
Visual Basic 2005: A Developer's Notebook

By Matthew MacDonald

...

Publisher: O'Reilly

Pub Date: April 2005

ISBN: 0-596-00726-4

Pages: 262

Table of Contents | Index | Errata

To bring you up to speed with Visual Basic 2005, this practical book offers nearly 50 hands-on projects. Each one explores a new

feature of the language, with emphasis on changes that can increase productivity, simplify programming tasks, and help you add new

functionality to your applications. You get the goods straight from the masters in an informal, code-intensive style. Part of our new

Developer's Notebook series.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Basic 2005: A Developer's Notebook

By Matthew MacDonald

...

Publisher: O'Reilly

Pub Date: April 2005

ISBN: 0-596-00726-4

Pages: 262

Table of Contents | Index | Errata

 Copyright

 The Developer's Notebook Series

 Notebooks Are...

 Notebooks Aren't...

 Organization

 Preface

 Who This Book Is For

 What You Need to Use This Book

 About This Book

 Conventions Used in This Book

 Using Code Examples

 Safari® Enabled

 How to Contact Us

 Acknowledgments

 Chapter 1. Visual Studio

 Section 1.1. How do I do that?

 Section 1.2. Code, Debug, and Continue Without Restarting Your Application

 Section 1.3. Look Inside an Object While Debugging

 Section 1.4. Diagnose and Correct Errorson the Fly

 Section 1.5. Rename All Instances of Any Program Element

 Section 1.6. Use IntelliSense Filteringand AutoCorrect

 Section 1.7. Edit Control Properties in Place

 Section 1.8. Call Methods at Design Time

 Section 1.9. Insert Boilerplate CodeUsing Snippets

 Section 1.10. Create XML Documentation for Your Code

 Chapter 2. The Visual Basic Language

 Section 2.1. Use the My Objects to Program Common Tasks

 Section 2.2. Get Application Information

 Section 2.3. Use Strongly Typed Resources

 Section 2.4. Use Strongly Typed Configuration Settings

 Section 2.5. Build Typesafe Generic Classes

 Section 2.6. Make Simple Data Types Nullable

 Section 2.7. Use Operators with Custom Objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 2.8. Split a Class into Multiple Files

 Section 2.9. Extend the My Namespace

 Section 2.10. Skip to the Next Iteration of a Loop

 Section 2.11. Dispose of Objects Automatically

 Section 2.12. Safeguard Properties with Split Accessibility

 Section 2.13. Evaluate Conditions Separately with Short-Circuit Logic

 Chapter 3. Windows Applications

 Section 3.1. Use Office-Style Toolbars

 Section 3.2. Add Any Control to a ToolStrip

 Section 3.3. Add Icons to Your Menu

 Section 3.4. Put the Web in a Window

 Section 3.5. Validate Input While the User Types

 Section 3.6. Create Text Boxes thatAuto-Complete

 Section 3.7. Play a Windows System Sound

 Section 3.8. Play Simple WAV Audio

 Section 3.9. Create a Windows Explorer-like Split Window

 Section 3.10. Take Control of Window Layout

 Section 3.11. Control When Your Application Shuts Down

 Section 3.12. Prevent Your Application from Starting Twice

 Section 3.13. Communicate Between Forms

 Section 3.14. Improve Redraw Speeds for GDI+

 Section 3.15. Handle Asynchronous Tasks Safely

 Section 3.16. Use a Better Data-Bound Grid

 Section 3.17. Format the DataGridView

 Section 3.18. Add Images and Controls to the DataGridView

 Chapter 4. Web Applications

 Section 4.1. Create a Web Application in Visual Studio 2005

 Section 4.2. Administer a Web Application

 Section 4.3. Bind to Data Without Writing Code

 Section 4.4. Bind Web Controls to a Custom Class

 Section 4.5. Display Interactive Tables Without Writing Code

 Section 4.6. Display Records One at a Time

 Section 4.7. Achieve a Consistent Look and Feel with Master Pages

 Section 4.8. Add Navigation to Your Site

 Section 4.9. Easily Authenticate Users

 Section 4.10. Determine How Many People Are Currently Using Your Web Site

 Section 4.11. Use Role-Based Authorization

 Section 4.12. Store Personalized Information

 Chapter 5. Files, Databases, and XML

 Section 5.1. Get Drive Information

 Section 5.2. Get File and Directory Information

 Section 5.3. Copy, Move, and Delete Files

 Section 5.4. Read and Write Files

 Section 5.5. Compress and Decompress Data

 Section 5.6. Collect Statistics on Your Data Connections

 Section 5.7. Batch DataAdapter Commands for Better Performance

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 5.8. Bulk-Copy Rows from One Table to Another

 Section 5.9. Write Database-Agnostic Code

 Section 5.10. Use the New XPathDocument and XPathNavigator

 Section 5.11. Edit an XML Document with XPathNavigator

 Chapter 6. .NET 2.0 Platform Services

 Section 6.1. Easily Log Events

 Section 6.2. Ping Another Computer

 Section 6.3. Get Information About a Network Connection

 Section 6.4. Upload and Download Files with FTP

 Section 6.5. Test Group Membership of the Current User

 Section 6.6. Encrypt Secrets for the Current User

 Section 6.7. Unleash the Console

 Section 6.8. Time Your Code

 Section 6.9. Deploy Your Application with ClickOnce

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Developer's Notebook series designations, Visual Basic 2005: A Developer's
Notebook, the look of a laboratory notebook, and related trade dress are trademarks of O'Reilly
Media, Inc. Microsoft, MSDN, the .NET logo, Visual Basic, Visual C++, Visual Studio, and Windows are
registered trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Developer's Notebook Series
So, you've managed to pick this book up. Cool. Really, I'm excited about that! Of course, you may be
wondering why these books have the odd-looking, college notebook sort of cover. I mean, this is
O'Reilly, right? Where are the animals? And, really, do you need another series? Couldn't this just be
a cookbook? How about a nutshell, or one of those cool hacks books that seems to be everywhere?
The short answer is that a developer's notebook is none of those thingsin fact, it's such an important
idea that we came up with an entirely new look and feel, complete with cover, fonts, and even some
notes in the margin. This is all a result of trying to get something into your hands you can actually
use.

It's my strong belief that while the nineties were characterized by everyone wanting to learn
everything (Why not? We all had six-figure incomes from dot-com companies), the new millennium is
about information pain. People don't have time (or the income) to read through 600 page books,
often learning 200 things, of which only about 4 apply to their current job. It would be much nicer to
just sit near one of the uber-coders and look over his shoulder, wouldn't it? To ask the guys that are
neck-deep in this stuff why they chose a particular method, how they performed this one tricky task,
or how they avoided that threading issue when working with piped streams. The thinking has always
been that books can't serve that particular needthey can inform, and let you decide, but ultimately a
coder's mind was something that couldn't really be captured on a piece of paper.

This series says that assumption is patently wrongand we aim to prove it.

A Developer's Notebook is just what it claims to be: the often-frantic scribbling and notes that a true-
blue alpha geek mentally makes when working with a new language, API, or project. It's the no-
nonsense code that solves problems, stripped of page-filling commentary that often serves more as a
paperweight than an epiphany. It's hackery, focused not on what is nifty or might be fun to do when
you've got some free time (when's the last time that happened?), but on what you need to simply
"make it work." This isn't a lecture, folksit's a lab. If you want a lot of concept, architecture, and UML
diagrams, I'll happily and proudly point you to our animal and nutshell books. If you want every
answer to every problem under the sun, our omnibus cookbooks are killer. And if you are into arcane
and often quirky uses of technology, hacks books simply rock. But if you're a coder, down to your
core, and you just want to get on with it, then you want a Developer's Notebook. Coffee stains and
all, this is from the mind of a developer to yours, barely even cleaned up enough for print. I hope you
enjoy it...we sure had a good time writing them.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notebooks Are...

Example-driven guides

As you'll see, section, developer's notebooks are built entirely around example code. You'll see
code on nearly every page, and it's code that does somethingnot trivial "Hello World!"
programs that aren't worth more than the paper they're printed on.

Aimed at developers

Ever read a book that seems to be aimed at pointy-haired bosses, filled with buzzwords, and
feels more like a marketing manifesto than a programming text? We have tooand these books
are the antithesis of that. In fact, a good notebook is incomprehensible to someone who can't
program (don't say we didn't warn you!), and that's just the way it's supposed to be. But for
developers...it's as good as it gets.

Actually enjoyable to work through

Do you really have time to sit around reading something that isn't any fun? If you do, then
maybe you're into thousand-page language referencesbut if you're like the rest of us,
notebooks are a much better fit. Practical code samples, terse dialogue centered around
practical examples, and even some humor here and therethese are the ingredients of a good
developer's notebook.

About doing, not talking about doing

If you want to read a book late at night without a computer nearby, these books might not be
that useful. The intent is that you're coding as you go along, knee deep in bytecode. For that
reason, notebooks talk code, code, code. Fire up your editor before digging in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Notebooks Aren't...

Lectures

We don't let just anyone write a developer's notebookyou've got to be a bona fide
programmer, and preferably one who stays up a little too late coding. While full-time writers,
academics, and theorists are great in some areas, these books are about programming in the
trenches, and are filled with instruction, not lecture.

Filled with conceptual drawings and class hierarchies

This isn't a nutshell (there, we said it). You won't find 100-page indices with every method
listed, and you won't see full-page UML diagrams with methods, inheritance trees, and flow
charts. What you will find is page after page of source code. Are you starting to sense a
recurring theme?

Long on explanation, light on application

It seems that many programming books these days have three, four, or more chapters before
you even see any working code. I'm not sure who has authors convinced that it's good to keep
a reader waiting this long, but it's not anybody working on this series. We believe that if you're
not coding within ten pages, something's wrong. These books are also chock-full of practical
application, taking you from an example in a book to putting things to work on your job, as
quickly as possible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Organization

Developer's Notebooks try to communicate different information than most books, and as a result,
are organized differently. They do indeed have chapters, but that's about as far as the similarity
between a notebook and a traditional programming book goes. First, you'll find that all the headings
in each chapter are organized around a specific task. You'll note that we said task, not concept.
That's one of the important things to get about these booksthey are first and foremost about doing
something. Each of these headings represents a single lab. A lab is just what it sounds likesteps to
accomplish a specific goal. In fact, that's the first heading you'll see under each lab: "How do I do
that?" This is the central question of each lab, and you'll find lots of down-and-dirty code and detail in
these sections. Many labs offer alternatives and address common questions about different
approaches to similar problems. These are the "What about . . . " sections, which will help give each
task some context within the programming big picture.

And one last thingon many pages, you'll find notes scrawled in the margins of the page. These aren't
for decoration; they contain tips, tricks, insights from the developers of a product, and sometimes
even a little humor, just to keep you going. These notes represent part of the overall communication
flowgetting you as close to reading the mind of the developer-author as we can. Hopefully they'll get
you that much closer to feeling like you are indeed learning from a master.

And most of all, rememberthese books are...

All Lab, No Lecture

Brett McLaughlin, Series Creator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
When Beta 1 of Visual Basic .NET hit the programming scene in 2001, the new tool challenged
experienced Visual Basic developers to step up to an entirely new programming platform and a whole
new way of writing code. Fortunately, four years later, it's clear that the rewards of moving to .NET
make up for the steep learning curve developers experience when they try to do so. Developers who
have made the jump have a powerful set of tools for building Windows and web applicationsa set that
other programming frameworks are hard-pressed to match.

Visual Basic 2005 and the platform it's built on, .NET 2.0, don't represent the same seismic change.
Instead, Visual Basic 2005 and .NET 2.0 are the latest releases of what are now a mature language
and platform. Microsoft architects have ironed out inconsistencies, corrected flaws, and added dozens
of requested features, from VB 6's edit-and-continue debugger to new Windows and web controls for
displaying data. Still, even the keenest developer could use a quick tour of Visual Basic 2005 and
.NET 2.0 to come to terms with all the changes.

This book provides a series of hands-on labs that take you through the new features you'll find in
Visual Basic 2005, the .NET Framework 2.0, and the Visual Studio 2005 development tool. Visual
Basic 2005: A Developer's Notebook is perfect for developers who have worked with a previous
version of .NET and need to quickly get up to speed with what's new. Best of all, you'll learn
everything through concise, focused examples (all of which are just a short download away).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Who This Book Is For

This book is written for anyone who's asked the question "What's new in .NET 2.0?" or, even more
importantly, "What does it let me do now that I couldn't do before?" As the latest in the Developer's
Notebook series of books, this book answers these questions without requiring you to wade through
pages of remedial VB lessons or .NET theory.

The most important requirement for this book is a solid familiarity with VB .NET 1.0 or 1.1, and
experience building .NET applications. Visual Basic 2005: A Developer's Notebook covers very little of
the material that an experienced VB .NET 1.1 programmer already knows. Instead, this book aims to
help you build on your current knowledge, rather than waste your time covering old material. If
you're a VB programmer who hasn't made the jump to .NET yet, you'll find the labs in this book
interesting, but you'll need to supplement your .NET knowledge with another book first. Try one of
the many great introductions, such as Jesse Liberty's Programming Visual Basic .NET (O'Reilly) or my
own The Book of VB .NET (No Starch Press).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

What You Need to Use This Book

To make the best use of this book, you'll need the following ingredients:

Windows 2000 Professional, Windows XP, or Windows Server 2003.

Visual Studio 2005. Alternatively, you can use a scaled-down Visual Studio version, but you
won't be able to complete all the labs. For example, Visual Basic 2005 Express Edition allows
you to build Windows applications, console applications, and DLL components (but not web
applications), and Visual Web Developer 2005 Express Edition allows you to build only web
applications.

In addition, if you want to run the database examples in Chapter 5 without any changes, you'll
need SQL Server 7.0 or later with the sample Northwind database. SQL Server Express will also
work fine.

Because Visual Basic 2005 is currently in a beta cycle, it's inevitable that there will be some changes
to the product after this book is printed. (In rare cases, entire features have disappeared from one
build to the next!) As a result, it's possible that some recipes may not work as written. Usually, the
difference is simply syntactic, such as a minor renaming of a property, constant, or method, or a
reshuffling of a class from one namespace to another. Occasionally, a feature changes more
dramatically, and significant code revisions are needed. To help manage the confusion, refer to
http://www.oreilly.com/catalog/vbadn to download the latest sample code, which is updated regularly
to keep in step with newer builds. As an early adopter, you already know that working with beta
versions is awkward, frustrating, and more than a little exciting. But all in all, it's a small price to pay
for getting an advance seat to see the changes to Visual Basic and the .NET platform!

http://www.oreilly.com/catalog/vbadn
http://lib.ommolketab.ir
http://lib.ommolketab.ir

About This Book

This book is divided into six chapters. Each chapter tackles a particular category of enhancements in
the VB 2005 language and the .NET 2.0 Framework:

Chapter 1, Visual Studio

Visual Studio sports a host of embellishments, including enhanced IntelliSense and a new code
snippets feature that puts useful examples at your fingertips. But the star of the show is
undoubtedly the return of the long-missed edit-and-continue debugging engine.

Chapter 2, The Visual Basic Language

The VB 2005 language has some new keywords, some of which duplicate features found in C#
(e.g., operator overloading), and others that leverage completely new .NET Framework
features (e.g., generics). Learn about them all in this chapter.

Chapter 3, Windows Applications

The Windows Forms toolkit hasn't changed much, but a handful of entirely new controls provide
modern menus and toolbars, masked text editing, web page display, and, finally, a decent data
grid.

Chapter 4, Web Applications

ASP.NET boasts the most improvements of any part of the .NET Framework. In this chapter,
you'll get an overview of many new features, including codeless data-binding, site navigation,
and new solutions for personalization, all of which aim to dramatically reduce the amount of
code you need to write.

Chapter 5, Files, Databases, and XML

In this chapter, you'll see what's new when dealing with data. This includes streamlined file
access classes, a few new ADO.NET frills, and a better way to work with XML.

Chapter 6, .NET 2.0 Platform Services

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The last chapter wraps up with a slew of miscellaneous topics that demonstrate new .NET
Framework features. These features include support for FTP, access to the Windows user
security system, and a new way to deploy applications with the ClickOnce technology.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
usernames and passwords, and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, and the output from commands.

Constant width bold

Used to highlight key portions of code.

Tip: This icon signifies a tip, suggestion, or general note.

Warning: This icon indicates a warning or caution.

Note: This icon indicates a Developer's Note.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Visual Basic 2005: A Developer's Notebook, by Matthew
MacDonald. Copyright 2005 O'Reilly Media, Inc., 0-596-00726-4."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Safari® Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
it means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/vbadn

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/vbadn
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Acknowledgments

This book couldn't have been written without the help of the first rate team at O'Reilly, who invented
this unique series and are always experimenting with new ideas. I'm deeply grateful to John Osborn
for bringing me into this project and giving it (occasional) focus through a difficult beta cycle, and the
excellent technical reviewers who reviewed it, including Jesse Liberty, Steve Saunders, and Dianne
Siebold. I'm especially grateful to Erick Ellis at Microsoft and the Windows Forms team, who've been
absolutely stellar in getting quick answers to my .NET questions. Thanks also to Jay Roxe and Jay
Schmelzer of the Visual Basic team for their help in resolving last-minute problems. I also owe the
usual thanks to my coterie, including Nora, Paul, Razia, Hamid, and my wife Faria.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Visual Studio
The new features of Visual Basic 2005 are actually provided by three separate components: the
enhanced Visual Studio 2005 IDE, a new version of the VB compiler (vbc.exe), and the revamped
.NET 2.0 Framework. In this chapter, you'll start by taking Visual Studio 2005 for a spin.

Note: At first glance, Visual Studio hasn't changed too radically in its latest incarnation. However, it's worth taking a moment to orient

yourself to Microsoft's newest IDE.

Tip: Visual Studio 2005 is the direct successor to Visual Studio .NET, and it provides the most complete set of tools and features. Visual

Basic 2005 Express Edition allows you to build Windows applications, console applications, and DLL components (but not web

applications). Visual Web Developer 2005 Express Edition allows you to build only web applications. However, all three of these

programs are really variations of the same toolVisual Studio. As a result, the menus, toolbars, and behavior of these applications are

essentially the same.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. How do I do that?

To get started and create a new project, select File New Project from the Visual Studio menu.
You'll see a slightly revamped New Project dialog box, as shown in Figure 1-1. Depending on the
version of Visual Studio you're using, you may see a different set of available project types.

Figure 1-1. Creating a new project

To continue, select the Windows Application project type and click OK to create the new project. In
the Solution Explorer, you'll see that the project contains a single form, an application configuration
file, and a My Project node (which you can select to configure project and build settings). However,
the list of assembly references won't appear in the Solution Explorer, unless you explicitly choose
Project Show All Files. Figure 1-2 shows both versions of the Solution Explorer.

Figure 1-2. Two views of the Solution Explorer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To save your project, choose File Save [ProjectName] from the menu. One change you're likely
to notice is that Visual Studio no longer asks you to specify a directory path when you create a new
project. That's because Visual Studio, in a bid to act more like Visual Basic 6, doesn't save any files
until you ask it to.

Tip: This behavior actually depends on the Visual Studio environment settings. When you first install Visual Studio, you have the chance

to choose your developer profile. If you choose Visual Basic Development Settings, you won't be asked to save your project when you

first create it.

Of course, as a savvy programmer you know that files need to reside somewhere, and if you dig
around you'll find a temporary directory like C:\Documents and Settings\[UserName]\Local
Settings\Application Data\Temporary Projects\[ProjectName] that's used automatically to store new,
unsaved projects. Once you save a project, it's moved to the location you choose.

Note: The process of creating web applications has also changed subtly in Visual Studio 2005, and you no longer need IIS and a virtual

directory to test your web site. You'll learn more about web projects in Chapter 4.

You can use the simple Windows application you created to try out the other labs in this chapter and
tour Visual Studio's new features.

1.1.1. What about...

...the real deal of differences between different Visual Studio flavors? You can get the final word
about what each version does and does not support from Microsoft's Visual Studio 2005 developer
center, at http://lab.msdn.microsoft.com/vs2005. This site provides downloads of the latest Visual
Studio betas and white papers that explain the differences between the express editions and the full-
featured Visual Studio 2005.

http://lab.msdn.microsoft.com/vs2005
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. Code, Debug, and Continue Without Restarting Your
Application

Visual Basic 6 developers are accustomed to making changes on the fly, tweaking statements,
refining logic, and even inserting entirely new blocks of code while they work. But the introduction of
a new compile-time architecture with the .NET 1.0 common language runtime (CLR) caused this
feature to disappear from Visual Studio .NET 2002 and 2003. Fortunately, it's returned in Visual Basic
2005, with a few enhancements and one major caveatit won't work with ASP.NET.

Note: The single most requested feature from VB 6 returns to . NET: a debugger that lets you edit code without restarting your

application.

1.2.1. How do I do that?

To see edit-and-debugging at its simplest, it's worth looking at an example where a problem sidelines
your codeand how you can quickly recover. Figure 1-3 shows a financial calculator application that
can calculate how long it will take you to become a millionaire, using Visual Basic's handy Pmt()
function.

Figure 1-3. A simple form for a financial calculation

To create this program, first add four text boxes (the labels are optional), and then name them
txtInterestRate, txtYears, txtFutureValue, and txtMonthlyPayment (from top to bottom). Then, add
a button with the following event handler:

Private Sub btnCalculate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCalculate.Click

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim InterestRate, Years, FinalValue, MonthlyPayment As Double
 InterestRate = Val(txtInterestRate.Text)
 FinalValue = Val(txtFutureValue.Text)
 MonthlyPayment = Pmt(InterestRate / 12 / 100, _
 Years * 12, 0, -FinalValue, DueDate.BegOfPeriod)
 txtMonthlyInvestment.Text = MonthlyPayment.ToString("C")

End Sub

Now run the application, enter some sample values, and click the button. You'll receive a runtime
exception (with the cryptically worded explanation "Argument NPer is not a valid value") when your
code tries to calculate the MonthlyPayment value. One way to discover the source of the problem is to
move the mouse over all the parameters in the statement and verify that they reflect what you
expect. In this case, the problem is that the Years variable is never set, and so contains the value 0.

Thanks to edit-and-continue debugging, you can correct this problem without restarting your
application. When the error occurs, click the "Enable editing" link in the error window. Then, add the
missing line:

Private Sub btnCalculate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles btnCalculate.Click

 Years = Val(txtYears.Text)
 ...

End Sub

Now, look for the yellow arrow in the margin that indicates where the debugger is in your code. Click
and drag this yellow arrow up to the newly added line so that it will be executed next. When you
press F5 or click the Start button, the code resumes from this point and the calculation completes
without a hitch.

Note: You don't need to wait for an error to occur to use edit-and-continue debugging. You can also set a breakpoint in your code or

select Debug Break from the menu at any time.

1.2.2. What about...

...changes that the edit-and-continue debugger doesn't support? For the most part, edit-and-
continue debugging in Visual Basic 2005 supports a greater variety of edits than supported in Visual
Basic 6. However, there are still some types of edits that require you to restart your application. One
example is if you delete the method in which your code is currently executing. For the full list, refer to
the MSDN help, under the index entry "Edit and Continue unsupported declaration edits" (which
describes disallowed changes to declarations, like properties, methods, and classes) and "Edit and
Continue unsupported property and method body edits" (which describes disallowed changes
inside your actual code routines).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To alert you when you make an unsupported edit, Visual Studio underlines the declaration of the
current class with a green squiggly line. If you hover over that line, a ToolTip appears that explains
the offending change. Figure 1-4 shows an example.

Figure 1-4. A ToolTip explaining an unsupported edit

At this point, you can either undo this change, or continue (knowing that you'll need to restart the
program). If you attempt to continue execution (by pressing F5 or F8), Visual Studio asks whether
you want to stop debugging or want to cancel the request and continue editing your code.

A more significant limitation of the new edit-and-continue feature is that it doesn't support ASP.NET
web applications. However, Visual Basic (and C#) developers still receive some improvement in their
web-application debugging experience. Visual Studio 2005 compiles each web page separately, rather
than into a single assembly (as was the model in previous versions). As a result, when you find some
misbehaving code in a web page, you can pause the debugger, edit the code, and refresh the web
page by clicking Refresh in your browser. This behavior gives you an experience that's similar to edit-
and-continue, but it only works on a per-page basis. Unfortunately, this feature won't help you if
you're in the middle of debugging a complex routine inside a web page. In that case, you'll still need
to re-request the web page after you make the change and start over.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. Look Inside an Object While Debugging

Visual Studio has always made it possible for you to peer into variables while debugging your code,
just by hovering over them with the mouse pointer. But there were always limitations. If the variable
was an instance of an object, all you could see was the value returned by the ToString() method,
which more often than not was simply the fully qualified name of the class itself. Moreover, you
couldn't see the content of public properties and indexers. The Watch and Locals windows provided
some improvement, but they weren't quite as convenient or intuitive. Visual Studio 2005 changes the
picture with a new feature called debugger DataTips.

Note: In Visual Studio 2005, it's even easier to take a look at the content of complex objects while debugging.

1.3.1. How do I do that?

To use debugger DataTips, it helps to have a custom class to work with. The code in Example 1-1
shows the declaration for two very simple classes that represent employees and departments,
respectively.

Example 1-1. Two simple classes

Public Class Employee
 Private _ID As String
 Public ReadOnly Property ID() As String
 Get
 Return _ID
 End Get
 End Property

 Private _Name As String
 Public ReadOnly Property Name() As String
 Get
 Return _Name
 End Get
 End Property

 Public Sub New(ByVal id As String, ByVal name As String)
 _ID = id
 _Name = name
 End Sub
End Class

Public Class Department

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private _Manager As Employee
 Public ReadOnly Property Manager() As Employee
 Get
 Return _Manager
 End Get
 End Property

 Private _DepartmentName As String
 Public ReadOnly Property Name() As String
 Get
 Return _DepartmentName
 End Get
 End Property

 Public Sub New(ByVal departmentName As String, ByVal manager As Employee)
 _DepartmentName = departmentName
 _Manager = manager
 End Sub
End Class

Now you can add some code that uses these objects. Add the following event handler to any form to
create a new Employee and Department object when the form first loads.

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim Manager As New Employee("ALFKI", "John Smith")
 Dim Sales As New Department("Sales", Manager)

End Sub

Now place a breakpoint on the final End Sub, and run the application. When execution stops on the
final line, hover over the Sales variable. An expanded ToolTip will appear that lists every private and
public member of the object.

Even better, if one object references another, you can drill into the details of both objects. To try this
out, click the plus sign (+) sign next to the Manager property to see the linked Employee object. Figure
1-5 shows the DataTip you'll see.

Figure 1-5. Peering into an object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using debugger DataTips, you can also edit simple data types on the fly. Just double click the
property or variable, and edit the value. In Figure 1-5, the private variable _Name is currently being
edited.

1.3.2. What about...

...working with exotic types of data? Using the .NET Framework, it's possible to create design-time
classes that produce customized visualizations for specific types of data. While this topic is outside
the scope of this book, you can see it at work with the three built-in visualizers for text, HTML, and
XML data.

For example, imagine you have a string variable that holds the content of an XML document. You
can't easily see the whole document in the single-line ToolTip display. However, if you click the
magnifying glass next to the content in the ToolTip, you'll see a list of all the visualizers you can use.
Select XML Visualizer, and a new dialog box will appear with a formatted, color-coded, scrollable,
resizable display of the full document content, as shown in Figure 1-6.

Figure 1-6. Viewing XML content while debugging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3.3. Where can I learn more?

For more information about debugger visualizers, look for the "Visualizers" index entry in the MSDN
help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.4. Diagnose and Correct Errorson the Fly

Visual Studio does a great job of catching exceptions, but it's not always as helpful at resolving them.
The new Exception Assistant that's hardwired into Visual Studio 2005 gives you a head start.

Note: Stumbled into a head-scratching exception? Visual Studio 2005 gives you a head start for resolving common issues with its

Exception Assistant.

1.4.1. How do I do that?

You don't need to take any steps to activate the Exception Assistant. Instead, it springs into action as
soon as your program encounters an unhandled exception.

To see it in action, you need to create some faulty code. A good test is to add the following event
handler to any form, which tries to open a non-existent file:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 Dim XMLText As String = My.Computer.FileSystem.ReadAllText(_
 "c:\FileDoesNotExist")

End Sub

Now run the application. When the error occurs, Visual Studio switches into break mode and
highlights the offending statement. The Exception Assistant then appears, with a list of possible
causes for the problem. Each suggestion appears as a separate link in the pop-up window. If you click
one of these links, the full MSDN help topic will appear. Figure 1-7 shows the result with the faulty
file-reading code; the Exception Assistant correctly identifies the reason that the attempt to open the
file failed.

Figure 1-7. Getting help with an exception

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: This example uses a new VB language featurethe My object. You'll learn much more about My objects in the next chapter.

If you want to see the low-level exception information, click the View Detail link at the bottom of the
window. This pops up a dialog box with a PropertyGrid showing all the information of the associated
exception object. This change alone is a great step forward from Visual Studio .NET 2003, where you
needed to write a Catch exception handler and set a breakpoint to take a look at the underlying
exception object.

1.4.2. What about...

...solving complex problems? The Exception Assistant isn't designed to help you sort through issues
of any complexity. Instead, it works best at identifying the all-too-common "gotchas," such as trying
to use a null reference (usually a result of forgetting to use the New keyword) and failing to convert a
data type (often a result of an inadvertent type cast).

1.4.3. Where can I learn more?

For help in the real world, consult a colleague or one of the many .NET discussion groups. Some good
choices include http://lab.msdn.microsoft.com/vs2005/community (for the latest on Visual Basic
2005) andonce Visual Basic 2005 enters its release phasehttp://www.windowsforms.net/Forums (for
Windows Forms questions), http://www.asp.net/Forums (for ASP.NET issues), and
http://discuss.develop.com/advanced-dotnet.html (for more advanced .NET queries).

http://lab.msdn.microsoft.com/vs2005/community
http://www.windowsforms.net/Forums
http://www.asp.net/Forums
http://discuss.develop.com/advanced-dotnet.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5. Rename All Instances of Any Program Element

Symbolic rename allows you to rename all instances of any element you declare in your program,
from classes and interfaces to properties and methods, in a single step. This technique, which is
decidedly not a simple text search-and-replace feature by virtue of its awareness of program syntax,
solves many knotty problems found in previous releases of Visual Basic. For example, imagine you
want to rename a public property named FirstName. If you use search-and-replace, you'll also
inadvertently affect a text box named txtFirstName, an event handler named cmdFirstName_Click, a
database field accessed through row("FirstName"), and even your code comments. With symbolic
rename, the IDE takes care of renaming just what you want, and it completes all of its work in a
single step.

Note: Need to rename a method, property, or variable without mangling other similar names in the same file? Visual Studio 2005

includes the perfect antidote to clumsy search-and-replace.

1.5.1. How do I do that?

You can use symbolic rename from any code window. To understand how it works, create a form that
has a single text box named TextBox1 and a button named cmdText. Finally, add the form code in
Example 1-2.

Example 1-2. A simple form that uses the word "Text" heavily

Public Class TextTest

 Private Sub TextTest_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load
 ' Get the text from the text box.
 Dim Text As String = TextBox1.Text

 ' Convert and display the text.
 Text = ConvertText(Text)
 MessageBox.Show("Uppercase Text is: " & Text)
 End Sub

 Public Function ConvertText(ByVal Text As String) As String
 Return Text.ToUpper()
 End Function

End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This code performs a relatively mundane task: converting a user-supplied string to uppercase and
displays it in a message box. What's notable is how many places it uses the word "Text." Now,
consider what happens if you need to rename the local variable Text in the event handler for the
Form.Load event. Clearly, this is enough to confuse any search-and-replace algorithm. That's where
symbolic rename comes in.

To use symbolic rename, simply right-click on the local Text variable, and select Rename from the
context menu. In the Rename dialog box, enter the new variable name LocalText and click OK. All
the appropriate instances in your code will be changed automatically without affecting other elements
in your code (such as the text box, the comments, the literal text string, the form class name, the
Text parameter in the ConvertText function, and so on). Here's the resulting code:

Public Class TextTest

 Private Sub cmdTest_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdText.Click
 ' Get the text from the text box.
 Dim LocalText As String = TextBox1.Text

 ' Convert and display the text.
 LocalText = ConvertText(LocalText)
 MessageBox.Show("Uppercase Text is: " & LocalText)
 End Sub

 Public Function ConvertText(ByVal Text As String) As String
 Return Text.ToUpper()
 End Function

End Class

Symbolic rename works with any property, class, or method name you want to change. Here are a
few important points to keep in mind about how symbolic rename works:

If you rename a class, all the statements that create an instance of that class are also changed.

If you rename a method, all the statements that call that method are also changed.

If you change a variable name that is the same as a method name, only the variable is changed
(and vice versa).

If you change a local variable name that is the same as a local variable name with different
scope (for example, in another method), only the first variable is affected.

The symbolic rename feature isn't immediately impressive, but it's genuinely useful. Particularly
noteworthy is the way it properly observes the scope of the item you want to rename. For example,
when you rename a local variable, your changes don't spread beyond the current procedure. On the
other hand, renaming a class can affect every file in your project.

Note that if you change the name of a control variable, your code will also be updated accordingly.
However, there's one exceptionthe names of event handlers are never modified automatically. For
example, if you change Button1 to Button2, all the code that interacts with Button1 will be updated,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

but the event handler subroutine Button1_Click will not be affected. (Remember, the name of the
event handler has no effect on how it works in your application, as long as it's connected with the
Handles clause.)

Tip: In Visual Studio 2005, when you rename a .vb file in the Solution Explorer, the name of the class in the file is also renamed, as long

as the file contains a class that has the old name. For example, if you rename Form1.vb to Form2.vb and the file contains a class named

Form1, that class will be renamed to Form2. Any code statements that create an instance of Form1 will also be updated, no matter where

they reside in the project. However, if you've already changed the class name to something else (like MyForm), the class name won't be

affected when you rename the file. In Visual Studio 2002 and 2003, the same action of renaming a form file has no effect on your code,

so it's worth noting.

1.5.2. What about...

...support in Visual Basic 2005 for C# refactoring? Unfortunately, many of the additional refactoring
features that Visual Studio provides to C# programmers don't appear in Visual Basic at all. Symbolic
rename is one of the few new refactoring features that's alive and well for VB programmers in this
release.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.6. Use IntelliSense Filteringand AutoCorrect

IntelliSense is one of the great conveniences of Visual Studio, and it continues to improve in Visual
Studio 2005, with two new features that make it more useful: IntelliSense filtering and AutoCorrect.
IntelliSense filtering restricts the number of options you see to those that make sense in the current
context. AutoCorrect goes one step further by recommending ways to resolve syntax errors, rather
than simply reporting them.

Note: Visual Studio 2005 makes IntelliSense more intelligent by restricting class names that aren't relevant and suggesting corrections

you can apply to resolve syntax errors.

1.6.1. How do I do that?

There's no need for any extra steps when you use IntelliSense filteringit's at work automatically. As
you enter code, IntelliSense prompts you with lists of classes, properties, events, and more. In Visual
Studio 2005, this list is tailored to your immediate needs, based on various contextual details. For
example, if you're selecting an attribute to apply to a method, the IntelliSense list will show only
classes that derive from the base Attribute class.

To see the new IntelliSense in action, start typing an exception-handling block. When you enter the
Catch block, the IntelliSense list will show only classes that derive from the base Exception class (as
shown in Figure 1-8). Select the Common or All tab at the bottom of the list, depending on whether
you want to see the most commonly used classes or every possibility.

Figure 1-8. Filtering for Exception classes only

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AutoCorrect is an IntelliSense improvement that targets syntax errors. Every time Visual Studio
discovers a problem, it underlines the offending code in blue. You can hover over the problem to see
a ToolTip with error information. With AutoCorrect, Visual Studio also adds a red error icon that,
when clicked, shows a window with the suggested correction.

To see AutoCorrect in action, enter the following code (which attempts to assign a string to an
integer without proper type-casting code):

Dim X As Integer
X = "2"

Tip: Option Strict catches data type conversion errors at compile time. To switch it on, double-click My Project in the Solution Explorer,

click the Compile tab, and look for the Option Strict drop-down listbox.

Assuming you have Option Strict switched on, you'll see a red error icon when you hover over this
line. Click the red error icon. The AutoCorrect window that appears shows your code in blue, code to
be added in red, and code to be removed crossed out with a solid line. Figure 1-9 shows the
correction offered for this code snippet.

Figure 1-9. Intellisense AutoCorrect in action

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other problems that AutoCorrect can resolve include class names that aren't fully qualified,
misspelled keywords, and missing lines in a block structure. In some cases, it will even show more
than one possible correction.

1.6.2. What about...

...doing more? There's still a lot of additional intelligence that IntelliSense could provide, but doesn't.
For example, when assigning a property from a class to a string variable, why not show only those
properties that return string data types? Or when applying an attribute to a method, why not show
attribute classes that can be applied only to methods? As computer processors become faster and
have more and more idle cycles, expect to see new levels of artificial intelligence appearing in your
IDE.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.7. Edit Control Properties in Place

The Properties window in Visual Studio makes control editing easy, but not always fast. For example,
imagine you want to tweak all the text on a form. In previous versions of Visual Studio, the only
option was to select each control in turn and modify the Text property in the Properties window one
at a time. Although this approach isn't necessarily awkward, it certainly isn't as easy as it could be. In
Visual Studio 2005, you can adjust a single property for a series of controls directly on the form.

Note: When you need to update a single property for a number of different controls, in-place property editing makes it easy.

1.7.1. How do I do that?

To try in-place property editing, create a new form and add an assortment of controls. (The actual
controls you use don't really matter, but you should probably include some text boxes, buttons, and
labels.) Then, select View Property Editing View. Finally, choose the property you want to change
from the drop-down list above the form design surface. By default, the Name property is selected, but
Figure 1-10 shows an example with the Text property.

Figure 1-10. Editing a single property for multiple controls

In property-editing view, an edit box appears over every control on the form with the contents of the
selected property. You can edit the value of that property by simply clicking on the edit box and
entering the new value. You can also jump from one control to the next by pressing the Tab key.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you are finished with your work, again select View Property Editing View, or click the Exit
Mode link next to the property drop-down list.

1.7.2. What about...

...editing tab order? Visual Studio allows you to easily edit tab order by clicking controls in the order
that you want users to be able to navigate through them. Select a form with at least one control, and
choose View Tab Order to activate this mode, which works the same as it did in Visual Studio
2003.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.8. Call Methods at Design Time

Although Visual Studio .NET 2003 included the Immediate window, you couldn't use it to execute
code at design time. Longtime VB coders missed this feature, which was a casualty of the lack of a
background compiler. In Visual Studio 2005, this feature returns along with the return of a
background compiler.

Note: Need to try out a freshly written code routine? Visual Studio 2005 lets you run it without starting your project.

1.8.1. How do I do that?

You can use the Immediate window to evaluate simple expressions, and even to run subroutines in
your code. To try out this technique, add the following shared method to a class:

Public Shared Function AddNumbers(ByVal A As Integer, _
 ByVal B As Integer) As Integer

 Return A + B

End Sub

By making this a shared method, you ensure that it's available even without creating an instance of
the class. Now, you can call it easily in the design environment.

By default, the Immediate window isn't shown at design time. To show it, select Debug Windows
 Command from the menu. Statements inside the Immediate window usually start with ? (a

shorthand for Print, which instructs Visual Studio to display the result). You can enter the rest of the
statement like any other line of code, with the benefit of IntelliSense. Figure 1-11 shows an example
in which the Command window is used to run the shared method just shown.

Figure 1-11. Executing code at design time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you execute a statement like the one shown in Figure 1-11, there will be a short pause while
the background compiler works (and you'll see the message "Build started" in the status bar). Then
the result will appear.

Note: The expression evaluation in the beta release of Visual Studio 2005 is a little quirky. Some evaluations won't work, and will simply

launch your application without returning a result. Look for this to improve in future builds.

1.8.2. Where can I learn more?

The MSDN help includes more information about supported expression types at the index entry
"expressions about expressions."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.9. Insert Boilerplate CodeUsing Snippets

Some code is common and generic enough that programmers everywhere write it again and again
each day. Even though developers have the help of online documentation, samples, and books like
the one you're reading, useful code never seems to be at your fingertips when you need it. Visual
Studio 2005 includes a new code snippet feature that allows you to insert commonly used code and
quickly adapt it to suit your purposes. Early beta builds of Visual Studio 2005 included a tool for
building your own snippets. Although this feature isn't in the latest releases, Microsoft has suggested
that it might appear as a separate add-on tool at a later time.

Note: Looking for the solution to an all-too-common nuisance? Visual Studio code snippets might already have the answer.

1.9.1. How do I do that?

You can insert a code snippet anywhere in your code. Just move to the appropriate location, right-
click the mouse on the current line, and select Insert Snippet. A pop-up menu will appear with a list
of snippet categories, such as Math, Connectivity and Networking, and Working with XML. Once you
select a category, a menu will appear with a list of snippets. Once you select a snippet, the code will
be inserted.

For example, suppose you want to add the ability to send and receive email messages to your
application. Just create a new event handler or a standalone method, and right-click inside it. Then,
choose Insert Snippet, and select Connectivity and Networking Create an Email Message. Figure
1-12 shows the code that's inserted.

Figure 1-12. Customizing a code snippet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The shaded portions of code are literal values (like file paths and control references) that you need to
customize to adapt the code to your needs. By pressing the Tab key, you can move from one shaded
region to the next. Additionally, if you hover over a shaded region, a ToolTip will appear with a
description of what content you need to insert.

1.9.2. What about...

...getting more snippets? The basic set of code snippets included with Visual Studio .NET is fairly
modest. It includes some truly useful snippets (e.g., "Find a Node in XML Data") and some absurdly
trivial ones (e.g., "Add a Comment to Your Code"). However, many useful topics, such as encryption,
aren't dealt with at all.

1.9.3. Where can I learn more?

Thanks to the pluggable nature of snippets, you may soon be able to add more snippets to your
collection from community web sites, coworkers, third-party software developers, and even sample
code from a book like this.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.10. Create XML Documentation for Your Code

Properly commenting and documenting code takes time. Unfortunately, there's no easy way to
leverage the descriptive comments you place in your code when it comes time to produce more
detailed API references and documentation. Instead, you typically must create these documents from
scratch.

Note: Use XML comments to effortlessly create detailed code references,a feature C# programmers have had since . NET 1.0.

Visual Studio 2005 changes all this by introducing a feature that's been taken for granted by C#
programmers since .NET 1.0XML comments. With XML comments, you comment your code using a
predefined format. Then, you can use other tools to extract these comments and use them to build
other documents. These documents can range from help documentation to specialized code reports
(for example, a list of unresolved issues, legacy code, or code review dates).

1.10.1. How do I do that?

XML comments are distinguished from ordinary comments by their format. First of all, XML comments
start with three apostrophes (rather than just one). Here's an example:

''' <summary>This is the summary.</summary>

As you can see, XML comments also have another characteristicthey use tag names. The tag
identifies the type of comment. These tags allow you to distinguish between summary information,
information about a specific method, references to other documentation sections, and so on.

The most commonly used XML comment tags include:

<summary>

Describes a class or another type. This is the highest-level information for your code.

<remarks>

Allows you to supplement the summary information. This tag is most commonly used to give a
high-level description of each type member (e.g., individual methods and properties).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<param>

Describes the parameters accepted by a method. Add one <param> tag for each parameter.

<returns>

Describes the return value of a method.

<exception>

Allows you to specify which exceptions a class can throw.

<example>

Lets you specify an example of how to use a method or other member.

<see>

Allows you to create a link to another documentation element.

In addition, there are tags that are usually used just to format or structure blocks of text. You use
these tags inside the other tags. They include:

<para>

Lets you add structure to a tag (such as a <remarks> tag) by separating its content into
paragraphs.

<list>

Starts a bulleted list. You must tag each individual list item with the <item> tag.

<c>

Indicates that text within a description should be marked as code. Use the <code> tag to
indicate multiple lines as code.

<code>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Allows you to embed multiple lines of code, as in an example of usage. For example, you would
commonly put a <code> tag inside an <example> tag.

In addition, you can define custom tags that you can then use for your own purposes.

Visual Studio helps you out by automatically adding some XML tagsbut only when you want them. For
example, consider the code routine shown here, which tests if two files are exactly the same using a
hash code. In order to use this sample as written, you need to import the System.IO and
System.Security.Cryptography namespaces:

Public Function TestIfTwoFilesMatch(ByVal fileA As String, _
 ByVal fileB As String) As Boolean

 ' Create the hashing object.
 Dim Hash As HashAlgorithm = HashAlgorithm.Create()

 ' Calculate the hash for the first file.
 Dim fsA As New FileStream(fileA, FileMode.Open)
 Dim HashA() As Byte = Hash.ComputeHash(fsA)
 fsA.Close()

 ' Calculate the hash for the second file.
 Dim fsB As New FileStream(fileB, FileMode.Open)
 Dim HashB() As Byte = Hash.ComputeHash(fsB)
 fsB.Close()

 ' Compare the hashes.
 Return (Convert.ToString(HashA) = Convert.ToString(HashB))

End Function

Now, position your cursor just before the function declaration, and insert three apostrophes. Visual
Studio will automatically add a skeleton set of XML tags, as shown here:

''' <summary>
'''
''' </summary>
''' <param name="fileA"></param>
''' <param name="fileB"></param>
''' <returns></returns>
''' <remarks></remarks>
Public Function TestIfTwoFilesMatch(ByVal fileA As String, _
 ByVal fileB As String) As Boolean
...

Now, you simply need to fill in some sample content within the tags:

''' <summary>
''' This function tests whether two files
''' contain the exact same content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

''' </summary>
''' <param name="fileA">Contains the full path to the first file.</param>
''' <param name="fileB">Contains the full path to the second file.</param>
''' <returns>True if the files match, false if they don't.</returns>
''' <remarks>
''' The implementation of this method uses cryptographic classes
''' to compute a hash value. This may not be the most performant
''' approach, but it is sensitive to the minutest differences,
''' and can't be practically fooled.
''' </remarks>

To make a more realistic example, put the TestIfTwoFilesMatch() method into a class, and add XML
documentation tags to the class declaration. Here's a typical example, which uses cross-references
that point to the available methods in a list:

''' <summary>
''' This class contains methods for comparing files.
''' </summary>
''' <remarks>
''' <para>This class is stateless. However, it's not safe to use
''' it if the file in question may already be help open by another
''' process.</para>
''' <para>The methods in this class include:</para>
''' <list type="bullet">
''' <item><see cref="FileComparer.TestIfTwoFilesMatch"/>
''' TestifTwoFilesMatch() uses hash codes to compare two files.</item>
''' </list>
''' </remarks>
Public Class FileComparer
 ...
End Class

Unlike other comments, XML comments are added to the metadata of your compiled assembly.
They'll automatically appear in the Object Browser when you examine a type.

Additionally, once you've created your XML tags, you can export them to an XML document. Just
double-click the My Project node in the Solution Explorer, choose the Compile tab, and ensure that
the "Generate XML documentation file" option is selected. The XML documentation is automatically
saved into an XML file with the same name as your project and the extension .xml (in the bin
directory).

The generated document will include all of the XML comments, with none of the code. You can then
feed this document into some other type of application. For example, you might create your own
custom application to scan XML comment files and build specialized reports.

1.10.2. What about...

...creating help documentation? Although Visual Studio 2005 doesn't include any tools of its own, the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

open source NDoc application provides a solution (http://ndoc.sourceforge.net). NDoc scans code and
uses the XML documentation tags it finds to build MSDN-style web pages or Visual Studio-style (MS
Help 2.0) documentation. At the time of this writing, NDoc doesn't yet support .NET 2.0.

1.10.3. Where can I learn more?

The MSDN reference has much more information about XML comments, including guidelines for how
to document types and how to use the standard set of tags. Look for the "XML documentation" index
entry.

http://ndoc.sourceforge.net
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. The Visual Basic Language
When Visual Basic .NET first appeared, loyal VB developers were shocked to find dramatic changes in
their favorite language. Suddenly, common tasks such as instantiating an object and declaring a
structure required new syntax, and even basic data types like the array had been transformed into
something new. Fortunately, Visual Basic 2005 doesn't have the same shocks in store. The language
changes in the latest version of VB are refinements that simplify life without making any existing
code obsolete. Many of these changes are language features imported from C# (e.g., operator
overloading), while others are completely new ingredients that have been built into the latest version
of the common language runtime (e.g., generics). In this chapter, you'll learn about all the most
useful changes to the VB language.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. Use the My Objects to Program Common Tasks

The new My objects provide easy access to various features that developers often need but don't
necessarily know where to find in the sprawling .NET class library. Essentially, the My objects offer
one-stop shopping, with access to everything from the Windows registry to the current network
connection. Best of all, the My object hierarchy is organized according to use and is easy to navigate
using Visual Studio IntelliSense.

2.1.1. How do I do that?

There are seven first-level My objects. Out of these, three core objects centralize functionality from
the .NET Framework and provide computer information. These include:

Note: Tired of hunting through the extensive . NET class library in search of what you need? With the new My objects, you can quickly

find some of the most useful features . NET has to offer.

My.Computer

This object provides information about the current computer, including its network connection,
the mouse and keyboard state, the printer and screen, and the clock. You can also use this
object as a jumping-off point to play a sound, find a file, access the registry, or use the
Windows clipboard.

My.Application

This object provides information about the current application and its context, including the
assembly and its version, the folder where the application is running, the culture, and the
command-line arguments that were used to start the application. You can also use this object
to log an application event.

My.User

This object provides information about the current user. You can use this object to check the
user's Windows account and test what groups the user is a member of.

Along with these three objects, there are another two objects that provide default instances. Default
instances are objects that .NET creates automatically for certain types of classes defined in your
application. They include:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

My.Forms

This object provides a default instance of each Windows form in your application. You can use
this object to communicate between forms without needing to track form references in another
class.

My.WebServices

This object provides a default proxy-class instance for every web service. For example, if your
project uses two web references, you can access a ready-made proxy class for each one
through this object.

Finally, there are two other My objects that provide easy access to the configuration settings and
resources:

My.Settings

This object allows you to retrieve custom settings from your application's XML configuration
file.

My.Resources

This object allows you to retrieve resourcesblocks of binary or text data that are compiled into
your application assembly. Resources are typically used to store localized strings, images, and
audio files.

Warning: Note that the My objects are influenced by the project type. For example, when creating a web or console application, you

won't be able to use My.Forms.

Some of the My classes are defined in the Microsoft.VisualBasic.MyServices namespace, while
others, such as the classes used for the My.Settings and My.Resources objects, are created
dynamically by Visual Studio 2005 when you modify application settings and add resources to the
current project.

To try out the My object, you can use Visual Studio IntelliSense. Just type My, followed by a period,
and take a look at the available objects, as shown in Figure 2-1. You can choose one and press the
period again to step down another level.

Figure 2-1. Browsing the My objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To try a simple example that displays some basic information using the My object, create a new
console project. Then, add this code to the Main() routine:

Console.WriteLine(My.Computer.Name)
Console.WriteLine(My.Computer.Clock.LocalTime)
Console.WriteLine(My.Application.CurrentDirectory)
Console.WriteLine(My.User.Identity.Name)

When you run this code, you'll see some output in the console window, which shows the computer
name, current time, application directory, and user:

SALESSERVER
2005-10-1 8:08:52 PM
C:\Code\VBNotebook\1.07\MyTest\bin
MATTHEW

Warning: The My object also has a "dark side." Use of the My object makes it more difficult to share your solution with non-VB

developers, because other languages, such as C#, don't have the same feature.

2.1.2. Where can I learn more?

You can learn more about the My object and see examples by looking up the "My Object" index entry
in the MSDN Help. You can also learn more by examining some of this book's other labs that use the
My object. Some examples include:

Using My.Application to retrieve details of your program, such as the current version and the
command-line parameters used to start it (see the "Get Application Information" lab in this
chapter).

Using My.Resources to load images and other resources from the application assembly (see the
"Use Strongly Typed Resources" lab in this chapter).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using My.Settings to retrieve application and user settings (see the "Use Strongly Typed
Configuration Settings" lab in this chapter).

Using My.Forms to interact between application windows (see the "Communicate Between
Forms" lab in Chapter 3).

Using My.Computer to perform file manipulation and network tasks in Chapters 5 and 6.

Using My.User to authenticate the current user (see the "Test Group Membership of the Current
User" lab in Chapter 6).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Get Application Information

The My.Application object provides a wealth of information right at your fingertips. Getting this
information is as easy as retrieving a property.

Note: Using the My.Application object, you can get information about the current version of your application, where it's located, and what

parameters were used to start it.

2.2.1. How do I do that?

The information in the My.Application object comes in handy in a variety of situations. Here are two
examples:

You want to get the exact version number. This could be useful if you want to build a dynamic
About box, or check with a web service to make sure you have the latest version of an
assembly.

You want to record some diagnostic details. This becomes important if a problem is occurring at
a client site and you need to log some general information about the application that's running.

To create a straightforward example, you can use the code in Example 2-1 in a console application. It
retrieves all of these details and displays a complete report in a console window.

Example 2-1. Retrieving information from My.Application

' Find out what parameters were used to start the application.
Console.Write("Command line parameters: ")
For Each Arg As String In My.Application.CommandLineArgs
 Console.Write(Arg & " ")
Next
Console.WriteLine()
Console.WriteLine()

' Find out some information about the assembly where this code is located.
' This information comes from metadata (attributes in your code).
Console.WriteLine("Company: " & My.Application.Info.CompanyName)
Console.WriteLine("Description: " & My.Application.Info.Description)
Console.WriteLine("Located in: " & My.Application.Info.DirectoryPath)
Console.WriteLine("Copyright: " & My.Application.Info.Copyright)
Console.WriteLine("Trademark: " & My.Application.Info.Trademark)
Console.WriteLine("Name: " & My.Application.Info.AssemblyName)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Console.WriteLine("Product: " & My.Application.Info.ProductName)
Console.WriteLine("Title: " & My.Application.Info.Title)
Console.WriteLine("Version: " & My.Application.Info.Version.ToString())
Console.WriteLine()

Tip: Visual Studio 2005 includes a Quick Console window that acts as a lightweight version of the normal command-line window. In

some cases, this window is a little buggy. If you have trouble running a sample console application and seeing its output, just disable this

feature. To do so, select Tools Options, make sure the "Show all settings" checkbox is checked, and select the Debugging

General tab. Then turn off "Redirect all console output to the Quick Console window."

Before you test this code, it makes sense to set up your environment to ensure that you will see
meaningful data. For example, you might want to tell Visual Studio to supply some command-line
parameters when it launches the application. To do this, double-click the My Project icon in the
Solution Explorer. Then, choose the Debug tab and look for the "Command line parameters" text box.
For example, you could add three parameters by specifying the command line /a /b /c.

If you want to set information such as the assembly author, product, version, and so on, you need to
add special attributes to the AssemblyInfo.vb file, which isn't shown in the Solution Explorer. To
access it, you need to select Solution Show All Files. You'll find the AssemblyInfo.vb file under
the My Projects node. Here's a typical set of tags that you might enter:

<Assembly: AssemblyVersion("1.0.0.0")>
<Assembly: AssemblyCompany("Prosetech")>
<Assembly: AssemblyDescription("Utility that tests My.Application")>
<Assembly: AssemblyCopyright("(C) Matthew MacDonald")>
<Assembly: AssemblyTrademark("(R) Prosetech")>
<Assembly: AssemblyTitle("Test App")>
<Assembly: AssemblyProduct("Test App")>

All of this information is embedded in your compiled assembly as metadata.

Now you can run the test application. Here's an example of the output you'll see:

Note: New in VB 2005 is the ability to add application information in a special dialog box. To use this feature, double-click the My Project

item in the Solution Explorer, select the Assembly tab, and click the Assembly Information button.

Command line parameters: /a /b /c

Company: Prosetech
Description: Utility that tests My.Application
Located in: C:\Code\VBNotebook\1.08\ApplicationInfo\bin
Copyright: (C) Matthew MacDonald
Trademark: (R) Prosetech
Name: ApplicationInfo.exe
Product: Test App
Title: Test App
Version: 1.0.0.0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.2. What about...

...getting more detailed diagnostic information? The My.Computer.Info object also provides a dash of
diagnostic details with two useful properties. LoadedAssemblies provides a collection with all the
assemblies that are currently loaded (and available to your application). You can also examine their
version and publisher information. StackTrace provides a snapshot of the current stack, which
reflects where you are in your code. For example, if your Main() method calls a method named A()
that then calls method B(), you'll see three of your methods on the stackB(), A(), and Main()in
reverse order.

Here's the code you can add to start looking at this information:

Console.WriteLine("Currently loaded assemblies")
For Each Assm As System.Reflection.Assembly In _
 My.Application.Info.LoadedAssemblies
 Console.WriteLine(Assm.GetName().Name)
Next
Console.WriteLine()

Console.WriteLine("Current stack trace: " & My.Application.Info.StackTrace)
Console.WriteLine()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Use Strongly Typed Resources

In addition to code, .NET assemblies can also contain resourcesembedded binary data such as images
and hardcoded strings. Even though .NET has supported a system of resources since Version 1.0,
Visual Studio hasn't included integrated design-time support. As a result, developers who need to
store image data usually add it to a control that supports it at design time, such as a PictureBox or
ImageList. These controls insert the picture data into the application resource file automatically.

Note: Strongly typed resources let you embed static data such as images into your compiled assemblies, and access it easily in your

code.

In Visual Studio 2005, it's dramatically easier to add information to the resources file and update it
afterward. Even better, you can access this information in a strongly typed fashion from anywhere in
your code.

2.3.1. How do I do that?

In order to try using a strongly typed resource of an image in this lab, you need to create a new
Windows application before continuing.

To add a resource, start by double-clicking the My Project node in the Solution Explorer. This opens
up the application designer, where you can configure a host of application-related settings. Next, click
the Resources tab. In the Categories drop-down listbox, select the type of resources you want to see
(strings, images, audio, and so on). The string view shows a grid of settings. The image view is a
little differentby default, it shows a thumbnail of each picture.

To add a new picture, select the Images category from the drop-down list and then select Add
Existing File from the toolbar. Browse to an image file, select it, and click OK. If you don't have an
image file handy, try using one from the Windows directory, such as winnt256.bmp (which is included
with most versions of Windows).

By default, the resource name has the same name as the file, but you can rename it after adding it.
In this example, rename the image to EmbeddedGraphic (as shown in Figure 2-2).

Figure 2-2. Adding a picture as a strongly typed resource

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using a resource is easy. All resources are compiled dynamically into a strongly typed resource class,
which you can access through My.Resources. To try out this resource, add a PictureBox control to
your Windows form (and keep the default name PictureBox1). Then, add the following code to show
the image when the form loads:

Private Sub Form1_Load(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles MyBase.Load

 PictureBox1.Image = My.Resources.EmbeddedGraphic

End Sub

Note: The resources class is added in the My Project directory and is given the name Resources.Designer..vb. To see it, you need to

choose Project Show All Files. Of course, you should never change this file by hand.

If you run the code, you'll see the image appear on the form. To make sure the image is being
extracted from the assembly, try compiling the application and then deleting the image file (the code
will still work seamlessly).

When you add a resource in this way, Visual Studio copies the resource to the Resources subdirectory
of your application. You can see this directory, along with all the resources it contains, in the Solution
Explorer. When you compile your application, all the resources are embedded in the assembly.
However, there's a distinct advantage to maintaining them in a separate directory. This way, you can
easily update a resource by replacing the file and recompiling the application. You don't need to
modify any code. This is a tremendous benefit if you need to update a number of images or other
resources at once.

Note: Another advantage of resources is that you can use the same images in multiple controls on multiple different forms, without

needing to add more than one copy of the same file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also attach a resource to various controls using the Properties window. For example, when
you click the ellipsis (...) in the Properties window next to the Image property for the PictureBox
control, a designer appears that lists all the pictures that are available in the application's resources.

2.3.2. What about...

...the ImageList? If you're a Windows developer, you're probably familiar with the ImageList control,
which groups together multiple images (usually small bitmaps) for use in other controls, such as
menus, toolbars, trees, and lists. The ImageList doesn't use typed resources. Instead, it uses a
custom serialization scheme. You'll find that although the ImageList provides design-time support
and programmatic access to the images it contains, this access isn't strongly typed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Use Strongly Typed Configuration Settings

Applications commonly need configuration settings to nail down details like file locations, database
connection strings, and user preferences. Rather than hardcoding these settings (or inventing your
own mechanism to store them), .NET lets you add them to an application-specific configuration file.
This allows you to adjust values on a whim by editing a text file without recompiling your application.

Note: Use error-proof configuration settings by the application designer.

In Visual Studio 2005, configuration settings are even easier to use. That's because they're
automatically compiled into a custom class that provides strongly typed access to them. That means
you can retrieve settings using properties, with the help of IntelliSense, instead of relying on string-
based lookups. Even better, .NET enhances this model with the ability to use updatable, user-specific
settings to track preferences and other information. You'll see both of these techniques at work in
this lab.

2.4.1. How do I do that?

Every custom configuration setting is defined with a unique string name. In previous versions of
.NET, you could retrieve the value of a configuration setting by looking up the value by its string
name in a collection. However, if you use the wrong name, you wouldn't realize your error until you
run the code and it fails with a runtime exception.

In Visual Studio 2005, the story is much improved. To add a new configuration setting, double-click
the My Project node in the Solution Explorer. This opens up the application designer where you can
configure a host of application-related settings. Next, click the Settings tab, which shows a list of
custom configuration settings where you can define new settings and their values.

To add a custom configuration setting to your application, enter a new setting name at the bottom of
the list. Then specify the data type, scope, and the actual content of the setting. For example, to add
a setting with a file path, you might use the name UserDataFilePath, the type String, the scope
Application (you'll learn more about this shortly), and the value c:\MyFiles. Figure 2-3 shows this
setting.

Figure 2-3. Defining a strongly typed application setting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: In a web application, configuration settings are placed in the web.config file. In other applications, application settings are recorded

to a configuration file that takes the name of the application, plus the extension .config, as in MyApp.exe.config.

When you add the setting, Visual Studio .NET inserts the following information into the application
configuration file:

<configuration>
 <!-- Other settings are defined here. -->
 <applicationSettings>
 <WindowsApplication1.MySettings>
 <setting name="UserDataFilePath" serializeAs="String">
 <value>c:\MyFiles</value>
 </setting>
 </WindowsApplication1.MySettings>
 </applicationSettings>
</configuration>

At the same time behind the scenes, Visual Studio compiles a class that includes information about
your custom configuration setting. Then, you can access the setting by name anywhere in your code
through the My.Settings object. For example, here's code that retrieves the setting named
UserDataFilePath:

Dim path As String
path = My.Settings.UserDataFilePath

In .NET 2.0, configuration settings don't need to be strings. You can also use other serializable data
types, including integers, decimals, dates, and times (just choose the appropriate data type from the
Types drop-down list). These data types are serialized to text in the configuration file, but you can
retrieve them through My.Settings as their native data type, with no parsing required!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: The application settings class is added in the My Project directory and is named Settings.Designer.vb. To see it, select Project

 Show All Files.

2.4.2. What about...

...updating settings? The UserDataFilePath example uses an application-scoped setting, which can be
read at runtime but can't be modified. If you need to change an application-scoped setting, you have
to modify the configuration file by hand (or use the settings list in Visual Studio).

Your other choice is to create user-scoped settings. To do this, just choose User from the Scope drop-
down list in the settings list. With a user-scoped setting, the value you set in Visual Studio is stored
as the default in the configuration file in the application directory. However, when you change these
settings, a new user.config file is created for the current user and saved in a user-specific directory
(with a name in the form c:\Documents and Settings\[UserName]\Local Settings\Application
Data\[ApplicationName]\[UniqueDirectory]).

The only trick pertaining to user-specific settings is that you must call My.Settings.Save() to store
your changes. Otherwise, changes will only persist until the application is closed. Typically, you'll call
My.Settings.Save() when your application ends.

To try out a user-scoped setting, change the scope of the UserDataFilePath setting from Application
to User. Then, create a form that has a text box (named txtFilePath) and two buttons, one for
retrieving the user data (cmdRefresh) and one for changing it (cmdUpdate). Here are the event
handlers you'll use:

Private Sub cmdRefresh_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdRefresh.Click
 txtFilePath.Text = My.Settings.UserDataFilePath
End Sub

Private Sub cmdUpdate_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdUpdate.Click
 My.Settings.UserDataFilePath = txtFilePath.Text
End Sub

Finally, to make sure your changes are there the next time you run the application, tell .NET to
create or update the user.config file when the form closes with this code:

Private Sub Form1_FormClosed(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.FormClosedEventArgs) _
 Handles Me.FormClosed
 My.Settings.Save()
End Sub

This rounds out a simple test form. You can run this application and try alternately retrieving the
current setting and storing a new one. If you're interested, you can then track down the user.config
file that has the changed settings for the current user.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. Build Typesafe Generic Classes

Programmers often face a difficult choice. On one hand, it's keenly important to build solutions that
are as generic as possible, so that they can be reused in different scenarios. For example, why build a
CustomerCollection class that accepts only objects of type Customer when you can build a generic
Collection class that can be configured to accept objects of any type? On the other hand,
performance and type safety considerations can make a generic solution less desirable. If you use a
generic .NET Collection class to store Customer objects, for example, how can you be sure that
someone won't accidentally insert another type of object into the collection, causing an insidious
problem later on?

Note: Need to create a class that's flexible enough to work with any type of object, but able to restrict the objects it accepts in any given

instance? With generics, VB has the perfect solution.

Visual Basic 2005 and .NET 2.0 provide a solution called generics. Generics are classes that are
parameterized by type. In other words, generics allow you to create a class template that supports
any type. When you instantiate that class, you specify the type you want to use, and from that point
on, your object is "locked in" to the type you chose.

2.5.1. How do I do that?

An example of where the use of generics makes great sense is the System.Collections.ArrayList
class. ArrayList is an all-purpose, dynamically self-sizing collection. It can hold ordinary .NET objects
or your own custom objects. In order to support this, ArrayList treats everything as the base Object
type.

The problem is that there's no way to impose any restrictions on how ArrayList works. For example,
if you want to use ArrayList to store a collection of Customer objects, you have no way to be sure
that a faulty piece of code won't accidentally insert strings, integers, or some other type of object,
causing future headaches. For this reason, developers often create their own strongly typed collection
classesin fact, the .NET class library is filled with dozens of them.

Generics can solve this problem. For example, using generics you can declare a class that works with
any type using the Of keyword:

Public Class GenericList(Of ItemType)
 ' (Code goes here)
End Class

In this case, you are creating a new class named GenericList that can work with any type of object.
However, the client needs to specify what type should be used. In your class code, you refer to that
type as ItemType. Of course, ItemType isn't really a typeit's just a placeholder for the type that you'll

http://lib.ommolketab.ir
http://lib.ommolketab.ir

choose when you instantiate a GenericList object.

Example 2-2 shows the complete code for a simple typesafe ArrayList.

Example 2-2. A typesafe collection using generics

Public Class GenericList(Of ItemType)
 Inherits CollectionBase

 Public Function Add(ByVal value As ItemType) As Integer
 Return List.Add(value)
 End Function

 Public Sub Remove(ByVal value As ItemType)
 List.Remove(value)
 End Sub

 Public ReadOnly Property Item(ByVal index As Integer) As ItemType
 Get
 ' The appropriate item is retrieved from the List object and
 ' explicitly cast to the appropriate type, and then returned.
 Return CType(List.Item(index), ItemType)
 End Get
 End Property
End Class

The GenericList class wraps an ordinary ArrayList, which is provided through the List property of
the CollectionBase class it inherits from. However, the GenericList class works differently than an
ArrayList by providing strongly typed Add() and Remove() methods, which use the ItemType
placeholder.

Here's an example of how you might use the GenericList class to create an ArrayList collection that
only supports strings:

' Create the GenericList instance, and choose a type (in this case, string).
Dim List As New GenericList(Of String)

' Add two strings.
List.Add("blue")
List.Add("green")

' The next statement will fail because it has the wrong type.
' There is no automatic way to convert a GUID to a string.
' In fact, this line won't ever run, because the compiler
' notices the problem and refuses to build the application.
List.Add(Guid.NewGuid())

There's no limit to how many ways you can parameterize a class. In the GenericList example,
there's only one type parameter. However, you could easily create a class that works with two or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

three types of objects, and allows you to make all of these types generic. To use this approach, just
separate each parameter type with a comma (between the brackets at the beginning of a class).

For example, consider the following GenericHashTable class, which allows you to define the type of
the items the collection will store (ItemType), as well as the type of the keys you will use to index
those items (KeyType):

Public Class GenericHashTable(Of ItemType, KeyType)
 Inherits DictionaryBase
 ' (Code goes here.)
End Class

Another important feature in generics is the ability to apply constraints to parameters. Constraints
restrict the types allowed for a given generic class. For example, suppose you want to create a class
that supports only types that implement a particular interface. To do so, first declare the type or
types the class accepts and then use the As keyword to specify the base class that the type must
derive from, or the interface that the type must implement.

Here's an example that restricts the items stored in a GenericList to serializable items. This feature
would be useful if, for example, you wanted to add a method to the GenericList that required
serialization, such as a method that writes all the items in the list to a stream:

Public Class SerializableList(Of ItemType As ISerializable)
 Inherits CollectionBase
 ' (Code goes here.)
End Class

Similarly, here's a collection that can contain any type of object, provided it's derived from the
System.Windows.Forms.Control class. The end result is a collection that's limited to controls, like the
one exposed by the Forms.Controls property on a window:

Public Class ControlCollection(Of ItemType As Control)
 Inherits CollectionBase
 ' (Code goes here.)
End Class

Sometimes, your generic class might need the ability to create the parameter class. For example, the
GenericList example might need the ability to create an instance of the item you want to store in the
collection. In this case, you need to use the New constraint. The New constraint allows only parameter
types that have a public zero-argument constructor, and aren't marked MustInherit. This ensures
that your code can create instances of the parameter type. Here's a collection that imposes the New
constraint:

Public Class GenericList(Of ItemType As New)
 Inherits CollectionBase
 ' (Code goes here.)
End Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's also worth noting that you can define as many constraints as you want, as long as you group the
list of constraints in curly braces, as shown here:

Public Class GenericList(Of ItemType As {ISerializable, New})
 Inherits CollectionBase
 ' (Code goes here.)
End Class

Constraints are enforced by the compiler, so if you violate a constraint rule when using a generic
class, you won't be able to compile your application.

Note: Generics are built into the Common Language Runtime. That means they are supported in all first-class . NET languages,

including C#.

2.5.2. What about...

...using generics with other code structures? Generics don't just work with classes. They can also be
used in structures, interfaces, delegates, and even methods. For more information, look for the index
entry "generics" in the MSDN Help. For more in-depth examples of advanced generic techniques, you
can refer to a Microsoft whitepaper at http://www.msdn.net/library/en-
us/dnvs05/html/vb2005_generics.asp.

Incidentally, the .NET Framework designers are well aware of the usefulness of generic collections,
and they've already created several for you to use out of the box. You'll find them in the new
Systems.Collections.Generic namespace. They include:

List (a basic collection like the GenericList example)

Dictionary (a name-value collection that indexes each item with a key)

LinkedList (a linked list, where each item points to the next item in the chain)

Queue (a first-in-first-out collection)

Stack (a last-in-first-out collection)

SortedList (a name-value collection that's kept in perpetually sorted order)

Most of these types duplicate one of the types in the System.Collections namespace. The old
collections remain for backward compatibility.

http://www.msdn.net/library/en-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6. Make Simple Data Types Nullable

With the new support for generics that's found in the .NET Framework, a number of new features
become possible. One of these featuresgeneric strongly typed collectionswas demonstrated in the
previous lab, "Build Typesafe Generic Classes." Now you'll see another way that generics can solve
common problems, this time by using the new nullable data types.

Note: Do you need to represent data that may or may not be present? VB . NET's new nullable types fill the gap.

2.6.1. How do I do that?

A null value (identified in Visual Basic by the keyword Nothing), is a special flag that indicates no data
is present. Most developers are familiar with null object references, which indicate that the object has
been defined but not created. For example, in the following code, the FileStream contains a null
reference because it hasn't been instantiated with the New keyword:

Dim fs As FileStream
If fs Is Nothing
 ' This is always true because the FileStream hasn't
 ' been created yet.
 Console.WriteLine("Object contains a null reference.")
End If

Core data types like integers and strings can't contain null values. Numeric variables are
automatically initialized to 0. Boolean variables are False. String variables are set to an empty string
(''") automatically. In fact, even if you explicitly set a simple data type variable to Nothing in your
code, it will automatically revert to the empty value (0, False, or ""), as the following code
demonstrates:

Dim j As Integer = Nothing
If j = 0 Then
 ' This is always true because there is an
 ' implicit conversion between Nothing and 0 for integers.
 Console.WriteLine("Non-nullable integer j = " & j)
End If

This design sometimes causes problems, because there's no way to distinguish between an empty
value and a value that was never supplied in the first place. For example, imagine you create code
that needs to retrieve the number of times the user has placed an order from a text file. Later on,
you examine this value. The problem occurs if this value is 0. Quite simply, you have no way to know
whether this is valid data (the user placed no orders), or it represents missing information (the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setting couldn't be retrieved or the current user isn't a registered customer).

Thanks to generics, .NET 2.0 has a solutiona System.Nullable class that can wrap any other data
type. When you create an instance of Nullable you specify the data type. If you don't set a value,
this instance contains a null reference. You can test whether this is true by testing the
Nullable.HasType() method, and you can retrieve the underlying object through the Nullable.Value
property.

Here's the sample code you need to create a nullable integer:

Dim i As Nullable(Of Integer)
If Not i.HasValue Then
 ' This is true, because no value has been assigned.
 Console.WriteLine("i is a null value")
End If

' Assign a value. Note that you must assign directly to i, not i.Value.
' The i.Value property is read-only, and it always reflects the
' currently assigned object, if it is not Nothing.
i = 100
If i.HasValue Then
 ' This is true, because a value (100) is now present.
 Console.WriteLine("Nullable integer i = " & i.Value)
End If

2.6.2. What about...

...using Nullable with full-fledged reference objects? Although you don't need this ability (because
reference types can contain a null reference), it still gives you some advantages. Namely, you can
use the slightly more readable HasValue() method instead of testing for Nothing. Best of all, you can
make this change seamlessly, because the Nullable class has the remarkable ability to allow implicit
conversions between Nullable and the type it wraps.

2.6.3. Where can I learn more?

To learn more about Nullable and how it's implemented, look up the "Nullable class" index entry in
the MSDN Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.7. Use Operators with Custom Objects

Every VB programmer is familiar with the arithmetic operators for addition (+), subtraction (-),
division (/), and multiplication (*). Ordinarily, these operators are reserved for .NET numeric types,
and have no meaning when used with other objects. However, in VB .NET 2.0 you can build objects
that support all of these operators, as well as the operators used for logical operations and implicit
conversion). This technique won't make sense for business objects, but it is extremely handy if you
need to model mathematical structures such as vectors, matrixes, complex numbers, oras
demonstrated in the following examplefractions.

Note: Tired of using clumsy syntax like ObjA.Subtract(ObjB) to perform simple operations on your custom objects? With VB's support for

operator overloading, you can manipulate your objects as easily as ordinary numbers.

2.7.1. How do I do that?

To overload an operator in Visual Basic 2005, you need to create a special operator method in your
class (or structure). This method must be declared with the keywords Public Shared Operator,
followed by the symbol for the operator (e.g., +).

Tip: To overload an operator simply means to define what an operator does when used with a specific type of object. In other words,

when you overload the + operator for a Fraction class, you tell .NET what to do when your code adds two Fraction objects together.

For example, here's an operator method that adds support for the addition (+) operator:

Public Shared Operator+(objA As MyClass, objB as MyClass) As MyClass
 ' (Code goes here.)
End Operator

Every operator method accepts two parameters, which represent the values on either side of the
operator. Depending on the class and the operator, order may be important (as it is for division).

Once you've defined an operator, the VB compiler will call your code when it executes a statement
that uses the operator with your class. For example, the compiler changes code like this:

ObjC = ObjA + ObjB

into this:

ObjC = MyClass.Operator+(ObjA, ObjB)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 2-3 shows how you can overload the Visual Basic arithmetic operators used to handle
Fraction objects. A Fraction consists of two portions: a numerator and a denominator (known
colloquially as "the top part and the bottom part"). The Fraction code overloads the +, -, *, and /
operators, allowing you to perform fractional calculations without converting your numbers to
decimals and losing precision.

Example 2-3. Overloading arithmetic operators in the Fraction class

Public Structure Fraction

 ' The two parts of a fraction.
 Public Denominator As Integer
 Public Numerator As Integer

 Public Sub New(ByVal numerator As Integer, ByVal denominator As Integer)
 Me.Numerator = numerator
 Me.Denominator = denominator
 End Sub

 Public Shared Operator +(ByVal x As Fraction, ByVal y As Fraction) _
 As Fraction
 Return Normalize(x.Numerator * y.Denominator + _
 y.Numerator * x.Denominator, x.Denominator * y.Denominator)
 End Operator

 Public Shared Operator -(ByVal x As Fraction, ByVal y As Fraction) _
 As Fraction
 Return Normalize(x.Numerator * y.Denominator - _
 y.Numerator * x.Denominator, x.Denominator * y.Denominator)
 End Operator

 Public Shared Operator *(ByVal x As Fraction, ByVal y As Fraction) _
 As Fraction
 Return Normalize(x.Numerator * y.Numerator, _
 x.Denominator * y.Denominator)
 End Operator

 Public Shared Operator /(ByVal x As Fraction, ByVal y As Fraction) _
 As Fraction
 Return Normalize(x.Numerator * y.Denominator, _
 x.Denominator * y.Numerator)
 End Operator

 ' Reduce a fraction.
 Private Shared Function Normalize(ByVal numerator As Integer, _
 ByVal denominator As Integer) As Fraction
 If (numerator <> 0) And (denominator <> 0) Then
 ' Fix signs.
 If denominator < 0 Then
 denominator *= -1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 numerator *= -1
 End If

 Dim divisor As Integer = GCD(numerator, denominator)
 numerator \= divisor
 denominator \= divisor
 End If

 Return New Fraction(numerator, denominator)
 End Function

 ' Return the greatest common divisor using Euclid's algorithm.
 Private Shared Function GCD(ByVal x As Integer, ByVal y As Integer) _
 As Integer
 Dim temp As Integer

 x = Math.Abs(x)
 y = Math.Abs(y)
 Do While (y <> 0)
 temp = x Mod y
 x = y
 y = temp
 Loop

 Return x
 End Function

 ' Convert the fraction to decimal form.
 Public Function GetDouble() As Double
 Return CType(Me.Numerator, Double) / _
 CType(Me.Denominator, Double)
 End Function

 ' Get a string representation of the fraction.
 Public Overrides Function ToString() As String
 Return Me.Numerator.ToString & "/" & Me.Denominator.ToString
 End Function

End Structure

The console code shown in Example 2-4 puts the fraction class through a quirk-and-dirty test. Thanks
to operator overloading, the number remains in fractional form, and precision is never lost.

Example 2-4. Testing the Fraction class

Module FractionTest

 Sub Main()
 Dim f1 As New Fraction(2, 3)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Dim f2 As New Fraction(1, 4)

 Console.WriteLine("f1 = " & f1.ToString())
 Console.WriteLine("f2 = " & f2.ToString())

 Dim f3 As Fraction
 f3 = f1 + f2 ' f3 is now 11/12
 Console.WriteLine("f1 + f2 = " & f3.ToString())

 f3 = f1 / f2 ' f3 is now 8/3
 Console.WriteLine("f1 / f2 = " & f3.ToString())

 f3 = f1 - f2 ' f3 is now 5/12
 Console.WriteLine("f1 - f2 = " & f3.ToString())

 f3 = f1 * f2 ' f2 is now 1/6
 Console.WriteLine("f1 * f2 = " & f3.ToString())
 End Sub

End Module

When you run this application, here's the output you'll see:

f1 = 2/3
f2 = 1/4
f1 + f2 = 11/12
f1 / f2 = 8/3
f1 - f2 = 5/12
f1 * f2 = 1/6

Usually, the parameters and the return value of an operator method use the same type. However,
there's no reason you can't create more than one version of an operator method so your object can
be used in expressions with different types.

2.7.2. What about...

...using operator overloading with other types? There are a number of classes that are natural
candidates for operator overloading. Here are some good examples:

Mathematical classes that model vectors, matrixes, complex numbers, or tensors.

Money classes that round calculations to the nearest penny, and support different currency
types.

Measurement classes that have irregular units, like inches and feet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.7.3. Where can I learn more?

For more of the language details behind operator overloading and all the operators that you can
overload, refer to the "Operator procedures" index entry in the MSDN Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.8. Split a Class into Multiple Files

If you've cracked open a .NET 2.0 Windows Forms class, you'll have noticed that all the automatically
generated code is missing! To understand where it's gone, you need to learn about a new feature
called partial classes, which allow you to split classes into several pieces.

Note: Have your classes grown too large to manage in one file? With the new Partial keyword, you can split a class into separate files.

2.8.1. How do I do that?

Using the new Partial keyword, you can split a single class into as many pieces as you want. You
simply define the same class in more than one place. Here's an example that defines a class named
SampleClass in two pieces:

Partial Public Class SampleClass
 Public Sub MethodA()
 Console.WriteLine("Method A called.")
 End Sub
End Class

Partial Public Class SampleClass
 Public Sub MethodB()
 Console.WriteLine("Method B called.")
 End Sub
End Class

In this example, the two declarations are in the same file, one after the other. However, there's no
reason that you can't put the two SampleClass pieces in different source code files in the same
project. (The only restrictions are that you can't define the two pieces in separate assemblies or in
separate namespaces.)

When you build the application containing the previous code, Visual Studio will track down each piece
of SampleClass and assemble it into a complete, compiled class with two methods, MethodA() and
MethodB(). You can use both methods, as shown here:

Dim Obj As New SampleClass()
Obj.MethodA()
Obj.MethodB()

Partial classes don't offer you much help in solving programming problems, but they can be useful in
breaking up extremely large, unwieldy classes. Of course, the existence of large classes in your
application could be a sign that you haven't properly factored your problem, in which case you should

http://lib.ommolketab.ir
http://lib.ommolketab.ir

really break your class down into separate, not partial, classes. One of the key roles of partial classes
in .NET is to hide the designer code that is automatically generated by Visual Studio, whose visibility
in previous versions has been a source of annoyance to some VB programmers.

For example, when you build a .NET Windows form in Visual Basic 2005, your event handling code is
placed in the source code file for the form, but the designer code that creates and configures each
control and connects its event handlers is nowhere to be seen. In order to see this code, you need to
select Project Show All Files from the Visual Studio menu. When you do, the file that contains the
missing half of the class appears in the Solution Explorer as a separate file. Given a form named
Form1, you'll actually wind up with a Form1.vb file that contains your code and a Form1.Designer.vb
file that contains the automatically generated part.

2.8.2. What about...

...using the Partial keyword with structures? That works, but you can't create partial interfaces,
enumerations, or any other .NET programming construct.

2.8.3. Where can I learn more?

To get more details on partial classes, refer to the index entry "Partial keyword" in the MSDN Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.9. Extend the My Namespace

The My objects aren't defined in a single place. Some come from classes defined in the
Microsoft.VisualBasic.MyServices namespace, while others are generated dynamically as you add
forms, web services, configuration settings, and embedded resources to your project. However, as a
developer you can participate in the My namespace and extend it with your own ingredients (e.g.,
useful calculations and tasks that are specific to your application).

Note: Do you use the My objects so much you'd like to customize them yourself? VB 2005 lets you plug in your own classes.

2.9.1. How do I do that?

To plug a new class into the My object hierarchy, simply use a Namespace block with the name My. For
example, you could add this code to create a new BusinessFunctions class that contains a company-
specific function for generating custom identifiers (by joining the customer name to a new GUID):

Namespace My

 Public Class BusinessFunctions
 Public Shared Function GenerateNewCustomerID(_
 ByVal name As String) As String
 Return name & "_" & Guid.NewGuid.ToString()
 End Function
 End Class

End Namespace

Once you've created the BusinessFunctions object in the right place, you can make use of it in your
application just like any other My object. For example, to display a new customer ID:

Console.WriteLine(My.BusinessFunctions.GenerateNewCustomerID("matthew"))

Note that the My classes you add need to use shared methods and properties. That's because the My
object won't be instantiated automatically. As a result, if you use ordinary instance members, you'll
need to create the My object on your own, and you won't be able to manipulate it with the same
syntax. Another solution is to create a module in the My namespace, because all the methods and
properties in a module are always shared.

You can also extend some of the existing My objects thanks to partial classes. For example, using this
feature you could add new information to the My.Computer object or new routines to the
My.Application object. In this case, the approach is slightly different. My.Computer exposes an
instance of the MyComputer object. My.Application exposes an instance of the MyApplication object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Thus, to add to either of these classes, you need to create a partial class with the appropriate name,
and add the instance members you need. You should also declare this class with the accessibility
keyword Friend in order to match the existing class.

Note: Shared members are members that are always available through the class name, even if you haven't created an object. If you use

shared variables, there will be one copy of that variable, which is global to your whole application.

Here's an example you can use to extend My.Application with a method that checks for update
versions:

Namespace My

 Partial Friend Class MyApplication
 Public Function IsNewVersionAvailable() As Boolean
 ' Usually, you would read the latest available version number
 ' from a web service or some other resource.
 ' Here, it's hardcoded.
 Dim LatestVersion As New Version(1, 2, 1, 1)
 Return Application.Info.Version.CompareTo(LatestVersion)
 End Function
 End Class

End Namespace

And now you can use this method:

If My.Application.IsNewVersionAvailable()
 Console.WriteLine("A newer version is available.")
Else
 Console.WriteLine("This is the latest version.")
End If

2.9.2. What about...

...using your My extensions in multiple applications? There's no reason you can't treat My classes in
the same way that you treat any other useful class that you want to reuse in multiple applications. In
other words, you can create a class library project, add some My extensions, and compile it to a DLL.
You can then reference that DLL in other applications.

Of course, despite what Microsoft enthusiasts may tell you, extending the My namespace in that way
has two potentially dangerous drawbacks:

It becomes more awkward to share your component with other languages. For example, C#
does not provide a My feature. Although you could still use a custom My object in a C#
application, it wouldn't plug in as neatly.

When you use the My namespace, you circumvent one of the great benefits of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

namespacesavoiding naming conflicts. For example, consider two companies who create
components for logging. If you use the recommended .NET namespace standard
(CompanyName.ApplicationName.ClassName), there's little chance these two components will have
the same fully qualified names. One might be Acme.SuperLogger.Logger while the other is
ComponentTech.LogMagic.Logger. However, if they both extend a My object, it's quite possible
that they would both use the same name (like My.Application.Logger). As a result, you
wouldn't be able to use both of them in the same application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.10. Skip to the Next Iteration of a Loop

The Visual Basic language provides a handful of common flow control statements, which let you direct
the execution of your code. For example, you can use Return to step out of a function, or Exit to
back out of a loop. However, before VB 2005, there wasn't any way to skip to the next iteration of a
loop.

Note: VB's new Continue keyword gives you a quick way to step out of a tangled block of code in a loop and head straight into the next

iteration.

2.10.1. How do I do that?

The Continue statement is one of those language details that seems like a minor frill at first, but
quickly proves itself to be a major convenience. The Continue statement exists in three versions:
Continue For, Continue Do, and Continue While, each of which is used with a different type of loop
(For ... Next, Do ... Loop, or While ... End While).

To see how the Continue statement works consider the following code:

For i = 1 to 1000
 If i Mod 5 = 0 Then
 ' (Task A code.)
 Continue For
 End If
 ' (Task B code.)
Next

This code loops 1,000 times, incrementing a counter i. Whenever i is divisible by five, the task A
code executes. Then, the Continue For statement is executed, the counter is incremented, and
execution resumes at the beginning of the loop, skipping the code in task B.

In this example, the continue statement isn't really required, because you could rewrite the code
easily enough as follows:

For i = 1 to 1000
 If i Mod 5 = 0 Then
 ' (Task A code.)
 Else
 ' (Task B code.)
 End If
Next

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, this isn't nearly as possible if you need to perform several different tests. To see the real
benefit of the Continue statement, you need to consider a more complex (and realistic) example.

Example 2-5 demonstrates a loop that scans through an array of words. Each word is analyzed, and
the program decides whether the word is made up of letters, numeric characters, or the space
character. If the program matches one test (for example, the letter test), it needs to continue to the
next word without performing the next test. To accomplish this without using the Continue
statement, you need to use nested loops, an approach that creates awkward code.

Example 2-5. Analyzing a string without using the Continue statement

' Define a sentence.
Dim Sentence As String = "The final number is 433."

' Split the sentence into an array of words.
Dim Delimiters() As Char = {" ", ".", ","}
Dim Words() As String = Sentence.Split(Delimiters)

' Examine each word.
For Each Word As String In Words
 ' Check if the word is blank.
 If Word <> "" Then
 Console.Write("'" + Word + "'" & vbTab & "= ")

 ' Check if the word is made up of letters.
 Dim AllLetters As Boolean = True
 For Each Character As Char In Word
 If Not Char.IsLetter(Character) Then
 AllLetters = False
 End If
 Next
 If AllLetters Then
 Console.WriteLine("word")
 Else
 ' If the word isn't made up of letters,
 ' check if the word is made up of numbers.
 Dim AllNumbers As Boolean = True
 For Each Character As Char In Word
 If Not Char.IsDigit(Character) Then
 AllNumbers = False
 End If
 Next
 If AllNumbers Then
 Console.WriteLine("number")
 Else
 ' If the word isn't made up of letters or numbers,
 ' assume it's something else.
 Console.WriteLine("mixed")
 End If
 End If
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Next

Now, consider the rewritten version shown in Example 2-6 that uses the Continue statement to
clarify what's going on.

Example 2-6. Analyzing a string using the Continue statement

' Examine each word.
For Each Word As String In Words
 ' Check if the word is blank.
 If Word = "" Then Continue For
 Console.Write("'" + Word + "'" & vbTab & "= ")

 ' Check if the word is made up of letters.
 Dim AllLetters As Boolean = True
 For Each Character As Char In Word
 If Not Char.IsLetter(Character) Then
 AllLetters = False
 End If
 Next
 If AllLetters Then
 Console.WriteLine("word")
 Continue For
 End If

 ' If the word isn't made up of letters,
 ' check if the word is made up of numbers.
 Dim AllNumbers As Boolean = True
 For Each Character As Char In Word
 If Not Char.IsDigit(Character) Then
 AllNumbers = False
 End If
 Next
 If AllNumbers Then
 Console.WriteLine("number")
 Continue For
 End If

 ' If the word isn't made up of letters or numbers,
 ' assume it's something else.
 Console.WriteLine("mixed")
Next

2.10.2. What about...

...using Continue in a nested loop? It's possible. If you nest a For loop inside a Do loop, you can use
Continue For to skip to the next iteration of the inner loop, or Continue Do to skip to the next iteration

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the outer loop. This technique also works in reverse (with a Do loop inside a For loop), but it
doesn't work if you nest a loop inside another loop of the same type. In this case, there's no
unambiguous way to refer to the outer loop, and so your Continue statement always refers to the
inner loop.

2.10.3. Where can I learn more?

For the language lowdown on Continue, refer to the index entry "continue statement" in the MSDN
Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.11. Dispose of Objects Automatically

In .NET, it's keenly important to make sure objects that use unmanaged resources (e.g., file handles,
database connections, and graphics contexts) release these resources as soon as possible. Toward
this end, such objects should always implement the IDisposable interface, and provide a Dispose()
method that you can call to release their resources immediately.

Note: Worried that you'll have objects floating around in memory, tying up resources until the garbage collector tracks them down? With

the Using statement, you can make sure disposable objects meet with a timely demise.

The only problem with this technique is that you must always remember to call the Dispose()
method (or another method that calls Dispose(), such as a Close() method). VB 2005 provides a
new safeguard you can apply to make sure Dispose() is always called: the Using statement.

2.11.1. How do I do that?

You use the Using statement in a block structure. In the first line, when you declare the Using block,
you specify the disposable object you are using. Often, you'll also create the object at the same time
using the New keyword. Then, you write the code that uses the disposable object inside the Using
block. Here's an example with a snippet of code that creates a new file and writes some data to the
file:

Using NewFile As New System.IO.StreamWriter("c:\MyFile.txt")
 NewFile.WriteLine("This is line 1")
 NewFile.WriteLine("This is line 2")
End Using

' The file is closed automatically.
' The NewFile object is no longer available here.

In this example, as soon as the execution leaves the Using block, the Dispose() method is called on
the NewFile object, releasing the file handle.

2.11.2. What about...

...errors that occur inside a Using block? Thankfully, .NET makes sure it disposes of the resource no
matter how you exit the Using block, even if an unhandled exception occurs.

The Using statement makes sense with all kinds of disposable objects, such as:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Files (including FileStream, StreamReader, and StreamWriter)

Database connections (including SqlConnection, OracleConnection, and OleDbConnection)

Network connections (including TcpClient, UdpClient, NetworkStream, FtpWebResponse,
HttpWebResponse)

Graphics (including Image, Bitmap, Metafile, Graphics)

2.11.3. Where can I learn more?

For the language lowdown, refer to the index entry "Using block" in the MSDN Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.12. Safeguard Properties with Split Accessibility

Most properties consist of a property get procedure (which allows you to retrieve the property value)
and a property set procedure (which allows you to set a new value for the property). In previous
versions of Visual Basic, the declared access level of both procedures needed to be the same. In VB
2005, you can protect a property by assigning to the set procedure a lower access level than you give
to the get procedure.

Note: In the past, there was no way to create a property that everyone could read but only your application could update. VB 2005 finally

loosens the rules and gives you more flexibility.

2.12.1. How do I do that?

VB recognizes three levels of accessibility. Arranged from most to least permissive, these are:

Public (available to all classes in all assemblies)

Friend (available to all code in all the classes in the current assembly)

Private (only available to code in the same class)

Imagine you are creating a DLL component that's going to be used by another application. You might
decide to create a property called Status that the client application needs to read, and so you declare
the property Public:

Public Class ComponetClass

 Private _Status As Integer
 Public Property Status() As Integer
 Get
 Return _Status
 End Get
 Set(ByVal value As Integer)
 _Status = value
 End Set
 End Property

End Class

The problem here is that the access level assigned to the Status property allows the client to change
it, which doesn't make sense. You could make Status a read-only property (in other words, omit the
property set procedure altogether), but that wouldn't allow other classes that are part of your

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applications and located in your component assembly to change it.

The solution is to give the property set procedure the Friend accessibility level. Here's what the code
should look like, with the only change highlighted:

Public Property Status() As Integer
 Get
 Return _Status
 End Get
 Friend Set(ByVal value As Integer)
 _Status = value
 End Set
End Property

2.12.2. What about...

...read-only and write-only properties? Split accessibility doesn't help you if you need to make a read-
only property (such as a calculated value) or a write-only value (such as a password that shouldn't
remain accessible). To create a read-only property, add the ReadOnly keyword to the property
declaration (right after the accessibility keyword), and remove the property set procedure. To create
a write-only property, remove the property get procedure and add the WriteOnly keyword. These
keywords are nothing newthey've been available since Visual Basic .NET 1.0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.13. Evaluate Conditions Separately with Short-Circuit
Logic

In previous versions of VB, there were two logical operators: And and Or. Visual Basic 2005 introduces
two new operators that supplement these: AndAlso and OrElse. These operators work in the same
way as And and Or, except they have support for short-circuiting, which allows you to evaluate just
one part of a long conditional statement.

Note: With short-circuiting, you can combine multiple conditions to write more compact code.

2.13.1. How do I do that?

A common programming scenario is the need to evaluate several conditions in a row. Often, this
involves checking that an object is not null, and then examining one of its properties. In order to
handle this scenario, you need to use nested If blocks, as shown here:

If MyObject Is Nothing Then
 If MyObject.Value > 10 Then
 ' (Do something.)
 End If
End If

It would be nice to combine both of these conditions into a single line, as follows:

If MyObject Is Nothing And MyObject.Value > 10 Then
 ' (Do something.)
End If

Unfortunately, this won't work because VB always evaluates both conditions. In other words, even if
MyObject is Nothing, VB will evaluate the second condition and attempt to retrieve the
MyObject.Value property, which will cause a NullReferenceException.

Visual Basic 2005 solves this problem with the AndAlso and OrElse keywords. When you use these
keywords, Visual Basic won't evaluate the second condition if the first condition is false. Here's the
corrected code:

If MyObject Is Nothing AndAlso MyObject.Value > 10 Then
 ' (Do something.)
End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.13.2. What about...

...other language refinements? In this chapter, you've had a tour of the most important VB language
innovations. However, it's worth pointing out a few of the less significant ones that I haven't included
in this chapter:

The IsNot keyword allows you to simplify awkward syntax slightly. Using it, you can replace
syntax like If Not x Is Nothing with the equivalent statement If x IsNot Nothing.

The tryCast() function allows you to shave a few milliseconds off type casting code. It works
like CType() or DirectCast(), with one exceptionif the object can't be converted to the
requested type a null reference is returned instead. Thus, instead of checking an object's type
and then casting it, you can use tryCast() right away and then check if you have an actual
object instance.

Unsigned integers allow you to store numeric values that can't be negative. That restriction
saves on memory storage, allowing you to accommodate larger numbers. Unsigned numbers
have always been in the .NET Framework, but now VB 2005 includes keywords for them
(UInteger, ULong, and UShort).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Windows Applications
.NET 1.0 introduced a whole new toolkit for writing Windows applications. This toolkitcalled Windows
Formsquickly won the hearts of developers with its rich features for creating self-sizing windows,
customized controls, and dynamic graphics. But for all its strengths, the Windows Forms toolkit left
out a few features that many VB 6 developers had come to expect, including a masked edit control
and a way to display HTML web pages. The Windows Forms toolkit also lacked some of the frills found
in modern Windows applications, like Office XP-style toolbars and menus with thumbnail images. As
you'll see in this chapter, .NET 2.0 includes all of these elements and more.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. Use Office-Style Toolbars

With .NET 1.0 and 1.1, VB developers have had to content themselves with either the woefully out-
of-date ToolBar control, or draw their own custom toolbars by hand. In .NET 2.0, the situation
improves with a rich new ToolStrip control that sports a modern, flat look, correctly handles
Windows XP themes, and supports a wide range of graphical widgets, such as buttons, labels, drop-
down lists, drop-down menus, text boxes, and more.

3.1.1. How do I do that?

To use the System.Windows.Forms.ToolStrip control, just drag the ToolStrip from the Menus &
Toolbars section of the Visual Studio toolbox onto a form. To control which side of the form the
ToolStrip lines up with, set the Docking property. For example, Figure 3-1 shows a form, Form1, with
two ToolStrip controls, one docked to the top of the form and the other to the right side.

Figure 3-1. Three ToolStrip objects in one RaftingContainer

Note: Finally, a ToolStrip control whose looks are worthy of a modern Windows application.

To add buttons to the ToolStrip, you can use the Visual Studio designer. Just click the ToolStrip
smart tag and select Edit Items. You can choose new items from a drop-down list and configure their
properties in a window like the one shown in Figure 3-2. Or, select Insert Standard Items to create
standard ToolStrip buttons for document management (new, open, save, close) and editing (cut,
copy, paste).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-2. The ToolStrip designer

The key to mastering the ToolStrip control is learning about all the different widgets you can put
inside it. These include:

ToolStripButton

Represents an item on the toolbar that the user can click. It can include text or an image (or
both). This is the most common ToolStrip item.

ToolStripLabel

Represents a non-selectable item on the ToolStrip. It can include text or an image (or both).

ToolStripSeparator

Divides adjacent items in a ToolStrip with a thin engraved line.

ToolStripDropDownButton and ToolStripSplitButton

Represent a drop-down menu with items. The only difference is how the drop-down list is
drawn. The ToolStripDropDownButton shows its items as a menu, with a thumbnail margin and
the ability to check items. In both cases, the menu items are ToolStripMenuItem objects that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are added to the collection exposed by the DropDownItems property.

ToolStripComboBox, ToolStripTextBox, and ToolStripProgressBar

Allow you to add familiar .NET controls to a ToolStrip, such as ComboBox, TextBox, and
ProgressBar. All of these items derive from ToolStripControlHost, which you can use to create
your own ToolStrip controls (as described in the next section, "Add Any Control to a
ToolStrip").

All the ToolStrip items derive from the ToolStripItem class. That means they all support a few basic
properties (the most important include Text, Image, and ImageAlign, all of which set the display
content). ToolStrip items all provide a Click event you can use to detect when the user clicks a
toolbar button.

For example, if you want to react to a click of a ToolStrip item that you've named
TestToolStripButton, you can use the following code:

Note: When the user clicks a button on the ToolStrip, that button's Click event fires. This is different than the legacy ToolBar control,

which fired a generic Click event no matter which button was clicked.

Private Sub TestToolStripButton_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles TestToolStripButton.Click

 MessageBox.Show("You clicked " & CType(sender, ToolStripItem).Name)
End Sub

Once you've created a ToolStrip and added at least one item, you can take advantage of a
significant amount of out-of-the-box formatting. The following are just a few of the impressive
features provided by ToolStrip:

It matches the Office XP toolbar look, with a blue gradient background, etched sizing grips, and
hot tracking (highlighting an item as the mouse moves over it).

It correctly supports Windows XP themes. That means if you change the color scheme to Olive
Green or Silver, all ToolStrip controls update themselves automatically, allowing your
application to blend in with the scenery.

It allows user customization. If you enable the ToolStrip.AllowReorder property, the user can
rearrange the orders of buttons in a ToolStrip by holding down the Alt key and dragging items
from one place to another, or even drag a button from one ToolStrip to another.

It supports overflow menus. If you enable this feature (by setting ToolStrip.CanOverflow to
true) and shrink the window so the entire ToolStrip no longer fits, a special drop-down menu
appears at the right with all the extra buttons, as shown in Figure 3-3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 3-3. An overflow menu

In the previous example, the ToolStrip is fixed in place. If you want, you can give the user the ability
to drag a ToolStrip, either to dock it in a different place or to rearrange several that appear
together. To make this possible, you need to add a ToolStripContainer to your form, which shows up
as a box with a blue gradient background (like the background of the ToolStrip). Although you can
use more than one ToolStripContainer, usually you'll just use one and dock it to fill all or a portion of
your window.

Note: To add a ToolStripContainer and place a ToolStrip in it in one step, click the ToolStrip smart tag and then click the "Embed in

ToolStripContainer" link.

The ToolStripContainer actually wraps four ToolStripPanel objects, one for each side. These objects
are exposed through properties such as ToolStripContainer.LeftToolStripPanel,
ToolStripContainer.TopToolStripPanel, and so on. Each panel can hold an unlimited number of
ToolStrip objects, which are then docked to the corresponding side. The interesting part is that once
you place a ToolStrip in a ToolStripContainer, the user gains the ability to drag a ToolStrip freely
about its panel at runtime. Users can even drag a ToolStrip from one ToolStripPanel to another to
change the side it's docked on (or even to an entirely separate ToolStripContainer in the same
window).

Tip: If you want to prevent the user from docking the ToolStrip to the left side of the container, set the

ToolStripContainer.LeftToolStripPanelVisible property to false. You can also use similar properties to prevent docking to the

right, top, or bottom sides.

3.1.2. What about...

...updating the rest of your interface to look as good as the ToolStrip? .NET 2.0 actually provides
four controls that sport the flat, modern look of Windows XP, and support Windows XP theming.
These are ToolStrip, StatusStrip, MenuStrip, and ContextMenuStrip, which replace ToolBar,
StatusBar, MainMenu, and ContextMenu. You can quickly refresh your application's interface just by
updating these old standbys to the new controls.

Tip: In Visual Studio 2005, you won't see the legacy controls like ToolBar and StatusBar, because they're left out of the toolbox by

default. If you want to use them, right-click the toolbox, choose Choose Items, and select these controls from the list.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1.3. Where can I learn more?

For more information, read about the ToolStrip classes in the MSDN help library reference. You can
also refer to a few more recipes in this chapter:

"Add Any Control to a ToolStrip" explains how to add other controls to a ToolStrip.

"Add Icons to Your Menu" explains how to use the new MenuStrip control.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. Add Any Control to a ToolStrip

The ToolStrip supports a wide range of ToolStripItem classes, allowing you to add everything from
buttons and drop-down menus to text-boxes and labels. However, in some situations you might want
to go beyond the standard options and use other .NET controls, or even place your own custom
controls in the ToolStrip. In order to make this work, you need to use the ToolStripControlHost.

Note: Want to outfit a ToolStrip with a custom control? Thanks to the ToolStripControlHost, you can add just about anything.

3.2.1. How do I do that?

There's no way to add standard .NET controls directly to the ToolStrip, because the ToolStrip only
supports classes that derive from ToolStripItem. You could create a class that derives from
ToolStripItem to implement a custom ToolStrip element, but this approach is fairly complex and
tedious. A much simpler approach is to use the ToolStripControlHost, which can wrap just about any
.NET control.

To use the ToolStripControlHost with a non-ToolStripItem control, just pass the control object as a
constructor argument when you create the ToolStripControlHost. Then, add the
ToolStripControlHost object to the ToolStrip. You can use the code in Example 3-1 to add a
CheckBox control to the ToolStrip.Items collection. Figure 3-4 shows the result.

Example 3-1. Adding a Checkbox control to a ToolStrip.Items collection

' Create a CheckBox.
Dim CheckStrip As New CheckBox()

' Set the CheckBox so it takes the size of its text.
CheckStrip.AutoSize = True
CheckStrip.Text = "Sample CheckBox in ToolStrip"

' Make sure the CheckbBox is transparent (so the
' ToolStrip gradient background shows through).
CheckStrip.BackColor = Color.FromArgb(0, 255, 0, 0)

' Create the ToolStripControlHost that wraps the CheckBox.
Dim CheckStripHost As New ToolStripControlHost(CheckStrip)

' Set the ToolStripControlHost to take the full width
' of the control it wraps.
CheckStripHost.AutoSize = True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

' Add the wrapped CheckBox.
ToolStrip1.Items.Add(CheckStripHost)

Figure 3-4. A ToolStrip with a CheckBox

3.2.2. What about...

...customizing the ToolStripControlHost? If you're using a ToolStripControlHost to host another
control, you might want to add properties to the ToolStripControlHost to expose data from the
hosted control. For example, you could add a Checked property to the ToolStripControlHost used in
this example so that you could easily set or retrieve the checked state of the wrapped CheckBox
control. In order to use this technique, you need to create a custom class that derives from
ToolStripControlHost.

3.2.3. Where can I learn more?

The MSDN help reference includes an example with a ToolStripControlHost that hosts a date control.
For more information, look up the index entry "ToolStrip wrapping controls in. "

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. Add Icons to Your Menu

Windows applications have been undergoing a gradual facelift since Windows XP and Office XP first
appeared on the scene. Today, many modern Windows applications use a fine-tuned menu that
sports a blue shaded margin on its left side, and an optional icon for each menu command. (To see
what this looks like, you can jump ahead to Figure 3-5.)

Note: Jazz up your dullest menus with thumbnail images.

If you wanted to create a polished-looking menu with this appearance in .NET 1.0 or 1.1, you needed
to draw it yourself using GDI+ code. Although there are several surprisingly good examples of this
technique available on the Internet, it's more than a little messy. In .NET 2.0, the situation improves
dramatically. Even though the original MainMenu and ContextMenu controls are unchanged, two new
controlsMenuStrip and ContextMenuStripprovide the same functionality but render the menu with the
new Office XP look.

3.3.1. How do I do that?

The MenuStrip and ContextMenuStrip classes leverage all the hard work that went into building the
ToolStrip class. Essentially, a MenuStrip is a special container for ToolStripItem objects. The
MenuStrip.Items property holds a collection of top-level menu headings (like File, Edit, View, and
Help), each of which is represented by a ToolStripMenuItem object. Each ToolStripMenuItem has a
DropDownItemsProperty, which exposes another collection of ToolStripMenuItem objects, one for each
contained menu item.

Example 3-2 shows code that creates the familiar Windows File menu.

Example 3-2. Creating a Windows File menu

' Add the top-level items to the menu.
MenuStrip1.Items.AddRange(New ToolStripItem() _
 {fileToolStripMenuItem})

' Set the text for the File menu, and set "F" as the
' quick access key (so that Alt+F will open the menu.)
fileToolStripMenuItem.Text = "&File"

' Add the child items to the File menu.
fileToolStripMenuItem.DropDownItems.AddRange(New ToolStripItem() _
 {newToolStripMenuItem, openToolStripMenuItem, _
 toolStripSeparator, saveToolStripMenuItem, _
 saveAsToolStripMenuItem, toolStripSeparator1, _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 printToolStripMenuItem, printPreviewToolStripMenuItem, _
 toolStripSeparator2, exitToolStripMenuItem})

' Configure the File child items.
' Set the text and shortcut key for the New menu option.
newToolStripMenuItem.ShortcutKeys = CType((Keys.Control Or Keys.N), Keys)
newToolStripMenuItem.Text = "&New"

' Set the text and shortcut key for the Open menu option.
openToolStripMenuItem.ShortcutKeys = CType((Keys.Control Or Keys.O), Keys)
openToolStripMenuItem.Text = "&Open"

' (Code for configuring other omitted menu items.)

Usually, you won't enter this information by handinstead, it's part of the designer code that Visual
Studio generates automatically as you set the properties in the Properties window. However, it does
show you how the menu works and what you'll need to do if you want to dynamically add new items
at runtime.

As Example 3-2 reveals, the structure of a MenuStrip control is the same as the structure of its
predecessor, the MainMenu control, with menu objects containing other menu objects. The only
difference is in the type of object used to represent menu items (it's now ToolStripMenuItem instead
of MenuItem) and the name of the property used to hold the collection of contained menu items
(ToolStripMenuItem.DropDownItems instead of MenuItem.ChildItems).

To reap the real benefits of the new ToolStripMenuItem, you need to use one property that wasn't
available with ordinary MenuItem objects: the Image property, which sets the thumbnail icon that
appears in the menu margin.

newToolStripMenuItem.Image = CType(_
 resources.GetObject("newToolStripMenuItem.Image"), _
 System.Drawing.Image)

Figure 3-5 shows the standard File menu.

Figure 3-5. The new MenuStrip

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Usually, you'll load all your images using the Visual Studio Properties Window at design time. In that
case, they'll be embedded as a resource inside your assembly. Another option is to load them into an
ImageList and then set the ImageKey or IndexProperty of ToolStripMenuItem to point to an image in
the ImageList.

Note: To quickly generate a basic menu framework (including the standard menu commands for the File, Edit, Tools, and Help menu),

click the MenuStrip smart tag and select Insert Standard Items.

3.3.2. What about...

...painting a menu from scratch? Hopefully, you won't need to. The ToolStripMenuItem gives you a
little bit more flexibility than the original MenuItem classnot only can you insert images, but you can
also choose a nonstandard font by setting the ToolStripMenuItem.Font property. Here's an example:

fileToolStripMenuItem.Font = New Font("Verdana", 10, FontStyle.Regular)

This technique is useful when you want to show a list of fonts in some sort of document editing
application, and you want to render the font names in their corresponding typefaces in the menu.

If you need to perform more radical alterations to how a menu is drawn, you'll need to use another
renderer. The MenuStrip, like all the "strip" controls, provides a RenderMode and a Renderer property.
The RenderMode property allows you to use one of the built-in renderers by choosing a value from the
ToolStripRenderMode enumeration (such as Professional, System, and Custom). If you want to use a
renderer of your own, select Custom and then supply a new renderer object in the Renderer property.
This renderer could be an instance of a third-party class or an instance of a class you've created (just
derive from ToolStripRenderer and override the methods to supply your specialized painting logic).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. Put the Web in a Window

There's no shortage of reasons why you might want to integrate a web page window into your
application. Maybe you want to show your company web site, create a customized browser, or
display HTML product documentation. In .NET 1.0 and .NET 1.1, you could use a web browser window
through COM interop, but there were a number of quirky or missing features. The new WebBrowser
control in .NET 2.0 addresses these issues with easy web integration, support for printing and saving
documents, and the ability to stop a user from navigating to the wrong web site.

Note: . NET's new managed WebBrowser control lets you show an HTML page or allow a user to browse a web site from inside your

Windows applicationwith no interop headaches.

3.4.1. How do I do that?

The System.Windows.Forms.WebBrowser control wraps an Internet Explorer window. You can drop the
WebBrowser control onto any Windows form straight from the Visual Studio .NET toolbox.

To direct the WebBrowser to show a page, you simply set the Url property to the target web page. All
navigation in the WebBrowser is asynchronous, which means your code continues running while the
page is downloading. To check if the page is complete, verify that the ReadyState property is
Completed or, better yet, react to a WebBrowser event.

Note: The WebBrowser control supports everything IE does, including JavaScript, ActiveX controls, and plug-ins.

The WebBrowser events unfold in this order:

Note: WebBrowser provides methods that duplicate the browser functions every web surfer is familiar with, such as Stop(), Refresh(),

GoBack(), GoForward(), GoHome(), GoSearch(), Print(), ShowPrintDialog(), and ShowSave-AsDialog().

Navigating fires when you set a new Url or the user clicks a link. This is your chance to cancel
the navigation before anything happens.

1.

Navigated fires after Navigating, just before the web browser begins downloading the page.2.

The ProgressChanged event fires periodically during a download and gives you information about
how many bytes have been downloaded and how many are expected in total.

3.

DocumentCompleted fires when the page is completely loaded. This is your chance to process the
page.

4.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Example 3-3 shows the event-handling code for a form, WebForm, which hosts a WebBrowser along with
a simple status bar and progress bar. The WebBrowser displays a local HTML file (note how the URL
starts with file:///, not http://) and ensures that any external web links are opened in standalone
Internet Explorer windows.

Example 3-3. Building a basic browser window

Public Class WebForm

 Private Sub WebForm_Load(ByVal sender As Object, ByVal e As EventArgs) _
 Handles MyBase.Load
 ' Prevent the user from dragging and dropping links onto this browser.
 Browser.AllowWebBrowserDrop = False

 ' Go to the local documentation page.
 Browser.Url = new Uri("file:///" & _
 My.Application.StartupPath & "\Doc.html")
 End Sub

 Private Sub Browser_Navigating(ByVal sender As Object, _
 ByVal e As WebBrowserNavigatingEventArgs) Handles Browser.Navigating
 If Not e.Url.IsFile Then
 ' Don't resolve this external link.
 ' Instead, use the Navigate() method to open a
 ' standalone IE window.
 e.Cancel = True
 Browser.Navigate(e.Url, True)
 End If
 End Sub

 Private Sub Browser_Navigated(ByVal sender As Object, _
 ByVal e As WebBrowserNavigatedEventArgs) Handles Browser.Navigated
 ' Show the progress bar.
 Progress.Visible = True
 End Sub

 Private Sub Browser_ProgressChanged(ByVal sender As Object, _
 ByVal e As WebBrowserProgressChangedEventArgs) _
 Handles Browser.ProgressChanged
 ' Update the progress bar.
 Progress.Maximum = e.MaximumProgress
 Progress.Value = e.CurrentProgress
 End Sub

 Private Sub Browser_DocumentCompleted(ByVal sender As Object, _
 ByVal e As WebBrowserDocumentCompletedEventArgs) _
 Handles Browser.DocumentCompleted
 ' Hide the progress bar.
 Progress.Visible = False
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private Sub Browser_StatusTextChanged(ByVal sender As Object, _
 ByVal e As EventArgs) Handles Browser.StatusTextChanged
 ' Display the text that IE would ordinarily show
 ' in the status bar.
 Status.Text = Browser.StatusText
 End Sub

End Class

Figure 3-6 shows the form with its customized WebBrowser window. The window also includes a
StatusStrip to display status text and a progress indicator when pages are being loaded.

Figure 3-6. An embedded web window

Note: The WebBrowser window is stripped to the bare minimum and doesn't include a toolbar, address bar, or status bar (although you

can add other controls to your form).

3.4.2. What about...

...other web surfing tricks? WebBrowser gives you almost all of the power of IE to use in your own
applications. Here are a few more tricks you might want to try:

Instead of setting the Url property, call the Navigate() method, which has two useful
overloads. The first (shown in the previous example), allows you to launch a standalone
browser window. The second allows you to load a document into a specific frame in the current
page.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Instead of using URLs, you can load an HTML document directly from another resource, using
the DocumentStream or DocumentText property. The DocumentStream accepts a reference to any
Stream object, while the DocumentText property accepts a string that contains the HTML data.

Once you've loaded a document, you can explore it using the HTML document model that's built
into .NET. The jumping-off point is the Document property, which returns an HtmlDocument object
that models the current document, including its tags and content.

You can direct the WebBrowser to a directory to give the user quick-and-dirty file browsing
abilities. Keep in mind, however, that you won't be able to prevent them from copying, moving,
or deleting files!

3.4.3. Where can I learn more?

For the full set of properties, look up the System.Windows.Forms.WebBrowser class in the MSDN class
library reference.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. Validate Input While the User Types

Visual Basic 6 and Access both provide developers with masked editing controls: text input controls
that automatically format your input as you type it in based on a specific mask. For example, if you
type 1234567890 into a masked input control that uses a telephone-number mask, the number is
displayed as the string (123) 456-7890.

Note: VB 6 programmers accustomed to the ActiveX MaskedEdit control were disappointed to find . NET did not include a replacement.

In . NET 2.0, the new MaskedTextBox fills the gap.

Masked input controls not only improve the presentation of certain valuesthey also prevent errors.
Choosing the right mask ensures that certain characters will be rejected outright (for example, a
telephone- number mask will not accept letters). Masked input controls also neatly avoid
canonicalization errors, which occur when there is more than one way of representing the same
information. For example, with the telephone number mask, the user will immediately realize that an
area code is required, even if you don't specifically explain this requirement.

3.5.1. How do I do that?

.NET 2.0 includes a new control named MaskedTextBox that extends the TextBox control. Once you've
added a MaskedTextBox to a form, you can set the mask in two ways:

You can choose one of the prebuilt masks.

You can define your own custom mask.

To set a mask, click the MaskedTextBox smart tag and select Set Mask. The Input Mask dialog box
appears, with a list of commonly used masks, including masks for phone numbers, zip codes, dates,
and so on. When you select a mask from the list, the mask is displayed in the Mask text box. You can
now customize the mask. You can also try the mask out using the Try It text box, as shown in Figure
3-7.

Figure 3-7. Selecting a mask for the MaskedTextBox

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: Thanks to the wonders of COM Interop, it's still possible to use the VB 6 MaskedEdit control in . NET. However, the . NET

MaskedTextBox control improves on several limitations and quirks in the MaskedEdit control, so it's still superior.

The mask you choose will be stored in the MaskTextBox.Mask property. Once you've chosen a mask, it
will be applied whenever the user types in the MaskedTextBox. If you want to respond to user
mistakes (like invalid characters) to provide more information, you can respond to the
MaskInputRejected event.

If you want to build a custom mask, you need to understand a little more about how masking works.
Essentially, a mask is built out of two types of characters: placeholders, which designate where the
user must supply a character; and literals, which are used to format the value. For example, in the
phone number mask (999)-000-000, the hyphens and brackets are literals. These characters are
always present and can't be deleted, modified, or moved by the user. The number 0 is a placeholder
that represents any number character, while the number 9 is a placeholder that represents an
optional numeric character.

Table 3-1 lists and explains all the characters you can use to create a mask. You can use this as a
reference to build your own masks.

Table 3-1. Mask characters

Character Description

0 Required digit (0-9).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Character Description

9 Optional digit or space. If left blank, a space is inserted automatically.

#
Optional digit, space, or plus/minus symbol. If left blank, a space is inserted
automatically.

L Required ASCII letter (a-z or A-Z).

? Optional ASCII letter.

&
Required Unicode character. Allows anything that isn't a control key, including
punctuation and symbols.

C Optional Unicode character.

A
Required alphanumeric character (allows letter or number but not punctuation or
symbols).

a Optional alphanumeric character.

. Decimal placeholder.

, Thousands placeholder.

: Time separator.

/ Date separator.

$ Currency symbol.

<
All the characters that follow will be converted automatically to lowercase as the
user types them in. (There is no way to switch a subsequent portion of the text back
to mixed-case entry mode once you use this character.)

>
All the characters that follow will be converted automatically to uppercase as the
user types them in.

\
Escapes a masked character, turning it into a literal. Thus, if you use \& it is
interpreted as a literal character &, which will be inserted in the text box.

All other
characters

All other characters are treated as literals, and are shown in the text box.

Finally, there are a few more properties that the MaskedTextBox provides (and you might want to take
advantage of). These include:

BeepOnError

If the user inputs an invalid character and BeepOnError is TRue, the MaskedTextBox will play the
standard error chime.

9 Optional digit or space. If left blank, a space is inserted automatically.

#
Optional digit, space, or plus/minus symbol. If left blank, a space is inserted
automatically.

L Required ASCII letter (a-z or A-Z).

? Optional ASCII letter.

&
Required Unicode character. Allows anything that isn't a control key, including
punctuation and symbols.

C Optional Unicode character.

A
Required alphanumeric character (allows letter or number but not punctuation or
symbols).

a Optional alphanumeric character.

. Decimal placeholder.

, Thousands placeholder.

: Time separator.

/ Date separator.

$ Currency symbol.

<
All the characters that follow will be converted automatically to lowercase as the
user types them in. (There is no way to switch a subsequent portion of the text back
to mixed-case entry mode once you use this character.)

>
All the characters that follow will be converted automatically to uppercase as the
user types them in.

\
Escapes a masked character, turning it into a literal. Thus, if you use \& it is
interpreted as a literal character &, which will be inserted in the text box.

All other
characters

All other characters are treated as literals, and are shown in the text box.

Finally, there are a few more properties that the MaskedTextBox provides (and you might want to take
advantage of). These include:

BeepOnError

If the user inputs an invalid character and BeepOnError is TRue, the MaskedTextBox will play the
standard error chime.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PromptChar

When the text box is empty, every required value is replaced with a prompt character. By
default, the prompt character is the underscore (_), so a mask for a telephone number will
display (_ _ _)-_ _ _-_ _ _ _ while empty.

MaskCompleted

Returns TRue if there are no empty characters in the text box (meaning the user has entered
the required value).

InputText

InputText returns the data in the MaskedTextBox without any literal characters. For example, in
a MaskedTextBox that allows the user to enter a telephone number, the Text property will
return the fully formatted number, like (123)-456-7890, while InputText returns just the
numeric content, or 1234567890.

3.5.2. What about...

...using masked editing in other input controls? It is possible, but not easy. The MaskedTextBox relies
on a special MaskedEditProvider class in the System.ComponentModel namespace.

To create a different type of masked control, you need to create a custom control that uses the
MaskedEditProvider internally. When your control receives a key press, you need to determine the
attempted action and pass it on to the MaskedEditProvider using methods like Add(), Insert(),
Remove(), and Replace(). Then, you can retrieve the new display value by calling
MaskedEditProvider.ToDisplayString(), and refresh your custom control appropriately. The hard
part is handling all of this low-level editing without causing flicker or losing the user's place in the
input string. For more information, you can refer to the full example that's included with the
downloadable code in the MaskedEditing project.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.6. Create Text Boxes thatAuto-Complete

In many of the nooks and crannies of the Windows operating system, you'll find AutoComplete text
boxes. These text boxes suggest one or more values as you type.

Note: With . NET's new auto-complete features, you can create intelligent text boxes able to suggest possible values based on recent

entries or a default list.

Usually, AutoComplete values are drawn from your recent history. For example, when you type a URL
into Internet Explorer's address bar, you'll see a list that includes URLs you've surfed to in the past.
Now with .NET 2.0, you can harness the same AutoComplete features with your own custom lists or
one of the lists maintained by the operating system.

3.6.1. How do I do that?

The TextBox and the ComboBox controls both support the AutoComplete feature in .NET 2.0. To use
AutoComplete, first set the control's AutoCompleteMode property to one of the following values:

Append

In this mode, the AutoComplete value is automatically inserted into the control as you type.
However, the added portion is selected so that the new portion will be replaced if you continue
typing. (Alternatively, you can just click delete to remove it.)

Suggest

This is the friendliest mode. As you type, a drop-down list of matching AutoComplete values
appears underneath the control. If one of these entries matches what you want, you can select
it.

SuggestAppend

This mode combines Append and Suggest. As with Suggest, a list of candidate matches is shown
in a drop-down list. However, the first match is also inserted into the control and selected.

After choosing the type of AutoComplete, you need to specify what list will be used for suggestions.
Do this by setting the AutoCompleteSource property to one of the following values:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileSystem

Includes recently entered file paths. Use FileSystemDirectories instead to include only
directory paths.

HistoryList

Includes URLs from Internet Explorer's history list.

RecentlyUsedList

Includes all the documents in the user's "most recently used list," which appears in the Start
menu (depending on system settings).

AllUrl

Includes the URLs of all sites that the current user has visited recently, whether they were
typed in manually by the user or linked to from a web page.

AllSystemSources

Includes the full list of URLs and file paths.

ListItems

Includes the items in the ComboBox.Items collection. This choice isn't valid with the TextBox.

CustomSource

Includes the items in the AutoCompleteCustomSource collection. You need to add these items
yourself.

Figure 3-8 shows an AutoComplete text box using AutoSuggestAppend as the AutoCompleteMode and
AllUrl as the AutoCompleteSource.

Figure 3-8. An AutoComplete text box

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The TextBox and ComboBox controls both provide the same functionality. If you use AutoSuggest or
AutoSuggestAppend with a ComboBox, the list of matches is displayed in a list under the control.
However, this list shouldn't be confused with the list of entries that you've added to the
ComboBox.Items property. When you click the drop-down arrow for the ComboBox, you'll see your list of
items, not the list of AutoComplete suggestions. Both lists are completely separate, and there is no
programmatic way for you to interact with the AutoComplete list. The only exception is if you create
a ComboBox with an AutoCompleteSource of CustomSource or ListItems.

3.6.2. What about...

...using AutoComplete in other controls? Unfortunately, there's no managed way to do it in .NET.
However, you can retrieve the information you need directly from the registry. For example, if you
look in the Software\Microsoft\Internet Explorer\TypedURLs section of the HKEY_CURRENT_USER
registry key, you'll find the list of recently typed in URLs. To retrieve these items programmatically,
refer to classes like the RegistryKey in the Microsoft.Win32 namespace.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.7. Play a Windows System Sound

The Windows operating system alerts users to system events by mapping them to sounds recorded in
specific audio files. The problem is that these files are stored in different locations on different
computers. In .NET 1.0 and 1.1, there's no easy way to find the default system sounds and play
them in your own application. A new SystemSounds class in .NET 2.0 addresses this problem, allowing
you to play the most common sounds with a single line of code.

Note: Need to sound the infamous Windows chime? With the new SystemSounds class, these audio files are right at your fingertips.

3.7.1. How do I do that?

The SystemSounds class in the System.Windows.Forms namespace provides five shared properties. Each
of these properties is a separate SystemSound object that represents a specific operating-system
event. Here's the full list:

Asterisk

Beep

Exclamation

Hand

Question

Once you decide which sound you want to use, you simply need to call its Play() method to play the
sound. Here's an example:

Note: To configure which WAV files are used for each sound, select the Sounds and Audio Devices icon in the Control Panel.

SystemSounds.Beep.Play()

3.7.2. What about...

...playing arbitrary WAV files? The SystemSounds class works best if you just need an easy way to add
a sound for simple user feedback. If you need to play an audio file of your own choosing, you need to
use the SoundPlayer, as discussed in the next lab, "Play Simple WAV Audio."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.8. Play Simple WAV Audio

Neither .NET 1.0 or .NET 1.1 provided a managed way to play audio. This shortcoming is finally
addressed in .NET 2.0 with the new SoundPlayer class, which allows you to play audio synchronously
or asynchronously.

Note: Using the SoundPlayer class, you can play WAV files without diving into the Windows API.

3.8.1. How do I do that?

You can instantiate a SoundPlayer object programmatically, or you can add one to the component
tray by dragging it from the toolbox at design time. Once you've created the SoundPlayer, you need
to point it to the sound content you want to play. You do this by setting one of two properties:

SoundLocation

If you have a file path or URL that points to a WAV file, specify this information in the
SoundLocation property.

Stream

If you have a Stream-based object that contains WAV audio content, use the Stream property.

Once you've set the Stream or SoundLocation property, you need to tell SoundPlayer to actually load
the audio data by calling the Load() or LoadAsync() method. The Load() method pauses your code
until all the audio is loaded into memory. On the other hand, LoadAsync() carries out its work on
another thread and fires the LoadCompleted event once it's finished and the audio's available. Usually,
you'll use Load() unless you have an extremely large audio file or it takes a long time to read the
whole audio file (for example, when retrieving the audio over a slow network or Internet connection).

Finally, once the audio is available, you can call one of the following methods:

PlaySync()

Pauses your code until the audio playback is finished.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Play()

Plays the audio on another thread, allowing your code to continue with other tasks and making
sure that your application's interface remains responsive.

PlayLooping()

Similar to Play(), except that it loops the audio, repeating it continuously.

To halt asynchronous playback at any time, just call Stop().

The following code snippet shows an example that plays a sample sound synchronously:

Dim Player As New SoundPlayer()
Player.SoundLocation = Application.StartupPath & "\mysound.wav"
Try
 Player.Load()
 Player.PlaySync()
Catch Err As Exception
 ' An error will occur here if the file can't be read
 ' or if it has the wrong format.
End Try

3.8.2. What about...

...other types of audio? Unfortunately, the SoundPlayer can only play the WAV audio format. If you
want to play other types of multimedia, like MP3 or WMA files, you need to use a different solution,
and there are no managed classes to help you out.

Two options include:

Use COM Interop to access the Quartz library, which is a part of DirectX. The Quartz library
allows you to play any file type supported by Windows Media Player, including MP3, WMA, and
video formats like MPEG and AVI. For an example in C# code, refer to Microsoft's sample
project at http://msdn.microsoft.com/library/en-
us/csref/html/vcwlkcominteroppart1cclienttutorial.asp

Use the managed DirectX 9.0 libraries. You'll need to install the DirectX client and SDK on the
computer for this to work, but it gives you a great deal of power, including the ability to render
three-dimensional graphics. See http://msdn.microsoft.com/library/en-
us/directx9_m/directx/dx9intro.asp for an introduction.

http://msdn.microsoft.com/library/en-
http://msdn.microsoft.com/library/en-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.9. Create a Windows Explorer-like Split Window

.NET 1.0 gave developers the tools they needed to create split windows of the kind seen in Windows
Explorer with the Splitter control. Unfortunately, creating these windows wasn't always easy,
because it commonly required a combination of a Splitter and three Panel controls, all of which
needed to be docked in the correct order. If you needed to split a window in more than one way, the
task became even more awkward. Thankfully, .NET 2.0 streamlines the process with a
SplitContainer control.

Note: Split windows are easier than ever now that the SplitContainer control replaces the bare-bones Splitter.

3.9.1. How do I do that?

Essentially, the SplitContainer control represents two panels separated by a splitter bar. The user
can drag the bar to one side or another to change the relative amount of space given to each section.
To help signal the availability of this functionality, the mouse pointer switches from a single- to a
double-headed arrow icon when the user mouses over the splitter bar.

Note: A SplitContainer control is often used when the content in the two panels is related. When the user makes a selection in the first

panel, the content in the second is refreshed.

To create a simple interface with the SplitContainer, you should first decide how much screen real
estate the SplitContainer will occupy. For example, if you need to reserve some space below the
SplitContainer, start by docking a Panel to the bottom of the form. When you add the
SplitContainer, its Dock property will automatically be set to DockStyle.Fill so that it fills whatever
space is left over.

The SplitContainer always consists of two panels. If you set the Orientation property to
Orientation.Vertical (the default), the splitter runs from top to bottom, creating left and right
panels. The other option is Orientation.Horizontal, which creates top and bottom panels with a
splitter bar running from left to right between them.

Once you've set the appropriate orientation, the next step is to add controls to each side of the
SplitContainer. If you want a single control on each side, you simply need to drag the control to the
appropriate panel in the SplitContainer and set the Dock property of the control to DockStyle.Fill,
so that it fills all the available space between the splitter bar and the edges of the SplitContainer.

If you need to add more than one control in the same region of the SplitContainer, start by adding a
Panel and setting the Dock property to DockStyle.Fill. Then, you can anchor other controls inside
the Panel.

Once you've set up the SplitContainer, you don't need to write any code to manage the control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

resizing or user interaction. Figure 3-9 shows an example. (The complete SplitWindow project is
available with the downloadable samples.)

Figure 3-9. A vertically split window

Note: You can also nest a SplitContainer inside another SplitContainer. This is most useful if you are using different orientations (for

example, dividing a window into left and right regions and then dividing the region on the right into top and bottom compartments).

3.9.2. What about...

...restricting how a SplitContainer can be resized? The SplitContainer provides several properties
tailored for this purpose. For example, you can set the Panel1MinSize and Panel2MinSize properties
with the minimum pixel width of the appropriate panels. Once you set these properties, the user
won't be able to move the splitter bar to a position that shrinks the panel to less than its minimum
allowed size. You can also stop resizing altogether by setting the IsSplitterFixed property to False
(in which case you can still adjust the position of the splitter bar by programmatically modifying the
SplitterDistance property).

Additionally, you can configure how the SplitContainer behaves when the whole form is resized. By
default, the panels are sized proportionately. However, you can designate one of the panels as a
fixed panel by setting the FixedPanel property. In this case, that panel won't be modified when the
form is resized. (For example, in Windows Explorer the directory tree is in a fixed panel, and it
doesn't change size when you expand or shrink the window.) Finally, you can even hide a panel
temporarily by setting the Panel1Collapsed or Panel2Collapsed property to true.

3.9.3. Where can I learn more?

For more details on the SplitContainer and some how-to tips, look up "SplitContainer Overview"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in the index of the MSDN help reference.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.10. Take Control of Window Layout

.NET 2.0 includes two new container controls that can lay out all the controls they contain in a set
pattern. Both of these controls extend the Panel class with additional layout logic. The
FlowLayoutPanel arranges controls evenly over several rows (from left to right), or in multiple
columns (from top to bottom). The TableLayoutPanel places its controls into a grid of invisible cells,
allowing to you to keep consistent column widths and row heights.

Note: The new . NET layout controls give you a way to lay out controls in set patterns automatically, which can save a good deal of effort

with highly dynamic or configurable interfaces.

3.10.1. How do I do that?

The layout controls are used most often in the following two scenarios:

You have a dynamic interface that generates some of its elements programmatically. Using the
layout controls, you can arrange a group of controls neatly without calculating a position for
each control (and then setting the Location property accordingly).

You have a localized interface that must adapt to different languages that require vastly
different amounts of on-screen real estate. As a result, when the display text changes, the
controls must also adjust their size. In this case, layout controls can help you make sure the
controls remain properly arranged even when their size varies.

Example 3-4 demonstrates an implementation of the first scenario. It starts with a form that includes
an empty FlowLayoutPanel. The FlowLayoutPanel has its BorderStyle set to BorderStyle.Fixed3D so
the border is visible.

No controls are added to the FlowLayoutPanel at design time. Instead, several new buttons are added
programmatically when a cmdGenerate button is clicked.

Example 3-4. Laying out buttons dynamically

Private Sub Button1_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles Button1.Click
 For i As Integer = 0 To 10
 ' Create a new button.
 Dim Button As New Button
 Button.Text = "Dynamic Button #" & String.Format("{0:00}", i)

 ' Size the button the width of the text.
 Button.AutoSize = True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Add the button to the layout panel.
 FlowLayoutPanel1.Controls.Add(Button)
 Next
End Sub

Note that the code doesn't set the Location property for each button. That's because the
FlowLayoutPanel won't use this information. Instead, it will arrange the buttons in the order they are
added, spacing each button out from left to right and then top to bottom. (To reverse this order,
change the FlowLayoutPanel.FlowDirection property.)

There is one piece of information that the FlowLayoutPanel does use. That's the Margin property of
each container control. This sets the minimum border required between this control and the next.
The code above doesn't change the Button.Margin property, because the default setting of 3 pixels is
perfectly adequate.

Figure 3-10 shows what the buttons look like once they've been added.

Figure 3-10. Laying out buttons dynamically

Note: There are actually four different components of the Margin property: Margin.Left, Margin.Right, Margin.Top, and Margin.Bottom.

You can set these individually to specify different margins for the control on each side.

.NET also includes a TableLayoutPanel. This panel works like the FlowLayoutPanel, laying out controls
automatically, but it aligns them according to invisible column and row grid lines. For example, if you
have a number of controls that were sized differently, you can use the TableLayoutPanel to ensure
that each control is spaced out evenly in an imaginary cell.

3.10.2. What about...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...more advanced layout examples? There's a lot more you can do with a creative use of layout
controls. Of course, just because you can doesn't mean you should. Microsoft architects recommend
you use layout controls only in specialized scenarios where the anchoring and docking features of
Windows Forms aren't enough. If you don't have a highly dynamic interface, layout managers may
introduce more complexity than you need.

3.10.3. Where can I learn more?

To get started with more advanced uses of layout controls, refer to some of the information in the
MSDN help library reference. Look up "TableLayoutPanel control about" in the index of the MSDN
help reference. This displays general information about the TableLayoutPanel control and provides a
link to two walkthroughs that show how the TableLayoutPanel can work in a complex localizable
application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.11. Control When Your Application Shuts Down

In Visual Studio 2005, a new "Shutdown mode" option lets you control when your application should
end. You can wrap up as soon as the main window is closed (the window that's designated as the
startup object), or you can wait until all the application windows are closed. And if neither of these
choices offers what you want, you can take complete control with the Application class.

Note: In . NET 2.0, it's easier than ever to specify when your Windows application should call it quits.

3.11.1. How do I do that?

In Visual Studio, double-click the My Project item in the Solution Explorer. A tabbed window with
application settings will appear, as shown in Figure 3-11. Click the Application tab, and look at the
Windows Application Properties section at the bottom of the tab.

Figure 3-11. Application settings in Visual Studio 2005

You have two out-of-the-box choices for the "Shutdown mode" box:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When startup form closes

This option matches the standard behavior of an application in .NET 1.0 and 1.1. As soon as
the startup form is closed, the entire program shuts down, taking any other open windows with
it. (The startup form is the form identified in the "Startup object" box.)

When last form closes

This option matches the behavior of Visual Basic 6. Your application keeps on rolling as long as
a window is open. When the last window is closed, the application follows suit, and shuts itself
down.

If neither of these options is suitable, you can take matters into your own hands. First, select the
"Startup with custom Sub Main" checkbox. Now, you need to add a subroutine named Main() to
your application. You can place this subroutine in an existing form or class, as long as you make sure
to add the Shared accessibility keyword. Here's an example:

Public Class MyForm

 Public Shared Sub Main
 ' (Startup code goes here.)
 End Sub

End Class

Shared methods are always available, even if there isn't a live instance of the containing class. For
example, if you add a Main() method to a form, the .NET runtime can call your Main() method
even though there isn't a form object.

Another choice is to add the Main() method to a module. In a module, every method, function,
property, and variable acts as though it's shared, so you won't need to add the Shared keyword.
Here's an example:

Public Module MyModule

 Public Sub Main
 ' (Startup code goes here.)
 End Sub

End Module

Whatever you choose, make sure the class or module that contains the Main() method is selected in
the "Startup object" box.

Note: Using a module is a great choice if you have extensive initialization to perform, because it separates your startup code from your

form code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you use a Main() method to start your application, the application only runs as long as the
Main() method is active. As soon as Main() ends, your application finishes. Here's an example of a
prematurely terminated application:

Public Sub Main
 ' Show one form modelessly (without blocking the code).
 Form1.Show()

 ' Show another form modelessly (at the same time as the first).
 Form2.Show()

 ' After this line, the Main method ends, the application shuts
 ' itself down, and both windows close (after only being open a
 ' for a few milliseconds of screen time).
End Sub

And here's the correct code that shows two windows in sequence:

Public Sub Main
 ' Show one form modally (code stops until the window is closed).
 Form1.ShowDialog()

 ' After the first window is closed, show the second modally.
 Form2.ShowDialog()

 ' Now the application ends.
End Sub

In some cases, you might want to start your application with a Main() method to perform some
basic initialization and show a few forms. Then, you might want to wait until all the forms are closed
before the application ends. This pattern is easy to implement, provided you use the Application
class. The basic idea is to call Application.Run() to keep your application alive indefinitely, and call
Application.Exit() at some later point to end it. Here's how you could start the application with
two visible windows:

Public Sub Main
 ' Show two forms modelessly (and at the same time).
 Form1.Show()
 Form2.Show()

 ' Keep the application going until you say otherwise.
 Application.Run()
End Sub

To specify that the application should end when either window closes, use this code in the
Form.Unload event handler of both forms:

Private Sub Form1_FormClosed(ByVal sender As Object, _
 ByVal e As FormClosedEventArgs) Handles Me.FormClosed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Application.Exit()
End Sub

3.11.2. What about...

...cleaning up when the application calls it quits? When your application ends you might want to
release unmanaged resources, delete temporary files, or save some final settings. The Application
class provides a solution with its ApplicationExit event. All you need to do is attach the event to a
suitable event handler in the Main() method. Here's an example that uses a method named
Shutdown():

Note: The ApplicationExit Event always fires (and the code in an event handler for it always runs), even if the application has been

derailed by an unhandled exception.

AddHandler Application.ApplicationExit, AddressOf Shutdown

And here's the Shutdown() method that runs automatically just before the application ends:

Public Sub Shutdown(ByVal sender As Object, ByVal e As EventArgs)
 MessageBox.Show("Cleaning up.")
End Sub

3.11.3. Where can I learn more?

For more information, refer to the Application class in the MSDN class library reference (it's in the
System.Windows.Forms namespace).

Tip: This lab uses the Application class from the System.Windows.Forms namespace. This item is similar to, but different from, the

My.Application object. Technically, the My.Application object is a dynamically created class (generated by Visual Studio and hidden

from view), which inherits from WindowsFormsApplicationBase. Overall, the My.Application object usually acts as a slightly

simplified version of the System.Windows.Forms.Application class. This allows .NET to offer one class to programmers who want

simplicity, and another to those who want the full set of features. In other words, .NET lets VBers have their cake and eat it too (but only

by creating two different cakes).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.12. Prevent Your Application from Starting Twice

Want to make sure that the user can run no more than one copy of your application on the same
computer? In VB .NET 1.0, you'd need to go through the awkward task of searching all the loaded
processes to make sure your program wasn't already in memory. In VB 2005, the work is done for
you.

Note: There's no longer a need to write code to check whether your application is already running. VB 2005 will perform the check for

you.

3.12.1. How do I do that?

In Visual Studio, double-click the My Project item in the Solution Explorer. A tabbed window with
application settings will appear. Click the Application tab, and look at the Windows Application
Properties section at the bottom of the tab. Now click the "Make single instance application" checkbox
and build the project.

If you try to start the application while it's already running, it will ignore you completely, and nothing
will happen.

3.12.2. What about...

...showing a custom error message? If you need to show an error message, check for other instances
without stopping the application, or otherwise tweak the code, then you'll need to perform the check
youself by using the System.Diagnostics.Process class. Here's the code to get you started:

' Get the full name of the process for the current application.
Dim ModuleName, ProcessName As String
ModuleName = Process.GetCurrentProcess.MainModule.ModuleName
ProcessName = System.IO.Path.GetFileNameWithoutExtension(ModuleName)

' Check for other processes with this name.
Dim Proc() As System.Diagnostics.Process
Proc = Process.GetProcessesByName(ProcessName)
If Proc.Length > 1 Then
 ' (There is another instance running.)
Else
 ' (There are no other instances running.)
End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.12.3. Where can I learn more?

For more information, look up the "ProcessInfo class" index entry in the MSDN help, or look up
"Process class sample" index entry for a full-fledged example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.13. Communicate Between Forms

In previous versions of .NET, you were responsible for tracking every open form. If you didn't, you
might unwittingly strand a window, leaving it open but cut off from the rest of your application. VB
2005 restores the beloved approach of VB 6 developers, where there's always a default instance of
your form ready, waiting, and accessible from anywhere else in your application.

Note: VB 2005 makes it easy for forms to interact, thanks to the new default instances. This feature is a real timesaverand a potential

stumbling block.

3.13.1. How do I do that?

To access the default instance of a form, just use its class name. In other words, if you've created a
form that's named (unimaginatively) Form1, you can show its default instance like this:

Form1.Show()

This automatically creates an instance of Form1 and then displays it. This instance of Form1 is
designated as the default instance.

To communicate between forms, you simply add dedicated public methods. For example, if Form1
needs to be able to refresh Form2, you could add a RefreshData() method to Form2, like this:

Public Class Form2
 Private Sub RefreshData()
 MessageBox.Show("I've been refreshed!")
 End Sub
End Class

You could then call it like this:

Form2.RefreshData()

This calls the RefreshData() method of the default instance of Form2. The fact that RefreshData()
is a method you added (not an inherited method, like the Show() method) makes no difference in
how you use it.

You can also get at the forms using the My collection. For example, the code above is equivalent to
this slightly longer statement:

My.Forms.Form2.RefreshData()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can always access the default instance of a form, even if it isn't currently visible. In fact, .NET
creates the default instance of the form as soon as you access one of its properties or methods. If
you only want to find out what forms are currently open, you're better off using the
My.Application.OpenForms collection. Here's an example that iterates through the collection and
displays the caption of each form:

For Each frm As Form In My.Application.OpenForms
 MessageBox.Show(frm.Text)
Next

This handy trick just wasn't possible in earlier versions of .NET without writing your own code to
manually track forms.

3.13.2. What about...

...potential problems? Conveniences such as default instances come at a price. In this case, you don't
need to worry about wasted memory or any performance slowdown, since .NET is clever enough to
create the forms as you need them. The real problem that you might face results from the fact that
default instances confuse the concepts of classes and objects, making it all too easy to accidentally
refer to different instances of the same form in different parts of your application.

Note: You can also get a reference to the application's startup form using the My.Application.StartupForm property.

For example, imagine you use this code to show a form:

Dim FormObject As New Form1
FormObject.Show()

In this example, the form you've shown is an instance of Form1, but it isn't the default instance. That
means that if another part of your code uses code like this:

Form1.Refresh()

it won't have the effect you expect. The visible instance of Form1 won't be refreshed. Instead, the
default instance (which probably isn't even visible) will be refreshed. Watch out for this problemit can
lead to exasperating headaches! (In all fairness to .NET, this isn't a new problem. Visual Basic 6
developers encountered the same headaches when creating forms dynamically. The difference is that
Visual Basic 6 developers almost always rely on default instances, while .NET developersuntil
nowhaven't.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.14. Improve Redraw Speeds for GDI+

Every control and form in .NET inherits from the base Control class. In .NET 2.0, the Control class
sports a new property named DoubleBuffered. If you set this property to TRue, the form or control
will automatically use double-buffering, which dramatically reduces flicker when you add custom
drawing code.

Note: Need to turbocharge your GDI+ animations? In . NET 2.0, the Form class can do the double-buffering for you.

3.14.1. How do I do that?

In some applications you need to repaint a window or control frequently. For example, you might
refresh a window every 10 milliseconds to create the illusion of a continuous animation. Every time
the window is refreshed, you need to erase the current contents and draw the new frame from
scratch.

In a simple application, your drawing logic might draw a single shape. In a more complex animation,
you could easily end up rendering dozens of different graphical elements at a time. Rendering these
elements takes a small but significant amount of time. The problem is that if you paint each graphical
element directly on the form, the animation will flicker as the image is repeatedly erased and
reconstructed. To avoid this annoying problem, developers commonly use a technique known as
double-buffering. With double-buffering, each new frame is fully assembled in memory, and only
painted on the form when it's complete.

.NET 2.0 completely saves you the hassle of double-buffering. All you need to do is set the
DoubleBuffered property of the form or control to TRue. For example, imagine you create a form and
handle the Paint event to supply your own custom painting logic. If the form is set to use double-
buffering, it won't be refreshed until the Paint event handler has finished, at which point it will copy
the completed image directly onto the form. If DoubleBuffered is set to False, every time you draw
an individual element onto the form in the Paint event handler, the form will be refreshed. As a
result, the form will be refreshed dozens of times for anything but the simplest operations.

Example 3-5 features a form that makes use of custom drawing logic. When the user clicks the
cmdStart button, a timer is switched on. This timer fires every few milliseconds and invalidates the
form by calling its Invalidate() method. In response, Windows asks the application to repaint the
window, triggering the OnPaint() method with the custom drawing code.

Example 3-5. An animated form

Public Class AnimationForm

 ' Indicates whether the animation is currently being shown.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Private IsAnimating As Boolean = False

 ' Track how long the animation has been going on.
 Private StartTime As DateTime

 Private Sub Form_Paint(ByVal sender As Object, _
 ByVal e As System.Windows.Forms.PaintEventArgs) Handles MyBase.Paint

 ' Check if the animation is in progress.
 If IsAnimating Then

 ' Get reading to draw the current frame.
 Dim g As Graphics = e.Graphics
 g.SmoothingMode = System.Drawing.Drawing2D.SmoothingMode.HighQuality

 ' Paint the background.
 Dim BackBrush As New LinearGradientBrush(_
 New Point(0, 0), New Point(100, 100), _
 Color.Blue, Color.LightBlue)
 g.FillRectangle(BackBrush, New Rectangle(New Point(0, 0), _
 Me.ClientSize))
 g.FillRectangle(Brushes.LightPink, New Rectangle(New Point(10, 10), _
 New Point(Me.Width - 30, Me.Height - 50)))

 ' Calculate elapsed time.
 Dim Elapsed As Double = DateTime.Now.Subtract(StartTime).TotalSeconds

 Dim Pos As Double = (-100 + 24 * Elapsed ^ 2) / 10

 ' Draw some moving objects.
 Dim Pen As New Pen(Color.Blue, 10)
 Dim Brush As Brush = Brushes.Chartreuse
 g.DrawEllipse(Pen, CInt(Elapsed * 100), CInt(Pos), 10, 10)
 g.FillEllipse(Brush, CInt(Elapsed * 100), CInt(Pos), 10, 10)

 g.DrawEllipse(Pen, CInt(Elapsed * 50), CInt(Pos), 10, 10)
 g.FillEllipse(Brush, CInt(Elapsed * 50), CInt(Pos), 10, 10)

 g.DrawEllipse(Pen, CInt(Elapsed * 76), CInt(Pos) * 2, 10, 10)
 g.FillEllipse(Brush, CInt(Elapsed * 55), CInt(Pos) * 3, 10, 10)

 g.DrawEllipse(Pen, CInt(Elapsed * 66), CInt(Pos) * 4, 10, 10)
 g.FillEllipse(Brush, CInt(Elapsed * 72), CInt(Pos) * 3, 10, 10)

 If Elapsed > 10 Then
 ' Stop the animation.
 tmrInvalidate.Stop()
 IsAnimating = False
 End If

 Else
 ' There is no animation underway. Paint the background.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MyBase.OnPaintBackground(e)
 End If

 End Sub

 Private Sub tmrInvalidate_Tick(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles tmrInvalidate.Tick
 ' Invalidate the form, which will trigger a refresh.
 Me.Invalidate()
 End Sub

 Private Sub cmdStart_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdStart.Click
 ' Start the timer, which will trigger the repainting process
 ' at regular intervals.
 Me.DoubleBuffered = True
 IsAnimating = True
 StartTime = DateTime.Now
 tmrInvalidate.Start()
 End Sub

 ' Ensure that the form background is not repainted automatically
 ' when the form is invalidated. This isn't necessary, because the
 ' Paint event will handle the painting for the form.
 ' If you don't override this method, every time the form is painted
 ' the window will be cleared and the background color will be painted
 ' on the surface, which causes extra flicker.
 Protected Overrides Sub OnPaintBackground(_
 ByVal pevent As System.Windows.Forms.PaintEventArgs)
 ' Do nothing.
 End Sub

End Class

Try running this example with and without double-buffering. You'll see a dramatic difference in the
amount of flicker.

3.14.2. What about...

...owner-drawn controls? Double-buffering works exactly the same way with owner-drawn controls as
with forms, because both the Form and Control classes provide the DoubleBuffered property and the
Paint event. Of course, there's no point in double-buffering both a form and its controls, since that
will only cause your application to consume unnecessary extra memory.

3.14.3. Where can I learn more?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Overall, the GDI+ drawing functions remain essentially the same in .NET 2.0. To learn more about
drawing with GDI+, look up "GDI+ Examples" in the index of the MSDN help library. You may
also be interested in the "GDI+ Images" and "GDI+ Text" entries.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.15. Handle Asynchronous Tasks Safely

One of .NET's most impressive features is its extensive support for multithreaded programming.
However, as most programmers discover at some point in their lives, multithreaded programming
isn't necessarily easy.

Note: Need to conduct a time-consuming task in the background without dealing with threading issues? The new BackgroundWorker

class makes it easy.

One of the main challenges with Windows applications is that it's not safe to modify a form or control
from a background thread, which means that after your background task is finished, there's no
straightforward way to update your application's interface. You can use the Control.Invoke()
method to marshal a method to the correct thread, but other problems then appear, such as
transferring the information you need to make the update. Fortunately, all of these headaches can be
avoided thanks to the new BackgroundWorker component.

3.15.1. How do I do that?

The BackgroundWorker component gives you a foolproof way to run a time-consuming task on a
separate, dedicated thread. This ensures that your application interface remains responsive, and it
allows your code to carry out other tasks in the foreground. Best of all, the underlying complexities of
multithreaded programming are hidden. Once the background process is complete, you simply handle
an event, which fires on the main thread. In addition, the BackgroundWorker supports progress
reporting and canceling.

You can either create a BackgroundWorker object programmatically, or you can drag it onto a form
from the Components tab of the toolbox. To start your background operation, you call the
RunWorkerAsync() method. If you need to pass an input value to this process, you can supply it as
an argument to this method (any type of object is allowed):

Worker.RunWorkerAsync(inputValue)

Next, you need to handle the DoWork event to perform the background task. The DoWork event fires
on the background thread, which means at this point you can't interact with any other part of your
application (unless you're willing to use locks or other techniques to safeguard access). Typically, the
DoWork event handler retrieves the input value from the DoWorkEventArgs.Argument property and then
carries out the time-consuming operation. Once the operation is complete, you simply set the
DoWorkEventArgs.Result property with the result. You can use any data type or even a custom
object. Here's the basic pattern you'll use:

Private Sub backgroundWorker1_DoWork(ByVal sender As Object, _
 ByVal e As DoWorkEventArgs) Handles backgroundWorker1.DoWork

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Get the information that was supplied.
 Dim Input As Integer = CType(e.Argument, Integer)

 ' (Perform some time consuming task.)

 ' Return the result.
 e.Result = Answer

End Sub

Finally, the BackgroundWorker fires a RunWorkerCompleted event to notify your application that the
process is complete. At this point, you can retrieve the result from RunWorkerCompletedEventArgs and
update the form accordingly:

Private Sub backgroundWorker1_RunWorkerCompleted(_
 ByVal sender As Object, ByVal e As RunWorkerCompletedEventArgs) _
 Handles backgroundWorker1.RunWorkerCompleted

 result.Text = "Result is: " & e.Result.ToString()

End Sub

Example 3-6 shows a form that puts all of these parts together. It performs a time-limited loop for a
number of seconds that you specify. This example also demonstrates two more advanced techniques:
cancellation and progress. To cancel the operation, you simply need to call the
BackgroundWorker.CancelAsync() method. Your DoWork event-handling code can then check to see if
the main form is attempting to cancel the operation and exit gracefully. To maintain progress
information, your DoWork event-handling code needs to call the BackgroundWorker.ReportProgress()
method and provide an estimated percent complete (where 0% means "just started" and 100%
means "completely finished"). The form code can respond to the ProgressChanged event to read the
new progress percentage and update another control, such as a ProgressBar. Figure 3-12 shows this
application in action.

Example 3-6. An asynchronous form with the BackgroundWorker

Public Class AsyncForm

 Private Sub startAsyncButton_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles startAsyncButton.Click

 ' Disable the Start button until
 ' the asynchronous operation is done.
 startAsyncButton.Enabled = False

 ' Enable the Cancel button while
 ' the asynchronous operation runs.
 cancelAsyncButton.Enabled = True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Start the asynchronous operation.
 backgroundWorker1.RunWorkerAsync(Int32.Parse(txtWaitTime.Text))
 End Sub

 ' This event handler is where the actual work is done.
 Private Sub backgroundWorker1_DoWork(ByVal sender As Object, _
 ByVal e As DoWorkEventArgs) Handles backgroundWorker1.DoWork

 ' Get the information that was supplied.
 Dim Worker As BackgroundWorker = CType(sender, BackgroundWorker)

 Dim StartTime As DateTime = DateTime.Now
 Dim SecondsToWait As Integer = CType(e.Argument, Integer)
 Dim Answer As Single = 100
 Do
 ' Check for any cancellation requests.
 If Worker.CancellationPending Then
 e.Cancel = True
 Return
 End If

 ' Continue calculating the answer.
 Answer *= 1.01

 ' Report the current progress (percentage complete).
 Worker.ReportProgress((_
 DateTime.Now.Subtract(StartTime).TotalSeconds / SecondsToWait) * 100)

 Thread.Sleep(50)
 Loop Until DateTime.Now > (StartTime.AddSeconds(SecondsToWait))

 e.Result = Answer
 End Sub

 ' This event handler fires when the background work
 ' is complete.
 Private Sub backgroundWorker1_RunWorkerCompleted(_
 ByVal sender As Object, ByVal e As RunWorkerCompletedEventArgs) _
 Handles backgroundWorker1.RunWorkerCompleted

 ' Check what the result was, and update the form.
 If Not (e.Error Is Nothing) Then
 ' An exception was thrown.
 MessageBox.Show(e.Error.Message)
 ElseIf e.Cancelled Then
 ' Check if the user cancelled the operation.
 result.Text = "Cancelled"
 Else
 ' The operation succeeded.
 result.Text = "Result is: " & e.Result.ToString()
 End If

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 startAsyncButton.Enabled = True
 cancelAsyncButton.Enabled = False
 End Sub

 ' This event handler updates the progress bar.
 Private Sub backgroundWorker1_ProgressChanged(_
 ByVal sender As Object, ByVal e As ProgressChangedEventArgs) _
 Handles backgroundWorker1.ProgressChanged

 Me.progressBar1.Value = e.ProgressPercentage
 End Sub

 Private Sub cancelAsyncButton_Click(_
 ByVal sender As System.Object, ByVal e As System.EventArgs) _
 Handles cancelAsyncButton.Click

 ' Cancel the asynchronous operation.
 Me.backgroundWorker1.CancelAsync()

 cancelAsyncButton.Enabled = False
 End Sub

End Class

Figure 3-12. Monitoring a background task

3.15.2. What about...

...other scenarios where you can use the BackgroundWorker? This example used the BackgroundWorker
with a long-running background calculation. Other situations in which the BackgroundWorker proves to
be just as indispensable include:

Contacting a web service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Downloading a file over the Internet

Retrieving data from a database

Reading or writing large amounts of data

3.15.3. Where can I learn more?

The MSDN reference includes a detailed walkthrough for using the BackgroundWorker, and other topics
that tackle multithreaded programming in detail. Look up the "background operations" index entry to
see a slightly different approach that uses the BackgroundWorker to calculate Fibonacci numbers.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.16. Use a Better Data-Bound Grid

The DataGrid that shipped with .NET 1.0 and 1.1 had a slew of limitations. It was difficult to
customize, nearly impossible to extend, and had no support for important features like modifying or
filling the DataGrid programmatically, accessing individual cells, or applying per-cell formatting. In
many cases, VB developers avoided the DataGrid altogether and used third-party grids or even older
COM-based controls like the MSFlexGrid. (In fact, third-party component developers regularly
thanked Microsoft for making enhanced grid components an easy sell.)

Note: . NET's DataGrid was a significant disappointment in an otherwise state-of-the-art framework. Now the Windows Forms team fills

in the gaps with a first-rate grid.

In designing .NET 2.0, the Windows Forms team decided it would be nearly impossible to remedy the
shortcomings without breaking backward compatibility. So, they chose to introduce an entirely new
DataGridView control with support for all the missing features and more.

3.16.1. How do I do that?

You can bind the DataGridView to a DataTable object in the same way that you would bind a
DataGrid. Here's the bare minimum code you might use to bind a table named Customers:

DataGridView1.DataSource = ds
DataGridView.DataMember = "Customers"

Of course, to put this code to work, you need to create the DataSet object ds and fill it with
information. For a complete example that adds the necessary ADO.NET code for this step, refer to
the downloadable content for this chapter.

When you use this code, the DataGridView creates one column for each field in the data source, and
titles it using the field name. The grid also has a significant amount of out-of-the-box functionality.
Some of the characteristics you'll notice include:

The column headers are frozen. That means they won't disappear as you scroll down the list.

You can edit values. Just double-click a cell or press F2 to put it in edit mode. (You can disable
this feature by setting the DataColumn.ReadOnly property to true in the underlying DataTable.)

You can sort columns. Just click the column header once or twice.

You can automatically size columns. Just double-click on the column divider between headers to
expand a column (the one on the left) to fit the current content.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can select a range of cells. You can highlight one or more cells, or multiple rows, by clicking
and dragging. To select the entire table, click the square at the top-left corner.

You can add rows by scrolling to the end of the grid and entering new values. To disable this
feature, set the AllowUserToAddRows property to False.

You can delete rows by selecting the full row (click the row button at the left) and pressing the
Delete key. To disable this feature, set the AllowUserToDeleteRows property to False.

Before going any further with the DataGridView, there are two methods you'll want to consider using
right away: AutoResizeColumns() and AutoResizeRows(). AutoResizeColumns() extends all
columns to fit header text and cell data. AutoResizeRows() enlarges the row with multiple lines to fit
header text and cell data (the DataGridView supports automatic wrapping). Both of these methods
accept a value from an enumeration that allows you to specify additional options (such as extending
the column just to fit all the columns, or just the header text):

' Create wider columns to fit data.
DataGridView1.AutoResizeColumns(_
 DataGridViewAutoSizeColumnsMode.AllCells)

' Create multi-line columns to fit data.
DataGridView1.AutoResizeRows(_
 DataGridViewAutoSizeRowsMode.HeaderAndColumnsAllCells)

You can also use the AutoResizeColumn() and AutoResizeRow() methods to change just a single
column or row (specified as an index number).

Once you have created a DataGridView and populated it with data, you can interact with it through
two useful collections: Columns and Rows. The Columns collection exposes a collection of
DataGridViewCell objects, one for each column in the grid. You can set the order in which columns
are displayed (by setting an index number in the DisplayIndex property), hide a column altogether
(set Visible to false), or freeze a column so that it always remains visible even as the user scrolls to
the side (set Frozen to true). You can also modify the column header text (HeaderText), the size
(Width), and make it non-editable (ReadOnly). To look up a column, use the index number or the
corresponding field name.

For example, here's the code you need to change some column properties in the OrderID column of a
bound DataGridView:

' Keep this column visible on the left at all times.
DataGridView1.Columns("CustomerID").Frozen = True
DataGridView1.Columns("CustomerID").DisplayIndex = 0

' Configure the column appearance.
DataGridView1.Columns("CustomerID").HeaderText = "ID"
DataGridView1.Columns("CustomerID").Resizable = DataGridViewTriState.True
DataGridView1.Columns("CustomerID").MinimumWidth = 50
DataGridView1.Columns("CustomerID").Width = 50

' Don't allow the values in this column to be edited.
DataGridView1.Columns("CustomerID").ReadOnly = True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Rows collection allows you to access individual DataGridViewRow objects by index number. Once
you have a DataGridViewRow, you can examine its Cells collection to look up individual values in that
row.

However, it's more likely that you'll want to access just those rows that correspond to the current
user selection. The DataGridView actually provides three related properties that can help you:

SelectedRows

Provides a collection with one DataGridViewRow for each fully selected row. This makes sense if
the SelectionMode only allows full row selection.

SelectedColumns

Provides a collection with one DataGridViewColumn for each fully selected column. This makes
sense if the SelectionMode only allows full column selection.

SelectedCells

Always provides a collection with one DataGridViewCell for each selected cell, regardless of the
selection mode. You can use this property if your selection mode allows individual cell selection
or if you just want to process each cell separately.

For example, if you're using DataGridViewSelectionMode.FullRowSelect, you can use the following
code to retrieve the current selection and display a specific field from each selected row when the
user clicks a button:

Note: You can control the type of selection that's allowed by setting the DataGridView.SelectionMode property. Different values allow

selection for individual cells, rows, or columns. DataGridView.MultiSelect determines whether more than one item can be selected at a

time.

Private Sub cmdSelection_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdSelection.Click

 For Each SelectedRow As DataGridViewRow In DataGridView1.SelectedRows
 MessageBox.Show(SelectedRow.Cells("CustomerID").Value)
 Next

End Sub

For a full example that puts all of these ingredients together, refer to the BetterDataGrid example in
the downloadable samples.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.16.2. What about...

...doing more with the DataGridView? The features described so far provide a snapshot of
DataGridView basics, but they only scratch the surface of its customizability features. For more
information, refer to the following two labs in this chapter (Section 3.17 and Section 3.18).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.17. Format the DataGridView

Formatting the .NET 1.x DataGrid ranges from awkward to nearly impossible. However, thanks to its
multi-layered model, formatting the DataGridView is far easier. This model builds on a single class,
the DataGridViewCellStyle, which encapsulates key formatting properties. You can assign different
DataGridViewCellStyle objects to separate rows, columns, or even distinct cells.

Note: By using a few simple style properties, you can configure the appearance of the entire grid, individual columns, or rows with

important data.

3.17.1. How do I do that?

The DataGridView already looks better than the DataGrid in its default state. For example, you'll
notice that the column headers have a modern, flat look and become highlighted when the user
moves the mouse over them. However, there's much more you can do with the help of the
DataGridViewCellStyle class.

The DataGridViewCellStyle collects all the formatting properties of the DataGridView. It defines
appearance-related settings (e.g., color, font), and data formatting (e.g., currency, date formats). All
in all, the DataGridViewCellStyle provides the following key properties:

Alignment

Sets how text is justified inside the cell.

BackColor and ForeColor

Set the color of the cell background and the color of the cell text.

Font

Sets the font used for the cell text.

Format

A format string that configures how numeric or date data values will be formatted as strings.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can use the standard .NET format specifiers and your own custom format strings. For
example, C designates a currency value. (For more information, look up the index entry
"numeric format strings" in the MSDN help.)

NullText

A string of text that will be substituted for any null (missing) values.

SelectionBackColor and SelectionForeColor

Set the cell background colors and text colors for selected cells.

WrapMode

Determines if text will flow over multiple lines (if the row is high enough to accommodate it) or
if it will be truncated. By default, cells will wrap.

The interesting part is that you can create and set DataGridViewCellStyle objects at different levels.
When the DataGridView displays a cell, it looks for style information in several places. Here's the
order from highest to lowest importance:

DataGridViewCell.Style1.

DataGridViewRow.DefaultCellStyle2.

DataGridView.AlternatingRowsDefaultCellStyle3.

DataGridView.RowsDefaultCellStyle4.

DataGridViewColumn.DefaultCellStyle5.

DataGridView.DefaultCellStyle6.

In other words, if DataGridView finds a DataGridViewCellStyle object assigned to the current cell
(option 1), it always uses it. If not, it checks the DataGridViewCellStyle for the row, and so on.

The following code snippet performs column-specific formatting. It ensures that all the values in the
CustomerID column are given a different font, alignment, and set of colors. Figure 3-13 shows the
result.

Note: If you use the design-time data-binding features of Visual Studio, you can avoid writing this code altogether. Just click the Edit

Columns link in the Properties Window and use the designer to choose the formatting.

Dim Style As DataGridViewCellStyle = _
 DataGridView1.Columns("CustomerID").DefaultCellStyle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Style.Font = New Font(DataGridView1.Font, FontStyle.Bold)
Style.Alignment = DataGridViewContentAlignment.MiddleRight
Style.BackColor = Color.LightYellow
Style.ForeColor = Color.DarkRed

Figure 3-13. A DataGridView with a formatted column

3.17.2. What about...

...the easiest way to apply custom cell formatting? Sometimes, you want to call attention to cells with
certain values. You could handle this task by iterating over the entire grid, looking for those cells that
interest you. However, you can save time by responding to the DataGridView.CellFormatting event.
This event occurs as the grid is being filled. It gives you the chance to inspect the cell and change its
style before it appears.

Here's an example that formats a cell to highlight high prices:

Private Sub DataGridView1_CellFormatting(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.DataGridViewCellFormattingEventArgs) _
 Handles DataGridView1.CellFormatting

 ' Check if this is the right column.
 If DataGridView1.Columns(e.ColumnIndex).Name = "Price" Then
 ' Check if this is the right value.
 If e.Value > 100 Then
 e.CellStyle.ForeColor = Color.Red

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 e.CellStyle.BackColor = Color.Yellow
 End If
 End If

End Sub

Keep in mind that you should reuse style objects if at all possible. If you assign a new style object to
each cell, you'll consume a vast amount of memory. A better approach is to create one style object,
and assign it to multiple cells that use the same formatting.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.18. Add Images and Controls to the DataGridView

To create a custom column with the DataGrid, you needed to implement the functionality yourself by
deriving a custom DataGridColumnStyle class that would need dozens of lines of code. The
DataGridView provides a much simpler model. In fact, you can add new columns right alongside your
data-bound columns!

Note: There's a lot more that you can do with theDataGridView, including adding static buttons and images.

3.18.1. How do I do that?

In many scenarios, it's useful to display a button next to each row in a grid. Clicking this button can
then remove a record, add an item to a shopping cart, or call up another window with more
information. The DataGridView makes this easy with the DataGridViewButtonColumn class. You simply
need to create a new instance, specify the button text, and add it to the end of the grid:

' Create a button column.
Dim Details As New DataGridViewButtonColumn()
Details.Name = "Details"

' Turn off data-binding and show static text.
' (You could use a property from the table by setting
' the DataPropertyName property instead.)
Details.UseColumnTextForButtonValue = False
Details.Text = "Details..."

' Clear the header.
Details.HeaderText = ""

' Add the column.
DataGridView1.Columns.Insert(DataGridView1.Columns.Count, Details)

Once you've performed this easy task, you can intercept the CellClick event to perform another
action (Figure 3-14 shows the result of this simple test):

Private Sub DataGridView1_CellClick(ByVal sender As System.Object, _
 ByVal e As System.Windows.Forms.DataGridViewCellEventArgs) _
 Handles DataGridView1.CellClick

 If DataGridView1.Columns(e.ColumnIndex).Name = "Details" Then
 MessageBox.Show("You picked " & _
 DataGridView1.Rows(e.RowIndex).Cells("CustomerID").Value)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

End Sub

Figure 3-14. Using a button column

Creating an image column is just as easy. In this case, you simply create and add a new
DataGridViewImageColumn object. If you want to show the same static image in each cell, simply set
the Image property with the Image object you want to use.

A more sophisticated technique is to show a separate image for each record. You can draw this
record from a binary field in the database, or read it from a file specified in a string field. In either
case, the technique is basically the same. First of all, you hide the column that contains the real data
(the raw binary information for the picture, or the path to the file) by setting its Visible property to
False. Then, you create a new DataGridViewImageColumn:

DataGridView1.DataSource = ds
DataGridView1.DataMember = "pub_info"

' Hide the binary data.
DataGridView1.Columns("logo").Visible = False

' Add an image column.
Dim ImageCol As New DataGridViewImageColumn()
ImageCol.Name = "Image"
ImageCol.Width=200
DataGridView1.Columns.Add(ImageCol)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, you can set the binary picture data you need:

For Each Row As DataGridViewRow In DataGridView1.Rows
 ' First, you must convert the binary data to a memory stream.
 ' Then, you can use the memory stream to create an Image object.
 Try
 Dim ImageBytes() As Byte = Row.Cells("logo").Value

 Dim ms As New MemoryStream(ImageBytes)
 Dim img As Image = Image.FromStream(ms)

 ' Finally, bind the image column.
 Dim ImageCell As DataGridViewImageCell = CType(Row.Cells("Image"), _
 DataGridViewImageCell)
 ImageCell.Value = img

 ' Now you can release the original information to save space.
 Row.Cells("logo").Value = New Byte() { }

 Row.Height = 100
 Catch
 ' Ignore errors from invalid images.
 End Try

Next

Figure 3-15 shows the DataGridView with image data.

Figure 3-15. Using an image column

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: In many cases, DataGridView is intelligent enough to recognize image data types and use them seamlessly in image columns,

with no conversion required. However, if any extra work is required (e.g., converting or removing extra header information), you need to

use the technique shown here.

3.18.2. Where can I learn more?

So, you want to do even more with the DataGridView control? Because it is one of the key
showpieces of the new .NET Windows Forms toolkit, there's a lot of online documentation for the
DataGridView. Look up the index entry "DataGridView control (Windows Forms)" in the MSDN help,
and you'll find nearly 100 entries detailing distinct features you can add to solutions that use the
DataGridView!

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Web Applications
Of all the changes in .NET, no part of the framework has undergone as many tweaks, tune-ups, and
enhancements as ASP.NET, the popular platform for building web applications. Microsoft developers
have piled on new features in an aggressive attempt to reduce the amount of code you need to write
by at least 75 percent. Remarkably, they may have achieved their goal.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. Create a Web Application in Visual Studio 2005

Visual Studio .NET was the first product to equip ASP developers with a professional IDE, along with
debugging and syntax-checking tools. However, creating ASP.NET projects still never seemed quite
as easy as creating projects for ordinary Windows and console applications. Part of the trouble was
managing the interaction between Visual Studio and Internet Information Services (IIS). Happily,
Visual Studio 2005 dramatically improves the design-time experience for web applications by
providing a new way to work with web projects.

4.1.1. How do I do that?

To create a new web project in Visual Studio 2005 or Visual Studio Web Developer 2005 (Visual
Studio 2005 Express isn't up to the task), select File New Web Site, not File New
Project. You'll see the New Web Site dialog box (see Figure 4-1), in which you need to choose the
location where the web project will be placed, and its development language. In the future, you'll also
be able to open a new project based on a starter kit from this window.

Figure 4-1. Creating a new web application directory

Note: Forget virtual directories and other IIS headaches. Visual Studio 2005 (and Visual Web Developer 2005) includes a built-in web

server and supports project-less web sites.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Visual Studio starts you out with a new directory containing two files: default.aspx (the entry point
for your web application) and default.aspx.vb (the code-behind file). There are no project (.vbproj) or
solution (.sln) files, which keeps the file structure simpler and makes it easier to deploy just what you
need. Instead, Visual Studio automatically shows all the files and subdirectories in the web application
directory.

Note: When you create a new ASP. NET project, Visual Studio creates the directory and saves the default web page immediately. This

is different than the behavior you've seen with other project types, where Visual Studio creates a temporary project until you explicitly

save it.

As you start working with your web application, you'll find that Visual Studio has a few more surprises
in store. One is the ability to automatically create a web.config file when you need it. To try this out,
click the Start button to launch your application for the first time. At this point, Visual Studio notices
that you don't have a web.config file. It then asks you if you'd like to add one automatically to enable
debugging (Figure 4-2).

Figure 4-2. Automatically adding a new web.config file

The web.config file that Visual Studio creates is noticeably cleaner than the automatically generated
version in Visual Studio .NET 2003. It only contains the information you need (in this case, the
debugging settings). As you make other configuration changes to your application using Visual
Studio, additional sections are added automatically. Once again, Visual Studio places the emphasis on
simplicity and transparency.

When you run your web pages, Visual Studio's integrated web server starts automatically (look for a
small icon in the system tray). As a result, you don't need to use IIS to test a web site. Visual
Studio's scaled-down web server provides better security because it only serves requests that
originate from the local computer. It also shuts down once you exit Visual Studio. Best of all, it allows
you to create your web pages and web services where you want them, without worrying about
creating the right virtual directory first.

You can try out all the labs in this chapter using the bare-bones web application you've created in this
lab.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1.2. What about...

...the web page coding model? If you've spent much time programming ASP.NET web pages, you're
probably aware that there are different ways to separate source code from visual content. In
previous versions of Visual Studio, code-behind was the only standard that was supported (which
conflicted with the default and exclusive setting of Web Matrix, another Microsoft web application IDE,
which used inline code). The happy news is that Visual Studio 2005 supports both of these code
models.

By default, when you add new web pages, Visual Studio 2005 uses a slightly simpler form of code-
behind. Instead of using inheritance, this updated code-behind relies on another new feature called
partial classes (see the lab "Split a Class into Multiple Files" in Chapter 2 for more information).
Because partial classes provide the ability to merge separate files into one class, the code-behind file
you use to handle web page events doesn't need boilerplate initialization code and web control
declarations. Instead, it only contains your code, which makes it quite a bit shorter.

You can also use a code-beside model, which stores the .aspx tags and the code in the same file. To
insert a new page that uses this model, select Web Site Add New Item, select Web Form, and
uncheck the "Place code in separate file" checkbox. Then, click Add to insert the file. The new file
uses the code-beside approach but can be designed and coded just as easily as a code-behind page.

To support these two models, Visual Studio needed to change its compilation model for ASP.NET files.
Now, web pages and web services aren't compiled until you access them for the first time. (In
previous versions of Visual Studio, the entire web site is compiled each time you launch the
application by clicking the Start button.) However, you can still precompile your application after you
deploy it in a production environment to ensure the best performance for the first set of requests. To
do so, just execute a request for the precompile.axd extension in the root virtual directory once you
deploy your application. For example, if your web application is stored in the virtual directory named
WebApplication, you would use this URL from the web server computer:

Note: Don't be distracted by the fact that there is no file named precompile.axd in your virtual directory. All .axd requests invoke ASP.

NET extensions that are configured in the machine.config configuration file.

http://localhost/WebApplication/precompile.axd

4.1.3. Where can I learn more?

ASP.NET gives you still more compilation and deployment options, which you can learn more about
from the whitepaper at http://msdn.microsoft.com/library/en-us/dnvs05/html/codecompilation.asp.

http://localhost/WebApplication/precompile.axd
http://msdn.microsoft.com/library/en-us/dnvs05/html/codecompilation.asp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Administer a Web Application

Many settings that control the behavior of an ASP.NET application are found in its web.config file, a
special XML document that's placed in the virtual directory of a web application. In the past, ASP.NET
developers were forced to edit the web.config settings by hand. But your life is about to get simpler
thanks to a new ASP.NET 2.0 graphical interface called the Web Site Administration Tool (WAT).

Note: Thanks to the new Web Site Administration Tool, there's no need to edit the web.config configuration file by hand.

4.2.1. How do I do that?

The Web Site Administration Tool (WAT) is installed on your computer with the .NET Framework 2.0.
It allows you to configure ASP.NET web application settings using a dedicated web page.

To run the WAT to configure the current web project in Visual Studio, select Website ASP.NET
Configuration. Internet Explorer will automatically log you on under the current user account. Try it.
Figure 4-3 shows you the screen you'll see.

Figure 4-3. The Web Site Administration Tool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To try out WAT, click the Application tab and then click the "Create application settings" link. A pair of
text boxes will appear that allow you to define the name and value of a new setting (see Figure 4-4).
Enter "AppName" and "My Test ASP.NET Application" respectively, and click Save.

Figure 4-4. Configuring an application's setting through WAT

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now, open the web.config file to see the result. You'll find a new <appSettings> section with the
following setting defined:

<appSettings>
 <add key="AppName" value="My Test ASP.NET Application" />
</appSettings>

This illustrates the basic way that WAT worksyou interact with a web page, and it generates the
settings you need behind the scenes. To edit or remove this setting, you simply need to return to the
WAT and select the "Manage application settings" link.

If you want, you can complete this example by writing a simple routine to display the application
setting in your page. Just add a label control to your web page and insert the following code in the
Page_Load() event handler:

Label1.Text = "You are running " & _
 ConfigurationSettings.AppSettings("AppName")

Of course, using the WAT to generate application settings is only the beginning. You can also use the
WAT to perform the following tasks:

Security

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Use this tab to set the authentication mode, define authorization rules, and manage users.
You'll learn about this tab in the upcoming lab "Easily Authenticate Users."

Application

Use this tab to set application settings (as demonstrated in this lab) and configure web site
counters and debugging.

Provider

Use this tab to configure where user role and personalization information is stored. By default,
ASP.NET uses Access to store this information in the AspNetDB.mdb in the App_Data
subdirectory (in Beta 1) or in a SQL Server database (in Beta 2).

4.2.2. What about...

...making changes to the configuration settings of a web application programmatically? Impressively,
ASP.NET includes an extensive set of classes for exactly this purpose in the
System.Web.Configuration and System.Web.Administration namespaces. You can use these classes
to retrieve or alter web application settings in your web page or web service code. In fact, the entire
Web Site Administration Tool is written as an ASP.NET application, and you'll find the source code (in
C#) in the following directory:

c:\[Windows Directory]\Microsoft.NET\Framework\[Version]\
ASP.NETWebAdminFiles

4.2.3. Where can I learn more?

To learn more about the WAT, look for the index entry "Web Site Administration Tool" in the MSDN
Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. Bind to Data Without Writing Code

Most serious web applications need to retrieve records from a database. In .NET, the database access
framework of choice is ADO.NET. However, writing the code to perform common database operations
with ADO.NET, such as opening a connection and fetching a table of results, can be tedious and
repetitive, which is not what VB programmers have come to expect. To simplify such tasks, ASP.NET
2.0 introduces several new data source controls that greatly simplify the task of retrieving data and
binding it to a web page.

Note: With the new ASP.NET data provider controls, you can generate and bind all your database code at design time, without writing a

single line of code.

4.3.1. How do I do that?

To use a new ASP.NET 2.0 data source control, all you need to do is to drag it from the Visual Studio
toolbox to a web page, configure a few of its properties, and then bind it to other controls that display
the data it exposes. When you run the web page, the data source control performs the heavy lifting,
contacting your database and extracting the rows you need.

ASP.NET ships with several data source controls, and more are planned. Although the list has
changed from build to build, the latest release includes:

SqlDataSource

Interacts with a SQL Server database (Version 7.0 or later).

XmlDataSource

Interacts with XML data from a file or some other data source.

ObjectDataSource

Interacts with a custom object that you create. The next lab, "Bind Web Controls to a Custom
Class," provides more details about this technique.

To try out no-code data binding, drag a new SqlDataSource onto the design surface of a web page
from the Data section of the toolbox. Then, click the control's smart tag and choose Configure Data
Source. Visual Studio will walk you through a short wizard in which you specify the connection string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for your database (which is then set in the ConnectionString property) and the query you want to
perform (which is then set in the SelectCommand property). Find your database server, and select the
Northwind database. Although you can build the query dynamically by selecting the columns in a
table, for this example just specify the SQL string "SELECT ContactName FROM Customers".

Note: Other data sources are planned to allow easy retrieval of everything from directory listings to web service data.

When you're finished, Visual Studio will have added a SqlDataSource control tag to your web page,
which looks something like this:

<asp:SqlDataSource ID="SqlDataSource1" Runat="server"
 SelectCommand="SELECT ContactName FROM Customers"
 ConnectionString=
 "Data Source=127.0.0.1;Integrated Security=SSPI;Initial Catalog=Northwind">
</asp:SqlDataSource>

This data source defines a connection to the Northwind database, and a Select operation that
retrieves a list of all contact names in the Customers table.

Note: Remember, to modify any ASP. NET control, you have two choices. You can select it and make changes in the Properties

window, or you can switch to Source view and edit the control tag.

Binding a control to your data source is easy. To try this out, drag a BulletedList control onto your
web page, which you can use to show the list of contact names from the Customers table. Click the
smart tag, and select Connect to Data Source. You can then choose the data source you want to use
(which is the data source created in the last step) and the field you want to display (which is
ContactName).

Here's the finished tag:

<asp:BulletedList ID="BulletedList1" Runat="server"
 DataSourceID="SqlDataSource1"
 DataTextField="ContactName">
</asp:BulletedList>

Amazingly enough, these two control declarations are all you need to create this data-bound page.
When you run the page, the BulletedList will request data from the SqlDataSource, which will fetch
it from the database using the query you've defined. You don't need to write a line of code.

For a little more sophistication, you could use another control to filter the list of contacts by some
other piece of criteria, like country of residence. This raises a new problemnamely, how can you
update the query in the SqlDataSource.SelectCommand according to the value entered in the other
control?

ASP.NET solves this problem neatly with parameters. To try it out, start by adding a new data source
that fetches a list of customer countries from the database. Here's an example that works in this
case:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<asp:SqlDataSource ID="Countries" Runat="server" ConnectionString="..."
 SelectCommand="SELECT DISTINCT Country FROM Customers">
</asp:SqlDataSource>

Next, add a DropDownList control named lstCountries to expose the country list. You can use the
same approach as when you wired up the BulletedList, or you can type the tag in by hand. Here's
the completed tag you need:

 <asp:DropDownList ID="lstCountries" Runat="server"
 DataValueField="Country" DataTextField="Country"
 DataSourceID="Countries" AutoPostBack="True">
</asp:DropDownList>

Now you can modify the query that creates the customer list. First, you insert a named parameter
into your query. Remember to place an @ symbol at the beginning of the parameter name so
SqlDataSource can recognize it. In this example, use @Country. (The @ denotes a named parameter
when using the SQL Server provider.)

Here's what the revised data source tag should look like:

<asp:SqlDataSource ID="SqlDataSource1" Runat="server"
 SelectCommand="SELECT ContactName FROM Customers WHERE Country='@Country'
...
</asp:SqlDataSource>

Next, you add a definition that links the parameter to the appropriate control. Once again, you can
configure this information in Visual Studio or by hand. In Visual Studio, select the SqlDataSource
control and click the ellipses next to the SelectQuery property in the Properties window. (Truthfully,
there is no real SelectQuery. That's just the way Visual Studio exposes the SelectCommand and
SelectParameters properties to make it easier to edit them as a single unit at design time.) In this
case, you need to create a new control parameter that retrieves the SelectedValue property of the
lstCountries control.

Here's the revised data source tag once you've added the parameter definition:

<asp:SqlDataSource ID="SqlDataSource1" Runat="server"
 SelectCommand="SELECT ContactName FROM Customers WHERE Country=@Country"
 ConnectionString=
 "Data Source=127.0.0.1;Integrated Security=SSPI;Initial Catalog=Northwind"

 <SelectParameters>
 <asp:ControlParameter Name="Country"
 ControlID="lstCountries" PropertyName="SelectedValue">
 </asp:ControlParameter>
 </SelectParameters>
</asp:SqlDataSource>

Note that the name of the control parameter matches the name of the parameter in the SQL

http://lib.ommolketab.ir
http://lib.ommolketab.ir

expression, with one minor quirk: the leading @ symbol is always left out.

Figure 4-5 shows the completed page. When you select a country from the drop-down list, the
bulleted customer list is refreshed with the matching customers automatically. You now have a fair
bit of functionality, and still have not written any code.

Figure 4-5. Linked data-bound controls with no code

This example should already suggest possibilities where you can use multiple data source controls.
For example, imagine you want to provide a master-detail view of orders by customer. You could use
one data source to fill a listbox with customers. When the user selects a customer, you could then
use your other data source to perform a query for the linked orders and show it in a different control.

4.3.2. What about...

...reasons not to use the new code-free data-binding controls? Many right-thinking developers steer
clear of data-binding techniques because they embed database details into the user-interface code.
In fact, that's exactly what this example does, which has negative consequences for maintainability,
optimization, and debugging. Quite simply, with database details strewn everywhere in a large site,
it's hard to stay consistent.

ASP.NET developers haven't forgotten about this side of things. With a little care, you can use the
data source providers and still centralize your database logic. One of the best ways to do so is to use
the ObjectDataSource control, which allows you to link to a custom class that you've created with
data access code. The next lab, "Bind Web Controls to a Custom Class," demonstrates this technique.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Data sources also provide a useful place to add more advanced functionality. One of the most
interesting examples is caching. If you set EnableCaching to true, the data source control will
automatically insert the retrieved data into the ASP.NET cache and reuse it in future requests,
potentially reducing your database load dramatically. You can configure the amount of time an item is
cached by setting the CacheDuration and CacheExpirationPolicy properties.

4.3.3. Where can I learn more?

For more on caching and other advanced scenarios, look up the index entry "data source controls" in
the MSDN help library.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Bind Web Controls to a Custom Class

Well- designed applications rigorously separate their data access logic from the rest of their code. In
ASP.NET 2.0, you can achieve this separation while still using the new ASP.NET data source controls
for convenient no-code-required design-time data binding. The secret is to use the new
ObjectDataSource control, which knows how to fetch results from a data access class. You can then
bind other controls to the ObjectDataSource for quick and easy web page display.

Note: Want to use data source binding without scattering database details throughout dozens of web pages? The ObjectDataSource

control provides the solution.

4.4.1. How do I do that?

To use the ObjectDataSource control, you must first create a custom class that retrieves the data
from the database. The database class will contain one method for every database operation you
want to perform. Methods that retrieve results from the database can return DataTable or DataSet
objects, collections, or custom classes.

Example 4-1 shows a database class called CustomerDB that provides a single GetCustomers()
method. The GetCustomers() method queries the database and returns a collection of
CustomerDetails objects. The CustomerDetails object is also a custom object. It simply wraps all the
details of a customer record from the database.

Example 4-1. A custom database class

Imports System.Data.SqlClient
Imports System.Collections.Generic

Public Class CustomerDB

 Private ConnectionString As String = _
 "Data Source=localhost;Initial Catalog=Northwind;Integrated Security=SSPI"

 Public Function GetCustomers() As List(Of CustomerDetails)
 Dim Sql As String = "SELECT * FROM Customers"

 Dim con As New SqlConnection(ConnectionString)
 Dim cmd As New SqlCommand(Sql, con)
 Dim Reader As SqlDataReader
 Dim Customers As New List(Of CustomerDetails)
 Try
 con.Open()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Reader = cmd.ExecuteReader()
 Do While Reader.Read()
 Dim Customer As New CustomerDetails()
 Customer.ID = Reader("CustomerID")
 Customer.Name = Reader("ContactName")
 Customers.Add(Customer)
 Loop
 Catch Err As Exception
 Throw New ApplicationException(_
 "Exception encountered when executing command.", Err)
 Finally
 con.Close()
 End Try

 Return Customers
 End Function

End Class

Public Class CustomerDetails

 Private _ID As String
 Private _Name As String

 Public Property ID() As String
 Get
 Return _ID
 End Get
 Set(ByVal Value As String)
 _ID = Value
 End Set
 End Property

 Public Property Name() As String
 Get
 Return _Name
 End Get
 Set(ByVal Value As String)
 _Name = Value
 End Set
 End Property

End Class

There are a couple of important points to note about this example. First, the database class must be
stateless to work correctly. If you need any information, retrieve it from the custom application
settings in the web.config file. Second, notice how the CustomerDetails class uses property
procedures instead of public member variables. If you use public member variables, the
ObjectDataSource won't be able to extract the information from the class and bind to it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tip: Example 4-1 uses a generic collection. For more information on this new CLR feature, refer to the lab Section 2.5 in Chapter 2.

To use the custom data access class in a data-binding scenario, you first need to make it a part of
your web application. You have two options:

Place it in a separate class library project and then compile it to a DLL file. Then, in the web
application, add a reference to this assembly. Visual Studio will copy the DLL file into the Bin
subdirectory of your web application.

Put the source code in an ordinary .vb file in the App_Code subdirectory of your web
application. ASP.NET automatically compiles any source code that's in this directory and makes
it available to your web application. (To make sure it's compiled, choose Build Build Website
before going any further.)

Once you've taken one of these steps, drag an ObjectDataSource from the data tab of the Visual
Studio toolbox onto the design surface of a web page. Click the control's smart tag and choose
Configure Data Source. A wizard will appear that lets you choose your class from a drop-down list (a
step that sets the TypeName property) and asks which method you want to call when performing a
query (which sets the MethodName property).

Here's what the completed ObjectDataSource control tag looks like in the .aspx page of this example:

<asp:ObjectDataSource ID="ObjectDataSource1" Runat="server"
 TypeName="CustomerDB" SelectMethod="GetCustomers">
</asp:ObjectDataSource>

You are now able to bind other controls to the properties of the CustomerDetails class. For example,
this BulletedList exposes the CustomerDetails.Name information for each object in the collection:

<asp:BulletedList ID="BulletedList1" Runat="server"
 DataTextField="Name" DataSourceID="ObjectDataSource1">
</asp:BulletedList>

When you run the application, the BulletedList requests data from the ObjectDataSource. The
ObjectDataSource creates an instance of the CustomerDB class, calls GetCustomers(), and returns the
data.

4.4.2. What about...

...updating a database through an ObjectDataSource? Not a problem. Both the ObjectDataSource and
the SqlDataSource controls discussed in the previous lab, "Bind to Data Without Writing Code"
support inserting, updating, and deleting records. With SqlDataSource, you simply need to set
properties such as DeleteCommand, InsertCommand, and UpdateCommand with the appropriate SQL. With
the ObjectDataSource, you set properties such as DeleteMethod, InsertMethod, and UpdateMethod by
specifying the corresponding method names in your custom data access class. In many cases, you'll
also need to specify additional information using parameters, which might map to other controls,
query string arguments, or session information. For example, you might want to delete the currently

http://lib.ommolketab.ir
http://lib.ommolketab.ir

selected record, or update a record based on values in a set of text boxes. To accomplish this, you
need to add parameters, as described in the previous lab "Bind to Data Without Writing Code."

Once you've configured these operations (either by hand or by using the convenient design-time
wizards), you can trigger them by calling the Delete(), Insert(), and Update() methods. Other
controls that plug in to the data source control framework can also make use of these methods. For
example, if you configure a SqlDataSource object with the information it needs to update records, you
can enable GridView editing without needing to add a line of code. You'll see an example of this
technique with the DetailsView control in the upcoming lab "Display Records One at a Time."

4.4.3. Where can I learn more?

For more information, look up the index entry "data source controls" in the MSDN help library. To
learn about the new GridView, refer to the next lab, "Display Interactive Tables Without Writing
Code."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.5. Display Interactive Tables Without Writing Code

The ASP.NET 1.0 and 1.1 DataGrid control was tremendously popular, but implementing some of its
most desirable features often required writing a lot of boilerplate code. For example, if you wanted to
let users page through rows of data, it was up you to query the database after every postback,
retrieve the requested page, and set the range of rows that you wanted to display. With the new
GridView control, these headaches are a thing of the past.

Note: The new GridView control lets you create and display tables of data that users can sort, page through, and edit without requiring

you to write a single line of code.

In preparing for ASP.NET 2.0, Microsoft architects chose not to release a new version of the current
DataGrid in order to simplify backward compatibility. Instead, the new GridView control duplicates
and extends the functionality of the DataGrid, while making its features available to developers
through a much simpler programming model.

4.5.1. How do I do that?

To use the new GridView control, drag it from the Data section of the Visual Studio toolbox onto the
design surface of a web page. For hassle-free data binding, you can add a SqlDataSource control
(described in the lab "Bind to Data Without Writing Code") or use an ObjectDataSource control in
conjunction with a custom data access object, as explained in "Bind Web Controls to a Custom
Class." In this case, we'll use a SqlDataSource control and the select query shown here to retrieve all
fields and records in the Customers table of the Northwind database. Here's the final data source tag:

<asp:SqlDataSource ID="CusomtersList" Runat="server"
 SelectCommand="SELECT * FROM Customers"
 ConnectionString=
 "Data Source=127.0.0.1;Integrated Security=SSPI;Initial Catalog=Northwind">
</asp:SqlDataSource>

Now, set the GridView.DataSourceID property to the name of the SqlDataSource (in this example,
CustomersList). This binds the GridView to the SqlDataSource.

At this point, you can run your page and see a simple HTML table with a full list of customers.
However, to make your table look respectable, there are a number of additional steps you'll want to
take. These include:

Note: You should be able to see the columns of your grid at design time. If you don't, choose Refresh Schema on the SqlDataSource

smart tag (to get the column information from the database) and then choose Refresh Schema on the GridView smart tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Setting the Font property to use a more attractive font. A common choice that's supported by
most web browsers is Verdana (use a size of X-Small or XX-Small).

Applying some formatting with styles. You can set colors, fonts, and sizes for the FooterStyle,
HeaderStyle, RowStyle, and more using the Properties window. Or, to change the complete look
in a hurry, click the GridView smart tag and choose AutoFormat. When you choose one these
presets, all the GridView styles are set automatically.

Making the GridView look respectable is only part of the work. You can also switch on various
GridView features using options in the GridView smart tag. Here are some links you can click to get
quick results:

Enable Paging

This option sets the AllowPaging property to true. The GridView will then split long lists of
records into separate pages (each with the number of rows designated in the PageSize
property). Users can move from page to page by clicking numbered links that appear at the
bottom of the GridView.

Enable Sorting

This option sets AllSorting to TRue. The GridView will then provide column hyperlinks. When
the user clicks one, the whole table will be resorted in alphabetic order (or ascending numeric
order) according to that column.

Enable Selection

This option adds a Select link in a new column at the left side of the grid. Users can click this
link to select the row (at which point the SelectedIndex property will be set accordingly).

Enable Deleting

This option adds a Delete link in a new column at the left side of the grid. Users can click this
link to delete the row from the database. You'll only see this option if you've defined a
DeleteCommand for the attached data source.

Enable Editing

This option adds an Edit link in a new column at the left side of the grid. Users can click this link
to put a row in edit mode (at which point an Update and Cancel link will appear, allowing them
to push the change to the database or roll it back). You'll only see this option if you've defined
an UpdateCommand for the attached data source.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-6 shows a table that supports paging and sorting by column, which was generated by
GridView without using a single line of custom code.

Figure 4-6. A GridView with sorting and paging enabled

4.5.2. What about...

...fine-tuning the GridView display? For example, you might want to tweak the sort order, the text
used for the selection and editing links, the column titles, or the order of columns. You might also
need to set default text and format strings. To perform any of these tasks, you simply customize the
column objects that the GridView generates based on the format of the data source records. The
easiest way to do so is to select Edit Columns link on the GridView smart tag and use the Fields
dialog to customize the properties of each column. Try it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6. Display Records One at a Time

While the GridView control is a perfect tool for presenting the records of a database as rows of data
in a table, it becomes less convenient when you have records with many fields (especially if some
fields are quite long), and you want to let users manipulate or add to the data they contain. One
solution is to show only selected fields in a grid, but there are times when you need to display an
entire record on a page and give the user the ability both to edit individual records and to add new
records to the database. In ASP.NET, the handy new DetailsView gives you all the functionality you
need to deal with individual records for free (i.e., without having to write your own code).

Note: The new DetailsView control gives you a convenient way to let users view, edit, insert, and delete individual records.

4.6.1. How do I do that?

The new DetailsView control works in much the same way as the GridView control described in the
previous lab, "Display Interactive Tables Without Writing Code." The difference is that the
DetailsView displays a single record at a time. By default, all the fields are displayed in a table, each
field in a row of its own, listing from top to bottom.

To add a DetailsView to a web page, simply drag it onto the design surface from the Visual Studio
Toolbox Data tab. Next, click its smart tag and select Configure Data Source to attach it to a data
source control. You can also use the Auto Forms link in the smart tag to apply a rich set of styles to
the grid it displays.

Because the DetailsView can only show a single record, you need to take extra steps to make sure it
shows the right one. To do this, you need to use a filter expression (a SQL expression that limits the
records you see according to the criteria you specify). You add the filter expression to the data
source by setting the FilterExpression and FilterParameters properties of the DetailsView.

For example, consider the page that is shown in Figure 4-7. GridAndDetails.aspx contains both a
GridView showing select information about the first five records and a DetailsView showing all fields
of the selected record.

Figure 4-7. Connecting a GridView and DetailsView

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This page needs two data sources, one for the GridView (which is defined in the same way as
described in the lab "Display Interactive Tables Without Writing Code.") and one for the DetailsView.
The DetailsView data source definition looks like this:

<asp:SqlDataSource ID="SingleCustomerSource" Runat="server"
 SelectCommand="SELECT CustomerID, CompanyName, ContactName, ContactTitle,
Address, City, Country FROM Customers WHERE CustomerID=@CustomerID"
 ConnectionString=
"Data Source=127.0.0.1;Integrated Security=SSPI;Initial Catalog=Northwind"
>

 <SelectParameters>
 <asp:ControlParameter Name="CustomerID" ControlID="GridView1"
 PropertyName="SelectedValue">
 </asp:ControlParameter>
 </SelectParameters>

</asp:SqlDataSource>

This SELECT query selects only the single row that matches the CustomerID that's selected in the
GridView control.

It's easy to hook up a basic DetailsView like the one shown in Figure 4-7. But life becomes even
better if you do the work to add editing, deleting, and inserting abilities to the DetailsView. You can
add all of these frills with the click of a button, provided you first make sure the connected data

http://lib.ommolketab.ir
http://lib.ommolketab.ir

source has all the information it needs. For example, if you want to create a SqlDataSource that
supports deleting, you need to configure the DeleteCommand and DeleteParameters properties. To
create a data source that supports inserting new records, you need to add an InsertCommand and
InsertParameters.

Adding these extra details is surprisingly easy. All you need to do is understand a few rules:

All updates are performed through parameterized commands that use named placeholders
instead of values.

The parameter name is the same as the field name, with a preceding @ symbol. For example,
the ContactName field becomes the @ContactName parameter.

When you write the Where clause for your query, you need to precede the parameter name with
the text original_. This indicates that you want to use the original value (which ignores any
changes the user may have made). For example, @CustomerID becomes @original_CustomerID.

If you follow these rules, the DetailsView control will hook up the parameter values automatically. To
try this out, follow these steps.

First, write a parameterized command that uses named placeholders instead of values. For example,
here's a parameterized DeleteCommand for deleting the currently selected record, which follows the list
of rules above:

DELETE Customers WHERE CustomerID=@original_CustomerID

This command deletes the currently selected record. The amazing thing about this command is that
because it follows the naming rules listed above, you don't have to worry about supplying a value.
Instead, you simply define the parameter as shown below, and the DetailsView will use the
CustomerID from the currently displayed record:

<asp:SqlDataSource ID="SingleCustomerSource" Runat="server"
 DeleteCommand="DELETE Customers WHERE CustomerID=@original_CustomerID"
 ... >
 <DeleteParameters>
 <asp:Parameter Name="CustomerID">
 </asp:Parameter>
 </DeleteParameters>
 ...
</asp:SqlDataSource>

Example 4-2 shows a completed SqlDataSource that defines commands for update, insert, and delete
operations in this way.

Example 4-2. A SqlDataSource tag

<asp:SqlDataSource ID="SingleCustomerSource" Runat="server"
 ConnectionString=

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"Data Source=127.0.0.1;Integrated Security=SSPI;Initial Catalog=Northwind"
 SelectCommand=
"SELECT CustomerID,CompanyName,ContactName,ContactTitle,Address,
City,Country FROM Customers"
 FilterExpression="CustomerID='@CustomerID'"
 DeleteCommand="DELETE Customers WHERE CustomerID=@original_CustomerID"
 InsertCommand=
"INSERT INTO Customers (CustomerID,CompanyName,ContactName,ContactTitle,Address,
City,Country) VALUES (@CustomerID,@CompanyName,@ContactName,@ContactTile,@Address,
@City,@Country)"
 UpdateCommand=
 "UPDATE Customers SET CompanyName=@CompanyName,ContactName=@ContactName,
ContactTitle=@ContactTitle,Address=@Address,City=@City,Country=@Country WHERE
CustomerID=@original_CustomerID">

 <FilterParameters>
 <asp:ControlParameter Name="CustomerID" Type="String" ControlID="GridView1"
 PropertyName="SelectedValue">
 </asp:ControlParameter>
 </FilterParameters>

 <DeleteParameters>
 <asp:Parameter Name="CustomerID">
 </asp:Parameter>
 </DeleteParameters>

 <InsertParameters>
 <asp:Parameter Name="CustomerID"></asp:Parameter>
 <asp:Parameter Name="CompanyName"></asp:Parameter>
 <asp:Parameter Name="ContactName"></asp:Parameter>
 <asp:Parameter Name="ContactTile"></asp:Parameter>
 <asp:Parameter Name="Address"></asp:Parameter>
 <asp:Parameter Name="City"></asp:Parameter>
 <asp:Parameter Name="Country"></asp:Parameter>
 </InsertParameters>

 <UpdateParameters>
 <asp:Parameter Name="CompanyName"></asp:Parameter>
 <asp:Parameter Name="ContactName"></asp:Parameter>
 <asp:Parameter Name="ContactTitle"></asp:Parameter>
 <asp:Parameter Name="Address"></asp:Parameter>
 <asp:Parameter Name="City"></asp:Parameter>
 <asp:Parameter Name="Country"></asp:Parameter>
 <asp:Parameter Name="CustomerID"></asp:Parameter>
 </UpdateParameters>

</asp:SqlDataSource>

This tag is a long one, but the parameter definitions are surprisingly simple. Even better, Visual
Studio wizards can help you build insert, update, and delete commands quickly. Just click the ellipsis
next to the property name in the Properties window (e.g., the DeleteCommand property), and then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

type in the parameterized command and click Refresh Parameters. Refreshing automatically
generates all the parameter tags based on your command.

To configure the DetailsView so that it uses these commands, just click the smart tag and add a
checkmark next to the options Enable Inserting, Enable Deleting, and Enable Updating. This sets
Boolean properties like AutoGenerateInsertButton, AutoGenerateDeleteButton, and
AutoGenerateEditButton.

Figure 4-8 shows a DetailsView in edit mode.

Figure 4-8. Editing a record with the DetailsView

4.6.2. What about...

...updating the GridView so it stays synchronized with the DetailsView? If you don't take any extra
steps you'll notice a little inconsistency; changes you make editing, inserting, or deleting records with
the DetailsView won't appear in the GridView until you manually refresh the page. To get around this
problem, you need to add a little event-handling code. In this case, the important DetailsView events
are ItemInserted, ItemDeleted, and ItemUpdated, which fire after each of these edit operations has
completed. Here's code you can add to each event handler to refresh the grid when an item is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inserted, deleted, or updated:

Sub DetailsView1_ItemUpdated(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.DetailsViewUpdatedEventArgs)
 GridView1.DataBind()
End Sub

The DetailsView has much more functionality that you can harness. For example, you can handle the
ItemInserting, ItemDeleting, and ItemUpdating events to check the requested change, perform data
validation, and stop the update from being committed. You can also create your own edit controls
using templates. For more information about these techniques, look up the index entry "DetailsView
control" in the MSDN Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.7. Achieve a Consistent Look and Feel with Master
Pages

Most professional web sites standardize their layout. On the O'Reilly web site
(http://www.oreilly.com), for example, a navigation bar always appears on the left-hand side of a
content page, and a company logo is displayed at the top. These details remain consistent as the
user moves from page to page.

Note: Need to enforce a regular design across all the pages in a web site? ASP. NET 2.0 has a new master pages feature that allows

you to create page templates.

In ASP.NET 1.0 and 1.1, you can create web sites with standardized layouts, but there aren't any
tools to make it easy. For example, with user controls you can reuse blocks of user interface, but
there isn't any way to ensure that they always end up in the same position on different pages. Using
HTML frames, you can break up a web browser window so it shows multiple web pages, but it's
extremely difficult to keep all the web pages properly coordinated. In ASP.NET 2.0, these imperfect
solutions are replaced with a new feature called master pages, a page templating system.

4.7.1. How do I do that?

To create a basic master page in Visual Studio, select Website Add New Item from the menu,
select Master Page, and click OK to add the item.

Master pages are similar to ordinary ASP.NET pages in the sense that they can contain HTML, web
controls, and code. However, they have a different extension (.master instead of .aspx), and they
can't be requested directly by a browser. Instead, other pages (known as content pages) can use the
master page.

You design the master page as you would a normal ASP.NET web page, adding the text and controls
you need to get a consistent look across all pages of your site. The elements you add to the master
page cannot be modified by the content pages that make use of it. You use the new
ContentPlaceHolder control to mark off areas reserved for content that will vary from page to page.
In these regions of the master page, content pages can add their own controls and HTML.

Consider the sample master page whose source is shown in Example 4-3. It creates two tables. The
topmost table holds the header region, and the second table contains the rest of the page. The
second table is split into two cells, a cell on the left for a navigation bar, and a cell on the right that
contains a ContentPlaceHolder tag. Any content page that uses (i.e., inherits from) this master page
can completely control the content of that cell, but not of any other cell in that table or other tables
on the master page.

http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-3. A master page that uses a table

<%@ Master language="VB" %>

<html>
 <head id="Head1" runat="server">
 <title>Master Page</title>
 </head>

 <body>
 <form id="Form1" runat="server">
 <table id="header" width="100%" height="80px"
 cellspacing="1" cellpadding="1" border="1">
 <tr>
 <td width="100%" style="TEXT-ALIGN: center">
 This is the Master Page fixed header.
 </td>
 </tr>
 </table>

 <table id="main" width="100%" height="100%"
 cellspacing="1" cellpadding="1" border="1">
 <tr>
 <td valign=top width="100px">
 Put the site map here (on left). </td>
 <td valign=top >
 <asp:ContentPlaceHolder id="content" runat="Server">
 Put your content here.
 </asp:ContentPlaceHolder>
 </td>
 </tr>
 </table>

 </form>
 </body>

</html>

Figure 4-9 shows the master page at design time. For more advanced layout, you could use nested
tables, or put the ContentPlaceHolder tag inside a single cell of a more complex table, which includes
multiple columns and rows.

Figure 4-9. A simple master page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To create a new content page, right-click the Solution Explorer and select Add New Item. Choose the
Web Form option, give the file a name, and then select the "Select master page" checkbox. When
you click Add, a dialog box will appear, prompting you to select one of the master pages in the
current web application. Select the master page in Example 4-3, and click OK.

When you create a content page, it automatically gets the same look as the master page from which
it derives. You can add content only inside the content areas designated by a ContentPlaceHolder
control. The predefined header and sitemap regions of the master page will appear grayed out in
Visual Studio.

The actual markup for content pages looks a little different than ordinary pages. First of all, the Page
directive links to the master page you're using, as shown here:

<%@ Page MasterPageFile="Site.master" %>

In order to add content to the page, you need to enter it inside a special Content tag. The Content tag
links to one of the ContentPlaceHolder tags you created in the master page. For example, if you
want to add content to the master page example shown earlier, you need a Content tag that looks
like this:

<asp:Content ContentPlaceHolderID="content" Runat="server">
 ...
</asp:Content>

This ContentPlaceHolderID attribute must match the id attribute of one of the ContentPlaceHolder

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tags in the master page. Note that you do not need to add Content tags to the content page in the
same order as the ContentPlaceHolder tags appear in the master page. Visual Studio will create the
content tag automatically as you add controls to the content page.

Example 4-4 shows the code you need to implement a very simple content page based on the master
page shown in Example 4-3. Note that the page doesn't include tags like <html>, <header>, <body>,
and <form>, because these tags are only defined once for a page, and they're already included in the
master page.

Note: You don't need to specify content for each placeholder. If you don't, ASP. NET shows whatever content is in the

ContentPlaceHolder tag on the master page (if any).

Example 4-4. A content page with a picture and text

<%@ page language="VB" MasterPageFile="Site.master" %>

<asp:Content ContentPlaceHolderID=content Runat=server>
 <asp:Image ID="image1" ImageUrl="oreilly_header.gif" Runat="server" />

 <i>This is page-specific content!</i>
 <hr />
</asp:Content>

Figure 4-10 shows the resulting content page.

Figure 4-10. A simple content page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can create master pages that use other previously defined master pages, effectively nesting one
master page inside another. Such a nested design might make sense if you need to define some
content that appears on every page in a web site (like a company header) and some content that
appears on many but not all pages (like a navigation bar).

One good reason to use master pages is to dedicate some web page real estate for some sort of
navigation controls. The next lab, "Add Navigation to Your Site," explores this topic in more detail.

4.7.2. What about...

...other ways to help ensure consistency? ASP.NET 2.0 introduces another feature for standardizing
web sites called control theming. While master pages ensure a regular layout and allow you to repeat
certain elements over an entire site, theming helps to make sure web page controls have the same
"look and feel." Essentially, a control theme is a set of style attributes (such as fonts and colors) that
can be applied to different controls.

4.7.3. Where can I learn more?

For more information, look for the index entry "themes" in the MSDN Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.8. Add Navigation to Your Site

Most web sites include some type of navigation bar that lets users move from one page to another.
In ASP.NET 1.0 and 1.1, it's easy enough to create these navigation controls, but you need to do so
by hand. In ASP.NET 2.0, a new sitemap feature offers a much more convenient pre-built solution.
The basic principle is that you define the structure of your web site in a special XML file. Once you've
taken that step, you can configure a list or tree control to use the sitemap datagiving you a clickable
navigation control with no code required.

Note: ASP. NET 2.0 provides new navigation features that let you create a sitemap and bind it to different controls.

4.8.1. How do I do that?

The first step in using ASP.NET's new sitemap feature is to define the structure of your web site in an
XML file named web.sitemap. To add this file to your site in Visual Studio, right-click the Solution
Explorer and select Add New Item. Select the Site Map file type and click Add.

The first ingredient you need in the web.sitemap file is the root <siteMap> tag:

<siteMap>
</siteMap>

In the <siteMap> tag, you add one <siteMapNode> child element for each entry you want to show in
the sitemap. You can then give a title, description, and URL link for each entry using attributes.
Here's an example:

<siteMapNode title="Home" description="Home Page" url="default.aspx" />

Notice that this tag ends with the characters /> instead of just >. This indicates that it's an empty
elementin other words, it doesn't contain any other elements. However, if you want to build a multi-
level sitemap, you have to nest one <siteMapNode> element inside another. Here's an example:

<siteMapNode title="Home" description="Home Page" url="default.aspx" >
 <siteMapNode title="Products"
 description="Order Products" url="produ.aspx" />
</siteMapNode>

Example 4-5 shows a sitemap with six links in three levels.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-5. A multi-level sitemap

<?xml version="1.0" ?>
<siteMap>
 <siteMapNode title="Home" description="Home" url="default.aspx">
 <siteMapNode title="Personal" description="Personal Services"
 url="personal.aspx">
 <siteMapNode title="Resume" description="Download Resume"
 url="resume.aspx" />
 </siteMapNode>

 <siteMapNode title="Business" description="Business Services"
 url="business.aspx">
 <siteMapNode title="Products" description="Order Products"
 url="products.aspx" />
 <siteMapNode title="Contact Us" description="Contact Information"
 url="contact.aspx" />
 </siteMapNode>
 </siteMapNode>
</siteMap>

Once you create a sitemap, it's easy to use it on a web page, thanks to the new SiteMapDataSource
control. This control works much like the other data source controls discussed in "Bind to Data
Without Writing Code." However, it doesn't require any properties at all. Once you add the
SiteMapDataSource, ASP.NET automatically reads the web.sitemap file and makes its data available to
your other controls:

<asp:SiteMapDataSource ID="SiteMapDataSource1" Runat="server" />

Now you can bind just about any other control to the SiteMapDataSource. Because sitemaps are, by
default, hierarchical, they work particularly well with the new treeView control. Here's a treeView
control that binds to the sitemap data:

<asp:TreeView ID="TreeView1" Runat="server" DataSourceID="SiteMapDataSource1"
 Font-Names="Verdana" Font-Size="8pt" ForeColor="Black" ImageSet="BulletedList"
 Width="149px" Height="132px">
</asp:TreeView>

The resulting treeView doesn't just show the sitemap, it also renders each node as a hyperlink that, if
clicked, sends the user to the appropriate page. Figure 4-11 shows a content page that's based on a
master page that uses a treeView with a sitemap. (Refer to the lab "Achieve a Consistent Look and
Feel with Master Pages" for more information about master pages.)

Figure 4-11. Using a sitemap in a master page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.8.2. What about...

...customizing the sitemap? There's a lot more you can do to control the look of a site as well as its
behavior. Here are some starting points:

Show a sitemap in a non-hierarchical control

Controls like the ListBox and GridView don't support the sitemap's tree-based view. To solve
this problem, set the SiteMapDataSource.SiteMapViewType property to Flat instead of tree so
that the multi-layered sitemap is flattened into a single-level list. You can also use the Flat
option with a TReeView to save screen real estate (because subsequent levels won't be
indented).

Vary the sitemap displayed in different pages

To accomplish this, put all the sitemap information you need into the same web.sitemap file,
but in different branches. Then, set the SiteMapDataSource.StartingNodeUrl to the URL of the
page you want to use as the root of your sitemap. The SiteMapDataSource will only get the data
from that node, and all the nodes it contains.

Make the sitemap collapsible

If you have a large sitemap, just set the TReeView.ShowExpandCollapse to TRue, and the
familiar plus boxes will appear next to Home, Personal, and Business, allowing you to show just
part of the sitemap at a time.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fine-tune the appearance of the TreeView

It's remarkably easy. In the previous example, the treeView used the bullet style, which shows
different bullet icons next to each item. By setting the treeView.ImageSet to different values
available within the treeViewImageSet enumeration, you can show square bullets, arrows,
folder and file icons, and much more. For even more information about tweaking the treeView
(or using it in other scenarios that don't involve sitemaps), look up the reference for the
System.Web.UI.WebControls.TreeView class.

Retrieve the sitemap information from another location

Maybe you want to store your sitemap in a different file, a database, or some other data
source. Unfortunately, the SiteMapProvider doesn't have the ability to retrieve information
from these locationsat least not yet. Instead, you'll need to create your own custom sitemap
provider. Refer to the MSDN help under the index entry "site map."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.9. Easily Authenticate Users

In ASP.NET 1.0 and 1.1, developers had a handy tool called forms authentication. Essentially, forms
authentication kept track of which users had logged in by using a special cookie. If ASP.NET noticed a
user who hadn't logged in trying to access a secured page, it automatically redirected the user to
your custom login page.

Note: Tired or writing your own authentication code? ASP. NET 2.0 will take care of the drudgery, maintaining user credentials in a

database and validating a user login when you ask for it.

On its own, forms authentication worked well, but it still required some work on your part. For
example, you needed to create the login page and write the code that examined the user's login
name and password and compared it to values in a custom database. Depending on how your
application worked, you may also have needed to write code for adding new users and removing old
ones. This code wasn't complicated, but it could be tedious.

ASP.NET 2.0 dramatically reduces your work with its new membership features. Essentially, all you
need to do is use the methods of the membership classes to create, delete, and validate user
information. ASP.NET automatically maintains a database of user information behind the scenes on
your behalf.

4.9.1. How do I do that?

The first step in adding authentication to your site is to choose a membership provider, which
determines where the user information will be stored. ASP.NET includes membership providers that
allow you to connect to a SQL Server database, and several additional providers are planned.

The membership provider is specified in the web.config configuration file. However, rather than
typing this information in by hand, you'll almost certainly use the WAT, described in the lab
"Administer a Web Application." Just click the Security tab, and click the "Use the security Setup
Wizard" link to walk through a wizard that gives you all the options you need. The first question is the
access methodin other words, how your visitors will authenticate themselves. Choose "From the
internet" to use forms authentication rather than Windows authentication.

The following step allows you to choose the membership provider. You can choose a single provider
to use for all ASP.NET features, or separate providers for different features (such as membership,
role-based security, and so on). If you choose to use a SQL Server database, you must also run the
aspnet_regsql.exe utility, which will walk you through the steps needed to install the membership

database. You'll find the aspnet_regsql.exe utility in the c:\[WinDir]\Microsoft.NET
ramework\[Version] directory.

Next, you'll have the chance to create users and roles. Roles are discussed in a later lab ("Use Role-
Based Authentication"), so you don't need to create them yet. You don't need to create a test user,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

because you'll do that through your web site in the next step.

You can choose the name of your login page by modifying the <authentication> section in the
web.config file, as shown here:

<?xml version="1.0"?>
<configuration>
 <system.web>
 <authentication mode="Forms">
 <forms loginUrl="Login.aspx" />
 </authentication>

 <!-- Other settings ommitted. -->
 </system.web>
</configuration>

In this case, the login page for the application is named Login.aspx (which is the default). In this
page, you can use the shared methods and properties of the System.Web.Security.Membership class
to authenticate your users. However, you don't need to, because ASP.NET includes a set of security-
related controls that you can drag and drop into your web pages effortlessly. The security controls
include:

Login

Shows the controls needed for a user to log in, including username and password text boxes,
and a Login button. Optionally, you can show an email address text box, and you can configure
all the text labels in the control by modifying properties like UserNameLabelText and
PasswordLabelText.

LoginView

Shows one template out of a group of templates, depending on who is currently logged in. This
gives you a way to customize content for different users and roles without using any custom
code.

PasswordRecovery

Provides a mechanism through which users can have a forgotten password mailed to them.
This feature is disabled by default and requires some tweaking of web.config settings.

LoginStatus

Displays a Login link if the user isn't currently logged in, or a Logout link if the user is logged in.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LoginName

Shows the name of the currently logged-in user in a label.

CreateUserWizard

Allows the user to step through creating a new user account.

ChangePassword

Allows the user to change his or her current password, by specifying the current and new
passwords.

You'll find the security controls in the Login tab of the Visual Studio toolbox. To try them out, create a
new page named RegisterUser.aspx. Drop a CreateUserWizard control onto the web page. Now run
the page and use the wizard to create a new user with the username testuser and the password test.

By default, the CreateUserWizard control uses two steps (shown in Figure 4-12). The first step allows
you to specify all your user information, and the second step simply displays a confirmation message.

Figure 4-12. Adding a new user with the CreateUserWizard control

If you like, you can dig into the backend database to confirm that your user information was saved
(after all, it happened automatically, without requiring any custom code). But a better test is to
actually create a restricted area of your web page.

First, add the Login.aspx page. To create this page, just drag a Login control onto the page, and
you're finished.

Now, it's time to restrict access to a portion of the web site. Select Website New Folder to create

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a subdirectory in your web application directory, and name the new directory Secured. Next, create a
new page in this directory named Private.aspx, and add the text "This is a secured page."

Now, run the WAT by selecting Website ASP.NET Configuration. Choose the Security tab. Using
this tab, you can examine the list of users (including the test user you added in the previous step)
and modify their information. What you really need to do, however, is click the "Create access rules"
link to restrict access to the Secured directory. Select the directory in the list, choose the Deny
Permission option, and select Anonymous users, as shown in Figure 4-13. Then, click OK to add this
rule.

Figure 4-13. Creating a rule to prevent anonymous access to the Secured
directory

Now you're ready to test this simple security example. Right-click on the Private.aspx, file and choose
"Set As Start Page." Then, run your application. ASP.NET will immediately detect that your request is
for a secured page and you haven't authenticated yourself. Because you've configured forms
authentication, it redirects you to the Login.aspx page.

Now enter the username testuser and the password test in the login control. ASP.NET will validate
you using the membership provider and redirect you to the originally requested Private.aspx page.

In other words, by using the CreateUserWizard and Login controls in conjunction with the WAT,
you've created an authentication system that restricts access to a specific portion of your web siteall
without a single line of code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.9.2. What about...

...ways to customize the authentication process? If you need to control how authentication, user
creation, and other security tasks work, you'll be happy to find that the security controls are easily
extensible. You can add new steps to the CreateUserWizard to collect additional data, respond to
events that fire when the user is logged in (or denied access), and even convert the steps to editable
templates so that you can fine-tune the user interface, adding new controls or removing existing
ones.

If you want to go a step further, you can abandon the security controls altogether, but still create
almost no-code solutions using the static methods of the System.Web.Security.Membership class.
Here are some of the methods you can call:

CreateUser()

Creates a new user record in the data store with a username, a password, and (optionally) an
email address.

DeleteUser()

Removes the user record from the data store that has the indicated username.

GeneratePassword()

Creates a random password of the specified length. You can suggest this to the user as a
default password when creating a new user record.

GetUser()

GetUser() retrieves a MembershipUser record for a user with the given username. You can
then examine the MembershipUser properties to find out details such as the user's email
address, when the account was created, when the user last logged in, and so on. If you don't
specify a username, the GetUser() method retrieves the current user for the page.

GetUserNameByEmail()

If you know a user's email address but you don't know the username, you can use this method
to get it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UpdateUser()

After you've retrieved a MembershipUser object, you can modify its properties and then submit
the object to the UpdateUser() method, which commits all your changes to the user database.

ValidateUser()

This accepts a username and password, and verifies that it matches the information in the
database (in which case it returns true). ASP.NET doesn't actually store the unencrypted
password in the databaseinstead, it uses a hashing algorithm to protect this information.

Using these methods, you can quickly construct basic login and user registration pages without
needing to write any database code. All you need to do is create the user interface for the page (in
other words, add labels, text boxes, and other controls).

For example, to design a customized login page, just create a page with two text boxes (named
txtUser and txtPassword) and a button (named cmdLogin). When the button is clicked, run this code:

Sub cmdLogin_Click(ByVal sender As Object, ByVal e As System.EventArgs)

 If Membership.ValidateUser(txtUser.Text, txtPassword.Text) Then
 ' ASP.NET validated the username and password.
 ' Send the user to page that was originally requested.
 FormsAuthentication.RedirectFromLoginPage(txtUser.Text, False)
 Else
 ' The user's information is incorrect.
 ' Do nothing (or just display an error message).
 End If

End Sub

Notice how simple the code is for this page. Instead of manually validating the user by connecting to
a database, reading a record, and checking the fields, this code simply calls the
Membership.ValidateUser() method, and ASP.NET takes care of the rest.

Just as easily, you can create a page that generates a new user record with the Membership class:

Sub cmdRegister_Click(ByVal sender As Object, ByVal e As System.EventArgs)

 Dim Status As MembershipCreateStatus
 Dim NewUser As MembershipUser = Membership.CreateUser(_
 txtUser.Text, txtPassword.Text, txtEmail.Text, Status)

 ' If the user was created successfully, redirect to the login page.
 If Status = MembershipCreateStatus.Success Then
 Response.Redirect("Login.aspx")
 Else
 ' Display an error message in a label.
 lblStatus.Text = "Attempt to create user failed with error " & _
 Status.ToString()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End If

End Sub

For more information, look up the index entry "Membership class" in the MSDN Help. You can also
refer to the next three labs, which build up the basic membership framework with new features:

"Determine How Many People Are Currently Using Your Web Site"

Explains how additional membership features can track who's online.

"Use Role-Based Authorization"

Describes how you can enhance your authorization logic by assigning users to specific roles,
essentially giving them different sets of privileges. This feature isn't handled by the
membership service, but by a complementary role manager service.

"Store Personalized Information"

Shows how you can store other types of user-specific information in a data store, instead of
just usernames, passwords, and email addresses. This feature isn't handled by the membership
service, but by a complementary personalization service.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.10. Determine How Many People Are Currently Using
Your Web Site

The Web uses HTTP, a stateless protocol that rarely maintains a connection longer than a few
seconds. As a result, even as users are reading through your web pages, they aren't connected
directly to your server. However, ASP.NET gives you a way to estimate how many people are using
your web site at any given moment using timestamps. This information makes a great addition to a
community site (e.g., a web discussion forum), and it can also be useful for diagnostic purposes.

Note: Ever wondered how many people are using your site right now? If you're using ASP. NET's personalization features, it's

remarkably easy to get a reasonable estimate.

4.10.1. How do I do that?

Every time a user logs in using a membership provider (described in the lab "Easily Authenticate
Users"), ASP.NET records the current time in the data store. When the same user requests a new
page, ASP.NET updates the timestamp accordingly. To make a guess at how many people are using
your web site, you can count the number of users who have a timestamp within a short window of
time. For example, you might consider the number of users who have requested a page in the last 15
minutes.

You can retrieve this information from ASP.NET using the new GetNumberOfUsersOnline() method of
the Membership class. You can also configure the time window that will be used by setting the
UserIsOnlineTimeWindow property (which reflects a number of minutes). It's set to 15 by default.

Here's a code snippet that counts the online users and displays the count in a label:

Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 lblStatus.Text &= "
There are " &_
 Membership.GetNumberOfUsersOnline() & _
 " users online right now. That is an estimate based" &_
 " on looking at timestamps that fall in the last " &_
 Membership.UserIsOnlineTimeWindow & _
 " minutes."
End Sub

Keep in mind that this count doesn't include anonymous users.

4.10.2. What about...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...getting information about exactly which users are online? Unfortunately, ASP.NET doesn't currently
provide any way to determine which users are online. The only alternative is to add your own
tracking code. For example, you could store this information in a database or add it to an in-memory
object such as the Application collection whenever a user logs in. You would also need to store the
login time and discard old entries periodically.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.11. Use Role-Based Authorization

In many web applications, all users are not equal. Some might be allowed to perform a carefully
restricted set of actions, while others are given free reign to perform more advanced administrative
tasks. ASP.NET 2.0 makes it easier than ASP.NET 1.x to assign permissions to different groups of
users using the new role-management service.

Note: Do you need to give different privileges to different types of users? The easiest way to implement this logic is by using ASP. NET's

new role-management service.

4.11.1. How do I do that?

ASP.NET uses a role-management service to manage the storage and retrieval of role-based
information. ASP.NET gives you the flexibility to use different role-manager providers to store the role
information in different data sources. Usually, you'll use the same data store that you use for
membership (as described in the lab "Easily Authenticate Users"). Because the membership provider
and the role-manager provider use different tables, you don't need to worry about a conflict.

Role management is not enabled by default. You can enable it by using the WAT, as described in the
lab "Administer a Web Application." Just select Website ASP.NET Configuration and choose the
Security tab. Then click the "Enable roles" link in the Roles box. This modifies the web.config as
needed. However, you'll still need to configure the roles you want to use.

The easiest way to add role information is also through the WAT. To do so, click the "Create or
Manage roles" link in the Roles box on the Security page. This presents a page where you can add
new roles and assign users to existing roles. To add a new role, type in the role name and click Add
Role. You'll see the role appear in the list below. Figure 4-14 shows an example with two groups,
Administrators and Sales Officials. Note that you won't see group membership on this page.

Figure 4-14. Adding a new role

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To change group membership, click the Manage link next to the appropriate role. Because a typical
system could easily have hundreds of users, the WAT does not attempt to show all the users at once.
Instead, it allows you to specify the user that you want to add to the role by typing in the name,
browsing an alphabetical directory, or using a search with wild cards (as in John* to find usernames
starting with John). Once you've found the appropriate user, place a checkmark in "User Is In Role"
column to add the user to the role, or clear the checkbox to remove the user, as shown in Figure 4-
15.

Figure 4-15. Assigning a role to a user

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using this tab, you can examine the list of users (including the test user you added in the previous
step) and modify their information. What you really need to do, however, is click the "Create access
rules" link to restrict access to the Secured directory. Select the directory in the list, choose the Deny
Permission option, and select Anonymous users, as shown in Figure 4-13. Then, click OK to add this
rule.

When a user logs in using forms authentication (as described in the lab "Easily Authenticate Users"),
the role-management service automatically retrieves the list of roles that the user belongs to and
stores them in an encrypted cookie. After this point, it's easy to test the role membership of the
currently logged-in user.

For example, the following code checks if the user is an Administrator. In order for this to work, the
user must have logged in:

If Roles.IsUserInRole("Administrator") Then
 ' (Allow the code to continue, or show some content
 ' that would otherwise be hidden or disabled.)
End If

And, finally, this code displays a list of all the roles that the user belongs to:

For Each Role As String In Roles.GetRolesForUser()
 lblRoles.Text &= Role & " "
Next

Clearly, none of these tasks requires much work!

You can also set and retrieve role information using the System.Web.Security.Roles class. Here are
the core methods you'll want to use:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CreateRole()

This creates a new role with the designated name in the database. Remember, roles are just
labels (like Administrator or Guest). It's up to your code to decide how to respond to that
information.

DeleteRole()

Removes a role from the data source.

AddUserToRole()

Adds a record in the data store that indicates that the specified user is a member of the
specified role. You can also use other methods that work with arrays and allow you to add a
user to several different roles at once, or add several different users to the same role. These
methods include AddUserToRoles(), AddUsersToRole(), and AddUsersToRoles().

RemoveUserFromRole()

Removes a user from a role.

GetRolesForUser()

Retrieves an array of strings that indicate all the roles a specific user belongs to. If you're
retrieving roles for the currently logged-in user, you don't need to specify a username.

GetUsersInRole()

Retrieves an array of strings with all of the usernames that are in a given role.

IsUserInRole()

Tests if a user is in a specific role. This is the cornerstone of role-based authorization.
Depending on whether this method returns true or False, your code should decide to allow or
restrict certain actions. If you're testing the group membership of the currently logged-in user,
you don't need to specify a username.

The following code snippet creates a role and adds a user to that role:

Roles.CreateRole("Administrator")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Roles.AddUserToRole("testUser", "Administrator")

4.11.2. What about...

...performance? At first glance, role management might not seem very scalable. Reading the role
information for each web request is sure to slow down the speed of your application, and it may even
introduce a new bottleneck as ASP.NET threads wait to get access to the database. Fortunately, the
role-management service is quite intelligent. It won't make a trip to the database with each web
request; instead, it retrieves role information once, encrypts it, and stores it in a cookie. For all
subsequent requests, ASP.NET reads the roles from the encrypted cookie. You can remove this
cookie at any time by calling Roles.DeleteCookie(), or you can configure settings in the web.config
file to determine when it should expire on its own.

If you have an extremely large number of roles, the cookie might not contain them all. In this case,
ASP.NET flags the cookie to indicate this fact. When your code performs a role check, ASP.NET will
try to match one of the roles in the cookie first, and if it can't find a match, it will double-check the
data source next.

4.11.3. Where can I learn more?

For more information, look up the index entry "role-based security ASP.NET" in the MSDN Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.12. Store Personalized Information

ASP.NET applications often have the need to store user-specific information beyond the bare
minimum username and password. One way to solve this problem is to use the Session collection.
Session state has two limitations: it isn't permanent (typically, a session times out after 20 minutes
of inactivity), and it isn't strongly typed (in other words, you need to know what's in the session
collection and manually cast references to the appropriate data types). ASP.NET 2.0 addresses these
limitations with a new framework for storing user-specific data called profile settings.

Note: Need to store some custom user-specific information for long periods of time? Why not use the membership data provider to save

and retrieve information without resorting to database code.

4.12.1. How do I do that?

Profiles build on the same provider model that's used for membership and role management.
Essentially, the profile provider takes care of storing all the user-specific information in some backend
data store. Currently, ASP.NET includes a profile provider that's tailored for SQL Server.

Before you start using profiles, you should have a system in place for authenticating users. That's
because personalized information needs to be linked to a specific user, so that you can retrieve it on
subsequent visits. Typically, you'll use forms authentication, with the help of the ASP.NET
membership services described in the lab "Easily Authenticate Users."

With profiles, you need to define the type of user-specific information you want to store. In early
builds, the WAT included a tool for generating profile settings. However, this tool has disappeared in
later releases, and unless (or until) it returns, you need to define your profile settings in the
web.config file by hand. Here's an example of a profile section that defines a single string named
Fullname:

Note: ASP. NET does include basic features that allow you to use personalization with anonymous users (see the "What about..."

section of this lab for more information).

<?xml version="1.0"?>
<configuration>
 <system.web>

 <profile>
 <properties>
 <add name="FullName" type="System.String" />
 </properties>
 </profile>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <!-- Other settings ommitted. -->
 </system.web>
</configuration>

Initially, this doesn't seem any more useful than an application setting. However, Visual Studio
automatically generates a new class based on your profile settings. You can access this class through
the Page.Profile property. The other benefit is the fact that ASP.NET stores this information in a
backend database, automatically retrieving it from the database at the beginning of the request and
writing it back at the end of the request (if these operations are needed). In other words, profiles
give you a higher-level model for maintaining user-specific information that's stored in a database.

In other words, assuming you've defined the FullName property in the <profile> section, you can set
and retrieve a user's name information using code like this:

Profile.FullName = "Joe Smythe"
...
lblName.Text = "Hello " & Profile.FullName

Note that the Profile class is strongly typed. There's no need to convert the reference, and Visual
Studio's IntelliSense springs into action when you type Profile followed by the period.

Life gets even more interesting if you want to store a full-fledged object. For example, imagine you
create specialized classes to track the products in a user's shopping basket. Example 4-6 shows a
Basket class that contains a collection of BasketItem objects, each representing a separate product.

Example 4-6. Custom classes for a shopping cart

Imports System.Collections.Generic

Public Class Basket
 Private _Items As New List(Of BasketItem)
 Public Property Items() As List(Of BasketItem)
 Get
 Return _Items
 End Get
 Set(ByVal value As List(Of BasketItem))
 _Items = value
 End Set
 End Property
End Class

Public Class BasketItem
 Private _Name As String
 Public Property Name() As String
 Get
 Return _Name
 End Get
 Set(ByVal value As String)
 _Name = value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 End Set
 End Property

 Private _ID As String = Guid.NewGuid().ToString()
 Public Property ID() As String
 Get
 Return _ID
 End Get
 Set(ByVal value As String)
 _ID = value
 End Set
 End Property

 Public Sub New(ByVal name As String)
 _Name = name
 End Sub

 Public Sub New()
 ' Used for serialization.
 End Sub
End Class

To use this class, you need to add it to the Code subdirectory so that it's compiled automatically.
Then, to make it a part of the user profile, you need to define it in the web.config file, like this:

<profile>
 <properties>
 <add name="Basket" type="Basket" />
 </properties>
</profile>

With this information in place, it's easy to create a simple shopping cart test page. Figure 4-16 shows
an example that lets you add and remove items. When the page is first loaded, it checks if there is a
shopping basket for the current user, and if there isn't, it creates one. The user can then add items to
the cart or remove existing items, using the Add and Remove buttons. Finally, the collection of
shopping basket items is bound to a listbox every time the page is rendered, ensuring the page
shows the current list of items in the basket. Example 4-7 shows the complete code.

Figure 4-16. Adding items to a shopping basket

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 4-7. Testing a personalized shopping basket

<%@ Page language="VB" %>

<script runat="server">
 Sub Page_Load(ByVal sender As Object, ByVal e As System.EventArgs)
 If Profile.Basket Is Nothing Then Profile.Basket = New Basket()
 End Sub

 ' Put a new item in the basket.
 Sub cmdAdd_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 Profile.Basket.Items.Add(New BasketItem(txtItemName.Text))
 End Sub

 ' Remove the selected item.
 Sub cmdRemove_Click(ByVal sender As Object, ByVal e As System.EventArgs)
 For Each Item As BasketItem In Profile.Basket.Items
 If Item.ID = lstItems.SelectedItem.Value Then
 Profile.Basket.Items.Remove(Item)
 Return
 End If
 Next
 End Sub

 ' The page is being rendered. Create the list using data binding.
 Sub Page_PreRender(ByVal sender As Object, ByVal e As System.EventArgs)
 lstItems.DataSource = Profile.Basket.Items
 lstItems.DataTextField = "Name"
 lstItems.DataValueField = "ID"
 lstItems.DataBind()
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

</script>

<html>
<head runat="server">
 <title>Test Page</title>
</head>
<body>
 <form id="form1" runat="server">

 <asp:ListBox ID="lstItems" Runat="server" Width="266px"
 Height="106px"></asp:ListBox>

 <asp:TextBox ID="txtItemName" Runat="server"
 Width="266px"></asp:TextBox>

 <asp:Button ID="cmdAdd" Runat="server" Width="106px"
 Text="Add New Item" OnClick="cmdAdd_Click" />
 <asp:Button ID="cmdRemove" Runat="server" Width="157px"
 Text="Remove Selected Item" OnClick="cmdRemove_Click" />
 </form>
</body>
</html>

Remember, profile information doesn't time out. That means that even if you rebuild and restart the
web application, the shopping cart items will still be there, unless your code explicitly clears them.
This makes profiles perfect for storing permanent user-specific information without worrying about
the hassle of ADO.NET code.

4.12.2. What about...

...anonymous users? By default, you can only access profile information once a user has logged in.
However, many web sites retain user-specific information even when users aren't logged in. For
example, most online e-commerce shops let users start shopping immediately, and only force them
to log in at checkout time. To implement this design (without resorting to session state), you need to
use another new feature in ASP.NETanonymous identification.

With anonymous identification, ASP.NET assigns a unique ID to every new user. This ID is stored in a
persistent cookie, which means that even if a user waits several days before making a repeat visit,
ASP.NET will still be able to identify the user and find the personalized information from the user's
last visit. (The default expiration settings remove the cookie after about one week if the user hasn't
returned.)

In order to use anonymous identification, you need to add the <anonymousIdentification> tag to the
web.config file, and you need to explicitly indicate what profile information can be tracked
anonymously by flagging these properties with the allowAnonymous attribute.

Here's an example with a revised web.config that stores shopping basket information for anonymous
users:

<?xml version="1.0"?>
<configuration>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <system.web>
 <anonymousIdentification enabled="true">

 <profile>
 <properties>
 <add name="Basket" type="Basket" allowAnonymous="true"/>
 </properties>
 </profile>

 <!-- Other settings ommitted. -->
 </system.web>
</configuration>

Anonymous identification raises a few new considerations. The most significant occurs in systems
where an anonymous user needs to log in at some point to complete an operation. In order to make
sure information isn't lost, you need to handle the PersonalizationModule.MigrateAnonymous event in
the global.asax file. You can then transfer information from the anonymous profile to the new
authenticated profile.

4.12.3. Where can I learn more?

For more information about various profile options, including transferring anonymous profile
information into an authenticated profile, look for the index entry "profiles" in the MSDN Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Files, Databases, and XML
.NET 1.0 revolutionized Visual Basic data access with a whole new object model for interacting with
files, connecting to databases, and manipulating XML. In .NET 2.0, the revolution continues with a
slew of minor improvements, some new features, and a tool for generating data access code
automatically, all designed to make life better for the VB programmer.

Tip: What you won't learn about in this chapter are the new .NET Framework features designed for SQL Server 2005. These include

using .NET code to program user-defined data types and stored procedures, SQL Server 2005 notifications, and multiple active

recordsets (MARS). For more information about these SQL Server 2005 features, please pay a visit to the MSDN SQL Server 2005

Developer Center at http://msdn.microsoft.com/SQL/2005.

http://msdn.microsoft.com/SQL/2005
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. Get Drive Information

.NET includes handy DirectoryInfo and FileInfo classes for gathering information about files and
directories. However, in .NET 1.x there wasn't any way to get a list of all the drives on your computer
without using unmanaged calls to the Windows API. Thankfully, the DriveInfo class finally debuts in
.NET 2.0.

Note: The DriveInfo class lets you easily retrieve information about the drives on your computer.

Tip: Before going any further, start by importing the System.IO namespace. The file access classes in .NET 2.0 (FileInfo, DirInfo,

and DriveInfo) all exist there. Whether you access them directly or through the My object, you'll need to import this namespace.

5.1.1. How do I do that?

The My.Computer.FileSystem provides a quick way to get a list of all the drives on the current
computer. All you need to do is loop through the Drives collection, which exposes a collection of
System.IO.DriveInfo objects.

For example, to see all the drive letters on the current computer, enter the following code:

' Display a list of drives.
For Each Drive As DriveInfo In My.Computer.FileSystem.Drives
 Console.WriteLine(Drive.Name)
Next

This writes a list of drive letter names ("A:\", "C:\", "D:\", and so on). You can also create a
DriveInfo object for a specific directory by using the My.Computer.FileSystem.GetDriveInfo()
method, and specifying the letter of the drive you want to examine as a string. For example, try the
following code to take a closer look at drive C:

Console.WriteLine("The label for drive C:\ is " & _
 My.Computer.FileSystem.GetDriveInfo("C").VolumeLabel

This example displays the volume label that's set for the drive. You can also examine other properties
of the DriveInfo object to get more information (such as the DriveType, TotalFreeSpace, and
TotalSize). But keep in mind that you can't retrieve this information for a removable drive if there's
no media present (for example, if the CD or diskette isn't in the drive). To guard against this
possibility, check to make sure the DriveType doesn't include DriveType.Fixed before trying to get
more detail.

Example 5-1 puts these concepts together with a complete, simple console application that displays

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information about all the drives on your computer.

Example 5-1. Displaying information about all the drives on a computer

Imports System.IO

Module DriveInfoTest

 Public Sub Main()
 Console.WriteLine("Drives on this computer: ")
 For Each Drive As DriveInfo In My.Computer.FileSystem.Drives
 ' Display drive information.
 Console.WriteLine(Drive.Name)

 Console.WriteLine(vbTab & "Type: " & Drive.DriveType.ToString())

 If (Drive.DriveType And DriveType.Fixed) = DriveType.Fixed Then
 Console.WriteLine(vbTab & "Format: " & _
 Drive.DriveFormat.ToString())
 Console.WriteLine(vbTab & "Label: " & Drive.VolumeLabel)
 Console.WriteLine(vbTab & "Total Size: " & Drive.TotalSize)
 Console.WriteLine(vbTab & "Free Space: " & Drive.TotalFreeSpace)
 End If
 Console.WriteLine()
 Next
 End Sub

End Module

When you run this code, you'll see the following output:

Drives on this computer:
A:\
 Type: Removable

C:\
 Type: Fixed
 Format: NTFS
 Label: Applications
 Total Size: 15726702592
 Free Space: 2788483072

D:\
...

5.1.2. What about...

...getting information about the rest of the filesystem? The .NET Framework has always made it easy

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to get directory and file information using DirectoryInfo and FileInfo objects. Once you have
instantiated a DriveInfo object, you can use its RootDirectory property to get a DirectoryInfo
object that wraps the root directory (e.g., C:\). You can then use methods like
DirectoryInfo.GetFiles() and DirectoryInfo.GetDirectories() to retrieve the files and
subdirectories contained in the root directory.

5.1.3. Where can I learn more?

For more information about all the properties of the filesystem information classes, look for the
"DriveInfo," "DirectoryInfo," and "FileInfo" index entries in the MSDN class library reference. You can
also refer to other labs in this chapter, which show new shortcuts available with the
My.Computer.FileSystem object. These include:

"Get File and Directory Information," which shows how you can quickly get information about a
specific file or directory without directly creating a FileInfo or DirectoryInfo object.

"Copy, Move, and Delete Files," which shows how you can easily shuffle files and directories
from one place to another.

"Read and Write Files," which shows the quickest way to extract text content from a file or write
to a file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Get File and Directory Information

In VB 2005, you can access all the file and directory information you need from a single starting
point: the new My.Computer.FileSystem object.

Note: The new My.Computer. FileSystem object lets you get file and directory information with a bare minimum of code.

5.2.1. How do I do that?

Here are four key methods of My.Computer.FileSystem that you can use to get file and directory
information. Every method has the same signatureit takes a single string parameter whose value is
the complete path of the file or directory that's the subject of your query. The methods are:

FileExists()

Returns TRue if the file exists.

DirectoryExists()

Returns true if the directory exists.

GetFileInfo()

Returns a FileInfo object. You can examine its various properties to get information such as
file size, attributes, and so on.

GetDirectoryInfo()

Returns a DirectoryInfo object. You can examine its various properties to get information such
as directory size, attributes, and so on.

The code snippet shown in Example 5-2 first determines whether a file exists and then displays some
information when it does.

Example 5-2. Retrieving information about a specific file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Imports System.IO

Module FileInfoTest

 Public Sub Main()
 ' Get a file in a "special directory."
 Dim Info As FileInfo
 Info = My.Computer.FileSystem.GetFileInfo("c:\Windows\explorer.exe")

 ' Show the access/update times.
 Console.WriteLine("Created: " & Info.CreationTime)
 Console.WriteLine("Last Modified: " & Info.LastWriteTime)
 Console.WriteLine("Last Accessed: " & Info.LastAccessTime)

 ' Check if the file is read-only. When testing file attributes,
 ' you need to use bitwise arithmetic, because the FileAttributes
 ' collection usually contains more than one attribute at a time.
 Dim ReadOnlyFile As Boolean
 ReadOnlyFile = Info.Attributes And FileAttributes.ReadOnly
 Console.WriteLine("Read-Only: " & ReadOnlyFile)

 ' Show the size.
 Console.WriteLine("Size (bytes): " & Info.Length)
 End Sub

End Module

Here's the type of output you'll see:

Created: 3/30/2004 7:35:17 PM
Last Modified: 8/29/2002 4:41:24 AM
Last Accessed: 4/28/2004 10:59:38 AM
Read-Only: False
Size (bytes): 104032
Version: 6.0.1106

5.2.2. What about...

...searching for directories and files? The My.Computer.FileSystem object also provides a
GeTDirectories() method to retrieve the names of all the subdirectories in a directory and a
GetFiles() method to retrieve the names of all files in a given directory.

Note: In early beta versions, Visual Basic included new FolderProperties and FileProperties classes that duplicated the DirectoryInfo

and FileInfo classes. Fortunately, Microsoft decided not to reinvent the wheel, and went back to the . NET 1.x standards.

Both methods offer additional flexibility via an overloaded version that accepts additional parameters.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can specify an array with one or more filter strings (for example, use *.doc to find all the files
with the extension .doc). You can also supply a Boolean includeSubFolders parameter that, if TRue,
searches for matching files or directories in every contained subdirectory.

Here's an example of an advanced search that finds all the .exe files in the c:\windows directory:

' Get all the EXE files in the Windows directory.
For Each File As String In My.Computer.FileSystem.GetFiles(_
 "c:\windows\", True, "*.exe")
 Info = My.Computer.FileSystem.GetFileInfo(File)
 Console.WriteLine(Info.Name & " in " & Info.Directory.Name)
Next

Note that the GetFiles() and Getdirectories() methods just return strings. If you want more
information, you need to create a FileInfo or DirectoryInfo object for the file or directory, as shown
above.

There is one caveat: when you perform a search with the GetFiles() method, the matching file list
is first created and then returned to your code. In other words, if you're performing a time-
consuming search, you won't receive a single result until the entire search is finished.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. Copy, Move, and Delete Files

In addition to helping you gather information about the directories and files on your system, the
My.Computer.FileSystem object also gives you quick access to a number of methods for performing
common file-management tasks, such as copying, moving, and deleting files.

Note: In VB 2005, you can perform common file-management tasks with a single line of code.

5.3.1. How do I do that?

The My.Computer.FileSystem object provides several self-contained methods for performing common
file-management operations. They are:

CopyFile() and CopyDirectory()

MoveFile() and MoveDirectory()

RenameFile() and RenameDirectory()

DeleteFile() and DeleteDirectory()

The way you use each of these methods is fairly straightforward. You supply two parameters: a
source path and, if required, a target filename or path. For example, you can rename a file with this
line of code:

My.Computer.FileSystem.RenameFile("c:\myfile.txt", "newname.txt")

These methods are also available in overloaded versions that give you additional features. We'll take
a look at those next.

The move and copy methods of FileSystem are available in a variety of overloaded versions. If you
need to overwrite an existing file or directory, be sure to use a version that includes the Boolean
parameter overwrite and set it to true. Otherwise, you'll receive an exception and the operation
won't be completed. Here's an example of one such option:

Note: In some beta versions, the user interface for moving or deleting a file doesn't appear, even when you choose to see it. However,

the underlying task (moving or deleting a file) is always performed correctly.

My.Computer.FileSystem.CopyDirectory("c:\MyFiles", _
 "c:\CopyOfMyFiles", True)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Interestingly, among the copying and deleting methods are versions that accept the showUI Boolean
parameter. If that parameter is set to TRue, the operation works exactly as if a user had initiated the
delete or copy operation in Windows Explorer: dialog boxes appear asking the user to confirm the
request to overwrite or delete files, and a progress indicator appears with a Cancel button when a file
copy or delete operation is in progress (unless the operation completes very quickly). You can even
specify what should happen when the user clicks Cancel (either an exception is thrown or nothing at
all happens) using the onUserCancel parameter.

Example 5-3 provides a complete console application that lets you test this behavior.

Example 5-3. Moving and deleting files with Windows UI

Imports System.IO

Module FileManagement

 Public Sub Main()
 ' Create a large test file (100 MB).
 Dim TestFile As String = "c:\test.bin"
 Console.WriteLine("Creating file...")
 Dim fs As FileStream = File.OpenWrite(TestFile)
 For i As Integer = 1 To 100000000
 fs.WriteByte(0)
 Next
 fs.Close()

 ' Create the target directory.
 Console.WriteLine("Creating directory...")
 Dim TargetDir As String = "c:\TestDir"
 My.Computer.FileSystem.CreateDirectory(TargetDir)
 Dim TargetFile As String = Path.Combine(TargetDir, "test.bin")

 Console.WriteLine("Moving file...")
 ' Try moving the file. Set the following parameters:
 ' showUI = UIOption.AllDialogs
 ' (Show all the Windows UI, not just error messages.)
 ' onUserCancel = UICancelOption.ThrowException
 ' (Generate an error if the user clicks Cancel.)
 Try
 My.Computer.FileSystem.MoveFile(TestFile, TargetFile, _
 UIOption.AllDialogs, UICancelOption.ThrowException)
 Console.WriteLine("File moved.")
 Catch Err As Exception
 Console.WriteLine("You canceled the operation.")

 ' Remove the original file.
 My.Computer.FileSystem.DeleteFile(TestFile)
 End Try

 Console.WriteLine("Press Enter to continue.")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.ReadLine()

 ' Delete the target directory. Set the following parameters:
 ' showUI = UIOption.AllDialogs
 ' (Show the confirmation and Windows UI dialog box.)
 ' sendToRecycleBin = RecycleOption.SendToRecycleBin
 ' (Delete the file permanently.
 ' onUserCancel = UICancelOption.DoNothing
 ' (Allow the user to cancel this operation.)
 My.Computer.FileSystem.DeleteDirectory(TargetDir, _
 UIOption.AllDialogs, RecycleOption.SendToRecycleBin, _
 UICancelOption.DoNothing)

 Console.WriteLine("Cleanup finished.")
 End Sub

End Module

As shown in this example, the DeleteFile() and DeleteDirectory() methods have one additional
frill available. By default, when you delete a file, it bypasses the Windows recycle bin. However, you
can use an overloaded version of DeleteFile() or DeleteDirectory() that accepts a
sendToRecycleBin parameter. Set this to true to keep your file around as a safeguard.

5.3.2. What about...

...file operations that use special folders? The new My.Computer.FileSystem object allows you to
retrieve references to many system-defined folders through the SpecialDirectories class. For
example, you can quickly retrieve the path for temporary files, user documents, and the desktop.
Here's an example:

Dim Desktop As String = My.Computer.FileSystem.SpecialDirectories.Desktop
Console.WriteLine("Your desktop is at: " & Desktop)

Console.Write("It's size is: ")
Console.Write(My.Computer.FileSystem.GetDirectoryInfo(Desktop).Size)
Console.WriteLine(" bytes")
Console.Write("It contains: ")
Console.Write(My.Computer.FileSystem.GetFiles(Desktop).Count)
Console.WriteLine(" files")

The SpecialDirectories class includes all the following properties, each of which returns a string with
the corresponding fully qualified path:

AllUsersApplicationData

CurrentUserApplicationData

Desktop

MyDocuments

MyMusic

MyPictures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Programs

Temp

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Read and Write Files

If you need to work with text files or raw binary data, VB 2005 provides a new solution that bypasses
the lower-level classes of System.IO for small files. Now you can read and write text in a single
atomic operation using the My.Computer.FileSystem object. Best of all, you no longer need to create
streams, track your position, or clean up afterward.

Note: At last, a way to read and write files without the complexities of streams and stream readers.

5.4.1. How do I do that?

The My.Computer.FileIO object provides the absolute quickest way to read or write the contents of a
file. Its secret lies in a few self-contained methods. These include:

ReadAllText()

Reads the content of a text file and returns it as a single string.

ReadAllBytes()

Reads the content of any file and returns it as an array of bytes.

WriteAllText()

Writes text as a string to a file in one atomic operation. You can either add to an existing file or
create a new file, depending on whether you supply true or False for the Boolean append
parameter.

WriteAllBytes()

Writes a byte array to a file in a single operation. You can either add to an existing file or
create a new file, depending on whether you supply true or False for the Boolean append
parameter.

Example 5-4 creates a simple text file and then reads it back into memory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-4. Write a file in one step and read a file in one step

Imports System.IO

Module FileReadAndWrite

 Public Sub Main()
 Dim Text As String = "This is line 1" & _
 vbNewLine & "This is line 2" & _
 vbNewLine & "This is line 3" & _
 vbNewLine & "This is line 4"

 ' Write the file.
 My.Computer.FileSystem.WriteAllText("c:\test.txt", Text, False)

 ' Read the file.
 Console.WriteLine(My.Computer.FileSystem.ReadAllText("c:\test.txt"))
 End Sub

End Module

5.4.2. What about...

...the limitations of this approach? The methods that you'll find in the My.Computer.FileSystem object
are unmatched for sheer convenience, but they aren't always appropriate. Here are some reasons
you might be better off using the lower-level classes of the System.IO namespace:

You have an extremely large file, and you want to read and process its contents one piece at a
time, rather than load the entire file into memory at once. This is a reasonable approach it
you're dealing with a long document, for example.

You want to use other data types, like numbers or dates. In order to use the
My.Computer.FileIO methods to handle numeric data, you'll need to first convert the numbers
into strings or byte arrays manually using other .NET classes. On the other hand, if you use a
FileStream instead, you simply need to wrap it with a BinaryReader or BinaryWriter.

You want to use other stream-based .NET features, such as compression (explained in the next
lab, "Compress and Decompress Data"), object serialization, or encryption.

The core .NET classes for reading and writing files are found in the System.IO namespace and haven't
changed in .NET 2.0. The most useful of these are FileStream (allows you to open a file directly for
reading or writing), StreamReader and StreamWriter (used for reading and writing text, one line at a
time), and BinaryReader and BinaryWriter (used for converting basic .NET data types to binary data
and back). Look these classes up in the MSN Help for the traditional file-access techniques. Also, in
the next lab, you'll see a more advanced example that uses FileStream to encrypt data in a file.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. Compress and Decompress Data

Even with the ever-increasing capacity of hard drives and the falling price of computer memory, it
still pays to save space. In .NET 2.0, a new System.IO.Compression namespace makes it easy for a
VB 2005 programmer to compress data as she writes it to a stream, and decompress data as she
reads it from a stream.

Note: Need to save space before you store data in a file or database? . NET 2.0 makes compression and decompression easy.

5.5.1. How do I do that?

The new System.IO.Compression namespace introduces two new stream classes: GZipStream and
DeflateStream, which, as you'd guess, are used to compress and decompress streams of data.

The algorithms used by these classes are lossless, which means that when you compress and
decompress your data, you won't lose any information.

To use compression, you need to understand that a compression stream wraps another stream. For
example, if you want to write some compressed data to a file, you first create a FileStream for the
file. Then, you wrap the FileStream with the GZipStream or DeflateStream. Here's how it works:

Dim fsWrite As New FileStream(FileName, FileMode.Create)
Dim CompressStream As New GZipStream(fsWrite, CompressionMode.Compress)

Now, if you want to write data to the file, you use the GZipStream. The GZipStream compresses that
data, and then writes the compressed data to the wrapped FileStream, which then writes it to the
underlying file. If you skip this process and write directly to the FileStream, you'll end up writing
uncompressed data instead.

Like all streams, the GZipStream only allows you to write raw bytes. If you want to write strings or
other data types, you need to create a StreamWriter. The StreamWriter accepts basic .NET data types
(like strings and integers) and converts them to bytes. Here's an example:

Dim Writer As New StreamWriter(CompressStream)

' Put a compressed line of text into the file.
Writer.Write("This is some text")

Finally, once you're finished, make sure you flush the GZipStream so that all the data ends up in the
file:

Writer.Flush()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CompressStream.Flush()
fsWrite.Close()

The process of decompression works in a similar way. In this case, you create a FileStream for the
file you want to read, and then create a GZipStream that decompresses the data. You then read the
data using the GZipStream, as shown here:

fsRead = New FileStream(FileName, FileMode.Open)
Dim DecompressStream As New GZipStream(fsRead, CompressionMode.Decompress)

Example 5-5 shows an end-to-end example that writes some compressed data to a file, displays the
amount of space saved, and then decompresses the data.

Example 5-5. Compress and decompress a sample file

Imports System.IO

Module FileCompression

 Public Sub Main()
 ' Read original file.
 Dim SourceFile As String
 SourceFile = My.Computer.FileSystem.CurrentDirectory & "\test.txt"
 Dim fsRead As New FileStream(SourceFile, FileMode.Open)
 Dim FileBytes(fsRead.Length - 1) As Byte
 fsRead.Read(FileBytes, 0, FileBytes.Length)
 fsRead.Close()

 ' Write to a new compressed file.
 Dim TargetFile As String
 TargetFile = My.Computer.FileSystem.CurrentDirectory & "\test.bin"
 Dim fsWrite As New FileStream(TargetFile, FileMode.Create)
 Dim CompressStream As New GZipStream(fsWrite, CompressionMode.Compress)
 CompressStream.Write(FileBytes, 0, FileBytes.Length)
 CompressStream.Flush()
 CompressStream.Close()
 fsWrite.Close()

 Console.WriteLine("File compressed from " & _
 New FileInfo(SourceFile).Length & " bytes to " & _
 New FileInfo(TargetFile).Length & " bytes.")

 Console.WriteLine("Press Enter to decompress.")
 Console.ReadLine()

 fsRead = New FileStream(TargetFile, FileMode.Open)
 Dim DecompressStream As New GZipStream(fsRead, CompressionMode.Decompress)
 Dim Reader As New StreamReader(CType(DecompressStream, Stream))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.WriteLine(Reader.ReadToEnd())
 Reader.Close()
 fsRead.Close()
 End Sub

End Module

5.5.2. What about...

...unzipping .zip files? Unfortunately, the .NET 2.0 compression streams can't deal with ZIP files, file
archives that are commonly used to shrink batches of files (often before storing them for the long
term or attaching them to an email message). If you need this specific ability, you'll probably be
interested in the freely downloadable #ziplib (available at
http://www.icsharpcode.net/OpenSource/SharpZipLib).

5.5.3. Where can I learn more?

For more information about the GZipStream and DeflateStream algorithms, look them up in the MSDN
Help. You can also look up the "compression" index entry for a Windows application example that
uses these classes.

http://www.icsharpcode.net/OpenSource/SharpZipLib
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Collect Statistics on Your Data Connections

Most programmers like to look at statistics. Considered carefully, they can suggest the underlying
cause of a long-standing problem, explain the performance problems of an application, or suggest
possible optimization techniques. If you're using the SQL Server provider, you can make use of a new
SqlConnection.RetrieveStatistics() method to get a hashtable with a slew of diagnostic details
about your database connection.

Note: Want to find out what's really going on while you're connected to a database? In . NET 2.0, you can get ahold of much more

information, but only if you're using SQL Server.

5.6.1. How do I do that?

Before you can call RetrieveStatistics(), you need to instruct it to collect statistics by setting the
SqlConnection.StatisticsEnabled property to TRue. Once you take this step, the SqlConnection class
will gather statistics for every database command you execute over the connection. If you perform
multiple operations with the same connection, the statistics will be cumulative, even if you close the
connection between each operation.

To take a look at the statistics at any time, you call the RetrieveStatistics() method to retrieve a
hashtable containing the accumulated data. The hashtable indexes its members with a descriptive
name. For example, to retrieve the number of transactions you've performed, you'd write this code:

Dim Stats as Hashtable = con.RetrieveStatistics()
Console.Writeline(Stats("Transactions"))

To get a good idea of the different statistics available, try running Example 5-6, a console application
that iterates over the statistics collection and displays the key name and value of each statistic it
contains.

Example 5-6. Retrieving all the connection statistics

Imports System.Data.SqlClient

Module StatisticsTest

 Private ConnectString As String = _
 "Data Source=localhost;Initial Catalog=Northwind;Integrated Security=SSPI"
 Private con As New SqlConnection(ConnectString)

 Public Sub Main()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Turn on statistics collection.
 con.StatisticsEnabled = True

 ' Perform two sample commands.
 SampleCommand()
 SampleCommand()

 ' Retrive the hashtable with statistics.
 Dim Stats As Hashtable = con.RetrieveStatistics()

 ' Display all the statistics.
 For Each Key As String In Stats.Keys
 Console.WriteLine(Key & " = " & Stats(Key))
 Next
 End Sub

 Private Sub SampleCommand()
 con.Open()
 Dim cmd As New SqlCommand("SELECT * FROM Customers", con)
 Dim reader As SqlDataReader = cmd.ExecuteReader()
 reader.Close()
 con.Close()
 End Sub

End Module

Here's the complete list of statistics produced by this code:

NetworkServerTime = 18
BytesReceived = 46248
Transactions = 0
SumResultSets = 2
SelectCount = 2
PreparedExecs = 0
ConnectionTime = 13
CursorFetchCount = 0
CursorUsed = 0
Prepares = 0
CursorFetchTime = 0
UnpreparedExecs = 2
SelectRows = 182
ServerRoundtrips = 2
CursorOpens = 0
BuffersSent = 2
ExecutionTime = 725
BytesSent = 108
BuffersReceived = 6
IduRows = 0
IduCount = 0

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To reset the values of the statistics collection to zero at any time, simply call the ResetStatistics()
method:

con.ResetStatistics()

5.6.2. What about...

...making sense of the various statistics gathered and putting them to use? Unfortunately, the MSDN
Help doesn't yet provide the full lowdown on the SQL Server statistics. However, several statistics are
particularly useful and not too difficult to interpret:

BytesReceived

Gives a snapshot of the total number of bytes retrieved from the database server.

ServerRoundtrips

Indicates the number of distinct commands you've executed.

ConnectionTime

Indicates the cumulative amount of time the connection has been open.

SumResultSets

Indicates the number of queries you've performed.

SelectRows

Records the total number of rows retrieved in every query you've executed. (In the previous
example this is 182, because each query retrieved 91 rows.)

And for an example where statistics are used to profile different approaches to database code, refer
to the next lab, "Batch DataAdapter Commands for Better Performance."

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Batch DataAdapter Commands for Better
Performance

Many databases are able to execute commands in batches, reducing the total number of calls you
need to make. For example, if you submit 10 update commands in a single batch, your code only
needs to make 1 trip to the server (instead of 10). Cutting down the number of round-trips can
increase performance, particularly on networks that have a high degree of latency. In .NET 2.0, the
SqlDataAdapter is enhanced to use batching for updating, inserting, and deleting records.

Note: If you need an easy way to optimize DataSet updates, ADO. NET 's new batching can help you out.

5.7.1. How do I do that?

In previous versions of .NET, you could batch direct commands by concatenating them in a single
string, and separating each with a semicolon. This syntax requires support from the database
provider, but it works perfectly well with SQL Server. Here's an example that inserts two rows into a
table:

Dim TwoInserts As String ="INSERT INTO Shippers" &_
 "(CompanyName, Phone) VALUES "ACME", "212-111-1111;" & _
 "INSERT INTO Shippers (CompanyName, Phone)" &_
 VALUES "Grey Matter", "416-123-4567"

Dim cmd As New SqlCommand(TwoInsert)
cmd.ExecuteNonQuery()

As useful as this feature is, previous versions of .NET didn't provide any way to batch commands to
one of the most important ADO.NET provider objectsthe data adapter. The data-adapter object scans
a DataSet, and executes insert, delete, and update commands whenever it finds a new, removed, or
changed row. Each of these commands is executed separately, which means that if your DataSet
contains three new rows, the data adapter will make three round-trips to the server.

Note: It makes good sense to have batching support in the data adapter, because the data adapter is often used to commit more than

one modification at a time.

.NET 2.0 improves the picture with a new SqlDataAdapter.UpdateBatchSize property. By default, the
value of this property is set to 1, which causes each insert, update, or delete command to be
executed separately. If you set the UpdateBatchSize to a larger number, the data adapter will group
its commands into batches.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-7 is a console application, BatchedDataAdapterTest, that puts this technique to the test.
BatchedDataAdapterTest retrieves data from the Orders table in the Northwind database and then
makes changes to each row. To make life interesting, the module applies this update not once, but
twiceonce without batching, and once with batch sizes set to 15. BatchedDataAdapterTest displays
connection statistics for each approach, allowing you to compare their performance.

Example 5-7. Updates with and without batching

Imports System.Data.SqlClient

Module BatchedDataAdapterTest

 Private ConnectString As String = _
 "Data Source=localhost;Initial Catalog=Northwind;Integrated Security=SSPI"
 Private con As New SqlConnection(ConnectString)

 Public Sub Main()
 ' Turn on statistics collection.
 con.StatisticsEnabled = True

 Dim Query As String = "SELECT * FROM Orders"
 Dim cmd As New SqlCommand(Query, con)
 Dim Adapter As New SqlDataAdapter(cmd)
 Dim CommandBuilder As New SqlCommandBuilder(Adapter)

 Dim ds As New DataSet
 con.Open()
 Adapter.Fill(ds, "Orders")
 con.Close()

 ' Perform an update without batching.
 ChangeRows(ds)
 con.ResetStatistics()
 Adapter.Update(ds, "Orders")
 Console.WriteLine("Statistics without batching....")
 DisplayStatistics()

 ' Perform an update with batching (15 row batches).
 ChangeRows(ds)
 con.ResetStatistics()
 Adapter.UpdateBatchSize = 15
 ' When performing a batch update you must explicitly
 con.Open()
 Adapter.Update(ds, "Orders")
 con.Close()

 Console.WriteLine("Statistics with batching....")
 DisplayStatistics()
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Sub ChangeRows(ByVal ds As DataSet)
 For Each Row As DataRow In ds.Tables("Orders").Rows
 Row("ShippedDate") = DateTime.Now
 Next
 End Sub

 Public Sub DisplayStatistics()
 ' Retrive the hasthable with statistics.
 Dim Stats As Hashtable = con.RetrieveStatistics()

 ' Display all the statistics.
 For Each Key As String In Stats.Keys
 Console.WriteLine(Key & " = " & Stats(Key))
 Next
 Console.WriteLine()
 End Sub

End Module

When you run this application, the rows will be updated, and a list of statistics will appear. Take a
close look at these statistics, paying special attention to the number of round-trips made to the
database, the total connection time, and the amount of data required to complete the updates.
Here's a portion of the output generated by one run of the application that highlights some of the
more important numbers:

Statistics without batching....
ConnectionTime = 5682
UnpreparedExecs = 831
ServerRoundtrips = 831
BytesSent = 2637094

Statistics with batching....
ConnectionTime = 6319
UnpreparedExecs = 56
ServerRoundtrips = 56
BytesSent = 1668160

This listing reports that, in the batched update, 831 rows were updated in 56 batches of 15
commands each. As you can see, batching reduced the amount of data that needed to be sent (by
packing it more effectively into batches), which is one of the most important metrics of database
scalability. On the other hand, the overall performance of the application hardly changed at all, and
the connection time even increased slightly. Clearly, to make a meaningful decision about whether to
use batching, you need to profile your application in a real-world scenario.

5.7.2. What about...

...the quirks and limitations of batched updates? Currently, only the SqlDataAdapter supports
batching, although other providers may implement this functionality in the future. The actual

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implementation details will differ for each providerin the case of the SqlDataAdapter, the provider
uses the sp_executesql system stored procedure to execute the batch. As for quirks, you'll notice a
change to how the RowUpdated and RowUpdating events of the SqlDataAdapter work. When batching is
enabled, these events fire once for every batch, not once for every row. That means that when the
RowUpdated event fires, you can determine the number of rows affected, but not the row-by-row
details of the changes made. This loss of information can make it more difficult to handle errors that
occur somewhere inside a batch.

The ideal batch size depends on a variety of low-level factors, including the network architecture and
the size of the rows. The best advice is to test your application with different batch settings. If you
want all updates to be done in a single batch of unlimited size, set the UpdateBatchSize property to 0.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8. Bulk-Copy Rows from One Table to Another

Most SQL Server gurus are familiar with the BCP command-line utility, which allows you to move vast
amounts of information from one SQL Server database to another. BCP comes in handy any time you
need to load a large number of records at once, but it's particularly useful when you need to transfer
data between servers. In .NET 2.0, the SqlClient namespace includes a new SqlBulkCopy class that
allows you to perform a bulk-copy operation programmatically.

Note: The new SqlBulkCopy class gives you the most efficient way to copy large amounts of data between tables or databases.

5.8.1. How do I do that?

The key ingredient in a bulk-copy operation is the new SqlBulkCopy class. It performs all of its work
when you call the WriteToServer() method, which can be used in two ways:

You can submit your data as a DataTable or an array of DataRow objects. This makes sense if
you want to insert a batch of records from a file you created earlier. It also works well if you're
creating a server-side component (like a web service) that receives a disconnected DataSet with
the records that need to be loaded into a table.

You can submit your data as an open DataReader that draws records from another
SqlConnection. This approach is ideal if you want to transfer records from one database server
to another.

Before you call WriteToServer(), you need to create the connections and commands you need and
set up mapping between the destination and source table. If your source and destination tables
match exactly, no mapping is required. However, if the table names differ, you need to set the
SqlBulkCopy.DestinationTableName property to the name of the target table. Additionally, if the
column names don't match or if there are fewer columns in the target table than there are in the
source data, you also need to configure column mapping. To set column mapping, you add one
mapping object for each column to the SqlBulkCopy.ColumnMappings collection. Each mapping object
specifies the name of the source column and the name of the corresponding target column.

Figure 5-1. Creating a CustomersShort table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To try this out, create a new SQL Server database named NorthwindCopy and a table named
CustomersShort. The CustomersShort table is designed to offer a subset of the information in the
Customers table. You can create it by using a tool like SQL Server Enterprise Manager (see the
column settings in Figure 5-1), or you can use the script included with the downloadable content for
this chapter to create it automatically (look for the file GenerateNorthwindCopy.sql).

Once you've created CustomersShort, you have a perfect table for testing a SQL Server bulk-copy
operation. All you need to do is create two connections, define the mapping, and start the process.
Example 5-8 has the code you need.

Example 5-8. Using SQLBulkCopy

Imports System.Data.SqlClient

Module Module1

 Private ConnectSource As String = _
 "Data Source=localhost;Initial Catalog=Northwind;Integrated Security=SSPI"
 Private ConnectTarget As String = _
 "Data Source=localhost;Initial Catalog=NorthwindCopy;" &_

 Public Sub Main()
 ' Create the source and target connections.
 Dim conSource As New SqlConnection(ConnectSource)
 Dim conTarget As New SqlConnection(ConnectTarget)

 ' Create a command for counting the number of rows in a table.
 Dim cmdCount As New SqlCommand("SELECT COUNT(*) FROM CustomersShort", _
 conTarget)

 ' Initialize the SqlBulkCopy class with mapping information.
 Dim BCP As New SqlClient.SqlBulkCopy(conTarget)
 BCP.DestinationTableName = "CustomersShort"
 BCP.ColumnMappings.Add("CustomerID", "ID")
 BCP.ColumnMappings.Add("CompanyName", "Company")
 BCP.ColumnMappings.Add("ContactName", "Contact")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Count the rows in CustomersShort.
 conTarget.Open()
 Dim Rows As Integer = CInt(cmdCount.ExecuteScalar())
 Console.WriteLine("CustomersShort has " & Rows & " rows.")
 Console.WriteLine("Starting bulk copy...")

 ' Retrieve the rows you want to transfer.
 conSource.Open()
 Dim cmd As New SqlCommand(_
 "SELECT CustomerID,CompanyName,ContactName FROM Customers", conSource)
 Dim reader As SqlDataReader = cmd.ExecuteReader()

 ' Write the data to the destination table.
 BCP.WriteToServer(reader)

 ' Clean up.
 BCP.Close()
 reader.Close()
 conSource.Close()

 ' Count the rows in CustomersShort again.
 conSource.Open()
 Rows = CInt(cmdCount.ExecuteScalar())
 Console.WriteLine("Finished bulk copy.")
 Console.WriteLine("CustomersShort has " & Rows & " rows.")

 conTarget.Close()
 Console.ReadLine()
 End Sub

End Module

When you run the code, you'll see output like this, indicating that the bulk-copy operation completed
successfully:

CustomersShort has 0 rows.
Starting bulk copy...
Finished bulk copy.
CustomersShort has 91 rows.

5.8.2. What about...

...other SqlBulkCopy properties? SqlBulkCopy provides two useful properties: BulkCopyTimeout (which
allows you to set how long you'll wait for an unresponsive server) and BatchSize (which allows you to
set how many operations are batched together, as described in the lab "Batch DataAdapter
Commands for Better Performance"). Errors are handled in the same way as when you directly
execute a SqlCommand. In other words, if an error happens on the server side (like a unique value
conflict), the process will be interrupted immediately, and you'll receive a SqlClient exception with
the full details.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8.3. Where can I learn more?

For a complete list of class members, look up the SqlBulkCopy class in the MSDN help library
reference. Or, for information about the original BCP utility, look for the index entry "bcp utility" in
the SQL Server Books Online help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.9. Write Database-Agnostic Code

In developing ADO.NET, Microsoft set out to create a new data access architecture that would be more flexible,
better performing, and more easily extensible than its previous COM-based OLE DB and ADO architectures. They
did this by creating a model where every data source must supply its own data provider : a set of managed classes
that allow you to connect to a particular data source (e.g., SQL Server, Oracle), execute commands, and retrieve
data. In order to ensure that these providers are consistent, each implements a standard set of interfaces.
However, this approach creates major challenges for developers who want to write provider-agnostic codefor
example, a basic database routine that can be used equally well with the SQL Server provider or the Oracle
provider. Usually, you use provider-agnostic code because you aren't sure what type of database the final version
of an application will use, or because you anticipate the need to migrate to a different database in the future.

Note: Want a way to write database code that isn't bound to a specific data source? This challenge becomes a whole lot easier in . NET 2.0 .

.NET 2.0 takes major steps to facilitate generic database coding by introducing a new factory model . (A factory
model is a pattern where one class has the exclusive responsibility for creating instances of other classes.) In this
model, you can use a database provider factory to build the ADO.NET connections, commands, and many other
types of objects required for a particular database. The factory automatically returns the type of object that you
need for your data source (e.g., a SqlCommand or an OracleCommand), but when you write your code, you don't
worry about these details. Instead, you write generic commands without regard to the particular details of the data
source.

5.9.1. How do I do that?

In provider-agnostic code, you still use all the same strongly typed objects. However, your code manipulates these
objects using common interfaces. For example, every command object, whether it's used for SQL Server or Oracle,
implements the common IDbCommand interface, which guarantees a basic set of methods and properties.

Note: Because provider-agnostic code attempts to be as generic as possible, it's more difficult to properly optimize a database. As a result, this technique

isn't suitable for most large-scale enterprise applications .

Provider-agnostic code is structured so that you specify the type of database you're using early on, usually by
reading some information from a configuration file. You use this information to retrieve a DbProviderFactory for
your database. Here's an example where the factory string is hardcoded:

Dim Factory As String = "System.Data.SqlClient"
Dim Provider As DbProviderFactory
Provider = DbProviderFactories.GetFactory(Factory)

In this example, the code uses the shared GetFactory() method of the System.Data.Common.DbProviderFactories
class. It specifies a string that identifies the provider name. For example, if you use the string
System.Data.SqlClient , the GetFactory() method returns a System.Data.SqlClient.SqlClientFactory object. The
DbProviderFactories class can create factories for all the data providers included with .NET, because they are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

explicitly configured in the machine.config configuration file on the current computer. Essentially, the configuration
record tells the DbProviderFactories class to create a SqlClientFactory when the programmer passes the exact
string "System.Data.SqlClient." If you develop your own provider, you can also register it to work in this way
(although that task is beyond the scope of this lab).

The SqlClientFactory object has the built-in smarts to create all the objects used by the SQL Server provider.
However, your code can be completely generic. Instead of interacting with the specific SqlClientFactory class type,
it should use the generic base class DbProviderFactory . That way, your code can work with any type of
DbProviderFactory , and therefore support any database provider.

Once you have the DbProviderFactory , you can create other types of strongly typed ADO.NET objects using a set
of common methods by using the Create Xxx () methods. These include:

CreateConnection()

CreateCommand()

CreateParameter()

CreateDataAdapter()

CreateCommandBuilder()

All these methods create a provider-specific version of the object they name.

To get a better understanding of how generic database code works, it helps to try out a complete example that can
switch from one data provider to another on the fly. First of all, you need to create an application configuration file
that stores all the provider-specific details. To do this, create a console application and open the app.config file. Add
the following three settings, which specify the factory name, the connection string for the database, and the query
to perform:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="Factory" value="System.Data.SqlClient" />
 <add key="Connection" value=
 "Data Source=localhost;Initial Catalog=Northwind;Integrated Security=SSPI" />
 <add key="Query" value="SELECT * FROM Orders" />
 </appSettings>
</configuration>

This example uses the SQL Server provider to connect to the Northwind database and retrieve a list of all the
records in the Orders table.

Now you can retrieve the configuration file information and use it with the DbProviderFactories class to create
every ADO.NET provider object you need. In Example 5-9 , the query is executed, a DataSet is filled, and a list of
OrderID values is displayed in the console window.

Example 5-9. Using DbProviderFactories to write database-agnostic code

Imports System.Data.Common
Imports System.Configuration

Module GenericDatabaseTest

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Public Sub Main()
 ' Get all the information from the configuration file.
 Dim Factory, Connection, Query As String
 Factory = ConfigurationManager.AppSettings("Factory")
 Connection = ConfigurationSettings.AppSettings("Connection")
 Query = ConfigurationManager.AppSettings("Query")

 ' Get the factory for this provider.
 Dim Provider As DbProviderFactory
 Provider = DbProviderFactories.GetFactory(Factory)

 ' Use the factory to create a connection.
 Dim con As DbConnection = Provider.CreateConnection()
 con.ConnectionString = Connection

 ' Use the factory to create a data adapter
 ' and fill a DataSet.
 Dim Adapter As DbDataAdapter = Provider.CreateDataAdapter
 Adapter.SelectCommand = Provider.CreateCommand()
 Adapter.SelectCommand.Connection = con
 Adapter.SelectCommand.CommandText = Query
 Dim ds As New DataSet
 Adapter.Fill(ds, "Orders")

 ' Display the retrieved information.
 For Each Row As DataRow In ds.Tables("Orders").Rows
 Console.WriteLine(Row("OrderID"))
 Next
 End Sub

End Module

Mostly, this is a fairly pedestrian piece of data access logic. The only exciting part is that you can switch from one
provider to another without modifying any of the code or recompiling. You just need to modify the provider
information and connection string in the configuration file. For example, make these changes to the configuration
file to access the same table through the slower OLE DB provider interface:

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <appSettings>
 <add key="Factory" value="System.Data.OleDb" />
 <add key="Connection" value=
 "Provider=SQLOLEDB;Data Source=localhost;Initial Catalog=Northwind;Integrated Security=SSPI" />
 <add key="Query" value="SELECT * FROM Orders" />
 </appSettings>
</configuration>

After saving the configuration file, you can run the application again. It will work just as well, displaying the same
list of order records.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.9.2. What about...

...the challenges you'll encounter in writing database-agnostic programs? The new factory approach is a giant leap
forward for those who want to write provider-agnostic code. However, a slew of problems (some minor and some
more significant) still remain. These include:

Handling errors

Every database provider has its own exception object (like SqlException and OracleException), and these
objects don't derive from a common base class. That means there's no way to write an exception handler
that catches database exceptions generically. All you can do is write exception handlers that catch the base
Exception object.

Provider-specific functionality

Some features aren't exposed through the common interfaces. For example, SQL Server has the ability to
execute FOR XML queries that return XML documents. To execute this type of query, you use the
SqlCommand.ExecuteXmlReader() method. Unfortunately, this isn't a standard command method, so there's
no way to access it through the IDbCommand interface.

Handling parameters

Some providers (like SQL Server) recognize command parameters by their name. Others (like OLE DB)
recognize command parameters by the order of their appearance. Minor differences like this can thwart
provider-agnostic programming.

5.9.3. Where can I learn more?

Unfortunately, there isn't much documentation yet in the MSDN Help about provider-agnostic coding. However, you
can get a good overview with additional examples from the Microsoft whitepaper at
http://msdn.microsoft.com/library/en-us/dnvs05/html/vsgenerics.asp .

http://msdn.microsoft.com/library/en-us/dnvs05/html/vsgenerics.asp
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.10. Use the New XPathDocument and XPathNavigator

.NET provides a range of options for dealing with XML in the System.Xml namespaces. One common
choice is XmlDocument, which lets you navigate in-memory XML as a collection of node objects. For
more efficient performance, the XmlWriter and XmlReader classes offer a streamlined way to read and
write a stream of XML. Unfortunately, neither solution is perfect. The XmlDocument consumes too
much memory, and navigating its structure requires too much code. Furthermore, because the
XmlDocument is based on a third-party standard (the XML DOM, or document object model), it's
difficult to improve it without breaking compatibility. On the other hand, the XmlWriter and XmlReader
are too restrictive, forcing you to access information linearly from start to finish. They also make it
prohibitively difficult for a developer to provide an XML interface to non-XML data.

Note: Talk about an improvement! The revamped XPathDocument sets a new standard for XML parsing in . NET.

.NET 2.0 proposes a solution with the System.Xml.XPath.XPathDocument. The XPathDocument is a
cursor-based XML reader that aims to become the only XML interface you need to use. It gives you
the freedom to move to any position in a document, and it provides blistering speed when used with
other XML standards such as XQuery, XPath, XSLT, and XML Schema validation.

5.10.1. How do I do that?

To use an XPathDocument, you begin by loading the document from a stream, XmlReader, or URI
(which can include a file path or an Internet address). To load the content, you can use the Load()
method or a constructor argumentthey both work in the same way. In this example, the
XPathDocument is filled with the content from a local file:

Dim Doc As New XPathDocument("c:\MyDocument.xml")

To actually move around an XPathDocument, you need to create an XPathNavigator by calling the
CreateNavigator() method.

Dim Navigator As XPathNavigator = Doc.CreateNavigator()

The XPathNavigator includes a generous group of methods for navigating the structure of the XML
document. Some of the methods include:

MoveToRoot()

Jumps to the root, or document element that contains all the other elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MoveToID()

Moves to an element that has a specific ID, as identified with the ID attribute.

MoveToNext()

Moves to the next node at the same level (technically called a sibling).

MoveToPrevious()

Moves to the previous node at the same level (technically called a sibling).

MoveToFirstChild()

Moves down a level to the first node contained by the current node.

MoveToParent()

Moves up a level to the parent that contains the current node.

Once you're positioned on an element, you can read the element name from the Name property. You
can retrieve the contained text content from the Value property.

Now that you've learned this much, it's worth trying a basic example. In it, we'll use an XML
document that contains a product catalog based on Microsoft's ASP.NET Commerce Starter Kit. This
XML file (which is available with the downloadable content for this chapter) has the structure shown
in Example 5-10.

Example 5-10. Sample XML for a product catalog

<?xml version="1.0" standalone="yes"?>
<Products>
 <Product>
 <ProductID>356</ProductID>
 <ModelName>Edible Tape</ModelName>
 <ModelNumber>STKY1</ModelNumber>
 <UnitCost>3.99</UnitCost>
 <CategoryName>General</CategoryName>
 </Product>
 <Product>
 <ProductID>357</ProductID>
 <ModelName>Escape Vehicle (Air)</ModelName>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <ModelNumber>P38</ModelNumber>
 <UnitCost>2.99</UnitCost>
 <CategoryName>Travel</CategoryName>
 </Product>
 ...
</Products>

Example 5-11 loads this document, creates an XPathNavigator, and moves through the nodes,
looking for the <ModelName> element for each <Product>. When that element is found, its value is
displayed.

Example 5-11. Navigating an XML document with XPathNavigator

Imports System.Xml.XPath
Imports System.Xml

Module XPathNavigatorTest

 Sub Main()
 ' Load the document.
 Dim Doc As New XPathDocument(_
 My.Computer.FileSystem.CurrentDirectory & _
 "\ProductList.xml")

 ' Navigate the document with an XPathNavigator.
 Dim Navigator As XPathNavigator = Doc.CreateNavigator()

 ' Move to the root <Products> element.
 Navigator.MoveToFirstChild()

 ' Move to the first contained <Product> element.
 Navigator.MoveToFirstChild()

 ' Loop through all the <Product> elements.
 Do
 ' Search for the <ModelName> element inside <Product>
 ' and display its value.
 Navigator.MoveToFirstChild()
 Do
 If Navigator.Name = "ModelName" Then
 Console.WriteLine(Navigator.Value)
 End If
 Loop While Navigator.MoveToNext()

 ' Move back to the <Product> element.
 Navigator.MoveToParent()
 Loop While Navigator.MoveToNext()
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Module

When you run this code, you'll see a display with a list of model names for all the products.

Interestingly, the XPathNavigator also provides strong typing for data values. Instead of retrieving
the current value as a string using the Value property, you can use one of the properties that
automatically converts the value to another data type. Supported properties include:

ValueAsBoolean

ValueAsDateTime

ValueAsDouble

ValueAsInt

ValueAsLong

To try this out, you can rewrite the loop in Example 5-11 so that it converts the price to a double
value and then displays a total with added sales tax:

Do
 If Navigator.Name = "ModelName" Then
 Console.WriteLine(Navigator.Value)
 ElseIf Navigator.Name = "UnitCost" Then
 Dim Price As Double = Navigator.ValueAsDouble * 1.15
 Console.WriteLine(vbTab & "Total with tax: " & Math.Round(Price, 2))
 End If
Loop While Navigator.MoveToNext()

5.10.2. What about...

...other ways to search an XML document with the XPathNavigator? To simplify life, you can select a
portion of the XML document to work with in an XPathNavigator. To select this portion, you use the
Select() or SelectSingleNode() methods of the XPathNavigator class. Both of these methods
require an XPath expression that identifies the nodes you want to retrieve. (For more information
about the XPath standard, see the "Introducing XPath" sidebar.)

For example, the following code selects the <ModelName> element for every product that's in the Tools
category:

' Use an XPath expression to get just the nodes that interest you
' (in this case, all product names in the Tools category).
Dim XPathIterator As XPathNodeIterator
XPathIterator = Navigator.Select (_
 "/Products/Product/ModelName[../CategoryName='Tools']")

Do While (XPathIterator.MoveNext())
 ' XPathIterator.Current is an XPathNavigator object pointed at the
 ' current node.
 Console.WriteLine(XPathIterator.Current.Value)
Loop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tip: The examples in this lab use an XML document with no namespace. However, namespaces are often used in programming

scenarios to allow your program to uniquely identify the type of document it references. If your document uses namespaces, you need to

use the XmlNamespaceManager class and rewrite your XPath expressions to use a namespace prefix. If you'd like an example of this

technique, refer to the downloadable samples for this lab, which demonstrate an example with a product catalog that uses XML

namespaces.

Introducing XPath

Basic XPath syntax uses a path-like notation to describe locations in a document. For
example, the path /Products/Product/ModelName indicates a ModelName element that is
nested inside a Product element, which, in turn, is nested in a root Products element.
This is an absolute path (indicated by the fact that it starts with a single slash,
representing the root of the document).

You can also use relative paths, which search for nodes with a given name regardless of
where they are. Relative paths start with two slashes. For example, //ModelName will find
all ModelName elements no matter where they are in the document hierarchy. Other path
characters that you can use include the period (.), which refers to the current node; the
double period (..) to move up one level; and the asterisk (*) to select any node.

XPath gets really interesting when you start to add filter conditions. Filter conditions are
added to a path in square brackets. For example, the XPath expression
//Product[CategoryName='Tools'] finds all Product elements that contain a CategoryName
element with the text "Tools." You can use the full range of logical operators, such as less
than and greater than (< and >) or not equal to (!=). For much more information about
the wonderful world of XPath, refer to XML in a Nutshell (O'Reilly).

5.10.3. Where can I learn more?

The XPathNavigator class is too detailed to cover completely in this lab. For more information, refer
to both classes in the MSDN Help. Additionally, you can learn about XML standards like XPath,
XQuery, and XML Schema from the excellent online tutorials at http://www.w3schools.com.

In addition, you'll find one more lab that can help you extend your XPathDocument skills: "Edit an XML
Document with XPathDocument," which explains the editing features of the XPathDocument.

Warning: The editable XPathNavigator has undergone extensive changes, and the features demonstrated in the next lab (Section 5.11)

weren't working in the last build we tested. Although it's expected to return, features are sometimes cut even at this late stage. If the

coding model changes, you'll find updated code in the downloadable examples for the book.

http://www.w3schools.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.11. Edit an XML Document with XPathNavigator

The XPathNavigator is the XML interface of choice for Visual Basic 2005 applications. And in .NET 2.0,
it doesn't just work as a view onto read-only XML datait also allows you to change XML documents,
such as by modifying text content, inserting new elements, or removing a branch of nodes.

Note: The best feature of the XPathNavigator is its new support for editing and inserting content.

5.11.1. How do I do that?

In the previous lab, Section 5.10, you learned how to load XML data into an XPathDocument, and then
browse and search through it using an XPathNavigator. If you want to make changes, you still start
with the same XPathDocument. The secret is that you also use a couple of additional methods in the
XPathNavigator:

SetValue()

This method inserts a new value in the current element, replacing the existing value.

DeleteCurrent()

This method removes the current node from the document.

Remember, you have two basic choices for creating an XPathNavigator:

Use the XPathDocument.CreateNavigator() method

This method returns an XPathNavigator for the whole document. You can then move to the
portion of the document you want to change.

Use the XPathDocument.Select() method with an XPath expression

This returns an XPathNodeIterator that allows you to move through your results, retrieving an
XPathNavigator for each selected node.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Example 5-12 modifies the XML document shown in Example 5-10. It increases all the prices by 10%
and then deletes nodes that don't fall into the Tools category. Finally, it displays the altered XML
document.

Example 5-12. Modifying an XML document with XPathNavigator

Imports System.Xml.XPath
Imports System.Xml

Module XPathNavigatorTest

 Sub Main()
 ' Load the document.
 Dim Doc As New XPathDocument(My.Computer.FileSystem.CurrentDirectory & _
 "\ProductList.xml")

 ' Use the XPathNavigator to make updates.
 Dim XPathIterator As XPathNodeIterator = Doc.Select("//UnitCost")

 ' Increase the price by 10%.
 For Each Editor As XPathNavigator In XPathIterator
 Editor.SetValue((1.1 * Editor.ValueAsDouble).ToString())
 Next

 ' Delete nodes that aren't in the Tools category.
 XPathIterator = Doc.Select("/Products/Product[CategoryName!='Tools']")
 For Each Editor As XPathNavigator In XPathIterator
 Editor.DeleteCurrent()
 Next

 ' Show changes.
 XPathEditor.MoveToRoot()
 Console.WriteLine(XPathEditor.OuterXml)
 End Sub

End Module

When you run this application, the XML for the changed document is displayed in the console window.
You can also open the ProductList_new.xml file where the changes are saved.

In many cases, you won't just want to change a valueyou'll need a way to insert new elements or
entire sections. The XPathNavigator includes a handful of methods for inserting new elements and
attributes in one shot. However, the easiest way to add a block of XML is to use an XmlWriter. If
you've worked with XML and .NET before, you probably recognize the XmlWriter. The XmlWriter was
commonly used to write XML content directly to a file in .NET 1.x applications. The difference in .NET
2.0 is that the XPathEditor allows you to use the XmlWriter to write directly to your in-memory
XPathDocument.

All you need to do is start by calling one of the XPathEditor methods that returns an XmlWriter.
These include the following, which differ on where each places the inserted XML:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AppendChild()

Adds a new element inside the current element, after all existing child elements.

PrependChild()

Adds a new element inside the current element, before any existing child elements.

InsertAfter()

Adds a new element after the current element (and at the same level).

InsertBefore()

Adds a new element just before the current element (and at the same level).

Example 5-13 uses the AppendChild() method to add a new product to the product list XML
document.

Example 5-13. Using the AppendChild() method to add a new element to
an XML document

Imports System.Xml.XPath
Imports System.Xml

Module XPathNavigatorTest

 Sub Main()
 ' Load the document.
 Dim Doc As New XPathDocument(My.Computer.FileSystem.CurrentDirectory & _
 "\ProductList.xml")

 ' Create a new product.
 Dim XPathEditor As XPathNavigator = Doc.CreateEditor()
 XPathEditor.MoveToRoot()
 XPathEditor.MoveToFirstChild()

 ' Use the XmlWriter to add a new <Product> complete with
 ' all child elements.
 Dim Writer As XmlWriter = XPathEditor.AppendChild

 ' Insert the opening <Product> tag.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Writer.WriteStartElement("Product", _
 "http://www.ibuyspy.com/ProductCatalog")

 ' The WriteElementString() method inserts a whole element at once.
 Writer.WriteElementString("ProductID", "999")
 Writer.WriteElementString("ModelName", "Rubber Pants")
 Writer.WriteElementString("ModelNumber", "NOZ999")
 Writer.WriteElementString("UnitCost", "12.99")
 Writer.WriteElementString("CategoryName", "Clothing")

 ' Insert the closing </Product> tag and close the writer.
 Writer.WriteEndElement()
 Writer.Close()

 ' Show changes.
 XPathEditor.MoveToRoot()
 Console.WriteLine(XPathEditor.OuterXml)
 End Sub

End Module

Running Example 5-13 generates the following XML, which is displayed in the console window and
saved to the newly generated XML file:

...
 <Product>
 <ProductID>999</ProductID>
 <ModelName>Rubber Pants</ModelName>
 <ModelNumber>NOZ999</ModelNumber>
 <UnitCost>12.99</UnitCost>
 <CategoryName>Clothing</CategoryName>
 </Product>
...

Note: You can create multiple navigator and editor objects to work with the same XPathDocument. However, the editors don't perform

any locking, so you can't edit an XPathDocument on multiple threads at the same time unless you take your own safeguards.

5.11.2. What about...

...validating your XML? The XPathNavigator and the XmlWriter both force you to write valid XML.
However, it's also important to check XML documents to make sure they match specific rules. The
best tool for this task is an XML schema document that defines the elements, structure, data types,
and constraints for a document.

The actual schema standard is beyond the scope of this chapter. (For a good introduction, refer to
the tutorial at http://www.w3schools.com/schema.) However, assuming you have a schema for your
XML, you can validate your document at any time by calling XPathNavigator.CheckValidity(). This

http://www.w3schools.com/schema
http://lib.ommolketab.ir
http://lib.ommolketab.ir

method returns true if the document conforms to the schema. Here's how to do it:

' Load the document.
Dim Doc As New XPathDocument("c:\ProductList.xml")

' (Make updates).

' Load the schema.
' Technically, you can load a collection of schemas,
' one for each namespace in the document that you want to validate.
Dim Schemas As New XmlSchemaSet()
Schemas.Add("http://www.ibuyspy.com/ProductCatalog", "c:\ProductListSchema.xsd")
Schemas.Compile()

' Validate with the schema.
' Instead of submitting a null reference (Nothing), you can supply
' a delegate that points to a callback method that will be triggered
' every time an error is found when the validation check is performed.
Dim Valid As Boolean
Valid = Doc.CreateNavigator().CheckValidity(Schemas, Nothing)

5.11.3. Where can I learn more?

For more information about editing the XPathDocument, look up the "XPathNavigator class" index
entry in the MSDN Help. If you've used earlier betas of .NET 2.0, which included the same features in
a different class (XPathEditableNavigator), you may want to refer to
http://blogs.msdn.com/dareobasanjo/archive/2004/09/03/225070.aspx for some explanation
straight from Microsoft bloggers.

http://blogs.msdn.com/dareobasanjo/archive/2004/09/03/225070.aspx
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. .NET 2.0 Platform Services
In earlier chapters, you learned about the most profound changes in .NET 2.0, including new features
in Windows Forms, ASP.NET web applications, and ADO.NET data access. These changes are
impressive, but they're only part of the story. In fact, Microsoft developers have been hard at work
tweaking and fine-tuning the entire .NET class library. If you look around, you'll find new members,
types, and namespaces cropping up everywhere.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. Easily Log Events

When something goes wrong in your application, the user is rarely in a position to fix the problem.
Instead of showing a detailed message box, it's much more important to make sure all the details are
recorded somewhere permanent, so you can examine them later to try to diagnose the problem. In
previous versions of .NET, logging was straightforward but tedious. In VB 2005, life becomes much
easier thanks to the My.Application.Log object.

6.1.1. How do I do that?

You can use the new My.Application.Log object to quickly write to an XML file, an ordinary text file,
or the Windows event log.

To write a log message with My.Application.Log, you simply need to use the WriteEntry() method.
You supply a string message as the first parameter, and (optionally) two more parameters. The
second parameter is the event type, which indicates whether the message represents information, a
warning, an error, and so on. The third parameter is an exception object, the details of which will also
be copied into the log entry.

Note: When something bad happens in your application, you want an easy way to log it to a file or event log. Look no further than the

My.Application.Log object.

To try this out, create and run the console application in Example 6-1, which writes a short string of
text to the log.

Example 6-1. Simple logging

Module LogTest

 Sub Main()
 My.Application.Log.WriteEntry("This is a test!", _
 TraceEventType.Information)
 End Sub

End Module

Clearly, the logging code is extremely simplebut where are the log entries recorded? It all depends on
the configuration of your application. .NET uses trace listeners, which are dedicated classes that listen
to log messages and then copy them to another location (such as a file, event log, and so on). When
you call the WriteEntry() method, the entry is written to the current set of trace listeners (which
are exposed through the My.Application.TraceSource collection). By default, these listeners include

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the FileLogTraceListener, which writes to a user logfile. This file is stored under a user-specific
directory (which is defined by the user's APPDATA environment variable) in a subdirectory of the form
[CompanyName]\[ProductName]\[FileVersion], where CompanyName, ProductName, and FileVersion
refer to the information defined in the application assembly. For example, if the Windows user JoeM
runs the application LogTestApp, the logfile will be created in a directory such as c:\Documents and
Settings\JoeM\Application Data\MyCompany\LogTestApp\1.0.0.0\LogTestApp.log.

Once you've found the right directory, you can open the logfile in Notepad to examine the text
contents. You'll see the following information:

Note: To configure assembly information, double-click the My Project item in the Solution Explorer, select the Application tab, and then

click the Assembly Information button.

Microsoft.VisualBasic.MyServices.Log.WindowsFormsSource Information
 0 This is a test!

The number 0 represents the information log type. Subsequent entries append data to this logfile.
Data is never removed (unless you delete the file by hand).

6.1.2. What about...

...logging to other locations? .NET includes a number of pre-built trace listeners that you can use.
They include:

DefaultTraceListener

This listener writes information into the debug portion of the window in Visual Studio. It's
primarily useful while testing.

FileLogTraceListener

This listener writes information to the application logfile named [AssemblyName].log. The
default location of the logfile depends on the user's environment settings and the application
information.

EventLogTraceListener

This listener writes information to the Windows event log.

XmlWriterTraceListener

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This listener writes information to a file in XML format. You specify the location where the file
should be stored. If needed, the directory will be created automatically.

By default, every new Visual Basic application you create starts its life with two trace listeners: a
DefaultTraceListener and a FileLogTraceListener. To add new trace listeners, you need to modify
the application configuration file. In Visual Studio, you can double-click the app.config item in the
Solution Explorer. Trace-listener information is specified in two subsections of the
<system.diagnostics> section.

Warning: The logging configuration settings have changed with newer builds. For a version of the code that's updated to work with the

latest build, download the samples from this book's web site.

In the <sharedListeners> subsection, you define the trace listeners you want to have the option of
using, specify any related configuration properties, and assign a descriptive name. Here's an example
that defines a new listener for writing XML data to a logfile:

Note: Remember, after the application is built, the app.config file is renamed to have the name of the application, plus the extension

.config.

<sharedListeners>
 <add name="MyXmlLog" type="System.Diagnostics.XmlWriterTraceListener"
 initializeData="c:\MyLog.xml" />
</sharedListeners>

In the <sources> subsection, you name the trace listeners you want to use, choosing from the
<sharedListeners> list:

<source name="Microsoft.VisualBasic.MyServices.Log.WindowsFormsSource">
 <listeners>
 <add name="Xml"/>
 </listeners>
</source>

This separation between the <sharedListeners> section and the <sources> section allows you to
quickly switch trace listeners on and off, without disturbing their configuration settings.

You can now re-run the application shown in Example 6-1. Now it will write the message to an XML
file named MyLog.xml in the root C: directory. Here's what the contents look like (with the schema
information removed for better readability):

<E2ETraceEvent>
 <System>
 <EventID>0</EventID>
 <Type>0</Type>
 <TimeCreated SystemTime="2004-07-26T16:14:04.7533392Z" />
 <Source Name="Microsoft.VisualBasic.MyServices.Log.WindowsFormsSource" />
 <Execution ProcessName="LogSample.vshost" ProcessID="3896" ThreadID="8" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <Computer>FARIAMAT</Computer>
 </System>
 <ApplicationData>
 <System.Diagnostics>
 <Message>This is a test!</Message>
 <Severity>Information</Severity>
 </System.Diagnostics>
 </ApplicationData>
</E2ETraceEvent>

Example 6-2 shows a complete configuration file example. It enables file tracing, event log tracing,
and XML log tracing. Notice that the EventLogTraceListener is fine-tuned with a filter that ensures
only error messages are logged.

Example 6-2. Logging data to three different trace listeners

<?xml version="1.0" encoding="utf-8" ?>
<configuration>
 <system.diagnostics>

 <!-- Enable all three trace listeners
 (from the <sharedListeners> section). -->
 <sources>
 <source name="Microsoft.VisualBasic.MyServices.Log.WindowsFormsSource"
 switchName="DefaultSwitch">
 <listeners>
 <add name="FileLog"/>
 <add name="EventLog"/>
 <add name="Xml"/>
 </listeners>
 </source>
 </sources>
 <switches>
 <add name="DefaultSwitch" value="Information" />
 </switches>

 <!-- Define three trace listeners that you might want to use. -->
 <sharedListeners>
 <add name="FileLog" type="System.Diagnostics.FileLogTraceListener"
 initializeData="FileLogWriter" delimiter=";" />
 <add name="EventLog" type="System.Diagnostics.EventLogTraceListener"
 initializeData="MyApplicationLog">
 <filter type="System.Diagnostics.SeverityFilter" initializeData="Error" />
 </add>
 <add name="Xml" type="System.Diagnostics.XmlWriterTraceListener"
 initializeData="c:\SampleLog.xml" delimiter=";"/>
 </sharedListeners>
 </system.diagnostics>
</configuration>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can now use the same simple application to simultaneously write the ordinary logfile, an XML
logfile, and an entry in the Windows event log named Application.

Unfortunately, there isn't any high-level .NET API for retrieving information from a log. If the log
information is stored in a file, you can use the FileStream and StreamReader classes from the
System.IO namespace to read the file one line at a time. If you've entered information in the
Windows event log, you'll need to rely on the EventLog class, which you can find in the
System.Diagnostics namespace.

Note: The event log is a list of messages stored by the operating system for a specific period of time. To view the event log, choose

Event Viewer from the Administrative Tools section of the Control Panel.

6.1.3. Where can I learn more?

For more information, look up the following classes in the MSDN help: DefaultTraceListener,
FileLogTraceListener, EventLogTraceListener, and XmlWriterTraceListener.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. Ping Another Computer

The Internet is a dynamic network where computers appear and drop out of sight without warning.
One simple test an application can always perform to check if a computer is reachable is to send a
ping message. Technically, a ping is the equivalent of asking another computer, "Are you there?" To
get its answer, ping sends a special type of message over a low-level Internet protocol called ICMP
(Internet Control Message Protocol).

Note: Need to find out if a computer is reachable over the Internet? With the new Ping class, you can make this simple request without a

tangle of low-level socket code.

Sending a ping message using the classes found in the System.Net namespaces is challenging and
requires dozens of low-level code statements that deal with raw sockets. In .NET 2.0, there's a much
simpler solution with the new Ping class in the System.Net.NetworkInformation namespace.

6.2.1. How do I do that?

To ping a computer, you use the Ping() method of the My.Computer.Network object. This approach
gives you convenient access to the bare minimum ping functionality. The Ping() method returns
true or False depending on whether it received a response from the computer you're trying to
contact.

Note: Windows includes a utility called ping.exe that you can use to ping other computers at the command line.

Example 6-3 uses this method in order to contact the web server at www.yahoo.com.

Example 6-3. Pinging a remote computer

Module PingTest

 Sub Main()
 Dim Success As Boolean

 ' Try to contact www.yahoo.com (wait 1000 milliseconds at most,
 ' which is the default if you don't specify a timeout).
 Success = My.Computer.Network.Ping("www.yahoo.com", 1000)
 Console.WriteLine("Did the computer respond? " & Success)
 End Sub

End Module

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you call Ping(), you specify two parameters: the URL or IP address for the computer you're
trying to reach (e.g., www.microsoft.com or 123.4.123.4) and, optionally, a maximum wait time in
milliseconds. Once this limit is reached, the request times out, and the Ping() method returns False
to indicate the failure.

Warning: A ping message is a low-level test that doesn't necessarily correspond to the availability of services on a particular computer.

For example, even if you can ping www.yahoo.com, that doesn't mean that its search engine web pages are available and working

properly. Similarly, web servers or firewalls often reject ping messages to restrict the possibility of someone launching a denial of service

attack by flooding the computer with millions of spurious requests. For that reason, if you ping www.microsoft.com, you won't receive a

response, even though you can still surf to their web site using that address.

6.2.2. What about...

...getting more information from the remote computer? The My.Computer.Network object doesn't
return any additional information about the results of the ping test. For example, you won't find out
how long it took to receive a response, which is a key statistic used by some applications, such as
peer-to-peer software, to rank the connection speed of different computers.

To get more information, you need to head directly to the Ping class in the
System.Net.NetworkInformation namespace. It returns a PingResult object with several pieces of
information, including the time taken for a response. The following code snippet puts this approach to
the test. It assumes that you've imported the System.Net.NetworkInformation namespace:

Dim Pinger As New Ping
Dim Reply As PingReply = Pinger.Send("www.yahoo.com")
Console.WriteLine("Time (milliseconds): " & Reply.RoundTripTime)
Console.WriteLine("Exact status: " & Reply.Status.ToString())
Console.WriteLine("Adress contacted: " & Reply.Address.ToString())

Here's some sample output:

Time (milliseconds): 61
Exact status: Success
Adress contacted: 216.109.118.78

The Ping class also provides a SendAsync() method you can use to ping a computer without stalling
your code (you can handle the response in another thread when a callback fires), and other
overloaded versions of the Send() method that allow you to set low-level options (like the number of
hops the ping message will travel before expiring).

6.2.3. Where can I learn more?

To use this added networking muscle, read up on the Ping class in the MSDN Help.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Get Information About a Network Connection

Some applications need to adjust how they work based on whether a network connection is present.
For example, imagine a sales reporting tool that runs on the laptop of a traveling sales manager.
When the laptop is plugged into the network, the application needs to run in a connected mode in
order to retrieve the information it needs, such as a list of products, directly from a database or web
service. When the laptop is disconnected from the network, the application needs to gracefully
degrade to a disconnected mode that disables certain features or falls back on slightly older data
that's stored in a local file. To make the decision about which mode to use, an application needs a
quick way to determine the network status of the current computer. Thanks to the new
My.Computer.Network object, this task is easy.

Note: Need to find out if your computer's currently online? With the My class, this test is just a simple property away.

6.3.1. How do I do that?

The My.Computer.Network object provides a single IsAvailable property that allows you to determine
if the current computer has a network connection. The IsAvailable property returns TRue as long as
at least one of the configured network interfaces is connected, and it serves as a quick-and-dirty test
to see if the computer is online. To try it out, enter the following code in a console application:

If My.Computer.Network.IsAvailable Then
 Console.WriteLine("You have a network interface.")
End If

If you want more information, you need to turn to the System.Net and
System.Net.NetworkInformation namespaces, which provide much more fine-grained detail. For
example, to retrieve and display the IP address for the current computer, you can use the
System.Net.Dns class by entering this code:

' Retrieve the computer name.
Dim HostName As String = System.Net.Dns.GetHostName()
Console.WriteLine("Host name: " & HostName)

' Get the IP address for this computer.
' Note that this code actually retrieves the first
' IP address in the list, because it assumes the
' computer only has one assigned IP address
' (which is the norm).
Console.WriteLine("IP: " & _
 System.Net.Dns.GetHostByName(HostName).AddressList(0).ToString())

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's the output you might see:

Host name: FARIAMAT
IP: 192.168.0.197

In addition, you can now retrieve even more detailed information about your network connection that
wasn't available in previous versions of .NET. To do so, you need to use the new
System.Net.NetworkInformation.IPGlobalProperties class, which represents network activity on a
standard IP network.

The IPGlobalProperties class provides several methods that allow you to retrieve different objects,
each of which provides statistics for a specific type of network activity. For example, if you're
interested in all the traffic that flows over your network connection using TCP, you can call
IPGlobalProperties.GetTcpIPv4Statistics(). For most people, this is the most useful measurement
of the network. On the other hand, if you're using a next-generation IPv6 network, you need to use
IPGlobalProperties.GetTcpIPv6Statistics(). Other methods exist for monitoring traffic that uses
the UPD or ICMP protocols. Obviously, you'll need to know a little bit about networking to get the best
out of these methods.

Tip: IP (Internet Protocol) is the core building block of most networks and the Internet. It uniquely identifies computers with a four-part IP

address, and allows you to send a basic packet from one machine to another (without any frills like error correction, flow control, or

connection management). Many other networking protocols, such as TCP (Transmission Connection Protocol) are built on top of the IP

infrastructure, and still other protocols are built on top of TCP (e.g., HTTP, the language of the Web). For more information about

networking, refer to a solid introduction such as Internet Core Protocols (O'Reilly).

The following code retrieves detailed statistics about the network traffic. It assumes that you've
imported the System.Net.NetworkInformation namespace:

Dim Properties As IPGlobalProperties = IPGlobalProperties.GetIPGlobalProperties()
Dim TcpStat As TcpStatistics
TcpStat = Properties.GetTcpIPv4Statistics()

Console.WriteLine("TCP/IPv4 Statistics:")
Console.WriteLine("Minimum Transmission Timeout... : " & _
 TcpStat.MinimumTransmissionTimeOut)
Console.WriteLine("Maximum Transmission Timeout... : " & _
 TcpStat.MaximumTransmissionTimeOut)

Console.WriteLine("Connection Data:")
Console.WriteLine(" Current : " & _
 TcpStat.CurrentConnections)
Console.WriteLine(" Cumulative : " & _
 TcpStat.CumulativeConnections)
Console.WriteLine(" Initiated : " & _
 TcpStat.ConnectionsInitiated)
Console.WriteLine(" Accepted : " & _
 TcpStat.ConnectionsAccepted)
Console.WriteLine(" Failed Attempts : " & _
 TcpStat.FailedConnectionAttempts)
Console.WriteLine(" Reset : " & _

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 TcpStat.ResetConnections)

Console.WriteLine()
Console.WriteLine("Segment Data:")
Console.WriteLine(" Received : " & _
 TcpStat.SegmentsReceived)
Console.WriteLine(" Sent : " & _
 TcpStat.SegmentsSent)
Console.WriteLine(" Retransmitted : " & _
 TcpStat.SegmentsResent)

Here's the output you might see:

TCP/IPv4 Statistics:
Minimum Transmission Timeout... : 300
Maximum Transmission Timeout... : 120000
Connection Data:
 Current : 6
 Cumulative : 29
 Initiated : 10822

Note: Statistics are kept from the time the connection is established. That means every time you disconnect or reboot your computer,

you reset the networking statistics.

 Accepted : 41
 Failed Attempts : 187
 Reset : 2271

Segment Data:
 Received : 334791
 Sent : 263171
 Retransmitted : 617

6.3.2. What about...

...other connection problems, like a disconnected router, erratic network, or a firewall that's blocking
access to the location you need? The network connection statistics won't give you any information
about the rest of the network (although you can try to ping a machine elsewhere on the network, as
described in the previous lab, "Ping Another Computer"). In other words, even when a network
connection is available there's no way to make sure it's working. For that reason, whenever you need
to access a resource over the networkwhether it's a web service, database, or application running on
another computeryou need to wrap your call in proper exception-handling code.

6.3.3. Where can I learn more?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For more information on advanced network statistics, look up the "IPGlobalProperties" index entry in
the MSDN help, or look for the "network information sample" for a more sophisticated Windows
Forms application that monitors network activity.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. Upload and Download Files with FTP

Earlier versions of .NET didn't include any tools for FTP (File Transfer Protocol), a common protocol
used to transfer files to and from a web server. As a result, you either had to purchase a third-party
component or write your own (which was easy in principle but difficult to get right in practice).

Note: Need to upload files to an FTP site or download existing content? New support is available in VB 2005.

In .NET 2.0, a new FtpWebRequest class neatly fills the gap. However, the FtpWebRequest class has its
own complexities, so Microsoft programmers simplified life for VB developers even further by
extending the My.Computer.Network object to provide two quick access methods for completing basic
FTP operations. These are UploadFile(), which sends a file to a remote server, and DownloadFile(),
which retrieves a file and stores it locally.

6.4.1. How do I do that?

Whether you use the FtpWebRequest class or the My.Computer.Network object, all FTP interaction in
.NET is stateless. That means that you connect to the FTP site, perform a single operation (like
transferring a file or retrieving a directory listing), and then disconnect. If you need to perform
another operation, you need to reconnect. Fortunately, this process of connecting and logging in is
handled automatically by the .NET Framework.

The easiest way to use FTP in a VB application is to do so through the My.Computer.Network object. If
you use its FTP methods, you never need to worry about the tedious details of opening, closing, and
reading streams. To download a file, the bare minimum information you need is the URL that points
to the FTP site and the path that points to the local file. Here's an example:

My.Computer.Network.DownloadFile(_
 "ftp://ftp.funet.fi/pub/gnu/prep/gtk.README", "c:\readme.txt")

This command retrieves the file that is on the FTP site ftp.funet.fi in the path
/pub/gnu/prep/gtk.README and copies it to the local file c:\readme.txt.

Uploading uses similar parameters, but in reverse:

My.Computer.Network.UploadFile("c:\newfile.txt", _
 "ftp://ftp.funet.fi/pub/newfile.txt")

This command copies the local file newfile.txt from the directory c:\ to the FTP site ftp.funet.fi, in the
remote directory /pub.

Both DownloadFile() and UploadFile() support several overloads that take additional parameters,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

including credentials (the username and password information you might need to log on to a server)
and a timeout parameter to set the maximum amount of time you'll wait for a response before giving
up (the default is 1,000 milliseconds).

Unfortunately, the DownloadFile() and UploadFile() methods haven't been too robust in beta
builds of Visual Basic 2005, and the methods may fail to work. An option that works better is the
more sophisticated FtpWebRequest class. Not only does it perform more reliably, but it also fills a few
glaring gaps in the FTP support provided by the My.Network.Computer. Because FtpWebRequest allows
you to execute any FTP command, you can use it to retrieve directory listings, get file information,
and more.

Note: Internet Explorer has its own built-in FTP browser. Just type a URL that points to an FTP site (like ftp://ftp.microsoft.com) into the

IE address bar to browse what's there. You can use this tool to verify that your code is working correctly.

To use the FtpWebRequest class, you need to follow several steps. First, pass the URL that points to
the FTP site to the shared WebRequest.Create() method:

Dim Request As FtpWebRequest
Request = CType(WebRequest.Create("ftp://ftp.microsoft.com/MISC"), _
 FtpWebRequest)

The WebRequest.Create() method examines the URL and returns the appropriate type of WebRequest
object. Because FTP URLs always start with the scheme ftp://, the Create() method will return a
new FtpWebRequest object.

Once you have the FtpWebRequest, you need to choose what FTP operation you want to perform by
setting the FtpWebRequest.Method property with the text of the FTP command. Here's an example for
retrieving directory information with the LIST command:

Request.Method = "LIST"

Once you've chosen the FTP operation you want to perform, the last step is to execute the command
and read the response. The tricky part is the fact that the response is returned to you as a stream of
text. It's up to you to move through this block of text line by line with a StreamReader and parse the
information.

For example, the following code reads through a returned directory listing and displays each line in a
Console window:

Dim Response As FtpWebResponse = CType(Request.GetResponse(), FtpWebResponse)
Dim ResponseStream As Stream = Response.GetResponseStream()
Dim Reader As New StreamReader(ResponseStream, System.Text.Encoding.UTF8)

Dim Line As String
Do
 Line = Reader.ReadLine()
 Console.WriteLine(Line)
Loop Until Line = ""

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The output looks like this:

dr-xr-xr-x 1 owner group 0 Jul 3 2002 beckyk
-r-xr-xr-x 1 owner group 15749 Apr 8 1994 CBCP.TXT
dr-xr-xr-x 1 owner group 0 Jul 3 2002 csformat
dr-xr-xr-x 1 owner group 0 Aug 1 2002 DAILYKB
-r-xr-xr-x 1 owner group 710 Apr 12 1993 DISCLAIM.TXT
dr-xr-xr-x 1 owner group 0 Jul 3 2002 FDC
dr-xr-xr-x 1 owner group 0 Jul 3 2002 friKB
dr-xr-xr-x 1 owner group 0 Jul 3 2002 FULLKB
dr-xr-xr-x 1 owner group 0 Jul 3 2002 Homenet
-r-xr-xr-x 1 owner group 97 Sep 28 1993 INDEX.TXT
...

Clearly, if you want to manipulate individual pieces of information (like the file size) or distinguish
files from directories, you'll need to do extra work to parse the text returned by the StreamReader.

Finally, when you're finished with the FTP request and response, you need to close the streams:

Reader.Close()
Response.Close()

To put it all in context, it helps to consider a simple FTP browsing application. Figure 6-1 shows a
sample application that's included with the downloadable samples for this chapter.

Figure 6-1. A simple FTP Browser application

This Windows application includes the following controls:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A TextBox where you can enter a URL that points to a file or directory in an FTP site.

A Button named Query Directory that retrieves the folders and files at a given URL. This task
requires the FtpWebRequest class.

A Button named Download File that downloads the file at a given URL. This task uses the
My.Computer.Network.DownloadFile() method.

A FolderBrowserDialog that allows you to choose a folder where the downloaded file will be
saved.

A ListView that shows the directory and file listing for the URL. This list is refreshed every time
you click the Query Directory button. In addition, every time you click to select an item in the
ListView, that information is automatically added to the URL in the text box. This allows you to
quickly browse through an FTP site, drilling down several layers into the directory structure and
selecting the file that interests you.

Example 6-4 shows code for the FTP browser form

Example 6-4. The FTP browser form

Public Class FtpForm
 Inherits System.Windows.Forms.Form

 ' Stores the path currently shown in the ListView.
 Private CurrentPath As String

 Private Sub cmdQuery_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdQuery.Click
 ' Check the URI is valid.
 Dim RequestUri As Uri = ValidateUri(txtFtpSite.Text)
 If RequestUri Is Nothing Then Return

 ' Clear the ListView.
 listDir.Items.Clear()

 ' Create a new FTP request using the URI.
 Dim Request As FtpWebRequest
 Request = CType(WebRequest.Create(RequestUri), FtpWebRequest)

 ' Use this request for getting full directory details.
 Request.Method = "LIST"
 Request.UsePassive = False

 Dim Response As FtpWebResponse
 Dim ResponseStream As Stream
 Dim Reader As StreamReader
 Try
 ' Execute the command and get the response.
 Response = CType(Request.GetResponse(), FtpWebResponse)
 Debug.WriteLine("Status: " & Response.StatusDescription)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Read the response one line at a time.
 ResponseStream = Response.GetResponseStream()
 Reader = New StreamReader(ResponseStream, System.Text.Encoding.UTF8)
 Dim Line As String
 Do
 Line = Reader.ReadLine()
 If Line <> "" Then
 Debug.WriteLine(Line)

 ' Extract just the file or directory name from the line.
 Dim ListItem As New ListViewItem(Line.Substring(59).Trim())
 If Line.Substring(0, 1) = "d" Then
 ListItem.ImageKey = "Folder"
 Else
 ListItem.ImageKey = "File"
 End If
 listDir.Items.Add(ListItem)
 End If
 Loop Until Line = ""

 ' Operation completed successfully. Store the current FTP path.
 CurrentPath = RequestUri.ToString()

 Catch Ex As Exception
 MessageBox.Show(Ex.Message)

 Finally
 ' Clean up.
 Reader.Close()
 Response.Close()

 End Try
 End Sub

 Private Sub cmdDownload_Click(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles cmdDownload.Click

 ' Check the URI is valid.
 Dim RequestUri As Uri = ValidateUri(txtFtpSite.Text)
 If RequestUri Is Nothing Then Return

 ' Prompt the user to choose a destination folder.
 ' Default the file name to the same file name used on the FTP server.
 dlgSave.FileName = Path.GetFileName(txtFtpSite.Text)
 If dlgSave.ShowDialog() <> Windows.Forms.DialogResult.OK Then
 Return
 End If

 ' Create a new FTP request using the URI.
 Dim Request As FtpWebRequest
 Request = CType(WebRequest.Create(RequestUri), FtpWebRequest)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ' Use this request for downloading the file.
 Request.UsePassive = False
 Request.Method = "RETR"

 Dim Response As FtpWebResponse
 Dim ResponseStream, TargetStream As Stream
 Dim Reader As StreamReader
 Dim Writer As StreamWriter
 Try
 ' Execute the command and get the response.
 Response = CType(Request.GetResponse(), FtpWebResponse)
 Debug.WriteLine("Status: " & Response.StatusDescription)
 Debug.WriteLine("File Size: " & Response.ContentLength)

 ' Create the destination file.
 TargetStream = New FileStream(dlgSave.FileName, FileMode.Create)
 Writer = New StreamWriter(TargetStream)

 ' Write the response to the file.
 ResponseStream = Response.GetResponseStream()
 Reader = New StreamReader(ResponseStream, System.Text.Encoding.UTF8)
 Writer.Write(Reader.ReadToEnd())

 Catch Err As Exception
 MessageBox.Show(Err.Message)

 Finally
 ' Clean up.
 Reader.Close()
 Response.Close()
 Writer.Close()
 End Try
 End If

 End Sub

 Private Function ValidateUri(ByVal uriText As String) As Uri
 Dim RequestUri As Uri
 Try
 ' Check that the string is interpretable as a URI.
 RequestUri = New Uri(uriText)

 ' Check that the URI starts with "ftp://"
 If RequestUri.Scheme <> Uri.UriSchemeFtp Then
 RequestUri = Nothing
 End If
 Catch
 RequestUri = Nothing
 End Try

 If RequestUri Is Nothing Then
 MessageBox.Show("Invalid Uri.")

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Else

 End If
 Return RequestUri
 End Function

 Private Sub listDir_SelectedIndexChanged(ByVal sender As System.Object, _
 ByVal e As System.EventArgs) Handles listDir.SelectedIndexChanged
 ' When a new item is selected in the list, add this
 ' to the URI in the text box.
 If listDir.SelectedItems.Count <> 0 Then
 CurrentPath = CurrentPath.TrimEnd("/")
 txtFtpSite.Text = CurrentPath & "/" & listDir.SelectedItems(0).Text
 End If
 End Sub

End Class

The most complex code found in this example occurs in the event handler for the cmdQuery button,
which retrieves a directory listing, parses out the important information, and updates the ListView.

6.4.2. Where can I learn more?

In previous builds, the MSDN help included much more information on FTP access and different FTP
operations under the index entry "FtpMethods," complete with useful demonstrations of the different
methods. This entry has disappeared in recent builds (along with the FtpMethods class), but check for
it to return. In the meantime, you can read up on the FTP protocol and supported commands at
www.vbip.com/winsock/winsock_ftp_ref_01.asp.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. Test Group Membership of the Current User

The .NET Framework has always provided security classes that let you retrieve basic information
about the account of the current user. The new My.User object provided by Visual Basic 2005 makes
it easier than ever to access this information.

Note: Find out who's using your application, and the groups a mystery user belongs to.

6.5.1. How do I do that?

Applications often need to test who is running the application. For example, you might want to
restrict some features to certain groups, such as Windows administrators. You can accomplish this
with the My.User object.

The My.User object provides two key properties that return information about the current user. These
are:

IsAuthenticated

Returns true if the current user account information is available in the My.User object. The only
reason this information wouldn't be present is if you've created a web application that allows
anonymous access, or if the current Windows account isn't associated with the application
domain.

Username

Returns the current username. Assuming you're using a Windows security policy, this is the
Windows account name for the user, in the form ComputerName\UserName or
DomainName\UserName.

The My.User object also provides a single method, IsInRole(). This method accepts the name of a
group (as a string) and then returns true if the user belongs to that group. For example, you could
use this technique to verify that the current user is a Windows administrator before performing a
certain task.

To try this out, use the following console application in Example 6-5, which displays some basic
information about the current user and tests if the user is an Administrator.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Note: To check the user and group list for the current computer (or make changes), select Computer management from the

Administrative Tools section of the Control Panel. Then, expand the System Tools Local Users and Groups node.

Example 6-5. Testing the current user identity

Module SecurityTest

 Sub Main()
 ' Use Windows security. As a result, the User object will
 ' provide the information for the currently logged in user
 ' who is running the application.
 My.User.InitializeWithWindowsUser()

 Console.WriteLine("Authenticated: " & My.User.Identity.IsAuthenticated)
 Console.WriteLine("User: " & My.User.Identity.Username)

 Console.WriteLine("Administrator: " & My.User.IsInRole("Administrators"))
 End Sub

End Module

Here's the sort of output you'll see when you run this test:

Authenticated: True
User: FARIAMAT\Matthew
Administrator: True

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.6. Encrypt Secrets for the Current User

Applications often need a way to store private data in a file or in memory. The obvious solution is
symmetric encryption, which scrambles your data using a random series of bytes called a secret key.
The problem is that when you want to decrypt your scrambled data, you need to use the same secret
key you used to encrypt. This introduces serious complications. Either you need to find a secure place
to safeguard your secret key (which is tricky at best), or you need to derive the secret key from
some other information, like a user-supplied password (which is much more insecure, and can break
down entirely when users forget their passwords).

Note: Need a quick way to encrypt secret information, without needing to worry about key management? The long awaited solution

appears in . NET 2.0 with the ProtectedData class.

The ideal solution is to have the Windows operating system encrypt the data for you. To accomplish
this, you need the DPAPI (Data Protection API), which encrypts data using a symmetric key that's
based on a piece of user-specific or machine-specific information. This way, you don't need to worry
about key storage or authentication. Instead, the operating system authenticates the user when he
logs in. Data stored by one user is automatically inaccessible to other users.

In previous versions of .NET, there were no managed classes for using the DPAPI. This oversight is
corrected in .NET 2.0 with the new ProtectedData class in the System.Security.Cryptography
namespace.

6.6.1. How do I do that?

The ProtectedData class provides two shared methods. ProtectData() takes a byte array with
source data and returns a byte array with encrypted data. UnprotectData() performs the reverse
operation, taking an encrypted byte array and returning a byte array with the decrypted data.

The only trick to using the ProtectData() and UnprotectData() methods is that you can only
encrypt or decrypt data in a byte array. That means that if you want to encrypt strings, numbers, or
something else, you need to write it to a byte array before you perform the encryption.

To see this in action, you can run the console application code in Example 6-6.

Example 6-6. Storing an encrypted string of text in a file

Imports System.Security.Cryptography
Imports System.IO

Module ProctedData

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Sub Main()
 ' Get the data.
 Console.WriteLine("Enter a secret message and press enter.")
 Console.Write(">")
 Dim Input As String = Console.ReadLine()

 Dim DataStream As MemoryStream
 If Input <> "" Then
 Dim Data(), EncodedData() As Byte

 ' Write the data to a new MemoryStream.
 DataStream = New MemoryStream()
 Dim Writer As New StreamWriter(DataStream)
 Writer.Write(Input)
 Writer.Close()

 ' Convert the MemoryStream into a byte array,
 ' which is what you need to use the ProtectData() method.
 Data = DataStream.ToArray()

 ' Encrypt the byte array.
 EncodedData = ProtectedData.Protect(Data, Nothing, _
 DataProtectionScope.CurrentUser)

 ' Store the encrypted data in a file.
 My.Computer.FileSystem.WriteAllBytes("c:\secret.bin",
 EncodedData, False)
 End If
 End Sub

End Module

When you run this application, you'll be prompted to type in some text, which will be encrypted using
your current user account information and stored in the file secret.bin. The data won't be accessible
to any other user.

To verify that the data is encrypted, you have two choices. You can open the file and take a look for
yourself, or you can modify the code so that it reads the data directly from the encrypted memory
stream. This code tries the latter, and displays a string of meaningless gibberish as a result:

' Verify the data is encrypted by reading and displaying it
' without performing any decryption.
DataStream = New MemoryStream(EncodedData)
Dim Reader As New StreamReader(DataStream)
Console.WriteLine("Encrypted data: " & Reader.ReadToEnd())
Reader.Close()

To decrypt the data, you need to place it into a byte array and then use the UnprotectData()
method. To extract your data out of the unencrypted byte array, you can use a StreamReader. To add
decryption support to the previous example, insert the following code, which opens the file and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

displays the secret message that you entered earlier:

If My.Computer.FileSystem.FileExists("c:\secret.bin") Then
 Dim Data(), EncodedData() As Byte

 EncodedData = My.Computer.FileSystem.ReadAllBytes("c:\secret.bin")
 Data = ProtectedData.Unprotect(EncodedData, Nothing, _
 DataProtectionScope.CurrentUser)

 Dim DataStream As New MemoryStream(Data)
 Dim Reader As New StreamReader(DataStream)

 Console.WriteLine("Decoded data from file: " & Reader.ReadToEnd())
 Reader.Close()
End If

Remember, because the data is encrypted using the current user profile, you can decrypt the data at
any time. The only restriction is that you need to be logged on under the same user account.

Note that when you protect data, you must choose one of the values from the DataProtectionScope
enumeration. There are two choices:

Note: No matter which DataProtectionScope you choose, the encrypted information will be stored in a specially protected area of the

Windows registry.

LocalMachine

Windows will encrypt data with a machine-specific key, guaranteeing that no one can read the
data unless they log in to the same computer. This works well for server-side applications that
run without user intervention, such as Windows services and web services.

CurrentUser

Windows will encrypt data with a user-specific key, so that it's inaccessible to any other user.

In the current example, user-specific data is stored. However, you could modify the
DataProtectionScope to store data that's accessible to any user on the current computer.

6.6.2. What about...

...protecting data before you put it in a database? Once you use the ProtectedData class to encrypt
your data, you can put it anywhere you want. The previous example wrote encrypted data to a file,
but you can also write the binary data to a database record. To do so, you simply need a binary field
in your table with enough room to accommodate the encrypted byte array. In SQL Server, you use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the varbinary data type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.7. Unleash the Console

.NET 1.0 introduced the Console class to give programmers a convenient way to build simple
command-line applications. The first version of the Console was fairly rudimentary, with little more
than basic methods like Write(), WriteLine(), Read(), and ReadLine(). In .NET 2.0, new features
have been added, allowing you to clear the window, change foreground and background colors, alter
the size of the window, and handle special keys.

Note: At last, a Console class with keyboard-handling and screen-writing features.

6.7.1. How do I do that?

The best way to learn the new features is to see them in action. Example 6-7 shows a simple
application, ConsoleTest, which lets the user move a happy face character around a console window,
leaving a trail in its wake. The application intercepts each key press, checks if an arrow key was
pressed, and ensures that the user doesn't move outside of the bounds of the window.

Warning: In order for the advanced console features to work, you must disable the Quick Console window. The Quick Console is a

console window that appears in the design environment, and it's too lightweight to support features like reading keys, setting colors, and

copying characters. To disable it, select Tools Options, make sure the "Show all settings checkbox" is checked, and select the

Debugging General tab. Then, turn off the "Redirect all console output to the Quick Console window."

Example 6-7. Advanced keyboard handling with the console

Module ConsoleTest

 Private NewX, NewY, X, Y As Integer
 Private BadGuyX, BadGuyY As Integer

 Public Sub Main()
 ' Create a 50 column x 20 line window.
 Console.SetWindowSize(50, 20)
 Console.SetBufferSize(50, 20)

 ' Set up the window.
 Console.Title = "Move The Happy Face"
 Console.CursorVisible = False
 Console.BackgroundColor = ConsoleColor.DarkBlue
 Console.Clear()

 ' Display the happy face icon.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Console.ForegroundColor = ConsoleColor.Yellow
 Console.SetCursorPosition(X, Y)

 Console.Write(" ")

 ' Read key presses.
 Dim KeyPress As ConsoleKey
 Do
 KeyPress = Console.ReadKey().Key

 ' If it's an arrow key, set the requested position.
 Select Case KeyPress
 Case ConsoleKey.LeftArrow
 NewX -= 1
 Case ConsoleKey.RightArrow
 NewX += 1
 Case ConsoleKey.UpArrow
 NewY -= 1
 Case ConsoleKey.DownArrow
 NewY += 1
 End Select

 MoveToPosition()
 Loop While KeyPress <> ConsoleKey.Escape

 ' Return to normal.
 Console.ResetColor()
 Console.Clear()
 End Sub

 Private Sub MoveToPosition()
 ' Check for an attempt to move off the screen.
 If NewX = Console.WindowWidth Or NewX < 0 Or _
 NewY = Console.WindowHeight Or NewY < 0 Then
 ' Reset the position.
 NewY = Y
 NewX = X
 Console.Beep()
 Else
 ' Repaint the happy face in the new position.
 Console.MoveBufferArea(X, Y, 1, 1, NewX, NewY)

 ' Draw the trail.
 Console.SetCursorPosition(X, Y)
 Console.Write("*")

 ' Update the position.
 X = NewX
 Y = NewY
 Console.SetCursorPosition(0, 0)
 End If
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Module

To try this out, run the application and use the arrow keys to move about. Figure 6-2 shows the
output of a typical ConsoleTest session.

Figure 6-2. A fancy console application

Some of the new Console methods used in ConsoleTest include the following:

Clear()

Erases everything in the console window and positions the cursor in the top-left corner.

SetCursorPosition()

Moves the cursor to the designated x- and y-coordinates (measured from the top-left corner).
Once you've moved to a new position, you can use Console.Write() to display some
characters there.

SetWindowSize() and SetBufferSize()

Allow you to change the size of the window (the visible area of the console) and the buffer (the
scrollable area of the console, which is equal to or greater than the window size).

ResetColor()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Resets the foreground and background colors to their defaults.

Beep()

Plays a simple beep, which is often used to indicate invalid input.

ReadKey()

Reads just a single key press and returns it as a ConsoleKeyInfo object. You can use this object
to easily tell what key was pressed (including extended key presses like the arrow keys) and
what other keys were held down at the time (like Alt, Ctrl, or Shift).

MoveBufferArea()

Copies a portion of the console window to a new position, and erases the original data. This
method offers a high-performance way to move content around the console.

The new Console properties include:

Title

Sets the window caption.

ForegroundColor

Sets the text color that will be used the next time you use Console.Write() or
Console.WriteLine().

BackgroundColor

Sets the background color that will be used the next time you use Console.Write() or
Console.WriteLine(). To apply this background color to the whole window at once, call
Console.Clear() after you set the background color.

CursorVisible

Hides the blinking cursor when set to False.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WindowHeight and WindowWidth

Returns or sets the dimensions of the console window.

CursorLeft and CursorTop

Returns or moves the current cursor position.

6.7.2. What about...

...reading a character from a specified position of the window? Sadly, the new Console class provides
no way to do this. That means that if you wanted to extend the happy face example so that the user
must navigate through a maze of other characters, you would need to store the position of every
character in memory (which could get tedious) in order to check the requested position after each
key press, and prevent the user from moving into a space occupied by another character.

6.7.3. Where can I learn more?

To learn more about the new Console class and its new properties and methods, look for the Console
and ConsoleKeyInfo classes in the MSDN help library reference.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.8. Time Your Code

Timing code isn't difficult. You can use the DateTime.Now property to capture the current date and
time down to the millisecond. However, this approach isn't perfect. Constructing the DateTime object
takes a short time, and that little bit of latency can skew the time you record for short operations.
Serious profilers need a better approach, one that uses low-level systems calls and has no latency.

Note: The new Stopwatch class allows you to track how fast your code executes with unparalleled precision.

6.8.1. How do I do that?

In .NET 2.0, the best way to time your code is to use the new Stopwatch class in the
System.Diagnostics namespace. The Stopwatch class is refreshingly simple to use. All you need to do
is create an instance and call the Start() method. When you're finished, call Stop().

Example 6-8 shows a simple test that times how long a loop takes to finish. The elapsed time is then
displayed in several different ways, with different degrees of precision.

Example 6-8. Timing a loop

Module TimeCode

 Sub Main()
 Dim Watch As New Stopwatch()

 Watch.Start()

 ' Delay for a while.
 For i As Integer = 1 To 1000000000
 Next

 Watch.Stop()

 ' Report the elasped time.
 Console.WriteLine("Milliseconds " & Watch.ElapsedMilliseconds)
 Console.WriteLine("Ticks: " & Watch.ElapsedTicks)
 Console.WriteLine("Frequency: " & Stopwatch.Frequency)
 Console.WriteLine("Whole Seconds: " & Watch.Elapsed.Seconds)
 Console.WriteLine("Seconds (from TimeSpan): " & Watch.Elapsed.TotalSeconds)
 Console.WriteLine("Seconds (most precise): " & _
 Watch.ElapsedTicks / Stopwatch.Frequency)
 End Sub

http://lib.ommolketab.ir
http://lib.ommolketab.ir

End Module

Here's the output you'll see:

Milliseconds 10078
Ticks: 36075265
Frequency: 3579545
Whole Seconds: 10
Seconds (from TimeSpan): 10.0781705
Seconds (most precise): 10.078170549609

You can retrieve the elapsed time in milliseconds from the Stopwatch.ElapsedMilliseconds property.
(One second is 1,000 milliseconds.) The ElapsedMilliseconds property returns a 64-bit integer (a
Long), making it extremely precise. If it's more useful to retrieve the time as a number of seconds or
minutes, use the Stopwatch.Elapsed property instead, which returns a TimeSpan object.

On the other hand, if you want the greatest possible precision, retrieve the number of ticks that have
elapsed from the Stopwatch.ElapsedTicks property. Stopwatch ticks have a special meaning. When
you use the TimeSpan or DateTime object, a tick represents 0.0001 of a millisecond. In the case of a
Stopwatch, however, ticks represent the smallest measurable increment of time, and depend on the
speed of the CPU. To convert Stopwatch ticks to seconds, divide ElapsedTicks by Frequency.

6.8.2. What about...

...pausing a timer? If you want to record the total time taken to complete multiple operations, you
can use Stop() to pause a timer and Start() to resume it later. You can then read the total time
taken for all the operations you timed from the Elasped and ElaspedMilliseconds properties.

You can also run multiple timers at once. All you need to do is create one Stopwatch object for each
distinct timer you want to use.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.9. Deploy Your Application with ClickOnce

One of the driving forces behind the adoption of browser-based applications is the fact that
organizations don't need to deploy their applications to the client. Most companies are willing to
accept the limitations of HTML in order to avoid the considerable headaches of distributing application
updates to hundreds or thousands of users.

Note: Want the functionality of a rich client application with the easy deployment of a web application? ClickOnce offers a new solution

for deploying your software.

Deploying a .NET client application will never be as straightforward as updating a web site. However,
.NET 2.0 includes a new technology called ClickOnce that simplifies deployment dramatically.

6.9.1. How do I do that?

ClickOnce includes a few remarkable features:

ClickOnce can automatically create a setup program that you can distribute on a CD or launch
over a network or through a web page. This setup program can install prerequisites and create
the appropriate Start menu icons.

ClickOnce can configure your application to check for updates automatically every time it starts
(or periodically in the background). Depending on your preference, you can give the user the
option of downloading and running the new updated version, or you can just install it by force.

ClickOnce can configure your application to use an online-only mode. In this case, the user
always runs the latest version of your application from a web page URL. However, the
application itself is cached locally to improve performance.

ClickOnce is tightly integrated with Visual Studio 2005, which allows you to deploy a ClickOnce
application to a web site using the Project Publish menu command.

The following steps take you through the process of preparing your project for publication:

Using Visual Studio 2005, create a new project. A good choice is a Windows Forms application.
Before continuing, save the project.

1.

Choose Build Publish [ProjectName] (or right-click your project in the Solution Explorer and

choose Publish). This launches the Publish wizard, which gives you a chance to specify or
change various settings.

2.

3.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.

The first dialog page of the Publish wizard (the "Where do you want to publish" dialog) prompts
you to choose the location where you will publish the files to be deployed (see Figure 6-3). This
location is the file path or the virtual directory on your web server where you want to deploy the
application. For a simple test, use a URL that starts with http://localhost/ (which refers to the
current computer). Click Next to continue.

Tip: When Visual Studio publishes the application, it will automatically create a subdirectory named publish in the current

application directory, and it will map this to the virtual directory path you've selected.

Figure 6-3. Choosing a deployment directory

3.

Next, choose the install mode (see Figure 6-4) by clicking one of the buttons on the "Will the
application be available offline" dialog page. Select "Yes, this application is available online or
offline." This way, the setup will add application icons to the Start menu. If you choose "No, this
application is only available online," the user will only be able to run it by surfing to the virtual
directory to which it's been published. Click Next to continue.

Figure 6-4. Choosing the install mode

4.

http://localhost/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Publish wizard now displays a summary of your settings. Click Finish to publish it. (You can
publish an updated version at any time by selecting Build Publish [ProjectName] from the

menu.)

5.

Once the wizard completes, the automatically generated ClickOnce web page is launched, as shown
in Figure 6-5. Using this page, a user can click to download and install your application. Try it out by
clicking the Install [AppName] link.

Figure 6-5. The ClickOnce installation page

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The installation runs without any messages, unless it needs to ask for user consent. For example,
before the installation can add an icon to the Start menu, it needs to prompt the user.

Best of all, now that the application is in place, you can make use of its automatic update ability. To
test this out, return to the application in Visual Studio .NET and change the main form (perhaps by
adding a new button). Then, increment the version number of the application. (To do this, double-
click the My Project item in the Solution Explorer, select the Application tab, and click the
AssemblyInfo button. A dialog box will appear that lets you set assembly metadata, including the
version number.) Finally, republish the application.

When a new version is available on the server, client applications will update themselves
automatically, based on their update settings. If you run the installed sample application, it checks
for updates when it starts. In this case, it will detect the new version and prompt you to install the
update.

Warning: The ClickOnce plumbing has been tweaked and refined continuously during the beta cycle. In some builds of Visual Studio,

you may encounter an error when you try to publish a project using ClickOnce. Unfortunately, there aren't any workarounds.

6.9.2. What about...

...computers that don't have the .NET Framework 2.0 installed? These machines can't download and
install a ClickOnce application automatically. However, when they surf to the ClickOnce installation
page, they will see a link that will install the required prerequisites. There are a number of other
approaches you can pursue to get .NET 2.0 installed on the client ahead of time. One easy choice is
to use the Windows Update feature (surf to http://windowsupdate.microsoft.com from the client
computer).

http://windowsupdate.microsoft.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.9.3. Where can I learn more?

There are a number of articles that discuss the ClickOnce technology in much greater detail. For more
information, you may want to refer to the book Essential ClickOnce (Addison Wesley, forthcoming),
or the introduction from MSDN magazine at
http://msdn.microsoft.com/msdnmag/issues/04/05/ClickOnce. You can also find a great deal of
information in the MSDN help library, and online at http://msdn.microsoft.com/clickonce.

http://msdn.microsoft.com/msdnmag/issues/04/05/ClickOnce
http://msdn.microsoft.com/clickonce
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The Developer's Notebook series is modeled on the tradition of laboratory notebooks. Laboratory
notebooks are an invaluable tool for researchers and their successors.

The purpose of a laboratory notebook is to facilitate the recording of data and conclusions as the
work is being conducted, creating a faithful and immediate history. The notebook begins with a title
page that includes the owner's name and the subject of research. The pages of the notebook should
be numbered and prefaced with a table of contents. Entries must be clear, easy to read, and
accurately dated; they should use simple, direct language to indicate the name of the experiment and
the steps taken. Calculations are written out carefully and relevant thoughts and ideas recorded.
Each experiment is introduced and summarized as it is added to the notebook. The goal is to produce
comprehensive, clearly organized notes that can be used as a reference. Careful documentation
creates a valuable record and provides a practical guide for future developers.

Sanders Kleinfeld was the production editor and proofreader for Visual Basic 2005: A Developer's
Notebook , and Derek Di Matteo was the copyeditor. Marlowe Shaeffer and Claire Cloutier provided
quality control. Angela Howard wrote the index.

Edie Freedman designed the cover of this book. Emma Colby produced the cover layout with
QuarkXPress 4.1 using the Officina Sans and JuniorHandwriting fonts.

David Futato designed the interior layout, with contributions from Edie Freedman. This book was
converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray,
Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Adobe Boton; the heading font is ITC Officina Sans; the code font is LucasFont's TheSans Mono
Condensed, and the handwriting font is a modified version of JuniorHandwriting made by Tepid
Monkey Foundry and modified by O'Reilly. The illustrations that appear in the book were produced by
Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX and Adobe
Photoshop CS. This colophon was written by Colleen Gorman.

The online edition of this book was created by the Digital Books production group (John Chodacki,
Ken Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

(hash mark), optional character or space, in mask

#ziplib library

$ (dollar sign), currency symbol, in mask

& (ampersand), required character, in mask

''' (apostrophes, three), XML comments starting with

* (asterisk), select any node, XPath

, (comma), thousands placeholder, in mask

. (period)

 .. (move up one node level, XPath)

 decimal placeholder, in mask

.master files

/ (slash)

 /\\> (ending tag with)

: (colon), time separator, in mask

< (left angle bracket), convert characters to lowercase

<c\\> tag

<code\\> tag

<example\\> tag

<exception\\> tag

<list\\> tag

<para\\> tag

<param\\> tag

<remarks\\> tag

<returns\\> tag

<see\\> tag

<siteMap\\> tag

<siteMapNode\\> tag

<summary\\> tag

? (question mark), optional letter, in mask

[] (square brackets), XPath filters

\\> (right angle bracket), convert characters to uppercase

\\\\ (backslash), escapes masked character

_ (underline)

 blue, indicating error found by AutoCorrect

 green squiggly, indicating unsupported edit

{} (braces) enclosing constraints

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

access levels

AddUserToRole() method, Roles class

Alignment property, DataGridViewCellStyle class

AllowUserToAddRows property, DataGridView control

AllowUserToDeleteRows property, DataGridView control

ampersand (&), required character, in mask

AndAlso operator

animations, GDI+, increasing redraw speed for

anonymous identification

apostrophes, three ('''), XML comments starting with

app.config file

 adding trace listeners to

 for database-agnostic code

APPDATA environment variable

AppendChild() method, XPathEditor class

application [See also console application; web application; Windows application]

 automatic updates for 2nd

 command-line parameters for

 configuration information about

 data for, retrieving path for

 deploying

 information about 2nd

 online-only mode for 2nd

 setup program for

Application class

application-scoped settings

ApplicationExit event, Application class

ArrayList class

ASP.NET

 administering web applications

 anonymous identification

 binding to data with custom class

 binding to data with data source controls

 compilation and deployment options

 control theming

 creating web applications

 DetailsView control

 edit-and-continue debugging not supported with 2nd

 GridView control

 master pages

 membership features

 profile settings

 role-management service

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 security controls

 site maps

 timestamps

 TreeView control 2nd

AspNetDB.mdb file

assembly metadata, setting

assembly references, displaying in Solution Explorer

AssemblyInfo.vb file

asterisk (*), select any node, XPath

Asterisk sound, playing

asynchronous tasks

audio

 system sounds, playing

 WAV audio, playing

authentication

 forms

 user

authorization, role-based

AutoComplete text boxes

AutoCompleteMode property, AutoComplete control

AutoCompleteSource property, AutoComplete control

AutoCorrect, IntelliSense

AutoResizeColumns() method, DataGridView control

AutoResizeRows() method, DataGridView control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

BackColor property, DataGridViewCellStyle class

background color of console 2nd

background thread, modifying forms or controls in

BackgroundColor property, Console class

BackgroundWorker component

backslash (\\\\), escapes masked character

batch execution of database commands

BatchSize property, SqlBulkCopy class

BCP command-line utitlity

Beep sound, playing

Beep() method, Console class

BeepOnError property, MaskedTextBox control

binding

 to a custom class

 with data source controls

blue underlines, indicating error found by AutoCorrect

boilerplate code [See code snippets]

books

 Essential ClickOnce

 Internet Core Protocols (Hall)

 Programming Visual Basic .NET (Liberty)

 The Book of VB .NET (Macdonald)

 XML in a Nutshell (Harold; Means)

braces ({}) enclosing constraints

browser, adding to application

buffer for console

 moving

 setting size of

BulkCopyTimeout property, SqlBulkCopy class

buttons, adding to ToolStrip

BytesReceived statistic

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

C#

 My objects not supported by 2nd

 refactoring

CacheDuration property

CacheExpirationPolicy property

caching data retrieved from database

canonicalization errors

casting

CellFormatting event, DataGridView control

ChangePassword control

CheckValidity() method, XPathNavigator class

classes [See also objects]

 generic

 renaming

 splitting into multiple files

Clear() method, Console class

ClickOnce deployment technology

code snippets

 inserting in code

code, timing

code-behind model

code-beside model

colon (:), time separator, in mask

ColumnMappings property, SqlBulkCopy class

ComboBox control, AutoComplete support for

comma (,), thousands placeholder, in mask

command-line parameters, supplying for application

comments, XML

compilation, ASP.NET

compression of data streams

computer

 information about 2nd

 listing drives on

 pinging

conditional statements, short-circuit logic for

configuration [See also app.config file; web.config file]

 modifying settings

 of web application, setting programmatically

 of web application, setting with WAT

 retrieving settings for

 serializable data types for

 strongly typed settings

connected mode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ConnectionTime statistic

console application

Console class

ConsoleKeyInfo object

constraints, with generics

contact information

content pages

ContentPlaceHolder control

ContextMenu control

ContextMenuStrip control 2nd

Continue statement

Control class, double-buffering

control theming

controls

 adding to DataGridView control

 adding to ToolStrip

 data source controls

 editing properties in place

 editing tab order for

 masked editing controls

 modifying from background thread

conventions used in this book

CopyDirectory() method, FileSystem object

CopyFile() method, FileSystem object

Create() method, WebRequest class

CreateCommand() method

CreateCommandBuilder() method

CreateConnection() method

CreateDataAdapter() method

CreateNavigator() method, XPathDocument class 2nd

CreateParameter() method

CreateRole() method, Roles class

CreateUser() method, Membership class

CreateUserWizard

CreateUserWizard control 2nd

cursor in console window

 determining position of

 moving

 setting position of

 setting visibility of

CursorLeft property, Console class

CursorTop property, Console class

CursorVisible property, Console class

custom classes, binding to

custom objects, operators for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Data Protection API (DPAPI)

data provider

data source controls

 SiteMapDataSource control

 using custom class with

data streams, compressing and decompressing

data types

 nullable

 serializable

 strongly typed configuration settings

 strongly typed resources

 type casting

 typesafe generic classes

database

 batch execution of commands

 binding to, with custom class

 binding to, with data source controls

 bulk copying of rows between tables

 caching retrieved data

 centralizing access logic for

 displaying interactive tables from

 displaying records individually from

 for profile provider

 membership data in

 updating with ObjectDataSource control

database connections

 automatically disposing of

 statistics about

database provider factory

database-agnostic code

DataGridView control

 adding controls to

 adding images to

 formatting

DataGridViewButtonColumn class

DataGridViewCell objects

DataGridViewCellStyle class

DataGridViewColumn objects

DataGridViewRow objects

DataProtectionScope enumeration

DataTips feature, debugger

DateTime class

DbProviderFactories class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

debugging [See also errors; logging]

 DataTips feature

 edit-and-continue feature

 Exception Assistant for

 looking inside an object during

decompression of data streams

default instances 2nd

default.aspx file

default.aspx.vb file

DefaultTraceListener class

DeflateStream class

delegates, generics and

Delete link, GridView control

DeleteCookie() method, Roles class

DeleteCurrent() method, XPathNavigator class

DeleteDirectory() method, FileSystem object

DeleteFile() method, FileSystem object

DeleteRole() method, Roles class

DeleteUser() method, Membership class

denial-of-service attack, pinging and

deploying applications 2nd

desktop, retrieving path for

DestinationTableName property, SqlBulkCopy class

DetailsView control

 synchronizing with GridView control

diagnostic information, recording

directories

 copying

 deleting

 determining existence of

 getting information about

 moving

 renaming

 searching for

 sending to recycle bin

DirectoryExists() method, FileSystem object

DirectoryInfo object

DirectX 9.0 libraries

disconnected mode

discussion groups

Dns class

Do loops, skipping to next iteration of

Dock property, SplitContainer control

documentation, XML

DocumentCompleted event, WebBrowser control

documents, XML [See XML documents]

dollar sign ($), currency symbol, in mask

DOM (document object model), XML

DoubleBuffered property, Control class

DownloadFile() method, Network object

DoWork event, BackgroundWorker component

DPAPI (Data Protection API)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

drawing code, reducing flicker of

DriveInfo class

drives, getting list of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Edit link, GridView control

edit-and-continue debugging feature

editing controls, masked

ElapsedMilliseconds property, Stopwatch class

ElapsedTicks property, Stopwatch class

elements, renaming

Enable Deleting option, GridView control

Enable Editing option, GridView control

"Enable editing" link, error window

Enable Paging option, GridView control

Enable Selection option, GridView control

Enable Sorting option, GridView control

EnableCaching property

encryption of user data

errors [See also debugging; logging]

 displaying when multiple application startup attempted

 "Enable editing" link in error window

Essential ClickOnce

event handlers

 multiple files for

 symbolic renaming and

event log, logging to

EventLog class

EventLogTraceListener class

Exception Assistant

exception handling, for database-agnostic code

Exclamation sound, playing

expressions, evaluating at design time

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

factory model

File Transfer Protocol (FTP)

FileExists() method, FileSystem object

FileInfo object

FileIO object

FileLogTraceListener class

files

 automatically disposing of

 copying

 deleting

 determining existence of

 encrypting

 getting information about

 logging to

 moving

 operations on special folders

 reading and writing

 renaming

 searching for

 sending to recycle bin

 uploading and downloading with FTP

FileSystem object

 file operations using

 getting file and directory information using

 getting list of drives using

filter expression

filtering, IntelliSense

filters, XPath

FixedPanel property, SplitContainer control

FlowLayoutPanel control

Font property, DataGridViewCellStyle class

fonts

 for menus, non-standard

 used in this book

For loops, skipping to next iteration of

ForeColor property, DataGridViewCellStyle class

foreground color of console 2nd

ForegroundColor property, Console class

form files, renaming

Format property, DataGridViewCellStyle class

forms

 authentication

 communicating between

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 default instances of 2nd

 modifying from background thread

Friend access

FTP (File Transfer Protocol)

FtpMethods enumeration

FtpWebRequest class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

GDI+ animations, increasing redraw speed for

GeneratePassword() method, Membership class

generics

get procedure, properties, access level of

GetDirectories() method, FileSystem object

GetDirectoryInfo() method, FileSystem object

GetDriveInfo() method, FileSystem object

GetFactory() method, DbProviderFactories class

GetFileInfo() method, FileSystem object

GetFiles() method, FileSystem object

GetNumberOfUsersOnline() method, Membership class

GetRolesForUser() method, Roles class

GetTcpIPv4Statistics() method, IPGlobalProperties class

GetTcpIPv6Statistics() method, IPGlobalProperties class

GetUser() method, Membership class

GetUserNameByEmail() method, Membership class

GetUsersInRole() method, Roles class

global.asax file

graphics [See images]

green squiggly underline, indicating unsupported edit

GridAndDetails.aspx file

GridView control

 displaying interactive tables with

 synchronizing with DetailsView control

groups

 determining if user is in

 permissions for

GZipStream class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Hall, Eric A. (Internet Core Protocols)

Hand sound, playing

Harold, Elliotte Rusty (XML in a Nutshell)

hash mark (#), optional character or space, in mask

help documentation, creating

HTML documents, browsing in application

HTML visualizer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

I/O, file

icons, adding to menus

IDbCommand interface

ImageList control

images

 adding to DataGridView control

 as strongly typed resources

 automatically disposing of

 menu icons

ImageSet property, TreeView control

Immediate window

inline code model

input controls, masking for validation

InputText property, MaskedTextBox control

Insert Snippet option

InsertAfter() method, XPathEditor class

InsertBefore() method, XPathEditor class

integers, unsigned

IntelliSense

 accessing My objects with

 AutoCorrect feature of

 filtering feature of

 future of

 Option Strict feature

interactive tables

interfaces

 generics and

 renaming

Internet Core Protocols (Hall)

Internet Protocol (IP)

InUserInRole() method, Roles class

IP (Internet Protocol)

IPGlobalProperties class

IsAuthenticated property, User object

IsAvailable property, Network object

IsInRole() method, User object

IsNot keyword

IsSplitterFixed property, SplitContainer control

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

key press in console, reading

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

layout controls

left angle bracket (<), convert characters to lowercase

levels of accessibility

Liberty, Jesse (Programming Visual Basic .NET)

literal characters, in masks

LoadedAssemblies property, My.Computer.Info object

Log object

logging 2nd [See also debugging; errors]

logical operators, with short-circuit logic

Login control

LoginName control

LoginStatus control

LoginView control

loops, skipping to next iteration of

lossless compression

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

MacDonald, Matthew (The Book of VB .NET)

magnifying glass next to ToolTip

MainMenu control

mask characters

MaskCompleted property, MaskedTextBox control

masked editing controls

MaskedEditProvider class

MaskedTextBox control

master pages

Means, W. Scott (XML in a Nutshell)

Membership class 2nd

membership features

membership provider

menus

 adding icons to

 customizing

 non-standard fonts in

 overflow menus

MenuStrip control 2nd

methods

 calling at design time

 generics and

 renaming

MigrateAnonymous event

MoveBufferArea() method, Console class

MoveDirectory() method, FileSystem object

MoveFile() method, FileSystem object

MoveToFirstChild() method, XPathNavigator class

MoveToID() method, XPathNavigator class

MoveToNext() method, XPathNavigator class

MoveToParent() method, XPathNavigator class

MoveToPrevious() method, XPathNavigator class

MoveToRoot() method, XPathNavigator class

MP3 files, playing

MSDN SQL Server 2005 Developer Center

multithreaded programming

My Documents folder, retrieving path for

My Music folder, retrieving path for

My namespace, extending

My objects

 adding objects to

 disadvantages of

 extending with partial classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

My Pictures folder, retrieving path for

My.Application object 2nd 3rd

My.Application.Log object

My.Computer object

My.Computer.FileIO object

My.Computer.FileSystem object

 file operations using

 getting file and directory information using

 getting list of drives using

My.Computer.Info object

My.Computer.Network object 2nd

My.Forms object 2nd 3rd

My.Resources object 2nd

My.Settings object 2nd

My.User object 2nd

My.WebServices object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Navigated event, WebBrowser control

Navigating event, WebBrowser control

navigation using site maps

NDoc application

nested loops, skipping to next iteration of

.NET controls, adding to ToolStrip

network connections

 automatically disposing of

 getting information about

Network object 2nd

Now property, DateTime class

Nullable class

nullable data types

nullable reference objects

NullText property, DataGridViewCellStyle class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Object Browser, XML comments in

ObjectDataSource control 2nd 3rd 4th

objects [See also classes]

 automatically disposing of

 custom objects, operators for

 examining during debugging

 finding with My objects

 reference objects, nullable

Office-style toolbars [See ToolStrip control]

online-only mode for applications 2nd

operating system requirements

operators

 for custom objects

 overloading

 with short-circuit logic

Option Strict, IntelliSense

OrElse operator

Orientation property, SplitContainer control

overflow menus

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Panel1Collapsed property, SplitContainer control

Panel1MinSize property, SplitContainer control

Panel2Collapsed property, SplitContainer control

Panel2MinSize property, SplitContainer control

partial classes 2nd 3rd

Partial keyword

PasswordRecovery control

paths, XPath syntax for

period (.)

 .. (move up one node level, XPath)

 current node, XPath

 decimal placeholder, in mask

permissions

personalized information, storing

Ping class 2nd

ping messages, sending

Ping() method, Network object

PingResult object

placeholder characters, in masks

Play() method, SoundPlayer class

PlayLooping() method, SoundPlayer class

PlaySync() method, SoundPlayer class

PrependChild() method, XPathEditor class

Private access

Process class

profile provider

profile settings

Programming Visual Basic .NET (Liberty)

programs folder, retrieving path for

ProgressChanged event, WebBrowser control

projects

 creating

 saving

PromptChar property, MaskedTextBox control

properties

 editing

 get and set procedures, access level of

 renaming

ProtectData() method, ProtectedData class

ProtectedData class

provider-agnostic code

providers

 data provider

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 membership provider

 profile provider

Public access

Public Shared Operator keywords

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Quartz library

question mark (?), optional letter, in mask

Question sound, playing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

read-only properties, split accessibility and

ReadAllBytes() method, FileIO object

ReadAllText() method, FileIO object

ReadKey() method, Console class

ReadyState property, WebBrowser control

recycle bin, sending files or directories to

red error icon, indicating Option Strict error

redraw speed, increasing

refactoring features

reference objects, nullable

RemoveUserFromRole() method, Roles class

RenameDirectory() method, FileSystem object

RenameFile() method, FileSystem object

ResetColor() method, Console class

ResetStatistics() method, SqlConnection class

resources (data)

 retrieving

 strongly typed

resources (further information) [See also books; Web sites]

 discussion groups

 O'Reilly

RetrieveStatistics() method, SqlConnection class

right angle bracket (\\>), convert characters to uppercase

role-management service

Roles class

RootDirectory property, DriveInfo class

RowUpdated event, SqlDataAdapter class

RowUpdating event, SqlDataAdapter class

run-edit-continue debugger

RunWorkerAsync() method, BackgroundWorker component

RunWorkerCompleted event, BackgroundWorker component

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

schema document, XML

security

 controls for, list of

 encrypting user data

 forms authentication

 of web server

 testing current user

 WAT settings for

Select link, GridView control

Select() method

 XPathDocument class

 XPathNavigator class

SelectionBackColor property, DataGridViewCellStyle class

SelectionForeColor property, DataGridViewCellStyle class

SelectRows statistic

SelectSingleNode() method, XPathNavigator class

SendAsync() method, Ping class

serializable data types

ServerRoundtrips statistic

set procedure, properties, access level of

SetBufferSize() method, Console class

SetCursorPosition() method, Console class

setup program for an application

SetValue() method, XPathNavigator class

SetWindowSize() method, Console class

short-circuit logic

ShowExpandCollapse property, TreeView control

Shutdown mode

single instance application

site maps

SiteMapDataSource control

SiteMapViewType property, SiteMapDataSource control

slash (/)

 /\\> (ending tag with)

 date separator, in mask

Solution Explorer

 adding a resource

 assembly metadata, setting

 assembly references, displaying

 catching data type conversion errors, setting

 generating XML documentation, setting

 renaming .vb files in, effects of

 shutdown mode, setting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 single instance application, setting

 specifying command line parameters

sound

 system sounds, playing

 WAV audio, playing

SoundLocation property, SoundPlayer class

SoundPlayer class

SpecialDirectories class

split accessibility

split windows

SplitContainer control

SQL Server

 2005 features for

 version requirements for

SqlBulkCopy class

SqlConnection.RetrieveStatistics() method

SqlConnection.StatisticsEnabled property

SqlDataAdapter class

SqlDataSource control 2nd

square brackets ([]), XPath filters

StackTrace property, My.Computer.Info object

Start() method, Stopwatch class

StartingNodeUrl property, SiteMapDataSource control

startup, enforcing single instance of

stateless FTP interaction

statistics on data connections

StatisticsEnabled property, SqlConnection class

StatusBar control

StatusStrip control

Stop() method

 SoundPlayer class

 Stopwatch class

Stopwatch class

Stream property, SoundPlayer class

strongly typed configuration settings

strongly typed resources

structures

 generics and

 splitting into multiple files

SumResultSets statistic

symbolic rename feature

system requirements

system sounds, playing

System.Collections.ArrayList class

System.Collections.Generic namespace

System.ComponentModel.MaskedEditProvider class

System.Data.Common.DbProviderFactories class

System.Data.SqlClient.SqlClientFactory object

System.Diagnostics.EventLog class

System.Diagnostics.Process class

System.Diagnostics.Stopwatch class

System.IO namespace

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.IO.Compression namespace

System.IO.DriveInfo objects

System.Net.Dns class

System.Net.NetworkInformation.IPGlobalProperties class

System.Net.NetworkInformation.Ping class 2nd

System.Nullable class

System.Security.Cryptography.ProtectedData class

System.Web.Administration namespace

System.Web.Configuration namespace

System.Web.Security.Membership class

System.Web.Security.Roles class

System.Web.UI.WebControls.TreeView class

System.Windows.Forms.Application class

System.Windows.Forms.SystemSounds class

System.Windows.Forms.ToolStrip control

System.Windows.Forms.WebBrowser control

System.Xml namespace

SystemSounds class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tab order, editing

TableLayoutPanel control

tables

 bulk copying of rows between

 interactive

tags for XML comments

TCP (Transmission Control Protocol)

Temp folder, retrieving path for

test marker

text visualizer

TextBox control, AutoComplete support for

The Book of VB .NET (MacDonald)

timestamps

timing code

Title property, Console class

ToolBar control

toolbars [See ToolStrip control]

ToolStrip control

 adding buttons to

 adding non-standard controls to

 adding to a form

 docking capability

 formatting of

 widgets for, list of

ToolStripButton widget

ToolStripComboBox widget

ToolStripContainer

ToolStripControlHost

 adding controls to ToolStrip using

 customizing

ToolStripDropDownButton widget

ToolStripItem class

ToolStripLabel widget

ToolStripMenuItem class

ToolStripProgressBar widget

ToolStripSeparator widget

ToolStripSplitButton widget

ToolStripTextBox widget

ToolTips, debugger DataTips in

trace listeners 2nd

Transmission Control Protocol (TCP)

TreeView control 2nd

TryCast() function

http://lib.ommolketab.ir
http://lib.ommolketab.ir

type casting

typesafe generic classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

UInteger keyword

ULong keyword

underlines (_)

 blue, indicating error found by AutoCorrect

 green squiggly, indicating unsupported edit

UnprotectData() method, ProtectedData class

unsigned integers

UpdateBatchSize property, SqlDataAdapter class 2nd

updates, automatic 2nd

UpdateUser() method, Membership class

UploadFile() method, Network object

user input, validating

User object

user role and personalization settings

user specific information, storing

user-scoped settings

Username property, User object

users

 anonymous, profile information for

 authentication

 current, information about

 encrypting data of

 getting information about

 role-based authorization for

UShort keyword

Using statement

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ValidateUser() method, Membership class

ValueAsBoolean property, XPathNavigator class

ValueAsDateTime property, XPathNavigator class

ValueAsDouble property, XPathNavigator class

ValueAsInt property, XPathNavigator class

ValueAsLong property, XPathNavigator class

variables, renaming

.vb files, renaming

version number, obtaining

Visual Basic

 disposing of objects automatically

 levels of accessibility

 My namespace, extending

 My objects

 My.Application object 2nd 3rd

 nullable data types

 operating system requirements

 operators for custom objects

 partial classes 2nd 3rd

 short-circuit logic for logical operators

 skipping to next iteration of a loop

 strongly typed configuration settings

 strongly typed resources

 typesafe generic classes

Visual Studio

 calling methods at design time

 code snippets

 creating a project

 DataTips feature, debugger

 edit control properties

 edit-and-continue debugging

 Exception Assistant

 IntelliSense filtering and AutoCorrect

 saving a project

 symbolic rename

 version requirements for

 versions of

 versions of, differences between

 XML comments

Visual Studio 2005 developer center

visualizers for debugger DataTips

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

WAT (Web Site Administratin Tool)

WAV audio, playing

web application

 administering

 creating

 database access for

 displaying database records individually

 displaying interactive tables

 number of people using web site

 site maps for navigation of

 standardized layout for

 storing user specific information

web browser, adding to application

web page coding model

web server

web services, default instances of

Web Site Administration Tool [See WAT]

web sites

 #ziplib library

 ASP.NET compilation and deployment, white paper

 blogs on XPathNavigator

 discussion groups

 generics, whitepaper about

 MSDN SQL Server 2005 Developer Center

 NDoc application

 number of people using

 online tutorials for XPath, XQuery, XML Schema

 provider-agnostic coding, whitepaper about

 tutorial on XML schema

 Visual Studio 2005 developer center

web.config file 2nd

web.sitemap file

WebBrowser control

WebRequest class

While loops, skipping to next iteration of

window, console

 background color, setting

 caption for, setting

 cursor in, determining position of

 cursor in, moving

 erasing

 foreground color, setting

 moving buffer area of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 playing beep in

 reading a key press

 resetting foreground and background colors

 setting cursor position

 setting size of

 size of, setting

 visibility of cursor, setting

WindowHeight property, Console class

Windows application

 adding web browser to

 asynchronous tasks, handling

 AutoComplete for TextBox and ComboBox

 cleanup after shutting down

 communicating between forms

 DataGridView control 2nd 3rd

 double-buffering for drawing code

 layout controls

 MenuStrip and ContextMenuStrip controls

 multiple startups, preventing

 playing system sounds

 playing WAV audio

 shutting down, controlling

 split windows

 ToolStrip control

 ToolStripControlHost

 validating user input

 window layout controls for

Windows event log, logging to

Windows recycle bin, sending files or directories to

Windows XP theme, controls supporting

WindowWidth property, Console class

WMA files, playing

WrapMode property, DataGridViewCellStyle class

write-only properties, split accessibility and

WriteAllBytes() method, FileIO object

WriteAllText() method, FileIO object

WriteEntry() method, Log object

WriteToServer() method, SqlBulkCopy class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XML comments

XML documents

 editing

 logging to

 navigating

 validating

XML DOM (document object model)

XML in a Nutshell (Harold; Means)

XML schema document

XML Schema, online tutorial for

XML visualizer

XmlDataSource control

XmlDocument class

XmlNamespaceManager class

XmlReader class

XmlWriter class 2nd

XmlWriterTraceListener class

XPath

XPath online tutorial

XPathDocument class

XPathEditableNavigator class

XPathEditor class

XPathNavigator class

 creating instance of 2nd

 editing XML documents with

XQuery, online tutorial for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ZIP files

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Visual Basic 2005: A Developer's Notebook
	Table of Contents
	Copyright
	The Developer's Notebook Series
	Notebooks Are...
	Notebooks Aren't...
	Organization

	Preface
	Who This Book Is For
	What You Need to Use This Book
	About This Book
	Conventions Used in This Book
	Using Code Examples
	Safari® Enabled
	How to Contact Us
	Acknowledgments

	Chapter 1. Visual Studio
	Section 1.1. How do I do that?
	Section 1.2. Code, Debug, and Continue Without Restarting Your Application
	Section 1.3. Look Inside an Object While Debugging
	Section 1.4. Diagnose and Correct Errorson the Fly
	Section 1.5. Rename All Instances of Any Program Element
	Section 1.6. Use IntelliSense Filteringand AutoCorrect
	Section 1.7. Edit Control Properties in Place
	Section 1.8. Call Methods at Design Time
	Section 1.9. Insert Boilerplate CodeUsing Snippets
	Section 1.10. Create XML Documentation for Your Code

	Chapter 2. The Visual Basic Language
	Section 2.1. Use the My Objects to Program Common Tasks
	Section 2.2. Get Application Information
	Section 2.3. Use Strongly Typed Resources
	Section 2.4. Use Strongly Typed Configuration Settings
	Section 2.5. Build Typesafe Generic Classes
	Section 2.6. Make Simple Data Types Nullable
	Section 2.7. Use Operators with Custom Objects
	Section 2.8. Split a Class into Multiple Files
	Section 2.9. Extend the My Namespace
	Section 2.10. Skip to the Next Iteration of a Loop
	Section 2.11. Dispose of Objects Automatically
	Section 2.12. Safeguard Properties with Split Accessibility
	Section 2.13. Evaluate Conditions Separately with Short-Circuit Logic

	Chapter 3. Windows Applications
	Section 3.1. Use Office-Style Toolbars
	Section 3.2. Add Any Control to a ToolStrip
	Section 3.3. Add Icons to Your Menu
	Section 3.4. Put the Web in a Window
	Section 3.5. Validate Input While the User Types
	Section 3.6. Create Text Boxes thatAuto-Complete
	Section 3.7. Play a Windows System Sound
	Section 3.8. Play Simple WAV Audio
	Section 3.9. Create a Windows Explorer-like Split Window
	Section 3.10. Take Control of Window Layout
	Section 3.11. Control When Your Application Shuts Down
	Section 3.12. Prevent Your Application from Starting Twice
	Section 3.13. Communicate Between Forms
	Section 3.14. Improve Redraw Speeds for GDI+
	Section 3.15. Handle Asynchronous Tasks Safely
	Section 3.16. Use a Better Data-Bound Grid
	Section 3.17. Format the DataGridView
	Section 3.18. Add Images and Controls to the DataGridView

	Chapter 4. Web Applications
	Section 4.1. Create a Web Application in Visual Studio 2005
	Section 4.2. Administer a Web Application
	Section 4.3. Bind to Data Without Writing Code
	Section 4.4. Bind Web Controls to a Custom Class
	Section 4.5. Display Interactive Tables Without Writing Code
	Section 4.6. Display Records One at a Time
	Section 4.7. Achieve a Consistent Look and Feel with Master Pages
	Section 4.8. Add Navigation to Your Site
	Section 4.9. Easily Authenticate Users
	Section 4.10. Determine How Many People Are Currently Using Your Web Site
	Section 4.11. Use Role-Based Authorization
	Section 4.12. Store Personalized Information

	Chapter 5. Files, Databases, and XML
	Section 5.1. Get Drive Information
	Section 5.2. Get File and Directory Information
	Section 5.3. Copy, Move, and Delete Files
	Section 5.4. Read and Write Files
	Section 5.5. Compress and Decompress Data
	Section 5.6. Collect Statistics on Your Data Connections
	Section 5.7. Batch DataAdapter Commands for Better Performance
	Section 5.8. Bulk-Copy Rows from One Table to Another
	Section 5.9. Write Database-Agnostic Code
	Section 5.10. Use the New XPathDocument and XPathNavigator
	Section 5.11. Edit an XML Document with XPathNavigator

	Chapter 6. .NET 2.0 Platform Services
	Section 6.1. Easily Log Events
	Section 6.2. Ping Another Computer
	Section 6.3. Get Information About a Network Connection
	Section 6.4. Upload and Download Files with FTP
	Section 6.5. Test Group Membership of the Current User
	Section 6.6. Encrypt Secrets for the Current User
	Section 6.7. Unleash the Console
	Section 6.8. Time Your Code
	Section 6.9. Deploy Your Application with ClickOnce

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

