removes only leading private AS numbers. If the path had been 3937
64555, the private AS would remain in the path. As another example, the path 64555 64555 64555
65300 64590 65534 would be sent as local-AS 65300 64590 65534.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.7. Prepending AS Numbers to the AS Path

Problem

You want to extend the number of values in the AS path to make that path appear to be less
preferable.

Solution

In the JUNOS software, you prepend paths to the AS path using routing policy. First, create a policy the
defines the AS path string to prepend:

 [edit policy-options]
 aviva@RouterF# set policy-statement prepend-as-path then prepend-as-path "65500 65500
 65500"

Then, apply the policy to the EBGP group:

 [edit bgp]
 aviva@RouterF# set group session-to-AS65505 export prepend-as-path

Discussion

When ASs have multiple connections between them, you might want to make the remote AS prefer one
of those paths when it is sending traffic to your AS. An easy way to force external routers to choose a
particular path is to adjust the AS path attribute. Early on in the process of determining the active
route to a destination (see the Introduction to Chapter 8), a BGP router looks at the AS path and
chooses the prefix with the shorter path. If you lengthen the path for routes that use a particular EBGP
connection, the remote network will reach you using a different connection. There still might be times
when the route with the lengthened AS path is used because it is the shorter path, so you can prepend
the same AS number several times to lengthen the path even more.

This recipe prepends the local AS number to BGP prefixes exported on this BGP connection. To do this,
you create a routing policy. Because you want the policy to match all BGP prefixes, you don't need a
from clause. If you want to prepend the AS numbers only to certain prefixes, list them in a from clause.
Then apply the policy to the EBGP group.

Looking at the remote AS before applying this policy, you see that the AS path for each prefix in AS
65500 lists the AS only once:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterD> show route protocol bgp
 inet.0: 19 destinations, 25 routes (19 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 [BGP/170] 00:00:13, localpref 100
 AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 10.0.8.0/24 *[BGP/170] 00:00:13, localpref 100
 AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 10.0.13.0/24 *[BGP/170] 00:00:13, localpref 100

AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 10.0.31.0/24 [BGP/170] 00:00:13, localpref 100
 AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 172.19.121.0/24 [BGP/170] 00:00:13, localpref 100
 AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 192.168.15.1/32 *[BGP/170] 00:00:13, MED 65, localpref 100
 AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 192.168.16.1/32 *[BGP/170] 00:00:13, localpref 100
 AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 192.168.17.1/32 *[BGP/170] 00:00:13, MED 1, localpref 100
 AS path: 65500 I
 > to 10.0.31.2 via t1-0/0/3.0

After the policy is applied, you see the lengthened AS paths for these prefixes:

 aviva@RouterD> show route protocol bgp
 inet.0: 19 destinations, 25 routes (19 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 [BGP/170] 00:01:06, localpref 100
 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 10.0.8.0/24 *[BGP/170] 00:01:06, localpref 100
 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 10.0.13.0/24 *[BGP/170] 00:01:06, localpref 100
 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 10.0.31.0/24 [BGP/170] 00:01:06, localpref 100
 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 172.19.121.0/24 [BGP/170] 00:01:06, localpref 100

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 192.168.15.1/32 *[BGP/170] 00:01:06, MED 65, localpref 100
 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 192.168.16.1/32 *[BGP/170] 00:01:06, localpref 100
 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 192.168.17.1/32 *[BGP/170] 00:01:06, MED 1, localpref 100
 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.8. Filtering BGP Routes Based on AS Paths

Problem

You want to filter the BGP routes that you send or receive based on the AS path information in the
routes.

Solution

To filter the routes, create a routing policy that acts on a route's AS path information. The first step is
to define a regular expression that matches the AS path information:

 [edit policy-options]
 aviva@RouterD#
set as-path from-AS-65500 "65500{4}"

Then reference the AS path information in a routing policy:

 [edit policy-options policy-statement match-AS65500]
 aviva@RouterD# set term 1 from as-path from-AS-65500
 aviva@RouterD# set term 1 then reject
 aviva@RouterD# set term accept-others then accept

Finally, apply the policy to a BGP group:

 [edit protocols bgp]
 aviva@RouterD# set group session-to-AS65500 import match-AS65500

Discussion

It it often useful to develop routing policies based on information within the AS path information. You
can then use these policies to enforce your network's administrative policy with respect to a customer
or peer. Instead of looking for many prefixes or routes individually, it can be easier to use the AS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

path. The AS path attribute lets you filter all routes that originated from or transited through a
particular AS, all routes announced by a particular neighboring AS, and routes that originated in the
local AS.

To match information in the AS path attribute, you first create a regular expression that identifies the
match conditions. In this recipe, the set as-path command creates the regular expression from-AS-
65500, which matches exactly four occurrences of the string 65500.

A regular expression (also sometimes called a regex) is a pattern-matching tool that applies to
strings in AS paths. It has two components, a term and an operator. The term matches an AS
number or an AS path, or it can be a wildcard character. If the term includes any spaces, enclose it in
quotation marks. The operator indicates how to match the term, typically how many times to match
a specific term. In this recipe, 65500 is the term and {4} is the operator. Table 13-1 describes the
regular expression operators.

Table 13-1. AS path regular expression operators

Operator Description Match example

{m,n}
Match at least m and at most n

repetitions of term.
65500{2,3}Match only "65500 65500" and "65500
65500 65500".

?
Match zero or one repetition of term;
equivalent to {0,1}.

65500?Match only "65500" and "65500 65500".

{m} Match exactly m repetitions of term. 65500{2}Match only "65500 65500".

{m,} Match m or more repetitions of term.
65500{2,}Match "65500 65500", "65500 65500
65500", "65500 65500 65500 65500", and so on.

*
Match zero or more repetitions of
term; equivalent to {0,}.

65500*Match "65500", "65500 65500", and so
on; also match a path that does not contain
"65500".

+
Match one or more repetitions of
term; equivalent to {1,}.

65500+Match "65500", "65500 65500", and so
on.

.(dot)
Match any single instance of any
term.

65500.Match 65500 if it appears anywhere in the
AS path. A more exact way to create this match
is ".* 65500 .*".

|

Match one of the terms on either side
of the pipe; the terms can include
other operators.

(65500 | 65505)Match either "65500" or "65505".

()
Match a group of terms enclosed in
the parentheses.

Match a range; the terms can include
other operators.

65500-65505Match 65500, 65501, 65502, 65503,
65504, or 65505.

"()" Match a null AS path.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operator Description Match example

^
Indicates the character at the
beginning of an AS path.

$
Indicates the character at the end of
an AS path.

You must include the term when defining the pattern to match, but the operator is optional. When
you leave out an operator, the AS path exactly matches what you type for the term.

The JUNOS regular expressions for AS paths are, for the most part, identical to Unix regular
expressions. There are, however, a few differences. The main difference is that the basic unit of
matching is an entire AS number, not an individual character. This means that the JUNOS regular
expression treats 65500 as a single entity when it performs any matching operations, not as the five
individual digits 6, 5, 5, 0, and 0. In other words, the AS number is effectively a single integer. A
second difference is that with Unix, you need to type the operators ̂ (which matches the beginning of
a string) and $ (which matches the end of a string), but in the JUNOS regular expressions, these
operators are always assumed to be present. So, with Unix you would type ̂ 65500$ to match the
string 65500, but in the AS path regular expression you just need to type 65500.

Looking back at our recipe, the AS path match term and operator are:

 65500{4}

Translated, this match looks for four adjacent occurrences of the AS path 65500. It would match a
path of 65500 65500 65500 65500. Examples of AS paths that this regular expression would not match
are 65500 65500 65500, which has only three occurrences of the AS number, and 65500 65525 65500
65500 65500, which doesn't have four consecutive occurrences of the AS number.

After you define the match criteria in the set as-path command, you then need to incorporate them
into a routing policy. In this recipe, the policy match-AS65500 rejects all routes whose AS path
matches the regular expression but accepts all other routes.

As a final step, apply the policy to your BGP group as an import policy.

To verify that the policy is working, look at the BGP routes in the routing table. Before applying the
policy, routes containing the AS path 65500 65500 65500 65500 are present:

 aviva@RouterD> show route protocol bgp
 inet.0: 25 destinations, 31 routes (25 active, 0 holddown, 0
hidden)
 + = Active Route, - = Last Active, * = Both

 10.0.8.0/24 *[BGP/170] 01:42:26, localpref 100
 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 …

^
Indicates the character at the
beginning of an AS path.

$
Indicates the character at the end of
an AS path.

You must include the term when defining the pattern to match, but the operator is optional. When
you leave out an operator, the AS path exactly matches what you type for the term.

The JUNOS regular expressions for AS paths are, for the most part, identical to Unix regular
expressions. There are, however, a few differences. The main difference is that the basic unit of
matching is an entire AS number, not an individual character. This means that the JUNOS regular
expression treats 65500 as a single entity when it performs any matching operations, not as the five
individual digits 6, 5, 5, 0, and 0. In other words, the AS number is effectively a single integer. A
second difference is that with Unix, you need to type the operators ̂ (which matches the beginning of
a string) and $ (which matches the end of a string), but in the JUNOS regular expressions, these
operators are always assumed to be present. So, with Unix you would type ̂ 65500$ to match the
string 65500, but in the AS path regular expression you just need to type 65500.

Looking back at our recipe, the AS path match term and operator are:

 65500{4}

Translated, this match looks for four adjacent occurrences of the AS path 65500. It would match a
path of 65500 65500 65500 65500. Examples of AS paths that this regular expression would not match
are 65500 65500 65500, which has only three occurrences of the AS number, and 65500 65525 65500
65500 65500, which doesn't have four consecutive occurrences of the AS number.

After you define the match criteria in the set as-path command, you then need to incorporate them
into a routing policy. In this recipe, the policy match-AS65500 rejects all routes whose AS path
matches the regular expression but accepts all other routes.

As a final step, apply the policy to your BGP group as an import policy.

To verify that the policy is working, look at the BGP routes in the routing table. Before applying the
policy, routes containing the AS path 65500 65500 65500 65500 are present:

 aviva@RouterD> show route protocol bgp
 inet.0: 25 destinations, 31 routes (25 active, 0 holddown, 0
hidden)
 + = Active Route, - = Last Active, * = Both

 10.0.8.0/24 *[BGP/170] 01:42:26, localpref 100
 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0
 …

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The route to 10.0.8.0/24 is active (indicated by the asterisk). After applying the policy, the route is
no longer in the routing table:

 aviva@RouterD> show route 10.0.8.0/24
 inet.0: 25 destinations, 31 routes (14 active, 0 holddown, 14 hidden)

This output shows that there are now 14 hidden routes. This is where you find the routes that your
policy rejected:

 aviva@RouterD> show route 10.0.8.0/24 hidden
 inet.0: 25 destinations, 31 routes (14 active, 0 holddown, 14 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.8.0/24 [BGP] 01:44:48, localpref 100
 AS path: 65500 65500 65500 65500 I
 > to 10.0.31.2 via t1-0/0/3.0

Because the route is hidden, there is no preference associated with it. The route is marked as [BGP]
instead of [BGP/170].

Routes that originate within your AS do not yet have an AS path associated with them. To find them
with an as-path policy, create a match condition based on the null AS path:

 [edit policy-options]
 aviva@RouterF# set as-path local-as "()"

 [edit policy-options policy-statement null-path]
 aviva@RouterF# set term accept-null-path from protocol bgp
 aviva@RouterF# set term accept-null-path from as-path local-as
 aviva@RouterF# set term accept-null-path then accept
 aviva@RouterF# set term else-reject then reject

This policy accepts all routes learned from BGP and that have no AS path, and rejects all other
routes. A policy like this is useful when the only routes you want to advertise to a particular EBGP
peer are those that originated in your AS. For instance, if another AS is advertising routes to you and
you don't want to readvertise them, you can apply this null AS path policy with a set export null-
path command.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.9. Restricting the Number of Routes Advertised
to a BGP Peer

Problem

You want to control the number of routes that your peers send you.

Solution

Set the maximum number of routes that you will accept from each of your peers:

 [edit protocols bgp group session-to-AS65505 neighbor 10.0.31.1]
 aviva@RouterF# set family inet unicast prefix-limit maximum 7500
 aviva@RouterF# set family inet unicast prefix-limit teardown

Discussion

As an ISP, you keep track of how many routes each of your peers and customers normally send you.
This number generally increases slowly over time. To place a limit on the number of routes a peer or
customer can send you, set a maximum number of routes to accept. This type of administrative
policy guards against an inadvertent policy misconfiguration, which, in the worst case, could result in
a peer or customer redistributing the full Internet routing table to you. You decide on the maximum
number of prefixes you accept based on the normal number of routes exchanged with the peer, and,
when the limit is reached, BGP tears down the session with the peer. Typically, you take the current
number of routes exchanged and add about 50 percent.

In this recipe, we know that neighbor 10.0.31.1 typically sends 5,000 prefixes, so we set the limit to
7,500 prefixes. For example, if the peer tries to send the entire Internet routing table (on the order
of 170,000 prefixes), BGP on the local router will shut down the peering session with the neighbor.
This shutdown tells both you and the peer that something has gone wrong at his end.

To verify the configuration, look at the BGP neighbor's information:

 aviva@RouterF> show bgp neighbor 10.0.31.1
 Peer: 10.0.31.1+4051 AS 65505 Local: 10.0.31.2+179 AS 65500
 Description: EBGP to Customer A
 Type: External State: Established Flags: <Sync>
 Last State: OpenConfirm Last Event: RecvKeepAlive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Last Error: None
 Export: [send-statics]
 Options: <Preference HoldTime AddressFamily PeerAS PrefixLimit Refresh>
 Address families configured: inet-unicast
 Holdtime: 90 Preference: 170
 Number of flaps: 2
 Peer ID: 192.168.14.1 Local ID: 192.168.16.1 Active Holdtime: 90
 Keepalive Interval: 30 Peer index: 0
 Local Interface: t1-0/0/3.0
 NLRI
advertised by peer: inet-unicast
 NLRI for this session: inet-unicast
 Peer supports Refresh capability (2)
 Table inet.0 Bit: 10000
 RIB State: BGP restart is complete
 Send state: in sync
 Active prefixes: 5
 Received prefixes: 8
 Suppressed due to damping: 0
 Advertised prefixes: 8
 Last traffic (seconds): Received 3 Sent 28 Checked 28
 Input messages: Total 253 Updates 4 Refreshes 0 Octets 4967
 Output messages: Total 261 Updates 12 Refreshes 0 Octets 5411
 Output Queue[0]: 0

On the Options line, the option PrefixLimit indicates that the number of prefixes this neighbor can
send has been limited.

When the prefix limit is reached and the EBGP session is torn down, a message is logged to the
system logging files:

 Aug 6 22:19:21 M20-R7 rpd[2254]: 10.1.6.2 (External AS 65501): Configured maximum
 prefix-limit(10) exceeded for inet-unicast nlri: 13

If you want some advanced warning that the peer is nearing the maximum number of prefixes you
will accept from it, you can have BGP log a message when the peer has sent some percentage of the
maximum allowed prefixes. The following example uses a percentage that is about halfway between
the normal number of prefixes and the maximum:

 [edit protocols bgp group session-to-AS65505 neighbor 10.0.31.1]
 aviva@RouterF# set family inet unicast prefix-limit teardown 85

After the session is torn down, it will be re-established a short time later. In most cases, this behavior
is fine. You might want to force the session to stay down for a fixed amount of time to give you time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to investigate what might be causing the prefix overflow or to contact the administrator of the
remote AS. This command keeps the session down for 5 minutes (300 seconds):

 [edit protocols bgp group session-to-AS65505 neighbor 10.0.31.1]
 aviva@RouterF# set family inet unicast prefix-limit idle-timeout 300

Under extreme conditions, you might want the session to stay down until you manually restart it:

 [edit protocols bgp group session-to-AS65505 neighbor 10.0.31.1]
 aviva@RouterF# set family inet unicast prefix-limit idle-timeout forever

Use the clear bgp neighbor command to restart the session:

 aviva@RouterF> clear bgp neighbor 10.0.31.1
 Cleared 1 connections

After the session is reestablished, the Error line in the show bgp neighbor output reports Cease to
indicate that the session was cleared:

 aviva@RouterF> show bgp neighbor 10.0.31.1
 Peer: 10.0.31.1 AS 65505 Local: 10.0.31.2 AS 0
 Description: EBGP to Customer A
 Type: External State: Active Flags: <>
 Last State: Idle Last Event: Start
 Last Error: Cease
 Export: [send-statics]
 Options: <Preference HoldTime AddressFamily PeerAS PrefixLimit Refresh>
 Address families configured: inet-unicast
 Holdtime: 90 Preference: 170
 Number of flaps: 3
 Error: 'Cease' Sent: 1 Recv: 0
 …

See Also

Recipe 13.15

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.10. Authenticating BGP Peers

Problem

You want to ensure that all BGP protocol traffic that your router accepts from external ASs comes
from devices known to you.

Solution

Configure MD5 authentication for your EBGP sessions:

 [edit protocols bgp group session-to-AS65505]
 aviva@RouterF# set authentication-key 1991$pOppi

Discussion

Many external attacks launched against routing protocols are directed at BGP. Authenticating BGP
packet exchanges on EBGP sessions prevents the router from accepting any authorized packets. The
JUNOS BGP software supports MD5 cryptographic authentication.

This recipe configures MD5 authentication on the EBGP session to AS 65505. You simply need to
configure an MD5 key in the EBGP group. The peer router in this EBGP session must have the same
key. Because the peer router is in another AS that is likely under the control of a different
administrator or ISP, you need to agree on the authentication key with the remote administrator
beforehand. From the key, MD5 creates an encoded checksum that is included in all transmitted BGP
packets. The receiving router verifies this checksum before accepting the packet.

You can configure BGP authentication globally, per group, or per peer. It is a good practice to use
per-peer authentication for external peers, with a unique key for each customer. This prevents the
possibility of a single leaked key compromising all customer peering points.

Another good practice is to change authentication keys periodically, on the order of every three to six
months, to prevent the key from leaking either intentionally or accidentally.

If your IBGP peer routers are all within your domain and are trusted routers, you can choose not to
enable BGP authentication on them. Otherwise, you should configure authentication for all IBGP
sessions, in the same way as for EBGP sessions, to prevent any attacks by dropping BGP packets that
do not contain the correct authentication parameters.

When you display the router's configuration after you have typed the password, you see only the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encrypted form of the password. Someone casually glancing through the configuration would not see
the actual password.

 [edit protocols bgp group session-to-AS65505]
 aviva@RouterF# show
 group session-to-AS65505 {
 type external;
 description "EBGP to Customer A";
 authentication-key "9FBDdnApO1RSlKB1dbYgJZApu0hS"; ## SECRET-DATA
 peer-as 65505;
 neighbor 10.0.31.1 {
 …

Looking at the BGP information about the neighbor shows that authentication is configured:

 aviva@RouterF> show bgp neighbor 10.0.31.1
 Peer: 10.0.31.1+179 AS 65505 Local: 10.0.31.2+2259 AS 65500
 Description: EBGP to Customer A
 Type: External State: Established Flags: <Sync>
 Last State: OpenConfirm Last Event: RecvKeepAlive
 Last Error: None
 Export: [send-statics]
 Options: <Preference HoldTime AuthKey AddressFamily PeerAS PrefixLimit Refresh>
 Authentication key is configured
 …

To hide the keys when you are looking at the configuration contents, pipe the output:

 aviva@RouterF> show configuration protocols bgp | except SECRET-DATA
 group session-to-AS65505 {
 type external;
 description "EBGP to Customer A";
 peer-as 65505;
 neighbor 10.0.31.1 {
 …

Notice that the entire authentication-key statement is not displayed because all the authentication
information is on one line in the configuration.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RFC 2385, Protection of BGP Sessions via the TCP MD5 Signature Option

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.11. Setting Up Route Reflectors

Problem

Your local AS has a large number of IBGP routers, and you want to reduce the number of IBGP
sessions that you need to configure and maintain.

Solution

Configure one of the IBGP routers to be the route reflector for a route reflection cluster:

 [edit protocols bgp]
 aviva@RouterG# set group internal-within-AS65500 cluster 192.168.19.1

Discussion

The configuration in Recipe 13.2, in which all BGP systems within the AS are fully meshed, is a
standard IBGP implementation. The full mesh results from listing all IBGP peers in a peering group
rather than from having them all be physically connected and from using an IGP within the AS to
distribute BGP routes. The full mesh is necessary so that external routing information can be
redistributed among all routers within the AS with the help of the IGP running in the AS. As you can
imagine, as the number of IBGP routers increases, you have to configure many BGP neighbor
commands in each router's configuration, and there is a lot of overhead because a large number of
TCP connections need to be maintained for each IBGP peering.

There are two common ways to deal with this scaling issue. One is route reflection, which provides
one means of decreasing BGP control traffic and minimizing the number of update messages sent
within the AS. The second method is confederations.

With normal BGP route redistribution rules, IBGP peers are not allowed to advertise routes learned
from IBGP rules. Route reflection works by bending this rule. Each route reflector system has a set of
client peers that are arranged in a cluster . The clients send their routes to the route reflector, and
the route reflector advertises these routes to the other clients in the cluster and to other IBGP peers
outside of the cluster (nonclient peers). The route reflector is not allowed to change any of the
route's attributes, which is one way of preventing routing loops. When the route reflector learns
routes from nonclient peers, it advertises them to its clients and to no one else. For routes learned
from EBGP, the route reflector follows normal BGP route advertisement rules, advertising these routes
to both clients and nonclients.

In this recipe, RouterG is the route reflector (see Figure 13-3). The only configuration needed is to
add the cluster identifier to the IBGP group with the set cluster command. The cluster identifier is a
32-bit number. You can use the router identifier or any 32-bit number. When the router reflector

http://lib.ommolketab.ir
http://lib.ommolketab.ir

forwards a route from one of its client routers to a nonclient router, the cluster identifier is prepended
to the cluster list. If a route reflector ever receives a BGP update that contains its own cluster
identifier, it ignores the update because it knows a routing loop has occurred.

Figure 13-3. Route reflector within the IBGP network

Here's the complete IBGP group configuration on RouterG:

 [edit protocols bgp]
 aviva@RouterG# show
 group internal-within-AS65500 {
 type internal;
 local-address 192.168.19.1;
 cluster 192.168.19.1;
 neighbor 192.168.13.1;
 neighbor 192.168.12.1;
 neighbor 192.168.17.1;
 neighbor 192.168.15.1;
 neighbor 192.168.16.1;
 }

You still need to configure all the IBGP neighbors, both those within the cluster (192.168.13.1 and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

192.168.12.1) and the three IBGP peers outside the cluster. For the nonclient routers, those outside
the cluster, you include the route reflector in the IBGP group but don't need to have neighbor
statements for the routers within the cluster. On the client routers, you need to configure only one
IBGP peer, the route reflector 192.168.19.1 :

 [edit protocols bgp]
 aviva@RouterA# show
 group cluster-within-AS65500 {
 type internal;
 local-address 192.168.13.1;
 neighbor 192.168.19.1;
 }

This configuration is a lot simpler than having to specify all the IBGP neighbors. Another advantage
from the point of view of the routers' configurations is if you later add routers to the cluster, you do
not need to change the configuration on the existing client routers in the cluster.

The nonclient routers in the AS, RouterE and RouterF, need to establish an IBGP session with RouterG
but they don't need sessions with RouterA or RouterB. In this small network, this is a savings of four
TCP sessions and four IBGP peerings. Again, if you add routers to the cluster, the IBGP group
configuration on the nonclient routers doesn't need to change.

All the client routers in the cluster and all the nonclient routers are in the same AS, so make sure that
you configure them all with the same AS number:

 [edit routing-options]
 aviva@RouterB# show
 autonomous-system 65500;

Looking at the routes that RouterB has learned, you see that it still knows how to reach routes in AS
65505 :

 aviva@RouterB> show route protocol bgp
 inet.0: 21 destinations, 22 routes (21 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.24.0/24 *[BGP/170] 00:18:38, localpref 100, from 192.168.19.1
 AS path: 65505 I
 > via se-0/0/2.0
 10.0.29.0/24 *[BGP/170] 00:18:38, localpref 100, from 192.168.19.1
 AS path: 65505 I
 > via se-0/0/2.0
 192.168.11.1/32 *[BGP/170] 00:18:38, MED 1, localpref 100, from 192.168.19.1
 AS path: 65505 I
 > via se-0/0/2.0
 192.168.14.1/32 *[BGP/170] 00:18:38, localpref 100, from 192.168.19.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 AS path: 65505 I
 > via se-0/0/2.0
 192.168.18.1/32 *[BGP/170] 00:18:38, MED 65, localpref 100, from 192.168.19.1
 AS path: 65505 I
 > via se-0/0/2.0

A detailed look at one of these routes shows information about the cluster:

 aviva@RouterB> show route 10.0.24.0/24 extensive
 inet.0: 21 destinations, 22 routes (21 active, 0 holddown, 0 hidden)
 10.0.24.0/24 (1 entry, 1 announced)
 TSI:
 KRT in-kernel 10.0.24.0/24 -> {indirect(291)}
 *BGP Preference: 170/-101
 Next-hop reference count: 15
 Source: 192.168.19.1
 Next hop: via se-0/0/2.0, selected
 Protocol next hop: 192.168.16.1 Indirect next hop: 8670300 291
 State: <Active Int Ext>
 Local AS: 65500 Peer AS: 65500
 Age: 25:44 Metric2: 90
 Task: BGP_65500.192.168.19.1+1106
 Announcement bits (2): 0-KRT 4-Resolve tree 1
 AS path: 65505 I (Originator) Cluster list: 192.168.19.1
 AS path: Originator ID: 192.168.16.1
 Localpref: 100
 Router ID: 192.168.19.1
 Indirect next hops: 1
 Protocol next hop: 192.168.16.1 Metric: 90 Indirect next hop:
 8670300 291
 Indirect path forwarding next hops: 1
 Next hop: via se-0/0/2.0
 192.168.16.1/32 Originating RIB: inet.0
 Metric: 90 Node path count: 1
 Forwarding nexthops: 1
 Nexthop: via se-0/0/2.0

The Cluster list field shows the cluster ID of the route reflector. This line shows the 32-bit value
that we configured on RouterG. The address of the route reflector that originally sent the route is in
the Originator ID field.

This recipe illustrates a simple route reflection setup. One problem is that the route reflector is a
single point of failure. If it goes down, its two peers lose their connection to the IBGP network. It is a
common practice to configure two route reflectors for each cluster to provide backup.

Another less commonly used way to subdivide a large IBGP network into more manageable groups is
create sub-ASs within your AS and link them together as a BGP confederation. On each IBGP router in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the sub-AS, define the sub-AS number and the confederation group:

 [edit routing-options]
 aviva@RouterG# set autonomous-system 65502
 aviva@RouterG# set confederation 65500 members [65501 65502]

Here, the main AS number is 65500 and the two sub-ASs are 65501 and 65502 . This router is in the
65502 sub-AS. The set autonomous-system command defines the sub-AS number, and the set
confederation command identifies all the sub-ASs in the main AS.

From BGP's point of view, each sub-AS is a separate AS because each has a different AS number. So,
you configure each sub-AS as you would an EBGP connection, setting up border routers between the
sub-ASs. On each of these routers, create an external group to connect the two sub-ASs. The
following commands configure the EBGP group on the border router in sub-AS 65502 :

 [edit protocols bgp]
 aviva@RouterG# set group to-subAS65501 type external
 aviva@RouterG# set group to-subAS65501 neighbor 192.168.17.1
 aviva@RouterG# set group to-subAS65501 peer-as 65501

The set peer-as command identifies the sub-AS number. The border router also has an IBGP group
to create peerings with the IBGP routers in the sub-AS:

 [edit protocols bgp]
 aviva@RouterG# show
 group internal-within-subAS65502 {
 type internal;
 export next-hop-self;
 local-address 192.168.19.1;
 neighbor 192.168.13.1;
 neighbor 192.168.12.1;
 }

Just like with the EBGP sessions between ASs, you need a next-hop-self policy in the IBGP group for
the sub-AS border router (see Recipe 13.4).

As with route reflectors, BGP confederations (see Figure 13-4) reduce the number of peering
sessions you need to configure and the number of TCP sessions that the routers need to establish to
maintain full-mesh connections between all IBGP routers.

Figure 13-4. Confederation within the AS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

RFC 1965, Autonomous System Confederations for BGP; RFC 1966, BGP Route Reflection: An
Alternative to Full-Mesh IBGP ; RFC 2796, BGP Route Reflection ; RFC 3065, Autonomous System
Confederations for BGP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.12. Mitigating Route Instabilities with Route Flap
Damping

Problem

You want to deal with potential route instabilities caused by routes being withdrawn in a series of BGP
Update messages only to be readvertised as active routes a few minutes later when an intermittently
failing link is restored.

Solution

Route flap damping is a way to prevent flapping routes from destabilizing BGP. In the JUNOS software,
you set up damping by using routing policy. There are four steps in setting up damping:

Define the damping parameters:

 [edit policy-options]
 aviva@Router3# set damping damping-normal suppress 6000
 aviva@Router3# set damping standard-damping half-life 15
 aviva@Router3# set damping standard-damping reuse 3000
 aviva@Router3# set damping standard-damping max-suppress 30

1.

Create a routing policy that references the damping parameters:

 [edit policy-options]
 aviva@Router3# set policy-statement damping-policy from route-filter 10.0.31.1/32
 exact
 aviva@Router3# set policy-statement damping-policy then damping damping-normal
 aviva@Router3# set policy-statement damping-policy then accept

2.

Enable route flap damping for BGP:

 [edit protocols bgp]
 aviva@Router3# damping

3.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Apply the damping policy to a BGP group:

 [edit protocols bgp]
 aviva@Router3# set group session-to-AS65505 import damping-policy

4.

Discussion

If a link on the network is intermittently failing, routes can be withdrawn and readvertised in quick
succession as the link goes down and then comes back up. This route flapping forces BGP to change
any next hops that use the failed interface each time the link goes down. BGP then has to update its
routing tables and propagate the new routing information. If many routes are being recalculated, the
flapping link could make BGP very unstable.

Route damping is a mechanism for preventing flapping routes from destabilizing a BGP network.
Damping slows or stops the "vibrations," or rapid changes, in the routing table. When a route flaps, it is
given a specified number of demerits. The route's accumulated demerits are reduced over time
according to a configured decay rate. If the route's accumulated demerits exceed a configured
threshold, the route is suppressed until the number of demerits decays below a second configured
threshold.

Route damping is most useful in large service provider networks that have many attached peers and
that carry many prefixesa scenario in which the chances of one or more routes flapping at any given
time is high.

In the first part of the configuration, you set four damping parameters that are used to calculate a
figure of merit , which controls how long a route can be suppressed. The figure-of-merit value correlates
to the probability of a route's future instability, and the value decays exponentially over time. BGP
suppresses routes with higher figure-of-merit values for longer periods of time.

For a new route, BGP assigns a figure-of-merit value of 0. If the route experiences any instability, the
value is increased based on the following rules:

If the route is withdrawn by the EBGP peer, the value increases by 1,000.

If the route is readvertised by the EBGP peer, the value increases by 1,000.

If the BGP attributes for the route change in a new Update message from the EBGP peer, the
value increases by 500.

The points, or demerits, given to a route decrease over time and decay exponentially. This time is the
half-life of the route. If the demerits decay faster than the figure-of-merit value increases, the route will
not be suppressed. When the figure-of-merit value increases beyond a cutoff value, called the
suppression threshold (also called the cutoff threshold), the route is suppressed and is considered
unusable. The router will ignore any new information about the route received from its peers and will
not install it into the forwarding table or forward the route to any other routing protocols. The figure-of-
merit value continues to decay based on the half-life. When the value drops below the reuse threshold ,
it is unsuppressed and again considered usable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The damping parameters that you configure play into the figure of merit. The suppress statement
controls the suppression threshold. By default, when a route's figure-of-merit value reaches 3,000, it is
suppressed. The figure-of-merit value decays exponentially over the half-life that you set with the half-
life statement. The default half-life is 15 minutes. To illustrate how the decay works, if a route has a
figure-of-merit value of 1,000 and no incidents occur, the value decays to 500 after 15 minutes, then to
250 after another 15 minutes. You set the reuse threshold with the reuse statement. The default is 750.
As the figure-of-merit value continues to decay, when it drops below the reuse threshold, the route
becomes usable again. The maximum amount of time a route can be suppressed is 60 minutes by
default, which you can modify with the max-suppress statement.

The first step in configuring damping parameters is to create a named parameter list. In this recipe, the
list is named damping-normal , which sets up a standard set of damping parameters. The figure-of-merit
value decays over 15 minutes, which is the default half-life. Routes are suppressed when their figure of
merit reaches a value of 6,000 (instead of the default 3,000) and are unsuppressed at half that value
(3,000) instead of at the default value (750). Finally, in the recipe, routes remain suppressed for a
maximum of 30 minutes instead of the default 60 minutes.

The figure of merit doesn't increase forever but stops when it reaches the merit ceiling , c , which is a

value that is calculated based on the reuse threshold (r); half-life (), in minutes; and maximum
suppression time (t), in minutes:

Using the default reuse threshold of 750, a maximum suppression time of 60 minutes, and a half-life of
30 minutes, the calculation looks like this:

In this case, a route's figure-of-merit value will stop increasing when it reaches 3,000. If you change
the default damping parameter values, use this formula to make sure that the suppression threshold is
not greater than the merit ceiling. If it is, routes will never be suppressed and route flap damping will
never occur.

After setting the damping parameters, you are ready to create the routing policy for route flap damping.
In this recipe, the policy named damping-policy applies to a particular peer, 10.0.31.1 .

In larger networks, it is common to set up different degrees of damping policy to apply to different
types of routes. In addition to the normal damping parameters set in this recipe, you can also set up
parameters to suppress routes for longer periods of time:

 [edit policy-options damping damping-medium]
 aviva@Router3# show

half-life 15;

reuse 1500;
 suppress 6000;
 max-suppress 45;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit policy-options damping damping-high]
 aviva@Router3# show
 half-life 30;
 reuse 1640;
 suppress 6000;
 max-suppress 60;

The damping-medium parameters increase the decay half-life from 10 to 15 minutes and the maximum
suppression time from 30 to 45 minutes, and the damping-high parameters increase the half-life to 30
minutes and maximum suppression to 60 minutes. You apply these two damping parameters to routes
that flap a bit more than normal or severely more than normal. Then, instead of applying the policy to
specific BGP peers, you can apply it to a range of prefixes:

 [edit policy-options policy-statement flap-damping]
 aviva@Router3# show
 from {
 route-filter 0.0.0.0/0 upto /21 damping damping-normal;
 route-filter 0.0.0.0/0 upto /23 damping damping-medium;
 route-filter 0.0.0.0/0 orlonger damping damping-high;
 }
 then accept;

Once the routing policy is set up, enable damping for BGP with the set damping command. Then apply
the damping policy to the EBGP group with an import statement so the damping policy is applied to all
routes before they are placed into the routing table.

Verify the damping configuration with the show policy damping command:

 aviva@Router3> show policy damping
 Default damping information:
 Halflife: 15 minutes
 Reuse merit: 750 Suppress/cutoff merit: 3000
 Maximum suppress time: 60 minutes
 Computed values:
 Merit ceiling: 12110
 Maximum decay: 6193
 Damping information for "damping-high":
 Halflife: 30 minutes
 Reuse merit: 1640 Suppress/cutoff merit: 6000
 Maximum suppress time: 60 minutes
 Computed values:
 Merit ceiling: 6577
 Maximum decay: 24933
 Damping information for "damping-medium":
 Halflife: 15 minutes
 Reuse merit: 1500 Suppress/cutoff merit: 6000

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Maximum suppress time: 45 minutes
 Computed values:
 Merit ceiling: 12049
 Maximum decay: 12449
 Damping information for "damping-normal":
 Halflife: 15 minutes
 Reuse merit: 3000 Suppress/cutoff merit: 6000
 Maximum suppress time: 30 minutes
 Computed values:
 Merit ceiling: 12017
 Maximum decay: 24963

The output shows the default damping information and the three configured sets of parameters. The
first portion of the output lists the default damping parameters. The Computed values fields show the
merit ceiling value calculated from the damping parameters. In the default policy, you can see that the
merit ceiling of 12,110 is well above the suppression threshold of 3,000.

The show bgp summary command output shows whether any BGP routes have been damped:

 aviva@Router3> show bgp summary
 Groups: 2 Peers: 3 Down peers: 0
 Table Tot Paths Act Paths Suppressed History Damp State Pending
 inet.0 8 5 0 0 1 0
 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#A
 ctive/Received/Damped…
 192.168.15.1 65500 503 517 0 0 4:11:20 0/0/0
 0/0/0
 192.168.17.1 65500 501 515 0 0 4:10:25 0/0/0
 0/0/0
 10.0.31.1 65505 181 182 0 3 1:27:46 4/8/1
 0/0/0

The Damp State field in the first line shows that one route in the inet.0 routing table has been damped.
Farther down in the output, you see that a connection to BGP peer 10.0.31.1 in AS 65505 is established
because the State field shows that the router has received eight routes from that peer and four of them
are active. The third number in the State field shows that one route is currently suppressed as a result
of the damping policy.

The show route damping command provides more information about damped routes. The suppressed
detail option shows specific prefixes that are or have been suppressed:

 aviva@Router3> show route damping suppressed detail
 inet.0: 173318 destinations, 1533437 routes (172602 active, 11 holddown, 108105
 hidden)
 10.4.10.0/19 (1 entry, 0 announced)
 BGP /-101

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Next-hop reference count: 18064
 Source: 192.168.106.33
 Next hop: 192.168.106.33 via so-6/3/0.0, selected
 State: <Hidden Ext>
 Local AS: 65000 Peer AS: 65530
 Age: 1:36
 Task: BGP_65530.192.168.106.33+179
 AS path: 65530 65531 65532 I ()
 Communities: 65501:390 65501:2000 65501:3000 65504:6453
 Localpref: 100
 Router ID: 192.168.103.240
 Merit (last update/now): 12866/11594
 damping-parameters: damping-normal
 Last update: 00:01:36 First update: 1w3d 03:00:51
 Flaps: 13718
 Suppressed. Reusable in: 00:19:40
 Preference will be: 170

Here, the prefix 10.4.10.0/19 is suppressed. While suppressed, the prefix is not active in the forwarding
table, so there is no asterisk next to BGP on the second line of the output, and the prefix is hidden
(noted in the State field) and is not exported to any BGP peers. The last several lines show the damping
information. The damping-parameters line indicates that this route is being damped with the damping-
normal parameters. The current figure-of-merit value is 11,594, which is above the reuse threshold of
3,000 that is set for damping-normal . The third line gives an idea of how long the prefix has been
unusable. First update shows when the path attributes for the route were first changed (here, more
than a week ago) and when they were last updated (about 1.5 hours ago). The next lines show that the
route has flapped a total of 13,718 times. If the route remains stable and the path information for it
does not change, the router will unsuppress this route and reuse it in 19 minutes 40 seconds, and with
a preference of 170, which is the default JUNOS preference for routes learned from BGP.

You can also check to see the routes that have flapped but have not been suppressed:

 aviva@Router3> show route damping decayed detail
 inet.0: 173319 destinations, 1533668 routes (172625 active, 4 holddown, 108083
 hidden)
 10.0.111.0/24 (7 entries, 1 announced)
 *BGP Preference: 170/-101
 Next-hop reference count: 151973
 Source: 172.23.2.129
 Next hop: via so-1/2/0.0
 Next hop: via so-5/1/0.0, selected
 Next hop: via so-6/0/0.0
 Protocol next hop: 172.23.2.129
 Indirect next hop: 89a1a00 264185
 State: <Active Ext>
 Local AS: 65000 Peer AS: 65490
 Age: 3:28 Metric2: 0
 Task: BGP_65490.172.23.2.129+179
 Announcement bits (6): 0-KRT 1-RT 4-KRT 5-BGP.0.0.0.0+179 6-Resolve

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 tree 2 7-Resolve tree 3
 AS path: 65490 65520 65525 65525 65525 65525 I ()
 Communities: 65501:390 65501:2000 65501:3000 65504:701
 Localpref: 100
 Router ID: 172.23.2.129
 Merit (last update/now): 1934/1790
 damping-parameters: damping-high
 Last update: 00:03:28 First update: 00:06:40
 Flaps: 2

The prefix 10.0.111.0/24 is using the damping-high parameters, which have a suppression threshold of
6,000. This route currently has not yet crossed this threshold but has a nonzero figure of merit of
1,790. The asterisk before BGP on the second line and the Active in the State field both indicate that
this route is still active.

The show route damping history command shows whether any routes have been withdrawn:

 aviva@Router3> show route damping history
 inet.0: 173320 destinations, 1533529 routes (172624 active, 6 holddown, 108122
 hidden)
 + = Active Route, - = Last Active, * = Both
 10.108.0.0/15 [BGP] 2d 22:47:58, localpref 100
 AS path: 65220 65501 65502 I
 > to 192.168.60.85 via so-3/1/0.0

The prefix 10.108.0.0/15 has been withdrawn. Use the detail option to get more information:

 aviva@Router3> show route damping history detail
 inet.0: 173319 destinations, 1533435
routes (172627 active, 2 holddown, 108105
 hidden)
 10.108.0.0/15 (3 entries, 1 announced)
 BGP /-101
 Next-hop reference count: 69058
 Source: 192.168.60.85
 Next hop: 192.168.60.85 via so-3/1/0.0, selected
 State: <Hidden Ext>
 Inactive reason: Unusable path
 Local AS: 65000 Peer AS: 65220
 Age: 2d 22:48:10
 Task: BGP_65220.192.168.60.85+179
 AS path: 65220 65501 65502 I ()
 Communities: 65501:390 65501:2000 65501:3000 65504:3561
 Localpref: 100
 Router ID: 192.168.80.25
 Merit (last update/now): 1000/932

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 damping-parameters: set-normal
 Last update: 00:01:05 First update: 00:01:05
 Flaps: 1
 History entry. Expires in: 00:22:20

This output is similar to the show route damping suppressed detail command. It also shows in the
Inactive reason line that the path is hidden because it is unusable. Unusable path can mean one of
three things: that the route was rejected as the result of an import routing policy, that the route has
been damped (which is the case here), or that the next hop to the route cannot be resolved.

Checking the routing table entries for 10.108.0.0/15 confirms that the route is unusable:

 aviva@Router3> show route 10.108.0.0/15 exact all
 inet.0: 173321 destinations, 1533468 routes (172617 active, 14 holddown, 108123
 hidden)
 + = Active Route, - = Last Active, * = Both
 10.108.0.0/15 *[BGP/170] 02:59:16, localpref 120, from 172.24.250.123
 AS path: (64603) 65503 65503 65503 I
 > via so-2/0/0.0, label-switched-path 1
 via so-2/0/0.0, label-switched-path 2
 [BGP/170] 5w3d 11:43:01, localpref 100, from 172.24.20.129
 AS path: 65520 65521 I
 via so-1/2/0.0
 > via so-5/1/0.0
 via so-6/0/0.0
 [BGP] 2d 22:49:33, localpref 100
 AS path: 65220 65501 65502 I
 > to 192.168.60.85 via so-3/1/0.0

The third route to 10.108.0.0/15 , using the SONET interface so-3/1/0.0 , is the one that is suppressed.
You can confirm this because no preference value is associated with the route. You see [BGP] instead
of [BGP/170] .

See Also

RFC 2439, BGP Route Flap Damping ; Recipe 9.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.13. Adding a BGP Community to Routes

Problem

You want to add a BGP community to routes so you can apply common routing policy to the routes.

Solution

BGP communities are a way to group routes so you can apply the same policy to them. To use them
in a routing policy, first define the community members and an AS path string:

 [edit policy-options]
 aviva@RouterF#
set community customer members 65500:1234
 aviva@RouterF# set as-path AS65505-path "65505.*"

Then include the community in the routing policy:

 [edit policy-options policy-statement community-add]
 aviva@RouterF# set term match-route from protocol bgp
 aviva@RouterF# set term match-route from as-path AS65505-path
 aviva@RouterF# set then community add customer
 aviva@RouterF# set then accept

To have the policy take effect, apply it with an import statement to an EBGP group:

 [edit protocols bgp]
 aviva@RouterF# set group session-to-AS65505 import community-add

Discussion

BGP communities are a way to group routes so that the same routing policy can be applied to them.
This recipe shows a simple application of BGP communities that adds the community 65500:1234 to all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

received BGP routes that have the AS number 65505 in their AS path.

Creating the routing policy is a two-step process. First, define the members in your community with
the set community statement. Each member has a community identifier, which looks like AS-
number:community-value. The AS-number portion of the identifier is the local AS number. The
community-value is a number from 1 through 65535 that you assign to identify the community. How

you choose this number is a function of your internal administrative policies. Because the first part of
the community identifier is your AS number, the identifier is unique across the network.

In the community identifier, you can use regular expressions to specify matches for the AS number
and member identifier. The regular expressions have the same format as those for AS paths,
consisting of a term and an operator, and they use the same operators as AS paths (see Table 13-1).

Because the routing policy in the recipe matches an AS number, we need the set as-path command
to define which ASs to look for.

The second part of the process is creating a routing policy that references the community. The
routing policy checks for BGP routes that have 65505 in their AS path and adds the community
customer to any that match. Here's what the policy-options portion of the configuration looks like:

 [edit policy-options]
 aviva@RouterF# show
 policy-statement community-add {
 term match-route {
 from {
 protocol bgp;
 as-path AS65505-path;
 }
 then {
 community add customer;
 accept;
 }
 }
 }
 community customer members 65500:1234;
 as-path AS65505-path "65505 .*";

As with all policies, to have it take affect, apply it to BGP. Here, we apply it with an import statement
on routes being learned from the EBGP peer to AS 65505.

The detail option of the show route command lists the community attributes associated with a route:

 aviva@RouterF>
show route detail 192.168.18.1
 inet.0: 18 destinations, 22 routes (18 active, 0 holddown, 0 hidden)
 192.168.18.1/32 (1 entry, 1 announced)
 *BGP Preference: 170/-101
 Next-hop reference count: 18
 Source: 10.0.31.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Next hop: 10.0.31.1 via t1-0/0/3.0, selected
 State: <Active Ext>
 Local AS: 65500 Peer AS: 65505
 Age: 2d 18:35:30 Metric: 65
 Task: BGP_65505.10.0.31.1+2079
 Announcement bits (3): 0-KRT 3-BGP.0.0.0.0+179 4-Resolve tree 1
 AS path: 65505 I
 Communities: 65500:1234
 Localpref: 100
 Router ID: 192.168.14.1

You see that the route to 192.168.18.1, which is in AS 65505, has been marked with the configured
community 65500:1234.

The rest of this section provides a more detailed example of using BGP communities and shows a
configuration that updates the bogon prefixes on your router automatically whenever they change.
Bogons are prefixes that should never appear in the Internet routing table. (The term bogon refers to
something that is bogus.) There are two types of bogons: martian prefixes, which are private (RFC
1918) and reserved addresses (multicast and loopback), and unallocated prefixes, which are address
spaces that have not yet been assigned to a routing information registry (RIR) by IANA. Although
you can use bogon addresses in a private network, they should never leak out to the public Internet.

A good security policy on edge routers that face the Internet is to filter bogons. If you are using
private address space inside your private network, you don't want these addresses to leak out to the
public Internet because traffic to or from these prefixes should not be seen on the public Internet.
Also, if your network receives bogons from the Internet, you want to ignore them. Some common
occurrences of bogons on the Internet include spoofed attacks, prefix hijacking, and simple
configuration mistakes.

One way to filter bogons is to create a route prefix list that lists all the bogons and then reference this
list in a routing policy. However, because the list of bogon addresses changes as unallocated space is
allocated and as definitions of martian routes change, you would manually need to change the prefix
lists. To avoid this administrative overhead, you can set up the configuration to automatically update
the bogon list from the Team Cymru bogon route server project, which maintains a current list of
bogons (see http://www.cymru.com/BGP/bogon-rs.html). This configuration, which is based on a
suggested Team Cymru configuration, sets up an EBGP session with Team Cymru to automatically
update the bogon list when it changes. This configuration also ties together many of the individual
BGP configuration commands discussed in this chapter.

This configuration creates the community 65333:888 that is used to filter all bogons:

 [edit policy-options]
 aviva@RouterF# set community cymru-bogon-community members [no-export 65333:888]

This community includes the no-export member to attach the BGP NO_EXPORT attribute to the
community to ensure that the router does not advertise the route beyond the local AS. The JUNOS
software also allows you to attach the BGP NO_ADVERTISE and NO_EXPORT_SUBCONFED attributes

http://www.cymru.com/BGP/bogon-rs.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

to a community, with the no-advertise and no-export-subconfed options.

The routing policy also uses a second community:

 [edit policy-options]
 aviva@RouterF# set community dont-announce members 65500:1234

This configuration assumes that you use community 65500:1234 as a standard way to suppress
announcements of these routes outside your AS. The community is included as a precaution to
provide a backup method to make sure that the routes stay within your AS in case, for some reason,
the NO_EXPORT action fails.

Then define a simple regular expression to match the Team Cymru private AS number:

 [edit policy-options]
 aviva@RouterF# set as-path cymru-private-asn 65333

The following routing policy for the EBGP peering session accepts the bogon route updates:

 [edit policy-options]
 aviva@RouterF# edit policy-statement cymru-bogon-list

 [edit policy-options policy-statement cymru-bogon-list]
 aviva@RouterF# set term 1 from protocol bgp
 aviva@RouterF# set term 1 from as-path cymru-private-asn
 aviva@RouterF# set term 1 from community cymru-bogon-community
 aviva@RouterF# set term 1 then community add dont-announce
 aviva@RouterF# set term 1 then next-hop 192.0.2.1
 aviva@RouterF# set term 1 then accept
 aviva@RouterF# set then reject

The from clause matches BGP routes from the AS path defined in cymru-private-asn (that is, from AS
number 65333) and that contain the community string defined in cymru-bogon-community (that is,
65333:888). The then clause performs two actions on any matching routes before accepting them.
The set then community add dont-announce command attaches the community string 65500:1234 to
the routes to ensure that the routes are never forwarded outside the local AS. (This is the community
you defined with the set community dont-announce command.) The second action in the then clause
sets the route's next hop to 192.0.1.2, which is a reserved network prefix. This next hop maps the
bogons to a remotely triggered black hole, which acts as a filter for the bogons, discarding them and
explicitly stating that they are never to be readvertised. You define this prefix as a static route in the
routing table:

 [edit routing-options]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterF# set static route 192.0.2.1/32 discard
 aviva@RouterF# set static route 192.0.2.1/32 no-readvertise
 aviva@RouterF# set static route 192.0.2.1/32 retain

The discard option on the static route prevents it from being forwarded, no-readvertise prevents it
from being readvertised to anyone else, and retain keeps the route in the forwarding table if the
JUNOS routing process restarts normally.

If you are using the default JUNOS martians, 192.0.2.1/32 is a martian and will be rejected, so you
need to explicitly allow the routing table to accept it:

 [edit routing-options]
 aviva@RouterF# set martians 192.0.2.1/32 exact allow

When setting up policies, also create a second one for the EBGP peering session to make sure your
network doesn't forward any routing information back to Team Cymru:

 [edit policy-options]
 aviva@RouterF# set policy-statement deny-all then reject

Now you have all the pieces in place to configure the EBGP peering session with Team Cymru so you
can receive the automatic bogon updates. As with establishing a peering session with any remote AS,
you need to contact the AS administrator to set up the peering terms and to provide your AS
number, the IP address of the router's interface that will be used for peering, and your MD5
password. With this information you can configure the EBGP peer. The basic configuration establishes
the external peering, sets a description for the peer, defines the peer's AS number and the remote IP
address used for the peering session, and sets a mutually agreed upon MD5 key:

 [edit protocols bgp group cymru-peering]
 aviva@RouterF# set type external
 aviva@RouterF# set description "bogon update peering with team cymru"
 aviva@RouterF# set peer-as 65333
 aviva@RouterF# set neighbor 10.0.31.1
 aviva@RouterF# set authentication-key "9D8imfQFnCp0zFreM87Nmf5T/C"

Apply the routing policies:

 [edit protocols bgp group cymru-peering]
 aviva@RouterF# set import cymru-bogon-list
 aviva@RouterF# set export deny-all

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The import policy accepts the bogon list, and the export policy prevents the router from sending any
routing updates to Team Cymru.

Because Team Cymru is more than one BGP hop away from your network, the EBGP peering needs
to be a multihop session:

 [edit protocols bgp group cymru-peering]
 aviva@RouterF# set multihop
ttl 255

The time to live (TTL) specifies how many hops your router is from the EBGP neighbor. For an EBGP
session where the external neighbor is directly connected, the TTL is 1. For multihop sessions, the
default TTL is 64. This configuration sets the TTL to the maximum allowable value of 255 to ensure
that the peering succeeds. BGP places the TTL value in the packet's IP header.

A final portion of the EBGP peer configuration restricts the number of routes Team Cymru can
advertise to you, to guard against a misconfiguration or an inadvertent advertisement of the entire
Internet routing table:

 [edit protocols bgp group cymru-peering]
 aviva@RouterF# set family inet unicast prefix-limit maximum 100
 aviva@RouterF# set family inet unicast prefix-limit teardown 100

As of this writing, the bogon list contains 95 prefixes, so you use a prefix limit slightly higher than
this.

This is a fairly involved configuration, so it's worth summarizing it all in one place:

 [edit]
 aviva@RouterF# show
 routing-options {
 static {
 route 192.0.2.1/32 {
 discard;
 retain;
 no-readvertise;
 }
 martians {
 192.0.2.1/32 exact allow;
 }
 router-id 192.168.16.1;

autonomous-system 65500;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 protocols {
 bgp {
 group cymru-peering {
 type external;
 description "bogon update peering with team cymru";
 multihop {
 ttl 255;
 }
 import cymru-bogon-list;
 family inet {
 unicast {
 prefix-limit {
 maximum 100;
 teardown 100;
 }
 }
 }
 authentication-key "9D8imfQFnCp0zFreM87Nmf5T/C"; ## SECRET-DATA
 export deny-all;
 peer-as 65333;
 neighbor 10.0.31.1;
 }
 }
 }
 policy-options {
 policy-statement cymru-bogon-list {
 term 1 {
 from {
 protocol bgp;
 as-path cymru-private-asn;
 community cymru-bogon-community;
 }
 then {
 community add dont-announce;
 next-hop 192.0.2.1;
 accept;
 }
 then reject;
 }
 policy-statement deny-all {
 then reject;
 }
 community cymru-bogon-community members [no-export 65333:888];
 community dont-announce members 65500:1234;
 as-path cymru-private-asn 65333;
 }

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RFC 1997, BGP Communities Attribute; RFC 1998, An Application of the BGP Community Attribute in
Multihome Routing; Team Cymru's bogon route server project, http://www.cymru.com/BGP/bogon-
rs.html; Recipe 9.1

http://www.cymru.com/BGP/bogon-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.14. Load-Balancing BGP Traffic

Problem

A customer is multihomed to two different routers in your point of presence (POP). Instead of having
BGP send all traffic across one of the links, which is the default behavior, you want to load-balance the
EBGP traffic from the customer across the two links.

Solution

To enable load balancing across multiple EBGP peerings, configure the BGP group to use multipath:

 [edit protocols bgp group external-group]
 aviva@Router1# set type external
 aviva@Router1# set peer-as 65505
 aviva@Router1# set multipath
 aviva@Router1# set neighbor 192.168.1.1
 aviva@Router1# set neighbor 192.168.1.3

For the load balancing to happen, configure a load-balancing policy:

 [edit policy-options]
 aviva@router1# set policy-statement LoadBalance from route-filter 192.168.1.0/24
 orlonger
 aviva@Router1# set policy-statement LoadBalance then load-balance per-packet

 [edit routing-options]
 aviva@Router1# set forwarding-table export LoadBalance

Discussion

Multihomed connections from a customer's network to the ISP's POP provide redundant Internet
connectivity. If one of the links goes downfor example, because a fiber was cutthe second connection
provides backup. If the paths from both connections are equal-cost, the default BGP behavior is to
select the single best route to a destination. The result is that BGP uses only one of the links to forward
traffic. As long as both links are up, the customer wants to use both, spreading the traffic between them
to increase the bandwidth available for sending traffic to the Internet. Multipath BGP allows the traffic to
be load-balanced across the two links.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 13-5 shows a network topology with redundant peerings. Router1 in AS 65500 has EBGP peerings
with two routers in AS 65505 . If Router1 receives two paths from Router3 and Router4 for a prefix in
the remote AS, and if all route parameters are the same except for the router ID, BGP will pick the path
with the lower router ID. The result is that only one of the paths (either through Router3 or Router4)
will be used for traffic from Router1 to a customer in AS 65505 .

Figure 13-5. Multiple BGP peerings to another AS

Multipath BGP overrides the default BGP behavior and allows both links to be used for forwarding traffic.
The result is equal-cost load balancing between the two links, which allows Router1 to send traffic both
to Router3 and Router4.

Multipath BGP works by allowing a path other than the best one to be placed into the forwarding table to
be used as an alternative. When BGP evaluates multiple routes to determine the best path to a prefix, if
all the conditions are the same except for the router ID, which is the last route property that BGP
considers as a tie-breaker, BGP installs all the equal-cost routes into the forwarding table (see the
Introduction to Chapter 8).

Another restriction for multipath BGP is that both neighboring routers must be in the same AS. This is
necessary because BGP can advertise only a single path, and it makes assumptions regarding the
forwarding path matching the routing information.

This recipe creates an EBGP group external-group on Router1, in AS 65500 , with two neighbors in AS
65505 (configured with the set peer-as 65505 command) (see Figure 13-5). The set multipath
command configures BGP multipath. However, for BGP multipath to work, you must also set up a load-
balancing routing policy that is applied to the router's forwarding table.

Looking in the routing table, you see the routes learned from both routers:

 aviva@Router1> show route 172.16.14.0/24
 inet.0: 176580 destinations, 1421698 routes (176272 active, 1 holddown, 79688 hidden)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 + = Active Route, - = Last Active, * = Both
 172.16.14.0/24 *[BGP/170] 3w4d 05:01:06, MED 0, localpref 100
 AS path: (65505) 65510 65520 ?
 > to 192.168.1.1 via ge-0/1/0.0
 to 192.168.1.3 via ge-1/1/0.0
 [BGP/170] 3w4d 05:01:15, MED 0, localpref 100
 AS path: (65505) 65510 65520 ?
 > to 192.168.1.3 via ge-1/1/0.0

The routing table shows two paths to this destination, the first goes through Router3 (192.168.1.1) and
the ge-0/1/0 interface, and the second goes through Router4 (192.168.1.3) and the ge-1/1/0 interface.
The first path is active (marked with an asterisk) because it was learned from the router with the lower
router ID (192.168.1.1 is lower than 192.168.1.3). The second path is the alternate next hop. The first
path lists two next hops:

 > to 192.168.1.1 via ge-0/1/0.0
 to 192.168.1.3 via ge-1/1/0.0

The first hop is learned from 192.168.1.1 , and the second is learned from 192.168.1.3 . The second
next hop has been copied from the second path up to the first one.

The detail version of the show route command gives more information about the two paths:

 aviva@Router1> show route 172.16.14.0/24 detail
 inet.0: 176576 destinations, 1426247 routes (176265 active, 4 holddown, 79690 hidden)
 172.16.14.0/24 (12 entries, 1 announced)
 *BGP Preference: 170/-101
 Next-hop reference count: 14184
 Source: 192.168.1.1
 Next hop: 192.168.1.1 via ge-0/1/0.0, selected
 Next hop: 192.168.1.3 via ge-1/1/0.0
 Protocol next hop: 192.168.1.1
 Indirect next hop: ac0a200 524714
 Protocol next hop: 192.168.1.3
 Indirect next hop: 24479700 524586
 State: <Active Int Ext>
 Local AS: 65000 Peer AS: 65505
 Age: 3w4d 5:08:45 Metric: 0 Metric2: 0
 Task:
BGP_65505.192.168.1.1+3718
 Announcement bits (6): 0-KRT 1-RT 5-KRT 6-BGP.0.0.0.0+179 7-Resolve
 tree 3 8-Resolve tree 4
 AS path: (65505) 65510 65520 ? (Atomic) Aggregator: 2468 192.168.246.3
 Communities: 65500:390 65500:2400 65505:3400
 Localpref: 100
 Router ID: 192.168.16.5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BGP Preference: 170/-101
 Next-hop reference count: 12709
 Source: 192.168.1.3
 Next hop: 192.168.1.3 via ge-1/1/0.0, selected
 Protocol next hop: 192.168.1.3
 Indirect next hop: 24479700 524586
 State: <NotBest Int Ext>
 Inactive reason: Router ID
 Local AS: 65000 Peer AS: 65505
 Age: 3w4d 5:08:54 Metric: 0 Metric2: 0
 Task: BGP_65505.192.168.1.3+179
 AS path: (65505) 65510 65520 ? (Atomic) Aggregator: 2468 192.168.246.3
 Communities: 65500:390 65500:2400 65505:3400
 Localpref: 100
 Router ID: 192.168.1.6

The Source field shows the router from which the path was learned. The first path is learned from
Router3 (192.168.1.1) and the second is from Router4 (192.168.1.3). The Next hop field repeats the
information in the standard show route output, showing the next-hop IP address and the interface
toward the destination.

The Protocol next hop field is the next-hop information that BGP learned from its peers. Because BGP
learns only about routers in the network, not in the interface, this IP address is listed without a
corresponding interface on the local router. The indirect next hop is an internal RPD address of the next
hop. The second number in this field is the kernel's index of the indirect next hop. You will see this index
when you look at the contents of the forwarding table.

The State field gives additional information about the path. For the first path to 172.168.14.0/24 , this
field shows that the path is active. For the second path, this field lists the path as an alternate (NotBest
) and indicates that it was not chosen as the active path because it does not have the lowest router ID:

 State: <NotBest Int Ext>
 Inactive reason: Router ID

Both next hops are installed in the Routing Engine's forwarding table:

 aviva@Router1> show route forwarding-table destination 172.16.14.0/24
 Routing table: inet
 Internet:
 Destination Type RtRef Next hop Type Index NhRef Netif
 172.16.14.0/24 user 0 ulst 526570 3545
 indr 524714 523
 192.168.1.1 ucst 336 17 ge-0/1/0.0
 indr 524586 1864
 192.168.1.3 ucst 340 13 ge-1/1/0.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This forwarding table is then copied to the PFE's forwarding table:

 aviva@Router1> show pfe route ip prefix 172.16.14.0/24
 Slot 0
 IPv4 Route Table 0, default.0, 0x0:
 Destination NH IP Addr Type NH ID Interface
 --------------------------------- --------------- -------- ----- ---------
 172.16.14/24 Unilist 526570 ge-0/1/0.0
 Slot 1
 IPv4 Route Table 0, default.0, 0x0:
 Destination NH IP Addr Type NH ID Interface
 --------------------------------- --------------- -------- ----- ---------
 172.16.14/24 Unilist 526570 ge-0/1/0.0

Both the routes are of type Unilist , which means that they are in the list of unicast next hops
maintained by the Packet Forwarding Engine. The NH ID field shows the kernel's index of the indirect
next hop, which matches what you saw in the show route detail output.

Even though multipath BGP selects multiple paths for forwarding and installs two paths in the forwarding
table, BGP advertises only one path to its peers, which is the best path toward the destination. This is
the same path that BGP would advertise if BGP load balancing were not configured.

You can also use multipath BGP across IBGP peerings. An additional restriction is that the IGP metric
distance to the two IBGP peers must be identical. Ascenario for doing this might be to load-balance
traffic across redundant paths within a POP.

See Also

Recipes 8.9 and 9.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.15. Tracing BGP Protocol Traffic

Problem

You want to keep a running log of BGP protocol information so you can track any problems with your
BGP peers.

Solution

When performing ongoing monitoring of BGP operations, set up tracing options (or traceoptions for
short) to track BGP state changes globally for all BGP groups:

 [edit protocols bgp]
 aviva@RouterF# set traceoptions flag state detail
 aviva@RouterF# set traceoptions file bgp-trace world-readable

To turn off BGP tracing, remove the traceoptions statement from the configuration:

 [edit protocols bgp]
 aviva@RouterF#
delete traceoptions

You can also deactivate the statement:

 [edit protocols
bgp]
 aviva@RouterF#
deactivate traceoptions

Discussion

It's good practice to trace high-level BGP operations on an ongoing basis. If and when a problem
arises, you can examine the resulting log to get the necessary information about the source of the
problem. Then you can enable more detailed traceoptions flags to pinpoint the causes.

This recipe sets up tracing of BGP peer state exchanges, saving them to the file bgp-trace . The word-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

readable option allows anyone logged in to the router to read the file. This file is created on the
router's hard disk in the directories /var/log (on M-series and T-series routers) and /cf/var/log (on J-
series routers). The detail option provides additional information about abnormal events. This
configuration creates 10 logfiles (the default) and uses the default trace file size of 10 MB, which is
generally a useful size for logging events over a long period of time. If your BGP network is large, you
might want to increase the file size so that you have time to review or archive the logfiles before the
files start overwriting each other:

 [edit protocols bgp]
 aviva@RouterF# set traceoptions file size 100M
 aviva@RouterF# show
 traceoptions {
 file bgp-trace size 100m world-readable;
 flag state detail;
 flag open;
 }

The following output shows the log results when a BGP peer drops and then re-establishes a session:

 aviva@RouterF> show log bgp-trace
 Aug 6 19:07:18 trace_on:
Tracing to "/var/log/bgp-trace" started
 Aug 6 19:07:53 bgp_recv: peer 10.0.31.1 (External AS 65505):
received unexpected EOF
 Aug 6 19:07:53 bgp_peer_close: closing peer 10.0.31.1 (External AS 65505), state is
 6 (Established)
 Aug 6 19:07:53 bgp_event: peer 10.0.31.1 (External AS 65505) old state Established
 event Closed new state Idle
 Aug 6 19:07:53 bgp_event: peer 10.0.31.1 (External AS 65505) old state Idle event
 Start new state Active
 Aug 6 19:07:57 bgp_event: peer 10.0.31.1 (External AS 65505) old state Active event
 Open new state OpenSent
 Aug 6 19:07:57 bgp_event: peer 10.0.31.1 (External AS 65505) old state OpenSent
 event RecvOpen new state OpenConfirm
 Aug 6 19:07:57 bgp_event: peer 10.0.31.1 (External AS 65505) old state OpenConfirm
 event RecvKeepAlive new state Established

The first line shows the abnormal event receive unexpected EOF when the BGP peer connection
drops. The following lines show the transition through various states as BGP establishes the
connection, from Idle , to Active, OpenSent , and OpenConfirm , and finally to Established .

Another useful tracing flag for ongoing monitoring of BGP is open , used to track when peer
connections are established and torn down:

 [edit protocols

http://lib.ommolketab.ir
http://lib.ommolketab.ir

bgp]
 aviva@RouterF# set traceoptions flag open

When the BGP peer session drops and re-establishes, the log contains traces of the BGP Open
messages:

 aviva@RouterF> show log bgp-trace
 Aug 6 19:17:45 trace_on:
Tracing to "/var/log/bgp-trace" started
 Aug 6 19:18:05 bgp_recv: peer 10.0.31.1 (External AS 65505): received unexpected EOF
 Aug 6 19:18:05 bgp_peer_close: closing peer 10.0.31.1 (External AS 65505), state is
 6 (Established)
 Aug 6 19:18:05 bgp_event: peer 10.0.31.1 (External AS 65505) old state Established
 event Closed new state Idle
 Aug 6 19:18:05 bgp_event: peer 10.0.31.1 (External AS 65505) old state Idle event
 Start new state Active
 Aug 6 19:18:09
 Aug 6 19:18:09 BGP RECV 10.0.31.1+4379 -> 10.0.31.2+179
 Aug 6 19:18:09 BGP RECV message type 1 (Open) length 45
 Aug 6 19:18:09 bgp_event: peer 10.0.31.1 (External AS 65505) old state Active event
 Open new state OpenSent
 Aug 6 19:18:09 bgp_send: sending 45 bytes to 10.0.31.1 (External AS 65505)
 Aug 6 19:18:09
 Aug 6 19:18:09 BGP SEND 10.0.31.2+179 -> 10.0.31.1+4379
 Aug 6 19:18:09 BGP SEND message type 1 (Open) length 45
 Aug 6 19:18:09 bgp_event: peer 10.0.31.1 (External AS 65505) old state OpenSent
 event RecvOpen new state OpenConfirm
 Aug 6 19:18:09 bgp_event: peer 10.0.31.1 (External AS 65505) old state OpenConfirm
 event RecvKeepAlive new state Established

When debugging BGP, you can set one or more of the following trace flags to monitor BGP
information:

 [edit protocols bgp]
 aviva@RouterF# show traceoptions flag ?
 Possible completions:
 all Trace everything
 damping Trace BGP damping information
 general Trace general events
 keepalive Trace BGP keepalive packets
 normal Trace normal events
 open Trace BGP open packets
 packets Trace all BGP protocol packets
 policy Trace policy processing
 refresh Trace BGP refresh packets
 route Trace routing information

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 state Trace state transitions
 task Trace routing protocol task processing
 timer Trace routing protocol timer processing
 update Trace BGP update packets

You can configure BGP traceoptions globally, per group, or per peer. For ongoing monitoring, enable
them at the global level, as in this recipe. For more focused traceoptions for when you're
troubleshooting a known problem, enable tracing at the appropriate level, either for an IBGP or EBGP
group or for a specific peer. For example, the following commands log route changes from an EBGP
peer:

 [edit protocols bgp]
 aviva@RouterF# set group session-to-AS65505 traceoptions file bgp-log-CustomerA
 world-readable
 aviva@RouterF# set group session-to-AS65505 TRaceoptions flag route
 aviva@RouterF# set group session-to-AS65505 traceoptions flag state
 aviva@RouterF# show
 group session-to-AS65505 {
 type external;
 traceoptions {
 file bgp-log-CustomerA world-readable;
 flag route;
 flag state;
 }
 description "EBGP to Customer A";
 …

The JUNOS software also provides a BGP configuration command, log-updown , to log peer state
transitions to a standard system logging file (the default file is named messages):

 [edit protocols bgp]
 aviva@RouterF# set log-updown

This command enables the logging globally, but you can also set it for an individual BGP group or
peer. This is a useful way to keep basic system logging information in one file so you have to look
only in one place to check router status. One disadvantage of this, however, is that BGP log entries
are mixed into a system-wide logfile, so the BGP-specific messages can be buried in many other
messages.

If you need to disable BGP tracing, either remove the TRaceoptions statement from the configuration
with the delete configuration mode command or simply deactivate it. Deactivation leaves the
statements in the configuration, but they are ignored when you issue a commit command. When you
need to turn on BGP tracing again, restoring a deactivated portion of the configuration is very quick:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit protocols bgp]
 aviva@RouterF# activate traceoptions
 aviva@RouterF# commit

See Also

Recipe 5.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 14. MPLS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

Multiprotocol Label Switching (MPLS), as its name implies, is a switching protocol developed by the
IETF to incorporate some of the benefits of network switching devices into an IP network. MPLS is
designed to work with standard IP routing protocolsBGP, OSPF, and IS-ISwhich have been extended
to support MPLS.

Work on MPLS started as a response to the development of the Asynchronous Transfer Mode (ATM)
protocol by the ITU and the ATM Forum in the late 1980s and early 1990s, and the propagation of
ATM switches. By the early 1990s, the performance of ATM switches exceeded that of IP routers, but
the architectural model, which is based on virtual circuits (a connection model) fundamentally
differed from the IP connectionless model. In the early 1990s, it seemed that ATM-based applications
might become dominant. However, when TCP/IP-based applications, such as the World Wide Web,
became standard, the ATM Forum and the IP standards bodies designed a number of schemes,
sometimes fairly complex, that allowed ATM and IP protocols to interoperate. The IETF borrowed a
number of ATM switching design features when designing MPLS.

In response to ATM, several router vendors developed switching technologies compatible with IP
routing. IPsilon, a now defunct startup, created IP Switching, Toshiba developed a Cell Switching
Router (CSR), IBM introduced an approach called Aggregate Route-based IP Switching (ARIS), and
Cisco Systems had Tag Switching. Cisco pursued standardization of Tag Switching with the IETF,
which led to the formation of the MPLS working group in early 1997.

The first RFCs from the working group, RFCs 3031 and 3032, released in 2001, define the basic MPLS
architectural framework, describing labels and label operations for passing MPLS traffic across label-
switched paths (LSPs) through the network. Later RFCs defined the signaling protocols used by MPLS.
The Label Distribution Protocol (LDP, RFC 3036) was specifically designed for distributing labels to set
up LSPs. An already existing protocol, the Resource Reservation Protocol (RSVP), originally designed
as a general protocol for reserving bandwidth for network flows, was extended to set up LSPs, assign
and manage labels, and reserve bandwidth for the LSP.

Since the introduction of MPLS, many new services have been developed that use MPLS, including
Layer 3 VPNs, Virtual Private LAN Services (VPLS), and Differentiated Services Traffic Engineering (
DiffServ TE).

For more detailed information about how MPLS works, see MPLS: Technology and Applications
(Morgan Kaufmann) and MPLS-Enabled Applications (Wiley UK).

LSPs

MPLS assigns labels to network packets that describe how to forward them through the network. A
label is a short, fixed-length numeric identifier. The labeled traffic is forwarded along LSPs, which are
unidirectional tunnels through the IP network. LSPs are connections similar to ATM or Frame Relay
virtual circuits. LSPs have an entry point, called an ingress router, and an exit point, called an egress
router. LDP-signaled LSPs have multiple ingress points and a single egress point. RSVP-signaled LSPs
have one ingress point and one egress point and optional intermediate routers called transit routers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A signaling protocol establishes the physical path taken by the LSP between the ingress and egress
routers. Once the paths are established, the ingress router pushes a fixed-length label onto packets
traveling through the LSP. Each transit router swaps the label, removing the incoming label and
replacing it with an outgoing label, and forwards the packets to the next hop. At the egress router (or
typically at the penultimate hop, which is the router immediately prior to the egress router), the label
is popped, or removed, from the packet, and the egress router continues forwarding the packet using
the standard IP routing longest-match lookup algorithm. MPLS maintains a label forwarding table that
it uses to determine the next hop in an LSP. The next-to-last router in the LSP, the penultimate
router, usually performs a label pop operation, removing the MPLS label before sending the packet to
the egress router. This is called penultimate hop popping (PHP).

LSPs are established either manually or dynamically using a signaling protocol.

MPLS Header and Labels

Packets traveling along an LSP are identified by a label, which is part of a 4-byte MPLS header that is
inserted as a shim between the packet's link-level (Layer 2) header and its network layer (Layer 3)
data (see Figure 14-1).

Multiple MPLS headers can be stacked in the packet's header. The newest header is placed at the
beginning (top) of the stack.

The first 20 bits of the MPLS header are the MPLS label value, a numeric identifier that the LSP uses
to forward packets. The label itself has no internal structure, unlike IP addresses, which are
structured as a prefix (network portion) and prefix length (subnetwork or host portion). The ingress
router assigns a label to each packet as it enters an LSP, pushing the label onto the packet's label
stack. When a router receives a labeled packet, it looks up the label value at the top of the stack to
learn the next hop to which to forward the packet and any operation to be performed on the label
stack before forwarding the packet. Common label operations are to swap (replace) the top label
stack entry with another label and to pop (remove) the top label from the stack.

Figure 14-1. MPLS header

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Label values range from 0 through 1,048,575 (2 20). Values 0 through 15 are reserved by the IETF,
and all others are available for use. Of the 16 label values reserved by the IETF, a few have well-
defined meanings:

Table 14-1.

0
IPv4 Explicit Null label indicates that the label must be popped when the packet is received.
Packet forwarding then continues using longest-match lookup based on the contents of the IPv4
packet.

1 Router Alert label delivers the packet to the local router's software for processing.

2
IPv6 Explicit Null label indicates that the label must be popped when the packet is received.
Packet forwarding then continues using longest-match lookup based on the contents of the IPv6
packet.

3
Implicit Null label is used by a signaling protocol (in JUNOS software, either LDP or RSVP) to
request that the downstream router pop the label.

The JUNOS software allocates the remaining labels as follows:

16 through 1,023

Used for mapping labels for VPN VRF routing tables

1,024 through 9,999

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Reserved for future use

10,000 through 99,999

For manually configured static LSPs (JUNOS software does not automatically allocate labels in
this range to eliminate label conflict)

100,000 through 1,048,575

For automatically configured signaled LSPs

The remaining fields in the MPLS header are the experimental (EXP) field, which is used for setting a
packet's class of service; the stack (S) bit, which is set to 1 for the last entry on the label stack and 0
for all other label stack entries; and the TTL field, which carries the time-to-live value.

MPLS Forwarding

MPLS uses packet labels to forward traffic along the LSP. You need to understand how the labels are
applied on the different routers in an LSP to configure and monitor an MPLS network.

Starting at the head end of an LSP, let's follow an IPv4 packet whose destination is downstream of
RouterF (192.168.16.1). When the packet arrives at the ingress router (RouterG), this router checks
its routing table and finds a route for this destination with a next hop of the LSP. The router inserts
an MPLS header with a label of 100000 into the packet's header then forwards the packet to the next
downstream router on the path (see Figure 14-2).

Figure 14-2. Ingress router adds MPLS header with label to IPv4 packet

The transit router (RouterJ) receives the labeled packet and performs a lookup in its label forwarding
table. The router then performs a swap operation, removing the received label 100000 and replacing
it with label 100032 from its switching table (see Figure 14-3).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RouterK, the penultimate router, also performs a lookup in its switching table. Because the egress
router signaled the label 3, RouterK pops the label from the packet and forwards the remaining data
to the egress router. This data is a native IPv4 packet, so the egress router (RouterF) performs a
route lookup and forwards the packet to the appropriate next hop (see Figure 14-4).

Figure 14-3. Transit router swaps labels in the MPLS header

Figure 14-4. Penultimate router pops label

MPLS Routing and Forwarding Tables

For standard routing operations, the JUNOS routing software uses the inet.0 unicast routing table,
which contains prefixes learned from IGPs. For MPLS forwarding operations, by default the JUNOS
software stores prefixes learned from a signaling protocol (either LDP or RSVP) in a separate routing
table, inet.3. MPLS consults this table when making forwarding decisions.

MPLS also creates another table, mpls.0, that contains the labels received and used by the local
router to forward packets to the next-hop router.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Signaling Protocols

Labels are allocated and distributed throughout an MPLS network either manually or using a signaling
protocol. It is time-intensive to set up and maintain static (manual) LSPs, so they are rarely used and
are not discussed in this book. The JUNOS software supports two signaling protocols, LDP and RSVP.

LDP was designed by the MPLS working group in the IETF to set up LSPs and distribute labels
throughout an MPLS network. LDP relies on an IGP (either OSPF or IS-IS) for all routing decisions,
and the LSPs it sets up always follow the IGP's shortest path and change when the IGP's path
changes. These LSPs use the IGP to avoid loops. Because LDP is dependent on an IGP, LDP-signaled
LSPs are limited in scope to the IGP's domain and cannot cross AS boundaries.

LDP discovers neighbors by sending Hello messages, multicasting them to 224.0.0.2 on UDP port
646. After discovering a neighbor, LDP establishes a TCP connection to the neighbor and exchanges
information regarding labels and routes (called forwarding equivalence classes [FRCs]) associated
with the labels. All packets associated with the same FEC are treated in the same way by the router.
In general, this means that the packets are sent to the same next hop. The use of TCP ensures
reliable delivery of label information. LDP sends periodic keepalive messages to maintain the TCP
connection. Each LDP router updates its forwarding- path information independently as it tracks the
state of the IGP.

RSVP was developed before MPLS and was designed to create bandwidth reservations for individual
traffic flows. RFC 3209 extends RSVP to allow it to create and maintain MPLS LSPs and to reserve the
bandwidth needed for LSPs. The extensions are called RSVP-TE. In the rest of this chapter, when we
say RSVP, we mean RSVP with TEextensions. Unlike LDP, which uses the IGP's shortest path as the
transit path for the LSP, RSVP works with the Constrained Shortest Path First (CSPF) algorithm to
determine the LSP's path. On the ingress router, CSPF computes the path of the LSP (the Explicit
Route Object [ERO]) and passes the path to RSVP. RSVP then signals to set up the path. This path-
determination mechanism allows RSVP-signaled LSPs to be used in MPLS-based traffic engineering to
explicitly control the path taken by traffic between specific points in the network. Unlike LDP, which is
limited to a single IGP domain, RSVP-signaled LSPs can cross AS boundaries.

When the ingress router initiates an RSVP-signaled LSP, it sends an RSVP Path message with the
destination address of the egress router. This message also contains several objects, including the:

Label Request Object (LRO)

Requests an MPLS label for the path

ERO

Contains the addresses of the routers along the LSP

Record Route Object (RRO)

Records the path of the LSP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sender TSpec

Requests a bandwidth reservation for the LSP

The egress router responds to a Path message by sending a Resv message that contains the label to
be used for the LSP (in the label object) and a record of the path taken by the Resv message. In
turn, the penultimate router sends a Resv message to its upstream router containing the label value
of its choice inside the label object, because each hop to the downstream router chooses the label
value to be used by the upstream router to forward packets on that hop. This message-exchange
scheme means that an RSVP-signaled LSP requires configuration only on the ingress router. RSVP
periodically sends Path and Resv messages along the LSP to maintain its state.

The main difference between LDP and RSVP is that for LDP, any router in the path can be the ingress
for traffic destined to the LSP tail end, while for RSVP, only the head-end router can push traffic onto
the LSP.

When deciding which signaling protocol to use, you should consider configuration complexity and
features. From a configuration point of view, LDP is easier to configure. For the initial configuration,
you enable LDP on the router's interfaces and, when adding new routers to the network, you
configure only the new box. For initial RSVP configuration, you must explicitly configure the LSP on
the ingress router and, when adding a new router, you must explicitly configure all LSPs originating
at that router. Because LSPs are unidirectional, they must also be configured from each of the other
routers toward the new one. From a feature point of view, only RSVP supports traffic engineering and
fast reroute. If these are not required by your network, LDP is a better choice.

CSPF

RSVP uses the CSPF algorithm when computing paths for LSPs. CSPF is based on the SPF algorithm
used in OSPF and IS-IS route calculations. In addition to network topology, CSPF considers other
factors constraining the LSP computationsuch as link attributes, bandwidth requirements, current
bandwidth reservations, and hop limitationswhen choosing paths that minimize congestion, balance
traffic, and avoid node failures.

CSPF uses the router's traffic engineering database (TED) when computing paths. The TED maintains
information about network topology and current link state. It learns this information from an IGP,
either IS-IS or OSPF, that has been extended to carry additional information, such as available link
bandwidth, that is used in the CSPF calculation. In the JUNOS IS-IS implementation, traffic
engineering extensions are enabled by default; for OSPF, you must explicitly enable them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.1. Configuring LSPs Using LDP as the
Signaling Protocol

Problem

You want to set up an LSP path through an IP network. Instead of setting up the path manually, you
want to use LDP as the signaling protocol to establish and maintain the path.

Solution

For each LDP-signaled LSP, configure the ingress, transit, and egress routers on the path. On the
ingress router, first configure the interface to support the MPLS address family:

 [edit interfaces]
 aviva@RouterG# set t1-4/0/0 unit 0 family mpls

Then enable the MPLS protocol on the interface:

 [edit protocols]
 aviva@RouterG# set mpls interface t1-4/0/0

Finally, turn on LDP as the signaling protocol:

 [edit protocols]
 aviva@RouterG# set ldp interface t1-4/0/0

On the transit and egress routers, turn on MPLS and LDP in a similar fashion. RouterF is the egress
router:

 [edit interfaces]
 aviva@RouterF# set fe-0/0/1 unit 0 family mpls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit protocols]
 aviva@RouterF# set mpls interface fe-0/0/1
 aviva@RouterF# set ldp interface fe-0/0/1

RouterJ is the transit router:

 [edit interfaces]
 aviva@RouterJ# set fe-1/0/1 unit 0 family mpls
 aviva@RouterJ# set t1-5/0/0 unit 0 family mpls

 [edit protocols]
 aviva@RouterJ# set mpls interface t1-5/0/0
 aviva@RouterJ# set mpls interface fe-1/0/1
 aviva@RouterJ# set ldp interface t1-5/0/0
 aviva@RouterJ# set ldp interface fe-1/0/1

Discussion

For MPLS to run on the routers in your network, you configure MPLS and a signaling protocol. This
recipe uses LDP as the signaling protocol and the topology shown in Figure 14-5. Because LDP
depends on an IGP when creating LSPs, interfaces running MPLS must also be running either IS-IS or
OSPF.

Figure 14-5. MPLS with LDP topology

The first step in the configuration is to enable the MPLS address family on the logical interfaces of all
the interfaces that are running MPLS. This family allows the interface to process labeled packets. On
the ingress router, RouterG, add the MPLS family to the t1-4/0/0 interface; on the transit router,
RouterJ, add it to the t1-5/0/0 and fe-1/0/1 interfaces; and on the egress router, RouterF, add it to
the fe-0/0/1 interface. The interface configuration now has two families, IPv4 (inet) and MPLS:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterG> show configuration interfaces
 t1-4/0/0 {
 unit 0 {
 family inet {
 address 10.0.0.1/24;
 }
 family mpls;
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 192.168.19.1/32;
 }
 }
 }

The output shows the MPLS family on the t1-4/0/0 interface on the ingress router but not on the
loopback interface. Because the loopback interface isn't a transit interface and never carries labeled
packets, you don't need to configure it for the MPLS family.

Use the show interfaces terse command to verify that the MPLS family is configured on all expected
interfaces. Here's the output for the transit router:

 aviva@RouterJ> show interfaces terse
 Interface Admin Link Proto Local Remote
 fe-0/0/0 up up
 fe-0/0/0.0 up up inet 172.19.121.117/24
 fe-1/0/1 up up
 fe-1/0/1.0 up up inet 10.0.8.1/24
 mpls
 t1-5/0/0 up up
 t1-5/0/0.0 up up inet 10.0.0.2/24
 mpls
 lo0 up up
 lo0.0 up up inet 192.168.17.1 --> 0/0
 lo0.16385 up up inet 10.0.0.1 --> 0/0
 10.0.0.16 --> 0/0

This output confirms that the two MPLS interfaces, fe-1/0/1 and t1-5/0/0, are configured with the
MPLS family and have IPv4 addresses, and that the loopback interface, lo0.0, has only an IPv4
address and is not configured for the MPLS family.

Next, configure the router to run the MPLS protocol. The basic configuration is very simple. In the
[edit protocols mpls] section of the configuration hierarchy, list the router interfaces on which MPLS
will run. For the ingress router, configure MPLS on the interface that leads toward the far end of the
LSP:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit protocols]
 aviva@RouterG# set mpls interface t1-4/0/0

If you are configuring MPLS on all the router's interfaces, use the following shortcut:

 [edit protocols]
 aviva@RouterG# set mpls interface all

For M-series and T-series routers, it's also considered good practice to disable MPLS on the fxp0
interface. This is true in particular for configurations where you configure MPLS on all interfaces
instead of enabling it interface by interface.

 [edit protocols]
 aviva@router1# set mpls interface fxp0.0 disable

For J-series routers, you can disable MPLS on the equivalent interface, the fe-0/0/0 out-of-band
interface:

 [edit protocols]
 aviva@routerJ# set mpls interface fe-0/0/0 disable

After configuring MPLS, confirm the configuration:

 aviva@RouterG> show mpls interface
 Interface State Administrative groups
 t1-4/0/0.0 Up <none>

The output shows that MPLS is up and running on interface t1-4/0/0 on the ingress router, RouterG.
If you don't see the interface, make sure that the MPLS address family is configured on the interface:

 aviva@RouterGshow interfaces terse t1-4/0/0
 Interface Admin Link Proto Local Remote
 t1-4/0/0 up up
 t1-4/0/0.0 up up inet 10.0.0.1/24

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This output shows that the interface is configured for the IPv4 address, but not for the MPLS family.
Use the set family mpls command to configure this family:

 [edit interfaces]
 aviva@RouterG# set t1-4/0/0 unit 0 family mpls
 aviva@RouterG# commit and-quit

Then verify the configuration:

 aviva@RouterG> show configuration interfaces t1-4/0/0
 unit 0 {
 family inet {
 address 10.0.0.1/24;
 }
 family mpls
 }

The show interfaces terse output now indicates that the interfaces recognize the MPLS family:

 aviva@RouterG> show interfaces terse t1-4/0/0
 Interface Admin Link Proto Local Remote
 t1-4/0/0 up up
 t1-4/0/0.0 up up inet 10.0.0.1/24
 mpls

Also verify the MPLS-enabled interfaces on the other routers. The transit router has two, one each to
the ingress and egress routers:

 aviva@RouterJ>
show mpls interface
 Interface State Administrative groups
 t1-5/0/0.0 Up <none>
 fe-1/0/1.0 Up <none>

The egress router has one MPLS-enabled interface:

 aviva@RouterF> show mpls interface
 Interface State Administrative groups

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fe-0/0/1.0 Up <none>

If you misconfigure MPLS, either by forgetting to include the interface in the [edit protocols mpls]
hierarchy or omitting the MPLS family from the interface, the show mpls interface output doesn't list
the interface. If MPLS and the interface are configured properly but the interface is not operational
for some reason, the State column shows that the MPLS interface is down:

 aviva@RouterG> show mpls interface
 Interface State Administrative groups
 t1-4/0/0.0 Dn <none>

As the next configuration step, set up LDP as the signaling protocol. As with MPLS, just list all the
router interfaces that will be running LDP. These are the same interfaces that run MPLS. Use the set
ldp interface command to configure these interfaces in the [edit protocols] hierarchy. As with
MPLS, you don't include the lo0 loopback interface in the list of interfaces running LDP because it is
not a transit interface for labeled traffic. (LDP does use the lo0 interface, however, when sending
targeted Hello messages to discover LDP peers that are not directly connected to the local router.
LDP depends on these Hello messages to set up and maintain its sessions.)

Again, you are configuring LDP on all interfaces, so you can use the following shortcut:

 [edit protocols]
 aviva@RouterG# set ldp interface all

It's also considered good practice to disable LDP on the fxp0 interface on M-series and T-series
routers. This is true in particular for configurations where you configure LDP on all interfaces instead
of enabling it interface by interface.

 [edit protocols]
 aviva@router1# set ldp interface fxp0.0 disable

For J-series routers, you can disable LDP on the equivalent interfacethe fe-0/0/0 out-of-band
interface:

 [edit protocols]
 aviva@routerJ# set mpls interface fe-0/0/0 disable

Once LDP is turned on on all the routers, the protocol automatically builds multipoint-to-point LSPs,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

each ending on a different router in the network.

Use the show ldp interface command to check that LDP is up and running on the expected
interfaces:

 aviva@RouterG> show ldp interface
 Interface Label space ID Nbr count Next hello
 t1-4/0/0.0 192.168.19.1:0 1 2

 aviva@RouterF> show ldp interface
 Interface Label space ID Nbr count Next hello
 fe-0/0/1.0 192.168.16.1:0 1 3

The output of these two show commands indicates that LDP is running on one interface on the ingress
and egress routers. On the transit router, LDP is running on the two interfaces connected to the
ingress and egress routers:

 aviva@RouterJ> show ldp interface
 Interface Label space ID Nbr count Next hello
 fe-1/0/1.0 192.168.17.1:0 1 1
 t1-5/0/0.0 192.168.17.1:0 1 2

You see that each LDP interface is operational and has learned about one neighbor.

The LDP session between two routers runs over TCP, so after LDP is running on an interface, you
expect to see that the TCP connection is established and operational:

 aviva@RouterG> show ldp session
 Address State Connection Hold time
 192.168.17.1 Operational Open 26

The session information for the ingress router shows that the session to RouterJ at 192.168.17.1 is
operational and the connection is open. The session hold time is how long LDP should wait to receive
keepalive messages from its peer before closing the session. (LDP considers any LDP message to be
a keepalive.) The JUNOS default hold time is 30 seconds, and the output shows that 26 seconds
remain on this timer. Use the detail form of this command to see the session parameters:

 aviva@RouterG> show ldp session detail
 Address: 192.168.17.1, State: Operational, Connection: Open, Hold time: 23
 Session ID: 192.168.19.1:0--192.168.17.1:0
 Next keepalive in 3 seconds
 Active, Maximum PDU: 4096, Hold time: 30, Neighbor count: 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Keepalive interval: 10, Connect retry interval: 1
 Local address: 192.168.19.1, Remote address: 192.168.17.1
 Up for 1d 21:52:42
 Local - Restart: disabled, Helper mode: enabled
 Remote - Restart: disabled, Helper mode: enabled
 Local maximum recovery time: 240000 msec
 Next-hop addresses received:
 t1-4/0/0.0
 10.0.8.1
 10.0.0.2

The first line of the output shows that the LDP session is up and runningthis is essentially the same
information as the basic show ldp session command. The second line reports the LDP session ID,
which is a concatenation of the LDP IDs for the local router and its LDP neighbor. Each router creates
a 6-byte LDP ID. The first four bytes are the router ID or IP address of the router itself. The next two
bytes define the type of labels that LDP is allocating. The value 0 is the default and means that LDP
assigns labels on a per-router basis rather than on a per-interface basis.

The Next keepalive field shows how long before the LDP sends a keepalive message to its neighbors.
A couple of lines down, you see that keepalive messages are sent every 10 seconds, which is the LDP
default. The fourth line indicates that the session is active and can carry packets up to 4,096 bytes
long. The last two fields show the default hold time and how many neighbors are participating in this
LDP session.

The next several lines provide information about the session to the LDP peer, including the IP
addresses and how long the session has been up. The Local, Remote, and Local maximum recovery
time lines report provide information about graceful restart (see Recipe 8.12). The last section lists
the next-hop addresses that the router has learned from the LDP session. You see that the router has
learned the address to interface t1-4/0/0, the address of the subnet to the neighbor (10.0.0.2), and
the address of the subnet between the neighbor and the egress router (10.0.8.1).

A reliable way to check that the LSP is up is to look for a route for the FEC:

 aviva@RouterG> show route protocol ldp table inet.3
 inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.16.1/32 *[LDP/9] 1d 21:53:52, metric 1
 > via t1-4/0/0.0, Push 100000
 192.168.17.1/32 *[LDP/9] 1d 21:53:52, metric 1
 > via t1-4/0/0.0

These two routes are the LDP FECs, and there is one for each LDP neighbor. By default, the JUNOS
LDP software advertises an FEC for its loopback address. The first FEC is to the LSP's egress point,
192.168.16.1/32, through the t1-4/0/0/0 interface. The second line also shows the label value and
operation associated with this FEC. The label value is 100000, and LDP pushes this label onto the label
stack of all packets destined for 192.168.16.1/32. Recipe 14.2 describes the contents of the inet.3
and mpls.0 routing tables.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LDP also keeps track of its FECs in a database. Here are the entries on the egress router:

 aviva@RouterF> show ldp database
 Input label database, 192.168.16.1:0--192.168.17.1:0
 Label Prefix
 100000 192.168.16.1/32
 3 192.168.17.1/32
 100032 192.168.19.1/32
 Output label database, 192.168.16.1:0--192.168.17.1:0
 Label Prefix
 3 192.168.16.1/32
 100000 192.168.17.1/32
 100032 192.168.19.1/32

The Input label database section shows the labels received from the LDP peers, and the Output
label database section shows the labels that this router has advertised. Here, RouterF has
advertised a label value of 3 to RouterJ. This reserved label indicates that RouterF has signaled
RouterJ to perform penultimate-hop popping to remove the top label on the stack before forwarding
packets to RouterF.

To verify correct forwarding along the LSP, ping the egress router from the ingress router. For this to
work, you need to configure a loopback address of 127.0.0.1 on the egress router:

 [edit]
 aviva@RouterF# set interfaces lo0 unit 0 family inet address 127.0.0.1/32

The egress router uses this address to send echo replies to echo requests sent by the ping command.
Then send an MPLS ping request from the ingress router along the LSP:

 aviva@RouterG>
ping mpls ldp 192.168.16.1
 !!!!!
 --- lsping statistics ---
 5 packets transmitted, 5 packets received, 0% packet loss

The ping echo replies include the label that the ingress router added to the packet when putting it
into the LSP. The ping mpls command uses port 3503 for MPLS echo requests instead of the UDP
port 7, which is used by the standard ping command.

This recipe shows only the commands you need to set up MPLS and LDP. Because LDP depends on
the routing information provided by an IGP, the routers must be running either IS-IS or OSPF and
IPv4 addresses must be configured on all interfaces running LDP and the IGP. For the ingress router
in this recipe, here are the parts of the configuration related to setting up the LDP-signaled LSP:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterG> show configuration interfaces
 t1-4/0/0 {
 unit 0 {
 family inet {
 address 10.0.0.1/24;
 }
 family mpls;
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 192.168.19.1/32;
 }
 }
 }

 aviva@RouterG> show configuration routing-options
 router-id 192.168.19.1;
 aviva@RouterG> show configuration protocols
 mpls {
 interface t1-4/0/0.0;
 }
 ospf {
 area 0.0.0.0 {
 interface lo0.0 {
 passive;
 }
 interface t1-4/0/0.0;
 }
 }

ldp {
 interface t1-4/0/0.0;
 }

See Also

Recipes 8.12 and 14.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.2. Viewing Information and LDP-Signaled LSPs
in the Routing Tables

Problem

After you have configured MPLS and LDP on your router, you want to look at the information in the
router's routing tables.

Solution

Look in the inet.3 routing table to view the LDP routes:

 aviva@RouterG> show route table inet.3
 inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.16.1/32 *[LDP/9] 1d 23:02:21, metric 1
 > via t1-4/0/0.0, Push 100000
 192.168.17.1/32 *[LDP/9] 1d 23:02:21, metric 1
 > via t1-4/0/0.0

Look in the mpls.0 table to see the router's label information:

 aviva@RouterG> show route table mpls.0
 mpls.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both

 0 *[MPLS/0] 2d 01:59:47, metric 1
 Receive
 1 *[MPLS/0] 2d 01:59:47, metric 1
 Receive
 2 *[MPLS/0] 2d 01:59:47, metric 1
 Receive
 100064 *[

LDP/9] 1d 23:02:36, metric 1
 > via t1-4/0/0.0, Pop
 100064(S=0) *[LDP/9] 1d 23:02:36, metric 1
 > via t1-4/0/0.0, Pop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 100080 *[LDP/9] 1d 23:02:36, metric 1
 > via t1-4/0/0.0, Swap 100000

Discussion

After configuring MPLS and LDP, if you look in the default JUNOS routing table, inet.0, you don't see
any of the MPLS or LSP routes and you don't see any routers learned from LDP:

 aviva@RouterG> show route table inet.0
 inet.0: 12 destinations, 13 routes (12 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 2d 19:44:09
 > to 172.19.121.1 via fe-0/0/0.0
 10.0.0.0/24 *[Direct/0] 1d 23:01:58
 > via t1-4/0/0.0
 [OSPF/10] 1d 23:01:57, metric 65
 > via t1-4/0/0.0
 10.0.0.1/32 *[Local/0] 3d 02:43:04
 Local via t1-4/0/0.0
 10.0.8.0/24 *[OSPF/10] 1d 23:01:49, metric 66
 > via t1-4/0/0.0
 10.0.13.0/24 *[OSPF/10] 1d 23:01:49, metric 131
 > via t1-4/0/0.0
 172.19.121.0/24 *[Direct/0] 1w3d 21:48:23
 > via fe-0/0/0.0
 172.19.121.119/32 *[Local/0] 1w3d 21:48:26
 Local via fe-0/0/0.0
 192.168.15.1/32 *[OSPF/10] 1d 23:01:49, metric 131
 > via t1-4/0/0.0
 192.168.16.1/32 *[OSPF/10] 1d 23:01:49, metric 66
 > via t1-4/0/0.0
 192.168.17.1/32 *[OSPF/10] 1d 23:01:49, metric 65
 > via t1-4/0/0.0
 192.168.19.1/32 *[Direct/0] 3d 02:18:53
 > via lo0.0
 224.0.0.5/32 *[OSPF/10] 2d 02:31:29, metric 1
 MultiRecv

This routing table shows only the unicast routes, listing the routes learned from OSPF, which is the
IGP we configured in the previous recipe, and the directly connected routes. In the JUNOS software,
MPLS and LDP store their routing and forwarding information in two other routing tables, inet.3 and
mpls.0. The inet.3 table contains the LDP FECs:

 aviva@RouterG> show route table inet.3
 inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 + = Active Route, - = Last Active, * = Both
 192.168.16.1/32 *[LDP/9] 5d 00:51:17, metric 1
 > via t1-4/0/0.0, Push 100000
 192.168.17.1/32 *[
LDP/9] 5d 00:51:17, metric 1
 > via t1-4/0/0.0

This output shows two LDP FECs (routes) to the two LDP neighbors. The first FEC is to the LSP's
egress router, 192.168.16.1/32 (RouterF), and the second is to the transit router. Both FECs have a
route preference of 9 and a metric of 1, which are the default JUNOS values for LDP. Both routes use
the t1-4/0/0 interface, which is what you expect. The end of the second line of the FEC for
192.168.16.1/32 shows a push operation and a label value. When forwarding packets, LDP pushes a
label of 100000 onto the packet. LDP stores all the labels being used in LDP-signaled LSPs, which you
can display with the following command:

 aviva@RouterF>
show ldp database
 Input label database, 192.168.16.1:0--192.168.17.1:0
 Label Prefix
 100000 192.168.16.1/32
 3 192.168.17.1/32
 100032 192.168.19.1/32
 Output label database, 192.168.16.1:0--192.168.17.1:0
 Label Prefix
 3 192.168.16.1/32
 100000 192.168.17.1/32
 100032 192.168.19.1/32

The inet.3 table on RouterF shows similar FECs:

 aviva@RouterF> show route table inet.3

 inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both

 192.168.17.1/32 *[LDP/9] 5d 03:33:23, metric 1
 > to 10.0.8.1 via fe-0/0/1.0
 192.168.19.1/32 *[LDP/9] 5d 00:57:15, metric 1
 > to 10.0.8.1 via fe-0/0/1.0, Push 100032

When the router is forwarding packets on this LSP, LDP pushes a label value, this time 100032, onto
all packets entering the LSP.

The second JUNOS routing table, mpls.0, stores label values for MPLS and for LDP. Here's the mpls.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

table on RouterG:

 aviva@RouterG> show route table mpls.0
 mpls.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both

 0 *[MPLS/0] 5d 03:58:02, metric 1
 Receive
 1 *[MPLS/0] 5d 03:58:02, metric 1
 Receive
 2 *[MPLS/0] 5d 03:58:02, metric 1
 Receive
 100064 *[

LDP/9] 5d 01:00:51, metric 1
 > via t1-4/0/0.0, Pop
 100064(S=0) *[LDP/9] 5d 01:00:51, metric 1
 > via t1-4/0/0.0, Pop
 100080 *[LDP/9] 5d 01:00:51, metric 1
 > via t1-4/0/0.0, Swap 100000

This table is the MPLS label-swapping table and is actually a switching table rather than a routing
table. Instead of a prefix in the first column, you see a label value. In this output, the first three
entries correspond to reserved labels, defined in RFC 3032. These three entries are learned from
MPLS (as indicated by [MPLS/0] in the second column) and are always in the mpls.0 routing table.
The remaining three entries are for incoming labels that MPLS assigns to each upstream neighbor.
Label 100064 has two entries because the stack value in the MPLS header can be different in different
packets. In the first entry label, 100064, the S (stack) bit is 1, so this label matches packets that have
only one label on their stacks. The second entry, 100064(S=0), has the stack bit set to 0 and is used
when the stack depth is not 1. That is, it is used when the packet is carrying more than one label. For
both labels, the operation pops the top label off the stack. The third label, 100080, has a swap
operation associated with it.

You can quickly check all the routes learned from LDP with the show route protocol ldp command:

 aviva@RouterG> show route protocol ldp
 inet.0: 12 destinations, 13 routes (12 active, 0 holddown, 0 hidden)
 inet.3: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.16.1/32 *[LDP/9] 1d 23:03:35, metric 1
 > via t1-4/0/0.0, Push 100000
 192.168.17.1/32 *[LDP/9] 1d 23:03:35, metric 1
 > via t1-4/0/0.0

 __juniper_private1__.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0
 hidden)

 mpls.0: 6 destinations, 6 routes (6 active, 0 holddown, 0 hidden)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 + = Active Route, - = Last Active, * = Both
 100064 *[LDP/9] 1d 23:03:35, metric 1
 > via t1-4/0/0.0, Pop
 100064(S=0) *[LDP/9] 1d 23:03:35, metric 1
 > via t1-4/0/0.0, Pop
 100080 *[LDP/9] 1d 23:03:35, metric 1
 > via t1-4/0/0.0, Swap 100000

This output displays the routes for the LDP FECs, stored in inet.3, and the labelswitching state stored
in mpls.0.

Use the show route forwarding-table mpls command to see the active MPLS routes in the Routing
Engine's forwarding table:

 aviva@RouterG>
show route forwarding-table family mpls

Routing table: mpls
 MPLS:
 Destination Type RtRef Next hop Type Index NhRef Netif
 default perm 0 dscd 28 1
 0 user 0 recv 27 3
 1 user 0 recv 27 3
 2 user 0 recv 27 3
 100064 user 0 Pop t1-4/0/0.0
 100064(S=0) user 0 Pop t1-4/0/0.0
 100080 user 0 Swap 100000 t1-4/0/0.0

The Destination column lists labels that the router is using to forward traffic, and the last column,
Netif, shows the interfaces that are being used to send the labeled traffic. For the nonreserved
labels, the second Type column shows the operation performed on matching packets. For packets
with label 100064, the label is popped, and packets with label 100080 have their label swapped for
100000.

To see the forwarding entries used by the Packet Forwarding Engine to forward MPLS packets, use
the following version of the show pfe route command:

 aviva@RouterG> show pfe route mpls
 MPLS Route Table 0, MPLS.0, 0x0:
 Destination Type ID NhRef
 ----------------------- -------- ----- -----
 default Discard 28 1
 0 Receive 27 3
 1 Receive 27 3
 2 Receive 27 3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 100064 Unicast 330 1 t1-4/0/0.0
 100064(S=0) Unicast 332 1 t1-4/0/0.0
 100080 Unicast 333 1 t1-4/0/0.0

Looking at this output, you can see that it shows pretty much the same information as the Routing
Engine's forwarding table.

See Also

Recipe 8.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.3. Verifying that an LDP-Signaled LSP Is
Carrying Traffic

Problem

You want to check that traffic is using an LDP-signaled LSP.

Solution

Look at the LSP traffic statistics:

 aviva@RouterJ> show
ldp
traffic-statistics
 FEC Type Packets Bytes Shared
 192.168.16.1/32 Transit 15 1260 No
 Ingress 0 0 No
 192.168.19.1/32 Transit 0 0 No
 Ingress 0 0 No

Discussion

To make sure that traffic is using the LSP, look at the traffic statistics on the LDP sessions with the
show ldp traffic-statistics commands. The Packets column shows the number of packets that
have been sent, and the Bytes column gives the total byte count of all the packets. In this recipe,
RouterJ carried 15 packets (1,260 bytes) from RouterG (192.168.16.1), acting as the transit router
for this traffic.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.4. Enabling LDP Authentication

Problem

You want to ensure that all LDP protocol traffic that your router accepts comes from devices known
to you so that only trusted routers participate in determining the contents of the LDP database.

Solution

Configure MD5 authentication for each LDP session on the router. For authentication to work across
all LDP peers, you need to configure MD5 authentication with the same password on all LDP sessions
on all LDP routers. First, configure the session on the ingress router, RouterG:

 [edit protocols ldp]
 aviva@RouterG# set session 192.168.17.1 authentication-key $1991poPPi

Then, configure the LDP session on the egress router:

 [edit protocols ldp]
 aviva@RouterF# set session 192.168.17.1 authentication-key $1991poPPi

Finally, configure both LDP sessions on the transit router:

 [edit protocols ldp]
 aviva@RouterJ# set session 192.168.16.1 authentication-key $1991poPPi
 aviva@RouterJ# set session 192.168.19.1 authentication-key $1991poPPi

Discussion

It's a good security measure to authenticate the TCP connection used for LDP sessions to ensure
against spoofing on the TCP connection. The JUNOS implementation LDP uses an MD5 signature for
authentication.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This recipe shows how to configure MD5 authentication for LDP. You configure MD5 authentication for
each session and set a key, or password. From the key, MD5 creates an encoded checksum that is
included in all transmitted LDP packets. The receiving router verifies this checksum before accepting
the packet. LDP routers establish sessions with each of their LDP neighbors. Because LDP
authentication is always between a pair of neighbors, not end to end, you can use a different key on
each session. For example, you could set a one key for the RouterGRouterJ session and a different
one for the RouterJRouterF session.

Use the show ldp session command to list the established sessions. You see that RouterG has one
LDP session:

 aviva@RouterG> show ldp session
 Address State Connection Hold time
 192.168.17.1 Operational Open 24

The LDP session is established with the immediate neighbor, RouterJ (191.168.17.1). So, when you
configure authentication, specify the address of the session to RouterJ. RouterF also has one session,
to its neighbor RouterJ:

 aviva@RouterF> show ldp session
 Address State Connection Hold time
 192.168.17.1 Operational Open 29

The router in the middle, RouterJ, has one session to each LDP peer:

 aviva@RouterJ> show ldp session
 Address State Connection Hold time
 192.168.16.1 Operational Open 24
 192.168.19.1 Operational Open 21

One way to verify whether authentication is configured is to look at the configuration:

 aviva@RouterG> show configuration protocols ldp
 interface t1-4/0/0.0;
 session 192.168.17.1 {
 authentication-key "9c3pyvWX7-w24x7k.fT3nvW8LVw"; ## SECRET-DATA
 }

This output confirms that authentication is configured. As a security measure, the CLI shows only the
encrypted form of the password to stop anyone from casually glancing through the configuration and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

seeing the actual password. You can also protect the password by using the encrypted form instead
of the text form when configuring authentication on additional routers:

 [edit protocols ldp session 192.168.17.1]
 aviva@RouterF# set authentication-key 9c3pyvWX7-w24x7k.fT3nvW8LVw

Another way to check that authentication is configured is to look at the LDP session:

 aviva@RouterG> show ldp session detail
 Address: 192.168.17.1, State: Connecting, Connection: Opening, Hold time: 0
 Session ID: 192.168.19.1:0--192.168.17.1:0
 Active, Maximum PDU: 4096, Hold time: 30, Neighbor count: 1
 Keepalive interval: 10, Connect retry interval: 1
 Local address: 192.168.19.1, Remote address: 192.168.17.1
 Last down 00:00:09 ago; Reason: connect time expired

Authentication type: MD5
 Local - Restart: disabled, Helper mode: enabled
 Remote - Restart: disabled, Helper mode: enabled
 Local maximum recovery time: 240000 msec
 Next-hop addresses received:
 t1-4/0/0.0

The Authentication type line shows that the LDP session is using MD5 authentication.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.5. Tracing LDP Operations

Problem

You want to check that LDP is properly exchanging messages with its neighbors.

Solution

Set up a tracing file to capture information about the exchange of LDP protocol packets:

 [edit protocols ldp]
 aviva@RouterG# set traceoptions file ldp-log
 aviva@RouterG# set traceoptions flag packets

Discussion

One tool for troubleshooting LDP operation is the JUNOS tracing facility. If an LDP session that was
operating properly suddenly stops working, you can trace the router's LDP packet exchanges with its
neighbors to help track down the source of the problem. This recipe sets up an LDP-specific tracing
file named ldp-log that captures all LDP packet exchanges with neighboring routers.

Use the show log command to see the file contents:

 aviva@RouterG> show log ldp-log
 Oct 5 19:25:46 Incredible-Hulk clear-log[15758]: logfile cleared
 Oct 5 19:25:48 LDP sent UDP PDU 10.0.0.1 -> 224.0.0.2 (t1-4/0/0.0)
 Oct 5 19:25:48 ver 1, pkt len 42, PDU len 38, ID 192.168.19.1:0
 Oct 5 19:25:48 Msg Hello (0x100), len 28, ID 396082
 Oct 5 19:25:48 TLV HelloParms (0x400), len 4
 Oct 5 19:25:48 TLV XportAddr (0x401), len 4
 Oct 5 19:25:48 TLV ConfSeq (0x402), len 4
 Oct 5 19:25:49 LDP rcvd UDP PDU 10.0.0.2 -> 224.0.0.2 (t1-4/0/0.0)
 Oct 5 19:25:49 ver 1, pkt len 42, PDU len 38, ID 192.168.17.1:0
 Oct 5 19:25:49 Msg Hello (0x100), len 28, ID 397238
 Oct 5 19:25:49 TLV HelloParms (0x400), len 4
 Oct 5 19:25:49 TLV XportAddr (0x401), len 4
 Oct 5 19:25:49 TLV ConfSeq (0x402), len 4
 Oct 5 19:25:52 LDP sent UDP PDU 10.0.0.1 -> 224.0.0.2 (t1-4/0/0.0)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Oct 5 19:25:52 ver 1, pkt len 42, PDU len 38, ID 192.168.19.1:0
 Oct 5 19:25:52 Msg Hello (0x100), len 28, ID 396083
 Oct 5 19:25:52 TLV HelloParms (0x400), len 4
 Oct 5 19:25:52 TLV XportAddr (0x401), len 4
 Oct 5 19:25:52 TLV ConfSeq (0x402), len 4
 Oct 5 19:25:52
LDP sent TCP PDU 192.168.19.1 -> 192.168.17.1 (none)
 Oct 5 19:25:52 ver 1, pkt len 18, PDU len 14, ID 192.168.19.1:0
 Oct 5 19:25:52 Msg Keepalive (0x201), len 4, ID 396084
 Oct 5 19:25:52
LDP rcvd TCP PDU 192.168.17.1 -> 192.168.19.1 (none)
 Oct 5 19:25:52 ver 1, pkt len 18, PDU len 14, ID 192.168.17.1:0
 Oct 5 19:25:52 Msg Keepalive (0x201), len 4, ID 397241
 Oct 5 19:25:53 LDP rcvd
UDP PDU 10.0.0.2 -> 224.0.0.2 (t1-4/0/0.0)
 Oct 5 19:25:53 ver 1, pkt len 42, PDU len 38, ID 192.168.17.1:0
 Oct 5 19:25:53 Msg Hello (0x100), len 28, ID 397242
 Oct 5 19:25:53 TLV HelloParms (0x400), len 4
 Oct 5 19:25:53 TLV XportAddr (0x401), len 4
 Oct 5 19:25:53 TLV ConfSeq (0x402), len 4

This log shows normal LDP operation. LDP is sending and receiving UDP and TCP messages with its
neighboring routers. LDP multicasts UDP Hello messages to 224.0.0.2 to discover its neighbors. The
log output shows that LDP is sending UDP hellos out the connection to the local subnet (10.0.0.1)
and receiving hellos from the other end of the connection (10.0.0.2). LDP establishes TCP
connections to exchange label and FEC information and sends periodic keepalive messages (every 10
seconds, by default) to its neighbors to keep the TCP session established. The logfile also shows that
LDP is sending and receiving TCP keepalives from 192.168.17.1, the neighboring LDP router. All the
entries in this logfile are what you would expect to see when an LDP session is operating properly.

When debugging LDP, you can set one or more of the following trace flags to capture LDP-related
information:

 [edit protocols ldp]
 aviva@RouterG# set traceoptions flag ?
 Possible completions:
 address Trace address packets
 all Trace everything
 binding Trace label binding state
 error Trace errored packets
 event Trace LDP state machine events
 general Trace general events
 initialization Trace initialization packets
 label Trace label packets
 normal Trace normal events
 notification Trace notification packets
 packets Trace all LDP packets
 path Trace label path state
 periodic Trace periodic (hello and keepalive) packets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 policy Trace policy processing
 route Trace routing information
 state Trace state transitions
 task Trace routing protocol task processing
 timer Trace routing protocol timer processing

See Also

Recipe 5.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.6. Setting Up RSVP-Signaled LSPs

Problem

You want to use RSVP as the signaling protocol so you can implement some of the traffic engineering
features available only with RSVP, including protecting traffic links.

Solution

For each MPLS LSP, configure the ingress, transit, and egress routers on the path. On the ingress
router, first configure the interface to support MPLS addressing:

 [edit interfaces]
 aviva@R1# set so-0/0/2 unit 0 family mpls

Then enable the MPLS protocol on the interface:

 [edit protocols]
 aviva@R1# set mpls interface so-0/0/2
 aviva@R1# set mpls interface fxp0.0 disable

Finally, turn on RSVP as the signaling protocol:

 [edit protocols]
 aviva@R1# set rsvp interface so-0/0/2

On the transit and egress routers, turn on MPLS and RSVP in a similar fashion. R6 is the egress
router:

 [edit interfaces]
 aviva@R6# set so-0/0/3 unit 0 family mpls

 [edit protocols]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@R6# set mpls interface so-0/0/3
 aviva@R6# set mpls interface fxp0.0 disable
 aviva@R6# set rsvp interface so-0/0/3
 aviva@R6# set rsvp interface fxp0.0 disable

R3 is the transit router:

 [edit interfaces]
 aviva@R3# set so-0/0/2 unit 0 family mpls
 aviva@R3# set so-0/0/3 unit 0 family mpls

 [edit protocols]
 aviva@R3# set mpls interface so-0/0/2
 aviva@R3# set mpls interface so-0/0/3
 aviva@R3# set mpls interface fxp0.0 disable
 aviva@R3# set rsvp interface so-0/0/2
 aviva@R3# set rsvp interface so-0/0/3
 aviva@R3# set
rsvp interface fxp0.0 disable

Then, on the ingress router, set up the LSP:

 [edit protocols
mpls]
 aviva@R1# set mpls
label-switched-path R1-to-R6 to 10.0.0.6

Also set up a return LSP from R6 to R1 so that the LSP is bidirectional and traffic can travel from the
egress router back to the ingress router:

 [edit protocols]
 aviva@R6# set mpls label-switched-path R6-to-R1 to 10.0.0.1

Discussion

This recipe shows how to use RSVP as the signaling protocol for MPLS, based on the topology shown
in Figure 14-6. Interfaces running MPLS must also be running BGP and an IGP (either IS-IS or
OSPF). In this topology, all interfaces are running IS-IS and OSPF.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 14-6. MPLS with RSVP topology

As with the LDP configuration, first configure the MPLS address family on the logical interfaces so the
interface can process labeled packets. On the ingress router, R1, set the MPLS family on the so-0/0/2
interface. On the transit router, R3, add it to the so-0/0/2 and so-0/0/3 interfaces. On the egress
router, R6, configure it on the so-0/0/3 interface. The configuration for each physical interface now
has three families, IPv4 (inet), iso (for IS-IS), and MPLS:

 aviva@R1> show configuration interfaces
 so-0/0/2 {
 unit 0 {
 family inet {
 address 10.1.13.1/30;
 }
 family iso;
 family mpls;
 }
 }
 fxp0 {
 unit 0 {
 family inet {
 address 192.168.70.143/21;
 }
 }
 }
 lo0 {
 unit 0 {
 family inet {
 address 10.0.0.1/32;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 family iso {
 address 49.0004.1000.0000.0001.00;
 }
 }
 }

You see that on physical interface so-0/0/2 on the ingress router, the MPLS family is configured in
addition to the inet and iso families. You don't configure the MPLS family on either the loopback
(lo0) or fxp0 interfaces because they are not transit interfaces and never carry labeled packets.

Use the show interfaces terse command to verify that the MPLS family is configured on all expected
interfaces. Here's the output for the ingress router:

 aviva@R1> show interfaces terse
 Interface Admin Link Proto Local Remote
 so-0/0/2 up up
 so-0/0/2.0 up up inet 10.1.13.1/30
 iso
 mpls
 fxp0 up up
 fxp0.0 up up inet 192.168.70.143/21
 lo0 up up
 lo0.0 up up inet 10.0.0.1 --> 0/0
 iso 49.0004.1000.0000.0001.00
 lo0.16385 up up inet
 inet6 fe80::2a0:a5ff:fe56:189

Here's the output for the transit router:

 aviva@R3> show interfaces terse
 Interface Admin Link Proto Local Remote
 so-0/0/2 up up
 so-0/0/2.0 up up inet 10.1.13.2/30
 iso
 mpls
 so-0/0/3 up up
 so-0/0/3.0 up up inet 10.1.36.1/30
 iso
 mpls
 fxp0 up up
 fxp0.0 up up
inet 192.168.70.145/21
 lo0 up up
 lo0.0 up up inet 10.0.0.3 --> 0/0
 iso 49.0002.1000.0000.0003.00

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 lo0.16385 up up inet
 inet6 fe80::2a0:a5ff:fe56:416

On both routers, you see that the MPLS family is enabled on the appropriate logical interfaces (so-
0/0/2 on the ingress router, and so-0/0/2 and so-0/0/3 on the transit router). You also see that the
inet and iso families are configured on these interfaces and on the routers' lo0 interfaces.

Next, configure the three routers that will form the LSP to run MPLS. The basic configuration is very
simple. In the [edit protocols mpls] section of the configuration hierarchy, list the router interfaces
on which MPLS will run. For the ingress router, configure MPLS on the interface that leads toward the
transit router in the LSP and disable MPLS on the router's fxp0 interface:

 aviva@R1> show configuration protocols mpls
 interface so-0/0/2.0;
 interface fxp0.0 {
 disable;
 }

The SONET interface so-0/0/2 connects from the ingress router to the transit router. This lab setup
uses M7i routers, so we disable MPLS on the fxp0 interface, which, while not required, is considered
to be good practice.

After configuring the MPLS interfaces, check that MPLS is running on the interfaces. Here's the status
on the ingress router:

 aviva@R1>
show mpls interface
 Interface State Administrative groups
 so-0/0/2.0 Up <none>

The output shows that MPLS is up and running on interface so-0/0/2. Also, confirm MPLS status on
the transit and egress routers:

 aviva@R3> show mpls interface
 Interface State Administrative groups
 so-0/0/2.0 Up <none>
 so-0/0/3.0 Up <none>

 aviva@R6> show mpls interface
 Interface State Administrative groups
 so-0/0/3.0 Up <none>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You see that all required MPLS interfaces are up and running.

The next step in the configuration is to set up RSVP as the signaling protocol. The basic configuration
is similar to that for MPLS: you list all router interfaces that will be running RSVP. These are the same
interfaces that you configured for MPLS. Use the set rsvp interface command to configure these
interfaces in the [edit protocols] hierarchy. As with MPLS, do not include the lo0 and fxp0
interfaces in the list of RSVP interfaces because they do not carry labeled traffic. Also, as with MPLS,
it is considered good practice to disable RSVP on the fxp0 interface. Use the following command to
verify the configuration:

 aviva@R1> show configuration protocols rsvp
 interface so-0/0/2.0;
 interface fxp0.0 {
 disable;
 }

The show rsvp version command shows you whether RSVP is running on the router:

 aviva@R1> show rsvp version
 Resource ReSerVation Protocol, version 1. rfc2205
 RSVP protocol = Enabled
 R(refresh timer) = 30 seconds
 K(keep multiplier) = 3

Preemption = Normal

Soft-preemption cleanup = 30 seconds
 Graceful deletion timeout = 30 seconds
 Graceful restart = Disabled
 Restart helper mode = Enabled
 Maximum helper restart time = 20000 msec
 Maximum helper recovery time = 180000 msec
 Restart time = 0 msec

The first line of the output shows that the JUNOS software is running RSVP Version 1 (defined in RFC
2205). The second line shows that RSVP is enabled on the router. The remaining lines show the
settings for various RSVP parameters, which are the default values because we haven't configured
anything other than basic RSVP functionality at this point. The refresh timer of 30 seconds
determines how often RSVP sends periodic messages to its neighbors. The JUNOS software multiplies
this value by 1.5 and sends RSVP messages every 45 seconds by default. The keep multiplier
indicates the number of RSVP messages that can be lost on a connection before the software
considers an RSVP state to be stale.

The fifth line, Preemption, shows the default session preemption type of Normal. RSVP uses
preemption to accommodate additional sessions when a link does not have sufficient bandwidth to
carry all sessions. Normal preemption means that only new better-priority RSVP sessions can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

preempt existing ones. (Recipe 14.14 explains how to modify the default preemption behavior.)
Normally, sessions are torn down immediately when they are preempted. However, if soft
preemption is configured, RSVP attempts for 30 seconds to establish a new session before tearing
down the existing one. This is called soft-preemption cleanup. As part of tearing down an LSP, by
default, RSVP waits 30 seconds to gracefully time out the session. The last five lines apply to graceful
restart, which is disabled on the router.

Next, check that RSVP is up and running on the router's interfaces. Here's the output for the ingress
router:

 aviva@R1> show
rsvp interface
 RSVP interface: 1 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark
 so-0/0/2.0 Up 0 100% 155.52Mbps 155.52Mbps 0bps 0bps

The second column, State, shows that RSVP is running on the so-0/0/2 interface.

Finally, you are ready to configure the LSP between R1 and R6 with the following command. On the
ingress router, R1, verify the configuration:

 [edit protocols mpls]
 aviva@R1# set
label-switched-path R1-to-R6 to 10.0.0.6

Then check that the LSP is up:

 aviva@R1> show mpls lsp
 Ingress LSP: 1 sessions
 To From State Rt ActivePath P LSPname
 10.0.0.6 10.0.0.1 Up 1 * R1-to-R6
 Total 1 displayed, Up 1, Down 0

 Egress LSP: 0 sessions
 Total 0 displayed, Up 0, Down 0

 Transit LSP: 0 sessions
 Total 0 displayed, Up 0, Down 0

The output shows one LSP, R1-to-R6, configured on R1 and that this is an ingress LSP. To verify that
the LSP is up on all the routers, use the same command to check LSP status. Here's the command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

output on the transit router:

 aviva@R3> show mpls lsp
 Ingress LSP: 0 sessions
 Total 0 displayed, Up 0, Down 0

 Egress LSP: 0 sessions
 Total 0 displayed, Up 0, Down 0

 Transit LSP: 1 sessions
 To From State Rt Style Labelin Labelout LSPname
 10.0.0.6 10.0.0.1 Up 1 1 FF 103488 3 R1-to-R6
 Total 1 displayed, Up 1, Down 0

You see that it has one transit LSP from the ingress, 10.0.0.1, to the expected egress at 10.0.0.6.
This is LSP R1-to-R6, which is the one we expect. Here's the output on the egress router:

 aviva@R6> show mpls lsp
 Ingress LSP: 0 sessions
 Total 0 displayed, Up 0, Down 0

 Egress LSP: 1 sessions
 To From State Rt Style Labelin Labelout LSPname
 10.0.0.6 10.0.0.1 Up 0 1 FF 3 - R1-to-R6
 Total 1 displayed, Up 1, Down 0
 Transit LSP: 0 sessions
 Total 0 displayed, Up 0, Down 0

This output correctly shows the one LSP we have configured.

For the three routers in the LSP, the show mpls lsp output differs slightly. The P column for R1, the
ingress router, contains an asterisk to indicate that LSP R1-to-R6 is the primary LSP between the two
routers. The output on the transit and egress routers shows information about the RSVP reservation
style and label values.

The command output for the transit router shows that received packets have a label value of 103488
and it uses a label value of 3 on the record for outgoing packets. A label value of 3 is one of the
reserved values, used to request that the downstream router pop the label. The transit router is the
penultimate-hop router, and the egress router has advertised a label value of 3 to R3 so that it
performs penultimate-hop popping to remove the top label on the stack before forwarding packets to
R6.

The Rt column in the output on all three routers shows the number of active prefixes installed in the
routing table as a result of the RSVP session. Recipe 14.7 explains how to view these routes.

The extensive version of the show mpls lsp command provides additional information about the LSP,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

including a log of the LSP's history:

 aviva@R1> show mpls lsp extensive
 Ingress LSP: 1 sessions
 10.0.0.6
 From: 10.0.0.1, State: Up, ActiveRoute: 1, LSPname: R1-to-R6
 ActivePath: (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary State: Up
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 20)
 10.1.13.2 S 10.1.36.2 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.36.2
 5 Oct 4 13:31:06 Selected as active path
 4 Oct 4 13:31:06 Record Route: 10.1.13.2 10.1.36.2
 3 Oct 4 13:31:06 Up
 2 Oct 4 13:31:06 Originate Call
 1 Oct 4 13:31:06 CSPF: computation result accepted
 Created: Tue Oct 4 13:31:05 2005
 Total 1 displayed, Up 1, Down 0

This command works only on the ingress router because this router is responsible for establishing
and maintaining the LSP. The transit and egress routers have no details about the LSP's state. The
first line of the output confirms what we already know about the LSP: that it is named R1-to-R6, runs
from 10.0.0.1 to 10.0.0.6, and is up. The highlighted lines show the history of the LSP, from most
current to oldest events. The last line in the log tells you that the LSP was created at 13:31:05. RSVP
used CSPF to determine a path for the LSP (this is the default JUNOS RSVP behavior), and by
13:31:06 the LSP was up and running and was selected as the active path. Consult the LSP's log to
help determine the causes of MPLS errors in the network.

You may be wondering why RSVP is using CSPF when setting up the LSP when we haven't included
anything about turning on CSPF in the configuration. By default, JUNOS RSVP uses CSPF to calculate
paths. The data that RSVP uses for the CSPF calculation comes from an IGP, either IS-IS or OSPF.
Extensions to both protocols allow them to collect information about the network topology and
available bandwidth on network links. The JUNOS implementations of both IGPs support the
extensions. This network data for CSPF is stored in a TED on each router. In the JUNOS IS-IS
software, these extensions are on by default. Because IS-IS is running as one of the IGPs in our
network, it automatically carries the traffic-engineering information. Here's how you can disable the
IS-IS support for TE:

 [edit protocols isis]
 aviva@R1# set traffic-engineering disable

In the JUNOS OSPF, the extensions are off by default. You must explicitly configure OSPF support of
the CSPF computation:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit protocols ospf]
 aviva@R1# set traffic-engineering

Use the following command to see what information IS-IS and OSPF have added to the TED
database:

 aviva@R1> show ted database
 TED database: 3 ISIS nodes 3 INET nodes
 ID Type Age(s) LnkIn LnkOut Protocol
 R1.00(10.0.0.1) Rtr 239 1 1 IS-IS(2)
 To: R3.00(10.0.0.3), Local: 10.1.13.1, Remote: 10.1.13.2
 ID Type Age(s) LnkIn LnkOut Protocol
 OSPF(0.0.0.0)
 To: R3.00(10.0.0.3), Local: 10.1.13.1, Remote: 10.1.13.2
 ID Type Age(s) LnkIn LnkOut Protocol
 R3.00(10.0.0.3) Rtr 468 2 2 IS-IS(2)
 To: R1.00(10.0.0.1), Local: 10.1.13.2, Remote: 10.1.13.1
 To: R6.00(10.0.0.6), Local: 10.1.36.1, Remote: 10.1.36.2
 ID Type Age(s) LnkIn LnkOut Protocol
 R6.00(10.0.0.6) Rtr 431 1 1 IS-IS(2)
 To: R3.00(10.0.0.3), Local: 10.1.36.2, Remote: 10.1.36.1

This output shows three entries and that both IS-IS and OSPF are contributing to the TED database
(listed in the Protocol column). All three entries were learned from routers (shown in the Type
column). You see that R1 (the ingress router) has one link in and one link out, R2 (the transit router)
has two links in either direction, and R3 (the egress router) has one link in and one out, which
matches the LSP. The To: lines show the router IDs that correspond to the three routers in the LSP.

The extensive version of this command shows additional information about reservable and available
bandwidth on networks links that IS-IS and OSPF have collected for use by CSPF:

 aviva@R1>
show ted database 10.0.0.1 extensive
 TED database: 3 ISIS nodes 3 INET nodes
 NodeID: R1.00(10.0.0.1)
 Type: Rtr, Age: 621 secs, LinkIn: 1, LinkOut: 1
 Protocol: IS-IS(2)
 To: R3.00(10.0.0.3), Local: 10.1.13.1, Remote: 10.1.13.2
 Color: 0 <none>
 Metric: 10
 Static BW: 155.52Mbps
 Reservable BW: 155.52Mbps
 Available BW [priority] bps:
 [0] 155.52Mbps [1] 155.52Mbps [2] 155.52Mbps [3] 155.52Mbps
 [4] 155.52Mbps [5] 155.52Mbps [6] 155.52Mbps [7] 155.52Mbps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Interface Switching Capability Descriptor(1):
 Switching type: Packet
 Encoding type: Packet
 Maximum LSP BW [priority] bps:
 [0] 155.52Mbps [1] 155.52Mbps [2] 155.52Mbps [3] 155.52Mbps
 [4] 155.52Mbps [5] 155.52Mbps [6] 155.52Mbps [7] 155.52Mbps
 Protocol: OSPF(0.0.0.0)
 To: R3.00(10.0.0.3), Local: 10.1.13.1, Remote: 10.1.13.2
 Color: 0 <none>
 Metric: 1
 Static BW: 155.52Mbps
 Reservable BW: 155.52Mbps
 Available BW [priority] bps:
 [0] 155.52Mbps [1] 155.52Mbps [2] 155.52Mbps [3] 155.52Mbps
 [4] 155.52Mbps [5] 155.52Mbps [6] 155.52Mbps [7] 155.52Mbps
 Interface Switching Capability Descriptor(1):
 Switching type: Packet
 Encoding type: Packet
 Maximum LSP BW [priority] bps:
 [0] 155.52Mbps [1] 155.52Mbps [2] 155.52Mbps [3] 155.52Mbps
 [4] 155.52Mbps [5] 155.52Mbps [6] 155.52Mbps [7] 155.52Mbps

The last step in setting up the RSVP-signaled LSP is to create a return LSP from R6 to R1 on router
R6:

 [edit protocols mpls]
 aviva@R6# set
label-switched-path R6-to-R1 to 10.0.0.1

To confirm the configuration, use the show mpls lsp command on R6:

 aviva@R6> show mpls lsp
 Ingress LSP: 1 sessions
 To From State Rt ActivePath P LSPname
 10.0.0.1 10.0.0.6 Up 1 * R6-to-R1
 Total 1 displayed, Up 1, Down 0

 Egress LSP: 1 sessions
 To From State Rt Style Labelin Labelout LSPname
 10.0.0.6 10.0.0.1 Up 0 1 FF 3 - R1-to-R6
 Total 1 displayed, Up 1, Down 0

You see that R6 now has both an ingress and egress LSP session. R1, the router at the far end of the
LSP, also has two similar LSP sessions, and R3, the router in the middle, has two transit sessions:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@R3> show mpls lsp
 Transit LSP: 2 sessions
 To From State Rt Style Labelin Labelout LSPname
 10.0.0.1 10.0.0.6 Up 1 1 FF 103504 3 R6-to-R1
 10.0.0.6 10.0.0.1 Up 1 1 FF 103488 3 R1-to-R6
 Total 2 displayed, Up 2, Down 0

This output shows that R3 is using two different labels for the two LSPs, which is what you expect
because the two traffic flows are separate.

Another way to verify that the RSVP-signaled LSP is up is to examine the RSVP session. Let's look at
R1, the ingress router for the R1-to-R6 LSP:

 aviva@R1> show rsvp session detail
 Ingress RSVP: 1 sessions
 10.0.0.6
 From: 10.0.0.1, LSPstate: Up, ActiveRoute: 1
 LSPname: R1-to-R6, LSPpath: Primary
 Suggested label received: -, Suggested label sent: -
 Recovery label received: -, Recovery label sent: 103536
 Resv style: 1 FF, Label in: -, Label out: 103536
 Time left: -, Since: Tue Oct 4 14:36:13 2005
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Port number: sender 2 receiver 12077 protocol 0
 PATH rcvfrom: localclient
 Adspec: sent MTU 1500
 Path MTU: received 1500
 PATH sentto: 10.1.13.2 (so-0/0/2.0) 1886 pkts
 RESV rcvfrom: 10.1.13.2 (so-0/0/2.0) 1894 pkts
 Explct route: 10.1.13.2 10.1.36.2
 Record route: <self> 10.1.13.2 10.1.36.2
 Total 1 displayed, Up 1, Down 0

 Egress RSVP: 1 sessions
 10.0.0.1
 From: 10.0.0.6, LSPstate: Up, ActiveRoute: 0
 LSPname: R6-to-R1, LSPpath: Primary
 Suggested label received: -, Suggested label sent: -
 Recovery label received: -, Recovery label sent: -
 Resv style: 1 FF, Label in: 3, Label out: -
 Time left: 119, Since: Tue Oct 4 14:35:46 2005
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Port number: sender 1 receiver 49792 protocol 0
 PATH rcvfrom: 10.1.13.2 (so-0/0/2.0) 1886 pkts
 Adspec: received MTU 1500
 PATH sentto: localclient
 RESV rcvfrom: localclient
 Record route: 10.1.36.2 10.1.13.2 <self>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Total 1 displayed, Up 1, Down 0

The ingress router now has two RSVP sessions. The first two lines of the output for each session
confirm the head and tail ends of the RSVP sessions, the LSP pathname, and that the LSP is
operational. For the first session, from 10.0.0.1 to 10.0.0.6, R1 is the ingress router and the output
shows that RSVP is using label 103536 on outgoing packets. Check the transit router to confirm that it
is receiving this label:

 aviva@R3> show rsvp session detail name R1-to-R6
 Transit LSP: 2 sessions
 10.0.0.6
 From: 10.0.0.1, LSPstate: Up, ActiveRoute: 1
 LSPname: R1-to-R6, LSPpath: Primary
 Suggested label received: -, Suggested label sent: -
 Recovery label received: -, Recovery label sent: 3
 Resv style: 1 FF, Label in: 103536, Label out: 3
 Time left: 157, Since: Tue Oct 4 14:15:42 2005
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Port number: sender 2 receiver 12077 protocol 0
 PATH rcvfrom: 10.1.13.1 (so-0/0/2.0) 1904 pkts
 Adspec: received MTU 1500 sent MTU 1500
 PATH sentto: 10.1.36.2 (so-0/0/3.0) 1908 pkts
 RESV rcvfrom: 10.1.36.2 (so-0/0/3.0) 1904 pkts
 Explct route: 10.1.36.2
 Record route: 10.1.13.1 <self> 10.1.36.2
 Total 1 displayed, Up 1, Down 0

Back to the output for R1, the Record route field shows the route being used for this session as
reported in the RSVP RRO:

 Record route: <self> 10.1.13.2 10.1.36.2

The RSVP session starts at <self>, which is the local router, then proceeds through 10.1.31.2 to the
egress router at 10.1.36.2. This matches the LSP illustrated in Figure 14-6. The record route on the
transit router shows the following:

 Record route: 10.1.13.1 <self> 10.1.36.2

Here, the transit router, <self>, is placed between the ingress and egress routers, which again
matches the network topology.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

See Also

Recipes 14.7 and 14.14

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.7. Viewing Information About RSVP-Signaled
LSPs in the Routing Tables

Problem

You want to check the routing tables to verify that an RSVP-signaled LSP has been established and is
being used.

Solution

On the ingress router, look in the inet.3 routing table to view the RSVP routes:

 aviva@R1>
show route table inet.3
 inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.6/32 *[RSVP/7] 00:17:28, metric 2
 > via so-0/0/2.0, label-switched-path R1-to-R6

On the transit router, look in the mpls.0 table to see the router's label information:

 aviva@R3> show route table mpls.0
 mpls.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0 *[MPLS/0] 06:28:10, metric 1
 Receive
 1 *[MPLS/0] 06:28:10, metric 1
 Receive
 2 *[MPLS/0] 06:28:10, metric 1
 Receive
 100048 *[RSVP/7] 05:55:24, metric 1
 > via so-0/0/2.0, label-switched-path R6-to-R1
 100048(S=0) *[RSVP/7] 05:55:24, metric 1
 > via so-0/0/2.0, label-switched-path R6-to-R1
 100064 *[RSVP/7] 00:18:59, metric 1
 > via so-0/0/3.0, label-switched-path R1-to-R6
 100064(S=0) *[RSVP/7] 00:18:59, metric 1
 > via so-0/0/3.0, label-switched-path R1-to-R6

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

MPLS and RSVP store their routing and forwarding information in two routing tables, inet.3 and
mpls.0. The inet.3 table contains the routers learned from the signaling protocol, RSVP (and also
LDP), which MPLS uses to make forwarding decisions. The show route table inet.3 command lists
the routes to RSVP-signaled LSP. You can also use the show route protocol rsvp command to
display the same information:

 aviva@R1> show route protocol rsvp
 inet.0: 14 destinations, 18 routes (14 active, 0 holddown, 0 hidden)
 inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.6/32 *[RSVP/7] 00:32:04, metric 2
 > via so-0/0/2.0, label-switched-path R1-to-R6

The inet.0 unicast routing table doesn't contain any routes learned from RSVP, and the inet.3 table
has one route, to 10.0.0.6, the LSP's egress router. The second line of the routing entry shows that
the path to the egress router goes out the so-0/0/2 interface and travels along LSP R1-to-R6. The
detail version of both show route commands gives more information about the route and LSP:

 aviva@R1> show route table inet.3 detail
 inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 10.0.0.6/32 (1 entry, 1 announced)
 State: <FlashAll>
 *
RSVP Preference: 7
 Next-hop reference count: 7
 Next hop: via so-0/0/2.0 weight 0x1, selected
 Label-switched-path R1-to-R6
 Label operation: Push 100064
 State: <Active Int>
 Local AS: 65432
 Age: 23:52 Metric: 2
 Task: RSVP
 Announcement bits (2): 2-Resolve tree 1 3-Resolve tree 2
 AS path: I

The first highlighted line shows the name of the LSP, while the Label operation line shows the label
operation performed by this route, here a push operation, and the label value that is placed into the
MPLS header.

The inet.3 routing table is only on the ingress router because this is the only router that can place
traffic into the LSP. This is important to remember when troubleshooting RSVP-signaled LSPs, so you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

don't become confused when looking for routes on different routers. Checking the transit router
confirms that the inet.3 table is not present:

 aviva@R3> show route table inet.3
 aviva@R3>

The second routing table used by RSVP is mpls.0, which stores the label bindings for the LSPs:

 aviva@R3> show route table mpls.0
 mpls.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0 *[MPLS/0] 06:50:42, metric 1
 Receive
 1 *[MPLS/0] 06:50:42, metric 1
 Receive
 2 *[MPLS/0] 06:50:42, metric 1
 Receive
 100048 *[RSVP/7] 06:17:56, metric 1
 > via so-0/0/2.0, label-switched-path R6-to-R1
 100048(S=0) *[RSVP/7] 06:17:56, metric 1
 > via so-0/0/2.0, label-switched-path R6-to-R1
 100064 *[RSVP/7] 00:41:31, metric 1
 > via so-0/0/3.0, label-switched-path R1-to-R6
 100064(S=0) *[RSVP/7] 00:41:31, metric 1
 > via so-0/0/3.0, label-switched-path R1-to-R6

Recipe 14.3 explains how to interpret the entries in the mpls.0 table.

The JUNOS software maintains the mpls.0 table on all routers along the LSP, but only the table on the
transit router contains information about the labels being used for LSP signaling. On the egress and
egress routers, the mpls.0 table lists only the reserved labels:

 aviva@R1> show route table mpls.0
 mpls.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0 *[MPLS/0] 07:01:51, metric 1
 Receive
 1 *[MPLS/0] 07:01:51, metric 1
 Receive
 2 *[MPLS/0] 07:01:51, metric 1
 Receive

Again, this is important to remember when monitoring and troubleshooting LSPs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Because BGP is also configured on the MPLS routers, when the BGP next hop is the same as the LSP
egress address, the JUNOS default behavior uses the LSP for the BGP traffic. You see this in the
routing-table entry:

 aviva@R1> show route protocol bgp
 inet.0: 14 destinations, 18 routes (14 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 100.100.6.0/24 *[BGP/170] 4w6d 02:45:37, localpref 100, from 10.0.0.6
 AS path: I
 > via so-0/0/2.0, label-switched-path R1-to-R6

Here, the route to 100.100.6.0, learned by BGP, is the route over the R1-to-R6 LSP.

The JUNOS software installs the active routes from the inet.3 and mpls.0 table into the Routing
Engine's forwarding table. On the ingress router, the IPv4 forwarding table includes the following
routes:

 aviva@R1> show route forwarding-table family inet
 Routing table: inet
 Internet:
 Destination Type RtRef Next hop Type Index NhRef Netif
 10.0.0.3/32 user 1 ucst 330 6 so-0/0/2.0
 10.0.0.6/32 user 1 ucst 330 6 so-0/0/2.0
 100.100.6.0/24 user 0 indr 262142 2
 Push 100064 so-0/0/2.0

The destinations to the transit and egress routers, 10.0.0.3 and 10.0.0.6, show up simply as unicast
routes. The destination 100.100.6.0, learned from BGP and by using the LSP, shows as type indr
(indirect) and you see the label (100064) and label operation (Push).

On the transit router, the MPLS forwarding table lists the labels used to forward the MPLS packets:

 aviva@R3> show route forwarding-table family mpls
 Routing table: mpls
 MPLS:
 Destination Type RtRef Next hop Type Index NhRef Netif
 default perm 0 dscd 28 1
 0 user 0 recv 27 3
 1 user 0 recv 27 3
 2 user 0 recv 27 3
 100048 user 0 Pop so-0/0/2.0
 100048(S=0) user 0 Pop so-0/0/2.0
 100064 user 0 Pop so-0/0/3.0
 100064(S=0) user 0 Pop so-0/0/3.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These labels match what you see in the show route mpls.0 output on the transit router. These labels
are installed into the Packet Forwarding Engine's forwarding table:

 aviva@R3>
show pfe route mpls
 MPLS Route Table 0, MPLS.0, 0x0:
 Destination Type ID NhRef
 ----------------------- -------- ----- -----
 default Discard 28 1
 0 Receive 27 3
 1 Receive 27 3
 2 Receive 27 3
 100048 Unicast 336 1 so-0/0/2.0
 100048(S=0) Unicast 337 1 so-0/0/2.0
 100064 Unicast 334 1 so-0/0/3.0
 100064(S=0) Unicast 335 1 so-0/0/3.0

On the ingress and egress routers, the output of the show route forwarding-table family mpls and
show pfe route mpls commands on the ingress and egress route lists only the reserved labels.

See Also

Recipes 8.1 and 14.3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.8. Verifying Packet Labels

Problem

After configuring an RSVP-signaled LSP, you want to verify which labels are being used when packets
are forwarded along the LSP.

Solution

The easiest way to see all the labels being used as a packet traverses an LSP is to run the traceroute
command on the ingress router:

 aviva@R1> traceroute 100.100.6.0
 traceroute to 100.100.6.0 (100.100.6.0), 30 hops max, 40 byte packets
 1 10.1.13.2 (10.1.13.2) 0.858 ms 0.751 ms 0.701 ms
 MPLS Label=103536 CoS=0 TTL=1 S=1
 2 10.1.36.2 (10.1.36.2) 0.598 ms !N 0.591 ms !N 0.554 ms !N

Discussion

There are several ways to find out which labels packets carry as they pass through the routers in an
LSP. To see all the labels used by all the routers along the LSP with a single command, issue a
traceroute command on the ingress router. Traceroute works when the inet.0 routing table has a
route to the destination that has the LSP as the next hop. This recipe shows the output of this
command. For the first hop (line 1), the second line shows the MPLS label value of 103536. It also
shows the other value in the MPLS header. The CoS (experimental) bits are not set (they are 0), and
the Stack bit is 1 because this is the last label in the stack.

The LSP in this recipe is short, so the TRaceroute output shows only the one label. Here's what the
output looks like for a longer LSP:

 aviva@R1> traceroute 100.100.6.1
 traceroute to 100.100.6.1 (100.100.6.1), 30 hops max, 40 byte packets
 1 10.1.12.2 (10.1.12.2) 0.861 ms 0.718 ms 0.679 ms
 MPLS Label=100048 CoS=0 TTL=1 S=1
 2 10.1.24.2 (10.1.24.2) 0.822 ms 0.731 ms 0.708 ms
 MPLS Label=100016 CoS=0 TTL=1 S=1
 3 10.1.46.2 (10.1.46.2) 0.571 ms !N 0.547 ms !N 0.532 ms !N

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ingress router uses the label 100048 to reach the next hop in the LSP, and the first transit router
replaces that label with 100016.

Other JUNOS commands show the labels used on individual routers or on adjacent routers; however,
you need to log in to each router to use these commands. The show mpls lsp command on any
router in an LSP shows the labels the router is receiving on incoming packets and using on outgoing
packets. Here's an example from a transit router:

 aviva@R3> show mpls lsp
 Transit LSP: 2 sessions
 To From State Rt Style Labelin Labelout LSPname
 10.0.0.1 10.0.0.6 Up 1 1 FF 100048 3 R6-to-R1
 10.0.0.6 10.0.0.1 Up 1 1 FF 100064 3 R1-to-R6
 Total 2 displayed, Up 2, Down 0

To verify that the LSP label operations are working properly, check the transit router's labels against
those on the ingress and egress routers:

 aviva@R1> show rsvp session
 Ingress RSVP: 1 sessions
 To From State Rt Style Labelin Labelout LSPname
 10.0.0.6 10.0.0.1 Up 1 1 FF - 100064 R1-to-R6
 Total 1 displayed, Up 1, Down 0

 aviva@R6> show rsvp session
 Ingress RSVP: 1 sessions
 To From State Rt Style Labelin Labelout LSPname
 10.0.0.1 10.0.0.6 Up 1 1 FF - 100048 R6-to-R1
 Total 1 displayed, Up 1, Down 0

On R1, the router's outgoing label on LSP R1-to-R6 is 100064, which matches what the transit router
is receiving. On R6, the outgoing label on the R6-to-R1 LSP is 100048, which matches the incoming
label on the transit router.

The show mpls lsp detail command also lists the labels. The mpls.0 routing table on the transit
routers also lists the labels for the LSPs:

 aviva@R3> show route table mpls.0
 mpls.0: 7 destinations, 7 routes (7 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0 *[MPLS/0] 00:48:54, metric 1
 Receive
 1 *[MPLS/0] 00:48:54, metric 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Receive
 2 *[MPLS/0] 00:48:54, metric 1
 Receive
 100032 *[RSVP/7] 00:16:43, metric 1
 > via so-0/0/3.0, label-switched-path R1-to-R6
 100032(S=0) *[RSVP/7] 00:16:43, metric 1
 > via so-0/0/3.0, label-switched-path R1-to-R6
 100048 *[RSVP/7] 00:16:08, metric 1
 > via so-0/0/2.0, label-switched-path R6-to-R1
 100048(S=0) *[RSVP/7] 00:16:08, metric 1
 > via so-0/0/2.0, label-switched-path R6-to-R1

To verify correct forwarding along the LSP, ping the egress router from the ingress router. For this to
work, you need to configure a loopback address of 127.0.0.1 on the egress router:

 [edit]
 aviva@R6# set interfaces lo0 unit 0 family inet address 127.0.0.1/32

The egress router uses this address to send echo replies to echo requests sent by the ping command.
You then send an MPLS ping request from the ingress router along the LSP:

 aviva@R1> ping mpls rsvp R1-to-R6
 !!!!!
 --- lsping statistics ---
 5
packets transmitted, 5 packets received, 0% packet loss

The ping echo replies include the label that the ingress router added to the packet when putting it
into the LSP. The ping mpls command uses port 3503 for MPLS echo requests instead of UDP port 7,
which is used by the standard ping command.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.9. Verifying that the RSVP-Signaled LSP Is
Carrying Traffic

Problem

You want to know that traffic is actually using an RSVP-signaled LSP that you've configured.

Solution

Look at the LSP traffic statistics:

 aviva@R3> show
mpls lsp statistics transit
 Transit LSP: 2 sessions
 To From State Packets Bytes LSPname
 10.0.0.1 10.0.0.6 Up 0 0 R6-to-R1
 10.0.0.6 10.0.0.1 Up 25 2400 R1-to-R6
 Total 2 displayed, Up 2, Down 0

Discussion

To make sure that traffic is using the LSP, look at the traffic statistics. This recipe shows the show
mpls lsp statistics commands. You can also use the show rsvp session statistics command to
get the same output.

The Packets column shows the number of packets that have followed a particular LSP, and the Bytes
column gives the total byte count of all the packets. In this recipe, LSP R1-to-R6 has carried 25
packets, for a total of 2,400 bytes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.10. Configuring RSVP Authentication

Problem

You want to verify that all RSVP traffic that the router accepts comes from trusted routers to ensure
the security of the LSP and the data it carries.

Solution

Configure MD5 authentication for each interface running RSVP:

 [edit protocols rsvp]
 aviva@R1# set interface so-0/0/2 authentication-key 1991$poPPi
 aviva@R1# show
 interface so-0/0/2.0 {
 authentication-key "9GoDqm5QF/ApTQSrKMXxqmPfn/"; ## SECRET-DATA
 }

Discussion

It is a good security measure to authenticate RSVP exchanges to ensure that only trusted routers
participate in the LSP. This recipe shows how to configure RSVP authentication. You configure a key
for each interface on the router that is running RSVP. MD5 creates an encoded checksum that is
included in all transmitted RSVP packets. The receiving router verifies this checksum before accepting
the packet.

Use the following command to check that RSVP authentication is configured:

 aviva@R1>
show rsvp interface detail
 RSVP interface: 1 active
 so-0/0/2.0 Index 69, State Ena/Up

Authentication, NoAggregate, NoReliable, NoLinkProtection
 HelloInterval 9(second)
 Address 10.1.13.1, 10.0.0.1
 ActiveResv 1, PreemptionCnt 0, Update threshold 10%
 Subscription 100%, StaticBW 155.52Mbps, AvailableBW 155.52Mbps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ReservedBW [0] 0bps[1] 0bps[2] 0bps[3] 0bps[4] 0bps[5] 0bps[6] 0bps[7] 0bps
 PacketType Total Last 5 seconds
 Sent Received Sent Received
 Path 1588 35 0 0
 PathErr 0 0 0 0
 PathTear 3 1 0 0
 Resv 34 1586 0 0
 ResvErr 0 0 0 0
 ResvTear 0 0 0 0
 Hello 8526 8527 1 1
 Ack 0 0 0 0
 Srefresh 0 0 0 0
 EndtoEnd RSVP 0 0 0 0

Configure the same authentication key on all interfaces participating in the LSP. If you do not
configure the same password, the LSP cannot be established and is marked as Dn (down) in the show
mpls lsp command output:

 aviva@R1> show mpls lsp
 Ingress LSP: 1 sessions
 To From State Rt ActivePath P LSPname
 10.0.0.6 10.0.0.1 Dn 0 - R1-to-R6
 Total 1 displayed, Up 0, Down 1

This LSP is not operating because authentication is not configured on R6, the egress router:

 aviva@R6> show rsvp interface detail
 RSVP interface: 1 active
 so-0/0/3.0 Index 66, State Ena/Up
 NoAuthentication, NoAggregate, NoReliable, NoLinkProtection
 HelloInterval 9(second)
 Address 10.1.36.2, 10.0.0.6
 ActiveResv 0, PreemptionCnt 0, Update threshold 10%
 Subscription 100%, StaticBW 155.52Mbps, AvailableBW 155.52Mbps
 ReservedBW [0] 0bps[1] 0bps[2] 0bps[3] 0bps[4] 0bps[5] 0bps[6] 0bps[7] 0bps

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.11. Protecting an LSP's Path

Problem

You want to protect an LSP's traffic in the event of a link or router failure to ensure that it always
arrives at the egress end of the LSP.

Solution

When you create an LSP, RSVP establishes a single path between the ingress and egress routers. One
way to protect the LSP's path is to establish an end-to-end secondary path for the LSP. First, explicitly
set up the primary LSP:

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R5 to 10.0.0.5
 aviva@R1# set label-switched-path R1-to-R5 bandwidth 50m
 aviva@R1# set label-switched-path R1-to-R5 primary primary-path-R1-to-R5
 aviva@R1# set path primary-path-R1-to-R5

Then, configure a secondary path to the same egress router:

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R5 secondary secondary-path-R1-to-R5 standby
 aviva@R1# set path secondary-path-R1-to-R5

Discussion

When you create a basic LSP on the ingress router, one route is set up to reach the egress router and
all the LSP's traffic is forwarded along this route. If a failure occurs along the pathfor instance, if a
router's interface goes offline, if an entire router goes down, or if the physical link between two
routers is cutthe ingress router recalculates the LSP's path and re-establishes the LSP if possible.
However, until the ingress route learns of the LSP failure and recalculates a new LSP, all traffic going
into the LSP is dropped and never reaches the egress. Depending on the length of the LSP, the speeds
of the interfaces, and other factors, it can take some seconds for the new LSP to become operational.
One way to provide a redundant path is to set up a secondary path in advance and have it always be
on call in case the primary path fails so that it can immediately take over forwarding the LSP's traffic.
An optimal secondary LSP takes a completely different path through the network so that there are no
common links or routers shared by the two LSPs. For this recipe, the network topology is extended to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

six routers (see Figure 14-7).

The first part of this recipe sets up the primary path on the ingress router, R1. The first command
names the LSP and specifies the address of the egress router, R5. The second command reserves
bandwidth for the LSP, here requesting 50 Mbps. The third command creates the primary LSP and
names it primary-path-R1-to-R5 . The final command, the set path command, tells MPLS about the
name of the path.

Figure 14-7. Six-router topology for RSVP-signaled LSPs

At this point in the configuration, you can verify that the primary path has been established:

 aviva@R1> show mpls lsp ingress extensive
 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5
 ActivePath: primary-path-R1-to-R5 (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary primary-path-R1-to-R5 State: Up
 Bandwidth: 50Mbps
 SmartOptimizeTimer: 180
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.34.2 10.1.45.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 5 Oct 7 09:15:34 Selected as active path
 4 Oct 7 09:15:34 Record Route: 10.1.13.2 10.1.34.2 10.1.45.2
 3 Oct 7 09:15:34 Up
 2 Oct 7 09:15:34 Originate Call
 1 Oct 7 09:15:05 Path name undefined or disabled[3 times]
 Created: Fri Oct 7 09:14:36 2005
 Total 1 displayed, Up 1, Down 0

This output shows that the LSP to 10.0.0.5 , the egress router, is up (State: Up) and is the primary
path to the egress router. The Bandwidth field indicates that the requested bandwidth reservation of
50 Mbps has been honored and allocated. The RSVP RRO in the path calculation log (line 4 in the log)
contains the path being followed by the primary LSP. This LSP goes first to R3 (10.1.31.2) and then
to R4 (10.1.34.2) before reaching the egress at R5 (10.1.45.2). The following command shows that
RSVP has reserved the bandwidth:

 aviva@R1> show rsvp interface
 RSVP interface: 2 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark
 so-0/0/0.0 Up 0 100% 155.52Mbps 155.52Mbps 0bps 0bps
 so-0/0/2.0 Up 1 100% 155.52Mbps 105.52Mbps 50Mbps 50Mbps

For interface so-0/0/2 , which connects to R3, the first router in the LSP, the output shows that 50
Mbps have been reserved and 105.52 Mbps are still available.

Next in the configuration is to set up a secondary path. There are two commands for this. The first
command creates the secondary path in the LSP, and the second defines the path for MPLS. This
recipe uses the standby option in the secondary path so the path is established when the primary path
is set up and remains up at all times. This means that the secondary path is always available to take
over immediately if the primary path fails. The result is that no traffic is dropped during the time it
takes for CSPF to calculate a new route and RSVP to signal a new path.

Look at the LSP again to check that the secondary path has been set up. A quick glance shows two
RSVP sessions for the R1-to-R5 LSP:

 aviva@R1>
show rsvp session ingress
 Ingress RSVP: 2 sessions
 To From State Rt Style Labelin Labelout LSPname
 10.0.0.5 10.0.0.1 Up 0 1 FF - 100144 R1-to-R5
 10.0.0.5 10.0.0.1 Up 0 1 FF - 100160 R1-to-R5
 Total 2 displayed, Up 2, Down 0

A detailed look at the LSP shows more information about the two paths:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@R1> show mpls lsp ingress extensive
 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5
 ActivePath: primary-path-R1-to-R5 (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary primary-path-R1-to-R5 State: Up
 Bandwidth: 50Mbps
 SmartOptimizeTimer: 180
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.34.2 10.1.45.2
 5 Oct 7 09:15:34 Selected as active path
 4 Oct 7 09:15:34 Record Route: 10.1.13.2 10.1.34.2 10.1.45.2
 3 Oct 7 09:15:34 Up
 2 Oct 7 09:15:34 Originate Call
 1 Oct 7 09:15:05 Path name undefined or disabled[3 times]
 Standby secondary-path-R1-to-R5 State: Up
 Bandwidth: 50Mbps
 SmartOptimizeTimer: 180
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.36.2 10.1.56.1
 3 Oct 7 09:26:07 Record Route: 10.1.12.2 10.1.24.2 10.1.45.2
 2 Oct 7 09:26:07 Up
 1 Oct 7 09:26:07 Originate Call
 Created: Fri Oct 7 09:14:37 2005
 Total 1 displayed, Up 1, Down 0

In addition to the primary path, the LSP now has the secondary, standby path, which is up and for
which 50 Mbps of bandwidth have been reserved. Check RSVP again to verify the bandwidth
reservation:

 aviva@R1show rsvp interface
 RSVP interface: 2 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark
 so-0/0/0.0 Up 1 100% 155.52Mbps 105.52Mbps 50Mbps 50Mbps
 so-0/0/2.0 Up 1 100% 155.52Mbps 105.52Mbps 50Mbps 100Mbps

The output shows that RSVP has reserved 50 Mbps for the secondary LSP on the router's other
interface, so-0/0/0 .

The difference between the primary and secondary paths is the path itself. The Record Route fields,
which contain the information in the RSVP RRO, show the two paths. The primary path goes along
10.1.13.2 to R3, then along 10.1.34.2 to R4, and finally along 10.1.45.2 to reach the egress router,
R5:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 4 Oct 7 09:15:34 Record Route: 10.1.13.2 10.1.34.2 10.1.45.2

The secondary path goes out 10.0.12.1 to R2, then along 10.1.24.2 to R4 to reach R5:

 3 Oct 7 09:26:07 Record Route: 10.1.12.2 10.1.24.2 10.1.45.2

The two paths from R1 to R5 are completely separate and nonoverlapping, so the secondary path
provides nonredundant backup in case the primary LSP fails. Because the LSP is being signaled and
set up automatically, the secondary path might share routers with the primary path. However, the
JUNOS CSPF calculation tries to ensure that the primary and secondary paths do not overlap where
possible; the calculation of the secondary path by CSPF takes the path of the primary into account.
Let's look at an example where this happens. First, look at the interfaces on which RSVP has reserved
bandwidth:

 aviva@R1> show rsvp interface
 RSVP interface: 2 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark
 so-0/0/0.0 Up 0 100% 155.52Mbps 155.52Mbps 0bps 50Mbps
 so-0/0/2.0 Up 2 100% 155.52Mbps 55.52Mbps 100Mbps 100Mbps

The configuration allocates 50 Mbps for the primary path, and this output shows that RSVP has set
aside 100 Mbps on a single interface, so-0/0/2 , so you know that both the primary and secondary
LSPs are being routed toward R3. To check this, look at the LSP's record route:

 aviva@R1> show mpls lsp ingress extensive
 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5
 ActivePath: primary-path-R1-to-R5 (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary primary-path-R1-to-R5 State: Up
 Bandwidth: 50Mbps
 SmartOptimizeTimer: 180
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.34.2 10.1.45.2
 22 Oct 12 14:53:24 Selected as active path
 21 Oct 12 14:53:24 Record Route: 10.1.13.2 10.1.34.2 10.1.45.2
 20 Oct 12 14:53:24 Up
 19 Oct 12 14:53:24 Originate Call

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 …
 Standby secondary-path-R1-to-R5 State: Up
 Bandwidth: 50Mbps
 SmartOptimizeTimer: 180
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.36.2 10.1.56.1
 35 Oct 12 14:55:56 Record Route: 10.1.13.2 10.1.36.2 10.1.56.1
 34 Oct 12 14:55:56 Up
 33 Oct 12 14:55:55 Originate Call
 …
 Total 1 displayed, Up 1, Down 0

This output confirms that RSVP has routed both the primary and secondary LSPs through R3
(10.1.13.2). You can force one of the LSPs to go through R2 instead by manually configuring the
LSP's next hop. The following command explicitly configures the first next hop for the secondary LSP:

 [edit protocols mpls]
 aviva@R1# set path secondary-path-R1-to-R5 10.1.12.2

Checking the RSVP bandwidth reservation confirms the change:

 aviva@R1> show rsvp interface
 RSVP interface: 2 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark
 so-0/0/0.0 Up 1 100% 155.52Mbps 105.52Mbps 50Mbps 50Mbps
 so-0/0/2.0 Up 1 100% 155.52Mbps 105.52Mbps 50Mbps 100Mbps

RSVP has reserved 50 Mbps on each of the two outgoing interfaces. Looking at the LSP paths shows
that the two paths are indeed different:

 aviva@R1> show mpls lsp ingress extensive
 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5
 ActivePath: primary-path-R1-to-R5 (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary primary-path-R1-to-R5 State: Up
 Bandwidth: 50Mbps
 SmartOptimizeTimer: 180
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.34.2 10.1.45.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 22 Oct 12 14:53:24 Selected as active path
 21 Oct 12 14:53:24 Record Route: 10.1.13.2 10.1.34.2 10.1.45.2
 20 Oct 12 14:53:24 Up
 19 Oct 12 14:53:24 Originate Call
 …
 Standby secondary-path-R1-to-R5 State: Up
 Bandwidth: 50Mbps
 SmartOptimizeTimer: 180
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.12.2 10.1.24.2 10.1.45.2
 39 Oct 12 15:07:10 Record Route: 10.1.12.2 10.1.24.2 10.1.45.2
 38 Oct 12 15:07:10 Up
 37 Oct 12 15:07:10 Originate Call
 36 Oct 12 15:07:10 Clear Call
 …
 Total 1 displayed, Up 1,

The show rsvp interface output illustrates an important point about secondary paths, which is that
the secondary path inherits the same properties as the primary path. In the output, you see that
RSVP has reserved the same amount of bandwidth (50 Mbps) for both the secondary and primary
paths, so 100 Mbps total are reserved for the primary and secondary LSPs. This points out one of the
drawbacks of having a secondary LSP that is on standby. Even though the secondary path is used only
rarely, bandwidth resources must always be set aside for it so that the secondary path is always
available. If your network's link resources are constrained in any way, you should consider different
methods of protecting LSPs, such as fast reroute (see Recipe 14.12) and autobandwidth (see Recipe
14.13).

When setting up secondary paths, be careful not to overallocate resources accidentally. For the
SONET link in this example, if you set aside 80 Mbps for the primary LSP, RSVP can establish the LSP
just fine:

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R5 bandwidth 80m
 aviva@R1# commit and-quit
 commit complete
 Exiting configuration mode
 aviva@R1> show rsvp interface
 RSVP interface: 2 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark
 so-0/0/0.0 Up 0 100% 155.52Mbps 155.52Mbps 0bps 0bps
 so-0/0/2.0 Up 1 100% 155.52Mbps 75.52Mbps 80Mbps 100Mbps

However, RSVP cannot establish the secondary LSP:

 aviva@R1> show mpls lsp ingress extensive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5
 ActivePath: primary-path-R1-to-R5 (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary primary-path-R1-to-R5 State: Up
 Bandwidth: 80Mbps
 SmartOptimizeTimer: 180
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.36.2 10.1.56.1
 9 Oct 7 09:32:15 Record Route: 10.1.13.2 10.1.36.2 10.1.56.1
 8 Oct 7 09:32:15 Up
 7 Oct 7 09:32:15 Originate Call
 6 Oct 7 09:32:15 Clear Call
 5 Oct 7 09:15:34 Selected as active path
 4 Oct 7 09:15:34 Record Route: 10.1.13.2 10.1.34.2 10.1.45.2
 3 Oct 7 09:15:34 Up
 2 Oct 7 09:15:34 Originate Call
 1 Oct 7 09:15:05 Path name undefined or disabled[3 times]
 Standby secondary-path-R1-to-R5 State: Dn
 Bandwidth: 80Mbps
 SmartOptimizeTimer: 180
 6 Oct 7 09:33:18 Requested bandwidth unavailable[14 times]
 5 Oct 7 09:32:15 Originate Call
 4 Oct 7 09:32:15 Clear Call
 3 Oct 7 09:26:07 Record Route: 10.1.13.2 10.1.36.2 10.1.56.1
 2 Oct 7 09:26:07 Up
 1 Oct 7 09:26:07 Originate Call
 Created: Fri Oct 7 09:14:36 2005
 Total 1 displayed, Up 1, Down 0

This output shows that the secondary path is down because of insufficient bandwidth on the link. The
interface has 155.52 Mbps total bandwidth, but the two LSPs need 160 Mbps. To not have RSVP
double-count the bandwidth, you can make the secondary LSP adaptive :

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R5 adaptive

In adaptive mode, the bandwidth reservation for the secondary path is shared with that for the
primary path, so RSVP is now able to establish the secondary LSP. Checking the LSP again:

 aviva@R1> show mpls lsp ingress extensive
 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ActivePath: primary-path-R1-to-R5 (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary primary-path-R1-to-R5 State: Up
 Bandwidth: 80Mbps
 SmartOptimizeTimer: 180
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.36.2 10.1.56.1
 4 Oct 7 09:34:29 Selected as active path
 3 Oct 7 09:34:29 Record Route: 10.1.13.2 10.1.36.2 10.1.56.1
 2 Oct 7 09:34:29 Up
 1 Oct 7 09:34:28 Originate Call
 Standby secondary-path-R1-to-R5 State: Up
 Bandwidth: 80Mbps
 SmartOptimizeTimer: 180
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.36.2 10.1.56.1
 3 Oct 7 09:34:57 Record Route: 10.1.13.2 10.1.36.2 10.1.56.1
 2 Oct 7 09:34:57 Up
 1 Oct 7 09:34:57 Originate Call
 Created: Fri Oct 7 09:34:28 2005
 Total 1 displayed, Up 1, Down 0

The output verifies that the secondary LSP has been established.

Another option is not to reserve bandwidth at all for the secondary path, which gives protection but
without any guarantees.

In addition to needing to reserve bandwidth for rarely used secondary paths, secondary LSPs have
two other disadvantages that may cause you to consider using different protection methods. One is
that this configuration creates a single secondary standby for each protected path. If both paths fail,
the desired protection is not provided. Although you can create more than one secondary path, you
are again faced with the problem of reserving bandwidth for several rarely used paths. A second
disadvantage is that the secondary LSP takes effect only when the ingress router learns of the failure
in the path, so some traffic in the LSP will be lost. Methods such as fast reroute kick in when routers
along the LSP learn of a failure, resulting in less loss of traffic.

See Also

Recipes 14.12 and 14.13

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.12. Using Fast Reroute to Reduce Packet Loss
Following a Link Failure

Problem

You want to reduce packet loss when a link along an LSP fails.

Solution

Fast reroute reduces packet loss when a link in the LSP fails. You configure fast reroute on the
ingress router only:

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R5 to 10.0.0.5
 aviva@R1# set label-switched-path R1-to-R5 fast-reroute

Discussion

A basic function of IP routing protocols is to reroute traffic changes that occur in the network, such as
a link or router node failure. Because the IP routing protocols are distributed across the network
devices and because all routers must have a consistent view of the network, it can take some time
for the routes to converge after a topology change. In a large network, convergence times can be on
the order of several seconds, which may be unacceptable for your service-level agreements (SLAs).

MPLS fast reroute provides a solution to the convergence problem by rerouting traffic around a point
of failure in an LSP. Fast reroute sets up a protection LSP around a point of failure in advance to
protect an individual link between two routers. Each router in the LSP sets up protection LSPs when
the ingress router signals the initial setup of the LSP. When a link along an LSP fails, the router
upstream of the failure switches to the protection LSP as soon as it detects the failure. No route
calculations need to be done because the protection LSP is signaled and set up in advance, and the
routing protocols don't need to converge, so the move to a path that circumvents the point of failure
can happen quickly. Following a failure, the ingress router is notified and can compute a new path at
its leisure. Traffic is protected in the meantime.

Fast reroute does not eliminate packet loss; it merely minimizes it. When a path fails and MPLS
switches to the protection LSP, the MPLS routers still need some small amount of time to detect the
failure and switch to the alternate path. The ingress router can then recalculate the LSP if necessary.
During the switchover, the LSP will continue forwarding traffic while a new LSP is established.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You configure fast reroute only on the ingress router. You do not need to configure it on the LSP's
transit and egress routers. As this recipe shows, the configuration is straightforward: just include the
fast-reroute statement in the LSP's configuration. Once the LPS is running fast reroute, the ingress
router signals all downstream routers that fast reroute has been requested and indicate which link
requires protection, and each downstream router does its best to set up detours for the LSP. If a
downstream router does not support fast reroute, it ignores the request to set up detours but
continues to support the LSP. A router that does not support fast reroute will cause some of the
detours to fail but otherwise has no impact on the LSP.

To check that fast reroute is configured and working properly, first verify that the ingress router has
created an operational LSP:

 aviva@R1> show mpls lsp ingress extensive
 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5
 ActivePath: primary-path-R1-to-R5 (primary)
 FastReroute desired
 LoadBalance: Random
 Encoding type:
Packet, Switching type: Packet, GPID: IPv4
 *Primary primary-path-R1-to-R5 State: Up
 SmartOptimizeTimer: 180
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 30)
 10.1.13.2 S 10.1.36.2 S 10.1.56.1 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2(flag=9) 10.1.36.2(flag=1) 10.1.56.1
 8 Oct 12 15:15:31 Fast-reroute Detour Up
 7 Oct 12 15:15:22 Record Route: 10.1.13.2(flag=9) 10.1.36.2(flag=1) 10.1.56.1
 6 Oct 12 15:15:22 Record Route: 10.1.13.2(flag=9) 10.1.36.2 10.1.56.1
 5 Oct 12 15:15:19 Selected as active path
 4 Oct 12 15:15:19 Record Route: 10.1.13.2 10.1.36.2 10.1.56.1
 3 Oct 12 15:15:18 Up
 2 Oct 12 15:15:18 Originate Call
 1 Oct 12 15:15:18 CSPF: computation result accepted
 Created: Wed Oct 12 15:15:18 2005
 Total 1 displayed, Up 1, Down 0

This output shows the details of the LSP on the ingress router, R1. The LSP goes to 10.0.0.5 from
10.0.0.1, which is correct, and the state is Up, so the LSP is operational. The line FastReroute
desired tells you that the ingress router has signaled the routers that might participate in the LSP to
use fast reroute. This indicates that the fast reroute configuration has taken effect. Line 8 in the LSP
log for the LSP indicates that a fast reroute detour has been set up. The Record Route for the LSP
shows that the LSP is routed through R3 (10.1.13.2) and R6 (10.1.36.2).

Looking at the RSVP session shows more information about the detour:

 aviva@R1> show rsvp session ingress detail

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Ingress RSVP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, LSPstate: Up, ActiveRoute: 0
 LSPname: R1-to-R5, LSPpath: Primary
 Suggested label received: -, Suggested label sent: -
 Recovery label received: -, Recovery label sent: 100480
 Resv style: 1 FF, Label in: -, Label out: 100480
 Time left: -, Since: Mon Oct 10 13:15:17 2005
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Port number: sender 1 receiver 39233 protocol 0
 FastReroute desired
 PATH rcvfrom: localclient
 Adspec: sent MTU 1500
 Path MTU: received 1500
 PATH sentto: 10.1.13.2 (so-0/0/2.0) 12 pkts
 RESV rcvfrom: 10.1.13.2 (so-0/0/2.0) 9 pkts
 Explct route: 10.1.13.2 10.1.36.2 10.1.56.1
 Record route: <self> 10.1.13.2 10.1.36.2 10.1.56.1
 Detour is Up
 Detour Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Detour adspec: sent MTU 1500
 Path MTU: received 1500
 Detour PATH sentto: 10.1.12.2 (so-0/0/0.0) 8 pkts
 Detour RESV rcvfrom: 10.1.12.2 (so-0/0/0.0) 4 pkts
 Detour Explct route: 10.1.12.2 10.1.26.2 10.1.56.1
 Detour Record route: <self> 10.1.12.2 10.1.26.2 10.1.56.1
 Detour Label out: 100192
 Total 1 displayed, Up 1, Down 0

The record route shows the primary path of the LSP, from R1 out interface so-0/0/2, to R3, then to
R5 and ending at R6 (10.1.56.1). The Detour Record route shows the detour path, from R1 out a
different interface, so-0/0/0, to R2 (10.1.12.1), then to R4 (10.1.26.2), and finally to R6. This
detour goes around R3, providing protection if the link between R1 and R3 fails or if R3 itself fails.

Next, look on the transit routers to make sure they are aware of the detour. First, look at Router R3,
which is the first router in the primary path:

 aviva@R3> show rsvp session transit detail
 Transit RSVP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, LSPstate: Up, ActiveRoute: 1
 LSPname: R1-to-R5, LSPpath: Primary
 Suggested label received: -, Suggested label sent: -
 Recovery label received: -, Recovery label sent: 100112
 Resv style: 1 FF, Label in: 100480, Label out: 100112
 Time left: 119, Since: Mon Oct 10 13:09:14 2005
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Port number: sender 1 receiver 39233 protocol 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FastReroute desired
 PATH rcvfrom: 10.1.13.1 (so-0/0/2.0) 18 pkts
 Adspec: received MTU 1500 sent MTU 1500
 PATH sentto: 10.1.36.2 (so-0/0/3.0) 15 pkts
 RESV rcvfrom: 10.1.36.2 (so-0/0/3.0) 15 pkts
 Explct route: 10.1.36.2 10.1.56.1
 Record route: 10.1.13.1 <self> 10.1.36.2 10.1.56.1
 Detour is Up
 Detour Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Detour adspec: received MTU 1500 sent MTU 1500
 Path MTU: received 1500
 Detour PATH sentto: 10.1.34.2 (so-0/0/0.0) 14 pkts
 Detour RESV rcvfrom: 10.1.34.2 (so-0/0/0.0) 10 pkts
 Detour Explct route: 10.1.34.2 10.1.45.2
 Detour Record route: 10.1.13.1 <self> 10.1.34.2 10.1.45.2
 Detour Label out: 100160
 Total 1 displayed, Up 1, Down 0

Router R3's record route for the primary R1-to-R5 LSP shows:

 Record route: 10.1.13.1 <self> 10.1.36.2 10.1.56.1

This matches the record route on the ingress router:

 Record route: <self> 10.1.13.2 10.1.36.2 10.1.56.1

The only difference here is that for R3, <self> is between 10.1.13.1 and 10.1.36.2, while for R1,
<self> is at the beginning of the path, before 10.1.13.2. Next, look at the detour that R3 has set up:

 Detour Record route: 10.1.13.1 <self> 10.1.34.2 10.1.45.2

This detour protects the downstream link from R3, which is the connection to R5. If this link fails, the
detour goes to R4 (10.1.34.2), then to R5, the egress router.

The next transit router to check is R2, which is not in the primary LSP but is part of the protection
LSP that R1 has set up if its link to R3 goes down:

 aviva@R2> show rsvp session transit detail
 Transit RSVP: 1 sessions
 10.0.0.5

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 From: 10.0.0.1, LSPstate: Up, ActiveRoute: 1
 LSPname: R1-to-R5, LSPpath: Primary
 Suggested label received: -, Suggested label sent:
 Recovery label received: -, Recovery label sent: 100464
 Resv style: 1 FF, Label in: 100432, Label out: 100464
 Time left: 158, Since: Wed Oct 12 15:24:45 2005
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Port number: sender 5 receiver 39275 protocol 0
 Detour branch from 10.1.12.1, to skip 10.0.0.3, Up
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Adspec: received MTU 1500
 Path MTU: received 0
 PATH rcvfrom: 10.1.12.1 (so-0/0/0.0) 8 pkts
 Adspec: received MTU 1500 sent MTU 1500
 PATH sentto: 10.1.24.2 (so-0/0/3.0) 4 pkts
 RESV rcvfrom: 10.1.24.2 (so-0/0/3.0) 4 pkts
 Explct route: 10.1.24.2 10.1.45.2
 Record route: 10.1.12.1 <self> 10.1.24.2 10.1.45.2
 Label in: 100432, Label out: 100464
 Total 1 displayed, Up 1, Down 0

The first few lines of the output confirm that this is LSP R1-to-R5, from 10.0.0.1 to 10.0.0.5. The
Detour branch line indicates that this router is a fast-reroute detour that will be used if R3 (10.0.0.3)
fails.

What happens when the link on one of the transit routers goes down? When R3 goes down, R1 can
no longer direct the primary LSP out the so-0/0/2 interface to R3:

 aviva@R1> show rsvp interface
 RSVP interface: 2 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark
 so-0/0/0.0 Up 2 100% 155.52Mbps 155.52Mbps 0bps 50Mbps
 so-0/0/2.0 Down 0 100% 155.52Mbps 155.52Mbps 0bps 100Mbps

The RSVP interface status shows that the so-0/0/2 link is down and has no active RSVP sessions, and
all RSVP sessions have been moved to so-0/0/0. Next, look at the LSP on the ingress router:

 aviva@R1show mpls lsp ingress extensive
 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5
 ActivePath: primary-path-R1-to-R5 (primary)
 FastReroute desired
 LoadBalance: Random
 Encoding type:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Packet, Switching type: Packet, GPID: IPv4
 *Primary primary-path-R1-to-R5 State: Up
 SmartOptimizeTimer: 180
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 30)
 10.1.12.2 S 10.1.26.2 S 10.1.56.1 S
 Received RRO (
ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.12.2(flag=9) 10.1.26.2(flag=1) 10.1.56.1
 21 Oct 12 15:23:03 Record Route: 10.1.12.2(flag=9) 10.1.26.2(flag=1) 10.1.56.1
 20 Oct 12 15:23:03 Record Route: 10.1.12.2(flag=9) 10.1.26.2 10.1.56.1
 19 Oct 12 15:23:00 Record Route: 10.1.12.2 10.1.26.2 10.1.56.1
 18 Oct 12 15:23:00 Up
 17 Oct 12 15:23:00 Originate make-before-break call
 16 Oct 12 15:23:00 CSPF: computation result accepted
 15 Oct 12 15:23:00 CSPF: link down/deleted: 10.1.13.1(R1.00/10.0.0.1)->10.1.13.
 2(R3.00/10.0.0.3)
 14 Oct 12 15:23:00 Originate make-before-break call
 13 Oct 12 15:23:00 CSPF: computation result accepted
 12 Oct 12 15:23:00 Tunnel local repaired
 11 Oct 12 15:23:00 Record Route: 10.1.12.2 10.1.26.2 10.1.56.1
 10 Oct 12 15:23:00 Tunnel local repaired
 9 Oct 12 15:23:00 Down
 …
 Total 1 displayed, Up 1, Down 0

Line 9 of the LSP log shows when the link broke and the primary LSP went down. Line 10 shows R1
repairing the LSP, and line 11 shows that R1 has switched to the protection LSP, redirecting traffic
out so-0/0/0 (10.1.12.2) to R2. In lines 13 and 14, CSPF verifies that the protection LSP is up
before tearing down the primary LSP (shown in line 15). By line 18, the new LSP is fully up, and line
19 shows its path (record route) through R2 and then R4, and then to R5.

Line 12 indicates that the ingress router received a PathErr message with an indication that the LSP
was locally repaired by the fast reroute backup LSP. This message triggers a recomputation for the
primary LSP itself, and line 13 reports that the computation succeeded. Line 14 shows that signaling
has been initiated for the make-before-break path. (This path is not up yet.) Line 15 indicates that
the IGP deleted the listed link shown in the TE database, which triggers another path recomputation
(line 16) and the initiation of another make-before-break operation (line 17), which overrides the
previous one that is not yet up. The LSP finally comes up in line 18, with the path (record route)
through R2 and then R4, and then to R5, as shown in lines 19, 20, and 21.

Lines 10 through 17 log the reoptimization of the LSP after fast reroute kicks in. The times shown are
when the operation was recorded by the ingress router. They are not indicative of how long it took to
switch over from the primary LSP to the protection path.

When the link between R3 and R1 breaks, R3 is no longer participating in the LSP:

 aviva@R3> show mpls lsp transit extensive
 Transit LSP: 0 sessions
 Total 0 displayed, Up 0, Down 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This output shows that R3 has no knowledge of being the transit router for any LSPs.

Finally, check the transit router R2:

 aviva@R2> show mpls lsp transit extensive
 Transit LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, LSPstate: Up, ActiveRoute: 1
 LSPname: R1-to-R5, LSPpath: Primary
 Suggested label received: -, Suggested label sent: -
 Recovery label received: -, Recovery label sent: 100320
 Resv style: 1 FF, Label in: 100416, Label out: 100320
 Time left: 158, Since: Wed Oct 12 15:12:01 2005
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Port number: sender 3 receiver 39275 protocol 0
 FastReroute desired
 PATH rcvfrom: 10.1.12.1 (so-0/0/0.0) 109 pkts
 Adspec: received MTU 1500 sent MTU 1500
 PATH sentto: 10.1.26.2 (so-0/0/2.0) 11 pkts
 RESV rcvfrom: 10.1.26.2 (so-0/0/2.0) 10 pkts
 Explct route: 10.1.26.2 10.1.56.1
 Record route: 10.1.12.1 <self> 10.1.26.2 10.1.56.1
 Detour is Up
 Detour Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Detour adspec: received MTU 1500 sent MTU 1500
 Path MTU: received 1500
 Detour PATH sentto: 10.1.24.2 (so-0/0/3.0) 10 pkts
 Detour RESV rcvfrom: 10.1.24.2 (so-0/0/3.0) 7 pkts
 Detour Explct route: 10.1.24.2 10.1.45.2
 Detour Record route: 10.1.12.1 <self> 10.1.24.2 10.1.45.2
 Detour Label out: 100416
 Total 1 displayed, Up 1, Down 0

The Record route line confirms that the LSP has been detoured to R2 and that R2 is now the second
hop in the R1-to-R5 LSP.

See Also

RFC 4090, Fast Reroute Extensions to RSVP-TE for LSP Tunnels

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.13. Automatically Allocating Bandwidth

Problem

You want an automatic way to optimize the amount of bandwidth allocated to each LSP to minimize
or eliminate any contention for the available bandwidth on the shared links.

Solution

MPLS can automatically allocate bandwidth for an LSP and can automatically adjust the allocation as
necessary from time to time. The configuration has two parts. First, MPLS must gather bandwidth
statistics:

 [edit protocols mpls]
 aviva@R1#
set statistics auto-bandwidth
 aviva@R1# set statistics file mpls-bandwidth-stats world-readable

Second, configure the LSP to automatically allocate and adjust the bandwidth for an LSP:

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R5 auto-bandwidth minimum-bandwidth 50m

Discussion

In a network with bandwidth constraints, it can be difficult for RSVP to set up LSPs when insufficient
bandwidth is available. If you choose to allocate LSP bandwidth manually (see Recipe 14.11), it can
be challenging to figure out how much bandwidth to set aside for an individual LSP or for a series of
LSPs so that they are always available to carry your customer's traffic. MPLS autobandwidth is a
JUNOS mechanism that automatically allocates bandwidth for an LSP. It works by monitoring the rate
of traffic flow through an LSP and periodically resizing the allocated bandwidth to match the flow rate.
In effect, autobandwidth adaptively requests bandwidth reservations based on actual LSP usage.

When MPLS resizes the bandwidth, it calculates and sets up a new LSP and sets it up in a make-
before-break fashion, then tears down the old LSP after the new one is established. To avoid double-
counting of resources, the LSP is set up as adaptive. Thus, the new and old LSPs share bandwidth

http://lib.ommolketab.ir
http://lib.ommolketab.ir

over common links. In this process, the LSP might be rerouted. If this happens, all traffic already in
the existing LSP continues to the egress router and any new traffic entering the LSP travels along the
newly established path.

You turn on autobandwidth at the ingress router. No configuration is necessary on the other routers
in the LSP. As a first step, enable MPLS statistics collection (with the set statistics auto-bandwidth
command) and create a logfile to track actual bandwidth usage on the LSP. This recipe creates a file
named mpls-bandwidth-stats.

The second step is to configure autobandwidth on the LSP itself. In this recipe, we set autobandwidth
on the R1-to-R5 LSP, specifying that RSVP always allocates a minimum of 50 Mbps for the LSP.

To verify the autobandwidth configuration, look at the LSP on the ingress router:

 aviva@R1> show mpls lsp detail ingress
 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5
 ActivePath: (primary)
 LoadBalance: Random

Autobandwidth
 MinBW: 50Mbps
 AdjustTimer: 86400 secs
 Max AvgBW util: 0bps, Bandwidth Adjustment in 86368 second(s).
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary State: Up
 SmartOptimizeTimer: 180
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 30)
 10.1.12.2 S 10.1.26.2 S 10.1.56.1 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.12.2 10.1.26.2 10.1.56.1
 Total 1 displayed, Up 1, Down 0

The first highlighted line shows that autobandwidth is operational, and the second line reflects the
configured minimum bandwidth of 50 Mbps. The AdjustTimer line is how often MPLS automatically
recalculates the LSP's bandwidth. Here, the default time is 86,400 seconds (24 hours). Use the
following command to change the interval:

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R5 auto-bandwidth adjust-interval 28800

This configuration changes the recalculation interval to 12 hours.

Next, verify that RSVP has reserved bandwidth for the LSP:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@R1> show rsvp interface
 RSVP interface: 2 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark
 so-0/0/0.0 Up 1 100% 155.52Mbps 155.52Mbps 0bps 0bps
 so-0/0/2.0 Up 1 100% 155.52Mbps 105.52Mbps 50Mbps 80Mbps

RSVP has reserved 50 Mbps for the LSP in interface so-0/0/2.

You might wonder whether the LSP goes down each time RSVP recalculates the bandwidth
requirements. The answer here is no. The whole point of autobandwidth is that the LSP stays up
during the entire process and RSVP makes the bandwidth changes without dropping any traffic
traveling along the LSP. This occurs because RSPV sets up the new LSP before tearing down the
existing onemake-before-break. You can confirm this by forcing RSVP to recompute the allocated
bandwidth:

 aviva@R1> request mpls lsp adjust-autobandwidth

Then examine the history of the LSP:

 aviva@R1> show mpls lsp ingress extensive
 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5
 ActivePath: (primary)
 LoadBalance: Random

Autobandwidth
 MinBW: 50Mbps
 AdjustTimer: 86400 secs
 Max AvgBW util: 0bps,
Bandwidth Adjustment in 86089 second(s).
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary State: Up

Bandwidth: 50Mbps
 SmartOptimizeTimer: 180
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 30)
 10.1.13.2 S 10.1.34.2 S 10.1.45.2 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.34.2 10.1.45.2
 10 Oct 10 13:44:54 Record Route: 10.1.13.2 10.1.34.2 10.1.45.2
 9 Oct 10 13:44:54 Up
 8 Oct 10 13:44:54 Manual Autobw adjustment succeeded
 7 Oct 10 13:44:54 Originate make-before-break call
 6 Oct 10 13:44:54 CSPF: computation result accepted

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 5 Oct 10 13:39:48 Selected as active path
 4 Oct 10 13:39:48 Record Route: 10.1.12.2 10.1.26.2 10.1.56.1
 3 Oct 10 13:39:48 Up
 2 Oct 10 13:39:47 Originate Call
 1 Oct 10 13:39:47 CSPF: computation result accepted
 Created: Mon Oct 10 13:39:47 2005
 Total 1 displayed, Up 1, Down 0

Line 4 of the history shows the initial path calculated for the LSP. Line 7 gives the first indication of
the autobandwidth recalculation triggered by the request mpls lsp adjust-autobandwidth command.
At this point, RSVP starts setting up the new LSP. When it is ready, RSVP then tears down the
existing LSP. Line 8 shows that the autobandwidth adjustment was successful. Line 9 shows that the
new LSP is up, and line 10 shows the new path.

See Also

Recipe 14.11

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.14. Prioritizing LSPs

Problem

You want to give higher priority to the more important LSPs so that they can always be established.

Solution

Configure the more important LSP so that it is more likely to be set up and remain up:

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R5 priority 0 0

Then configure intermediate priority LSPs, those less likely to be set up and remain up:

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R6 priority 1 3
 aviva@R1# set label-switched-path R1-to-R4 priority 4 5

Finally, set up the least important LSP, the one least like to be set up and most likely to be torn down
if there is insufficient bandwidth:

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R5-low priority 7 7

Discussion

When you offer a higher level of service for some customers, you want RSVP to be able to establish
those customers' LSP at all times, even when there might not be enough bandwidth available on
some links because other LSPs are already established. To provide this level of service, you can
prioritize each customer's LSP so that some are more important than others. Then, when RSVP
calculates the path and sets up the LSP, RSVP will always be able to establish the more important
LSPs, even at the cost of tearing down a less important LSP. The relative LSP priorities are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

determined in advance, when RSVP is establishing the LSP, not when traffic is being forwarded. If a
link has insufficient bandwidth, RSVP establishes the more important (higher-priority) LSPs first and
tears down lower-priority LSPs if necessary.

This recipe prioritizes the four LSPs that originate on router R1. To configure an LSP's priority, you
include two values in the priority statement, the setup priority and the hold priority. You express

these two priorities with a number from 0 through 7, where 0 is best and 7 is worst. A setup priority
of 0 means that this LSP can preempt any other LSP whose hold priority is worse than 0. Similarly, a
hold priority of 0 means that once the LSP is set up, it cannot be preempted. A hold priority of 1
means that it can be preempted only by an LSP with a setup priority of 0. The default setup priority is
7, which means that one LSP cannot preempt another. The default hold priority is 0, which means
that another LSP cannot preempt this one.

The four LSPs configured in this recipe have different priorities. The LSP R1-to-R5 is the one being
used for the most important customer. It will always be set up (setup priority of 0) and can never be
preempted (hold priority of 0) when RSVP is setting up another LSP. The other three LSPs, in order
from highest to lowest priority, are R1-to-R6 (setup priority of 1, hold priority of 3), R1-to-R4 (setup
priority of 4, hold priority of 5), and R1-to-R5-low (setup priority of 7, hold priority of 7). The setup
and hold priority values for the different LSP are all evaluated relative to each other.

To understand how preemption works, set up LSPs sequentially and observe how they are
established. First, set up the lowest-priority LSP, R1-to-R5-low:

 [edit protocols mpls]
 aviva@R1# set
label-switched-path R1-to-R5-low to 10.0.0.5
 aviva@R1# set label-switched-path R1-to-R5-low bandwidth 80m
 aviva@R1# set label-switched-path R1-to-R5-low to priority 7 7

Because this is the first and only LSP on the ingress router, you expect RSVP to set it up even though
it has the lowest setup priority. Look at the LSP to check that RSVP has set it up:

 aviva@R7# show mpls lsp
 Ingress LSP: 1 sessions
 To From State Rt ActivePath P LSPname
 10.0.0.5 10.0.0.1 Up 0 * R1-to-R5-low
 Total 1 displayed, Up 1, Down 0

The State column confirms that the LSP is up. Then check that RSVP has reserved the requested
bandwidth for the LSP:

 aviva@R7# show rsvp interface
 RSVP interface: 2 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 so-0/0/0.0 Up 1 100% 155.52Mbps 75.52Mbps 80Mbps 80Mbps
 so-0/0/2.0 Up 0 100% 155.52Mbps 155.52Mbps 0bps 100Mbps

You see that RSVP has reserved 80 Mbps on the so-0/0/0 interface for this LSP. Finally, look at the
details about the LSP:

 aviva@R7# show mpls lsp ingress extensive
 Ingress LSP: 1 sessions
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5-low
 ActivePath: (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary State: Up
 Priorities: 7 7
 Bandwidth: 80Mbps
 SmartOptimizeTimer: 180
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 30)
 10.1.12.2 S 10.1.26.2 S 10.1.56.1 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.12.2 10.1.26.2 10.1.56.1
 10 Oct 14 10:39:39 Record Route: 10.1.12.2 10.1.26.2 10.1.56.1
 9 Oct 14 10:39:39 Up
 8 Oct 14 10:39:39 Originate Call
 …
 Created: Fri Oct 14 10:35:55 2005
 Total 1 displayed, Up 1, Down 0

This output confirms that the LSP is up and shows the configured priority values and bandwidth
request.

Next, configure the higher-priority LSP R1-to-R4:

 [edit protocols mpls]
 aviva@R1# set
label-switched-path R1-to-R4 to 10.0.0.4
 aviva@R1# set label-switched-path R1-to-R4 to priority 4 4
 aviva@R1# set label-switched-path R1-to-R4 bandwidth 90m

Check that the second LSP is set up:

 aviva@R7# show mpls lsp ingress
 Ingress LSP: 2 sessions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 To From State Rt ActivePath P LSPname
 10.0.0.4 10.0.0.1 Up 0 * R1-to-R4
 10.0.0.5 10.0.0.1 Up 0 * R1-to-R5-low
 Total 2 displayed, Up 2, Down 0

This output confirms that RSVP was able to establish both LSPs. Then, look at the bandwidth
reservations:

 aviva@R7# show rsvp interface
 RSVP interface: 2 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark
 so-0/0/0.0 Up 1 100% 155.52Mbps 75.52Mbps 80Mbps 80Mbps
 so-0/0/2.0 Up 1 100% 155.52Mbps 65.52Mbps 90Mbps 100Mbps

You see here that RSVP has reserved 90 Mbps for LSP R1-to-R4 on the so-0/0/2 interface and has
left the previously established reservation for LSP R1-to-R5-low of 80 Mbps on unchanged. The two
SONET interfaces on the router have sufficient bandwidth for both LSPs, so RSVP can create both
without preempting one of them. Check the details of the two LSPs to see the paths that RSVP has
established for them:

 aviva@R7# show mpls lsp ingress extensive
 Ingress LSP: 2 sessions
 10.0.0.4
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R4
 ActivePath: (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary State: Up
 Priorities: 4 4
 Bandwidth: 90Mbps
 SmartOptimizeTimer: 180
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 20)
 10.1.13.2 S 10.1.34.2 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.34.2
 5 Oct 14 10:43:13 Selected as active path
 4 Oct 14 10:43:13 Record Route: 10.1.13.2 10.1.34.2
 3 Oct 14 10:43:13 Up
 2 Oct 14 10:43:13 Originate Call
 1 Oct 14 10:43:13 CSPF: computation result accepted
 Created: Fri Oct 14 10:43:12 2005
 10.0.0.5
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R5-low
 ActivePath: (primary)
 LoadBalance: Random

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary State: Up
 Priorities: 7 7
 Bandwidth: 80Mbps
 SmartOptimizeTimer: 180
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 30)
 10.1.12.2 S 10.1.26.2 S 10.1.56.1 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.12.2 10.1.26.2 10.1.56.1
 10 Oct 14 10:39:39 Record Route: 10.1.12.2 10.1.26.2 10.1.56.1
 9 Oct 14 10:39:39 Up
 8 Oct 14 10:39:39 Originate Call
 Created: Fri Oct 14 10:35:55 2005
 Total 2 displayed, Up 2, Down 0

The record route objects in this output confirm that RSVP has directed the LSP R1-to-R5-low to R2

(12.1.12.2), over the so-0/0/0 interface, and has set up LSP R1-to-R4 to R3 (12.1.13.2), over so-
0/0/2.

Finally, configure an even higher-priority LSP on the ingress router, R1-to-R6:

 [edit protocols mpls]
 aviva@R1# set label-switched-path R1-to-R6 to 10.0.0.6
 aviva@R1# set label-switched-path R1-to-R6 to priority 2 2
 aviva@R1# set label-switched-path R1-to-R6 bandwidth 90m

You are requesting 90 Mbps for this LSP, in addition to the 80 Mbps for LSP R1-to-R5-low and 90
Mbps for LSP R1-to-R4. At this point, not enough bandwidth is available on the router, because each
of the two SONET interfaces can carry only 155.52 Mbps. To see how RSVP handles this, first look at
the status of the LSPs on the ingress router:

 aviva@R7# show mpls lsp ingress
 Ingress LSP: 3 sessions
 To From State Rt ActivePath P LSPname
 10.0.0.4 10.0.0.1 Up 0 * R1-to-R4
 10.0.0.5 10.0.0.1 Dn 0 - R1-to-R5-low
 10.0.0.6 10.0.0.1 Up 1 * R1-to-R6
 Total 3 displayed, Up 2, Down 1

You see that while MPLS has created three LSPs, RSVP has established only two of them, R1-to-R4
and R1-to-R6. The LSP R1-to-R5-low is down. Check how RSVP has reserved bandwidth for the two
LSPs:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@R7# show rsvp interface
 RSVP interface: 2 active
 Active Subscr- Static Available Reserved Highwater
 Interface State resv iption BW BW BW mark
 so-0/0/0.0 Up 1 100% 155.52Mbps 65.52Mbps 90Mbps 90Mbps
 so-0/0/2.0 Up 1 100% 155.52Mbps 65.52Mbps 90Mbps 100Mbps

Use the show mpls lsp ingress extensive command to look at the LSPs on the ingress router to see
what has happened. First, look at LSP R1-to-R6, which has the highest priority of the three LSPs:

 aviva@R7# show mpls lsp ingress extensive
 Ingress LSP: 3 sessions
 …
 10.0.0.6
 From: 10.0.0.1, State: Up, ActiveRoute: 1, LSPname: R1-to-R6
 ActivePath: (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary State: Up
 Priorities: 2 2
 Bandwidth: 90Mbps
 SmartOptimizeTimer: 180
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 20)
 10.1.13.2 S 10.1.36.2 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.13.2 10.1.36.2
 5 Oct 14 10:51:20 Selected as active path
 4 Oct 14 10:51:20 Record Route: 10.1.13.2 10.1.36.2
 3 Oct 14 10:51:20 Up
 2 Oct 14 10:51:20 Originate Call
 1 Oct 14 10:51:20 CSPF: computation result accepted
 Created: Fri Oct 14 10:51:20 2005
 Total 3 displayed, Up 2, Down 1

RSVP has set up this LSP with the requested bandwidth of 90 Mbps, routing it through 10.1.13.2
(R3) on interface so-0/0/2. Next, look at the medium-priority LSP, R1-to-R4:

 aviva@R7# show mpls lsp ingress extensive
 Ingress LSP: 3 sessions
 …
 10.0.0.4
 From: 10.0.0.1, State: Up, ActiveRoute: 0, LSPname: R1-to-R4
 ActivePath: (primary)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 *Primary State: Up

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Priorities: 4 4
 Bandwidth: 90Mbps
 SmartOptimizeTimer: 180
 Computed ERO (S [L] denotes strict [loose] hops): (CSPF metric: 20)
 10.1.12.2 S 10.1.24.2 S
 Received RRO (ProtectionFlag 1=Available 2=InUse 4=B/W 8=Node 10=SoftPreempt):
 10.1.12.2 10.1.24.2
 15 Oct 14 10:51:20 Selected as active path
 14 Oct 14 10:51:20 Record Route: 10.1.12.2 10.1.24.2
 13 Oct 14 10:51:20 Up
 12 Oct 14 10:51:20 Originate Call
 11 Oct 14 10:51:20 Clear Call
 10 Oct 14 10:51:20 CSPF: computation result accepted
 9 Oct 14 10:51:20 Deselected as active
 8 Oct 14 10:51:20 Requested bandwidth unavailable
 7 Oct 14 10:51:20 Session preempted
 6 Oct 14 10:51:20 Down
 5 Oct 14 10:43:13 Selected as active path
 4 Oct 14 10:43:13 Record Route: 10.1.13.2 10.1.34.24
 3 Oct 14 10:43:13 Up
 2 Oct 14 10:43:13 Originate Call
 1 Oct 14 10:43:13 CSPF: computation result accepted
 Created: Fri Oct 14 10:43:12 2005
 …
 Total 3 displayed, Up 2, Down 1

Line 4 of the LSP history shows the original route of the LSP, through 10.1.13.2 (out of interface so-
0/0/2). When you configure the higher-priority R1-to-R6 LSP, RSVP preempted LSP R1-to-R4 because
of insufficient bandwidth (shown in lines 7 and 8 of this history). However, the LSP was reestablished
later (reflected in lines 13 and 14), when RSVP determined it could route the LSP through 10.1.12.2,
out of interface so-0/0/0.

Finally, look at the lowest-priority LSP, R1-to-R5-low, which is now down:

 aviva@R7# show mpls lsp ingress extensive
 Ingress LSP: 3 sessions
 …
 10.0.0.5
 From: 10.0.0.1, State: Dn, ActiveRoute: 0, LSPname: R1-to-R5-low
 ActivePath: (none)
 LoadBalance: Random
 Encoding type: Packet, Switching type: Packet, GPID: IPv4
 Primary State: Dn
 Priorities: 7 7
 Bandwidth: 80Mbps
 SmartOptimizeTimer: 180
 Will be enqueued for recomputation in 24 second(s).
 16 Oct 14 10:52:18 CSPF failed: no route toward 10.0.0.5[3 times]
 15 Oct 14 10:51:20 Clear Call

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 14 Oct 14 10:51:20 Deselected as active
 13 Oct 14 10:51:20 Requested bandwidth unavailable
 12 Oct 14 10:51:20 Session preempted
 11 Oct 14 10:51:20 Down
 10 Oct 14 10:39:39 Record Route: 10.1.12.2 10.1.26.2 10.1.56.1
 9 Oct 14 10:39:39 Up
 8 Oct 14 10:39:39 Originate Call
 Created: Fri Oct 14 10:35:55 2005
 …
 Total 3 displayed, Up 2, Down 1

Lines 12 and 13 show that the LSP was preempted by a higher-priority one because not enough
bandwidth was available for all the LSPs. Line 16 indicates that CSPF made three attempts to
calculate a path for the LSP but was unable to compute one, which means that RSVP could not
establish the LSP.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.15. Allowing IGP Traffic to Use an LSP

Problem

You want to configure IS-IS and OSPF so they can also use the LSPs on the ingress router.

Solution

Configure OSPF and IS-IS so that the LSP is advertised into the IGP. For OSPF, configure the area
with the following command:

 [edit protocols ospf area 0.0.0.0]
 aviva@R1# set
label-switched-path R1-to-R6

The configuration for IS-IS is similar:

 [edit protocols isis]
 aviva@R1# set label-switched-path R1-to-R6

Discussion

One of the main reasons that you configure LSPs on your network is to control the shortest path
between two points on the network. If enough bandwidth is available on the LSP, you might also
want to have your IGP traffic routed along the LSP instead of having it use the default best-effort
routing. To configure this, set up OSPF and IS-IS so that the LSP is advertised into the IGP. For
OSPF, use the set label-switched-path command for each OSPF area, and for IS-IS, use this
command at the top of the IS-IS configuration. In this recipe, R1-to-R6 is the name of the LSP
configured on the ingress router R1. Because only the ingress router is aware of the LSP and because
this is the only router that can place packets into the LSP tunnel, you can configure this only on the
ingress router.

Let's look at the effect of this configuration. Before configuring OSPF to use the LSP, check which
routes have been learned from OSPF:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@R1> show route protocol ospf
 inet.0: 14 destinations, 18 routes (14 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.3/32 *[OSPF/10] 00:00:07, metric 1
 > via so-0/0/2.0
 10.0.0.6/32 *[OSPF/10] 00:00:07, metric 2
 > via so-0/0/2.0
 10.1.13.0/30 [OSPF/10] 00:00:07, metric 1
 > via so-0/0/2.0
 10.1.36.0/30 *[OSPF/10] 00:00:07, metric 2
 > via so-0/0/2.0
 224.0.0.5/32 *[OSPF/10] 01:56:46, metric 1
 MultiRecv

The router knows how to reach its immediate neighbor R3 (router ID of 10.0.0.3/32 and subnet of
10.1.31.0/30) and the next downstream neighbor, R6 (router ID of 10.0.0.6/32 and subnet of
10.1.36.0/30). R1 has one OSPF neighbor, 10.1.13.2, which is the immediately adjacent router:

 aviva@R1> show ospf neighbor
 Address Interface State ID Pri Dead
 10.1.13.2 so-0/0/2.0 Full 10.0.0.3 128 35

After you advertise the LSP into OSPF, check the neighbors again:

 aviva@R1> show ospf neighbor
 Address Interface State ID Pri Dead
 10.0.0.6 R1-to-R6 Full 10.0.0.6 0 0
 10.1.13.2 so-0/0/2.0 Full 10.0.0.3 128 36

The output shows that R1 now has a second neighbor, 10.0.0.6, which is R6, that is reachable not
over a physical interface but rather over the LSP.

Looking at the routing table shows a route to 10.0.0.6/32 that uses the LSP:

 aviva@R1> show route table inet.0 protocol ospf
 inet.0: 14 destinations, 18 routes (14 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.3/32 *[OSPF/10] 00:01:50, metric 1
 > via so-0/0/2.0
 10.0.0.6/32 *[OSPF/10] 00:01:50, metric 1
 > via so-0/0/2.0,
label-switched-path R1-to-R6
 10.1.13.0/30 [OSPF/10] 00:01:50, metric 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 > via so-0/0/2.0
 10.1.36.0/30 *[OSPF/10] 00:01:50, metric 2
 > via so-0/0/2.0
 224.0.0.5/32 *[OSPF/10] 02:00:33, metric 1
 MultiRecv

You verify the IS-IS configuration in the same way, checking the IS-IS interfaces and adjacencies to
confirm that IS-IS is aware of the LSP:

 aviva@R1> show isis interface
 IS-IS interface database:
 Interface L CirID Level 1 DR Level 2 DR L1/L2 Metric
 R1-to-R6 2 0x1 Disabled Point to Point 10/10
 lo0.0 0 0x1 Passive Passive 0/0
 so-0/0/2.0 2 0x1 Disabled Point to Point 10/10

 aviva@R1> show isis adjacency
 Interface System L State Hold (secs) SNPA
 R1-to-R6 R6 0 One-way 0
 so-0/0/2.0 R3 2 Up 18

Both outputs show that IS-IS treats the LSP as an IS-IS interface and considers it an adjacency.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.16. Installing LSPs into the Unicast Routing
Table

Problem

You want to install the routes from the label forwarding table, inet.3, into the unicast routing table,
inet.0, so that applications such as ping can use LSPs.

Solution

Configure MPLS to install the LSP routes into the inet.0 unicast routing table:

 [edit protocols mpls]
 aviva@R1# set traffic-engineering bgp-igp

Discussion

One of the main reasons that you configure LSPs on your network is to control the shortest path
between two points on the network. By default, the JUNOS MPLS software stores the LSP routes in
the inet.3 routing table, which can be used by MPLS and BGP. Applications such as ping and
traceroute, which use the routes in the inet.0 table, cannot take advantage of the LSP routes.

You can confirm the default behavior by looking at the two routing tables. One LSP is configured on
router R1, and the inet.3 table contains the RSVP route for that LSP:

 aviva@R1> show route table inet.3
 inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.6/32 *[RSVP/7] 00:00:07, metric 2
 > via so-0/0/2.0,
label-switched-path R1-to-R6

The inet.0 routing table contains the expected unicast routes from IS-IS, OSPF, and BGP:

 aviva@R1> show route table inet.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 inet.0: 14 destinations, 18 routes (14 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 5w0d 05:51:43
 Discard
 10.0.0.1/32 *[Direct/0] 5w0d 05:51:43
 > via lo0.0
 10.0.0.3/32 *[OSPF/10] 00:00:14, metric 1
 > via so-0/0/2.0
 [IS-IS/18] 00:00:14, metric 10
 > to 10.1.13.2 via so-0/0/2.0
 10.0.0.6/32 *[OSPF/10] 00:00:14, metric 2
 > via so-0/0/2.0
 [IS-IS/18] 00:00:14, metric 20
 > to 10.1.13.2 via so-0/0/2.0
 10.1.13.0/30 *[Direct/0] 00:16:20
 > via so-0/0/2.0
 [OSPF/10] 00:00:14, metric 1
 > via so-0/0/2.0
 10.1.13.1/32 *[Local/0] 2d 20:39:51
 Local via so-0/0/2.0
 10.1.36.0/30 *[OSPF/10] 00:00:14, metric 2
 > via so-0/0/2.0
 [IS-IS/18] 00:00:14, metric 20
 > to 10.1.13.2 via so-0/0/2.0
 100.100.6.0/24 *[BGP/170] 00:15:37, localpref 100, from 10.0.0.6
 AS path: I
 > via so-0/0/2.0,
label-switched-path R1-to-R6
 192.168.0.0/16 *[Static/5] 4d 16:57:10
 > to 192.168.71.254 via fxp0.0
 192.168.64.0/21 *[Direct/0] 4d 16:57:10
 > via fxp0.0
 192.168.70.143/32 *[Local/0] 5w0d 05:51:43
 Local via fxp0.0
 224.0.0.5/32 *[OSPF/10] 5w0d 05:51:44, metric 1
 MultiRecv

This recipe configures the router to install the routes from the inet.3 routing table into the inet.0
unicast routing table so they are accessible to ping and traceroute. Simply use the set traffic-
engineering bgp-igp command to modify where the routes are installed. To check the effect, first
look at the inet.3 routing table:

 aviva@R1> show route table inet.3
 aviva@R1>

This command shows that this routing table is empty. Then look at the unicast routing table:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@R1> show route table inet.0
 inet.0: 14 destinations, 19 routes (14 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 5w0d 05:53:28
 Discard
 10.0.0.1/32 *[Direct/0] 5w0d 05:53:28
 > via lo0.0
 10.0.0.3/32 *[OSPF/10] 00:00:05, metric 1
 > via so-0/0/2.0
 [IS-IS/18] 00:00:05, metric 10
 > to 10.1.13.2 via so-0/0/2.0
 10.0.0.6/32 *[RSVP/7] 00:00:05, metric 2
 > via so-0/0/2.0, label-switched-path R1-to-R6
 [OSPF/10] 00:00:05, metric 2
 > via so-0/0/2.0
 [IS-IS/18] 00:00:05, metric 20
 > to 10.1.13.2 via so-0/0/2.0
 10.1.13.0/30 *[Direct/0] 00:18:05
 > via so-0/0/2.0
 [OSPF/10] 00:00:05, metric 1
 > via so-0/0/2.0
 10.1.13.1/32 *[Local/0] 2d 20:41:36
 Local via so-0/0/2.0
 10.1.36.0/30 *[OSPF/10] 00:00:05, metric 2
 > via so-0/0/2.0
 [IS-IS/18] 00:00:05, metric 20
 > to 10.1.13.2 via so-0/0/2.0
 100.100.6.0/24 *[BGP/170] 00:17:22, localpref 100, from 10.0.0.6
 AS path: I
 > via so-0/0/2.0,
label-switched-path R1-to-R6
 192.168.0.0/16 *[Static/5] 4d 16:58:55
 > to 192.168.71.254 via fxp0.0
 192.168.64.0/21 *[Direct/0] 4d 16:58:55
 > via fxp0.0
 192.168.70.143/32 *[Local/0] 5w0d 05:53:28
 Local via fxp0.0
 224.0.0.5/32 *[OSPF/10] 5w0d 05:53:29, metric 1
 MultiRecv

The LSP route to 10.0.0.6, which is learned from RSVP and had been in the inet.3 routing table, is
now installed in the inet.0 table.

See Also

Recipe 8.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 14.17. Tracing RSVP Operations

Problem

You want to keep a running log of RSVP events that occur on the router in case any problems arise
and you need to debug problems with RSVP or your LSPs.

Solution

When performing ongoing monitoring of RSVP operations, set up tracing options to track RSVP events
that occur on the router:

 [edit protocols rsvp]
 aviva@R1# set traceoptions file rsvp-trace-log world-readable
 aviva@R1# set traceoptions flag packets detail

Discussion

It's a good practice to trace high-level RSVP operations on an ongoing basis so that if a problem
occurs, you can examine the logs as part of your troubleshooting process. Then you can enable more
detailed traceoptions flags to help pinpoint the causes.

This recipe sets up tracing of RSVP packets that are sent and received by the router, saving them to
the file rsvp-trace-log. The world-readable option allows anyone logged in to the router to read the
file. This file is created on the router's hard disk in the directories /var/log (on M-series and T-series
routers) and /cf/var/log (on J-series routers). The detail option provides additional information
about the packets. Here's what the file contains when existing RSVP sessions are cleared and then
restarted:

 aviva@R1> clear log
rsvp-trace-log
 aviva@R1> clear rsvp sessions
 aviva@R1> show log rsvp-trace-log
 Nov 4 16:47:41 R1 clear-log[22684]: logfile cleared
 Nov 4 16:47:47 RSVP send PathErr 10.1.13.1->10.1.13.2 Len=188 so-0/0/2.0
 Nov 4 16:47:47 Integty Len 36 flag 0x0 key 0x0000010d010a seq 0x2c016c435db8
 0b00 digest 0x53682741 0x68419a28 0x340b7b1d 0x8bdc0112

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Nov 4 16:47:47 Session7 Len 16 10.0.0.1(port/tunnel ID 51620 Ext-ID 10.0.0.6)
 Proto 0
 Nov 4 16:47:47 Error Len 12 Session preempted flag 0 by 10.1.13.1
 Nov 4 16:47:47 Sender7 Len 12 10.0.0.6(port/lsp ID 1)
 Nov 4 16:47:47 Tspec Len 36 rate 0bps size 0bps peak Infbps m 20 M 1500
 Nov 4 16:47:47 ADspec Len 48 MTU 1500
 Nov 4 16:47:47 RecRoute Len 20 10.1.13.2 10.1.36.2
 Nov 4 16:47:47 RSVP send ResvTear 10.1.13.1->10.1.13.2 Len=92 so-0/0/2.0
 Nov 4 16:47:47 Integty Len 36 flag 0x0 key 0x0000010d010a seq 0x33016c434b6b
 0200 digest 0x3c6b90bf 0x3d4bc125 0x5cb3da5d 0x42518ffc
 Nov 4 16:47:47 Session7 Len 16 10.0.0.1(port/tunnel ID 51620 Ext-ID 10.0.0.6)
 Proto 0
 Nov 4 16:47:47 Hop Len 12 10.1.13.1/0x0869a660
 Nov 4 16:47:47 Style Len 8 FF
 Nov 4 16:47:47 Filter7 Len 12 10.0.0.6(port/lsp ID 1)
 Nov 4 16:47:47 RSVP send PathTear 10.0.0.1->10.0.0.6 Len=120 so-0/0/2.0
 Nov 4 16:47:47 Integty Len 36 flag 0x0 key 0x0000010d010a seq 0x33016c43456d
 0200 digest 0x582dab2c 0x3801d98c 0x7dbf2854 0x8f8ea32e
 Nov 4 16:47:47 Session7 Len 16 10.0.0.6(port/tunnel ID 39357 Ext-ID 10.0.0.1)
 Proto 0
 Nov 4 16:47:47 Hop Len 12 10.1.13.1/0x086dd770
 Nov 4 16:47:47 Sender7 Len 12 10.0.0.1(port/lsp ID 2)
 Nov 4 16:47:47 Tspec Len 36 rate 0bps size 0bps peak Infbps m 20 M 1500
 Nov 4 16:47:47 RSVP recv Path 10.0.0.6->10.0.0.1 Len=244 so-0/0/2.0
 Nov 4 16:47:47 Integty Len 36 flag 0x0 key 0x0000020d010a seq 0xbbfe6b43793e
 0800 digest 0x1a36b6f1 0xf3d0cd4d 0x0c3ffc31 0x6f587cf9
 Nov 4 16:47:47 Session7 Len 16 10.0.0.1(port/tunnel ID 51620 Ext-ID 10.0.0.6)
 Proto 0
 Nov 4 16:47:47 Hop Len 12 10.1.13.2/0x0869a660
 Nov 4 16:47:47 Time Len 8 30000 ms
 Nov 4 16:47:47 SrcRoute Len 12 10.1.13.1 S
 Nov 4 16:47:47 LabelRequest Len 8 EtherType 0x800
 Nov 4 16:47:47 Properties Len 12 Primary path
 Nov 4 16:47:47 SessionAttribute Len 16 Prio (7,0) flag 0x0 "R6-to-R1"
 Nov 4 16:47:47 Sender7 Len 12 10.0.0.6(port/lsp ID 1)
 Nov 4 16:47:47 Tspec Len 36 rate 0bps size 0bps peak Infbps m 20 M 1500
 Nov 4 16:47:47 ADspec Len 48 MTU 1500
 Nov 4 16:47:47 RecRoute Len 20 10.1.13.2 10.1.36.2
 Nov 4 16:47:47 RSVP send Resv 10.1.13.1->10.1.13.2 Len=156 so-0/0/2.0
 Nov 4 16:47:47 Integty Len 36 flag 0x0 key 0x0000010d010a seq 0x33016c43e07d
 0200 digest 0x976571f8 0x06983f40 0x7a9bb90d 0xfdf51c42
 Nov 4 16:47:47 Session7 Len 16 10.0.0.1(port/tunnel ID 51620 Ext-ID 10.0.0.6)
 Proto 0
 Nov 4 16:47:47 Hop Len 12 10.1.13.1/0x0869a660
 Nov 4 16:47:47 Time Len 8 30000 ms
 Nov 4 16:47:47 Style Len 8 FF
 Nov 4 16:47:47 Flow Len 36 rate 0bps size 0bps peak Infbps m 20 M 1500
 Nov 4 16:47:47 Filter7 Len 12 10.0.0.6(port/lsp ID 1)
 Nov 4 16:47:47 Label Len 8 3
 Nov 4 16:47:47 RecRoute Len 12 10.1.13.1
 Nov 4 16:47:49
RSVP recv Hello New 10.1.13.2->10.1.13.1 Len=68 so-0/0/2.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Nov 4 16:47:49 Integty Len 36 flag 0x0 key 0x0000020d010a seq 0xbbfe6b43793e
 0800 digest 0x0a523b8a 0x89b1162e 0x18a9feab 0x901053f2
 Nov 4 16:47:49 HelloReq Len 12
 Nov 4 16:47:49 RestartCap Len 12 restart time 0, recovery time 0
 Nov 4 16:47:49
RSVP send Hello New 10.1.13.1->10.1.13.2 Len=68 so-0/0/2.0
 Nov 4 16:47:49 Integty Len 36 flag 0x0 key 0x0000010d010a seq 0x35016c43dd51
 0c00 digest 0xfc4c9304 0xe69e24ee 0xd219ef33 0x6a5f31e5
 Nov 4 16:47:49 HelloRply Len 12
 Nov 4 16:47:49 RestartCap Len 12 restart time 0, recovery time 0

The first RSVP packet sent is a PathErr, which indicates that some type of error has occurred on the
LSP. When RSVP clears the sessions, it sends two PathTear messages to tear down the session, one
message to the interface link between 10.1.13.1 and 10.1.13.2, and the second message to the link
between the loopback addresses of the ingress router (10.0.0.1) and the egress router (10.0.0.6).
As RSVP re-establishes the LSP, it exchanges Path and Resv messages. Once the RSVP session is set
up again, RSVP exchanges periodic Hello messages. The information logged for the RSVP Path
packets is similar to the show rsvp session detail command output:

 aviva@R1> show rsvp session detail
 Ingress RSVP: 1 sessions
 10.0.0.6
 From: 10.0.0.1, LSPstate: Up, ActiveRoute: 1
 LSPname: R1-to-R6, LSPpath: Primary
 Suggested label received: -, Suggested label sent: -
 Recovery label received: -, Recovery label sent: 100128
 Resv style: 1 FF, Label in: -, Label out: 100128
 Time left: -, Since: Fri Nov 4 16:52:15 2005
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Port number: sender 4 receiver 39357 protocol 0
 PATH rcvfrom: localclient
 Adspec: sent MTU 1500
 Path MTU: received 1500
 PATH sentto: 10.1.13.2 (so-0/0/2.0) 4 pkts
 RESV rcvfrom: 10.1.13.2 (so-0/0/2.0) 4 pkts
 Explct route: 10.1.13.2 10.1.36.2
 Record route: <self> 10.1.13.2 10.1.36.2
 Total 1 displayed, Up 1, Down 0

 Egress RSVP: 1 sessions
 10.0.0.1
 From: 10.0.0.6, LSPstate: Up, ActiveRoute: 0
 LSPname: R6-to-R1, LSPpath: Primary
 Suggested label received: -, Suggested label sent: -
 Recovery label received: -, Recovery label sent: -
 Resv style: 1 FF, Label in: 3, Label out: -
 Time left: 146, Since: Fri Nov 4 16:51:45 2005
 Tspec: rate 0bps size 0bps peak Infbps m 20 M 1500
 Port number: sender 1 receiver 51620 protocol 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PATH rcvfrom: 10.1.13.2 (so-0/0/2.0) 5 pkts
 Adspec: received MTU 1500
 PATH sentto: localclient
 RESV rcvfrom: localclient
 Record route: 10.1.36.2 10.1.13.2 <self>
 Total 1 displayed, Up 1, Down 0

 Transit RSVP: 0 sessions
 Total 0 displayed, Up 0, Down 0

The configuration in this recipe creates 10 logfiles (the default) and uses the default trace file size of
10 MB, which is generally a useful size for logging events over a long period of time. If the router is
the ingress or egress point for a large number of LSPs, you might want to increase the file size so
that you have time to review or archive the logfiles before the files start overwriting each other:

 [edit protocols rsvp]
 aviva@RouterF# set traceoptions file size 100M

When debugging BGP, you can set one or more of the following trace flags to monitor BGP
information:

 [edit protocols rsvp]
 aviva@R1# set traceoptions flag ?
 Possible completions:
 all Trace everything
 error Trace error conditions
 event Trace RSVP related events
 lmp Trace RSVP-LMP related interactions
 packets Trace all RSVP packets
 path Trace RSVP path messages
 pathtear Trace RSVP PathTear messages
 resv Trace RSVP Resv messages
 resvtear Trace RSVP ResvTear messages
 route Trace routing information
 state Trace state transitions

If you are receiving signaling errors when setting up or running RSVP, use the flag error flag to log
erroneous conditions.

See Also

Recipe 5.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 15. VPNs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

Customers want their internal networks to function as a single network so all employees can
communicate and access corporate services regardless of location. Network service providers can
create private networks that join all a customer's sites into a single network. These sites can be
connected with point-to-point links, including leased lines, Frame Relay circuits, ATM circuits, and
GRE tunnels that allow customer routers to peer with each other. This model of overlaying a private
network on top of the public Internet leaves the network provider with the responsibility of designing
and operating virtual backbones for all their customers. This solution presents several problems.
Scaling issues will arise because a network provider must support more customers and more virtual
backbones for an ever-increasing number of customers. When a customer adds a new site, the
network provider will need to reconfigure all the existing sites and, as the number of sites grows,
maintaining the private network will become more complex.

One solution to the scaling issues associated with private networks are BGP-MPLS VPNs, defined in
RFC 2547bis and sometimes called Layer 3 VPNs because of the BGP component. Layer 3 VPNs can
support thousands of VPNs with hundreds of sites per VPN and can support overlapping address
space. BGP-MPLS VPNs set up private networks that run over the shared infrastructure of the
Internet. As with private networks, VPNs interconnect geographically separate sites. They provide the
same privacy and guarantees as private networks.

All Layer 3 VPN setup and maintenance is done by the network service provider on routers within its
administrative domain. All that is required from the customer's point of view is to have normal
connections to the service provider's routers from each customer site.

The discussion of Layer 3 VPNs involves three kinds of routers:

Provider edge (PE) routers

Are located in the service provider's network and connect the service provider to a customer.
Within a VPN, pairs of PE routers are connected using a tunnel (created by MPLS, either with an
RSVP-signaled LSP or an LDP tunnel). Each PE router maintains routes only for the VPNs it is
connected to, storing routes for each VPN in separate routing tables to guarantee privacy
within the VPN. All the VPN configuration is done on the PE routers connected to that VPN.

Customer edge (CE) routers

Are located in the customer's network and peer with PE routers, not with other CE routers. The
CE routers just need a standard connection to the PE routers. They require no special
configuration to participate in the VPN.

Provider (P) routers

Are within the core of the provider's network and are part of the tunnel between pairs of PE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

routers. They are not connected to any routers at a customer site. Provider routers run MPLS
but know nothing about the VPNs.

Layer 3 VPNs use BGP extended community attributes to distribute routes within a VPN:

Target VPN (also called the route target or VRF target)

Identifies a set of sites within a VPN to which a PE router distributes routes. The target VPN
determines the VPN to which a route belongs.

Site of origin

Uniquely identifies the set of routes that a PE router learns from a particular site. This attribute
prevents looping, ensuring that a route is not distributed back to its origin through a different
PE-CE connection.

VPN-IPv4 Addresses

Because VPNs connect private networks, addresses within the VPN might overlap. A common case is
when two companies merge and then connect using a VPN. BGP-MPLS VPNs create unambiguous
VPN- IPv4 addresses by prefixing a route distinguisher, which is a value that identifies the VPN to the
private IPv4 address. As an example, for an IPv4 address of 10.0.31.0/24 and a route distinguisher
of 65500:3, the VPN-IPv4 address is 65500:3:10.0.31.0/24. The VPN-IPv4 address is in the BGP VPN-
IPv4 address family, which has been added as an extension to BGP (defined in RFC 2283). Only PE
routers process VPN-IPv4 addresses, and these addresses are used only within the provider's
network.

PE routers convert IPv4 routes received from devices in a VPN into VPN-IPv4 routes and then mark
them with the VRF target, which is a BGP extended community attribute that identifies the VPN to
which the route belongs. BGP running on the PE routers advertises the VPN-IPv4 routes to other PE
routers. The receiving PE routers filter incoming VPN-IPv4 routes based on the extended community
attribute to determine the VPN to which they belong. These routers then remove the route
distinguisher and announce the IPv4 routes to their CE routers.

The route distinguisher is eight bytes and has three fields:

Type field (two bytes)

Determines the length of the other two fields. If it is 0, the administrator (Adm) field is four
bytes and the assigned number (AN) field is two bytes. If the Type field is 1, the Adm field is
two bytes and the AN field is four bytes.

Adm field

Identifies an assigned number authority. When the Type field is 0, the administrator field

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contains an IPv4 address, generally the router's IP address, which is a nonprivate address.
When the Type file is 1, the Adm field contains an AS number, generally the IANA-assigned
number.

AN field

Number assigned by the service provider. For a Type field value of 0, the assigned number field
is two bytes. For a Type field value of 1, the assigned number field is four bytes.

The VPN-IPv4 addresses are used by the routing protocols but do not appear in the IP packet
headers, so they cannot be used for forwarding packets between PE routers. Layer 3 VPNs use MPLS
as the forwarding mechanism. Each PE-CE interface is identified by a label, which is then distributed
by BGP along with the VPN-IPv4 address. (Labels are assigned by interface, not by VPN, so if two CE
routers in the same VPN are connected to same PE router, BGP will assign two different labels.) The
result is that the VPN traffic carries two labels, the VPN label and the LSP label. The local PE router
pops the VPN label and then uses the LSP label to forward traffic to the remote PE router, and the
remote PE router uses the VPN label to determine the CE router to which it will forward the traffic.

Routing Tables for VPNs

JUNOS PE routers use some of the standard routing tables and create several routing tables just for
VPNs.

Each PE router creates a bgp.l3vpn.0 routing table to resolve the VPN-IPv4 routes received from the
MPLS tunnels that connect the PE routers. The PE router consults the inet.3 table of MPLS labels to
resolve the route and converts it into an IPv4 prefix. The PE router filters the route against each
VPN's import policy and distributes the prefix into the VPN's VPN routing and forwarding (VRF) table if
the import filter passes.

Each PE router also creates a routing table for each VPN, called a VRF table and named routing-
instance-inet.0 (you configure each VPN in a separate routing instance). The VRF contains the VPN's

routes, which are the unicast IPv4 routes received from directly connected CE routers, any configured
static routes in the VPN, and routes announced by a remote PE router that match the VRF import
policy for that VPN. Customer sites can access only the routes in their VPN's VRF. Maintaining the
VRF separate from the standard inet.0 and inet.3 routing tables prevents a VPN's private routes
from mixing with public (Internet) routes or with routes from other VPNs.

Each VPN has a policy that associates the VPN's VRF target or target community with each route
before advertising the route and that filters which routes to advertise. A VPN label is distributed with
each route, independently of the bgp.l3vpn.0 table. VPN routes are directly advertised to other PE
routers; they are not distributed from the VRF table into the bgp.l3vpn.0 table.

The best routes from each VRF table are placed into a forwarding table in the router's Packet
Forwarding Engine (PFE). This forwarding table is associated only with the VPN and is separate from
the forwarding tables populated by the inet.0 and inet.3 routing tables.

The PE routers also maintain inet.0 and inet.3 routing tables for use with regular and VPN routing.
inet.0 contains the usual intradomain routes (non-VPN routes only) and external (Internet) routes,
including those learned by the IBGP sessions between PE routers. The inet.3 table stores the MPLS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

labels learned from the signaling protocol (either LDP or RSVP) that is used for VPN traffic.

Each VPN always has two policies associated with it. An import policy is applied to VPN-IPv4 routes
learned from other PE routers to determine whether to add the route to the local bgp.l3vpn.0 table.
Nonmatching routes are discarded. An export policy is applied to the VPN-IPv4 routes advertised by
the local PE router to other PE routers. Nonmatching routes are not advertised.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 15.1. Setting Up a Simple Layer 3 VPN

Problem

You want to set up a Layer 3 VPN for a customer who wants a private network for internal network
communication and transactions.

Solution

Creating a Layer VPN for the customer involves setting up your PE and P routers. The customer (or
you) can set up the customer's routers (the CE routers). The PE and P routers must run an IGP,
IBGP, MPLS, and a signaling protocol (RSVP or LDP). You establish an MPLS LSP between the PE
routers and configure the VPN itself on the PE routers.

As a first step, set up the routing protocols necessary for the Layer 3 VPN. The PE and P routers must
be running an IGP (this recipe uses OSPF). Following is the configuration for one of the PE routers,
RouterG:

 [edit protocols]
 aviva@RouterG# set ospf area 0.0.0.0 interface t1-4/0/0
 aviva@RouterG# set ospf area 0.0.0.0 interface lo0.0 passive
 aviva@RouterG# set ospf area 0.0.0.0 interface fe-0/0/0 disable
 aviva@RouterG# set ospf traffic-engineering

On the PE router, enable MPLS and RSVP on the interfaces that connect to the P router:

 aviva@RouterG# set mpls interface t1-4/0/0
 aviva@RouterG# set rsvp interface t1-4/0/0

Also, remember to configure family mpls on all interfaces between the PE and P router that carry
MPLS and RSVP:

 [edit interfaces]
 aviva@RouterG# set t1-4/0/0 unit 0 family mpls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The IGP, MPLS, and RSVP configuration for the other PE router, RouterF, and for the P router,
RouterJ, is the same, substituting the appropriate interface names.

On each PE router, set up an IBGP session to the other PE router. For PE RouterG, the following
commands set up the session:

 [edit protocols bgp group RouterG-PE-to-RouterF-PE]
 aviva@RouterG# set type internal
 aviva@RouterG# set local-address 192.168.19.1
 aviva@RouterG# set neighbor 192.168.16.1
 aviva@RouterG# set family inet-vpn unicast

Include the equivalent configuration on the other PE router, RouterF:

 [edit protocols bgp group RouterF-PE-to-RouterG-PE]
 aviva@RouterF# set type internal
 aviva@RouterF# set local-address 192.168.16.1
 aviva@RouterF# set neighbor 192.168.19.1
 aviva@RouterF# set family inet-vpn unicast

The second step is to create an MPLS LSP between the two PE routers to carry the VPN traffic. On
RouterG, configure the LSP to RouterF:

 [edit protocols mpls]
 aviva@RouterG# set label-switched-path RouterG-PE-to-RouterF-PE to 192.168.16.1

Remember that LSPs are unidirectional, so on RouterF, which is the far-end PE router, configure a
return LSP to RouterG:

 [edit protocols]
 aviva@RouterF# set label-switched-path RouterF-PE-to-RouterG-PE to 192.168.19.1

The third and final step is to configure the VPN itself. You do this by creating a routing instance for
the VPN. The following commands configure the routing instance on RouterG:

 [edit routing-instances VPN2]
 aviva@RouterG# set instance-type vrf
 aviva@RouterG# set interface se-5/0/1
 aviva@RouterG# set route-distinguisher 65500:2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterG# set vrf-target target:65520:100
 aviva@RouterG# set routing-options static route 192.168.13.1/32 next-hop se-5/0/1

Discussion

This recipe shows how to configure a simple Layer 3 VPN for the network topology shown in Figure
15-1. In this network, a service provider connects two customer sites, Site A and Site B, with a VPN.
The service provider network consists of two PE routers, RouterG and RouterF, and one internal
router (the P router), RouterJ. At Site A, RouterG connects to the customer's CE router, RouterA. At
Site B, RouterF connects to the customer's CE router, RouterD.

Figure 15-1. Simple Layer 3 VPN topology

Let's start by looking at what the service provider needs to do to support the customer's VPN. For the
VPN to work, you first need to configure basic routing and signaling protocols within the service
provider network. An IGP must be running on the network. This recipe uses OSPF, but you can also
use IS-IS (see Recipe 11.1) or RIP (see Recipe 10.1). Use the show ospf interface, show ospf
neighbor, and show route table inet.0 commands to make sure that the OSPF configuration in this
recipe is working as expected.

For PE RouterG, these commands confirm that OSPF is operational and that the router is learning
routes from OSPF:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterG> show ospf interface
 Interface State Area DR ID BDR ID Nbrs
 lo0.0 DRother 0.0.0.0 0.0.0.0 0.0.0.0 0
 t1-4/0/0.0 PtToPt 0.0.0.0 0.0.0.0 0.0.0.0 1

 aviva@RouterG> show ospf neighbor
 Address Interface State ID Pri Dead
 10.0.0.2 t1-4/0/0.0 Full 192.168.17.1 128 39

 aviva@RouterG> show route table inet.0
 inet.0: 10 destinations, 11 routes (10 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 1w1d 02:59:39
 > to 172.19.121.1 via fe-0/0/0.0
 10.0.0.0/24 *[Direct/0] 2d 08:29:31
 > via t1-4/0/0.0
 [OSPF/10] 00:48:34, metric 65
 > via t1-4/0/0.0
 10.0.0.1/32 *[Local/0] 2d 08:35:10
 Local via t1-4/0/0.0
 10.0.8.0/24 *[OSPF/10] 00:48:34, metric 66
 > via t1-4/0/0.0
 172.19.121.0/24 *[Direct/0] 1w1d 02:59:39
 > via fe-0/0/0.0
 172.19.121.119/32 *[Local/0] 5w1d 03:50:24
 Local via fe-0/0/0.0
 192.168.16.1/32 *[OSPF/10] 00:48:34, metric 66
 > via t1-4/0/0.0
 192.168.17.1/32 *[OSPF/10] 00:48:34, metric 65
 > via t1-4/0/0.0
 192.168.19.1/32 *[Direct/0] 2d 08:35:10
 > via lo0.0
 224.0.0.5/32 *[OSPF/10] 1d 02:40:52, metric 1
 MultiRecv

The JUNOS software carries the VPN traffic across an MPLS LSP between the two PE routers. For the
VPN to establish itself, MPLS and a signaling protocol must be running on all interfaces participating in
the LSP. This recipe uses RSVP for signaling, but you can also use LDP (see Recipe 14.1). Check on
each router to verify that MPLS and RSVP are running on the expected interfaces. The following
commands confirm this on RouterG:

 aviva@RouterG> show mpls interface
 Interface State Administrative
groups
 t1-4/0/0.0 Up <none>

 aviva@RouterG> show rsvp interface
 RSVP interface: 1 active
 Active Subscr- Static Available Reserved Highwater

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Interface State resv iption BW BW BW mark
 t1-4/0/0.0 Up 1 100% 1.536Mbps 1.536Mbps 0bps 0bps

One last protocol that you need to set up on the PE routers is BGP. These routers need to be
connected by an IBGP session that will exchange VPN routing information. Here's the IBGP
configuration on PE RouterG:

 [edit protocols bgp group RouterG-PE-to-RouterF-PE]
 aviva@RouterG# set type internal
 aviva@RouterG# set local-address 192.168.19.1
 aviva@RouterG#
set neighbor 192.168.16.1
 aviva@RouterG#
set family inet-vpn unicast

In the set neighbor command, use the loopback address of the other PE router, even though that
router is not immediately adjacent. Here, 192.168.16.1 is the loopback address of RouterF. The set
family inet-vpn unicast statement identifies that the session is for a VPN. Configure the other PE
router, RouterF, in the same way.

Use the show bgp summary command to verify that the IBGP session is up:

 aviva@RouterG> show bgp summary
 Groups: 1 Peers: 1 Down peers: 0
 Table Tot Paths Act Paths Suppressed History Damp State Pending

bgp.l3vpn.0 0 0 0 0 0 0
 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#A
 ctive/Received/Damped…
 192.168.16.1 65500 4627 4637 0 0 1d 14:33:01 Establ
 bgp.l3vpn.0: 0/0/0

The first line of the output shows that RouterG is in one BGP group and has one peer, and the State
column in the Peer section tells you that the IBGP session is established. However, instead of the
unicast routing table inet.0, the IBGP session is using the bgp.l3vpn.0 routing table, which stores
the routes learned from other PE routers. Let's look at the contents of this table:

 aviva@RouterG> show route table bgp.l3vpn.0
 aviva@RouterG>

How come there aren't any entries in this table? It's because we haven't yet configured the VPN

http://lib.ommolketab.ir
http://lib.ommolketab.ir

itself, so the PE routers are not exchanging VPN-related routes. We'll come back and look at this
routing table in a little while.

The show bgp neighbor command also indicates that the IBGP session has been established:

 aviva@RouterG> show bgp neighbor
 Peer: 192.168.16.1+3136 AS 65500 Local: 192.168.19.1+179 AS 65500
 Type: Internal State: Established Flags: <Sync>
 Last State: OpenConfirm Last Event: RecvKeepAlive
 Last Error: None
 Options: <Preference LocalAddress HoldTime AddressFamily Rib-group Refresh>
 Address families configured: inet-vpn-unicast
 Local Address: 192.168.19.1 Holdtime: 90 Preference: 170
 Number of flaps: 0
 Peer ID: 192.168.16.1 Local ID: 192.168.19.1 Active Holdtime: 90
 Keepalive Interval: 30 Peer index: 0
 NLRI advertised by peer: inet-vpn-unicast
 NLRI for this session: inet-vpn-unicast
 Peer
supports Refresh capability (2)
 Table bgp.l3vpn.0
 RIB State: BGP restart is complete
 RIB State: VPN restart is complete
 Send state: not advertising
 Active prefixes: 0
 Received prefixes: 0
 Suppressed due to damping: 0
 Last traffic (seconds): Received 24 Sent 6 Checked 1
 Input messages: Total 4793 Updates 0 Refreshes 2 Octets 91101
 Output messages: Total 4807 Updates 10 Refreshes 9 Octets 91913
 Output Queue[0]: 0

The first two lines of the output show the peer's IP address, which is RouterF's address, and that the
IBGP session is established. The Address families configured line shows that this interface can
process VPN-IPv4 addresses (inet-vpn-unicast). Further down in the output, you see information
about the bgp.l3vpn.0 routing table.

The VPN traffic between the two sites will be carried over an MPLS LSP. In the second part of the
configuration, create this LSP on the two PE routers with the set label-switched-path commands.
Use the show mpls lsp command to verify that the LSP is functional. Here, we check on RouterG:

 aviva@RouterG> show mpls lsp
 Ingress LSP: 1 sessions
 To From State Rt ActivePath P LSPname
 192.168.16.1 192.168.19.1 Up 0 * RouterG-PE-to-Ro
 uterF-PE
 Total 1 displayed, Up 1, Down 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Egress LSP: 1 sessions
 To From State Rt Style Labelin Labelout LSPname
 192.168.19.1 192.168.16.1 Up 0 1 FF 3 - RouterF-PE-to-
 RouterG-PE
 Total 1 displayed, Up 1, Down 0

 Transit LSP: 0 sessions
 Total 0 displayed, Up 0, Down 0

The output shows what you expect. RouterG has one ingress LSP session, to RouterF, and one egress
session, from RouterF.

At this point, you are ready to set up the VPN itself. Each VPN requires its own routing instance so
that all information related to one VPN and its routing can be isolated from other routing and
forwarding and from other VPNs that the router is managing. The set instance-type vrf command
indicates the routing instance as being for a VPN and that its routes will be placed in the VRF routing
table.

All routes that are part of the VPN are identified by a route distinguisher, which you define with the
set route-distinguisher command:

 [edit routing-instances VPN2]

 aviva@RouterG# set route-distinguisher 65500:02

You can specify the route distinguisher in two ways. This recipe uses the AS number followed by a
colon and an identifying value. You can also use an IP address followed by a colon and an identifying
value. Neither format is better than the other. The format you choose depends entirely on your
design and specific requirements. Using the IP address:value format allows you to identify the
originating PE router when you are looking at a route and its communities, because you normally set
the IP portion to the PE router's lo0 address. This format can assist with troubleshooting and
operational monitoring. Using the AS:value format has the advantage of leaving more space for the
Administrator variable (four bytes instead of two bytes). Service providers often choose this second
format, using the value field to hold a numeric customer identifier. When looking at routes, this
format makes it possible, on a network-wide basis, to identify the customer associated with a route.

For the VPN to know which routes belong to it, you define a VRF target using the set vrf-target
command:

 [edit routing-instances VPN2]
 aviva@RouterG# set vrf-target target:65520:100

The command sets the route target (the target VPN), which is one of the BGP extended community
attributes. The VRF target identifies which route belongs to which VPN and allows the VPN to accept
routes into its VRF routing table and to advertise them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The set vrf-target command also associates a default import and export policy with the VRF routing
table to accept and advertise routes. The default policy uses the configured target, here 65520:100,
as the match condition for routes received from remote PE routers. As the import policy states, any
routes containing this target are placed into the VRF table. Similarly, when sending routes to local PE
routers, the export policy is for the VPN to advertise any routes matching this target. The default
routing policy is a simple policy that would look something like this if you configured it manually:

 [edit policy-options]
 aviva@RouterG# set community VPN2 members target:65500:2

 [edit policy-options policy-statement VPN2-import-policy]
 aviva@RouterG# set term 1 from protocol bgp
 aviva@RouterG# set term 1 from community VPN2
 aviva@RouterG# set term 1 then accept
 aviva@RouterG# set term 2 then reject

 [edit policy-options policy-statement VPN2-export-policy]
 aviva@RouterG# set term 1 from protocol static
 aviva@RouterG# set term 1
then community add VPN2
 aviva@RouterG# set term 1 then accept
 aviva@RouterG# set term 2 then reject

If you need more involved policies, configure them in the [edit policy-options] hierarchy and apply
them to the VPN with the set vrf-import and set vrf-export commands, specifying the name of
your policy. As an example, the following commands apply the VPN2-import-policy and VPN2-export-
policy policies to VPN2:

 [edit routing-instances VPN2]
 aviva@RouterG# set vrf-import VPN2-import-policy
 aviva@RouterG# set vrf-export VPN2-export-policy

Finally, the VPN needs to know how to forward traffic to the CE router at the customer site. This
recipe creates a static route to use for forwarding:

 [edit routing-instances VPN2]
 aviva@RouterG# set routing-options static route 192.168.13.1/32 next-hop se-5/0/1

You can also use BGP, OSPF, or RIP.

Now let's verify that the VPN is operational. First, check that you can ping the CE router:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterG> ping 192.168.13.1 count 5
 PING 192.168.13.1 (192.168.13.1): 56 data bytes
 ^C
 --- 192.168.13.1 ping statistics --
 5 packets transmitted, 0 packets received, 100% packet loss

Why does the ping transmission fail if the static route is in the routing table? Let's check the routing
tables using a different command:

 aviva@RouterG> show route 192.168.13.1 protocol static
 inet.0: 12 destinations, 13 routes (12 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 1w1d 20:56:23
 > to 172.19.121.1 via fe-0/0/0.0

 VPN2.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 192.168.13.1/32 *[Static/5] 01:21:55
 > via se-5/0/1.0

This command shows that the static route is present in the VPN2.inet.0 routing table but not in the
inet.0 routing table. To ping it, you need to specify the VPN routing instance in the ping command:

 aviva@RouterG> ping 192.168.13.1 count 5 routing-instance VPN2
 PING 192.168.13.1 (192.168.13.1): 56 data bytes
 64 bytes from 192.168.13.1: icmp_seq=0 ttl=255 time=18.399 ms
 64 bytes from 192.168.13.1: icmp_seq=1 ttl=255 time=10.436 ms
 64 bytes from 192.168.13.1: icmp_seq=2 ttl=255 time=25.565 ms
 64 bytes from 192.168.13.1: icmp_seq=3 ttl=255 time=40.311 ms
 64 bytes from 192.168.13.1: icmp_seq=4 ttl=255 time=10.346 ms
 --- 192.168.13.1 ping statistics --
 5 packets transmitted, 5 packets received, 0% packet loss
 round-trip min/avg/max/stddev = 10.346/21.011/40.311/11.186 ms

The ping operation now succeeds, and you have verified that static routing between PE RouterG and
CE RouterA is working.

Let's take a moment and look back at the IBGP session between the two PE routers. When you first
configured it, the session was up, but the router had not learned any routes from BGP because the
VPN itself was not yet up. Now that the VPN is up, you expect to see BGP routes. Use the show bgp
summary command on PE RouterG:

 aviva@RouterG> show bgp summary

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Groups: 1 Peers: 1 Down peers: 0
 Table Tot Paths Act Paths Suppressed History Damp State Pending
 bgp.l3vpn.0 2 2 0 0 0 0
 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#A
 ctive/Received/Damped…
 192.168.16.1 65500 5021 5034 0 0 1d 17:48:00 Establ
 bgp.l3vpn.0: 2/2/0
 VPN2.inet.0: 2/2/0

The last two lines show the two VPN-specific routing tables, bgp.l3vpn.0 and VPN2.inet.0 (the VRF
table), both with BGP routes. Each table has two active routes and has received two routes. Recipe
15.2 explains how to view the contents of these routing tables.

See Also

Recipes 10.1, 11.1, 14.1, and 15.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 15.2. Viewing the VPN Routing Tables

Problem

You want to check the routing tables on the PE routers to determine that they contain all the
expected routes.

Solution

The show route command displays the contents of all routing tables on the PE router:

 aviva@RouterG> show route
 inet.0: 12 destinations, 13 routes (12 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 1w1d 21:04:56
 > to 172.19.121.1 via fe-0/0/0.0
 10.0.0.0/24 *[Direct/0] 3d 02:34:48
 > via t1-4/0/0.0
 [OSPF/10] 00:40:32, metric 65
 > via t1-4/0/0.0
 10.0.0.1/32 *[Local/0] 3d 02:40:27
 Local via t1-4/0/0.0
 10.0.1.0/24 *[Direct/0] 00:40:32
 > via fe-1/0/1.0
 10.0.1.2/32 *[Local/0] 00:40:32
 Local via fe-1/0/1.0
 10.0.8.0/24 *[OSPF/10] 00:40:32, metric 66
 > via t1-4/0/0.0
 172.19.121.0/24 *[Direct/0] 1w1d 21:04:56
 > via fe-0/0/0.0
 172.19.121.119/32 *[Local/0] 5w1d 21:55:41
 Local via fe-0/0/0.0
 192.168.16.1/32 *[OSPF/10] 00:40:32, metric 66
 > via t1-4/0/0.0
 192.168.17.1/32 *[OSPF/10] 00:40:32, metric 65
 > via t1-4/0/0.0
 192.168.19.1/32 *[Direct/0] 3d 02:40:27
 > via lo0.0
 224.0.0.5/32 *[OSPF/10] 1d 20:46:09, metric 1
 MultiRecv

 inet.3: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 + = Active Route, - = Last Active, * = Both

 192.168.16.1/32 *[RSVP/7] 1d 17:45:11, metric 66
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 __juniper_private1__.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0
 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.1/32 *[Direct/0] 5w1d 21:55:41
 > via lo0.16385
 10.0.0.16/32 *[Direct/0] 5w1d 21:55:41
 > via lo0.16385
 VPN2.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.16.0/24 *[Direct/0] 01:30:28
 > via se-5/0/1.0
 10.0.16.2/32 *[Local/0] 01:30:30
 Local via se-5/0/1.0
 10.0.31.0/24 *[BGP/170] 00:40:32, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 192.168.13.1/32 *[Static/5] 01:30:28
 > via se-5/0/1.0
 192.168.14.1/32 *[BGP/170] 00:40:32, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0 *[MPLS/0] 1d 18:03:41, metric 1
 Receive
 1 *[MPLS/0] 1d 18:03:41, metric 1
 Receive
 2 *[MPLS/0] 1d 18:03:41, metric 1
 Receive
 100368 *[
VPN/170] 01:30:28
 > via se-5/0/1.0, Pop
 100384 *[VPN/170] 01:30:28
 > via se-5/0/1.0, Pop

 bgp.l3vpn.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 65500:3:10.0.31.0/24
 *[BGP/170] 00:43:17, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 65500:3:192.168.14.1/32
 *[BGP/170] 00:43:17, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Discussion

After Layer 3 VPNs are set up, you should check the routing tables on the PE router to make sure
that the VPN is operating properly and to see which routes and MPLS labels the router has learned.
The show route command in this recipe displays the contents of all the routing tables on the PE
router. Let's examine the routing tables individually.

In the VPN configuration, you configured OSPF on the two PE routers and on the P router. The routes
learned from OSPF are in the standard inet.0 routing table. To display just these routes on the PE
router, use the show route table inet.0 command (see Recipe 8.1).

Because RSVP is running on the routers to support the MPLS LSP, the router creates the inet.3 table
to store all MPLS routes learned from RSVP. Recipe 14.7 explains the routes in the inet.3 table.

Two of the routing tables are specific to the VPN. The first is the VRF table, which stores all the IPv4
routes received from the CE routers in the VPN. The JUNOS software names the VRF table using the
name of the routing instance. In our recipe, the routing instance is named VPN2, so the routing table
is named VPN2.inet.0:

 aviva@RouterG> show route table VPN2.inet.0
 VPN2.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.16.0/24 *[Direct/0] 01:06:47
 > via se-5/0/1.0
 10.0.16.2/32 *[Local/0] 01:06:49
 Local via se-5/0/1.0
 10.0.31.0/24 *[BGP/170] 00:16:51, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 192.168.13.1/32 *[Static/5] 01:06:47
 > via se-5/0/1.0
 192.168.14.1/32 *[BGP/170] 00:16:51, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE

The output shows five routes in the VRF table for VPN2. The 10.0.16.0/24 and 10.0.16.2/32 prefixes
are the interface addresses between PE RouterG and its directly connected CE RouterA, and the
prefix 192.168.13.1 is the loopback address of RouterA. The other two routes are received from the
remote CE router, RouterF, at the other end of the LSP and have been learned from BGP as a result
of the IBGP peering session between the two PE routers. The prefix 192.168.14.1 is the loopback
address of the remote CE router in VPN2, RouterD, and 10.0.31.0/24 is the subnetwork between the
remote PE and CE routers. Both these routes are reachable over the LSP:

 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE

The VRF table shows that the route to the CE router 192.168.13.1 is a static route, which is what we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

configured in the recipe.

It's worth checking the VPN2.inet.0 routing table on the other PE router, RouterF, to make sure that
it contains similar routing information:

 aviva@RouterF> show route table VPN2.inet.0
 VPN2.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.16.0/24 *[BGP/170] 03:32:01, localpref 100, from 192.168.19.1
 AS path: I
 > to 10.0.8.1 via fe-0/0/1.0, label-switched-path
RouterF-PE -to-RouterG-PE
 10.0.31.0/24 *[Direct/0] 02:44:50
 > via t1-0/0/3.0
 10.0.31.2/32 *[Local/0] 21:37:58
 Local via t1-0/0/3.0
 192.168.13.1/32 *[BGP/170] 03:32:01, localpref 100, from 192.168.19.1
 AS path: I
 > to 10.0.8.1 via fe-0/0/1.0, label-switched-path RouterF-PE
 -to-RouterG-PE
 192.168.14.1/32 *[Static/5] 02:44:50
 > via t1-0/0/3.0

The two routes 10.0.16.0/24 and 192.168.13.1/32 use the LSP to reach the remote CE router. This is
indicated in the third line of each entry, which shows to…via…label-switched-path RouterF-PR-to-

RouterG-PE. The remaining three routes are for the local CE router (loopback address 192.168.14.1
and subnetwork 10.0.31.0/24).

The second VPN-specific routing table is bgp.l3vpn.0, which stores the VPN-IPv4 routes received
from other PE routers. This table on PE RouterG contains the following routes:

 aviva@RouterG> show route table bgp.l3vpn.0
 bgp.l3vpn.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 65500:3:10.0.31.0/24
 *[BGP/170] 00:03:40, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 65500:3:192.168.14.1/32
 *[BGP/170] 00:03:40, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE

The VPN-IPv4 routes in this table are for two routes in VPN2, which you configured with a route
distinguisher of 65500:3. Looking at just the IPv4 portion of the address, 10.0.31.0/24 is the
subnetwork between the remote PE and CE routers, and 192.168.14.1/32 is the loopback address of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the remote CE router. To see the VRF target for the VPN-IPv4 routes, use the detail option of the
show route command:

 aviva@RouterG> show route
table bgp.l3vpn.0 detail 10.0.31.0/24
 bgp.l3vpn.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 65500:3:10.0.31.0/24 (1 entry, 0 announced)
 *BGP Preference: 170/-101
 Route Distinguisher: 65500:3
 Next-hop reference count: 3
 Source: 192.168.16.1
 Next hop: via t1-4/0/0.0 weight 1, selected
 Label-switched-path RouterG-PE-to-RouterF-PE
 Label operation: Push 100032, Push 100048(top)
 Protocol next hop: 192.168.16.1
 Push 100032
 Indirect next hop: 85d5b00 262142
 State: <Active Int Ext>
 Local AS: 65500 Peer AS: 65500
 Age: 2:30 Metric2: 66
 Task: BGP_65500.192.168.16.1+179
 AS path: I
 Communities: target:65520:100
 VPN Label: 100032
 Localpref: 100
 Router ID: 192.168.16.1
 Secondary
Tables: VPN2.inet.0

The second line shows the VPN-IPv4 address, and further down, along with other path attributes, you
see the extended community VRF target in the Communities field. The PE routers filter based on the
VRF target to determine which VPN the route belongs to and hence the VRF table into which to install
the route.

The mpls.0 table also stores information used by the VPN. In this table, you see the distinct label that
the VPN assigns to each PE-CE interface:

 aviva@RouterG> show route table mpls protocol vpn
 mpls.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 100048 *[VPN/170] 00:41:21
 > via se-5/0/1.0, Pop
 100064 *[VPN/170] 00:41:21
 > via se-5/0/1.0, Pop

This output shows two labels to the CE router, not one. This is because of a detail in how VPN assigns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

labels. It actually assigns one for each next hop. The configuration is this recipe has two next hops to
the CE router, one through the direct interface connection and one as a result of the static route
configuration. You can see these two routes in the VPN2.inet.0 table:

 aviva@RouterG> show route table VPN2.inet.0
 VPN2.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.16.0/24 *[Direct/0] 01:06:47
 > via se-5/0/1.0
 192.168.13.1/32 *[Static/5] 01:06:47
 > via se-5/0/1.0

See Also

Recipes 8.1 and 14.7

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 15.3. Adding a VPN for a Second Customer

Problem

You want to configure a single PE router to keep the traffic for the two different VPNs separated.

Solution

Configure the VPN for the second customer on the PE router:

 [edit

routing-instances VPN1]
 aviva@RouterG# set instance-type vrf
 aviva@RouterG# set interface fe-1/0/1
 aviva@RouterG# set route-distinguisher 65500:1
 aviva@RouterG# set vrf-target target:65530:200
 aviva@RouterG# set routing-options protocols bgp group VPN1-group type external
 aviva@RouterG# set routing-options protocols bgp group VPN1-group peer-as 65530
 aviva@RouterG# set routing-options protocols bgp group VPN1-group neighbor 10.0.1.1

Have the customer configure an EBGP session on her CE router that connects to your PE router:

 [edit protocols bgp group to-ISP]
 aviva@RouterH# set type external
 aviva@RouterH# set peer-as 65500
 aviva@RouterH# set neighbor 10.0.1.2

Discussion

From a service provider point of view, the whole point of Layer 3 VPNs is to allow a single edge router in
your network to provide services to a number of different customers and to isolate each customer's
network so that all information pertaining to it remains private. When configuring the PE router, you set
up the router to keep each customer's routing information in separate routing tables and you establish
unique route distinguishers so that the PE routers can identify which routes belong to which VPNs.

This recipe shows how to add a VPN called VPN1 for a second customer. Figure 15-2 shows the network
topology with both customers' VPNs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 15-2. Topology with Layer 3 VPNs for two customers

Configuring the VPN for the second customer is somewhat simpler than for the first customer. An IGP,
MPLS, and RSVP are already up and running on the PE and P routers, and the LSP between the two PE
routers is already operational. What remains to be done is to configure the VPN itself. This VPN, named
VPN1 , connects to the CE routers using BGP rather than static routes. The following commands set the
basic properties of VPN1:

 [edit routing-instances VPN1]
 aviva@RouterG# set instance-type vrf
 aviva@RouterG# set interface fe-1/0/1
 aviva@RouterG# set route-distinguisher 65500:1
 aviva@RouterG# set vrf-target target:65530:200

The first command defines the routing instance type, which must be vrf for Layer 3 VPNs. The PE router
connects to the CE router using interface fe-1/0/1 . Each VPN must use a different route distinguisher
and VRF target. VPN1 has a route distinguisher of 65500:1 and a VRF target of 65530:200 . The VRF
target attached to a route shows the VPN to which a route belongs.

Next, configure the EBGP session to the CE router. You do this within the VPN routing instance, not in
the [edit protocols bgp] configuration hierarchy, because you are creating an instance of BGP that the
JUNOS software associates with the VPN. The configuration commands in this recipe are also used to
create a regular EBGP session, but they are included within the VPN at the [edit routing-instance VPN1
protocols bgp] hierarchy level. Here's what the completed configuration looks like on the router:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterG> show configuration routing-instances VPN1
 instance-type vrf;
 interface fe-1/0/1.0;
 route-distinguisher 65500:1;
 vrf-target target:65530:200;
 protocols {
 bgp {
 group VPN1-group {
 type external;
 peer-as 65530;
 neighbor 10.0.1.1;
 }
 }
 }

The BGP configuration establishes an external (EBGP) session with the neighbor 10.0.1.1 (the interface
address of the CE router) that is in AS 65530 .

For the VPN to work, the customer controlling the CE router, must establish an EBGP session with the PE
router. On the CE router, the customer sets up a regular BGP session, configured at the [edit
protocols bgp] hierarchy (see Recipe 13.1) and not part of a routing instance. Here's what the
configuration on the CE router in this recipe looks like:

 aviva@RouterH> show configuration interfaces fe-1/0/1
 unit 0 {
 family inet {
 address 10.0.1.1/24;
 }
 }

 aviva@RouterH> show configuration routing-options
 router-id 192.168.18.1;
 autonomous-system 65530;

 aviva@RouterH> show configuration protocols
 bgp {
 group to-ISP {
 type external;
 peer-as 65500;
 neighbor 10.0.1.2;
 }
 }

As a first step in verifying the configuration, make sure that the EBGP session between the PE and CE
routers is established. Check on the CE router:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterH> show bgp summary
 Groups: 1 Peers: 1 Down peers: 0
 Table Tot Paths Act Paths Suppressed History Damp State Pending
 inet.0 1 1 0 0 0 0
 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#A
 ctive/Received/Damped…
 10.0.1.2 65500 69 69 0 1 33:25 1/1/0
 0/0/0

The CE router has one BGP session to 10.0.1.2 , the PE router. This is a regular EBGP session, and
routes are placed in the inet.0 unicast routing table.

Checking on the PE router shows the BGP neighbors:

 aviva@RouterG> show bgp summary
 Groups: 2 Peers: 2 Down peers: 0
 Table Tot Paths Act Paths Suppressed History Damp State Pending
 bgp.l3vpn.0 3 3 0 0 0 0
 Peer AS InPkt OutPkt OutQ Flaps Last Up/Dwn State|#A
 ctive/Received/Damped…
 192.168.16.1 65500 23091 23102 0 0 1w1d0h Establ
 bgp.l3vpn.0: 3/3/0
 VPN1.inet.0: 1/1/0
 VPN2.inet.0: 2/2/0
 10.0.1.1 65530 46 49 0 0 22:36 Establ
 VPN1.inet.0: 0/0/0

The last entry shows that the EBGP session to 10.0.1.1 , the CE router, is established and that its
routes are in the VPN1.inet.0 routing table.

VPN1 also has a CE router (RouterE) at the remote site that is connected to the remote PE router,
RouterF. You configure these two routers the same way as the two routers shown in this recipe. Here's
the VPN1 routing-instance configuration on the remote PE router, RouterF:

 aviva@RouterF> show configuration routing-instances
 VPN1 {
 instance-type vrf;
 interface t1-0/0/2.0;
 route-distinguisher 65500:4;
 vrf-target target:65530:200;
 routing-options {
 static {
 route 192.168.15.1/32 next-hop t1-0/0/2.0;
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

Now check the routing tables on the PE router. First, let's look at the VRF table for VPN1 , which is
VPN1.inet.0 :

 aviva@RouterG> show route table VPN1.inet.0
 VPN1.inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.1.0/24 *[Direct/0] 00:42:02
 > via fe-1/0/1.0
 10.0.1.2/32 *[Local/0] 00:42:02
 Local via fe-1/0/1.0
 10.0.13.0/24 *[BGP/170] 00:07:11, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 192.168.15.1/32 *[BGP/170] 00:07:11, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE

This table stores the routes for VPN1 :

10.0.1.0/24 and 10.0.1.2/32 are the routes to the CE router, RouterH.

10.0.13.0/24 is the subnet to the remote VPN1 CE router (RouterE), which has a router address of
192.168.15.1/32 .

If the VPN1.inet.0 table truly isolates the routes for VPN1 so they are not visible to other VPNs or routers
on the network, you expect that these routes are not in any of the other routing tables. To verify this,
look at the other routing tables on the PE router. Here is the inet.0 unicast routing table:

 aviva@RouterG> show route table inet.0
 inet.0: 8 destinations, 9 routes (8 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 2w1d 04:49:05
 > to 172.19.121.1 via fe-0/0/0.0
 10.0.0.0/24 *[Direct/0] 1w2d 10:18:57
 > via t1-4/0/0.0
 [OSPF/10] 01:25:29, metric 65
 > via t1-4/0/0.0
 10.0.0.1/32 *[Local/0] 1w2d 10:24:36
 Local via t1-4/0/0.0
 10.0.8.0/24 *[OSPF/10] 01:25:29, metric 66
 > via t1-4/0/0.0
 192.168.16.1/32 *[OSPF/10] 01:25:29, metric 66
 > via t1-4/0/0.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 192.168.17.1/32 *[OSPF/10] 01:25:29, metric 65
 > via t1-4/0/0.0
 192.168.19.1/32 *[Direct/0] 1w2d 10:24:36
 > via lo0.0
 224.0.0.5/32 *[OSPF/10] 1w1d 04:30:18, metric 1
 MultiRecv

This table has no knowledge of the 10.0.1.1/24 or 10.0.13.1/24 subnets, nor does it know about the
two VPN1 CE routers, 192.168.18.1 and 192.168.15.1 .

The VPN2 routing table also knows nothing about these prefixes:

 aviva@RouterG> show route table VPN2.inet.0
 VPN2.inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.16.0/24 *[Direct/0] 6d 09:24:16
 > via se-5/0/1.0
 10.0.16.2/32 *[Local/0] 6d 09:24:18
 Local via se-5/0/1.0
 10.0.31.0/24 *[BGP/170] 01:35:08, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 192.168.13.1/32 *[Static/5] 6d 09:24:16
 > via se-5/0/1.0
 192.168.14.1/32 *[BGP/170] 01:35:08, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE

A shortcut to verify that the VPN1 routes are only in the VPN1.inet.0 table is to look for routes to a prefix
that you know is in this table:

 aviva@RouterG> show route 10.0.1.1
 inet.0: 10 destinations, 11 routes (10 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 2w1d 04:58:17
 > to 172.19.121.1 via fe-0/0/0.0

 VPN1.inet.0: 3 destinations, 3 routes (3 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.1.0/24 *[Direct/0] 01:36:31
 > via fe-1/0/1.0

This output confirms that the route to the VPN1 subnet to the CE RouterH is present only in the
VPN1.inet.0 table. The inet.0 table has no information about this route and uses the default route to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

try to reach it.

Next, check the bgp.l3vpn.0 routing table, which stores the routes received from other PE routers:

 aviva@RouterG> show route table bgp.l3vpn.0
 bgp.l3vpn.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 65500:3:10.0.31.0/24
 *[BGP/170] 04:31:02, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 65500:3:192.168.14.1/32
 *[BGP/170] 04:31:02, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 65500:4:10.0.13.0/24
 *[BGP/170] 00:07:20, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE
 65500:4:192.168.15.1/32
 *[BGP/170] 00:07:20, localpref 100, from 192.168.16.1
 AS path: I
 > via t1-4/0/0.0, label-switched-path RouterG-PE-to-RouterF-PE

The PE router is now receiving routes from the remote PE router for both VPNs. The routes for VPN1 use
the route distinguisher 65500:4 , and the second two routes in the bgp.l3vpn.0 table are for VPN1 . The
first route, for IP prefix 10.0.13.0/24 , is the subnet between the remote PE and CE routers, and the
second route is to the CE router itself. These two prefixes match those contained in the VPN1.inet.0
table. The other two routes in the bgp.l3vpn.0 table use the route distinguisher 65500:3 , which is for
VPN2.

Let's also look at all the routing tables on the CE router to see what they contain:

 aviva@RouterH> show route
 inet.0: 5 destinations, 5 routes (5 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 8w3d 04:25:38
 > to 172.19.121.1 via fe-0/0/0.0
 10.0.1.0/24 *[Direct/0] 1w0d 03:12:18
 > via fe-1/0/1.0
 10.0.1.1/32 *[Local/0] 1w0d 03:12:18
 Local via fe-1/0/1.0
 10.0.13.0/24 *[BGP/170] 01:39:35, localpref 100
 AS path: 65500 I
 > to 10.0.1.2 via fe-1/0/1.0
 192.168.18.1/32 *[Direct/0] 1w0d 03:12:18
 > via lo0.0
 __juniper_private1__.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 h

http://lib.ommolketab.ir
http://lib.ommolketab.ir

idden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.1/32 *[Direct/0] 8w3d 04:26:16
 > via lo0.16385
 10.0.0.16/32 *[Direct/0] 8w3d 04:26:16
 > via lo0.16385

What you see here is that the CE router is just a regular router. The only routing table it has is the
inet.0 unicast routing table (and the private inet.0 table that is used internally by the JUNOS
software). The CE router has no knowledge of the VPN. It has a route to the PE router using the prefix
10.0.1.0/24. [Direct/0], which indicates that the CE router is directly connected to the PE router. The
CE router also has a route to the subnet between the remote PE router and the remote PE router,
10.0.13.0/24 , which it learned from its EBGP session with PE RouterG. It's important to note that the
CE router does not have any prefixes to reach any of the routers in VPN2 . There is no prefix for CE
RouterA (router address 192.168.13.1 , on subnet 10.0.16.0/24), which is directly connected to PE
RouterG, and there is no prefix to the remote VPN2 CE RouterD (address 192.168.14.1 , subnet
10.0.31.0/24).

Just to make sure that prefixes are not leaking between VPNs, look at the routing tables on the VPN2 CE
RouterA:

 aviva@RouterA> show route
 inet.0: 4 destinations, 4 routes (4 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 0.0.0.0/0 *[Static/5] 2w1d 03:29:26
 > to 172.19.121.1 via fe-0/0/0.0
 10.0.16.0/24 *[Direct/0] 6d 10:05:34
 > via se-0/0/3.0
 10.0.16.1/32 *[Local/0] 2w1d 03:29:28
 Local via se-0/0/3.0
 192.168.13.1/32 *[Direct/0] 1w0d 08:31:19
 > via lo0.0
 __juniper_private1__.inet.0: 2 destinations, 2 routes (2 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.0.1/32 *[Direct/0] 2w1d 03:29:53
 > via lo0.16385
 10.0.0.16/32 *[Direct/0] 2w1d 03:29:53
 > via lo0.16385

The router has prefixes to reach the PE router (over the subnet 10.0.16.0/24) but has no knowledge of
the VPN1 CE router, RouterH.

See Also

Recipe 13.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 16. IP Multicast

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Introduction

The Internet was originally designed to carry two types of traffic, unicast and broadcast. Unicast
traffic is sent from a single sender to a single host (or receiver), providing one-to-one delivery.
Broadcast traffic goes from a single sender to all hosts, providing one-to-all delivery. Multicast traffic
offers a third model, sending traffic from a single sender to many hosts (one-to-many delivery) and
from many senders to many receivers (many-to-many delivery). Applicationssuch as streaming audio
and video, collaborative groupware, teleconferencing, distributed online games, and "push"
technology that sends periodic data delivery, such as stock quotes and sports scoresare well-suited
for multicast because from a single source of data, they want to reach a specific, limited audience
scattered across the Internet. If these applications use a unicast model, they must set up a session
with each individual viewer. This places a heavy overhead burden on the source, which must replicate
the video or audio stream for each customer. If these applications instead broadcast a single stream,
the burden shifts to devices all across the network, which must replicate the stream regardless of
whether there are downstream receivers interested in the video or audio stream. Multicast provides a
way for these applications to deliver a single stream to all interested listeners.

Multicast networks consist of servers, which are the sources of a stream of multicast traffic, and
clients, who are the receivers (or listeners) of the stream. A multicast stream is a flow of IP packets
whose destination address is in the multicast address range of 224.0.0.0 through 239.255.255.255.
(In classful routing, this is the Class D address space.) Each multicast address is the address of a
multicast group. Routers use a combination of the source's unicast IP address and the multicast
group to track multicast forwarding state. The notation used to represent this is (S,G), which is
pronounced "ess comma gee." A common variant of this is (*,G), pronounced "star comma gee,"
where the asterisk is a wildcard that applies to any source sending to the group.

Multicast senders and receivers are generally PCs or hosts connected to a multicast enabled router,
which is the DR for the sender or receiver. Receivers use a group membership protocol to tell their
DRs which multicast streams they want to receive and to dynamically join and leave multicast
groups. Routers run a multicast routing protocol to direct the streams from the sources to the correct
receiving networks. Using this protocol, the routers build a delivery tree, called a distribution tree,
between the sender (or senders) and receivers of a multicast group. Multicast data follows the path
of the distribution tree. Data flows downstream on an outgoing interface toward the receiver and
upstream on an incoming interface toward the source.

Hosts use the Internet Group Membership Protocol (IGMP) to inform routers about which multicast
groups they want to join, and routers use IGMP to verify that a host is still interested in listening to a
group. There are three versions of IGMP, all supported by JUNOS software. Version 1 (RFC 1112)
runs on Windows 95 computers, and Version 2 (RFC 2236) runs on most Unix hosts, including Mac
OS X, and on Windows 98, Windows 2000, and Windows NT systems. IGMPv2 adds explicit leave
functionality so hosts can report to the router when they are no longer interested in a group. (In
IGMPv1, the host simply stops sending report messages, and after some time, the router assumes
the host is no longer interested in the group and stops forwarding traffic for that group.) IGMPv3 (
RFC 3376), supported by Windows XP systems, adds source filtering so the host can include and
exclude specific sources when requesting multicast packets. Source filtering is required for SSM.

Perhaps the biggest difference between unicast and multicast is that unicast routing is concerned

http://lib.ommolketab.ir
http://lib.ommolketab.ir

about where a packet is going and multicast routing is concerned about where a packet comes from.
Unicast routing looks up a packet's destination address in the routing table to determine which
interface leads toward the destination. The result is that unicast routing forwards packets from their
source to (or toward) a destination. Multicast routing uses RPF to set up forwarding state from the
receiver to the source (or root) of the distribution tree. RPF checks the routing table to determine the
interface that is closest to the root of the tree, and this RPF interface becomes the incoming interface
for the multicast group.

Multicast uses two methods to build distribution trees. With shortest path tree (SPT), the root of the
tree is the multicast source. When a router learns that it has a directly connected listener for a group,
it tries to join the tree for that group, building an SPT for that group. The router sends a Join
message (specifically, an (S,G) Join message) out the upstream router for that group to let the
upstream router know it wants to receive packets for the group. The upstream routers repeat this
process until the Join message either reaches the DR for the multicast source or reaches a router
that already has multicast forwarding state for the (S,G) pair. This process creates a branch from the
receiver to the source.

The second way to build distribution tress is with a shared tree, in which the root of the distribution
tree is not the source but rather is a router somewhere in the network. In Protocol-Independent
Multicast Sparse Mode (PIM-SM), this router is called the rendezvous point (RP). With this model,
the listener's DR router does not know the source's address but knows how to reach another router
in the network (the RP) that does know the address.

There are two broad types of multicast routing protocols. Dense protocols use a push model, flooding
traffic throughout a network and pruning back its distribution trees when the traffic is not wanted, a
behavior called flood and prune. The Distance-Vector Multicast Routing Protocol (DVMRP) and
Protocol-Independent Multicast-Dense Mode (PIM-DM) are examples of dense protocols. DVMRP was
the first of the multicast routing protocols. It was developed in the early 1990s and was the first
multicast protocol to run on the Internet Multicast Backbone (MBONE), starting in 1992. (The
MBONE now uses PIM-SM.) DVMRP uses a simple distance-vector routing protocol similar to RIP to
create its own routing table for forwarding and loop detection. PIM-DM also uses the flood-and-prune
mechanism, but consults the unicast routing table populated to perform RPF checks, a property that
gives PIM-DM (and PIM-SM) its protocol independence.

Dense protocols work well in domains that have a dense population of receivers, so most or all
subnetworks are interested in receiving traffic from most or all active multicast groups. However, the
flood-and-prune model does not scale for the Internet, where receivers are sparsely scattered
throughout the network. For this reason, and because the flood-and-prune model uses a lot of
network bandwidth and requires all routers to store all group state information, DVMRP and PIM-DM
are rarely used. Also, DVMRP's underlying RIP-like distance-vector protocol does not scale across the
Internet.

Sparse protocols use a pull model, waiting for explicit join requests from receivers and sending traffic
only to where it is requested. Sparse protocols are a good choice when groups of multicast receivers
are sparsely distributed across the network and network bandwidth is limited. Waiting to receive
explicit join requests from receivers before forwarding multicast traffic is more scalable across the
Internet and other large networks. PIM-SM is an example of a sparse protocol. PIM-SM was
developed in the mid-1990s. As mentioned above, PIM uses the information in the standard unicast
routing table, inet.0, when making RPF decisions. This routing-table information is learned from
whatever unicast protocols are running on the router, and it is this property that makes PIM
independent of any specific protocol.

In place of the DVMRP flood-and-prune model, PIM-SM uses RPs, which are routers that learn about

http://lib.ommolketab.ir
http://lib.ommolketab.ir

all multicast sources and multicast receivers within their administrative domain. Multicast DRs send
PIM Register messages to announce their existence, and they send PIM Join/Prune messages to
announce their interest in a group. As the shared root, the RP is the matchmaker for the sources and
the receivers.

You administratively configure the RPs in your domain, and one RP is active at a time. (Specifically,
one RP per multicast group is active at one time in the case that some RPs do not service all groups.)

DVMRP and PIM are both multicast routing protocols, using RPF to forward multicast traffic. A number
of other protocols support functions required by DVMRP and PIM, but they are not routing protocols
because they do not handle forwarding state information. The Multicast Source Discover Protocol (
MSDP) expands PIM-SM to allow RPs in different autonomous systems to learn about active multicast
sources in other ASs. Effectively, MSDP makes it possible for multicast applications to run across the
global Internet. Also, BGP has been extended with Multiprotocol BGP (MBGP; see RFC 2858) so that
BGP carries NLRIs that can be used by other protocols, including multicast. MBGP allows a multicast
router to create two separate routing tables, one that is used to make unicast routing decisions and a
second to make RPF decisions.

For more information about multicast, see Interdomain Multicast Routers: Practical Juniper Networks
and Cisco Systems Solutions (Addison-Wesley).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.1. Configuring PIM-SM

Problem

You want to configure the router to support multicast within your AS.

Solution

Turn on PIM-SM on the router's interfaces:

 [edit protocols pim]
 aviva@RouterA# set interface all

Disable PIM on the router's out-of-band management interface. On J-series routers, disable PIM on
the fe-0/0/0 interface:

 [edit protocols pim]
 aviva@RouterA# set interface fe-0/0/0.0 disable

On M-series and T-series routers, disable it on fxp0:

 [edit protocols pim]
 aviva@R1# set interface fxp0.0 disable

When you turn on PIM-SM, the JUNOS software automatically enables IGMP Version 2 on all LAN
interfaces.

Discussion

Setting up PIM-SM on the router is very straightforward. In the PIM protocol configuration, specify
the interfaces on which you want PIM to run. If you want the router to be a DR or RP, it must have a
services PIC of some kind (Tunnel Services, Link Services, or AS PIC) to encapsulate and de-
encapsulate PIM messages. The J-series and M7i routers, which are the routers used to create the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

recipes in this book, are the two exceptions. J-series routers can perform the encapsulation and de-
encapsulation without a tunnel or services PIC, and the M7i routers have built-in AS PICs. Check for
the PICs by looking at the router's hardware inventory:

 aviva@R1> show chassis hardware
 Hardware inventory:
 Item Version Part number Serial number Description
 Chassis 29623 M7i
 Midplane REV 03 710-008761 CA6265 M7i Midplane
 Power Supply 0 Rev 04 740-008537 PG10733 AC Power Supply
 Routing Engine REV 05 740-009459 1000431687 RE-5.0
 CFEB REV 05 750-010464 CF0420 Internet Processor II
 FPC 0 E-FPC
 PIC 0 REV 06 750-002971 CB0117 4x OC-3 SONET, MM
 PIC 3 REV 08 750-003845 HN4260 1x 800M Crypto
 FPC 1 E-FPC
 PIC 2 REV 07 750-009487 CF1068 ASP - Integrated
 PIC 3 REV 03 750-009099 CA6344 1x G/E, 1000 BASE
 SFP 0 REV 01 740-011782 P7J0Q0V SFP-SX

This router has a built-in (integrated) AS PIC on FPC1 (also called AS Module [ASM]). The other M-
series routers and T-series routers must have a services PIC installed on one of the FPCs. The
following variant of the show chassis hardware command locates tunnel PICs in the router:

 aviva@R3> show chassis hardware | match tunnel
 PIC 0 REV 01 750-004695 HD5980 1x Tunnel

The JUNOS software uses the services PIC to encapsulate and de-encapsulate PIM register messages,
which the source's DR sends to the RP. Encapsulation and de-encapsulation requires a fair bit of
router resources, so having a separate PIC that performs these functions is a good security feature.
If a misconfigured or malicious DR starts sending a high rate of PIM register messages to the router,
it is unlikely to bring the entire router's operations to a grinding halt. All PIM recipes in this chapter
use the topology shown in Figure 16-1.

This recipe configures PIM to run on all the router's interfaces. To specify the PIM interfaces
individually, list them in the configuration:

 [edit protocols pim]
 aviva@RouterA# set interface fe-0/0/1
 aviva@RouterA# set interface se-0/0/3
 aviva@RouterA# set interface fe-0/0/1

The default PIM mode is sparse, and the default version is Version 2. For a cleaner configuration, you

http://lib.ommolketab.ir
http://lib.ommolketab.ir

should disable PIM on the router's out-of-band management interface, fxp0 on M-series and T-series
routers and fe-0/0/0 on J-series routers.

Figure 16-1. PIM network topology

PIM routers should also be running IGMP. Enabling JUNOS PIM automatically enables IGMP on the
router, on all broadcast interfaces running PIM. This recipe turns on PIM on all interfaces, so IGMP is
also running on them. IGMP allows the router's interfaces to handle group membership reports, so
even if the interface is connected to a LAN on which none of the hosts or routers are running PIM,
IGMP must be enabled on the interface so the hosts can join multicast groups.

To verify the configuration on the router, first make sure PIM is running on the expected interfaces:

 aviva@RouterA> show pim interfaces
 Instance: PIM.master
 Name Stat Mode IP V State Count DR address
 fe-0/0/1.0 Up Sparse 4 2 DR 0 10.0.15.2
 lo0.0 Up Sparse 4 2 DR 0 192.168.13.1
 se-0/0/2.0 Up Sparse 4 2 P2P 0
 se-0/0/3.0 Up Sparse 4 2 P2P 0

This output shows that PIM is running on the three network interfaces, fe-0/0/1, se-0/0/2, and se-
0/0/3, and on the router's loopback interface. The Mode column verifies that PIM is in sparse mode,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the V column shows PIM Version 2. At this point, the router has no PIM neighbors, so the Count
column shows 0 for all interfaces. The PIM.master in the first line indicates that you are looking at the
main routing instance of PIM, because you are running only a single instance of PIM.

Next, check IGMP:

 aviva@RouterA> show igmp interface
 Interface: fe-0/0/1.0
 Querier: 10.0.15.2
 State: Up Timeout: None Version: 2 Groups: 0

 Interface: se-0/0/3.0
 Querier: 10.0.16.1
 State: Up Timeout: None Version: 2 Groups: 0
 Interface: se-0/0/2.0
 Querier: 10.0.21.1
 State: Up Timeout: None Version: 2 Groups: 0

 Configured Parameters:
 IGMP Query Interval: 125.0
 IGMP Query Response Interval: 10.0
 IGMP Last Member Query Interval: 1.0
 IGMP Robustness Count: 2

 Derived Parameters:
 IGMP Membership Timeout: 260.0
 IGMP Other Querier Present Timeout: 255.0

You see that without even configuring IGMP, it is running on the same three network interfaces as
PIM-SM. For each interface, the State shows that IGMP is Up and operational and that the IGMP is
Version 2. Because this recipe has not modified any of the default IGMP settings, the Configured
Parameters section of the output shows the default JUNOS values of IGMP group membership
parameters, which match the defaults specified in RFC 2236.

After configuring PIM on the other routers in the network, check again to see whether the router has
located any PIM neighbors. You can check for PIM neighbors directly:

 aviva@RouterA> show pim neighbors
 Instance: PIM.master
 Interface IP V Mode Option Uptime Neighbor addr
 fe-0/0/1.0 4 2 HPLG 5d 18:12:41 10.0.15.1
 se-0/0/2.0 4 2 HPLG 5d 18:12:41 10.0.21.2
 se-0/0/3.0 4 2 HPLG 4d 23:56:38 10.0.16.2

The three PIM-enabled interfaces each connect to one PIM neighbor. fe-0/0/1 connects to RouterE,
se-0/0/2 to RouterB, and se-0/0/3 to RouterG.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once you have configured PIM neighbors, the routers join IGMP groups:

 aviva@RouterA> show igmp interface
 Interface: fe-0/0/1.0
 Querier: 10.0.15.1
 State: Up Timeout: 180 Version: 2 Groups: 4
 Interface: se-0/0/3.0
 Querier: 10.0.16.1
 State: Up Timeout: None Version: 2 Groups: 4
 Interface: se-0/0/2.0
 Querier: 10.0.21.1
 State: Up Timeout: None Version: 2 Groups: 4

 Configured Parameters:
 IGMP Query Interval: 125.0
 IGMP Query Response Interval: 10.0

 IGMP Last Member Query Interval: 1.0
 IGMP Robustness Count: 2

 Derived Parameters:
 IGMP Membership Timeout: 260.0
 IGMP Other Querier Present Timeout: 255.0

The output shows that each interface is in four IGMP groups. Use the show igmp group command to
find out which groups the interfaces have joined:

 aviva@RouterA> show igmp group
 Interface: fe-0/0/1.0
 Group: 224.0.0.2
 Source: 0.0.0.0 Last reported by: 10.0.15.1
 Timeout: 64 Type: Dynamic
 Group: 224.0.0.5
 Source: 0.0.0.0 Last reported by: 10.0.15.1
 Timeout: 64 Type: Dynamic
 Group: 224.0.0.6
 Source: 0.0.0.0 Last reported by: 10.0.15.1
 Timeout: 63 Type: Dynamic
 Group: 224.0.0.22
 Source: 0.0.0.0 Last reported by: 10.0.15.1
 Timeout: 61 Type: Dynamic
 …

This abridged output shows the IGMP groups for fe-0/0/1. The address 224.0.0.2 is the group for all
routers on the local subnet, 224.0.0.5 and 224.0.0.6 are the groups for OSPF (OSPF is the IGP
configured on these routers), and 224.0.0.22 is the IGMP group. (For a list of IP multicast groups,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

see http://www.iana.org/assignments/multicast-addresses.)

http://www.iana.org/assignments/multicast-addresses
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.2. Manually Establishing a PIM-SM RP

Problem

For PIM-SM to function, the PIM domain needs to have an RP. You want to assign one of the PIM
routers to be the RP.

Solution

Manually configure which router is to be the RP. Set the local router to be the RP:

 [edit protocols pim]
 aviva@RouterA# set rp local address 192.168.13.1

On the other routers, configure the address of the RP:

 [edit protocols pim]
 aviva@RouterB# set rp static address 192.168.13.1

Discussion

PIM-SM uses the RP as the shared root of a multicast distribution tree. Only a single RP is active for a
group at any point in time. There are three mechanisms for creating RPs: static RP, auto-RP (see
Recipe 16.3), and bootstrap router (BSR; see Recipe 16.4). Manually mapping RPs to groups is the
simplest way to configure RPs in your network. A disadvantage of this method is that if an RP router
becomes unavailable, no backup RP is immediately ready to take over, and multicast services will be
unavailable until you manually configure another router to be the RP.

The first command in this recipe, set rp local, establishes the local router, RouterA, as the RP. For
the address, use the router's loopback address. To verify the configuration, check the local router's
loopback address and then list the PIM RPs:

 aviva@RouterA> show interfaces terse lo0.0
 Interface Admin Link Proto Local Remote
 lo0.0 up up inet 192.168.13.1 --> 0/0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterA> show pim rps
 Instance: PIM.master
 Address family INET
 RP address Type Holdtime Timeout Active groups Group prefixes
 192.168.13.1 static 0 None 0 224.0.0.0/4
 Address family INET6

These commands show that the local loopback address is 192.168.13.1 and that this is the address of
the RP. The Group prefixes column shows that the local RP is the RP for all groups in the range
224.0.0.0/4, which is the default for manually configured RPs.

The second command, set rp static, configures the non-RP routers to know the address of the RP
so they know where to send PIM Join messages. Verify the configuration on the non-RP routers in the
same way:

 aviva@RouterB> show pim rps
 Instance: PIM.master
 Address family INET
 RP address Type Holdtime Timeout Active groups Group prefixes
 192.168.13.1 static 0 None 2 224.0.0.0/4
 Address family INET6

The RP address column matches the RP's address.

To make the router be an RP for a more specific range than the default 224.0.0.0/4, include the
range when configuring the RP:

 [edit protocols pim]
 aviva@RouterA# set rp local group-ranges 224.0.0.0/8

This command sets the local router to be an RP for 224.0.0/8 instead of the default 224.0.0.0/4.
Different routers can be RPs for different ranges. The following command configures RouterG
(192.168.19.1) is set to be the RP for the 234.0.0.0/8 range:

 aviva@RouterA# set rp static address 192.168.19.1 group-ranges 234.0.0.0/8

Again, verify the configured group ranges:

 aviva@RouterA>
show pim rps inet detail

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Instance: PIM.master
 Address family INET
 RP: 192.168.13.1
 Learned via: static configuration
 Time Active: 00:04:09
 Holdtime: 0
 Group Ranges:
 224.0.0.0/8

 RP: 192.168.19.1
 Learned via: static configuration
 Time Active: 00:01:57
 Holdtime: 0
 Group Ranges:
 234.0.0.0/8

The detail version of the show pim rps command shows that both routers become RPs as a result of
manual configuration.

See Also

Recipes 16.3 and 16.4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.3. Using Auto-RP to Dynamically Map RPs

Problem

Instead of manually configuring the RP, you want the routers to decide among themselves which one
should be the RP.

Solution

With auto-RP, the PIM routers determine which one should be the RP, thereby automating the
distribution of the group-to-RP mappings. There are three steps for configuring auto-RP. First,
configure PIM in sparse-dense mode on all routers in the PIM domain:

 [edit protocols pim]
 aviva@RouterA# set interface all mode sparse-dense

Then, configure the two multicast dense-mode groups 224.0.1.39/32 and 224.0.1.40/32 on all
routers:

 [edit protocols pim]
 aviva@RouterA# set dense-groups 224.0.1.39/32
 aviva@RouterA# set dense-groups 224.0.1.40/32

Finally, configure auto-RP on each router. One router in the PIM domain must announce auto-RP
messages and another must map them. You can also configure the local router to perform both
functions:

 [edit protocols pim]
 aviva@RouterA# set rp local address 192.168.13.1
 aviva@RouterA# set rp auto-rp mapping

On the remaining routers in the PIM domain, configure sparse-dense mode and configure them to
discover the RP:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit protocols pim]
 aviva@RouterG# set interface all mode sparse-dense
 aviva@RouterG# set rp auto-rp discovery

Discussion

Auto-RP dynamically maps groups to RPs, and PIM routers in the network automatically learn the
addresses of the RPs. The auto-RP mechanism is not defined in an IETF RFC but is a proprietary
mechanism developed by Cisco Systems for IOS routers and is supported by the JUNOS software so
that JUNOS and IOS routers can interoperate within a PIM-SM domain.

Auto-RP provides a failover mechanism in case an RP router fails. You configure several routers as
candidates to become the RP, and the routers elect the RP. If the elected RP becomes unavailable,
the remaining candidate routers simply elect another RP. You do not need to intervene to modify any
router configurations.

One of the first things to notice about this configuration is that auto-RP requires PIM be in sparse-
dense mode rather than sparse mode. All routers in the PIM domain must be in this mode. Multicast
groups can be in either sparse or dense mode, and PIM handles the groups appropriately. Auto-RP
uses dense mode to flood messages throughout the network announcing RP candidates and to
discover which routers have been elected as RPs.

If you commit the configuration after configuring just sparse-dense mode, use the show pim
interface command to check the PIM mode:

 aviva@RouterA> show pim interfaces
 Instance: PIM.master
 Name Stat Mode IP V State Count DR address
 fe-0/0/1.0 Up SparseDense 4 2 DR 1 10.0.15.2
 lo0.0 Up SparseDense 4 2 DR 0 192.168.13.1
 se-0/0/2.0 Up SparseDense 4 2 P2P 1
 se-0/0/3.0 Up SparseDense 4 2 P2P 0

This output from RouterA shows that the three physical interfaces are all in sparse-dense mode.

In the second step in the configuration, configure the two multicast groups 224.0.1.39 and
224.0.1.40 as PIM dense-mode groups. The PIM routers use these two addresses, reserved by IANA
for auto-RP, to elect the RP. All PIM routers that are willing to be an RP send RP Announcement
messages to group 224.0.1.39. The PIM routers that are acting as RP- mapping agents join this
group and select a single RP for each group address range. The group range and RP together are
called an RP mapping. The RP-mapping agents then advertise the RP mappings to group 224.0.1.40.
All PIM routers join this group to discover the RP for each group.

The final configuration step defines the auto-RP behavior for each PIM router. For auto-RP to work, at
least one router in the PIM domain must announce its availability to serve as RP, and at least one
router must map which multicast groups the RP wants to receive traffic from. This recipe configures a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

single router to perform both functions. The set rp local address 192.168.13.1 command
establishes the local router as an RP candidate, and the set rp auto-rp mapping command
configures the router to map RPs to multicast groups. All the remaining routers in this recipe are
configured with the set rp auto-rp discovery command to discover the RP.

Check to see which router is the RP. Start on RouterA, which is the only router that has announced
its willingness to be RP:

 aviva@RouterA> show pim rps inet
 Instance: PIM.master
 Address family INET
 RP address Type Holdtime Timeout Active groups Group prefixes
 192.168.13.1 auto-rp 150 150 2 224.0.0.0/4
 192.168.13.1 static 0 None 2 224.0.0.0/4

The output shows that this router is the RP both as a result of static configuration and of being
elected by auto-RP. Check which RPs one of the other routers has learned about:

 aviva@RouterG> show pim rps inet
 Instance: PIM.master
 Address family INET
 RP address Type Holdtime Timeout Active groups Group prefixes
 192.168.13.1 auto-rp 150 150 2 224.0.0.0/4

You see that RouterG has learned from auto-RP that RouterA (192.168.13.1)is the RP.

The net effect of this configuration in this recipe is that only one router in the domain, RouterA, is
eligible to be the RP, so this router is still a single point of failure. To provide a backup RP candidate,
configure another router to announce that it can be the RP:

 [edit protocols pim]
 aviva@RouterG# set rp local address 192.168.19.1
 aviva@RouterG# set rp auto-rp announce

With this additional configuration, if RouterA goes down, RouterG automatically becomes RP.
Checking on RouterG after the initial configuration, you see that RouterA is the elected RP:

 aviva@RouterG> show pim rps inet
 Instance: PIM.master

 Address family INET
 RP address Type Holdtime Timeout Active groups Group prefixes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 192.168.13.1
auto-rp 150 150 2 224.0.0.0/4
 192.168.19.1 static 0 None 0 224.0.0.0/4

When RouterA goes down, RouterG become the RP:

 aviva@RouterG> show
pim rps inet
 Instance:
PIM.master
 Address family INET
 RP address Type Holdtime Timeout Active groups Group prefixes
 192.168.19.1 auto-rp 150 150 2 224.0.0.0/4
 192.168.19.1 static 0 None 2 224.0.0.0/4

If you don't want the same PIM router to perform both the RP announcement and group mapping
functions, configure one router to announce (as we did with RouterG above) and configure another
one to map:

 [edit protocols pim]
 aviva@RouterE# set rp auto-rp mapping

After all routers are running auto-RP, look at the PIM interfaces on the routers. First, look at the RP
router:

 aviva@RouterA> show pim interfaces
 Instance: PIM.master
 Name Stat Mode IP V State Count DR address
 fe-0/0/0.0 Up SparseDense 4 2 NotDR 2 172.19.121.115
 fe-0/0/1.0 Up SparseDense 4 2 DR 1 10.0.15.2
 lo0.0 Up SparseDense 4 2 DR 0 192.168.13.1
 pd-0/0/0.32769 Up Sparse 4 2 P2P 0
 se-0/0/2.0 Up SparseDense 4 2 P2P 1
 se-0/0/3.0 Up SparseDense 4 2 P2P 0

Then, look at one of the non-RP routers:

 aviva@RouterE> show pim interfaces
 Instance: PIM.master
 Name Stat Mode IP V State Count DR address

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 fe-0/0/0.0 Up SparseDense 4 2 NotDR 3 172.19.121.119
 fe-0/0/1.0 Up SparseDense 4 2 NotDR 1 10.0.15.2
 lo0.0 Up SparseDense 4 2 DR 0 192.168.15.1
 pe-0/0/0.32770 Up Sparse 4 2 P2P 0
 t1-0/0/3.0 Up SparseDense 4 2 P2P 0

On both routers, you see that all the physical interfaces are running PIM in sparsedense mode. You
also see two new interfaces, pd-0/0/0 on the RP and pe-0/0/0 on the non-RP. pd stands for n and pe
for PIM encapsulation, and they are interfaces on the tunnel, AS, or link services PICs that handle
PIM Register messages. PIM Register messages use these two interfaces to encapsulate and de-
encapsulate data packets. PIM-SM RPs create pd interfaces so they can remove multicast data from
PIM Register messages, and PIM-SM routers that see a local multicast source on one of their
interfaces use pe interfaces to send Register messages.

JUNOS routers perform the encapsulation and de-encapsulation in hardware, using the service PICs,
not on the RE. This allows the routers to handle and forward PIM Register messages more quickly
than if the RE were doing this. Also, the routing processes running on the Routing Engine do not have
to be interrupted to handle PIM Register messages.

See Also

Recipes 16.2 and 16.4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.4. Setting Up a PIM-SM Bootstrap Router

Problem

You want to use PIM in sparse mode, not in dense mode, and have it dynamically determine RPs, and
you want to use a standard method, not auto-RP.

Solution

Configure a PIM bootstrap router to dynamically set up RPs for the PIM domain. First, configure the
routers that are candidates to be bootstrap routers:

 [edit protocols pim]
 aviva@RouterB# set rp bootstrap-priority 50
 aviva@RouterB# set interface all mode sparse

 [edit protocols pim]
 aviva@RouterA# set rp bootstrap-priority 50
 aviva@RouterA# set interface all mode sparse

Then, configure which routers are candidates to be RPs:

 [edit protocols pim]
 aviva@RouterA# set rp local address 192.168.13.1

 [edit protocols pim]
 aviva@RouterG# set rp local address 192.168.19.1
 aviva@RouterG# set interface all mode sparse

Discussion

PIM Version 2 supports a bootstrap protocol for dynamically learning the RPs in a PIM-SM domain and
mapping multicast groups to RP addresses. A bootstrap router is responsible for constructing an RP
set, which is a list of candidate RPs and the group prefixes that correspond to the RP set. The
bootstrap router distributes this information in Bootstrap messages that are multicast to 224.0.0.13,
which is the All-PIM-Routers group. Candidate RPs send Candidate RP Advertisement messages to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

announce their group prefixes to the elected bootstrap router. It is then the job of the elected
bootstrap router to choose the RP for each group.

The PIM bootstrap protocol sets up a primary bootstrap router and a backup candidate bootstrap
router, which is available in case the primary one goes down.

In this recipe, RouterA and RouterB act as the bootstrap routers, and RouterA and RouterG are the
RPs. The set rp bootstrap-priority commands establish these two routers as the candidate
bootstrap routers. The priority value ranks the likelihood for the router to actually become the
bootstrap router. The value can be from 0 through 255, with a lower number representing a higher
priority. However, setting the value to 0 makes the router ineligible to become the bootstrap router.
The set rp local address commands on RouterA and RouterG configure these two routers as RPs.
The commands in the recipe include the set mode sparse command to re-enforce the fact that the
routers are running in sparse mode. If you are switching from auto-RP, which requires PIM to be in
sparse-dense mode, make sure you change PIM back to sparse mode.

Verify that a bootstrap router has been elected. Both routers have the same priority for becoming
bootstrap routers, so let's look on RouterA first:

 aviva@RouterA>
show pim bootstrap
 Instance: PIM.master

BSR Pri Local address Pri State Timeout
 192.168.13.1 50 192.168.13.1 50 Elected 57

The BSR column shows that 192.168.13.1 (RouterA) is the bootstrap router. The State column
confirms that this router has been elected as the bootstrap router. Now check RouterB:

 aviva@RouterB> show pim bootstrap
 Instance: PIM.master
 BSR Pri Local address Pri State Timeout
 192.168.13.1 50 192.168.12.1 50 Candidate 124

The BSR column again shows that RouterA is the bootstrap router. The State column indicates that
RouterB is the candidate bootstrap router. Why did RouterA win the bootstrap election? Because the
bootstrap election priority is the same on both routers, the outcome is determined by choosing the
router with the higher IP address.

Verify that the other routers know about the bootstrap router. We can look on RouterG:

 aviva@RouterG> show pim bootstrap
 Instance: PIM.master
 BSR Pri Local address Pri State Timeout
 192.168.13.1 50 192.168.19.1 0 InEligible 121

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Again, you see this router knows that RouterA (192.168.13.1)is the bootstrap router. The Pri column
shows that RouterG's priority to become the bootstrap router is 0, which means it can never become
the bootstrap router. The State column confirms this (Ineligible). The show pim bootstrap
command output on the RouterE is similar to that on RouterG.

Now check the RP status on the routers. This recipe configured RouterA and RouterG as RPs. We
check RouterA first:

 aviva@RouterA> show pim rps inet
 Instance: PIM.master
 Address family INET
 RP address Type Holdtime Timeout Active
groups Group prefixes
 192.168.13.1 bootstrap 150 None 3 224.0.0.0/4
 192.168.13.1 static 0 None 3 224.0.0.0/4

The first line shows that this router (192.168.13.1)has been elected as the RP by the bootstrap
router. The statically configured RP, shown in the second line of the output, is inactive because its
hold time, which is how long the RP should remain active, is 0.

This recipe also configures RouterG as a candidate RP, so check its RP status:

 aviva@RouterG> show pim rps inet
 Instance: PIM.master
 Address family INET
 RP address Type Holdtime Timeout Active groups Group prefixes
 192.168.13.1 bootstrap 150 150 3 224.0.0.0/4
 192.168.19.1 static 0 None 0 224.0.0.0/4

The first line in the output confirms that RouterA (192.168.13.1)is the RP, as elected by the bootstrap

router. The second line of the output confirms that we statically configured RouterG to be an RP, but
the hold-time value of 0 shows you that this configuration is not active.

See Also

Recipes 16.2 and 16.3

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.5. Filtering PIM-SM Bootstrap Messages

Problem

Your PIM-SM domain uses bootstrap routers to elect RPs. Some of the routers have interfaces that
connect to other PIM-SM domains. You need to ensure that Bootstrap messages do not cross the
domain boundary.

Solution

On router interfaces that connect to other PIM-SM domains, create filters to prevent bootstrap router
messages from crossing domain boundaries:

 [edit policy-options]
 aviva@RouterB# set policy-statement pim-bootstrap-import from interface se-0/0/3
 aviva@RouterB# set policy-statement pim-bootstrap-import then reject
 aviva@RouterB# set policy-statement pim-bootstrap-export from interface se-0/0/3
 aviva@RouterB# set policy-statement pim-bootstrap-export then reject

 [edit protocols pim]
 aviva@RouterB#
set rp bootstrap-import pim-bootstrap-import
 aviva@RouterB#
set rp bootstrap-export pim-bootstrap-export

Discussion

As a final part of the bootstrap router configuration, you need to make sure that Bootstrap messages
from one PIM-SM domain don't accidentally cross into another PIM-SM domain. To prevent this from
happening, configure bootstrap routing-policy filters that reject all incoming and outgoing traffic on
interfaces that connect to other PIM-SM domains. The two policies you need to accomplish this are
very simple:

 aviva@RouterB> show configuration policy-options
 policy-statement pim-bootstrap-import {
 from interface se-0/0/3.0;
 then reject;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 policy-statement pim-bootstrap-export {
 from interface se-0/0/3.0;
 then reject;
 }

Apply these policies directly in the PIM bootstrap configuration, with the set rp bootstrap-import
and set rp bootstrap-export commands in the [edit protocols pim] hierarchy.

See Also

Recipes 9.1 and 16.4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.6. Configuring Multiple RPs in a PIM-SM
Domain with Anycast RP

Problem

Your PIM-SM domain has multiple RPs. When you use PIM bootstrap or auto-RP to establish RPs, PIM
maps each group to a single RP, but you want to deploy more than one RP for a single group range.

Solution

Configure anycast RP on each RP router in the PIM-SM domain. First, configure the shared anycast
address on the router's loopback interface:

 [edit interfaces]
 aviva@RouterA# set lo0 unit 0 family inet address 10.0.1.1/32

Also, make sure that the router's regular loopback address is the primary address for the interface:

 [edit interfaces]
 aviva@RouterA# set lo0 unit 0 family inet address 192.168.13.1/32 primary

When you configure the local RP address, use the shared address:

 [edit protocols pim]
 aviva@RouterA# set rp local address 10.0.1.1

Then, create MSDP sessions to the other RPs in the domain:

 [edit protocols msdp]
 aviva@RouterA# set local-address 192.168.13.1
 aviva@RouterA# set peer 192.168.12.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you are configuring all the other non-RP PIM routers, configure a static RP using the shared
address:

 [edit protocols pim]
 aviva@RouterG# set rp static address 10.0.1.1

Discussion

Anycast RP is probably the simplest and most redundant way to distribute RP-to-group mapping
information among the PIM routers in a domain. Anycast lets you configure multiple routers to be RPs
for the same group range, and traffic for all groups served by the RPs is load-balanced across the
multiple RP routers. With other methods for setting up RPs, only a single RP is active at one time. If
the active RP fails, the convergence time to elect another RP can be slow if you are using auto-RP or
bootstrap, and it is even slower if you have to manually reconfigure the RP. Anycast RP significantly
improves the convergence time over both auto-RP and bootstrap.

Anycast RP uses a shared anycast address across all the RP routers in the PIM-SM domain. This
recipe uses 10.0.1.1/32 as the shared anycast address. To start the configuration of the RP routers,
assign the shared address to the router's loopback address on each RP router. This address is not the
primary lo0 address but is an additional address for lo0.

To make sure that BGP and OSPF use the main lo0 address as the router ID, include the primary
keyword with that address in addition to explicitly configuring the router ID with the set routing-
options router-id command. In this recipe, the primary address is 192.168.13.1, and the following
command adds the primary keyword:

 [edit interfaces]
 aviva@RouterA# set lo0 unit 0 family inet address 192.168.13.1/32 primary

Check to make sure that both addresses are configured on the lo0 interface and that 192.168.13.1 is
marked as the primary address:

 [edit interfaces]
 aviva@RouterA# show lo0
 unit 0{

 family inet {
 address 192.168.13.1/32 {
 primary;
 }
 address 10.0.1.1/32;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

Also, check that the router ID is set:

 [edit routing-options]
 aviva@RouterA# show
 router-id 192.168.13.1

As the next step in configuring the RP routers, use the shared anycast address as the local address
when configuring the RP routers. Verify that all the RP routers have the same configuration:

 [edit protocols pim]
 aviva@RouterA# show rp
 local {
 address 10.0.1.1;
 }

The RPs in the PIM-SM domain use MSDP to discover each other and share information and to
maintain a consistent view of the active sources. To set up MSDP on each RP, configure the address
of the local router's loopback address and the addresses of the other RPs in the domain. This recipe
shows the configuration on RouterA (local loopback address of 192.168.13.1)in a domain that has
only one other RP, RouterB (loopback address of 192.168.12.1):

 [edit protocols]
 aviva@RouterA# show msdp
 local-address 192.168.13.1;
 peer 192.168.12.1;

Because anycast RP works in conjunction with an RP election method, you must also configure static,
auto-RP, or bootstrap RPs on the appropriate PIM routers. This recipe uses static RP configuration, so
you must configure the address of the RP on each of the non-RP routers. Here, you use the shared
RP address, not the address of one of the router's primary loopback interfaces. Here's what the
configuration looks like on the non-RP RouterG:

 aviva@RouterG> show configuration protocols pim
 rp {
 static {
 address 10.0.1.1;
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 interface all;
 interface fe-0/0/0.0 {
 disable;
 }

Check to see which RPs the various routers have learned about. Let's start with one of the RPs,
RouterA:

 aviva@RouterA> show pim rps extensive inet
 Instance: PIM.master
 Address family INET
 RP: 10.0.1.1
 Learned via: static configuration
 Time Active: 21:46:08
 Holdtime: 0
 Device Index: 130
 Subunit: 32769
 Interface: pd-0/0/0.32769
 Group Ranges:
 224.0.0.0/4
 Active groups using RP:
 224.2.127.254
 224.1.1.1
 224.0.1.40
 224.0.1.39
 total 4 groups active

The RP line shows that the shared address 10.0.1.1 is the RP for the group ranges 224.0.0.0/4. The
output shows that four groups are actively using this RP. Looking on the other RP router, you see
that it also lists the shared address as the RP for the group 224.0.0.0/4:

 aviva@RouterB> show pim rps extensive inet
 Instance: PIM.master
 Address family INET
 RP: 10.0.1.1
 Learned via: static configuration
 Time Active: 21:48:42
 Holdtime: 0
 Device Index: 130
 Subunit: 32769
 Interface: pd-0/0/0.32769
 Group Ranges:
 224.0.0.0/4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Currently, no groups are using RouterB as the RP. As further verification, look at RouterG, one of the
non-RP routers:

 aviva@RouterG> show pim rps
 Instance: PIM.master
 Address family INET
 RP address Type Holdtime Timeout Active groups Group prefixes
 10.0.1.1 static 0 None 4 224.0.0.0/4

This router has also learned that the shared address 10.0.1.1 is the RP.

See Also

Recipes 16.2, 16.3, and 16.4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.7. Configuring Multiple RPs in a PIM-SM
Domain Anycast PIM

Problem

You want to configure multiple redundant RPs without the complexity of having to use MSDP.

Solution

Anycast PIM uses a mechanism similar to anycast RP but bypasses the need for MSDP. The
configuration is similar to anycast RP. On each of the PIM-SM domain's RPs, configure the shared
anycast address on the router's loopback interface:

 [edit interfaces]
 aviva@RouterA# set lo0 unit 0 family inet address 10.0.1.1/32

Set the router's regular loopback address as the primary address for the interface:

 [edit interfaces]
 aviva@RouterA# set lo0 unit 0 family inet address 192.168.13.1/32 primary

Then configure PIM. First, set the local RP to use the shared RP address:

 [edit protocols pim]
 aviva@RouterA# set rp local family inet address 10.0.1.1

Then, configure anycast PIM on the RP. First, configure the addresses of the other RPs in the PIM-SM
domain:

 [edit protocols pim]
 aviva@RouterA# set rp local family inet anycast-pim rp-set 192.168.12.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Second, configure the primary loopback address of the local router:

 [edit protocols pim]
 aviva@RouterA# set rp local family inet anycast-pim local-address 192.168.13.1

On the non-RP PIM routers, configure a static RP using the shared address:

 [edit protocols pim]
 aviva@RouterG# set rp static address 10.0.1.1

Discussion

Anycast RP provides the advantages of having redundant RPs, but the cost is that MSDP must run
between all the anycast RP routers to synchronize the active source information. Anycast PIM,
defined in IETF draft draft-ietf-pim-anycast-rp.txt, provides the same advantages but without the
overhead of having to run MSDP to share active source information among the RPs. Anycast PIM
extends the definition of PIM Register messages so that they carry active source information among
all routers sharing the same unicast (anycast) address.

The anycast PIM configuration is quite similar to that for anycast RP. On the RP routers, configure the
loopback interface with the shared RP address. This address tells other routers in the PIM-SM domain
what IP address to use for the RP address. Mark the regular loopback address as the primary address
so that address is used as the router ID by unicast routing protocols. Verify the loopback interface
configuration:

 aviva@RouterA> show configuration interfaces lo0
 unit 0 {
 family inet {
 address 192.168.13.1/32 {
 primary;
 }
 address 10.0.1.1/32;
 }
 }

On RouterA, 192.168.13.1 is the primary loopback address, to be used by BGP and OSPF as the
router ID, and 10.0.1.1 is the shared RP address.

Instead of configuring the shared RP address at the [edit pim rp local] hierarchy as you did with
anycast RP, you do this one level lower, at [edit pim rp local family inet]. You must configure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

three parameters: the shared RP address, a list of all the RP routers in the PIM-SM domain (called
the RP set), and the primary loopback address of the local router. The RP set must be the same on all
RP routers in the domain so that all the RPs have a consistent view of the active sources. If the lists
are different, anycast PIM will not work. The configuration shown in this recipe looks like this:

 [edit protocols]
 aviva@RouterA# show
 pim {
 rp {
 local {
 family inet {
 address 10.0.1.1; # <-- shared RP address
 anycast-pim {
 rp-set {
 address 192.168.12.1; # <-- primary lo0 of other RP
 }
 local-address 192.168.13.1; # <-- primary lo0 of this RP
 }
 }
 }
 }
 interface all {
 mode sparse;
 }
 interface fe-0/0/0 {
 disable;
 }
 }

When you use the show pim rps command to verify that the anycast PIM RPs are configured and
operating correctly, some additional information about the RP is displayed:

 aviva@RouterA> show pim rps extensive inet
 Instance: PIM.master
 Address family INET
 RP: 10.0.1.1
 Learned via: static configuration
 Time Active: 00:54:52
 Holdtime: 0
 Device Index: 130
 Subunit: 32769
 Interface: pd-0/0/0.32769
 Group Ranges:
 224.0.0.0/4
 Active groups using RP:
 224.1.1.1
 total 1 groups active
 Anycast-PIM rpset:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 192.168.12.1
 Anycast-PIM local address used: 192.168.13.1
 Anycast-PIM Register State:
 Group Source Origin
 224.1.1.1 192.168.15.1 DIRECT

The first several lines show the shared RP address of 10.0.1.1 that was learned through static
configuration, the group ranges this RP is servicing, and the active groups using the RP, all of which
are displayed when you use anycast RP. For anycast PIM, you also see the set of RP routers in the
PIM domain (in Anycast-PIM rpset) and the primary loopback address of the local router (in Anycast-
PIM local address used). The last section of the output shows which groups the RPs have learned
from the PIM Register messages that anycast PIM uses to share active source information among the
RPs in the PIM-SM domain.

See Also

IETF draft, draft-ietf-pim-anycast-rp.txt, Anycast-RP using PIM

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.8. Limiting the Group Ranges an RP Services

Problem

When configuring the RPs for a PIM-SM domain, you want to limit the address range so the router
acting as the RP does not need to handle traffic for so many multicast groups.

Solution

Specify the group address range when you configure the RP:

 [edit protocols pim]
 aviva@RouterA# set rp local address 192.168.13.1 group-ranges 224.0.0.0/8

Discussion

When you configure a PIM router to be an RP, by default it is eligible to be the RP for all groups. For
IPv4 the default group range is 224.0.0.0/4, and for IPv6 it is FF70::/12 to FFF0::/12. If some
multicast groups are sending a lot of traffic, a single RP might become overwhelmed with handling it
all. To minimize router overload and congestion, configure several RPs and have each one of them
act as RP only for a limited range of group addresses.

This recipe shows how to limit an RP to handle only groups in the 224.0.0.0/8 range. To verify that
the configuration has taken effect, look at the RP routers:

 aviva@RouterA>
show pim rps
 Instance: PIM.master
 Address family INET
 RP address Type Holdtime Timeout Active groups Group prefixes
 192.168.13.1 bootstrap 150 None 4 224.0.0.0/8
 192.168.13.1 static 0 None 4 224.0.0.0/8
 Address family INET6

The Group prefixes column shows that this router is now RP only for the range 224.0.0.0/8. It is no
longer RP for the default range of 224.0.0.0/4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can limit the group address range serviced by the RP regardless of the method you choose to
establish the RP routers in your PIM-SM domain. The show pim rps output above tells you that the RP
router was configured using a bootstrap router. You can also use the set rp local address group-
ranges command if you configure the RP manually, with auto-RP, or with anycast.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.9. Viewing Multicast Routes

Problem

You want to view the multicast routes that a router has learned.

Solution

The multicast protocols create a multicast forwarding cache, which the JUNOS software stores in the
inet.1 routing table:

 aviva@RouterA> show route table inet.1
 inet.1: 1 destinations, 1 routes (1 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 224.1.1.1,10.0.15.1/32*[PIM/105] 00:00:08
 Multicast (IPv4)

Another way to get information about multicast routes is with the show multicast route command:

 aviva@RouterA>
show multicast route
 Address family INET
 Group: 224.1.1.1
 Source: 10.0.15.1/32
 Upstream interface: fe-0/0/1.0
 Downstream interface list:
 se-0/0/3.0
 Address family INET6

Discussion

When a router receives multicast traffic, it places the (S,G) route information in the JUNOS multicast
cache, inet.1. This recipe shows how to display the contents of this table with a variant of the show
route command that displays just the inet.1 table. The output in this recipe shows one route, which
is displayed as 224.1.1.1,10.0.15.1. The first part, 224.1.1.1, is the multicast group, and the second
part is the source address of the route. Looking at the network topology, you see that 10.0.15.1 is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the address of the fe-0/0/1 interface on RouterA, which connects to RouterE. This tells you that
RouterA learned this route from a source connected to RouterE. The second column of the show route
output reports that the route was learned from PIM, has a preference of 105 ([PIM/105]), and is a
multicast route.

The format of the show route output is optimized for unicast routes, and really doesn't represent the
details about multicast routes very well. A better command to use instead is show multicast route.
The basic output is shown in this recipe. Use the extensive form to get more detailed information:

 aviva@RouterA> show multicast route extensive
 Address family INET
 Group: 224.1.1.1
 Source: 10.0.15.1/32
 Upstream interface: fe-0/0/1.0
 Downstream interface list:
 se-0/0/3.0
 Session description: ST Multicast Groups
 Statistics: 0 kBps, 0 pps, 5 packets
 Next-hop ID: 359
 Upstream protocol: PIM
 Route state: Active
 Forwarding state: Forwarding
 Cache lifetime/timeout: 356 seconds
 Wrong incoming interface notifications: 0

The first several fields are common to the regular and detailed output. The Group field reports the
multicast group that sent the route, which here is 224.1.1.1. The Source and Upstream interface
lines tell that this route was learned from 10.0.15.1, which is the address of the fe-0/0/1 interface to
RouterE. This interface is upstream, or toward the multicast source.

The interfaces toward the multicast receivers are listed next. Here, there is only one downstream
interface, se-0/0/3, which connects to RouterG.

The extensive option displays additional information about the route. The Statistics line shows that
this group has transmitted 5 packets, and Upstream protocol shows that PIM is the multicast protocol
in use. Use the show multicast usage command to look at just the packet transmission statistics for
each group and source:

 aviva@RouterA> show multicast usage
 Group Sources Packets Bytes
 224.1.1.1 1 5 420

 Prefix /len Groups Packets Bytes
 10.0.15.1 /32 1 5 420

This output confirms that the router has received 5 packets from group 224.1.1.1, from the source

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10.0.15.1 (RouterE).

If the router has not yet received any multicast traffic, the inet.1 table is empty because the routes
have not learned any (S,G) state. For testing purposes, if you need to generate multicast traffic, you
can issue ping commands. This is how the traffic in this recipe was generated because the test
network being used is not connected to any multicast sources. To do this, first set up the Session
Announcement Protocol (SAP) on a non-RP router to listen to a multicast address:

 [edit]
 aviva@RouterG# set protocols sap listen 224.1.1.1

Then from a non-RP router on the other side of the RP from the SAP-enabled router, ping the
multicast address::

 aviva@RouterE> ping 224.1.1.1 ttl 8 interface fe-0/0/1 count 5 bypass-routing
 PING 224.1.1.1 (224.1.1.1): 56 data bytes
 64 bytes from 10.0.16.2: icmp_seq=0 ttl=254 time=85.554 ms
 64 bytes from 10.0.16.2: icmp_seq=1 ttl=254 time=10.612 ms
 64 bytes from 10.0.16.2: icmp_seq=2 ttl=254 time=10.367 ms
 64 bytes from 10.0.16.2: icmp_seq=3 ttl=254 time=10.365 ms
 64 bytes from 10.0.16.2: icmp_seq=4 ttl=254 time=70.044 ms
 --- 224.1.1.1 ping statistics ---
 5 packets transmitted, 5 packets received, 0% packet loss
 round-trip min/avg/max/stddev = 10.365/37.388/85.554/33.358 ms

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.10. Checking the Groups for Which a PIM-SM
Router Maintains Join State

Problem

PIM-SM is enabled on all routers, and each router has discovered an RP. You want to check that the
router has joined the desired multicast groups.

Solution

Look at the Join messages to see the groups for which the PIM router maintains join state:

 aviva@RouterA> show pim join
 Instance: PIM.master Family: INET
 Group: 224.0.1.39
 Source: *
 RP: 192.168.13.1
 Flags: sparse,rptree,wildcard
 Upstream interface: local
 Group: 224.0.1.40
 Source: *
 RP: 192.168.13.1
 Flags: sparse,rptree,wildcard
 Upstream interface: local
 Group: 224.1.1.1
 Source: *
 RP: 192.168.13.1
 Flags: sparse,rptree,wildcard
 Upstream interface: local
 Group: 224.1.1.1
 Source: 10.0.15.1
 Flags: sparse
 Upstream interface: fe-0/0/1.0
 Group: 224.2.127.254
 Source: *
 RP: 192.168.13.1
 Flags: sparse,rptree,wildcard
 Upstream interface: local
 Group: 230.0.1.1
 Source: *
 RP: 192.168.13.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Flags: sparse,rptree,wildcard
 Upstream interface: local
 Instance: PIM.master Family: INET6

The extensive version of this command gives the details for each multicast group:

 aviva@RouterA> show pim join extensive 224.1.1.1
 Instance: PIM.master Family: INET
 Group: 224.1.1.1
 Source: *
 RP: 192.168.13.1
 Flags: sparse,rptree,wildcard
 Upstream interface: local
 Upstream neighbor: Local
 Upstream State: Local RP
 Downstream Neighbors:
 Interface: se-0/0/3.0
 10.0.16.2 State: Join Flags: SRW Timeout: 165
 Group: 224.1.1.1
 Source: 10.0.15.1

 Flags: sparse
 Upstream interface: fe-0/0/1.0
 Upstream neighbor: 10.0.15.1
 Upstream State: Local Source, Local RP
 Keepalive timeout: 116
 Downstream Neighbors:
 Interface: se-0/0/3.0
 10.0.16.2 State:
Join Flags: S Timeout: 165

Discussion

When a host connected to a PIM router informs the router that it wants to receive traffic from a
multicast group, the PIM router sends (S,G) Join messages out its RPF interfaces to inform the next
upstream router that it wants to receive packets for that group. Each upstream router repeats this
process until this branch of the multicast tree reaches the router directly connected to the multicast
source or reaches a router that already has multicast forwarding state for the (S,G) pair.

The show pim join command lists all groups the router has sent Join messages to and has
successfully joined. The output in this recipe indicates that RouterA has joined six multicast groups.
For each group, you see the multicast source of the group. This is either the IP address of a source
router or an asterisk (*)if the Join message is directed toward any source. The RP line shows the
address of the rendezvous point for the group, and Upstream interface is the router's interface
toward the group's source.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The extensive version of the command shows the upstream state, which is information about the
upstream router, and downstream interfaces toward the multicast receiver.

The output of the show pim join extensive command for group 224.1.1.1 agrees with the route
information displayed with the show multicast route extensive command (explained in Recipe
16.9):

 aviva@RouterA> show multicast route extensive
 Address family INET
 Group: 224.1.1.1
 Source: 10.0.15.1/32
 Upstream interface: fe-0/0/1.0
 Downstream interface list:
 se-0/0/3.0
 Session description: ST Multicast Groups
 Statistics: 0 kBps, 0 pps, 5 packets
 Next-hop ID: 359
 Upstream protocol: PIM
 Route state: Active
 Forwarding state: Forwarding
 Cache lifetime/timeout: 356 seconds
 Wrong incoming interface notifications: 0

The information these two commands displays is subtly different. The show multicast route
command describes forwarding plane information, while the show pim join command covers the
control plane. The information in the two commands should agree, but each command shows some
information that the other does not.

See Also

Recipe 16.9

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.11. Manually Configuring IGMP

Problem

The JUNOS software automatically turns on IGMP Version 2 when you configure PIM-SM. However,
you want to use SSM, which requires IGMP Version 3.

Solution

Enable IGMPv3 on the desired router interfaces:

 [edit protocols]
 aviva@RouterA# set igmp interface all version 3

Discussion

For PIM-SM, you normally use IGMPv2, which is automatically enabled on all LAN interfaces when you
configure PIM-SM. SSM requires that the router run IGMPv3, which supports source filtering so the
host can include and exclude specific sources when requesting multicast packets.

To use IGMPv3, simply configure it on all the desired interfaces. This recipe configures IGMPv3 on all
the router's interfaces. Use the show igmp interface command to verify that Version 3 is running:

 aviva@RouterA> show igmp interface
 Interface: fe-0/0/0.0
 Querier: 172.19.121.112
 State: Up Timeout: 188 Version: 3 Groups: 4
 Interface: fe-0/0/1.0
 Querier: 10.0.15.1
 State: Up Timeout: 216 Version: 3 Groups: 0
 Interface: se-0/0/3.0
 Querier: 10.0.16.1
 State: Up Timeout: None Version: 3 Groups: 0
 Interface: se-0/0/2.0
 Querier: 10.0.21.1
 State: Up Timeout: None Version: 3 Groups: 2

 Configured Parameters:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 IGMP Query Interval: 125.0

IGMP Query Response Interval: 10.0

IGMP Last Member Query Interval: 1.0
 IGMP Robustness Count: 2

 Derived Parameters:
 IGMP Membership Timeout: 260.0
 IGMP Other Querier Present Timeout: 255.0

The output confirms that the three networking interfaces on this router are all running IGMPv3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.12. Using SSM

Problem

You want to directly join a multicast group without going through an RP.

Solution

Configure an SSM-only domain. First, enable PIM-SM on all interfaces on all routers in the domain:

 [edit protocols pim]
 aviva@RouterA# set interface all

Disable PIM on the router's out-of-band management interface. On J-series routers, this is the fe-
0/0/0 interface:

 aviva@RouterA# set interface fe-0/0/0.0 disable

On M-series and T-series routers, it is the fxp0 interface:

 aviva@R1# set interface fxp0.0 disable

On the multicast receiver's DR, turn on IGMPv3 on the interface that faces the receiving host:

 [edit protocols igmp]
 aviva@RouterA# set interface fe-0/0/1 version 3

Discussion

SSM modifies the standard PIM-SM model, sometimes also called any-source multicast (ASM), by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

allowing routers to directly join a multicast group without using the RP as an intermediary. SSM can
be used with multicast applications that are running IGMPv3.

SSM is really just a subset of ASM (plain-old PIM-SM). With SSM, the receiver is able to specify the
source (using IGMPv3), so the receiver's DR sends an (S,G) message toward the source, and traffic
flows down the SPT from the source to the receiver. SSM uses PIM-SM to get (S,G) state information.
(PIM supports both (S,G) and (*,G) state.)So, just by turning on PIM-SM for an interface, it supports
SSM and ASM. This configuration mechanism is very easy, so if you are new to multicast, you should
consider choosing SSM as the multicast protocol.

The steps for configuring SSM are very straightforward. First, configure PIM-SM on all interfaces and
on all routers in your domain. Just by turning on PIM-SM and nothing else on these routers, they
support SSM for all router roles except the receiver's DR. On the receiver's DR, you need to enable
IGMPv3 on the interface that connects to the receiving host. Here's what the configuration looks like:

 aviva@RouterA> show configuration protocols igmp
 interface fe-0/0/0.0 {
 disable;
 }
 interface fe-0/0/1.0 {
 version 3;
 }

The receiving host, typically a PC of some kind, must also be running IGMPv3.

Look at the IGMP interfaces to verify that the configuration has taken effect:

 aviva@RouterA> show igmp interface
 Interface: fe-0/0/1.0
 Querier: 10.0.15.1
 State: Up Timeout: 185 Version: 3 Groups: 0
 Interface: se-0/0/3.0
 Querier: 10.0.16.1
 State: Up Timeout: None Version: 2 Groups: 4
 Interface: se-0/0/2.0
 Querier: 10.0.21.1
 State: Up Timeout: None Version: 2 Groups: 4

 Configured Parameters:
 IGMP Query Interval: 125.0
 IGMP Query Response Interval: 10.0
 IGMP Last Member Query Interval: 1.0
 IGMP Robustness Count: 2

 Derived Parameters:
 IGMP Membership Timeout: 260.0
 IGMP Other Querier Present Timeout: 255.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You see that fe-0/0/1, the interface facing the receiver, is running IGMPv3, and all other router
interfaces are running IGMPv2, which is enabled automatically when you turn on PIM-SM.

For the network to be an SSM-only domain, make sure it contains no RP routers. If the router
receives a bootstrap routing message, it will automatically build an RP mapping and the network will
no longer be SSM-only.

If you are not sure that the domain has no RPs, or if you want to ensure that the domain continues
using SSM if an RP is later configured, block any Bootstrap messages from entering or leaving the
router:

 [edit policy-options]
 aviva@RouterA# set policy-statement block-bootstrap then reject

 [edit protocols pim]
 aviva@RouterA# set rp bootstrap-import block-bootstrap
 aviva@RouterA# set rp bootstrap-export block-bootstrap

See Also

RFC 3569, An Overview of Source-Specific Multicast (SSM)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.13. Connecting PIM-SM Domains Using MSDP
and MBGP

Problem

You want to configure the routers so that customers in your AS can receive multicast streams from
sources that are managed and maintained by another ISP.

Solution

Use MSDP, along with Multiprotocol BGP (MBGP), to connect the two PIM-SM domains. The MSDP
connection runs parallel to the MBGP connection. Start by setting up the BGP border routers. This
recipe has redundant EBGP connections between the ASs, one that runs MSDP and carries the
multicast traffic and one that carries only unicast traffic.

Let's start with the multicast-enabled border router. Create RIB groups for MSDP, PIM, and the
router's interfaces to use:

 [edit routing-options]
 aviva@RouterG# set rib-group mcast-rib export-rib inet.2
 aviva@RouterG# set rib-group mcast-rib import-rib inet.2
 aviva@RouterG# set rib-group if-rib import-rib [inet.0 inet.2]
 aviva@RouterG# set interface-routes rib-group inet if-rib

Configure MSDP, specifying the address of its peer and telling it to use the multicast RIB groups:

 [edit protocols msdp]
 aviva@RouterG# set local-address 192.168.19.1
 aviva@RouterG# set peer 192.168.19.1
 aviva@RouterG# set rib-group inet mcast-rib

Configure an EBGP session, enabling MBGP on it:

 [edit routing-options]
 aviva@RouterG# set router-id 192.168.19.1
 aviva@RouterG# set autonomous-system 65500

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit protocols bgp group external]
 aviva@RouterG# set type external
 aviva@RouterG# set peer-as 65520
 aviva@RouterG# set neighbor 10.0.1.1
 aviva@RouterG# set family inet any

The border router also needs to be the PIM-SM RP, and PIM needs to use the multicast RIB groups:

 [edit protocols pim]
 aviva@RouterG# set interface all
 aviva@RouterG# set interface fe-0/0/0 disable
 aviva@RouterG# set rp local address 192.168.19.1
 aviva@RouterG# set rib-group inet mcast-rib

The configuration on the EBGP/MSDP peer router in the other AS should be the same, substituting
the correct AS number and interface names and addresses.

Next, configure the border router that will handle the unicast traffic. Configure an EBGP session with
the remote peer, configuring it to carry only unicast routes:

 [edit routing-options]
 aviva@RouterB# set router-id 192.168.12.1
 aviva@RouterB# set autonomous-system 65500

 [edit protocols bgp group external]
 aviva@RouterB# set type external
 aviva@RouterB# set peer-as 65520
 aviva@RouterB# set neighbor 10.0.22.2
 aviva@RouterB# set family inet unicast

Configure PIM-SM only on the interfaces facing the local AS:

 [edit protocols pim]
 aviva@RouterB# set interface se-0/0/2
 aviva@RouterB# set rp static address 192.168.19.1

For all the other routers that are not on the AS border, just configure PIM-SM normally:

 [edit protocols pim]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterE# set interface all
 aviva@RouterE# set interface fe-0/0/0 disable
 aviva@RouterE# set rp static address 192.168.19.1

All the routers must also be running an IGP. The routers in this example are running OSPF.

Discussion

With PIM-SM, the RP in each domain learns about active sources within its domain and the DRs learn
the source information from the data that is received down the shared tree when they send a (*.G)
toward the RP. MSDP enables RPs in different domains to share information about active sources.
This allows customers in your AS to access multicast sources that are maintained somewhere else on
the Internet. MSDP uses TCP to establish reliable sessions between PIM-SM domains and passes
source active messages over the session so that the RPs can learn about external sources. Also,
MSDP enables different RPs within a domain to exchange source information between the
subdomainswith anycast, for example.

One way to set up MSDP to handle interdomain source information is to create redundant EBGP
connections to the remote AS. One EBGP session carries the multicast traffic, and the other carries
unicast traffic. On the multicast-enabled EBGP router, you enable MBGP and create a separate
routing table that contains only the unicast routes whose next hop points to a multicast-enabled
router. (It is still the case that most routers in the Internet don't support multicast.)PIM consults this
table during RPF calculations instead of using the default inet.0 table to forward multicast traffic.
Another way to set up the MSDP peering session is to do so between two RP routers that are in the
core of the network instead of at the edge.

Figure 16-2 shows the topology used in this recipe. The following points summarize the overall
configuration:

There are two EBGP connections between the two ASs, one between RouterG and RouterH, the
second between RouterB and RouterC.

The EBGP connection between RouterG and RouterH is multicast-enabled. MSDP runs on both
these routers, and each is the RP for its PIM-SM domain. PIM runs on interfaces, both the
inward-facing ones and the one facing the remote AS.

The EBGP connection between RouterB and RouterC carries the unicast traffic between the two
ASs. These two routers run PIM only on internally facing interfaces, and the PIM configuration
points to their local RP.

All routers within each AS have PIM enabled on all interfaces, and the PIM configuration points
to their local RP.

All routers within a domain are running OSPF as the IGP.

The bulk of the configuration is on the multicast-enabled border routers. First, create two JUNOS RIB
groups (routing-table groups) that populate the multicast RPF table, inet.2, with the routes that PIM
and MSDP will use.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PIM and MSDP normally consult inet.0 (the default unicast routing table) to make their RPF
decisions. They never add multicast routes to inet.0. However, when multicast and unicast
topologies are not congruent, you can configure PIM and MSDP to consult inet.2 as an alternative
unicast routing table to use to base their RPF decisions on. (This network is not congruent because
the RouterGRouterH link carries only multicast traffic and the RouterBRouterC link carries all unicast
traffic.)The RIB groups populate inet.2 with unicast routes that are a subset of the unicast routes in
inet.0. The routes placed in inet.2 are only those unicast routes that resolve to multicast-enabled
routers. For PIM and MSDP to work, the inet.2 table needs to include all the source's prefixes, all the
RP's prefixes, and all direct routes.

Figure 16-2. MSDP network topology

The first RIB group you create, called mcast-rib, imports routes into and exports routes from inet.2:

 [edit routing-options]
 aviva@RouterG# set rib-group mcast-rib export-rib inet.2
 aviva@RouterG# set rib-group mcast-rib import-rib inet.2

When you associate this RIB group with MSDP and PIM, they consult it for their RPF decisions.

The second RIB group, called if-rib, is for interface (direct) routes:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 [edit routing-options]
 aviva@RouterG# set rib-group if-rib import-rib [inet.0 inet.2]

This RIB group populates inet.2 with the router's direct routes. Then associate the if-rib RIB group
with the router's interfaces:

 [edit routing-options]
 aviva@RouterG# set interface-routes rib-group inet if-rib

The full RIB group configuration looks like this:

 aviva@RouterG> show configuration routing-options
 interface-routes {
 rib-group inet if-rib;
 }
 rib-groups {
 if-rib {
 import-rib [inet.0 inet.2];
 }
 mcast-rib {
 export-rib inet.2;
 import-rib inet.2;
 }
 }

Next, configure MSDP, PIM, and your IGP on the multicast-enabled border routers. For MSDP, specify
the IP addresses of the local router and its remote peer, using the routers' loopback addresses. You
also need to associate the mcast-rib RIB group, which populates the inet.2 routing table, with
MSDP. Here's what the MSDP configuration looks like for RouterG:

 aviva@RouterG> show configuration protocols
 msdp {
 rib-group inet mcast-rib; # <-- RIB group to populate inet.2
 local-address 192.168.19.1; # <-- loopback address of RouterG
 peer 192.168.18.1; # <-- loopback address of RouterH
 }

The multicast-enabled routers must be the PIM-SM RPs for their domains and must be running PIM
both on the internally facing interfaces and on the interface facing the remote border router.

Although this recipe configures the EBGP and MSDP peering sessions between the same two routers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(RouterG and RouterH), this is not necessary. The MSDP peering session can be configured between
any two RPs.

You also need to associate the mcast-rib RIB group with PIM. Here's the PIM configuration on
RouterG:

 aviva@RouterG> show configuration protocols
 pim {
 rib-group inet mcast-rib;
 rp {
 local {
 address 192.168.19.1;
 }
 }
 interface all;
 interface fe-0/0/0.0 {
 disable;
 }
 }

For the EBGP connection, in addition to the standard configuration (see Recipe 13.1), enable MBGP
on the connection so that the BGP connection can carry the NLRI for both unicast and multicast
routes. Here is the EBGP configuration:

 aviva@RouterG> show configuration protocols
 bgp {
 group external {
 type external;
 family inet { # <-- turn on MBGP
 any; # <-- have BGP carry both unicast and multicast NLRIs
 }
 peer-as 65520;
 neighbor 10.0.1.1;
 }
 }

This completes the configuration for the multicast-enabled border routers. For the border routers that
will be carrying only unicast traffic, you must set up EBGP and can optionally set up PIM. For the
EBGP session, turn on MBGP, specifying that it carry only the NLRIs for unicast routes. To do this, use
the unicast option in the family inet statement:

 aviva@RouterB> show configuration protocols bgp
 group external {
 type external;
 family inet { # <-- turn on MBGP

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 unicast; # <-- carry unicast NLRIs only
 }
 peer-as 65520;
 neighbor 10.0.22.2;
 }

This border router does not need to be part of the PIM-SM domain. However, if it is, configure PIM
only on the internally facing interface (on RouterB, this is se-0/0/2) and set the RP's address to be
the address of the multicast-enabled border router, which in this recipe is RouterG (192.168.19.1).
Here is RouterB's PIM configuration:

 aviva@RouterB> show configuration protocols pim
 rp {
 static {
 address 192.168.19.1; # <-- RP and EBGP/MSDP border router
 }
 }
 interface se-0/0/2.0;

For all the other PIM-SM routers within the AS, use a standard PIM-SM configuration, setting the RP
to be the multicast-enabled border router. Here's an example, for RouterE:

 aviva@RouterE> show configuration protocols
 pim {
 rp {
 static {

 address 192.168.19.1; # <-- RP and EBGP/MSDP border router
 }
 }
 interface all;
 interface fe-0/0/0.0 {
 disable;
 }
 }

You also need an IGP running within each AS. The router setup for this recipe uses OSFP.

When the configuration of the routers in both ASs is complete, the routers can handle a request from
a multicast receiver in one of the ASs to a multicast source in the other. Let's follow a request from a
receiver host connected to RouterF in AS 65200 to a source that is connected to RouterE in AS 65500.
For this lab setup, the receiver is simulated by a ping command to multicast group 224.1.1.1.
RouterE is configured with SAP to this group. Here is the ping command issued on RouterF:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterF> ping 224.1.1.1 interface t1-0/0/3 ttl 8 count 5 bypass-routing
 PING 224.1.1.1 (224.1.1.1): 56 data bytes
 64 bytes from 10.0.15.1: icmp_seq=0 ttl=251 time=27.881 ms
 64 bytes from 10.0.15.1: icmp_seq=1 ttl=251 time=30.562 ms
 64 bytes from 10.0.15.1: icmp_seq=2 ttl=251 time=30.341 ms
 64 bytes from 10.0.15.1: icmp_seq=3 ttl=251 time=40.328 ms
 64 bytes from 10.0.15.1: icmp_seq=4 ttl=251 time=30.336 ms
 --- 224.1.1.1 ping statistics ---
 5 packets transmitted, 5 packets received, 0% packet loss
 round-trip min/avg/max/stddev = 27.881/31.890/40.328/4.332 ms

Let's follow the join request downstream to the multicast source. Look on the neighbor, RouterD, to
see whether it has received the PIM Join/ Prune messages for 224.1.1.1:

 aviva@RouterD> show pim join extensive 224.1.1.1
 Instance: PIM.master Family: INET
 Group: 224.1.1.1
 Source: 10.0.31.2
 Flags: sparse
 Upstream interface: t1-0/0/3.0
 Upstream neighbor: 10.0.31.2
 Upstream State: Local Source
 Keepalive timeout: 170
 Downstream Neighbors:
 Interface: t1-0/0/2.0
 10.0.24.1 State: Join Flags: S Timeout: 167

This output shows that the source of the PIM Join message is 10.0.31.2, which is the interface to
RouterF. This is confirmed by the Upstream interface and Upstream neighbor fields, which show you
the RPF interface and neighbor for the source address: t1-0/0/3 is the interface on RouterF that
connects to RouterD. The Upstream State is Local Source, indicating that the source of the join
request (here, RouterF) is directly connected to this router (RouterD). The Downstream Neighbors field
shows where RouterD is forwarding the Join message. You see that the message has been forwarded
out RouterD's interface t1-0/0/2 to 10.0.24.1, which is the t1-5/0/0 interface on the border router,
RouterH.

Moving to the next downstream router, which is the border router, check for PIM joins for group
224.1.1.1:

 aviva@RouterH> show pim join extensive 224.1.1.1
 Instance: PIM.master Family: INET
 Group: 224.1.1.1
 Source: 10.0.31.2
 Flags: sparse,spt-pending
 Upstream interface: t1-5/0/0.0
 Upstream neighbor: 10.0.24.2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Upstream State: Local RP, Join to Source
 Keepalive timeout: 108
 Downstream Neighbors:
 Interface: fe-1/0/1.0
 10.0.1.2 State: Join Flags: S Timeout: 170

Again, you see that the source is RouterF (10.0.31.2)and that the upstream information points to
RouterH's neighbor, RouterD. The Upstream State shows that this router is the RP and that it has
sent a PIM Join/Prune message to the multicast source.

RouterH is the RP and is running MSDP. An MSDP-enabled RPs builds a cache of SA messages, which
it then uses to notify the RPs in other domains about active sources. The RP creates the entries in
this cache when it receives a PIM Register message from a DR advertising a new source. You already
saw that RouterD sent a PIM register message, so look on RouterH to see the entries in the SA
cache:

 aviva@RouterH> show msdp source-active
 Group address Source address Peer address Originator Flags
 224.1.1.1 10.0.31.2 local 192.168.18.1 Accept

The output shows that the router has learned that 224.1.1.1 is an active source. RouterH should be
advertising this source to its EBGP peer RouterG, so look at the MSDP SA cache there:

 aviva@RouterG> show msdp source-active
 Group address Source address Peer address Originator Flags
 224.1.1.1 10.0.31.2 192.168.18.1 192.168.18.1 Accept

The group 224.1.1.1 is present, with the source 10.0.31.2 (RouterF in the remote AS), which
confirms that the join request has crossed from AS 65200 into AS 65200.

 aviva@RouterG> show pim join extensive 224.1.1.1
 Instance: PIM.master Family: INET
 Group: 224.1.1.1
 Source: *
 RP: 192.168.19.1
 Flags: sparse,rptree,wildcard

 Upstream interface: local
 Upstream neighbor: Local
 Upstream State: Local RP
 Downstream Neighbors:
 Interface: se-5/0/1.0
 10.0.16.1 State: Join Flags: SRW Timeout: 186

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Group: 224.1.1.1
 Source: 10.0.31.2
 Flags: sparse,spt-pending
 Upstream interface: fe-1/0/1.0
 Upstream neighbor: 10.0.1.1
 Upstream State: Local RP, Join to Source
 Keepalive timeout: 194
 Downstream Neighbors:
 Interface: se-5/0/1.0
 10.0.16.1 State: Join Flags: S Timeout: 186

RouterG, the RP in the receiver's domain has two join entries for 224.1.1.1. The first is a (*,G) entry
and the second is an (S,G) entry. The (*,G) join is from the receiver and propagates up to its domain
RP and stops there. The Upstream interface and Upstream neighbor for this entry are both local, and
the Upstream State field confirms that the upstream interface is the domain's RP router. The second
entry, the (S,G) entry, is the one sending the Join message downstream to the multicast source. The
MSDP-speaking RP sends the (S,G) entries to remote domains, so you see only (S,G) entries on the
remote side.

To verify that RouterG learned this information from MBGP, use the show multicast rpf command:

 aviva@RouterG> show multicast rpf 10.0.31.2
 Multicast RPF table: inet.2 , 20 entries
 10.0.31.0/24
 Protocol: BGP
 Interface: fe-1/0/1.0
 Neighbor: 10.0.1.1

The output shows that the inet.2 multicast RPF table has an entry for 10.0.31.2 (RouterF, the
multicast receiver) and that this route was learned from BGP. The listed interface is the one that
connects RouterH to RouterG, and the neighbor address is that of RouterH's interface to RouterG.
You can also look at this route in the inet.2 table directly:

 aviva@RouterG> show route table inet.2 10.0.31.2
 inet.2: 20 destinations, 24 routes (20 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.31.0/24 *[BGP/170] 16:46:35, MED 130, localpref 100
 AS path: 65520 I
 > to 10.0.1.1 via fe-1/0/1.0

Again, you see that this route was learned from EBGP and from AS 65520.

Continuing toward the multicast source, check the PIM joins on RouterA:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterA> show pim join extensive 224.1.1.1
 Instance: PIM.master Family: INET
 Group: 224.1.1.1
 Source: *
 RP: 192.168.19.1
 Flags: sparse,rptree,wildcard
 Upstream interface: se-0/0/3.0
 Upstream neighbor: 10.0.16.2
 Upstream State: Join to RP
 Downstream Neighbors:
 Interface: fe-0/0/1.0
 10.0.15.1 State: Join Flags: SRW Timeout: 187

The downstream neighbor is 10.0.15.1 (RouterE), which is the DR for the multicast receiver:

 aviva@RouterE> show pim join extensive 224.1.1.1
 Instance: PIM.master Family: INET
 Group: 224.1.1.1
 Source: *
 RP: 192.168.19.1
 Flags: sparse,rptree,wildcard
 Upstream interface: fe-0/0/1.0
 Upstream neighbor: 10.0.15.2
 Upstream State: Join to RP
 Downstream Neighbors:
 Interface: local
 Group: 224.1.1.1
 Source: 10.0.31.2
 Flags: sparse,spt
 Upstream interface: fe-0/0/1.0
 Upstream neighbor: 10.0.15.2
 Upstream State: Join to Source
 Keepalive timeout: 202
 Downstream Neighbors:
 Interface: local

The Downstream Neighbors field shows that the next interface is on the local router because this
router is a SAP listener and so is acting as a receiver (sink) for the group. If the receiver was a host
system, you would see the name of the interface toward the host here.

When both ASs have multicast sources and receivers, the MSDP-enabled routers have entries for all
the groups in the SA cache. When a multicast receiver in AS 65500 joins group 225.2.2.2 in AS 65520,
the SA cache on RouterG has two entries:

 aviva@RouterG> show msdp source-active

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Group address Source address Peer address Originator Flags
 224.1.1.1 10.0.31.2 192.168.18.1 192.168.18.1 Accept
 225.2.2.2 10.0.15.1 local 192.168.19.1 Accept

The first entry is for the source in the remote domain, and the second entry is for the source in the
local domain. The Source address shows the IP address of the multicast source. For the first SA
entry, the source is RouterF (10.0.31.2)in AS 65520, and for the second SA entry, the source is
10.0.15.1 (RouterE) in RouterG's AS. The Peer address field tells how MSDP learned the SA
message. The first was learned from RouterG's MSDP peer, RouterH (192.168.18.1), and the second
was learned in the local AS. This is confirmed by the Originator field, which is the address of the
peer that originated the SA message.

Looking at the SA cache on the MSDP shows the same information, with the peer addresses being
reversed:

 aviva@RouterH> show msdp source-active
 Group address Source address Peer address Originator Flags
 224.1.1.1 10.0.31.2 local 192.168.18.1 Accept
 225.2.2.2 10.0.15.1 192.168.19.1 192.168.19.1 Accept

Again, you can verify that RouterH has learned the route to RouterE from the multicast RPF table,
inet.2:

 aviva@RouterH> show multicast rpf 10.0.15.1
 Multicast RPF table: inet.2, 20 entries
 10.0.15.0/24
 Protocol: BGP
 Interface: fe-1/0/1.0
 Neighbor: 10.0.1.2

 aviva@RouterH> show route table inet.2 10.0.15.1
 inet.2: 20 destinations, 24 routes (20 active, 0 holddown, 0 hidden)
 + = Active Route, - = Last Active, * = Both
 10.0.15.0/24 *[BGP/170] 17:19:46, MED 13, localpref 100
 AS path: 65500 I
 > to 10.0.1.2 via fe-1/0/1.0

The other two EBGP routers, RouterB and RouterC, which you configured to carry only unicast NLRIs,
have only the standard inet.0 routing table for unicast routes. Issuing a show route table inet.2
command on these routers confirms that the multicast RPF table is empty.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 13.1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.14. Configuring PIM-DM

Problem

You want to configure PIM-DM on the routers in your AS.

Solution

Set up PIM-DM on the domain's routers:

 [edit protocols]
 aviva@RouterA# set pim interface all mode dense
 aviva@RouterA# set pim interface fe-0/0/0 disable

Discussion

For a small network that has a dense population of receivers and can tolerate the periodic flooding of
multicast packets, using PIM-DM is an easier solution than using PIM-SM. With a dense population of
receivers, PIM will not need to do much SPT pruning, so you don't need PIM-SM. Also, configuring
PIM-DM is must simpler than configuring PIM-SM because you don't have to set up RPs.

As this recipe shows, to enable PIM-DM, just configure it on all the router's network interfaces. You
should explicitly disable it on the router's management interface, either fe-0/0/0 (for J-series, as
shown in this recipe) or fxp0 on M-series and T-series routers.

Look at the router interfaces to verify that PIM is running:

 aviva@RouterA> show pim interfaces
 Instance: PIM.master
 Name Stat Mode IP V State Count DR address
 fe-0/0/1.0 Up Dense 4 2 DR 1 10.0.15.2
 lo0.0 Up Dense 4 2 DR 0 192.168.13.1
 se-0/0/2.0 Up Dense 4 2 P2P 1
 se-0/0/3.0 Up Dense 4 2 P2P 1

The output confirms the configuration. All four router interfaces are listed as being up, and the Mode
column shows they are all running dense mode. The V column indicates PIM Version 2. The three

http://lib.ommolketab.ir
http://lib.ommolketab.ir

physical interfaces have each learned about one neighbor. You see that fe-0/0/1 is the DR for
10.0.15.2.

Enabling the JUNOS implementation of PIM automatically turns on IGMPv2, so check the IGMP
interfaces:

 aviva@RouterA> show igmp interface
 Interface: fe-0/0/1.0
 Querier: 10.0.15.1
 State: Up Timeout: 187 Version: 2 Groups: 0
 Interface: se-0/0/3.0
 Querier: 10.0.16.1
 State: Up Timeout: None Version: 2 Groups: 4
 Interface: se-0/0/2.0
 Querier: 10.0.21.1
 State: Up Timeout: None Version: 2 Groups: 4

 Configured Parameters:
 IGMP Query Interval: 125.0
 IGMP Query Response Interval: 10.0

 IGMP Last Member Query Interval: 1.0
 IGMP Robustness Count: 2

 Derived Parameters:
 IGMP Membership Timeout: 260.0
 IGMP Other Querier Present Timeout: 255.0

This output confirms that IGMPv2 is running on the three PIM interfaces.

In this network, a host on 10.0.15.2 is a source for group 225.1.1.1, and the receiver is on RouterB.
To check PIM-DM forwarding, first check for multicast routes:

 aviva@RouterA> show multicast route
 Address family INET
 Group: 225.1.1.1
 Source: 10.0.15.1/32
 Upstream interface: fe-0/0/1.0
 Downstream interface list:
 se-0/0/2.0
 Address family INET6

RouterA has a multicast route for the group 225.1.1.1, and the source is 10.0.15.1, which is
RouterE's subnet. The downstream interface toward the receiver is se-0/0/2, which you can confirm
with the show multicast next-hops command:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 aviva@RouterA> show multicast next-hops inet
 Family: INET
 ID Refcount KRefcount Downstream interface
 348 2 1 se-0/0/2.0

Also, check the PIM join state on the router:

 aviva@RouterA> show pim join extensive inet
 Instance: PIM.master Family: INET
 Group: 225.1.1.1
 Source: 10.0.15.1
 Flags: dense
 Upstream interface: fe-0/0/1.0
 Upstream neighbor: 10.0.15.1
 Downstream interfaces:
 se-0/0/3.0 (Pruned timeout 254)
 se-0/0/2.0

This output illustrates the PIM-DM flood-and-prune operation. Because there is only one receiver, on
RouterB, PIM-DM maintains an SPT that includes se-0/0/2 (the interface to RouterB) but prunes the
SPT from RouterG (interface se-0/0/3).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 16.15. Tracing PIM Packets

Problem

As part of debugging the operation of PIM, you want to trace all PIM packets exchanged by your
router.

Solution

Enable PIM packet tracing:

 [edit protocols
pim]
 aviva@RouterA# set traceoptions file pim-trace world-readable
 aviva@RouterA# set traceoptions flag packets

Discussion

As you are setting up and debugging a PIM domain, you can turn on tracing on PIM to keep a log of
packet exchanges between routers. The option you choose depends on what you are interested in
logging at any particular time. With JUNOS PIM, you can trace the following:

 [edit protocols pim traceoptions]
 aviva@RouterA# set flag ?
 Possible completions:
 all Trace everything
 assert Trace assert messages
 autorp Trace bootstrap/RP/auto-RP messages
 bootstrap Trace bootstrap/RP/auto-RP messages
 general Trace general events
 graft Trace join/prune/graft/graft-ack messages
 hello Trace hello packets
 join Trace join/prune/graft/graft-ack messages
 mdt Trace messages related to multicast data tunnels
 normal Trace normal events
 packets Trace all
PIM packets
 policy Trace policy processing
 prune Trace join/prune/graft/graft-ack messages
 register Trace register/register-stop messages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 route Trace routing information
 rp Trace bootstrap/RP/auto-RP messages
 state Trace state transitions
 task Trace routing protocol task processing
 timer Trace routing protocol timer processing

The trace options let you track all PIM operations and packets. More useful is being able to trace
specific packet types, such as Join/Prune messages and auto-RP messages. You can also select
additional options, to get either detailed traces or limit the traces only to packets sent or received by
the router:

 aviva@RouterA# set flag join ?
 Possible completions:
 <[Enter]> Execute this command
 detail Trace detailed information
 disable Disable this trace flag
 receive Trace received packets
 send Trace transmitted packets

The command in this recipe is a simple example of tracing all PIM packets to a file named pim-trace .
As soon as you commit the configuration, the file starts recording PIM messages:

 aviva@RouterA> show log pim-trace
 Nov 30 20:21:54 trace_on: Tracing to "/var/log/pim-trace" started
 Nov 30 20:22:01 PIM se-0/0/3.0 RECV 10.0.16.2 -> 224.0.0.13 V2 JoinPrune to 10.0.16.1
 holdtime 210 groups 1 sum 0xc0e6 len 34
 Nov 30 20:22:03 PIM fe-0/0/1.0 RECV 10.0.15.1 -> 224.0.0.13 V2 Hello hold 105 T-bit
 LAN prune 500 ms override 2000 ms pri 1 genid 300123470 sum 0xbe67 len 34
 Nov 30 20:22:14 PIM fe-0/0/1.0 SENT 10.0.15.2 -> 224.0.0.13 V2 Bootstrap sum 0x46d4
 len 36
 Nov 30 20:22:14 PIM se-0/0/3.0 SENT 10.0.16.1 -> 224.0.0.13 V2 Bootstrap sum 0x46d4
 len 36
 Nov 30 20:22:14 PIM se-0/0/2.0 SENT 10.0.21.1 -> 224.0.0.13 V2 Bootstrap sum 0x46d4
 len 36
 Nov 30 20:22:14 PIM se-0/0/3.0 RECV 10.0.16.2 -> 224.0.0.13 V2 JoinPrune to 10.0.16.1
 holdtime 210 groups 4 sum 0x4406 len 102
 Nov 30 20:22:14 PIM fe-0/0/1.0 RECV 10.0.15.1 -> 224.0.0.13 V2 JoinPrune to 10.0.15.2
 holdtime 210 groups 2 sum 0x5203 len 54

This output records PIM Join/Prune, Hello, and Bootstrap messages.

See Also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Recipe 5.10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Author

Aviva Garrett has documented Juniper Networks technologies since joining the company as its first
writer in 1997. She wrote the first JUNOS manuals and then oversaw the documentation as the
company grew from a startup to an established network equipment provider. She recently stepped
down as the Juniper Networks Director of Technical Publications to pursue other writing and business
assignments, such as JUNOS Cookbook. Prior to Juniper Networks, Aviva worked at Cisco Systems
for six years. She also worked for Excelan/Novell, Gavilan, and other technology companies and
startups. She is the coauthor of Juniper Networks Field Guide and Reference (Addison-Wesley).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

The animal appearing on the cover of Junos Cookbook is the Angora goat (Capra aegagrus hircus),
which is bred primarily for its fleece, called mohair. Angoras generally produce between 8 and 12
pounds of skirted (stains removed) fiber per year. Most Angoras are white since their mohair is easy
to dye, but they also come in different shades. Black Angoras range in color from deep solid black to
light gray or silver. Reds, often called "faded reds" because of the tendency of their coats to fade as
the goat ages, range in color from apricot to copper.

Angora goats are browsers, meaning they thrive best where there is a good cover of brush, weeds,
and grass. They like dry, mild climates but can do very well in the cold. Angora fleece grows about
one inch per month, so within two or three months of shearing, these goats have fleece of sufficient
length to withstand subzero temperatures. In the weeks after shearing, however, they must be
protected from the elements, especially cold rain.

These goats are believed to have originated in the Himalaya Mountains before making their way to
Ankara, Turkey, where they were first bred (and after which they were named). In 1848, seven
female and two male Angoras were brought to the United States. Now the U.S. is the second largest
mohair-producing nation in the world, with a Texas herd of 1,800,000 goats. The pure breed
characteristics of the Angora goat, including its gently curved horns, loose-hanging ears, and short,
high tail have been well preserved in the U.S. due to strict maintenance of breeding registries.

The cover image is from Riverside Natural History. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

. (dot) 2nd

(pound sign) 2nd

SECRET-DATA string

(CNLP)

(DVMRP)

(LACP)

(SMI)

(VACM)

+ (plus sign)

3DES-CBC encryption 2nd

; (semicolon)

= (equals sign)

> (greater than sign)

? (question mark) 2nd

{ } (curly braces) 2nd

| (pipe)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

ABRs (area border routers)

 stubby areas and

ABRs and

Abstract Syntax Notation 1 (ASN.1)

accept action

 routing policies 2nd 3rd

access control 2nd 3rd

 SNMP and 2nd

access control and 2nd 3rd

access to routers 2nd

Access-Accept packets (RADIUS)

ACK bit

actions 2nd 3rd 4th 5th 6th

activating

activating router configuration

active routes

 forwarding tables and

 routing preference and

 selecting

active routes and

Active state (BGP) 2nd

active symmetric mode

ad0 as flash drive

ad1 as hard disk

adaptive mode (bandwidth reservation)

Adaptive Services (AS) PIC

add/drop multiplexer (ADM)

adding

adding for second customer 2nd 3rd 4th 5th

adding to routes 2nd 3rd 4th 5th 6th 7th

adding VPNs

address family identifier (AFI)

address match term

address spoofing

addresses 2nd 3rd

adjacencies

 dead interval and 2nd

 IGPs and

 IS-IS 2nd 3rd 4th 5th 6th 7th 8th 9th

 OSPF 2nd 3rd 4th

 restarting protocols 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

adjusting 2nd

adjusting IS-IS link costs 2nd 3rd

adjusting link costs

adjusting OSPF link costs

ADM (add/drop multiplexer) 2nd 3rd

Adm field (route distinguisher)

admin permission bit

admin-control permission bit

ADMs and

advertising

 active routes

 BGP and

 graceful restart and

 IP addresses

 OSPF and 2nd 3rd

 prefixes 2nd

 private addresses

 removing private AS numbers

 RIP routes 2nd

 RIPng routes

 routes 2nd

 routing information 2nd

 routing policy and 2nd 3rd

 static routes 2nd

advertising and

advertising RIP routes 2nd

advertising RIPng routes

AFI (address family identifier)

AfriNIC registry

Aggregate Route-based IP Switching (ARIS)

aggregate routes and 2nd

aggregating routes 2nd

aggregation

 link 2nd

 route 2nd

AGGREGATOR attribute (BGP)

AH (Authentication Header) 2nd 3rd

alarmTable object

all permission bit 2nd

allocating bandwidth 2nd 3rd

allow access to routers 2nd

allow-commands attribute (TACACS+)

allow-configuration attribute (TACACS+)

allowed keyword

/altconfig directory 2nd

alternate boot media 2nd 3rd

/altroot directory 2nd

AN field (route distinguisher)

angle brackets (< >)

annotate command

anonymous FTP

any facility 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

any-source multicast (ASM)

anycast PIM 2nd 3rd 4th 5th 6th

anycast PIM and 2nd

anycast RP 2nd 3rd 4th 5th 6th

anycast RP and

anycast RPs and 2nd

APNIC registry

applying policies/filters

APS (Automatic Protection Switching) 2nd 3rd 4th

APS 1+1 switching

APS switching

area identifier (IS-IS) 2nd

areas and

ARIN domain registry 2nd

ARPANET project

AS (autonomous system)

 BGP LOCAL_PREF attribute and

 BGP NEXT_HOP attribute and

 configuring BGP sessions

 hackers and

 load balancing traffic

as alternate boot media

AS and

as forwarding plane

AS Module (ASM)

AS path information

AS PICs and 2nd 3rd 4th 5th

as storage area

as text files 2nd

as-path-prepend action (BGP)

AS_SEQUENCE attribute (BGP)

AS_SET attribute (BGP)

ASICs (Application-Specific Integrated Circuits)

 IPSec and

ASM (any-source multicast)

ASM (AS Module)

ASN.1 (Abstract Syntax Notation 1)

assigning labels

asterisk (*) 2nd

asymmetric mode

ATM 2nd 3rd

ATM (Asynchronous Transfer Mode)

 configuring interfaces 2nd 3rd

ATM connections and

ATM Forum

ATM interfaces 2nd 3rd

atomic clock

ATOMIC_AGGREGATE attribute (BGP)

Attached (ATT) bit set

attributes 2nd

AUTH facility code 2nd

authenticating

http://lib.ommolketab.ir
http://lib.ommolketab.ir

authenticating BGP peers 2nd

authentication 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

 BGP peers

 dynamic SAs 2nd

 IS-IS 2nd 3rd

 LDP 2nd 3rd

 NTP and

 OSPF 2nd 3rd 4th 5th

 remote 2nd

 RIP and

 root 2nd 3rd

 router security and

 RSVP 2nd

Authentication Header (AH)

authentication keyword

authentication methods

authentication passwords

authentication-md5 keyword

authorization facility 2nd

AUTHPRIV facility code

auto-RP 2nd 3rd 4th 5th 6th

 configuring

 creating RPs

auto-RP and

autobandwidth

autobandwidth (MPLS) 2nd 3rd

Automatic Protection Switching (APS)

automatically

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

backbone area (OSPF) 2nd

backing up

 filesystems 2nd

 J-series routers 2nd

 M-series routers 2nd 3rd

 router configuration

 T-series routers 2nd 3rd

backing up filesystems 2nd 3rd 4th 5th

backing up router configuration 2nd 3rd 4th

backplane (router)

backup

backup routers

bandwidth 2nd 3rd

bandwidth and 2nd

bandwidth reservations

 label-switched paths and 2nd 3rd

 RSVP 2nd

based on AS paths 2nd 3rd 4th

BCD (binary-coded decimal)

BCP session problems

BDR (backup designated router)

 DR and

Bellman-Ford algorithm

BERT (Bit Error Rate Test) 2nd 3rd 4th

BERT test 2nd 3rd 4th

BERT tests 2nd 3rd

BFD (Bidirectional Forwarding Protocol) 2nd

BGP 2nd 3rd 4th 5th 6th 7th 8th

BGP (Border Gateway Protocol)

 attributes

 authenticating peers 2nd

 configuring sessions

 debugging

 load-balancing traffic flow 2nd

 routes based on AS paths 2nd 3rd

 routing tables and 2nd

 TCP session problems

 tracing and 2nd 3rd

 VFR target

BGP and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

BGP attributes 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BGP connections

BGP Notification messages

BGP operations

BGP routes and 2nd

BGP sessions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

BGP sessions and

BGP traffic problems 2nd 3rd

bgp.l3vpn.0 routing table 2nd 3rd 4th

Bidirectional Forwarding Protocol (BFD)

binary-coded decimal (BCD)

Bit Error Rate Test (BERT) 2nd

bit patterns 2nd 3rd

blackholing routes

blackholing routes and

bogon lists caveat

bogon route server project 2nd

bogons

 RPFs and

 Team Cymru 2nd

bogons and 2nd 3rd

bogons as

boot disks 2nd

boot process and

Bootstrap messages 2nd 3rd

bootstrap messages

bootstrap router (BSR) 2nd 3rd 4th

bootstrap routers 2nd 3rd

braces as delimiters

branches and

broadcast

broadcast networks and

broadcast traffic

brute force attacks 2nd

BSR (bootstrap router) 2nd

bypass-routing option (ping)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

CA (certificate authority) 2nd 3rd 4th 5th 6th 7th

calculating best routes

candidate configuration

 committing changes and

CBC (cipher block chaining)

CCITT standards

CE (customer edge) routers

 ping command

CE routers

CE routers and 2nd

certificate authority (CA) 2nd 3rd

chaining policies 2nd 3rd 4th

CHANGE facility code

change-log facility 2nd

changing encryption method 2nd

changing format of

changing information

changing route preferences 2nd 3rd 4th

changing routing information

changing sizes 2nd 3rd

chassis keyword

chassis MIB 2nd 3rd 4th

chassisd process

CHASSISD_SNMP_TRAP identifier

checking counts

checking for 2nd

checking for syntactical errors

checking NTP status

checking policies

checking syntax 2nd

CIDR (Classless Interdomain Routing) 2nd 3rd

CIDR addresses

cipher block chaining (CBC)

class-of-service (CoS) queues

classful addresses

classful routing

classless addresses

Classless Interdomain Routing (CIDR) 2nd

clear bgp neighbor command

clear command 2nd 3rd

clear log command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

clear permission bit 2nd 3rd

clear system commit command 2nd 3rd

clear system reboot command

clearing

clearing logfiles

CLI

CLI (command-line interface)

 configuring routers from

 displaying previous command

 encrypted passwords and

 identifying modes

 online help 2nd

 routers and 2nd 3rd 4th 5th

CLI and 2nd

client peers

clock drift

clocking stratum

CLUSTER_LIST attribute (BGP)

command 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th 28th

29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th 39th 40th

command execution and 2nd 3rd

commands in 2nd 3rd 4th 5th 6th 7th 8th

comment option (commit)

comments

comments in

commit and-quit command

commit at command 2nd

commit command and

commit confirmed command 2nd

commit synchronize command 2nd

committing changes

community action (BGP)

COMMUNITY attribute (BGP)

community identifier and

community password and 2nd

Community SNMPv2

community strings

community strings and

compare command

configuration

configuration backups

configuration changes and

configuration considerations

configuration error example

configuration files

configuration group statements

configuration groups 2nd 3rd 4th 5th

configuration keyword

configuration mode

configuration mode and

configure command and

configure exclusive command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

configure permission bit 2nd

configure permission bit and

configuring 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

configuring addresses

configuring BGP 2nd 3rd 4th 5th 6th

configuring descriptions

configuring for IPv6 2nd 3rd 4th 5th

configuring IGMP

configuring interfaces 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

configuring IPv4 addresses

configuring IS-IS 2nd 3rd

configuring ISO addresses

configuring Level 1 routers

configuring neighbors

configuring on T1 interface 2nd

configuring PIM-DM 2nd 3rd

configuring PIM-SM 2nd 3rd

configuring policy evaluations

configuring RIP 2nd 3rd

configuring RIP and RIPng

configuring SNMP 2nd 3rd 4th

configuring time

configuring USM

configuring with anycast PIM 2nd 3rd

configuring with anycast RP 2nd 3rd 4th

confirming configuration

CONFLICT facility code

conflict-log facility 2nd

Connect state (BGP)

connecting

connecting domains 2nd

connecting PIM-SM domains 2nd 3rd 4th

connecting to Ethernet switches 2nd 3rd

CONSOLE facility code

control permission bit 2nd 3rd

control plane

controlling access 2nd

controlling DIS election 2nd 3rd

convergence times 2nd 3rd 4th

convergence times and

copying configuration files during

copying from servers

copying software to router

copying software to routers

copying text from

core dumps

CoS (class-of-service) queues

count option (then clause)

counter action

counting 2nd

counting traffic 2nd 3rd 4th

crack program

http://lib.ommolketab.ir
http://lib.ommolketab.ir

crashfiles

creating 2nd

creating banners for

creating chain of 2nd 3rd

creating custom privilege class

creating dynamic SAs 2nd 3rd 4th

creating login banners

creating MPLS family

CRON facility code

CSNPs

CSPF algorithm

CSPF and 2nd

CSPFs and

Ctrl-a keystroke sequence

Ctrl-b keystroke sequence 2nd

Ctrl-e keystroke sequence

Ctrl-f keystroke sequence

Ctrl-k keystroke sequence 2nd

Ctrl-n keystroke sequence

Ctrl-p keystroke sequence 2nd

Ctrl-y keystroke sequence

curly braces in

curly braces { }

customizing account privileges 2nd

customizing privileges 2nd 3rd

cutoff

cutoff threshold

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

daemon facility

DAEMON facility code

daemons (Unix)

damping action (BGP)

Data Link Connection Identifier (DLCI)

data link layer 2nd

data terminal equipment (DCE)

DCD process

DCE (data terminal equipment) 2nd

dd command

DDoS (distributed denial of service)

deactivate command 2nd 3rd

deactivate traceoptions command

deactivating instead of

dead interval (OSPF) 2nd 3rd

debugging failed commits

DEC (Digital Equipment Corporation)

default

default action

default actions

default preferences

default route (0.0.0.0/0) 2nd

default routing policy actions 2nd

defined 2nd

delete chassis redundancy command

delete command 2nd

delete traceoptions command 2nd

deleting 2nd

dense protocols

deny-commands attribute (TACACS+)

deny-configuration attribute (TACACS+)

DES-CBC encryption 2nd

description 2nd

designated intermediate system (DIS)

destination addresses 2nd

destination-address match term

destination-port match term

destination-prefix-list match term

detail option (show firewall log)

determining changes made

determining IP addresses used 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

determining location within

determining software versions 2nd 3rd 4th 5th

determining who is logged in

DF (don't fragment) bit

dictionary attacks

Diffie-Hellman scheme 2nd

DiffServ TE

digital certificates 2nd 3rd 4th 5th 6th 7th 8th

digital certificates and

Digital Equipment Corporation (DEC)

digital signature

Dijkstra shortest-path first (SPF) 2nd

directed broadcasts

DIS (designated intermediate system)

disabling IS-IS 2nd

disabling OSPF 2nd

disabling redundancy

disabling SSH

disallowed keyword

disaster recovery

discard action

discretionary attributes (BGP)

display inheritance command

display set command

displaying information

displaying passwords

displaying permissions needed 2nd

displaying PICs

displaying policies

displaying routes in 2nd 3rd 4th 5th

distance-vector algorithm 2nd

distribution trees

DLCI (Data Link Connection Identifier)

DNS name servers 2nd

don't fragment (DF) bit

DoS attacks and

dot (.) 2nd

dotted quad notation

down arrow

draft-ietf-pim-anycast-rp.txt

DRAM size (memory)

drive names

dropping traffic

DSA (SSH Version 2) 2nd

dynamic SAs 2nd 3rd 4th 5th 6th 7th 8th 9th

dynamically mapping 2nd 3rd 4th 5th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

EBGP multihop

edit command and

edit filter command

edit policy-statement command

EGPs and

egress routers and

emergency boot disk 2nd

emergency rescue

enabling access

enabling on routers

Encapsulation Security Payload (ESP)

encapsulations

encrypted passwords

encrypted passwords and

encyrption and

end systems

ensuring proper functioning

entering configuration mode 2nd

enterprise-specific traps 2nd

equals sign (=)

ERO (Explicit Route Object)

ES PICs 2nd

Esc-b keystroke sequence 2nd

Esc-backspace keystroke sequence

Esc-d keystroke sequence

Esc-f keystroke sequence

ESF (extended super frame) mode

ESP (Encapsulation Security Payload)

Established state (BGP)

establishing passwords 2nd

/etc/syslog.conf file

Ethernet 2nd 3rd 4th

Ethernet aggregation

Ethernet interfaces 2nd 3rd 4th 5th 6th

Ethernet interfaces and

eventTable object

except keyword 2nd

exclusive access 2nd

exit command

exit configuration-mode command

exiting configuration mode 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Explicit Route Object (ERO)

extended super frame (ESF) mode

external type action (BGP)

extracting information 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

facilities and

facility and severity in messages 2nd

fail-filter option (rpf-check)

failures

false tickers

Fast Ethernet interface and

fast reroute 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

fast reroute and 2nd 3rd

FCS (frame checksum size) 2nd

FECs and

FIB (forwarding information base)

field-replaceable units (FRUs) 2nd

figure of merit 2nd 3rd

file command

file copy command

file delete command 2nd

file list command

file list detail command 2nd 3rd

file show command

files between Routing Engines

files from servers 2nd 3rd

files via FTP

filtering bogons

filtering bootstrap messages

filtering long prefixes 2nd

filtering routes by

filtering routes by AS paths 2nd 3rd

filtering routes by IP addresses

filtering traffic 2nd 3rd 4th 5th 6th

filtering unallocated blocks

filtering with unicast RPF

filters based on

FIN packets

firewall facility 2nd 3rd 4th

firewall filters 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

firewall filters and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

firewall filters for

firewall permission bit

firewall-control permission bit

first time 2nd 3rd

first time router configuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

first-fragment match term

flash drive and

flood-and-prune model

floppy permission bit

forcibly

forcibly logging out users

forcing specific

formats

forwarding 2nd

forwarding and

forwarding information base (FIB)

forwarding plane

forwarding tables 2nd 3rd 4th

forwarding tables and 2nd

fragment-flags match term

fragment-offset match term

frame checksum size (FCS)

Frame Relay 2nd

Frame Relay and

Frame Relay on T1 interface 2nd

frame-relay encapsulation

FreeBSD and

FRUs (field-replaceable units)

FTP connections and

ftp facility 2nd

full-duplex mode 2nd 3rd

fwdd (forwarding) process

fxp1 interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

gateways

gathering information about 2nd

generic

Get request (SNMP) 2nd

GetBulk request (SNMP) 2nd 3rd

GetNext request (SNMP) 2nd 3rd

Gigabit Ethernet interface and

GPS

GR-253-CORE specification

graceful restart 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

graceful restart for protocols 2nd 3rd 4th

graceful switchover

graceful switchover and

GRE

grep utility (Unix)

group 2nd 3rd 4th

group login accounts 2nd

grouping functions with

grouping operation

.gz format

gzip utility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

half-duplex mode 2nd 3rd

half-life 2nd

half-life of routes 2nd

hardening the configuration

hardware components

hardware information 2nd 3rd

hardware inventory 2nd

hashing algorithms

headers and labels 2nd 3rd

Hello messages

help command

help reference command 2nd

help syslog command

help topic command

hidden 2nd

hidden routes 2nd

hidden routes and

hiding passwords with

hierarchy levels and

hold-time expired errors 2nd

Host Resources MIB

hostnames and 2nd

hostnames in

hot swapping

how multicast rpf command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IBGP and 2nd

icmp-type match term

identifying for routers

Idle state (BGP) 2nd

IEEE 802.3ad standard

iftop utility (FreeBSD)

IGMP 2nd

IGP traffic and

IGPs and

IIH (IS-IS Hello) packets 2nd

IKE and 2nd 3rd

Implicit Null label (MPLS)

in forwarding tables 2nd 3rd 4th

inactive interfaces and 2nd

including in messages 2nd

inet family 2nd 3rd

inet6 family 2nd 3rd

Information)

ingress routers and

insert command 2nd

installing on J-series routers

installing on M-series routers

installing PICs and 2nd

installing routes from 2nd

installing software from servers

installing software releases

INTERACT facility code 2nd

interactive-commands facility 2nd

interface descriptions

interface permission bit

interface-control permission bit

interfaces 2nd 3rd 4th 5th

interfaces and 2nd 3rd 4th 5th

intermediate systems

Internet and

Internet Routing (irsd) process

IP 2nd 3rd

IP address 2nd

IP addresses 2nd

IP addresses and 2nd 3rd 4th

IP multicast and 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IP routing 2nd 3rd 4th 5th 6th

IP routing and 2nd

IP Switching

IP-IP

ip-options match term

IPSec 2nd 3rd

IPSec and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

IPSec tunnel and 2nd

IPSec VPN rules

IPv4 addresses 2nd

IPv4 and 2nd

IPv4 Explicit Null label (MPLS)

IPv4/IPv6 addresses

IPv6 addresses

IPv6 addresses and

IPv6 and

IPv6 Explicit Null label (MPLS)

irsd (Internet Routing) process

is-fragment match term

IS-IS 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th

IS-IS and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st

IS-IS as

IS-IS authentication 2nd 3rd

IS-IS convergence times

IS-IS for IPv6 2nd

IS-IS Level 1 routers 2nd

IS-IS operations 2nd

IS-IS routes

IS-IS static routes 2nd 3rd 4th

IS-IS traffic

ISO addresses

ISO/IEC 10589

iterations of 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

J-series router backups 2nd 3rd

J-series router software releases 2nd

J-Web browser 2nd

jbundle command 2nd

jinstall command 2nd 3rd

jitter 2nd

jnxBoxAnatomy object

jnxContentsTable object 2nd

jnxFanFailure chassis trap

jnxFanOK chassis trap

jnxFruInsertion chassis trap

jnxFruPowerOff chassis trap

jnxFruPowerOn chassis trap

jnxFruRemoval chassis trap

jnxOperatingTable table 2nd

jnxOverTemperature chassis trap

jnxPowerSupplyFailure chassis trap

jnxPowerSupplyOK chassis trap

jnxRedundancySwitchOver chassis trap

jnxTemperatureOK chassis trap

Join messages 2nd 3rd 4th

Join messages and

join state 2nd 3rd 4th

juniper-mibs-7.4R1.tgz file

JUNOS Base OS Software Suite

JUNOS configuration and

JUNOS installation location

JUNOS Kernel Software Suite

JUNOS operating system

JUNOS Routing Software Suite

JUNOS software

JUNOS software and 2nd

JUNOS support 2nd

JUNOS support for

JUNOS Support Tools Package

junos-jseries install package 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

keepalive messages 2nd 3rd 4th

keeping records of changes

kernel facility 2nd

keyboard sequences 2nd

knowing time accurately

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Label Request Object (LRO)

label-switched paths 2nd 3rd

label-switched paths and 2nd 3rd 4th 5th 6th 7th 8th 9th

labeled

labels and 2nd 3rd 4th

labels in

LatNIC registry

LDP 2nd

LDP and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

LDP authentication 2nd 3rd

LDP operations 2nd

leaking Level 2 routes 2nd 3rd

leaking routes

Level 1 systems and 2nd

Level 2 systems and

limiting group ranges 2nd

limiting interface traffic 2nd 3rd

limiting messages collected

limiting traffic

link aggregation 2nd

link failures 2nd 3rd 4th 5th 6th

link keyword

link level layer

link-state databases 2nd 3rd

link-state databases and 2nd

link-state protocol and

listing interfaces

listing routes in

lo0 interface and 2nd 3rd

load balancing traffic 2nd

load balancing traffic flow 2nd

load command

load merge command 2nd

load merge terminal command 2nd

load override command

load replace command

load-balancing flows

load-balancing traffic 2nd 3rd

load-balancing traffic flow

loading previous configuration

local password authentication

http://lib.ommolketab.ir
http://lib.ommolketab.ir

local-preference action (BGP)

local-user-name attribute (TACACS+)

LOCAL_AS attribute (BGP)

LOCAL_PREF attribute and

log action

log facility

logfile contents

logfile sizes and

logfiles 2nd 3rd

logging 2nd 3rd

logging access 2nd

logging and 2nd

logging enterprise-specific traps 2nd

logging in to

logging messages and

logging messages files 2nd

logging OSPF traffic

logging out of routers 2nd

logging router access

logging traffic 2nd 3rd

logical AND operation 2nd

logical OR operation

login accounts 2nd 3rd 4th

login accounts and 2nd

login class permissions 2nd

login classes and 2nd

logTable object

long prefixes 2nd 3rd

longer keyword

longest-match lookup

loopback addresses 2nd 3rd

loopback interface and

loopback mode

loopback tests 2nd 3rd

loose mode (unicast RPF)

LSP

LSPs 2nd 3rd 4th 5th 6th

LSPs in 2nd 3rd 4th 5th 6th 7th 8th 9th

LSPs in unicast routing tables 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

M-series router software releases 2nd

maintenance permission bit 2nd 3rd

malware and

management 2nd 3rd 4th

management interface 2nd 3rd 4th

management interfaces and 2nd 3rd 4th

management model

management process and

managing similar

mandatory attributes (BGP)

manually establishing RPs 2nd 3rd

martian addresses 2nd 3rd 4th 5th 6th 7th

masks

master gateways 2nd

match conditions 2nd 3rd 4th

match terms

matching packet contents 2nd 3rd 4th 5th 6th 7th

MBGP (Multiprotocol BGP) 2nd

MBONE (Multicast Backbone)

MBONE and

MD5 authentication 2nd 3rd 4th 5th

MED attribute (BGP) 2nd 3rd 4th

memory 2nd

merit ceiling

message logging

message processing model (SNMPv3)

messages to Routing Engines 2nd 3rd

metric action (BGP)

MGD (management process) 2nd 3rd

MIB-II system group 2nd 3rd

mib2d process (MIB-II) 2nd

MIBs 2nd 3rd

MIBs and 2nd 3rd

mitigating instabilities

modes

monitor command 2nd

monitor interface command

monitor start command

monitoring interfaces

monitoring router temperature 2nd

monitoring traffic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

more information

moving traffic off routers 2nd

moving within

MP_REACH_NLRI attribute (BGP)

MP_UNREACH_NLRI attribute (BGP)

MPLS 2nd 3rd 4th 5th 6th 7th 8th 9th

MPLS and 2nd 3rd 4th 5th 6th 7th 8th 9th

mpls family 2nd

MPLS forwarding

MPLS labels

MPLS routes

MPLS routes and

MSDP and 2nd

mtrace command

MTU size

MULTI_EXIT_DESC attribute (BGP)

multicast 2nd 3rd 4th

Multicast Backbone (MBONE)

multicast groups 2nd

multicast routes 2nd

multicast tunnel interfaces

Multicast-Dense Mode)

multihop

multipath BGP 2nd 3rd 4th 5th 6th

Multiprotocol BGP (MBGP)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

NAT (Network Address Translation)

NBMA networks

negating matches

negation operation

NET selector (NSEL)

netstat -rn command (FreeBSD)

Network Address Translation (NAT)

network layer

network permission bit 2nd 3rd

next policy action 2nd

next term action 2nd 3rd 4th

NEXT_HOP attribute and

NIST time signal radio station

NMS systems and

NO_ADVERTISE attribute (BGP) 2nd

NO_EXPORT attribute (BGP) 2nd

nonconfigurable 2nd

nonconfigurable interfaces and

nonrevertive mode

nontransitive attributes (BGP)

normal preemption

Norton Ghost utility

not-so-stubby areas (NSSAs) 2nd 3rd 4th

Notification messages (BGP)

NOTIFICATION-TYPE string

NSSAs (not-so-stubby areas)

NSSAs and 2nd 3rd

NTP and 2nd

NTP authentication and

NTP facility code

NTP hops

NTP servers

NTP standard

ntpd utility

ntpdate utility

ntpq -p utility (FreeBSD)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

of logfiles

of routers

OIDs 2nd

on BGP

on MIBs

on traps

online documentation on

OpenConfirm state (BGP) 2nd

OpenSent state (BGP) 2nd

operational information about

operational mode and 2nd

operators

operators (regular expressions) 2nd

optional attributes (BGP)

origin action (BGP)

ORIGIN attribute (BGP) 2nd

ORIGINATOR_ID attribute (BGP)

orlonger keyword

OSI Reference Model 2nd

OSPF 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd

OSPF and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th

OSPF as

OSPF authentication and

OSPF for IPv6 2nd 3rd

OSPF multiarea network 2nd 3rd 4th

OSPF operations 2nd

OSPF protocol

OSPF routes 2nd

OSPF static routes

OSPF traffic 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

P (provider) routers 2nd 3rd

package

packet loss 2nd 3rd 4th

packet-length match term

partial sequence number PDUs (PSNPs)

password encryption

passwords and 2nd 3rd

passwords for 2nd

Path message

Path message (RSVP) 2nd

Path messages

path vector algorithm and

PathErr message (RSVP)

paths 2nd 3rd

pause frames

PE routers and 2nd 3rd 4th

peer mode

peering arrangements

penultimate hop popping (PHP) 2nd

periodically

permission bits and

permission bits for

permissions and 2nd 3rd

pfe facility 2nd

PFE_FW_SYSLOG_IP message code

PHP

PIC installation and 2nd

PIC slots

PIM 2nd

PIM and

PIM de-encapsulation 2nd

PIM encapsulation 2nd

PIM packets 2nd

PIM pd- interfaces 2nd

PIM pe- interfaces 2nd

PIM Register messages 2nd

PIM routers 2nd 3rd

PIM-DM 2nd 3rd

PIM-DM and

PIM-SM 2nd 3rd

PIM-SM and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PIM-SM RPs

ping command and

ping mpls command 2nd

piping into display set command

PKI (public key infrastructure)

plain-text passwords 2nd

plain-text passwords and 2nd 3rd 4th

plus sign (+)

point of presence (POP) 2nd 3rd 4th

poison reverse technique

poison reverse technique and

policer action

policers

policies

policies and

policy actions

policy- tracing information

POP (point of presence) 2nd 3rd

port 161

port 162

port 1812

port 7

predefined classes and

preemption 2nd

prefer keyword

preferred addresses 2nd

prefix lists 2nd 3rd 4th

prefix-length-range keyword

prefix-list match term

prefixes ignored

prepending AS numbers to path 2nd

primary addresses 2nd 3rd

primary and preferred 2nd

primary and preferred addresses

primary NTP server

prioritizing

prioritizing LSPs 2nd 3rd 4th 5th 6th

private

private IP addresses

private keys

private keys and

privilege class 2nd 3rd 4th

protecting

protecting LSP paths 2nd 3rd 4th 5th 6th 7th 8th

protecting Routing Engines 2nd

protection LSP and

protection LSPs 2nd

protocol family

protocol match term

protocols

protocols with graceful restart 2nd 3rd

provider routers (P routers)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provisionally activating

Prune messages

ps command (Unix)

PSNPs

public key certificate

public keys 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

QoS parameters

question mark (?)

quit command 2nd

quotation marks (") 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

RADIUS clients

RADIUS servers and

RADIUS user authentication 2nd

RANCID software tool

rate limiting 2nd

rate limiting and

rate limiting traffic flow 2nd 3rd

rcv_adv parameter (TCB)

rcv_nxt parameter (TCB)

rcvcc parameter (TCB)

re0 configuration group 2nd

re1 configuration group

read-only privilege class

receive event

Record Route Object (RRO)

redirecting logging messages 2nd

redistributing in OSPF 2nd

redundant

redundant Routing Engines 2nd 3rd 4th 5th

redundant Routing Engines and

reference bandwidth 2nd

reference bandwidth and

Register messages (PIM)

regular areas (OSPF)

remote (placeholder) account

remote authentication 2nd 3rd

remote loopback mode

remote monitoring

remote monitoring (RMON) 2nd

removing private AS numbers

rename command

rendezvous point

reordering terms 2nd

replay attacks

request command

request support information command

request system command

request system snapshot command 2nd

request system software add command

request system software command

request system support command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rescue configuration 2nd 3rd

reserved addresses 2nd

reset permission bit 2nd 3rd

resources and

restart command 2nd

restoring backed-up filesystems

restricting advertised routes 2nd

restricting inbound router access 2nd

Resv message (RSVP) 2nd

reuse 2nd

reuse threshold 2nd 3rd

reverse engineering

reverse-path forwarding (RPF)

revertive mode

reviewing system log messages

RFC 1058

RFC 1112

RFC 1155

RFC 1195

RFC 1213

RFC 1305 2nd

RFC 1771 2nd

RFC 1902

RFC 1918 2nd 3rd 4th 5th

RFC 1965

RFC 1966

RFC 1997

RFC 1998

RFC 2080

RFC 2081

RFC 2082

RFC 2205

RFC 2236 2nd

RFC 2328

RFC 2439

RFC 2740

RFC 2790

RFC 2796

RFC 2819

RFC 2858

RFC 2865 2nd

RFC 2918

RFC 3031

RFC 3032 2nd

RFC 3065

RFC 3209

RFC 3330 2nd

RFC 3376

RFC 3415

RFC 3416

RFC 3784 2nd 3rd

RFC 4090

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RIB groups (routing table groups) 2nd 3rd 4th 5th

RIBs (routing information bases)

RIP 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

RIP and 2nd 3rd 4th 5th 6th 7th

RIP as

RIP for IPv6 2nd 3rd

RIP limitations

RIP operations 2nd

RIP routes

RIP traffic 2nd 3rd

RIP traffic and

RIP updates

RIPE domain registry 2nd

RIPng

RIPng and

RIR and

rlogin utility

RMON (remote monitoring) 2nd 3rd 4th

rmon-alarm keyword

rollback command 2nd 3rd

rollback permission bit

root account 2nd

root account and 2nd

root accounts and

root authentication 2nd

root authentication and

root user and 2nd

route convergence time

route distinguisher 2nd 3rd 4th

route distinguishers and

route flap damping 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

route lists 2nd

route reflection 2nd 3rd 4th 5th 6th

route target

Router Alert label (MPLS)

router configuration 2nd 3rd

router configuration and 2nd

router configuration file and

router identifier string

router interfaces and

router keys

router label information 2nd 3rd

router operational information 2nd

router security

router security and 2nd 3rd

routers 2nd

routes in forwarding table

routes with particular prefixes 2nd

Routing Engines

Routing Engines and 2nd 3rd 4th 5th 6th

routing information bases (RIBs)

routing information registry (RIR)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

routing keyword

routing permission bit

routing policies 2nd 3rd 4th 5th

routing policies and 2nd

routing policy 2nd 3rd 4th

routing RIP traffic 2nd

routing software

routing tables 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

routing tables and 2nd 3rd 4th 5th 6th

routing traffic

routing-control permission bit

RP mapping

RPF 2nd 3rd 4th

RPF (reverse-path forwarding) 2nd 3rd 4th

RPF and 2nd

RSA (SSH Version 1) 2nd

RST packets

RSVP

RSVP and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

RSVP authentication 2nd 3rd

RSVP operations

RSVP-TE

run command

run show rip statistics command

run show route command

running configuration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

S 2nd

same command

SAP (Session Announcement Protocol)

save command 2nd 3rd

saving to Routing Engines

scheduling activation of 2nd 3rd

scp command (Unix) 2nd

screens

secret permission bit 2nd 3rd

secret-control permission bit 2nd

secure HTTP

secure template

security and 2nd 3rd 4th

security level (SNMPv3)

security model (SNMPv3)

security parameter index (SPI) 2nd

security permission bit

security with

security-control permission bit

semicolon (;)

Sender TSpec

sending log messages to screens 2nd

sending messages to servers 2nd 3rd

sending Version 1 update messages

server mode

service sets 2nd 3rd

service-level agreements (SLAs)

Session Announcement Protocol (SAP)

set alarm command

set archival command

set as-path command 2nd 3rd

set atm-options command

set authentication-key command

set bert-algorithm command

set cluster command

set command 2nd 3rd 4th

set community command 2nd

set damping command

set date command

set dce command

set description command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set direction inbound command

set direction outbound command

set encapsulation command

set event command

set export null-path command

set export send-statics command

set external-preference command

set family inet-vpn unicast command

set family mpls command

set filter command

set filter input command

set from neighbor command

set from route-filter command 2nd

set graceful-switchover enable command

set ike proposal command

set interfaces command

set interfaces fxp0 command

set label-switched-path command

set ldp interface command

set lifetime-seconds command

set match-direction command

set mode sparse command

set multipath command

set neighbor command

set ntp boot-server command

set ntp server command

set ospf command 2nd

set ospf3 command 2nd

set overload command 2nd

set peer-as command 2nd

set policer ssh command

set policer utility command

set policy-statement command

set preference command

set protocols bgp group command

set protocols ospf preference command

set remove-private command

Set request (SNMP) 2nd 3rd

set rip authentication-key command

set rip command

set ripng command

set route-filter command

set routing-options router-id command

set rp auto-rp mapping command

set rp bootstrap-export command

set rp bootstrap-import command

set rp local address command 2nd

set rp local command

set rp static command

set rpf-check command

set rsvp interface command

set security pki ca-profile command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

set statistics auto-bandwidth command

set system backup-router command

set system domain command

set system host-name command

set system ntp server command

set system services ssh command

set t1-options bert-algorithm command

set term command

set term syn command

set term tcp command

set then accept command 2nd

set then command

set then log command

set then syslog command 2nd

set then trace command

set time-zone command

set trap-group command

set trusted-key command

set user class command

set user full-name command 2nd 3rd

set user uid command 2nd

set view command

set vrf-export command

set vrf-import command

set vrf-target command

setting addresses 2nd

setting authentication methods

setting router information

setting router IP address 2nd 3rd

setting router source address 2nd 3rd

setting source addresses

setting time zone 2nd

setting time/date manually

setting traps 2nd 3rd 4th 5th

setting up 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

setting up accounts on routers

setting up bootstrap routers 2nd 3rd

setting up login accounts 2nd

setting up reflectors

setting up route reflectors 2nd 3rd 4th

severity levels and 2nd 3rd

SF (super frame) framing mode

shared trees

shell permission bit

shortest path tree (SPT)

show aps command

show aps group command

show bfd session command 2nd

show bfd session detail command

show bgp group command 2nd

show bgp neighbor command 2nd

show chassis environment command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

show chassis hardware command

show chassis mac-address command

show chassis routing-engine command

show cli authorization command

show command and 2nd 3rd

show configuration command

show firewall filter command 2nd 3rd

show firewall log command 2nd 3rd

show igmp interface command

show interfaces brief command 2nd

show interfaces descriptions command

show interfaces detail command 2nd

show isis adjacencies command

show isis adjacency detail command

show isis database command 2nd 3rd

show isis database extensive command

show isis interface command 2nd

show isis interface detail command

show isis route command 2nd

show ldp database command

show ldp interface command

show ldp session command 2nd

show ldp traffic-statistics command

show mpls interface command 2nd

show mpls lsp command 2nd 3rd 4th

show mpls lsp detail command

show mpls lsp transit command 2nd

show multicast next-hops command

show multicast route command 2nd

show multicast usage command

show ntp associations command

show ospf database command 2nd

show ospf interface command 2nd 3rd

show ospf interface detail command

show ospf neighbor command 2nd

show ospf route command

show ospf3 interface command

show ospf3 route command

show pfe command

show pfe route command 2nd 3rd

show pfe route mpls command

show pim bootstrap command

show pim interface command

show pim join command

show pim join extensive command

show pim rps command

show pim rps detail command

show policy command

show policy damping command

show protocols ospf command

show rip command

show rip neighbor command

http://lib.ommolketab.ir
http://lib.ommolketab.ir

show rip statistics command

show ripng command

show route damping command

show route damping history command

show route detail command 2nd

show route forwarding-table command

show route instance detail command

show route protocol bgp command

show route protocol command

show route protocol ldp command

show route protocol rsvp command

show route summary command

show route table inet.0 command 2nd

show route table inet.3 command

show route terse command

show rsvp interface command

show rsvp interface detail command

show rsvp session detail command

show rsvp session ingress command

show rsvp session statistics command

show rsvp version command

show snmp mib command 2nd

show snmp mib get-next command

show snmp mib walk command

show snmp rmon logs command

show snmp v3 command

show system commit command 2nd

show system processes command 2nd

show system storage command

show system uptime command 2nd 3rd

show system users command 2nd

show ted database extensive command

show version command 2nd

show version detail command and

show vrrp detail command

show vrrp extensive command

show | compare command

show | compare rollback 0 command

show | display inheritance command 2nd

show | display set command

showing interface status

showing PICS

signaling protocols and 2nd

site of origin

slewing time

SMI numbers

SMIs and

snapshots of

snd_nxt parameter (TCB)

snd_una parameter (TCB)

snd_wnd parameter (TCB)

sndcc parameter (TCB)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SNMP 2nd 3rd 4th 5th 6th 7th 8th 9th

SNMP and 2nd 3rd 4th 5th 6th 7th 8th 9th

SNMP example

SNMP managers and

snmp mib get command

snmp permission bit

SNMP Set capability

snmp-control permission bit

SNMP_ prefix

snmpd process (SNMP) 2nd 3rd

snmpget command

snmpgetnext command

snmpwalk command 2nd 3rd

snmpwalk utility

soft-preemption

soft-preemption cleanup

software inventory information 2nd

software to routers 2nd

SONET 2nd 3rd 4th 5th 6th

SONET interfaces 2nd 3rd 4th 5th

SONET support

sonet-alarms keyword

source address

source address and

source addresses

source filtering 2nd 3rd

source-address match term

source-port match term

Source-Specific Multicast (SSM)

spaces 2nd

sparse protocols

sparse protocols and

SPI (security parameter index) 2nd

split horizon technique 2nd

spoofing 2nd 3rd

SPT (shortest path tree)

SSB (System and Switch Board)

SSH and

SSH and encryption

ssh command 2nd

SSM 2nd 3rd

SSM (Source-Specific Multicast)

standard 2nd

start shell command 2nd

startup keyword

statement hierarchy

static routes 2nd 3rd 4th 5th 6th 7th 8th 9th

static routes and 2nd

static routes to

static RP

status command

sticky DRs 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

strategies for choosing 2nd

stratum 2 clock

stratum 3 clock 2nd 3rd

strict mode (unicast RPF)

structure of

stub areas 2nd 3rd

su root command

subnetwork mask

subsets of

summarizing OSPF routes 2nd

summarizing routes

super frame (SF) framing mode

support information

suppression 2nd

suppression threshold 2nd 3rd

swatch tool

switching tables and

SYN packets

synchronizing for routers

synchronizing time and

synchronizing time periodically 2nd 3rd

syntactical errors

syntax 2nd

sysContact object

sysDescription object

sysLocation object

syslog action

SYSLOG facility code

syslog utility (Unix) 2nd 3rd

syslog-ng program

syslogd utility 2nd 3rd 4th

sysName object

System and Switch Board (SSB)

system identifier (IS-IS) 2nd

system logging messages and 2nd

system permission bit

system time

system-control permission bit

sysUpTime object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

T-series router software releases 2nd

T1 2nd

T1 interfaces 2nd 3rd

table 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

TACACS+ user authentication

tag action (BGP)

Tag Switching

tail -f command (Unix)

target VPN

TCB (transmission control block)

TCP connections and

TCP session problems and 2nd

TCP sessions 2nd

tcp-established match term

tcp-flags match term

tcp-initial match term

TCP/IP 2nd 3rd

TED (traffic engineering database) 2nd

Telnet and 2nd

Telnet and source addresses

telnet command 2nd 3rd

Telnet connections 2nd

temporarily disabling

terms

terms (regular expressions)

test command

test interface command

text file and

text from terminal windows 2nd 3rd

time synchronization and

time to live (TTL) 2nd

time zone function

time zones 2nd

timeout values

timeout values for

timestamps and

TLV 128

TLV 132

TLV 134

TLV 135

TLV 2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TLV 22

/tmp directory

TNP (Trivial Network Protocol)

trace action

trace permission bit 2nd

trace-control permission bit

traceoption flag

tracing 2nd

tracing and 2nd 3rd

tracing BGP problems 2nd 3rd

tracing IS-IS

tracing IS-IS traffic

tracing LDP operations

tracing operations 2nd

tracing OSPF 2nd 3rd 4th

tracing PIM packets 2nd

tracing RIP 2nd

tracing RSVP operations 2nd 3rd

tracing traffic 2nd 3rd 4th 5th

tracking

tracking changes

tracking configuration changes

traffic engineering database (TED)

traffic engineering router ID

traffic on interface 2nd

transit links

transmission control block (TCB)

transport mode (IPSec)

traps 2nd

traps and 2nd

Triple-DES encryption

Trivial Network Protocol (TNP)

TTL (time to live) 2nd

tunnel mode (IPSec) 2nd

tunnel PICs and

Tunnel Service

Tunnel Services PICs 2nd

turning off 2nd

turning on 2nd 3rd

turning on MPLS

turning on tracing

Type field (route distinguisher)

tzsetup utility (FreeBSD)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

UDP

UID (user ID)

unallocated

unallocated prefix blocks 2nd

unallocated prefixes

unauthorized privilege class

unicast reverse-path forwarding 2nd 3rd

unicast routes

unicast routing table 2nd 3rd 4th

unicast routing tables and

unicast RPF

unidirectional nature of

unit statement

unnumbered

unreachable messages

up arrow 2nd

up command and

upgrading software versions 2nd 3rd 4th 5th

uptime utility (Unix) 2nd

upto keyword

USB port 2nd

user accounts and 2nd

user authentication 2nd 3rd 4th 5th

user facility

user ID (UID)

username 2nd 3rd

username and

USM and

UTC (Coordinated Universal Time) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

/var directory

/var/db/config directory

/var/tmp directory

VCI (virtual circuit identifier) 2nd 3rd

vendor ID

verifying 2nd

verifying DLCI

verifying packet labels 2nd

verifying traffic 2nd

via router console

view permission bit

view permission bit and

viewing forwarding entries

viewing interface status

viewing link-state databases 2nd 3rd 4th

viewing multicast routes 2nd 3rd

viewing routes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

viewing routes from protocols

viewing status 2nd 3rd 4th

viewing traffic statistics 2nd 3rd

virtual

virtual circuit identifier (VCI)

virtual interfaces

virtual links

virtual links and

virtual path identifier (VPI) 2nd

virtual paths (VPs) 2nd

VLAN configuration parameters

VLAN tagging 2nd 3rd

VPI (virtual path identifier) 2nd

VPLS (Virtual Private LAN Services)

vpls family

VPN routes and 2nd

VPN routing tables

VPN-IPv4 addresses

VPN-IPv4 addresses and

VPNs

VPNs and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

VRF tables and

VRF target

VRRP and 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

w command (Unix)

well-known attributes (BGP)

wildcard characters

WinZip utility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

X Windows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	JUNOS Cookbook
	Table of Contents
	Copyright
	Foreword
	Preface

	Chapter 1. Router Configuration and File Management
	Introduction
	Recipe 1.1. Configuring the Router for the First Time
	Recipe 1.2. Configuring the Router from the CLI
	Recipe 1.3. Getting Exclusive Access to Configure the Router
	Recipe 1.4. Displaying the Commands to Recreate a Configuration
	Recipe 1.5. Including Comments in the Configuration
	Recipe 1.6. Checking the Syntax of the Configuration
	Recipe 1.7. Activating the Router Configuration
	Recipe 1.8. Debugging a Failed Commit
	Recipe 1.9. Exiting Configuration Mode
	Recipe 1.10. Keeping a Record of Configuration Changes
	Recipe 1.11. Determining What Changes You Have Made to the Configuration
	Recipe 1.12. Configuring the Router by Copying a File from a Server
	Recipe 1.13. Configuring the Router by Copying Text from a Terminal Window
	Recipe 1.14. Backing Up the Router's Configuration
	Recipe 1.15. Scheduling the Activation of a Configuration
	Recipe 1.16. Provisionally Activating a Configuration
	Recipe 1.17. Loading a Previous Router Configuration
	Recipe 1.18. Creating an Emergency Rescue Configuration
	Recipe 1.19. Backing Up Filesystems on M-Series and T-Series Routers
	Recipe 1.20. Backing Up Filesystems on J-Series Routers
	Recipe 1.21. Restoring a Backed-Up Filesystem
	Recipe 1.22. Installing a Different Software Release on M-Series and T-Series Routers
	Recipe 1.23. Installing a Different Software Release on J-Series Routers
	Recipe 1.24. Creating an Emergency Boot Disk
	Recipe 1.25. Gathering Software Version Information
	Recipe 1.26. Gathering Hardware Inventory Information
	Recipe 1.27. Finding Out How Long the Router Has Been Up
	Recipe 1.28. Gathering Information Before Contacting Support
	Recipe 1.29. Managing Routers with Similar Configurations
	Recipe 1.30. Managing Redundant Routing Engines
	Recipe 1.31. Using the Second Routing Engine to Upgrade to a New Software Version

	Chapter 2. Basic Router Security and Access Control
	Introduction
	Recipe 2.1. Allowing Access to the Router
	Recipe 2.2. Controlling Root Authentication
	Recipe 2.3. Logging In to the Router's Console
	Recipe 2.4. Setting the Login Authentication Methods
	Recipe 2.5. Setting Up Login Accounts on the Router
	Recipe 2.6. Changing the Format of Plain-Text Passwords
	Recipe 2.7. Changing the Plain-Text Password Encryption Method
	Recipe 2.8. Creating a Login Account for Remote Authentication
	Recipe 2.9. Creating a Group Login Account
	Recipe 2.10. Customizing Account Privileges
	Recipe 2.11. Creating a Privilege Class that Hides Encrypted Passwords
	Recipe 2.12. Setting Up RADIUS User Authentication
	Recipe 2.13. Setting Up TACACS+ User Authentication
	Recipe 2.14. Restricting Inbound SSH and Telnet Access
	Recipe 2.15. Setting the Source Address for Telnet Connections
	Recipe 2.16. Creating a Login Banner
	Recipe 2.17. Finding Out Who Is Logged In to the Router
	Recipe 2.18. Logging Out of the Router
	Recipe 2.19. Forcibly Logging a User Out

	Chapter 3. IPSec
	Introduction
	Recipe 3.1. Configuring IPSec
	Recipe 3.2. Configuring IPSec Dynamic SAs
	Recipe 3.3. Creating IPSec Dynamic SAs on J-Series Routers or Routers with AS PICs
	Recipe 3.4. Using Digital Certificates to Create Dynamic IPSec SAs

	Chapter 4. SNMP
	Introduction
	Recipe 4.1. Configuring SNMP
	Recipe 4.2. Setting Router Information for the MIB-II System Group
	Recipe 4.3. Setting Up SNMP Traps
	Recipe 4.4. Controlling SNMP Access to the Router
	Recipe 4.5. Using a Firewall Filter to Protect SNMP Access
	Recipe 4.6. Controlling Access to Router MIBs
	Recipe 4.7. Extracting Software Inventory Information with SNMP
	Recipe 4.8. Extracting Hardware Inventory Information with SNMP
	Recipe 4.9. Collecting Router Operational Information with SNMP
	Recipe 4.10. Logging SNMP Access to the Router
	Recipe 4.11. Logging Enterprise-Specific Traps
	Recipe 4.12. Using RMON Traps to Monitor the Router's Temperature
	Recipe 4.13. Configuring SNMPv3
	Recipe 4.14. Tracking Router Configuration Changes
	Recipe 4.15. Setting Up SNMPv3 Traps

	Chapter 5. Logging
	Introduction
	Recipe 5.1. Turning On Logging
	Recipe 5.2. Limiting the Messages Collected
	Recipe 5.3. Including the Facility and Severity in Messages
	Recipe 5.4. Changing the Size of a Logging File
	Recipe 5.5. Clearing the Router's Logfiles
	Recipe 5.6. Sending Log Messages to Your Screen
	Recipe 5.7. Sending Logging Messages to a Log Server
	Recipe 5.8. Saving Logging Messages to the Other Routing Engine
	Recipe 5.9. Turning Off Logging
	Recipe 5.10. Turning On Basic Tracing
	Recipe 5.11. Monitoring Interface Traffic

	Chapter 6. NTP
	Introduction
	Recipe 6.1. Setting the Date and Time on the Router Manually
	Recipe 6.2. Setting the Time Zone
	Recipe 6.3. Synchronizing Time When the Router Boots
	Recipe 6.4. Synchronizing Time Periodically
	Recipe 6.5. Authenticating NTP
	Recipe 6.6. Checking NTP Status

	Chapter 7. Router Interfaces
	Introduction
	Recipe 7.1. Viewing Interface Status
	Recipe 7.2. Viewing Traffic Statistics on an Interface
	Recipe 7.3. Setting an IP Address for the Router
	Recipe 7.4. Setting the Router's Source Address
	Recipe 7.5. Configuring an IPv4 Address on an Interface
	Recipe 7.6. Configuring an IPv6 Address on an Interface
	Recipe 7.7. Configuring an ISO Address on an Interface
	Recipe 7.8. Creating an MPLS Protocol Family on a Logical Interface
	Recipe 7.9. Configuring an Interface Description
	Recipe 7.10. Choosing Primary and Preferred Interface Addresses
	Recipe 7.11. Using the Management Interface
	Recipe 7.12. Finding Out What IP Addresses Are Used on the Router
	Recipe 7.13. Configuring Ethernet Interfaces
	Recipe 7.14. Using VRRP on Ethernet Interfaces
	Recipe 7.15. Connecting to an Ethernet Switch
	Recipe 7.16. Configuring T1 Interfaces
	Recipe 7.17. Performing a Loopback Test on a T1 Interface
	Recipe 7.18. Setting Up a BERT Test on a T1 Interface
	Recipe 7.19. Configuring Frame Relay on a T1 Interface
	Recipe 7.20. Configuring a SONET Interface
	Recipe 7.21. Using APS to Protect Against SONET Circuit Failures
	Recipe 7.22. Configuring an ATM Interface
	Recipe 7.23. Dealing with Nonconfigurable Interfaces
	Recipe 7.24. Configuring Interfaces Before the PICs Are Installed

	Chapter 8. IP Routing
	Introduction
	Recipe 8.1. Viewing the Routes in the Routing Table
	Recipe 8.2. Viewing Routes to a Particular Prefix
	Recipe 8.3. Viewing Routes Learned from a Specific Protocol
	Recipe 8.4. Displaying the Routes in the Forwarding Table
	Recipe 8.5. Creating Static Routes
	Recipe 8.6. Blackholing Routes
	Recipe 8.7. Filtering Traffic Using Unicast Reverse-Path Forwarding
	Recipe 8.8. Aggregating Routes
	Recipe 8.9. Load-Balancing Traffic Flows
	Recipe 8.10. Adding Martian Addresses
	Recipe 8.11. Changing Route Preferences to Migrate to Another IGP
	Recipe 8.12. Configuring Routing Protocols to Restart Without Losing Adjacencies

	Chapter 9. Routing Policy and Firewall Filters
	Introduction
	Recipe 9.1. Creating a Simple Routing Policy
	Recipe 9.2. Changing a Route's Routing Information
	Recipe 9.3. Filtering Routes by IP Address
	Recipe 9.4. Filtering Long Prefixes
	Recipe 9.5. Filtering Unallocated Prefix Blocks
	Recipe 9.6. Creating a Chain of Routing Policies
	Recipe 9.7. Making Sure a Routing Policy Is Functioning Properly
	Recipe 9.8. Creating a Simple Firewall Filter that Matches Packet Contents
	Recipe 9.9. Creating a Firewall Filter that Negates a Match
	Recipe 9.10. Reordering Firewall Terms
	Recipe 9.11. Filtering Traffic Transiting the Router
	Recipe 9.12. Using a Firewall Filter to Count Traffic on an Interface
	Recipe 9.13. Logging the Traffic on an Interface
	Recipe 9.14. Limiting Traffic on an Interface
	Recipe 9.15. Protecting the Local Routing Engine
	Recipe 9.16. Rate-Limiting Traffic Flow to the Routing Engine
	Recipe 9.17. Using Counters to Determine Whether a Router Is Under Attack

	Chapter 10. RIP
	Introduction
	Recipe 10.1. Configuring RIP
	Recipe 10.2. Having RIP Advertise Its Routes
	Recipe 10.3. Configuring RIP for IPv6
	Recipe 10.4. Enabling RIP Authentication
	Recipe 10.5. Routing RIP Traffic over Faster Interfaces
	Recipe 10.6. Sending Version 1 Update Messages
	Recipe 10.7. Tracing RIP Protocol Traffic

	Chapter 11. IS-IS
	Introduction
	Recipe 11.1. Configuring IS-IS
	Recipe 11.2. Viewing the IS-IS Link-State Database
	Recipe 11.3. Viewing Routes Learned by IS-IS
	Recipe 11.4. Configuring IS-IS for IPv6
	Recipe 11.5. Configuring a Level 1Only Router
	Recipe 11.6. Controlling DIS Election
	Recipe 11.7. Enabling IS-IS Authentication
	Recipe 11.8. Redistributing Static Routes into IS-IS
	Recipe 11.9. Leaking IS-IS Level 2 Routes into Level 1
	Recipe 11.10. Adjusting IS-IS Link Costs
	Recipe 11.11. Improving IS-IS Convergence Times
	Recipe 11.12. Moving IS-IS Traffic off a Router
	Recipe 11.13. Disabling IS-IS on an Interface
	Recipe 11.14. Tracing IS-IS Protocol Traffic

	Chapter 12. OSPF
	Introduction
	Recipe 12.1. Configuring OSPF
	Recipe 12.2. Viewing Routes Learned by OSPF
	Recipe 12.3. Viewing the OSPF Link-State Database
	Recipe 12.4. Configuring OSPF for IPv6
	Recipe 12.5. Configuring a Multiarea OSPF Network
	Recipe 12.6. Setting Up Stub Areas
	Recipe 12.7. Creating a Not-So-Stubby Area
	Recipe 12.8. Summarizing Routes in OSPF
	Recipe 12.9. Enabling OSPF Authentication
	Recipe 12.10. Redistributing Static Routes into OSPF
	Recipe 12.11. Adjusting OSPF Link Costs
	Recipe 12.12. Improving OSPF Convergence Times
	Recipe 12.13. Moving OSPF Traffic off a Router
	Recipe 12.14. Disabling OSPF on an Interface
	Recipe 12.15. Tracing OSPF Protocol Traffic

	Chapter 13. BGP
	Introduction
	Recipe 13.1. Configuring a BGP Session Between Routers in Two ASs
	Recipe 13.2. Configuring BGP on Routers Within an AS
	Recipe 13.3. Diagnosing TCP Session Problems
	Recipe 13.4. Adjusting the Next-Hop Attribute
	Recipe 13.5. Adjusting Local Preference Values
	Recipe 13.6. Removing Private AS Numbers from the AS Path
	Recipe 13.7. Prepending AS Numbers to the AS Path
	Recipe 13.8. Filtering BGP Routes Based on AS Paths
	Recipe 13.9. Restricting the Number of Routes Advertised to a BGP Peer
	Recipe 13.10. Authenticating BGP Peers
	Recipe 13.11. Setting Up Route Reflectors
	Recipe 13.12. Mitigating Route Instabilities with Route Flap Damping
	Recipe 13.13. Adding a BGP Community to Routes
	Recipe 13.14. Load-Balancing BGP Traffic
	Recipe 13.15. Tracing BGP Protocol Traffic

	Chapter 14. MPLS
	Introduction
	Recipe 14.1. Configuring LSPs Using LDP as the Signaling Protocol
	Recipe 14.2. Viewing Information and LDP-Signaled LSPs in the Routing Tables
	Recipe 14.3. Verifying that an LDP-Signaled LSP Is Carrying Traffic
	Recipe 14.4. Enabling LDP Authentication
	Recipe 14.5. Tracing LDP Operations
	Recipe 14.6. Setting Up RSVP-Signaled LSPs
	Recipe 14.7. Viewing Information About RSVP-Signaled LSPs in the Routing Tables
	Recipe 14.8. Verifying Packet Labels
	Recipe 14.9. Verifying that the RSVP-Signaled LSP Is Carrying Traffic
	Recipe 14.10. Configuring RSVP Authentication
	Recipe 14.11. Protecting an LSP's Path
	Recipe 14.12. Using Fast Reroute to Reduce Packet Loss Following a Link Failure
	Recipe 14.13. Automatically Allocating Bandwidth
	Recipe 14.14. Prioritizing LSPs
	Recipe 14.15. Allowing IGP Traffic to Use an LSP
	Recipe 14.16. Installing LSPs into the Unicast Routing Table
	Recipe 14.17. Tracing RSVP Operations

	Chapter 15. VPNs
	Introduction
	Recipe 15.1. Setting Up a Simple Layer 3 VPN
	Recipe 15.2. Viewing the VPN Routing Tables
	Recipe 15.3. Adding a VPN for a Second Customer

	Chapter 16. IP Multicast
	Introduction
	Recipe 16.1. Configuring PIM-SM
	Recipe 16.2. Manually Establishing a PIM-SM RP
	Recipe 16.3. Using Auto-RP to Dynamically Map RPs
	Recipe 16.4. Setting Up a PIM-SM Bootstrap Router
	Recipe 16.5. Filtering PIM-SM Bootstrap Messages
	Recipe 16.6. Configuring Multiple RPs in a PIM-SM Domain with Anycast RP
	Recipe 16.7. Configuring Multiple RPs in a PIM-SM Domain Anycast PIM
	Recipe 16.8. Limiting the Group Ranges an RP Services
	Recipe 16.9. Viewing Multicast Routes
	Recipe 16.10. Checking the Groups for Which a PIM-SM Router Maintains Join State
	Recipe 16.11. Manually Configuring IGMP
	Recipe 16.12. Using SSM
	Recipe 16.13. Connecting PIM-SM Domains Using MSDP and MBGP
	Recipe 16.14. Configuring PIM-DM
	Recipe 16.15. Tracing PIM Packets

	About the Author
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

