
Linux Server Hacks, Volume Two

By Brian K. Jones, William von Hagen

...

Publisher: O'Reilly

Pub Date: December 2005

Print ISBN-10: 0-596-10082-5

Print ISBN-13: 978-0-59-610082-7

Pages: 478

Table of Contents | Index

Today's system administrators deal with a vast number of situations, operating systems, software
packages, and problems. Those who are in the know have kept their copy of Linux Server Hacks
close at hand to ease their burden. And while this helps, it's not enough: any sys admin knows
there are many more hacks, cool tips, and ways of solving problems than can fit in a single volume
(one that mere mortals can lift, that is).

Which is why we created Linux Server Hacks, Volume Two, a second collection of incredibly useful
tips and tricks for finding and using dozens of open source tools you can apply to solve your sys
admin problems. The power and flexibility of Linux and Open Source means that there is an
astounding amount of great software out there waiting to be applied to your sys admin problems --
if only you knew about it and had enough information to get started. Hence, Linux Server Hacks,
Volume Two.

This handy reference offers 100 completely new server management tips and techniques designed
to improve your productivity and sharpen your administrative skills. Each hack represents a clever
way to accomplish a specific task, saving you countless hours of searching for the right answer. No
more sifting through man pages, HOWTO websites, or source code comments -- the only resource
you need is right here. And you don't have to be a system administrator with hundreds of boxen to
get something useful from this book as many of the hacks apply equally well to a single system or a
home network.

Compiled by experts, these hacks not only give you the step-by-step instructions necessary to
implement the software, but they also provide the context to truly enable you to learn the
technology. Topics include:

Authentication

Remote GUI connectivity

Storage management

http://lib.ommolketab.ir

File sharing and synchronizing resources

Security/lockdown instruction

Log files and monitoring

Troubleshooting

System rescue, recovery, and repair

Whether they help you recover lost data, collect information from distributed clients, or synchronize
administrative environments, the solutions found in Linux Server Hacks, Volume Two will simplify
your life as a system administrator.

http://lib.ommolketab.ir

Linux Server Hacks, Volume Two

By Brian K. Jones, William von Hagen

...

Publisher: O'Reilly

Pub Date: December 2005

Print ISBN-10: 0-596-10082-5

Print ISBN-13: 978-0-59-610082-7

Pages: 478

Table of Contents | Index

 Copyright

 Credits

 About the Authors

 Contributors

 Acknowledgments

 Preface

 Why Linux Server Hacks, Volume Two?

 How to Use This Book

 How This Book Is Organized

 Conventions Used in This Book

 Using Code Examples

 How to Contact Us

 Safari® Enabled

 Got a Hack?

 Chapter 1. Linux Authentication

 Section 1.1. Hacks 19: Introduction

 Hack 1. Disable User Accounts Instantly

 Hack 2. Edit Your Password File for Greater Access Control

 Hack 3. Deny All Access in One Second or Less

 Hack 4. Customize Authentication with PAMs

 Hack 5. Authenticate Linux Users with a Windows Domain Controller

 Hack 6. Centralize Logins with LDAP

 Hack 7. Secure Your System with Kerberos

 Hack 8. Authenticate NFS-Lovers with NIS

 Hack 9. Sync LDAP Data with NIS

 Chapter 2. Remote GUI Connectivity

 Section 2.1. Hacks 1019: Introduction

 Hack 10. Access Systems Remotely with VNC

 Hack 11. Access VNC Servers over the Web

 Hack 12. Secure VNC via SSH

 Hack 13. Autostart VNC Servers on Demand

 Hack 14. Put Your Desktops on a Thin Client Diet

http://lib.ommolketab.ir

 Hack 15. Run Windows over the Network

 Hack 16. Secure, Lightweight X Connections with FreeNX

 Hack 17. Secure VNC Connections with FreeNX

 Hack 18. Secure Windows Terminal Connections with FreeNX

 Hack 19. Remote Administration with Webmin

 Chapter 3. System Services

 Section 3.1. Hacks 2028: Introduction

 Hack 20. Quick and Easy DHCP Setup

 Hack 21. Integrate DHCP and DNS with Dynamic DNS Updates

 Hack 22. Synchronize Your Watches!

 Hack 23. Centralize X Window System Font Resources

 Hack 24. Create a CUPS Print Server

 Hack 25. Configure Linux Connections to Remote CUPS Printers

 Hack 26. Integrate Windows Printing with CUPS

 Hack 27. Centralize Macintosh Printing with CUPS

 Hack 28. Define a Secure CUPS Printer

 Chapter 4. Cool Sysadmin Tools and Tips

 Section 4.1. Hacks 2945: Introduction

 Hack 29. Execute Commands Simultaneously on Multiple Servers

 Hack 30. Collaborate Safely with a Secured Wiki

 Hack 31. Edit Your GRUB Configuration with grubby

 Hack 32. Give Your Tab Key a Workout

 Hack 33. Keep Processes Running After a Shell Exits

 Hack 34. Disconnect Your Console Without Ending Your Session

 Hack 35. Use script to Save Yourself Time and Train Others

 Hack 36. Install Linux Simply by Booting

 Hack 37. Turn Your Laptop into a Makeshift Console

 Hack 38. Usable Documentation for the Inherently Lazy

 Hack 39. Exploit the Power of Vim

 Hack 40. Move Your PHP Web Scripting Skills to the Command Line

 Hack 41. Enable Quick telnet/SSH Connections from the Desktop

 Hack 42. Speed Up Compiles

 Hack 43. Avoid Common Junior Mistakes

 Hack 44. Get Linux Past the Gatekeeper

 Hack 45. Prioritize Your Work

 Chapter 5. Storage Management and Backups

 Section 5.1. Hacks 4655: Introduction

 Hack 46. Create Flexible Storage with LVM

 Hack 47. Combine LVM and Software RAID

 Hack 48. Create a Copy-on-Write Snapshot of an LVM Volume

 Hack 49. Clone Systems Quickly and Easily

 Hack 50. Make Disk-to-Disk Backups for Large Drives

 Hack 51. Free Up Disk Space Now

 Hack 52. Share Files Using Linux Groups

 Hack 53. Refine Permissions with ACLs

 Hack 54. Make Files Easier to Find with Extended Attributes

http://lib.ommolketab.ir

 Hack 55. Prevent Disk Hogs with Quotas

 Chapter 6. Standardizing, Sharing, and Synchronizing Resources

 Section 6.1. Hacks 5662: Introduction

 Hack 56. Centralize Resources Using NFS

 Hack 57. Automount NFS Home Directories with autofs

 Hack 58. Keep Filesystems Handy, but Out of Your Way

 Hack 59. Synchronize root Environments with rsync

 Hack 60. Share Files Across Platforms Using Samba

 Hack 61. Quick and Dirty NAS

 Hack 62. Share Files and Directories over the Web

 Chapter 7. Security

 Section 7.1. Hacks 6368: Introduction

 Hack 63. Increase Security by Disabling Unnecessary Services

 Hack 64. Allow or Deny Access by IP Address

 Hack 65. Detect Network Intruders with snort

 Hack 66. Tame Tripwire

 Hack 67. Verify Fileystem Integrity with Afick

 Hack 68. Check for Rootkits and Other Attacks

 Chapter 8. Troubleshooting and Performance

 Section 8.1. Hacks 6977: Introduction

 Hack 69. Find Resource Hogs with Standard Commands

 Hack 70. Reduce Restart Times with Journaling Filesystems

 Hack 71. Grok and Optimize Your System with sysctl

 Hack 72. Get the Big Picture with Multiple Displays

 Hack 73. Maximize Resources with a Minimalist Window Manager

 Hack 74. Profile Your Systems Using /proc

 Hack 75. Kill Processes the Right Way

 Hack 76. Use a Serial Console for Centralized Access to Your Systems

 Hack 77. Clean Up NIS After Users Depart

 Chapter 9. Logfiles and Monitoring

 Section 9.1. Hacks 7888: Introduction

 Hack 78. Avoid Catastrophic Disk Failure

 Hack 79. Monitor Network Traffic with MRTG

 Hack 80. Keep a Constant Watch on Hosts

 Hack 81. Remotely Monitor and Configure a Variety of Networked Equipment

 Hack 82. Force Standalone Apps to Use syslog

 Hack 83. Monitor Your Logfiles

 Hack 84. Send Log Messages to Your Jabber Client

 Hack 85. Monitor Service Availability with Zabbix

 Hack 86. Fine-Tune the syslog Daemon

 Hack 87. Centralize System Logs Securely

 Hack 88. Keep Tabs on Systems and Services

 Chapter 10. System Rescue, Recovery, and Repair

 Section 10.1. Hacks 89100: Introduction

 Hack 89. Resolve Common Boot and Startup Problems

 Hack 90. Rescue Me!

http://lib.ommolketab.ir

 Hack 91. Bypass the Standard Init Sequence for Quick Repairs

 Hack 92. Find Out Why You Can't Unmount a Partition

 Hack 93. Recover Lost Partitions

 Hack 94. Recover Data from Crashed Disks

 Hack 95. Repair and Recover ReiserFS Filesystems

 Hack 96. Piece Together Data from the lost+found

 Hack 97. Recover Deleted Files

 Hack 98. Permanently Delete Files

 Hack 99. Permanently Erase Hard Disks

 Hack 100. Recover Lost Files and Perform Forensic Analysis

 Colophon

 Index

http://lib.ommolketab.ir

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: David Brickner Production Editor: Jamie Peppard

Series Editor: Rael Dornfest Cover Designer: Karen Montgomery

Executive Editor: Dale Dougherty Interior Designer: David Futato

Printing History:

December 2005: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Hacks series designations, Linux Server Hacks, Volume Two, the image of
two hatchets, and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

Small print: The technologies discussed in this publication, the limitations on these technologies that
technology and content owners seek to impose, and the laws actually limiting the use of these
technologies are constantly changing. Thus, some of the hacks described in this publication may not
work, may cause unintended harm to systems on which they are used, or may not be consistent with
applicable user agreements. Your use of these hacks is at your own risk, and O'Reilly Media, Inc.
disclaims responsibility for any damage or expense resulting from their use. In any event, you should
take care that your use of these hacks does not violate any applicable laws, including copyright laws.

ISBN: 0-596-10082-5

[C]

http://lib.ommolketab.ir

Credits

About the Authors

Contributors

Acknowledgments

http://lib.ommolketab.ir

About the Authors

Bill von Hagen has been a Unix system administrator for 20 years and a Linux fanatic since 1993.
He has also worked as a systems programmer, product manager, writer, application developer,
drummer, and content manager.

Bill has written or cowritten books on such topics as Linux filesystems, SUSE Linux, Red Hat Linux,
GCC, SGML, Mac OS X, Linux system administration, and hacking the TiVo. He has written numerous
articles on Linux, Unix, and open source topics for publications including Linux Magazine, Linux
Journal, Linux Format, and Mac Format. An avid computer collector specializing in workstations, he
owns more than 200 computer systems and wants more. You can reach him at
vonhagen@vonhagen.org.

Brian K. Jones (Jonesy) has been a Unix and Linux system and network administrator for six years.
He has also held positions and consulted in the capacity of database administrator, web developer,
project manager, instructional speaker, technical writer and editor, and studio musician, for clients
large and small.

In the past, Brian has written extensively on topics revolving around Linux and open source software
for Linux.com, Newsforge, and Linux Magazine, and he has served as author and Editor-in-Chief of
php|architect magazine. In his copious free time (right), Brian enjoys playing billiards and guitar,
woodworking, and writing code. He has worked as a system and network administrator for the
computer science department at Princeton University since 2001, and as a part-time infrastructure
computing consultant since 2000. You can reach him at jonesy@linuxlaboratory.org.

http://lib.ommolketab.ir

Contributors

The following people contributed their writing, code, and inspiration to Linux Server Hacks, Volume
Two:

Jon Fox [Hacks #33 and #62] (jon.fox@gnu.org.uk) is a Linux user and free software
advocate. He's been using Linux since 1996.

Tom Limoncelli [Hack #45] has over 15 years of system administration experience and has
been teaching workshops on time management at conferences since 2003. Tom has authored
Time Management for System Administrators (O'Reilly) and The Practice of System and
Network Administration (Addison Wesley). Outside of work, Tom has won awards for his
activism in gay/bi/lesbian rights and now helps progressive causes to use technology to further
their goals.

Lance Tost has been a Linux user since the 0.98 kernel days, while he earned his B.S. in
Computer Science. He has held programming, DBA, and, Unix administration positions. Lance is
a Red Hat Certified Engineer as well as a Solaris Certified System Administrator. Lance
contributed [Hacks #29, #41, #48, #59, #63, and #72].

Brian Warshawsky is an enthusiastic proponent of all things Linux and open source. His main
interests include security, wireless networking, and finding new applications for the Linux
operating system. By day he is a professional Unix/Linux system administrator, and by night
he's a technical writer and avid mountain biker. He lives in Virginia with his soon-to-be wife
Jennifer, his loyal dog Max, and his much less loyal cat Jackie. Brian contributed [Hacks #19,
#55, #64, #66, #67, #73, #75, #76, #79, #85, #86, and #87].

David Brickner [Hack #42] is not a Linux server administrator, but as a Gentoo user, he has
learned a couple of things about compiling software. David believes Linux will be the dominant
desktop operating system in the near future, and to encourage its adoption, he has written Test
Driving Linux and Linux Desktop Pocket Guide, both from O'Reilly.

http://lib.ommolketab.ir

Acknowledgments

Bill: For my wife, Dorothy Fisher, without whom life wouldn't be anywhere near as good or as much
fun, and for Mike Bauer, Bill Gaussa, and Larry Weidman, who gave me many professional
opportunities and encouraged me to expand my horizons. I'd also like to thank David Brickner,
without whom I never would have finished this book (well, at least not this year) and for the
opportunity to write for O'Reilly in general. Without David's suggestions, comments, and general
support, this would be a lesser book.

Finally, no book having to do with GNU/Linux would be complete without thanking Richard Stallman,
Linus Torvalds, and the open source community in general. I'd also like to thank my coauthor, Brian
Jones, for making this book better than it would have been without him.

Brian: For my wife, Natasha, who has supported and encouraged me in all of my ambitions and
goals, and has dealt with my nonsense while in pursuit of said ambitions and goals. Also for my
siblings: Heather, for forcing me to pursue computing as a career; Jessica, for being almost
sickeningly positive and encouraging; Jon, for keeping me on my toes; and Russell, without whom I
might've self-destructed long ago.

A hearty thanks goes to David Brickner, who offered me the opportunity to write for O'Reilly, and
whose even keel, firm hand, and sheer diligence have made this a wonderful experience. I'd also like
to thank all the folks at OSTG, TriLUG, and php|architect, for being friends of mine; Matt Appio, for
making me take occasional fishing breaks; and my coworkers at Princeton, for teaching me far more
than I could ever list here.

To Linus Torvalds and the rest of the open source community: thank you so much for all your work.

http://lib.ommolketab.ir

Preface
Both authors of this book have been system administrators for a while. When the opportunity to write
this book came about, we initially focused on cool hacks we'd developed or used in our server and
system administration careers. We also asked friends, who asked their friends, and we were
therefore able to get some great contributions from others to augment the things that we'd come up
with. Everybody has problems they like to solve. Bill likes distributed authentication, undeleting and
recovering files, and tweaking filesystems in general. Brian likes making admin tasks more efficient,
reliable, and repeatable; has a bucketload of cool scripts to do various tasks; and loves getting and
using data from remote sources. And every sysadmin has favorite techniques for solving problems,
so Hack is to Hacker as Cool Tip or Technique is to Server or System Administrator. Sysadmin hacks
are essentially clever ways of approaching whatever problem you're trying to solve, whether it's
figuring out how to recover lost data, trying to collect information from distributed clients in one place
so that you can easily see the big picture or anything else that comes up.

As we worked on this book, thinking about cool server and sysadmin hacks mutated into thinking
about general tips and tricks that we found useful to simplify our lives as system administrators. We
also noticed that there weren't really any books available along the lines of "Things We Wish Previous
System Administrators Had Told Us." Leaving aside obvious questions like "where is the key to the
RAID array" and "what was the root password on <insert hostname here>," we decided to "hack the
Hacks series" a bit and incorporate some general sysadmin information, tips, and tricks as another of
this book's primary themes. This means that we provide a bit more background material than you
ordinarily see in Hacks books. You're not going to hurt our feelings if you skip over things you already
know, but we hope that all the material will be found useful by some of our readers. We could have
used it years ago, and as Mr. Rogers used to say, "It's nice to share."

Sometimes, too much software and too many choices can be a problem. Should we use MTRG,
Ethereal, EtherApe, or some other application to monitor network traffic? Should we create logical
volumes using linear RAID, LVM, LVM2, or EVMS? Should we do our resumes in TeX, LaTeX, troff,
lout, SGML, or XML? You get the idea. If you need to solve a problem but don't know what tool to
select from among the myriad choices available, you can spend exponentially more time selecting the
right software and ramping up than you do actually solving the problem. For that reason, a book on
task-oriented solutions to common problems has been a lot of fun to write, and it should save you
many an overnight Google sessionas well as providing information that works together and is up to
date at the time of writing. All the hacks in this book are techniques that we've used at various times
and that we view as time-and hassle-savers that are usually downright fun and cool.

Aside from the "too much software" issue just mentioned, a related concept (and the deep, dark
secret of open source) is that not all open source projects are "finished"ever. (For God's sake, don't
tell Microsoft!) Not only do you have many, many choices in the open source space, but the ones you
find may do only 95% of what you want, missing on the truly critical 5%. Though there's a lot of
really cool-looking, whizzy open source software out there, sometimes the zip gun that reliably fires
one bullet using a rubber band is preferable to the chromed fusion-powered death ray that works
only 75% of the timethus books like this one, in which people explain how to accomplish things using
packages they've actually used and often still depend on, even if the packages aren't perfect. The
tools discussed in these hacks are generally good additions to anyone's toolbox/ library of tips and

http://lib.ommolketab.ir

tricksand we'll show you how to use them for a variety of purposes.

Again, rather than just explaining how to do specific tasks, we've tried to provide a little background
and context for our approach. This is a book of hacks, but you deserve a little bit of extra info to put
the hacks, tools, and solutions in the right context. Where possible, we've also identified other
packages and procedures that may accomplish the same goal, but we focus on our preferred
solutions for different types of problems.

http://lib.ommolketab.ir

Why Linux Server Hacks, Volume Two?

The term hacking has a bad reputation in the press, where it used to refer to someone who breaks
into systems or wreaks havoc, using computers as their weapon. Among people who write code,
though, the term hack refers to a "quick-and-dirty" solution to a problem or a clever way to get
something done. And the term hacker is taken very much as a compliment, referring to someone as
being creative, having the technical chops to get things done. The Hacks series is an attempt to
reclaim the word, document the good ways people are hacking, and pass the hacker ethic of creative
participation on to the uninitiated. Seeing how others approach systems and problems is often the
quickest way to learn about a new technology.

Linux Server Hacks, Volume Two came about because today's sysadmins need to deal with a vast
number of situations, operating systems, software packages, and problemsand also because our
original title, Son of Linux Server Hacks, was rejected. The original Linux Server Hacks is a great
bookboth authors owned it before starting this projectbut there are many more hacks, cool tips, and
ways of resolving problems that sysadmins face than can fit in a single volume (one that mere
mortals can lift, that is). The power and flexibility of Linux means that there is an incredible amount
of great Linux software out there, waiting to solve your sysadmin problemsif you know about it.
Hence Linux Server Hacks, Volume Two. This book discusses some of our favorite software packages,
how to use them to make your life as a sysadmin easier, how to best keep all the systems you're
responsible for up and running smoothly, and how to keep your users happy (even if they may not
know or appreciate just how wizardly you've been).

http://lib.ommolketab.ir

How to Use This Book

You can read this book from cover to cover if you like, but each hack stands on its own, so feel free
to browse and jump to the different sections that interest you most. If there's a prerequisite you
need to know about, a cross-reference will guide you to the right hack. We've also tried not to be shy
or "our book"-centricif there are other books on a topic that we particularly like or find valuable,
we've put references to them at the end of the hack. Some of them are other books from O'Reilly,
but we're not recommending them for any reason other than the fact that we've found them to be
useful. We only recommend what we believe in.

http://lib.ommolketab.ir

How This Book Is Organized

This book is divided into 10 chapters, organized by subject:

Chapter 1, Linux Authentication

Use the hacks in this chapter to explore the authentication options that are available to you in
heterogeneous networked computing environments and simplify administering user accounts
and passwords. This chapter also provides some quick and dirty tips for those unfortunate
moments when, for one reason or another, you have to lock users out of specific systems
quickly.

Chapter 2, Remote GUI Connectivity

This chapter explores ways of connecting to remote systems. When you just can't be
everywhere at once, it's incredibly useful to be able to access multiple consoles and graphical
displays from the convenience of your office or machine room. You'll find many of the hacks in
this chapter to be handy tips that you may want to pass on to your users who also need to
work on multiple systems, regardless of what operating systems they're running.

Chapter 3, System Services

Networks make it easy to set up servers on specific systems to address the needs of clients
throughout your computing environment. The hacks in this chapter explain how to set up
central servers that do things like synchronize the time on all the systems in your environment
(via NTP), deliver IP addresses to newly connected hosts (using DHCP), and integrate these
services with existing ones (with DHCP and name lookups done via DNS, for example). This
chapter also discusses setting up centralized access to printers from both sideshow to set up
your print servers, and how to access them from the various operating systems that your users
may have running on their desktops.

Chapter 4, Cool Sysadmin Tools and Tips

This chapter presents a variety of cool sysadmin tips and techniques that we've accumulated
over the years, including how to keep processes running without writing a daemon or staying
logged in, how to use PXE to netboot Linux, how to share information with fellow sysadmins in
a centralized fashion, how to get the most out of classic but incredibly useful terminal-oriented
applications (such as minicom, screen, and vi), and so on. We also discuss how to quickly and
easily create documentation for your sysadmin policies and procedures so that your successors
can figure out how things work after Google hires you away from your current employer.

Chapter 5, Storage Management and Backups

http://lib.ommolketab.ir

If everything just kept running forever, storage was infinite, and users never executed the rm
command with the wrong arguments, this chapter would be unnecessary. Welcome to Earth!
Things don't actually work that way. However, the hacks in this chapter explore some cool
ways of making it easier for you to manage storage, deploy new systems, do backups of
today's huge disks, and even reduce the need for some of the restore requests that
occasionally clog every sysadmin's inbox.

Chapter 6, Standardizing, Sharing, and Synchronizing Resources

Networked computing environments make it easy to store data on different machines or on
centralized servers. This chapter provides some tips and tricks for managing distributed
storage and making sure the administrative environments on your servers are synchronized.

Chapter 7, Security

Security is not just a job; it's an adventure with no end in sight. Crackers are always working
on new ways to break into existing networks and machines, and you need to be able to either
lock them out or at least understand what they've broken when they get in. The hacks in this
chapter discuss a wide range of security tools and techniques that can help you sleep at night
and protect your systems at the same time.

Chapter 8, Troubleshooting and Performance

This chapter provides techniques for optimizing system performance, whether by figuring out
who's hogging the entire CPU and shooting down that user's nethack sessions or by using cool
knobs in the /proc filesystem to tweak system performance or using journaling filesystems to
minimize system restart time. It also provides some useful X hacks, such as an easy way to
use multiple monitors on a single system and a discussion of reducing desktop overhead by
punting GNOME or KDE in favor of simpler X Window managers that eliminate CPU-intensive
bells and whistles and actually just manage windows.

Chapter 9, Logfiles and Monitoring

Logfiles aren't just a diary for your system and its core applications; they are a useful record
that you can use to spot emerging problems so you can correct them before they mature into
catastrophes. This chapter includes hacks that enable you to centralize log information in a
variety of ways, be warned when problems arise, and get the most out of system status
information, whether it's log information, internal disk controller status data, or remote
hardware status information that you can collect via SNMP. It also discusses tools for
monitoring your network and spotting the BitTorrent user who's slowing down your CEO's web
browsing.

Chapter 10, System Rescue, Recovery, and Repair

Sooner or later, some system that you're responsible for will go down. If you can't fix your
problems by board-swapping, the hacks in this chapter will show you how to boot crippled
systems so that you can diagnose problems, repair munged filesystems, and even (if you're
lucky) recover deleted files or data that was stored on disks that have gone belly up. Try the

http://lib.ommolketab.ir

tips and tricks in this chapter if you're having problemsthere's always plenty of time to panic
later.

http://lib.ommolketab.ir

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Italics

Used to indicate URLs, Unix utilities, filenames, filename extensions, and directory/folder
names. For example, a path in the filesystem will appear as /Developer/Applications.

Constant width

Used to show code examples, the contents of files, and console output, as well as the names of
variables, commands, and other code excerpts in the text.

Constant width bold

Used to indicate user input, such as commands to be entered by the user, and to highlight
portions of code (typically new additions to old code).

Constant width italic

Used in code examples to show sample text to be replaced with your own values.

Gray type

Used to indicate a cross-reference within the text.

You should pay special attention to notes set apart from the text with the following icons:

This is a tip, suggestion, or general note. It contains useful supplementary
information about the topic at hand.

This is a warning or note of caution, often indicating that your money or your
privacy might be at risk.

The thermometer icons, found next to each hack, indicate the relative complexity of the hack:

http://lib.ommolketab.ir

 beginner moderate expert

http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Linux Server Hacks, Volume Two by Bill von Hagen and Brian K.
Jones. © 2006 O'Reilly Media, Inc., 0-596-10082-5."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

http://lib.ommolketab.ir

How to Contact Us

We have tested and verified the information in this book to the best of our ability, but you may find
that features have changed (or even that we have made mistakes!). As a reader of this book, you
can help us to improve future editions by sending us your feedback. Please let us know about any
errors, inaccuracies, bugs, misleading or confusing statements, and typos that you find anywhere in
this book.

Please also let us know what we can do to make this book more useful to you. We take your
comments seriously and will try to incorporate reasonable suggestions into future editions. You can
write to us at:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the U.S. or Canada)
(707) 829-0515 (international/local)
(707) 829-0104 (fax)

To ask technical questions or to comment on the book, send email to:

bookquestions@oreilly.com

The web site for Linux Server Hacks, Volume Two lists examples, errata, and plans for future
editions. You can find it at:

http://www.oreilly.com/catalog/morelnxsvrhks/

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

http://www.oreilly.com/catalog/morelnxsvrhks/
http://www.oreilly.com
http://lib.ommolketab.ir

Safari® Enabled

 When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

http://safari.oreilly.com
http://lib.ommolketab.ir

Got a Hack?

To explore Hacks books online or to contribute a hack for future titles, visit:

http://hacks.oreilly.com

http://hacks.oreilly.com
http://lib.ommolketab.ir

Chapter 1. Linux Authentication

Section 1.1. Hacks 19: Introduction

Hack 1. Disable User Accounts Instantly

Hack 2. Edit Your Password File for Greater Access Control

Hack 3. Deny All Access in One Second or Less

Hack 4. Customize Authentication with PAMs

Hack 5. Authenticate Linux Users with a Windows Domain Controller

Hack 6. Centralize Logins with LDAP

Hack 7. Secure Your System with Kerberos

Hack 8. Authenticate NFS-Lovers with NIS

Hack 9. Sync LDAP Data with NIS

http://lib.ommolketab.ir

1.1. Hacks 19: Introduction

Security is a primary concern of any sysadmin, especially in today's completely connected network
environments. After locking down networks and systems to minimize the number of opportunities
intruders have to access your machines (as discussed elsewhere in this book), providing secure
mechanisms to enable users to log in on your machines is critical to their security. Let's face itby
design, anyone with physical or network access to a login prompt on one of your machines usually
has a few chances to try to crack someone's login and password in order to gain access.

Many organizations try to secure logins simply by assigning passwords that look like line noise or
TECO commands. Unfortunately, this strategy addresses only one aspect of authentication and has
the nasty side effect of causing most people to write down their passwords, since only The Amazing
Kreskin could remember them. So what are the alternatives? As explained in this chapter, flexible
authentication mechanisms such as Pluggable Authentication Modules (PAMs) enable the login
sequence to invoke multiple security checks, beyond just a password, to help minimize the chances
of unauthorized logins. Similarly, networked authentication mechanisms can enhance login security
by centralizing authentication checks on secure servers and can provide other organizational benefits,
such as encrypted network communications and providing login information for different operating
systems, not just your Linux machines. Networked authentication mechanisms inherently benefit
sysadmins by providing one true location for creating and managing information about your users. Of
course, you still have to convince your users not to use their birthdays, their license plate numbers,
or the names of their significant others as passwordsbut we can't really help you there.

The hacks in this chapter discuss various ways of dealing with the whole spectrum of user
authentication issues, ranging from ways that a sysadmin can use to quickly disable all logins or
specific accounts, through some cool tweaks you can do to your local password file, to networked
mechanisms you can use for centralized authentication of different types of systems. Providing
secure authentication mechanisms for your systems doesn't have to be a nightmarelet the hacks in
this chapter teach you a few tricks and choose the authentication mechanism that's right for the
computing environment for which you're responsible.

http://lib.ommolketab.ir

Hack 1. Disable User Accounts Instantly

In a crisis, here's how to quickly disable a user account, using only a text editor.

Sooner or later every system administrator gets the call to disable a user's account. Regardless of
whether this is due to termination or for general security reasons, you have to move quickly to
satisfy the Human Resources department or layer of management that's on the other end of the line.
If you're used to graphical tools for user management, this can take a little while, but luckily there's a
quick and easy solution to this request that just involves a text editor.

1.2.1. Disabling Accounts on Systems That Use Local Authentication

On older Unix systems passwords were stored in the /etc/password file, but they were moved to the
/etc/shadow file (which is readable only by the root user) on more recent systems to prevent non-
root users from having access to the encrypted form of a user's password, for security reasons. Most
Linux systems that use local authentication store passwords in the /etc/shadow file, though some still
use /etc/passwd as an artifact or for compliance with aging applications. If the second colon-
separated field in each entry in /etc/passwd contains an x, your system is using the /etc/shadow file
to hold password information. If you see other characters between the first and second colons, your
system is still storing its password information in the /etc/passwd file.

To quickly disable accounts on a Linux file server or on a user's desktop machine, bring up
/etc/shadow in a text editor and insert an asterisk (*) as the first character in the second field of the
file (after the first colon), which is where the password is stored. This prevents subsequent logins but
leaves the existing password intact. If circumstances reverse themselves and you're asked to re-
enable the user's account, you can simply remove the asterisk to re-enable logins with the existing
password. This is similar to the approach taken by the usermod -L user command, which inserts an

exclamation mark (!) at the beginning of a user's password entry to lock out that user. Actually, if
your system provides the usermod command, you can just as easily use this command to disable an
account, as long as /usr/sbin is in your PATHit's good to know how the command really works,
though.

You never want to remove a user's data until it has been safely backed up, so userdel -r user is the

wrong command to use when you simply need to lock out a user. Removing an existing user account
with the userdel command also often leaves you open to reusing the old user ID (UID) the next time
you create an account, which should be against IT policy for security and privacy reasons.

Reusing UIDs is a bad idea because if a new account is created with a UID that previously existed on
your system, the new user will own any files still on the system that were owned by the previous
user. This most commonly occurs with email stored in system directories outside the user's home
directory, but such files can exist anywhere the previous user had write privileges. This can also

http://lib.ommolketab.ir

cause a problem if files or directories owned by the previous user are restored from backups for some
reason. Adopting a policy of not reusing UIDs prevents users from "accidentally" getting rights to files
to which they shouldn't really have access.

When disabling a user's account, don't forget to change or disable the login
passwords for other accounts that the user may know.

1.2.2. Disabling Accounts on Systems That Use Distributed
Authentication

If your site uses a distributed authentication mechanism such as LDAP (the Lightweight Directory
Access protocol) or NIS (the Network Information Service, originally designed by Sun Microsystems
for use with the Network File System), quickly disabling an account is slightly more difficult, but it's
even more important that you be able to do so. If you are using distributed authentication, until the
account is disabled, a user has access to all the machines at your site that share this authentication
mechanism.

Systems that use NIS for authentication rely on centralized password and shadow files that are
distributed to NIS clients by an NIS server. Many NIS systems store password information directly in
the NIS password file (/var/yp/ypetc/passwd), because using NIS to share shadow password files
(/var/yp/ypetc/shadow) largely defeats the security implied by the shadow file. On systems using
local authentication, only the root user can read the /etc/shadow filebut on NIS systems, any user
who can listen to the NIS server can see the shadow file.

To quickly disable a user's account on systems that use NIS, you can directly edit the NIS master of
the password or shadow file in exactly the same way that you edited the local copy in the previous
section of this hack, putting an asterisk in front of the password entry for the specified user. The NIS
masters of these files are stored in the directory /var/yp/ypetc on your NIS server. If the second
colon-separated field in each entry in /var/yp/ypetc/passwd contains an x, your system is using the
/var/yp/ypetc/shadow file to store password information. If you see other characters between the
first and second colons, your system is still storing password information in /var/yp/ypetc/passwd.

Once you've modified the /var/yp/ypetc/passwd or /var/yp/ypetc/shadow file, you must push it to all
NIS clients by changing directory to the /var/yp directory and using the make command:

 # cd /var/yp;make

You can, of course, always change an NIS user's password by executing the yppasswd user command,

but if you need to re-enable the account you will have to work with the user to reset the password.

LDAP is a much more powerful distributed technology than NIS, because it provides a central source
from which many different applications can retrieve many different types of information. As discussed
in "Centralize Logins with LDAP" [Hack #6], LDAP information directories, also known as databases,
provide a great solution for a central, enterprise-wide source for login, password, and other per-user

http://lib.ommolketab.ir

account information. However, because sites that use LDAP for authentication do not use the
standard password or shadow files to hold password information, you can only disable LDAP accounts
by changing the information in the LDAP database. You can disable a user account either by changing
information about a specific account record (known as "attributes") in the database, by changing the
access control list (ACL) on the information about the account so that the user no longer has access
to it, or by directly changing the user's password in the database.

Unless you are completely familiar with the schemas used in your LDAP database, disabling an
account by changing its password is the fastest and easiest method. This doesn't require that you
remember every characteristic of your LDAP user/account scheme, and it can be done using the
ldappasswd command. To change a user's password when you are using LDAP authentication,
become the root user, run this command, and supply a new password when prompted to do so:

 # ldappasswdl user

http://lib.ommolketab.ir

Hack 2. Edit Your Password File for Greater Access
Control

With just a few one-line text file edits, you can control who can access your servers.

I can't cite statistics, but my experience in lending a hand to friends and clients has led me to the
conclusion that most sites have an "all or nothing" approach to creating and managing user accounts
on their machines. If the site uses NIS, their nsswitch.conf file says to use NIS for user account
information. If the site uses LDAP, they use LDAP for user account information. The problem here is
that this implies that every single account in the directory is actually a valid account on any machine,
whether those users belong there or not.

Of course, there are firewalls, router ACLs, and all manner of security appliances and software
between servers and users who shouldn't have access to thembut data centers are run by humans,
and humans make mistakes, especially in large, complex networks. Mistype the VLAN tag on a switch
port, for example, and all of a sudden anyone from Engineering can SSH to your production
application server. This hack shows you how a few simple text edits will allow you to limit which users
in an NIS directory can access the local machine.

The entries in the /etc/nsswitch.conf file on a Linux system determine how it resolves requests for
information about users, groups, and other host information. Let's concentrate on just the passwd
line. If you're using NIS, it might look something like this:

 passwd files nis

This means that when the system is trying to find information about a user account, such as the
user's login shell or what name a numeric UID maps to, it'll first look in /etc/passwd, and then fall
back on NIS. If a user is listed in either of these resources, it's a valid account and (barring any other
protections) the operation succeeds.

But suppose you want only a handful of people to have valid accounts on the machines, instead of
everyone in the entire NIS domain. We can do that! As an example, let's add two lines to the bottom
of the /etc/passwd file:

 +@admins
 +jonesy

http://lib.ommolketab.ir

The first line makes all the users in the admins netgroup valid accounts on this machine. The second
line makes jonesy a valid account on this machine. All other accounts will be invalid when we
complete the configuration. The only thing left for us to do is to edit the /etc/nsswitch.conf file to
make it look something like this:

 passwd: compat
 passwd_compat: nis

The first line says to call the nss_compat module, and the second line tells the nss_compat module to
use NIS for the lookup (other valid values here are nisplus or ldap). Now, to test, run the following
command:

 $ getent passwd jonesy

This will consult the /etc/nsswitch.conf file to figure out where to get the information. When it sees
compat, it will go to the /etc/passwd file to see if jonesy is listed there. If the account is not listed, it
will not display any output. If it is listed, it will query the NIS server and retrieve the account record,
which will look something like this:

 jonesy:x:1001:100:Brian Jones:/home/jonesy:/bin/bash

In addition, running getent passwd without arguments will return records for every valid account on
the system, which in our example will include all of the users in the admins netgroup, the jonesy
account, and (of course) all of the system accounts that were in the /etc/passwd file before we ever
touched it.

It's often desirable to be able to access user information for accounts that are not valid on the
machine, thoughand in other circumstances, accounts that should be valid on a particular machine
shouldn't actually be able to log into that machine. For example, I don't want users logging onto my
mail server, but my mail server needs to be able to map inbound mail to account names in order to
accept mail. In cases such as these, you can add this line at the bottom of your /etc/passwd file:

 +::::::/sbin/nologin

Now, running the getent passwd command will show you all the system accounts, then the accounts
you added earlier, and then every other account. It will show full records for all accounts, but the
login shell for the accounts at the end will be /sbin/nologin, which will keep those users from logging
into the machine and getting a shell. Note that this line needs to be the last line in the password file,
since lines are read and resolved in order. If the line above came before the +jonesy line, for
example, it would find a record for me with the /sbin/nologin shell first, and I would not be able to log

http://lib.ommolketab.ir

onto the machine, even though the +jonesy line appears later in the file.

Note that in addition to using the + sign to add valid users, you can use thesign to exclude users. If
you want all but a handful of accounts to be valid, it's easy to do. For example, if you wanted all
accounts to be valid login accounts except for those accounts in the badguys netgroup, you could add
a line like this to the /etc/passwd file:

 -@badguys

Those accounts would no longer be able to log in on the machine in question.

http://lib.ommolketab.ir

Hack 3. Deny All Access in One Second or Less

Here's a safe way to keep out all users while doing temporary maintenance or
troubleshooting.

All administrators eventually need to have a machine running in full multiuser mode, with all services
running, but at the same time completely deny login access to the machine. This is usually for the
purpose of troubleshooting a problem, testing a new software installation, or performing maintenance
or software upgrades. There are a couple of really quick ways to do this.

The first method is by far the quickest. Just run the following command (as root):

 # touch /etc/nologin

This will deny access to anyone trying to log in to the machine. You'll want to be sure to keep an
active login session on the machine after you create this file or make sure that root is allowed to log
in on the local console or via SSH, since a root login will bypass this mechanism. You'll know it's
working because the logs for some services will tell you that access was denied because of the
presence of the nologin file. Others will just say "failed password."

This method can be improved through the use of a nologin.txt file, where you can put some text that
users will see when they try to log in. If you have a scheduled downtime, for instance, you can put
the details into this file so that users will get a friendly reminder that the machine is unavailable
during the downtime window.

The second method works only if the services you're running are linked against libwrap, in which case
you can very quickly cut off all access to the machine. To check that a service is linked against
libwrap, use the ldd command on the binary for the service. For example, to make sure my SSH
service is linked against libwrap, I've done the following:

 # ldd /usr/sbin/sshd
 linux-gate.so.1 => (0x004ab000)
 libwrap.so.0 => /usr/lib/libwrap.so.0 (0x0072f000)
 …(lots deleted)

The above output shows all the libraries sshd is linked against, and the path to the library file being
used. Clearly, libwrap is linked here. Once you've confirmed that this is the case for the other

http://lib.ommolketab.ir

services you're running, you're ready for the next step.

Create a file called /etc/hosts.deny.ALL, which should consist of only one line:

 ##### /etc/hosts.deny.ALL
 ALL:ALL@ALL

Now, whenever you need to shut down access to the machine, you simply move your
/etc/hosts.allow and hosts.deny files out of the way and move your hosts.deny.ALL file into place.
Here's a command line that'll handle it nicely:

 # cd /etc; mv hosts.allow hosts.allow.bak; mv hosts.deny hosts.deny.bak
 # mv hosts.deny.ALL hosts.deny

Now you're left with only a single hosts.deny file, which denies access to everything. Note that it
would not help you to just move both files out of the way, because tcpwrappers treats the absence of
a file just like an empty file. If there are no files, tcpwrappers acts as though you have two files that
have not addressed access controls for a given service, and by default it will grant access to the
service!

1.4.1. See Also

"Allow or Deny Access by IP Address" [Hack #64]

http://lib.ommolketab.ir

Hack 4. Customize Authentication with PAMs

Modern Linux systems use Pluggable Authentication Modules (PAMs) to provide flexible
authentication for services and applications. Here are the gory details you'll need in order
to use PAMs to quickly and flexibly secure your systems.

Many Linux applications require authentication of one type or another. In days gone by, each
authentication-aware application was compiled with hardwired information about the authentication
mechanism used by the system on which it was running. Changing or enhancing a system's
authentication mechanism therefore required all such applications to be updated and recompiled,
which is tedious even when you have the source code for all of the relevant applications on your
system.

Enter PAMs, which provide a flexible and dynamic mechanism for authenticating any application or
service that uses them. Applications or services compiled with the Linux-PAM library use text-format
configuration files to identify their authentication requirements. Using PAMs on your system lets you
modify authentication requirements or integrate new authentication mechanisms by simply adding
entries to the PAM configuration file that is used by a specific application or service.

Though the information contained here may seem like overkill at first glance, knowing about PAMs
and how PAM configuration files work is necessary background for the next four hacks, which explain
how to integrate specific types of modern authentication into your Linux system without rewriting or
recompiling the wheel. Read on, sysadmins!

1.5.1. PAM Overview

PAMs are shared library modules that are automatically loaded by applications that were compiled
with the primary Linux-PAM authentication library. Applications that use PAMs (or PAM modules, are
they're sometimes called) are typically referred to as PAM-aware applications.

PAMs satisfy different parts of the authentication requirements for PAM-aware applications, much like
reusable code and libraries do for applications in general. For example, a PAM-aware version of the
login program can invoke a variety of PAMs that check things such as whether the user logging in as
root is on a terminal listed as a secure terminal, whether users are allowed to log in on the system at
the moment, and other similar authentication requirements. Because PAMs are shared library
modules, a PAM-aware version of the rsh program can reuse the same "are users allowed to log in on
the system now?" PAM as the PAM-aware version of login, but then apply other rules that are more
relevant to rsh than to login. PAM modules themselves are now typically stored in the directory
/lib/security, though some older Linux distributions stored PAMs in /usr/lib/security.

The PAMs used by different PAM-aware applications are defined in one of two ways. In modern PAM
implementations, they are controlled by application-specific configuration files found in the directory

http://lib.ommolketab.ir

/etc/pam.d. In older PAM implementations, all PAM modules used by the applications on a system
were defined in a single central configuration file, /etc/pam.conf. The older approach is still
supported, but it's deprecatedto maintain backward compatibility while encouraging the modern
approach, the contents of the directory /etc/pam.d are used instead of the /etc/pam.conf file if both
exist on your system. This hack focuses on PAM configuration files in /etc/pam.d, since that's the way
PAMs are used on most modern systems.

1.5.2. Per-Application/Service PAM Configuration Files

Each PAM configuration file in /etc/pam.d has the same name as the PAM-aware application or
service it is associated with and contains the PAM rules used during its authentication process. The
name of the configuration file to use is derived from the first parameter passed to the Linux-PAM
library's pam_start() function, which is the name of the service that is being authenticated (often the
same as the name of the application, for convenience's sake). These files can also contain
commentsany characters on a line that follow the traditional hash mark (#) are interpreted as a
comment.

Each non-comment line in one of the files in /etc/pam.d defines how a single PAM module is used as
part of the authentication process for the associated application or service. Each of these files can
contain four fields separated by whitespace, the first three of which are mandatory. These fields have
the following meaning and content:

module-type

The type of PAM module defined on the line. A PAM module's type defines how it is used during
the authentication process. Valid values are:

auth

Identifies an authentication check to verify the user's identity or that system
requirements have been met. Common system requirements are that a service can be
started at the current time (for example, that /etc/nologin does not exist when a user is
trying to log in), that an acceptable device is being used (i.e., the device is listed in
/etc/securetty), whether the user is already the root user, and so on.

account

Verifies whether the user can authenticate based on system requirements such as
whether the user has a valid account, the maximum number of users on the system, the
device being used to access the system, whether the user has access to the requested
application or service, and so on.

password

Verifies a user's ability to update authentication mechanisms. There is usually one
module of type password for each auth entry that is tied to an authentication mechanism

http://lib.ommolketab.ir

that can be updated.

session

Identifies modules associated with tasks that must be done before the associated service
or application is activated, or just before the termination of that service or application.
Modules of this type typically perform system functions such as mounting directories,
logging audit trail information, or guaranteeing that system resources are available.

control-flag

The implications of the return value from the specified PAM module. Valid values are:

required

Indicates that success of the PAM module is mandatory for the specified module type.
The failure of any PAM marked as required for a specific module-type (such as all labeled
as auth) is reported to the associated application or service only after all required PAMs
for that module type have been executed.

requisite

Indicates that failure of the PAM module will immediately be reported to the associated
application or service.

sufficient

Indicates that success of the PAM module satisfies the authentication requirements of
this module type. If no previous required PAM has failed, no other PAMs for the
associated module type are executed. Failure of a PAM identified as sufficient is ignored
as long as subsequent required modules for that module type return success. If a
previous required PAM has failed, the success of a PAM marked as sufficient is ignored.

optional

Indicates that success of the PAM module is not critical to the application or service
unless it is the only PAM for a specified module type. If it is, its success or failure
determines the success or failure of the specified module type.

module-path

The name of the PAM module associated with this entry. By default, PAM modules are located
in /lib/security, but this field can also identify modules located in other directories by specifying
the absolute path and filename of a PAM module.

http://lib.ommolketab.ir

arguments

Optional, module-specific arguments.

Well, that was mind-numbing but necessary reference information. To see all this in action, let's look
at an example.

1.5.3. PAMs Used by the login Process

The configuration file for the PAMs used by the login program is the file /etc/pam.d/login. On a Red
Hat system of recent vintage, this file contains the following entries:

 #%PAM-1.0
 auth required pam_securetty.so
 auth required pam_stack.so service=system-auth
 auth required pam_nologin.so
 account required pam_stack.so service=system-auth
 password required pam_stack.so service=system-auth
 session required pam_stack.so service=system-auth
 session optional pam_console.so

The first line is a comment that identifies this PAM as conforming to the PAM 1.0 specification.

The second, third, and fourth lines define the auth (authentication) requirements for system logins,
all of which must succeed because they are identified as required. The second line invokes the PAM
module pam_securetty.so to check whether the user is logged in on a secure terminal, as defined in
the file /etc/securetty. The third line invokes the pam_stack.so PAM module, a clever module used
primarily on Red Hatinspired systems that enables you to call the entire set of PAM requirements
defined for a different service or application (and thus described in a separate file by that name in
/etc/pam.d). In this case it calls the set (stack) of requirements defined for the system-auth service.
We'll look at that laterfor now, it's sufficient to know that the authentication requirements specified in
that file must be satisfied. Finally, to wrap up the auth module-type entries for the login program, the
fourth line invokes the pam_nologin.so PAM module to check whether logins are allowed on the
system at the current time.

The fifth line in this file identifies the requirements for the account module-type, which in this case
uses the pam_stack.so PAM module to verify that the set of requirements for the system-auth
service have been satisfied.

Similarly, the sixth line in this file identifies the requirements for the password module-type, which
also uses the pam_stack.so PAM module to verify that the set of requirements for the system-auth
service have been satisfied.

Finally, the seventh and eighth lines in this file identify session requirements for the login program.
The seventh line uses the familiar pam_stack.so PAM module to verify that the set of requirements
for the system-auth service were satisfied. The eighth line in this file defines an optional requirement
that the user be running on the console. If this module succeeds, the user is granted any additional

http://lib.ommolketab.ir

privileges associated with this PAM module. If this module fails, authentication succeeds as long as
the previous required modules have completed successfully, but the user doesn't get the bonus
privileges.

Now let's look at the /etc/pam.d/system-auth file on the same system, which contains the following:

 #%PAM-1.0
 # This file is auto-generated.
 # User changes will be destroyed the next time authconfig is run.
 auth required /lib/security/pam_env.so
 auth sufficient /lib/security/pam_unix.so likeauth nullok
 auth required /lib/security/pam_deny.so
 account required /lib/security/pam_unix.so
 password required /lib/security/pam_cracklib.so retry=3 type=
 password sufficient /lib/security/pam_unix.so nullok use_authtok md5
 shadow
 password required /lib/security/pam_deny.so
 session required /lib/security/pam_limits.so
 session required /lib/security/pam_unix.so

Now that you grok PAM configuration files, you can see that the auth module-type first requires that
the pam_env.so module succeed, then tries the pam_unix.so module, which is a generic module that
can perform auth, account, password, and session functions (depending on how it is called). When
called for the auth module-type, it verifies a user's identity, sets credentials if successful, and so on.
If this module succeeds, the following required entry for the pam_deny.so module isn't executed. If
the pam_unix.so module fails, pam_deny.so executes, which returns a failure code to ensure that the
specified module-type will fail. In our login example, where another auth request (for
pam_nologin.so) follows the invocation of the contents of the system-auth PAM stack, that auth
request is executed, but its value isn't important because pam_deny.so is required and has already
indicated failure.

Next, the account module-type requires that the pam_unix.so module succeedin this case,
pam_unix.so provides default account checks.

Following the account check, the first password module-type line specifies that pam_cracklib.so be
used when setting passwords to select a password that isn't easily cracked, based on the contents of
a database of easily cracked passwords (/usr/lib/cracklib_dict.pwd on Red Hat systems). Arguments
to this module give the user three chances to select a password (by passing the argument retry=3)
and specify that this password isn't for any specific type of authentication, such as LDAP or NIS (by
passing a null name using the type= argument). If this module succeeds, the second password
module-type line invokes the standard pam_unix.so module, with arguments specifying that null
passwords are acceptable but can't be set by users (nullok), not to prompt for a password but to use
any password that succeeded in a previous PAM of module-type password (use_authtok), that
passwords use md5 hashing by default (md5), and that the system uses the /etc/shadow file to hold
passwords (shadow). If this module fails, the user is denied access to the application or service that
invoked the system-auth service through the next line, which invokes the pam_deny.so module to
ensure failure of the password auth-type.

Finally, the session checks set system limits using the pam_limits.so module, which provides

http://lib.ommolketab.ir

functions to initiate and terminate sessions.

If you need to take a few aspirin after parsing each entry in these files, join the club. But even
though it's a pain, security is one of any sysadmin's most important responsibilities. If it's any
consolation, think how complex the code to implement all of this would have been without the
flexibility that PAMs provide!

1.5.4. Configuration and More Configuration

The text-format files in /etc/pam.d control the PAMs associated with each authentication-aware
application or service. Some of these PAMs themselves use optional configuration files to further
refine their behavior. The configuration files for individual PAMs are located in the directory
/etc/security. Though these files must exist, they do not need to contain any useful informationthey
are there in case you want to take advantage of the advanced configuration options that they
provide. Here is a list of the files in this directory that are found on a variety of Linux systems:

access.conf

Provides fine-grained access control for logins. Used by the pam_access.so module.

console.apps

A directory that contains a file for each privileged application that a user can use from the
console. The name of each file is the same as the base-name of the application with which it is
associated. These files must exist but can be empty. When they have contents, these files
typically contain environment variables associated with the applications that match their
names. Used by the pam_console.so module on Red Hatinspired Linux systems.

console.perms

Defines the device permissions granted to privileged users when logged in on the console, and
the permissions to which those devices revert when the user logs out. Used by the
pam_console.so module on Red Hatinspired Linux systems.

group.conf

Provides per-session group membership control. Used by the pam_group.so module.

limits.conf

Provides a per-user mechanism for setting system resource limits. Used by the pam_limits.so
module.

pam_env.conf

http://lib.ommolketab.ir

Provides a mechanism for setting environment variables to specific values. Used by the
pam_env.so module.

pam_pwcheck.conf

Provides options for identifying the mechanism used when evaluating password strength. Used
by the pam_pwcheck.so module on SUSE-inspired Linux systems.

pam_unix2.conf

Provides options for advanced configuration of traditional password checking. Used by the
pam_unix2.so module on SUSE-inspired systems.

time.conf

Provides a mechanism for imposing general or user-specific time restrictions for system
services and applications. Used by the pam_time.so module.

1.5.5. What if PAM Configuration Files Are Missing?

Applications that use PAMs are very powerful, and correct configuration is very important. However,
the Linux-PAM library does provide a default configuration file for any applications and services that
do not have their own configuration files. This is the file /etc/pam.d/other. Since a missing
configuration file generally indicates a misconfigured system (or that someone has imported a PAM-
aware binary without thinking things through), the /etc/pam.d/other file implements extremely
paranoid security, as in the following example:

 #%PAM-1.0
 auth required pam_deny.so
 account required pam_deny.so
 password required pam_deny.so
 session required pam_deny.so

In this example, any request for any module-type that falls through to this PAM configuration file will
return a failure code. A slightly more useful version of this file is the following:

 #%PAM-1.0
 auth required pam_deny.so
 auth required pam_warn.so
 account required pam_deny.so
 account required pam_warn.so
 password required pam_deny.so
 password required pam_warn.so

http://lib.ommolketab.ir

 session required pam_deny.so
 session required pam_warn.so

Because subsequent required entries for a given module-type are still executed, each module-type
entry first executes the pam_deny.so PAM, which denies access to the requested service, and then
also executes the pam_warn.so PAM, which logs a warning message to the system log.

1.5.6. See Also

man pam (where pam is the name of a PAM module without the .so extension)

http://www.ymbnet.lkams.kernel.org/pub/linux/libs/pam/

http://www.ymbnet.lkams.kernel.org/pub/linux/libs/pam/
http://lib.ommolketab.ir

Hack 5. Authenticate Linux Users with a Windows Domain
Controller

To a busy sysadmin, centralization is usually more important than philosophy.

Much has been made in the Linux press about using Samba to bridge the gap between Linux/Unix
and SMB/CIFS environments. Samba is not just one of the most impressive pieces of open source
software everit's also as impressive a job of reverse engineering as "Hacking the Xbox."

However, using Samba for authentication is often more of a philosophical point than an organizational
need. Frankly, if you already have a huge, well-designed, functional Windows environment that
supports authentication, groups, ACLs, and Exchange (to name a few "popular" Windows services),
converting all that to Linux can be more work than it's worth. If you're just starting to integrate Linux
boxes into your user desktops in a coherent fashion, why not swim against the standard Linux tide
and configure the login mechanisms on your Linux boxes to use the authentication provided by your
existing Windows domain controllers? You can always convert them later, when your yearly ransom
demand from Microsoft arrives.

1.6.1. Software Requirements

To integrate Windows domain and Linux authentication, you'll need to have the PAM, samba-winbind,
and smb-client packages installed on your system. The core pieces of software that you'll need are
the daemon that enables you to communicate with a Windows domain controller, known as the
winbindd daemon (usually installed as /usr/sbin/winbindd), a correctly configured
/etc/samba/smb.conf file (used by the winbind daemon to obtain information about your domain and
domain controller), and the PAM for domain authentication through this daemon
(/lib/security/pam_winbind.so). The winbindd daemon and the pam-winbind.so module are both
provided in the samba-winbind package, though to use the PAM you must have the PAM package
installed and working on your system. The current versions of these packages at the time this book
was written were pam-0.78-8, samba-winbind-3.0.13-1.1, and samba-client-3.0.13-1.1.

Of course, if your environment has enough Windows dependencies to make you want to authenticate
your Linux boxes using Windows, you're probably already using Samba to access your Windows
shares from your Linux system or your Linux filesystems from your Windows systems. Nowadays,
most Linux systems come with Samba installed. To get complete support for Windows domain
authentication, you'll want to make sure your system is running Samba 3.x or better. If you're using
a package manager, you can run the command rpm -q packagename to find out which version of each

of these is installed on your system.

If you're missing any of the packages that you need or want, you can either consult your favorite
package repository (RPMBone and RPMFind.net come to mind) to find a prebuilt package for your

http://lib.ommolketab.ir

system, or download the complete Samba source code from http://www.samba.org and build the
whole thing yourself. It's quite easy.

1.6.2. Critical Samba Configuration for Using Windows Authentication

As mentioned in the previous section, the winbindd daemon obtains the information that it needs to
communication with your primary domain controller from the standard Samba configuration file
(usually /etc/samba/smb.conf, unless you installed Samba elsewhere). The following are the critical
entries used by the winbindd daemon, all from the [global] section of the Samba configuration file:

workgroup

The name of the Windows domain to which you want the Linux system to authenticate.

winbind uid

A range of integer user IDs (UIDs) for the users that you want to be able to authenticate using
Windows authentication. An example range is 10009999, which is the typical range of UIDs for
non-system Linux user accounts nowadays.

winbind gid

A range of integer group IDs (GIDs) for the groups you want to be able to authenticate using
Windows authentication. An example range is 100999, which is the typical range of GIDs for
non-systems Linux groups nowadays.

security

The type of security you want your system to use. When using Windows domain
authentication, this should always be set to domain.

username map

The name of a file that contains mappings between Windows user-names and Linux
usernames. This is typically the file /etc/samba/smbusers. In general, if you're going to be
authenticating Linux users against a domain controller running on Windows, it's easiest to
simply use the same login names on your Windows and Linux systems (even though
bill.vonhagen is uglier and requires more typing than more traditional logins such as wvh).

obey pam restrictions

If you are using the Linux PAM mechanism to authenticate your Linux users, this should always
be set to yes to force Samba to use all of the bells and whistles of PAM authentication.

http://www.samba.org
http://lib.ommolketab.ir

1.6.3. Updating /etc/nsswitch.conf

To cause your system to consult the winbindd daemon for password and group authentication, you
will also have to modify your system's name service switch to integrate Windows domain
authentication. To do this, modify your /etc/nsswitch.conf file to specify that the system obtains
password and group information from the Windows domain controller. Correct entries would be the
following:

 passwd: files winbind
 group: files winbind

This tells the name service switch to first check the local password and group files on the client
system for authentication information and then check the winbindd daemon. This enables you to
create local accounts when necessary, giving these local accounts priority while still using Windows
domain authentication for most accounts.

1.6.4. Integrating the pam_winbind.so PAM into System Authentication

Unless you're using a Linux distribution such as Red Hat, which provides a graphical tool for
configuring system authentication (system-config-auth, shown in Figure 1-1), you'll need to manually
modify the PAM configuration files for services that will authenticate using your Windows domain
controller. At a minimum, this is the login configuration file (/etc/pam.d/login), and probably also the
PAM configuration file for SSH logins (/etc/pam.d/sshd).

Here's a sample PAM configuration file that uses Windows authentication to enable logins:

 #%PAM-1.0
 auth sufficient /lib/security/pam_winbind.so
 auth required /lib/security/pam_securetty.so
 auth required /lib/security/pam_stack.so service=system-auth debug
 use_first_pass
 auth required /lib/security/pam_nologin.so
 account required /lib/security/pam_stack.so service=system-auth
 password required /lib/security/pam_stack.so service=system-auth
 session required /lib/security/pam_stack.so service=system-auth
 session optional /lib/security/pam_console.so

Figure 1-1. Red Hat's graphical application for configuring Windows
authentication

http://lib.ommolketab.ir

Note that this PAM configuration file accepts Windows authentication as being sufficient to enable a
login, but then falls through to the standard Linux authentication sequence if this fails. This enables
you to use a mixture of central authentication (through the Windows domain controller) and local
authentication (using the traditional Linux/Unix password and group files).

1.6.5. Starting the winbindd Daemon

One of the last steps in integrating Linux systems with Windows authentication is to make sure the
winbindd daemon starts automatically whenever you boot your system. To do this, make sure a
symbolic link to the /etc/init.d/winbind startup script exists for your system's default runlevel. To
start the winbindd daemon manually (i.e., the first time), you can simply run this script with the
start argument, as in:

 # /etc/init.d/winbind start

1.6.6. Joining the Domain

The final step is to actually join the domain from your Linux system. You can do this using the net
command, which is part of the Samba suite and is found in the samba-client package mentioned
earlier in this hack:

 $ net join member -U Administrator

http://lib.ommolketab.ir

You'll be prompted for the Administrator password for the target domain. You do not have to join as
the user Administratorany user with sufficient privileges to join the domain will do.

1.6.7. Testing Windows Authentication

You should always test any fundamental change to your system's core authentication sequence
before logging out of your system. The easiest way to do this is to enable a service that requires login
authentication and then use this to log in via a network connection to your system while you are still
actually logged in on the machine. My favorite service for this is the telnet service, but ssh is just as
easy (though you will have to modify the /etc/pam.d/sshd PAM configuration file in order to test ssh
authentication via your Windows domain controller).

1.6.8. Debugging Windows Authentication Problems

Both Samba and the pam_winbind.so PAM provide excellent debugging options. To put the winbindd
daemon in debug mode, log in as root using a local account, add the debug keyword to the
pam_winbind entry in the PAM service configuration file that you are using for debugging, and restart
the winbindd daemon manually with the -d debug-level option, which displays tons of useful

information. I prefer to use debug level 5, which shows each byte in every packet exchanged by the
winbind daemon and the domain controller that it is talking to. If this doesn't provide you with
enough information to identify and resolve your problem and you suspect Samba misconfiguration,
you can increase the logging level in the Samba configuration file (/etc/samba/smb.conf) by adding
the log level winbind:NN command and restarting Samba. This enables you to specify the logging

level for Samba activities related to winbind authentication. If you are using an older version of
Samba or want coarser logging, you can remove the winbind restriction and simply increase the
general Samba logging level by using the command log level NN in your Samba configuration file

and restarting Samba. A log level of 5 is sufficient for most debugging. (Remember to disable logging
when you've resolved your authentication problems, as this creates a huge logfile and has a negative
impact on Samba performance.)

Another useful command when analyzing or debugging problems with using Windows domain
authentication to authenticate Linux users is the wbinfo command. You can use this command to
make sure you're actually talking to the domain controller and to query the domain controller for
various types of information. The following output example shows both the options available to the
wbinfo command and a sample command that retrieves the names of known users from the domain
controller:

 $ wbinfo
 Usage: wbinfo -ug | -n name | -sSY sid | -UG uid/gid | -tm | -[aA]
 user%password
 Version: 2.2.7-security-rollup-fix
 -u lists all domain users
 -g lists all domain groups
 -n name converts name to sid
 -s sid converts sid to name
 -N name converts NetBIOS name to IP (WINS)

http://lib.ommolketab.ir

 -I IP converts IP address to NetBIOS name (WINS)
 -U uid converts uid to sid
 -G gid converts gid to sid
 -S sid converts sid to uid
 -Y sid converts sid to gid
 -t check shared secret
 -m list trusted domains
 -r user get user groups
 -a user%password authenticate user
 -A user%password store user and password used by winbindd (root only)
 -p 'ping' winbindd to see if it is alive
 --sequence show sequence numbers of all domains
 --set-auth-user DOMAIN\user%password set password for restrict
 anonymous
 $ wbinfo -u
 _Template
 Administrator
 bill.vonhagen
 build
 [additional output deleted]

1.6.9. See Also

http://rpm.pbone.net

http://www.rpmfind.com

"Customize Authentication with PAMs" [Hack #4]

"Centralize Logins with LDAP" [Hack #6]

http://rpm.pbone.net
http://www.rpmfind.com
http://lib.ommolketab.ir

Hack 6. Centralize Logins with LDAP

Creating individual accounts on individual machines is a thing of the past: centralize
authentication information and more by using a directory server.

The Lightweight Directory Access Protocol (LDAP) provides a hierarchical collection of information that
can be accessed over a network. LDAP is an example of a directory service. In this context, the term
directory refers to a central information resource (such as a telephone directory or network-
accessible address book) but also leverages the idea of hierarchical directory structures. LDAP
directories are essentially simple, hierarchical databases that are accessed using keys that identify
the portions of the directory hierarchy to traverse to locate a specific unit of information.

The core idea of hierarchical elements and attributes is easy to understand and work with, and it
should be familiar to users of similar information models, such as XML. The LDAP protocol is also
independent of the underlying storage model used, making it easy to map LDAP data into existing
databases or migrate to new, smaller database models.

Like all directory services, LDAP is a client/server technology. Clients can either query or upload
information to an LDAP server. In the case of a query, the LDAP server either responds directly or
forwards the query to another LDAP server, which repeats the "respond or forward" process. The
OpenLDAP project (http://www.openldap.org), where most Linux LDAP development now takes place,
is the source of the software discussed in this hack.

1.7.1. Installing LDAP Clients and Servers

Using LDAP in your environment requires that you have a few basic packages installed on your
systems, or that you build and install the OpenLDAP software from scratch. If you need to build it
yourself, you can download the latest version of the full OpenLDAP package from
http://www.openldap.org/software/download. If your Linux systems use a package management
system, you'll need to install:

An OpenLDAP client on all your systems (including the server, for debugging purposes). These
packages usually have names like openldapclient or openldap2-client.

An OpenLDAP server on your server system. Some Linux distributions, such as SUSE, provide
these in openldap or operldap2 packages, while others provide explicit servers in packages with
names like openldap-servers.

OpenLDAP libraries on all clients and servers. Some Linux distributions, such as Red Hat
Enterprise Linux and Fedora, split these into separate packages that are simply named
openldap, while others integrate them into the OpenLDAP client and server packages.

http://www.openldap.org
http://www.openldap.org/software/download
http://lib.ommolketab.ir

These packages will give you basic LDAP functionality. However, to integrate them with user lookups
and authentication on your client systems, you'll also need the following:

The name service module, nss_ldap, for integrating user and group lookup requests with an
OpenLDAP server.

The PAM module, pam_ldap, for integrating LDAP authentication into your client's authentication
process.

If you're building these yourself, their source code is available from PADL Software Pty Ltd, the folks
who wrote them, at the URL http://www.padl.com/Contents/OpenSourceSoftware.html.

Finally, you'll need some useful utilities for migrating existing password, shadow, and group
information into your OpenLDAP directory. These are also available from PADL Software Pty Ltd, at
the URL http://www.padl.com/download/MigrationTools.tgz.

Many Linux distributions provide graphical utilities for configuring LDAP and LDAP authentication,
such as Red Hat's authconfig application and the LDAP client configuration applet in SUSE's YaST tool.
This hack explains how to do everything from the command line, in case you don't have access to
such utilities. If you're using either of these systems, the graphical utilities simplify the installation
and configuration processes, but it's always nice to know what's really required under the covers. You
will still have to migrate your user, password, and group data into your LDAP server manually, in any
case.

In the rest of this hack, I'll assume that you installed all this software in
standard system locations and can therefore find the OpenLDAP configuration
files in /etc/openldap. If you built them yourself, you may have installed them
relative to /usr/local, and thus you may need to look for the configuration files
in locations such as /usr/local/etc/openldap.

1.7.2. Configuring an OpenLDAP Server

The configuration files for OpenLDAP clients and servers, which are traditionally located in the
directory /etc/openldap, are:

ldap.conf

Sets the default values used by OpenLDAP clients on your system.

slapd.conf

Contains configuration information for the OpenLDAP slapd server running on the current
system. This file should never be readable by non-privileged users, because it contains
password and other security information for your OpenLDAP server.

Configuring an OpenLDAP server is a fairly simple process. First, you change the suffix entry so that
it correctly identifies your domain. For example, the default entry in /etc/openldap/slapd.conf is

http://www.padl.com/Contents/OpenSourceSoftware.html
http://www.padl.com/download/MigrationTools.tgz
http://lib.ommolketab.ir

usually:

 suffix "dc=my-domain,dc=com"

Change this to reflect your domain. For example, to set up an OpenLDAP server for the domain
vonhagen.org, change this line to the following:

 suffix "dc=vonhagen,dc=org"

Next, change the rootdn entry to reflect the name of a privileged user who has unrestricted access to
your OpenLDAP directory. For example, the default entry in /etc/openldap/slapd.conf is usually:

 rootdn "cn=Manager,dc=my-domain,dc=com"

Continuing with the previous example, you would change this to something like the following for the
vonhagen.org domain:

 rootdn "cn=ldapadmin,dc=vonhagen,dc=org"

Though this user is the equivalent of the root user as far as OpenLDAP is concerned, the name does
not have to be that of a real user on your system.

Finally, though optional in some sense, you may want to set a unique password for your OpenLDAP
server by modifying the rootpw enTRy in your /etc/openldap/slapd.conf configuration file. This
enables you to configure, test, and correct your OpenLDAP system over your local network, if
necessary. For example, the default entry in /etc/openldap/slapd.conf uses the clear-text password
secret, as shown here:

 rootpw secret

You can provide a clear-text or encrypted password as the value for this entry. You can use the
slappasswd command to generate an encrypted password that you can paste into the
/etc/openldap/slapd.conf file, as in the following example:

 # slappasswd
 New password:

http://lib.ommolketab.ir

 Re-enter new password:
 {SSHA}x0uopfqDBaylPdv3zfjLqOSkrAUh5GgY

The slappasswd command prompts you for a new password, asks for confirmation, and then displays
the encrypted password string preceded by the encryption mechanism used in the password. You
then simply replace the value of the existing rootpw option with the generated string, as in the
following example:

 rootpw {SSHA}x0uopfqDBaylPdv3zfjLqOSkrAUh5GgY

You should enable the rootpw option only when initially configuring your OpenLDAP server, and it is
necessary to do so only if you must configure your OpenLDAP server over a network. It's always a
good idea to set a unique, encrypted password for your OpenLDAP server that differs from your
standard root password, even though the /etc/openldap/slapd.conf file should not be readable by
nonprivileged users on your system. Once you have completed your configuration, you should disable
this entry by commenting it out. To do so, put a hash mark (#) at the beginning of the line
containing the rootpw entry.

OpenLDAP passwords are sent in the clear over the network unless you enable
Secure Socket Layer/Transaction Layer Security (SSL/TLS) encryption in your
/etc/openldap/slapd.conf file. Discussing SSL/TLS encryption for OpenLDAP is
outside the scope of this hack. For additional information, see a reference such
as Gerald Carter's LDAP System Administration (O'Reilly).

Once you have modified your /etc/openldap/slapd.conf file and saved your changes, you can start the
OpenLDAP server using the /etc/init.d/ldap script, as in the following example:

 # /etc/init.d/ldap start

As with all startup scripts on Linux systems, you should symlink this file to start up and kill files in the
directories associated with your system's default runlevel to ensure that it starts automatically when
you reboot your system.

The examples in the rest of this hack assume that you have entered the name
ldap as a valid entry for your LDAP server in DNS.

1.7.3. Migrating User, Password, and Group Entries to an LDAP Server

http://lib.ommolketab.ir

To configure your LDAP server to provide authentication information, you must first migrate your
existing authentication information to the LDAP server. You do this by preparing LDAP Data
Interchange Format (LDIF) files that hold the contents of your /etc/passwd,/etc/shadow, and
/etc/group files, and then importing those files into the LDAP server.

Creating LDIF files from your existing /etc/passwd, /etc/shadow, and /etc/group files is most easily
done by using the migrate_passwd.pl and migrate_group.pl scripts found in the migration tools
available at http://www.padl.com/download/MigrationTools.tgz. If you've installed OpenLDAP from
packages, these scripts may be located on your system in the directory
/usr/share/openldap/migration.

If you have multiple password, shadow, and group files on different systems
that you want to merge into a single LDAP repository, you can copy them all to
your LDAP server system, concatenate them, and sort them to produce single
files. You can then edit these files so that they have only single entries for each
user and group and install them as the master password, shadow, and group
files on your server before running the migration scripts. Verify that these files
work correctly after installation and before migrating them to LDAP!

To migrate user, password, and group information into your LDAP server so you can use it as a basis
for client system authentication, do the following:

Become the root user, and change directory to the directory where you unpacked the migration
scripts or where they are already installed.

1.

Edit the file migrate_common.ph, which sets variables used by all of the migration scripts. Set
the value for the DEFAULT_BASE variable to the correct value for your environment. As an
example, the correct value for migrating information to the LDAP server used as an example
throughout this hack would be:

 $DEFAULT_BASE = "dc=vonhagen,dc=org";

2.

Use the migrate_passwd.pl script to generate an LDIF file for your user and password
information, as in the following example:

 ./migrate_passwd.pl /etc/passwd passwd.LDIF

The migrate_passwd.pl script also extracts the necessary password information from your
/etc/shadow file.

3.

Generate an LDIF file for your group information using the migrate_group.pl script, as in the
following example:

4.

http://www.padl.com/download/MigrationTools.tgz
http://lib.ommolketab.ir

 ./migrate_group.pl /etc/group group.LDIF

4.

Import the files that you just created into your LDAP directory using commands like the
following:

 # ldapadd -x -h hostname -D "cn=ldapadmin,dc=vonhagen,dc=org" \
 -w password -f passwd.LDIF
 # ldapadd -x -h hostname -D "cn=ldapadmin,dc=vonhagen,dc=org" \
 -w password -f group.LDIF

In these commands, replace hostname with the hostname of the system on which your LDAP

server is running, make sure that the credentials specified following the -D option match those
of the root user for your LDAP server, and replace password with the password you set in the

rootpw entryboth as defined in your OpenLDAP server configuration file
(/etc/openldap/slapd.conf).

5.

After following these steps, you are ready to update your client systems to use LDAP authentication
(and test them, of course).

1.7.4. Updating Client Systems to Use LDAP Authentication

On each system that you want to use the new LDAP authentication server, you must do the
following:

Modify the configuration file /etc/pam_ldap.conf, used by the pam_ldap.so PAM module, to
contain the correct information about your LDAP server. This usually simply requires correctly
setting the values of the host and base statements in this file, as in the following example:

 host ldap.vonhagen.org

 base dc=vonhagen,dc=org

1.

Modify the configuration file /etc/lib-nss-ldap.conf, used to integrate LDAP with the name
service on your system, to contain the correct information about your LDAP server. Again, this
usually simply requires correctly setting the values of the host and base statements in this file,
as in the following example:

 host ldap.vonhagen.org

 base dc=vonhagen,dc=org

2.

3.

http://lib.ommolketab.ir

Add entries for LDAP to the appropriate PAM configuration files on your system. As explained in
"Customize Authentication with PAMs" [Hack #4], some Linux systems use individual files to
configure authentication for specific services, while others (such as Red Hat/Fedora) create a
centralized file for system authentication, called /etc/pam.d/system-auth. If you are using
individual files, you must add the appropriate entries for LDAP authentication to login-related
services such as login and sshd. You should insert auth and account entries for the pam_ldap.so
module before your system's generic Linux authentication checks, which are usually handled by
pam_unix2.so (SUSE) or pam_pwdb.so (most other Linuxes). An example PAM file for the sshd
service would look something like the following:

 auth required /lib/security/pam_nologin.so
 auth sufficient /lib/security/pam_ldap.so
 auth required /lib/security/pam_pwdb.so shadow nodelay
 account sufficient /lib/security/pam_ldap.so
 account required /lib/security/pam_pwdb.so
 password required /lib/security/pam_cracklib.so
 password required /lib/security/pam_pwdb.so shadow nullok use_authtok
 session required /lib/security/pam_mkhomedir.so skel=/etc/skel/
 umask=0022
 session required /lib/security/pam_pwdb.so

3.

If you are using a Red Hat or Fedora system, modify /etc/pam.d/system-auth to look like the
following:

 auth required /lib/security/pam_env.so
 auth sufficient /lib/security/pam_unix.so likeauth nullok
 auth sufficient /lib/security/pam_ldap.so use_first_pass
 auth required /lib/security/pam_deny.so
 account required /lib/security/pam_unix.so broken_shadow
 account sufficient /lib/security/pam_succeed_if.so uid < 100 quiet
 account [default=bad success=ok user_unknown=ignore] /lib/security
 /pam_ldap.so
 account required /lib/security/pam_permit.so
 password requisite /lib/security/pam_cracklib.so retry=3
 password sufficient /lib/security/pam_unix.so nullok use_authtok md5
 shadow
 password sufficient /lib/security/pam_ldap.so use_authtok
 password required /lib/security/pam_deny.so
 session required /lib/security/pam_limits.so
 session required /lib/security/pam_unix.so
 session optional /lib/security/pam_ldap.so

4.

Modify your /etc/nsswitch.conf file to specify that the system looks for password, shadow, and
group information in LDAP. Correct entries would be the following:

5.

http://lib.ommolketab.ir

 passwd: files ldap
 shadow: files ldap
 group: files ldap

This tells the name service switch to first check the local password, shadow, and group files on
the client system for authentication information and then check LDAP. This enables you to
create local accounts when necessary, giving those local accounts priority while still using LDAP
for most accounts.

5.

Back up your local /etc/passwd, /etc/shadow, and /etc/group files and edit the primary copies
on the client system to remove all user accounts, so that they contain only system accounts.

6.

The next time you log in on your client system, it will contact your LDAP server for authentication
information. When creating new user and group accounts, you will need to use a command-line
interface to OpenLDAP (http://quark.humbug.org.au/publications/scripts/ldap/cli/) to create the
necessary account information. There are also a number of graphical tools for creating and managing
LDAP accounts, but I'm more comfortable with the command line.

Before logging out of this client system and configuring another, open a new
login session to this host using telnet or ssh to ensure that you can correctly
log in using LDAP. If you encounter any problems, do not log out of this system
until you have resolved them.

Congratulations! You're now making the most of your network and will rarely, if ever, have to
manage local password and group information on individual systems again. Combining this hack with
other hacks (such as "Centralize Resources Using NFS" [Hack #56] and "Automount NFS Home
Directories with autofs" [Hack #57]) further liberates individual systems from user-specific data.

1.7.5. See Also

"Customize Authentication with PAMs" [Hack #4]

LDAP System Administration, by Gerald Carter (O'Reilly)

LDAP HOWTO: http://en.tldp.org/HOWTO/LDAP-HOWTO/

http://quark.humbug.org.au/publications/scripts/ldap/cli/
http://en.tldp.org/HOWTO/LDAP-HOWTO/
http://lib.ommolketab.ir

Hack 7. Secure Your System with Kerberos

You can heighten the security of any network by using Kerberos for secure network
authentication and encrypted communications.

Kerberos is a distributed authentication and communication service originally developed at the
Massachusetts Institute of Technology (MIT). Kerberos provides secure authentication and
communication for client/server applications by using strong cryptography to enable clients to prove
their identities to servers over the network.

Kerberos works by exchanging encrypted security information between clients (which can be users or
machines), the Kerberos authentication server, and the resource you are trying to access. The
information that is initially exchanged when attempting to prove one's identity is known as a ticket.
The information used to encrypt tickets and subsequent communications is known as a key. Once the
identity of a client is verified, that client is granted a Kerberos token that can be used to verify its
identity to any Kerberos-aware service. For security reasons, Kerberos tokens are time-stamped so
that they automatically expire unless renewed by a user or service. The primary system for granting
tickets (which houses the master copy of the Kerberos database) is known as the Kerberos Key
Distribution Center (KDC).

The timestamps contained within Kerberos tokens (and tickets) can be verified only if the time and
date are synchronized across Kerberos clients and servers. Kerberos authentication will fail if client
and server clocks become skewed by more than five minutes. You should always run NTP (Network
Time Protocol) daemons on all Kerberos clients and servers to guarantee that their clocks remain in
sync [Hack #22].

Kerberos uses the term realm to differentiate between authentication and Internet domains. A
Kerberos realm is a set of machines that rely on a specific Kerberos server for authentication and
therefore trust that server. In Kerberos configuration files, your realm is typically identified in
uppercase characters in order to differentiate it from any similar DNS domain with which it is
associated.

MIT's Kerberos implementation is only one of several. Many alternate Kerberos
implementations have been created over the years, usually to get around
United States export restrictions that have since been lifted. For example,
SUSE systems use an alternate Kerberos client/server implementation known
as Heimdal (http://www.pdc.kth.se/heimdal/). This hack focuses on vanilla
Kerberos from MIT, which I prefer to use because I find it to be the best
supported and most easily used on a variety of Unix and Linux systems.

1.8.1. Installing Kerberos

http://www.pdc.kth.se/heimdal/
http://lib.ommolketab.ir

Using Kerberos requires that you have a few basic packages installed on your systems, or that you
build and install it yourself from scratch. If you need to build it yourself, you can download the latest
version from MIT at http://web.mit.edu/kerberos/www/. If your Linux systems use a package
management system and you want to use a vanilla Kerberos, you'll need to install:

krb5-workstation on all client systems. This contains basic Kerberos programs (kinit, klist,
kdestroy, kpasswd) as well as Kerberized versions of the telnet and ftp applications.

krb5-server on all server and slave server systems. This provides the programs that must be
installed on a Kerberos 5 server or server replica.

krb5-libs on all client and server systems. This contains the shared libraries used by Kerberos
clients and servers.

pam_krb5 on all client systems. This provides a PAM that enables Kerberos authentication.

1.8.2. Installing and Configuring a Kerberos Server

After building and installing Kerberos or installing the krb5-workstation, krb5-server, and krb5-libs
packages on your the host that will serve as your master KDC, the first step in configuring your
Kerberos environment is to set up your master KDC. The process for doing this is the following:

Edit the general Kerberos configuration file for your environment (/etc/krb5.conf). This file
identifies the KDCs and admin servers in your Kerberos realm and provides default values for
your realm and Kerberos applications and for how your existing hostnames map into your
Kerberos realm. Here's a sample /etc/krb5.conf file for the realm VONHAGEN.ORG (replace the

italicized items with the correct values for your system):

 [logging]
 default = FILE:/var/log/krb5libs.log
 kdc = FILE:/var/log/krb5kdc.log
 admin_server = FILE:/var/log/kadmind.log
 [libdefaults]

 default_realm = VONHAGEN.ORG
 dns_lookup_realm = false
 dns_lookup_kdc = false
 ticket_lifetime = 24h
 forwardable = yes
 [realms]

 VONHAGEN.ORG = {

 kdc = kerberos.vonhagen.org:88

 admin_server = kerberos.vonhagen.org:749

 default_domain = vonhagen.org
 }
 [domain_realm]

1.

http://web.mit.edu/kerberos/www/
http://lib.ommolketab.ir

 .vonhagen.org = VONHAGEN.ORG

 vonhagen.org = VONHAGEN.ORG
 [kdc]
 profile = /var/kerberos/krb5kdc/kdc.conf
 [appdefaults]
 pam = {
 debug = false
 ticket_lifetime = 36000
 renew_lifetime = 36000
 forwardable = true
 krb4_convert = false
 }

The defaults provided in the generic /etc/krb5.conf file are reasonable, except that you must
change all instances of EXAMPLE.COM to the name of your realm and all instances of example.com

to the name of your domain (VONHAGEN.ORG and vonhagen.org, respectively, in the previous
example). You must also make sure that DNS or /etc/hosts entries exist on all clients for the
systems that you identify as your default KDC and admin_server systems in the [realms]
section.

Edit the KDC configuration file (/var/kerberos/krb5kdc/kdc.conf). The location of this file is
provided in the [kdc] section of the /etc/krb5.conf file. As with the /etc/krb5.conf file, the
primary change that you must make to this file is to change the instance of EXAMPLE.COM to the
name of your realm, which is VONHAGEN.ORG in the following example:

 [kdcdefaults]
 acl_file = /var/kerberos/krb5kdc/kadm5.acl
 dict_file = /usr/share/dict/words
 admin_keytab = /var/kerberos/krb5kdc/kadm5.keytab
 v4_mode = nopreauth
 [realms]

 VONHAGEN.ORG = {
 master_key_type = des-cbc-crc
 supported_enctypes = des3-hmac-sha1:normal arcfour-hmac:normal \
 des-hmac-sha1:normal des-cbc-md5:normal des-cbc-crc:normal \
 des-cbc-crc:v4 des-cbc-crc:afs3
 }

2.

Next, use the kdb5_util utility on the master KDC to create the Kerberos database and your
stash file. You will have to enter the master database password twice, for verification purposes.
The stash file is a local, encrypted copy of the master key that is used to automatically
authenticate the KDC as part of your system's startup sequence. For example:

 # /usr/kerberos/sbin/kdb5_util create -r VONHAGEN.ORG -s
 Loading random data
 Initializing database '/var/kerberos/krb5kdc/principal' for realm

3.

http://lib.ommolketab.ir

 'vonhagen.org',
 master key name 'K/M@vonhagen.org'
 You will be prompted for the database Master Password.
 It is important that you NOT FORGET this password.
 Enter KDC database master key:
 Re-enter KDC database master key to verify:

This command creates various files in the directory specified in the kdcdefaults section of your
kdc.conf file: two Kerberos database files (principal.db and principal.ok), the Kerberos
administrative database file (principal.kadm5), the database lock file (principal.kadm5.lock),
and the stash file (.k5stash).

Next, edit the ACL definition file (/var/kerberos/krb5kdc/kadm5.acl), changing the default realm
(EXAMPLE.COM) to the name of the realm that you are creating (VONHAGEN.ORG, in this

example). The default entry in this file, which begins with */admin, gives any user with an admin
instance (such as wvh/admin, which we'll create in the next step) complete access to and
control over the realm's Kerberos database. After we update this file for our example realm, it
will look like this:

 */admin@VONHAGEN.ORG *

4.

Next, use the kadmin.local utility to add each of your system administrators to the Kerberos
database. kadmin.local is a Kerberos-aware version of the standard kadmin utility that does not
first authenticate to a Kerberos database and is therefore used for bootstrapping Kerberos on a
KDC. Entries in the Kerberos database are known as principals. The following example adds an
admin instance for the user wvh:

 # /usr/kerberos/sbin/kadmin.local
 kadmin.local: addprinc wvh/admin
 WARNING: no policy specified for wvh/admin@VONHAGEN.ORG; defaulting to
 no policy
 Enter password for principal "wvh/admin@VONHAGEN.ORG":
 Re-enter password for principal "wvh/admin@VONHAGEN.ORG":
 Principal "wvh/admin@VONHAGEN.ORG" created

5.

Next, add a standard user entry for the non-admin version of the principal that you just created
and then exit the kadmin.local utility, as in the following example:

kadmin.local: addprinc wvh
 WARNING: no policy specified for wvh@VONHAGEN.ORG; defaulting to no
 policy
 Enter password for principal "wvh@VONHAGEN.ORG":
 Re-enter password for principal "wvh@VONHAGEN.ORG":
 Principal "wvh@VONHAGEN.ORG" created.

6.

http://lib.ommolketab.ir

 kadmin.local: quit

Adding a standard principal enables default authentication by the associated entity. You will
eventually need to create a principal for each user that you want to be able to authenticate
using Kerberos. (Most sites do this by writing a script that also creates Kerberos principals when
creating standard user accounts.)

Now, the fun begins! Start the various Kerberos-related services using the following commands:

 # /sbin/service krb5kdc start
 # /sbin/service kadmin start
 # /sbin/service krb524 start

7.

At this point, you're ready to install and start a Kerberos client. However, before doing anything else,
you should verify that your server can hand out tickets by using the kinit command to explicitly
request one for the administrative principal that you created earlier. You can then use the klist
command to verify its contents, and then destroy the ticket (just to clean up) using the kdestroy
command. The following example shows this sequence:

 $ kinit wvh
 Password for wvh@VONHAGEN.ORG:
 $ klist
 Ticket cache: FILE:/tmp/krb5cc_0
 Default principal: wvh@VONHAGEN.ORG
 Valid starting Expires Service principal
 05/03/05 22:09:04 05/04/05 22:09:04 krbtgt/VONHAGEN.ORG/VONHAGEN.ORG
 Kerberos 4 ticket cache: /tmp/tkt0
 klist: You have no tickets cached
 $ kdestroy

1.8.3. Installing and Configuring Kerberos Clients and Applications

Many Linux distributions provide graphical utilities for configuring Kerberos clients, such as Red Hat's
authconfig application and the Kerberos client configuration applets in SUSE's YaST tool. This hack
explains how to do everything from the command line, in case you don't have access to such utilities.
If you're using either of these systems, the graphical utilities simplify the installation and
configuration processes, but it's always nice to know what's really required under the covers. You will
still have to migrate your user, password, and group data into your Kerberos server manually, in any
case.

To install and test the Kerberos client software, do the following:

1.

http://lib.ommolketab.ir

Build and install Kerberos on the system, or install the krb5-libs and krb5-workstation packages
on all client systems.

1.

Copy the /etc/krb5.conf file from your KDC to the client's /etc directory.2.

Enable a sample application. I tend to use krb-telnet, a Kerberos-aware version of the classic
telnet application, as a test application. The krb-telnet server is managed by your system's xinet
daemon. To enable krb-telnet, modify the file /etc/xinetd.d, changing the disable entry from
yes to no, as in the following example:

 # default: off
 # description: The Kerberized telnet server accepts normal telnet,
 # but can also use Kerberos 5 authentication.
 service telnet
 {
 flags = REUSE
 socket_type = stream
 wait = no
 user = root
 server = /usr/kerberos/sbin/telnetd
 log_on_failure += USERID
 disable = no
 }

3.

Restart your system's xinet daemon using the following command:

 # /etc/init.d/xinetd.d restart

4.

Telnet to your system and make sure that you can log in successfully. Once you have logged in,
you can use the klist command to verify that you've automatically been granted the
appropriate Kerberos tokens, as in the following example:

 $ klist
 Ticket cache: FILE:/tmp/krb5cc_p4979
 Default principal: wvh@VONHAGEN.ORG
 Valid starting Expires Service principal
 05/07/05 10:00:46 05/08/05 10:00:46 krbtgt/VONHAGEN.ORG@VONHAGEN.ORG
 Kerberos 4 ticket cache: /tmp/tkt500
 klist: You have no tickets cached

5.

CongratulationsKerberos is working! The next step in this hack is to integrate Kerberos into your
system's login authentication process.

http://lib.ommolketab.ir

1.8.4. Using Kerberos for Login Authentication

To enable Kerberos authentication on a client system, do the following:

Make sure you've built or installed the pam_krb5.so PAM module on all your client systems. If
you are not using a package management system, you can obtain the latest version of the
pam_krb5.so PAM at http://sourceforge.net/projects/pam-krb5/.

1.

Verify that the /etc/krb5.conf file contains valid settings for PAM authentication, in the
[appdefaults] section's pam subsection. Valid settings for Kerberos authentication via PAMs that
match the examples used throughout this section are:

 [appdefaults]
 pam = {
 debug = false
 ticket_lifetime = 36000
 renew_lifetime = 36000
 forwardable = true

 hosts = kerberos.vonhagen.org
 max_timeout = 30
 timeout_shift = 2
 initial_timeout = 1
 }

2.

Add entries for krb5 authentication to the appropriate PAM configuration files on your system.
As explained in [Hack #4], some Linux systems use individual files to configure authentication
for specific services, while others (such as Red Hat/Fedora) create a centralized file for system
authentication called /etc/pam.d/system-auth. If you are using individual files, you must add
the appropriate entries for LDAP authentication to login-related services such as login and
Kerberized services such as rlogin and telnet. You should insert auth and account enTRies for
the pam_krb5.so module before your system's generic Linux authentication checks, which are
usually handled by pam_unix2.so (SUSE) or pam_pwdb.so (most other Linuxes). An example
PAM file for the telnet service would look something like the following:

 auth required /lib/security/pam_nologin.so
 auth sufficient /lib/security/pam_krb5.so
 auth required /lib/security/pam_pwdb.so shadow nodelay
 account sufficient /lib/security/pam_krb5.so
 account required /lib/security/pam_pwdb.so
 password required /lib/security/pam_cracklib.so
 password required /lib/security/pam_pwdb.so shadow nullok
 use_authtok
 session required /lib/security/pam_mkhomedir.so skel=/etc/skel/
 umask=0022
 session required /lib/security/pam_pwdb.so

3.

http://sourceforge.net/projects/pam-krb5/
http://lib.ommolketab.ir

If you are using a Red Hat or Fedora system, modify /etc/pam.d/system-auth to look like the
following:

 auth required /lib/security/pam_env.so
 auth sufficient /lib/security/pam_unix.so likeauth nullok
 auth sufficient /lib/security/pam_krb5.so use_first_pass
 auth required /lib/security/pam_deny.so
 account required /lib/security/pam_unix.so broken_shadow
 account sufficient /lib/security/pam_succeed_if.so uid < 100 quiet
 account [default=bad success=ok user_unknown=ignore] /lib/security/
 pam_krb5.so
 account required /lib/security/pam_permit.so
 password requisite /lib/security/pam_cracklib.so retry=3
 password sufficient /lib/security/pam_unix.so nullok use_authtok
 md5 shadow
 password sufficient /lib/security/pam_krb5.so use_authtok
 password required /lib/security/pam_deny.so
 session required /lib/security/pam_limits.so
 session required /lib/security/pam_unix.so
 session optional /lib/security/pam_krb5.so

4.

That's all you should have to do. Before logging out of the client, telnet or SSH to it and attempt to
log in. If you have any problems with Kerberos login authentication, you can enable PAM debugging
in your /etc/krb5.conf file so that you can quickly identify and resolve authentication-related
problems with login and other system applications that use PAMs. To do this, simply set the debug
entry to true in the PAM section of the [appdefaults] stanza and restart your Kerberos server.

Unfortunately, there is no automated mechanism for migrating existing user and password
information to a Kerberos database. You will have to manually add principals for all of your groups
and users to the Kerberos database on your KDC, and assign them default passwords. Users can
subsequently change their passwords using the kpasswd command found in /usr/kerberos/bin.

1.8.5. See Also

Kerberos: The Definitive Guide, by Jason Garman (O'Reilly)

"Customize Authentication with PAMs" [Hack #4]

http://lib.ommolketab.ir

Hack 8. Authenticate NFS-Lovers with NIS

If you're using NFS, using its companion authentication mechanism may be the right way
to go.

The Network Information System (NIS) is a distributed authentication mechanism that was originally
developed by Sun Microsystems and is most commonly used in conjunction with the file-sharing
protocol NFS [Hack #56]. NIS enables all of the machines in a computing environment to share
access to a centralized collection of authentication-related files and service configuration information,
known as "maps." Each NIS map is typically provided in several different ways, each organized to
optimize a specific type of access to that information, such as lookups by name or by some unique
numeric component (such as being able to access a group map by group ID, a host's map by
address, and so on).

NIS+, also from Sun Microsystems, is the successor to NIS. Much like LDAP, it
organizes information hierarchically. Unfortunately, NIS+ never really caught
on outside of Sun systems, and therefore few Unix and Unix-like operating
systems (such as, for example, Linux) bother to support NIS+.

1.9.1. Installing NIS Clients and Servers

Most Linux distributions provide packages that include NIS client and server software, but if yours
doesn't, or you simply want to install the latest and greatest, you'll need to build and install the
following packages from ftp://ftp.kernel.org/pub/linux/utils/net/NIS:

ypbind-mt

The client NIS daemon

ypserv

The NIS server

yp-tools

The standard NIS utilities for displaying NIS files, changing your NIS password, changing the
full name or shell in your NIS password file entry, and querying various aspects of an NIS

http://lib.ommolketab.ir

server or NIS maps

The names of these packages will also include version numbers and an extension based on the
archive format that you download (gzip or bzip2).

1.9.2. Setting Up an NIS Server

As mentioned earlier, NIS is the most commonly used distributed authentication mechanism today,
largely because it is shipped free with almost all Unix and Unix-like systems. Another reason for the
prevalence of NIS is that it's incredibly easy to set up. This section walks you through the process of
setting up an NIS server. Setting up an NIS client is explained in the next section.

This section shows how to quickly set up an NIS server for use with an NFS
server. This NIS server exports the default password, group, host, and other
maps (files) found on the NIS server system. In a production environment, you
would want to do substantially more customization before initiating NIS
throughout your computing environment. For example, you would also want to
customize the NIS configuration files /var/yp/securenets, /etc/yp.conf, and
/etc/ypserv.conf. For more complete information about setting up NIS, see the
NIS HOWTO listed at the end of this hack.

To set up an NIS server, log in as or su to root on the system you will be configuring as an NIS
server, and do the following:

Make sure that the NIS software is installed on your Linux system. At a minimum, you will need
the /bin/domainname, /usr/sbin/ypserv, and /usr/lib/yp/ypinit programs.

1.

Next, make sure that the /etc/passwd file has an entry for your personal account, which should
also be found in the password file on the system you will be configuring as an NIS client. In the
next section, you'll use this entry to verify that NIS is working correctly.

2.

Set the domain name of your new NIS domain. This should not be the same as the name of
your TCP/IP domain, to avoid confusing DNS and potentially compromising security in your
domain. To set the NIS domain name, issue a command like the following:

 # /bin/domainname foo.com

3.

Start the NIS server process using the following command:

 # /usr/sbin/ypserv

4.

Initialize the NIS databases using the following command:5.

http://lib.ommolketab.ir

 # /usr/lib/yp/ypinit -m

You will see output like the following:

 At this point, we have to construct a list of the hosts which will run
 NIS servers.
 64bit.vonhagen.org is in the list of NIS server hosts.
 Please continue to add the names for the other hosts, one per line.
 When you are done with the list, type a <control D>.
 next host to add: 64bit.vonhagen.org
 next host to add:
 6. When prompted for the name of any other NIS servers in your domain,
 press <Ctrl-D>. You will see output like the following:
 The current list of NIS servers looks like this:
 64bit.vonhagen.org
 Is this correct? [y/n: y]
 7. Press return to respond yes. You will then see output listing the
 files that have been generated and added to the NIS database. This
 output looks like the following, where the domain name you specified
 will appear instead of the word "yourdomain":
 We need some minutes to build the databases…
 Building /var/yp/ws.com/ypservers…
 Running /var/yp/Makefile…
 gmake[1]: Entering directory '/var/yp/yourdomain'
 Updating passwd.byname…
 Updating passwd.byuid…
 Updating group.byname…
 Updating group.bygid…
 Updating hosts.byname…
 Updating hosts.byaddr…
 Updating rpc.byname…
 Updating rpc.bynumber…
 Updating services.byname…
 Updating services.byservicename…
 Updating netid.byname…
 Updating protocols.bynumber…
 Updating protocols.byname…
 Updating mail.aliases…
 gmake[1]: Leaving directory '/var/yp/yourdomain'

5.

That's all there is to it! Your new NIS server is up and running. You can now test that it is working
correctly by following the instructions in the next section.

1.9.3. Setting Up an NIS Client

http://lib.ommolketab.ir

A good sysadmin Zen quote is "If a server is running and it has no clients, is it really working?" This
section explains how to set up an NIS client of the server set up in the previous section, after doing
some initial configuration so that you can verify that the server is actually doing "the right thing."

To do some preconfiguration to verify that NIS is actually working, log in as or su to root and edit the
/etc/nsswitch.conf file on the system you are using as an NIS client. Find the line that tells your
system how to locate password entries and modify that line to look like the following:

 passwd: files nis [NOTFOUND=return]

This tells your system to look for password information in the local password file and then consult
NIS. If the password is not found in either of these locations, the [NOTFOUND=return] command tells
your system to give up rather than pursuing any of the other authentication sources that may appear
in this nsswitch.conf entry.

Next, save a copy of your system's /etc/passwd file and then remove all user entries from the
existing password file. Leave the root and system service accounts in the filetypically, it's safe to
remove accounts with UIDs greater than 200. As the last line of the newly abbreviated password file,
add the following:

 +::::::

This tells NIS to append the contents of the password map (file) retrieved from the NIS server
whenever password information is requested.

Notice that the entries for any individual accounts (including your own) have been removed from the
abbreviated password file. This enables you to do a fairly simple test to determine whether NIS is
working: if you can log in using an account that is not present in the password file on your client
system but is present in the password file on your NIS server system, NIS is working correctly.

To set up an NIS client, log in as or su to root on the system you are using as an NIS client and do
the following:

Make sure the NIS client software is installed on your Linux system. At a minimum, you will
need the /bin/domainname and /sbin/ypbind programs.

1.

Check whether the directory /var/yp exists and create it if it does not.2.

Set the domain name of the NIS domain to which this new client will belong. This should be the
same name as the domain name set in the previous section of this hack. To set the NIS domain
name, issue a command like the following:

3.

http://lib.ommolketab.ir

 # /bin/domainname foo.com

Edit the ypbind configuration file /etc/yp.conf, adding an entry for your NIS server. Continuing
with the previous example, you'd add the following line:

 domain vonhagen.org server 64bit

If your network is not running older, potentially incompatible NIS servers
for other groups, you could also replace server 64bit with broadcast to
cause the NIS client to broadcast on the local network in order to locate
an NIS server.

4.

Start the NIS client process using the following command:

 # /sbin/ypbind

5.

To verify that NIS is working correctly, telnet from the NIS client system back to itself and
attempt to log in as yourself. Remember that your password file entry is present in the
password file on the NIS server but not in the password file on the NIS client.

6.

You should be able to log in successfully. Congratulationsyou're running NIS! Remember to add
setting the domain name and starting the NIS server and client to the startup procedures for each of
your NIS client systems.

1.9.4. See Also

NIS HOWTO: http://www.linux-nis.org/nis-howto/

"Centralize Resources Using NFS" [Hack #56]

"Clean Up NIS After Users Depart" [Hack #77]

http://www.linux-nis.org/nis-howto/
http://lib.ommolketab.ir

Hack 9. Sync LDAP Data with NIS

Run a script out of cron to help with a graceful transformation to LDAP.

An NIS-to-LDAP migration is a nontrivial event in any environment. If the switch were as simple as
moving data from one place to another, most organizations would've done it by now. The reality in
many production environments, large and small, is that some applications (and even appliances) do
not yet support LDAP or don't support LDAP to the extent that we would like. Eventually, most places
come to terms with LDAP's limitations and implement a "phase in" approach, which involves using
LDAP where it is fully supported but keeping NIS around for those things that require it.

In those environments where the authentication source will be NIS for some legacy systems and
LDAP for those newer systems that support it, the challenge becomes keeping the data synchronized
between NIS and LDAP. Over the past couple of years, I have found several tools that attempt to
solve this problem. One is a C program that, though it is amazingly generic, requires a whole bunch
of flags that will look quite cryptic to some system administrators. Another solution consisted of a
suite of tools that attempted to do too much and weren't very configurable. I was unable to make
friends with these tools, as they seemed to make assumptions about my environment that would
never be true.

In the end, I did find a Perl script online that had a very elementary structure that anyone could
understand. It was clearly written and well commented, but unfortunately it wasn't actually written to
complete the job it claimed to do. Rather than continuing my search, I broke down and decided that,
by using this Perl script as a "good enough" skeleton, I could get it to work for my needs. Here is my
Perl hack for taking data residing in LDAP and creating NIS maps.

1.10.1. The Code

 #!/usr/bin/perl
 use Net::LDAP;

 ## CONFIG

 my $server = "ldap-server";

 my $base = "dc=example,dc=com";

 my $bind = "uid=ldap2nis,ou=People,dc=example,dc=com";

 my $bindpw = 'password';
 my $groupf = "group";
 my $passwf = "passwd";
 my $buildyp = "false";
 ## CONNECT
 my $ldap = Net::LDAP->new($server, onerror => 'die');

http://lib.ommolketab.ir

 $ldaps = $ldap->start_tls(verify=>'none') or die "Couldn't start tls: $@\n";
 $ldap->bind(dn => $bind, password => $bindpw) or die "Bind failed: $@\n";

 ## PRINT PASSWORD FILE[1]

 my $res = $ldap->search(
 base => $base,
 scope => 'sub', # entire tree
 timelimit => 600,
 filter => '(&(objectClass=posixAccount))',
 attrs => ['uid', 'uidNumber', 'gidNumber', 'gecos',
 'homeDirectory', 'loginShell', 'userPassword'],
);

 open(PASSWORD, ">$passwf");
 while (my $entry = $res->shift_entry) {
 (my $uid = $entry->get_value('uid')) =~ s/:/./g;
 (my $uidnum = $entry->get_value('uidNumber')) =~ s/:/./g;
 (my $gidnum = $entry->get_value('gidNumber')) =~ s/:/./g;
 (my $gecos = $entry->get_value('gecos')) =~ s/:/./g;
 (my $homedir = $entry->get_value('homeDirectory')) =~ s/:/./g;
 (my $shell = $entry->get_value('loginShell')) =~ s/:/./g;
 (my $up = $entry->get_value('userPassword')) =~ s/:/./g;
 if (index($up, "{crypt}") != -1) {
 $up = substr($up, 7);
 }else{
 $up = crypt($up, "bR");
 }
 $passrecord = join(':',$uid,$up,$uidnum,$gidnum,$gecos,$homedir,$shell);
 print PASSWORD "$passrecord\n";
 }
 close(PASSWORD);
 chmod(0600, $passwf);

 ## PRINT GROUP FILE
 my $res = $ldap->search(
 base => $base,
 scope => 'sub', # entire tree
 timelimit => 600,
 filter => '(&(objectClass=posixGroup))',
 attrs => ['cn', 'gidNumber', 'memberuid'],

);

 open(GROUP, ">$groupf");
 while (my $entry = $res->shift_entry) {
 (my $grname = $entry->get_value('cn')) =~ s/:/./g;
 my $grpass = "*";
 (my $grnum = $entry->get_value('gidNumber')) =~ s/:/./g;
 (@members = $entry->get_value('memberuid')) =~ s/:/./g;

 if($#members >= 0) {

http://lib.ommolketab.ir

 $memusers = join(',',@members);
 }else{
 $memusers = "";
 }

 $grprecord = join(':', $grname,$grpass,$grnum,$memusers);
 print GROUP "$grprecord\n";
 }
 close(GROUP);
 chmod(0600, $groupf);

1.10.2. Running the Code

Assuming you're storing encrypted password strings in your NIS passwd map, this script, which I call
dap2nis, should be configured using the variables near the top to bind as an account that has read
access to the userPassword attribute for the user entries. Otherwise, you'll get nothing back for that
attribute, and your resulting NIS maps won't be useful as authentication sources when they're
pushed out.

You can test the code by first making a test directory and making the script executable. Next, be sure
to configure it to talk to your LDAP server using the config variables near the top of the script. Once
that's all done, running the program should produce passwd and group files in the test directory.
These should be valid NIS maps, ready to be pushed out. However, before taking that step, you
should run a diff against the current NIS maps to check for any anomalies that reflect errors in the
map generation rather than simple changes that have occurred in LDAP but are not yet reflected in
NIS. Here are a few commands from a hypothetical test session:

 # ./dap2nis
 # ypcat passwd > yppass.out
 # ypcat group > ypgrp.out
 # diff yppass.out passwd
 # diff ypgrp.out group

The only output you should see from the diff commands should be valid changes that have not yet
been propagated to NIS. Once you've tested thoroughly, you can put the script in root's crontab file,
with an entry like this:

 */7 * * * * /var/adm/bin/dap2nis

This entry says to run the script every seven minutes, all the time, every day.

The only thing the dap2nis script does not do in its current incarnation is actually perform a cd
var/yp/; make, which would normally push out the NIS maps. Depending on your environment, you

http://lib.ommolketab.ir

may not want this in this particular script. Instead, you might put in another cron job that pushes out
NIS maps every four minutes, which would allow for changes to be pushed out automatically to
reflect changes that were made to maps not covered by this script. Creating a separate cron job to
push out the NIS maps also ensures that if this script is ever retired or pulled out of production, your
maps will still get pushed out in an automated fashion.

1.10.3. See Also

"Centralize Logins with LDAP" [Hack #6]

"Authenticate NFS-Lovers with NIS" [Hack #8]

"Clean Up NIS After Users Depart" [Hack #77]

http://lib.ommolketab.ir

Chapter 2. Remote GUI Connectivity
Section 2.1. Hacks 1019: Introduction

Hack 10. Access Systems Remotely with VNC

Hack 11. Access VNC Servers over the Web

Hack 12. Secure VNC via SSH

Hack 13. Autostart VNC Servers on Demand

Hack 14. Put Your Desktops on a Thin Client Diet

Hack 15. Run Windows over the Network

Hack 16. Secure, Lightweight X Connections with FreeNX

Hack 17. Secure VNC Connections with FreeNX

Hack 18. Secure Windows Terminal Connections with FreeNX

Hack 19. Remote Administration with Webmin

http://lib.ommolketab.ir

2.1. Hacks 1019: Introduction

Networks are the backbone of most computing today. Even small businesses depend on internal
networks of desktop computers and servers to deliver services such as email, file and directory
sharing, access to internal and external web servers, and so on. For the system administrator, this
means that you typically need to connect to different types of systems during the course of a day to
perform different types of administrative tasks.

If your network is composed solely of Linux systems, you can use standard command-line tools such
as ssh or telnet to connect to remote systems and get most of your work done, but let's face itit's a
graphical world nowadays. There are lots of great administrative tools out there that make it easier
to do complex tasks that could easily be derailed by a typo in a long command line. And if you also
administer Microsoft Windows or Mac OS X systems, you'll need access to graphical tools that run on
those systems, too.

This chapter primarily consists of hacks that make it easy to establish graphical connections to
remote machines from a desktop system, enabling people to run graphical packages that are
installed on those remote systems without leaving their chairs. It also provides a hack that tells you
how to use Webmin, a centralized, web-based system administration utility that enables you to
access multiple server resources from a single system and browser.

The hacks in this chapter aren't just for system administrators: they're for anyone who needs to use
graphical interfaces on multiple machines. Even if yours is a Linux shop, chances are that your users
will occasionally need access to Windows machines to update project plans, requirements documents,
spreadsheets, and so on. You could give everyone a Windows system "just in case," but that isn't
reasonable or cost-effective. Instead, why not just allow users to connect to a remote Windows
system or Windows Terminal server on those rare occasions when Windows software is actually
necessary? Similarly, if people need to check their personal email while they're at work, you could
configure their mail clients to support additional mail profiles, leave the mail on the server, enter
personal passwords, and so on. Many businesses don't mind this sort of thing, but people may (and
should) object to having copies of personal mail and authentication information on machines that
aren't theirs. Using hacks such as "Access Systems Remotely with VNC" [Hack #10] and "Secure
VNC Connections with FreeNX" [Hack #17], people can remotely access their home systems and
check mail there. No local copies of personal mail, no local passwords…no problem.

http://lib.ommolketab.ir

Hack 10. Access Systems Remotely with VNC

Virtual Network Computing is the next best thing to being thereand it's cross-platform,
too .

Command-line-oriented utilities (such as ssh and telnet) for accessing remote systems are fine for
many things, but they don't help much when you need to run graphical utilities on a remote system.
You can play around with the standard X Window System DISPLAY environment variable to output
programs to different displays, or you can take advantage of cooler, newer technologies such as VNC
to display the entire desktop of a remote system in a window on the system on which you're
currently working. This hack explains how to use VNC to do just that. VNC is a cross-platform thin
client technology originally developed by Olivetti Research Labs in Cambridge, England, who were
later acquired by AT&T. A VNC server runs on a desktop or server system and exports an X Window
System desktop that can be accessed by a VNC client running on another system. VNC servers are
typically password-protected and maintain their state across accesses from different clients. This
makes VNC an optimal environment for accessing a graphical console and running graphical
administrative and monitoring applications remotely.

Any host system can run multiple VNC servers, each of which exports a separate desktop
environment and therefore maintains separate state. Similarly, multiple clients can connect to and
interact with the same VNC server, providing an excellent environment for training, since many users
can view the same desktop.

VNC follows the traditional client/server model rather than the X Window System client/server model.
A VNC server is actually an X Window System process that exports an X desktop from the system on
which it is running, using a virtual framebuffer to maintain state information about the graphical
applications running within that server. VNC uses its own Remote Frame Buffer (RFB) protocol to
export graphical changes and handle mouse and keyboard events. Though VNC exports a graphical
environment, the RFB protocol is highly optimized, minimizing the amount of screen update
information that must be passed between client and server.

VNC is released under the General Public License (GPL), and many of the original VNC developers
now work for a company called RealVNC (http://www.realvnc.com), which distributes and supports a
commercial VNC implementation. Another extremely popular VNC distribution is TightVNC
(http://www.tightvnc.com), a small, even more highly optimized VNC client and server. TightVNC
makes better use of network bandwidth, utilizing JPEG compression for the display and differentiating
between local cursor movement and cursor movement that needs to be communicated back to the
VNC server. TightVNC also features automatic SSH tunneling for security purposes, though any VNC
session can be run through an SSH tunnel [Hack #12] . This hack focuses on using TightVNC,
although RealVNC is also an excellent choice. Most Linux distributions install one of these VNC
implementations as part of their default client/server installations, but you can always obtain the
latest version from the appropriate web site.

http://lib.ommolketab.ir

2.2.1. Understanding the VNC Server Startup Process

The actual VNC server binary, Xvnc , is usually started by a Perl script called vncserver . The
vncserver script provides a more flexible mechanism for passing arguments to the server, displays
status information once the server has started and detached, and also builds in the ability to use a
startup script to identify the window manager and any X applications the VNC server should start.
The VNC server's startup script is the file ~/.vnc/xstartup . If this directory and the startup file do not
exist the first time you start a VNC server, the directory is created and the startup script is cloned
from the default X Window System startup file (/etc/X11/xinit/xinitrc). On Red Hat and Fedora Core
systems, the default ~/.vnc/xstartup script simply executes the command script /etc/X11/xinit/xintrc
:

 #!/bin/sh
 # Red Hat Linux VNC session startup script
 exec /etc/X11/xinit/xinitrc

This enables VNC on Red Hat and Fedora Core systems to follow the same somewhat convoluted
chain of X Window startup files that are normally used: ~/.Xclients, ~/.Xclients -$HOSTNAME$DISPLAY ,

~/.Xclients-default , and /etc/X11/xinit/Xclients . Xclient files can start various desktop environments
and window managers by using environment variable settings, and they finally fall through to execing
the twm window manager (http://www.plig.org/xwinman/vtwm.html).

On SUSE systems, the ~/.vnc/xstartup script is a little more straightforward:

 #!/bin/sh
 xrdb $HOME/.Xresources
 xsetroot -solid grey
 xterm -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" &
 twm &

This startup script loads the X Window System resource settings specified in the file
$HOME/.Xresources , sets the background to solid grey, starts an xterm with the specified
parameters, and then starts the twm window manager. Later in this hack, in the section "Customizing
Your VNC Server's X Window System Environment," I'll discuss how to customize this script to start
the X Window System environment and applications of your choice. For now, it's simply useful to
understand how the VNC server determines what X Window System applications to run.

2.2.2. Starting Your VNC Server

To start a VNC server you execute the vncserver script, which starts the Xvnc server and the X
Window System window manager or desktop and applications defined in your ~/.vnc/xstartup script.
The first time you start a VNC server on your system, you will be prompted to set and confirm a
password for read/write access to the VNC server. You will also be prompted as to whether you want
to set a view-only password for the VNC server. As the name suggests, a view-only password will
enable you to see but not interact with the remote desktop displayed in the vncviewer window. The

http://lib.ommolketab.ir

first time you run the vncserver script, you'll see something like the following:

 $ vncserver
 You will require a password to access your desktops.
 Password:
 Verify:
 Would you like to enter a view-only password (y/n)? n
 New 'X' desktop is 64bit:1
 Starting applications specified in /home/wvh/.vnc/xstartup
 Logfile is /home/wvh/.vnc/64bit:1.log

You'll notice that I didn't bother to set a view-only password: I've never found this to be all that
useful. You can change your VNC password at any time using the vncpasswd command. Like most
password-changing utilities, it first prompts you for your old VNC password, then for the new one,
and finally asks for confirmation of the new VNC password.

When you start a VNC server on a system console or as a privileged user, make
sure you have set a VNC password that follows the most stringent rules for
password security. Anyone who breaks your password will have instant virtual
access to one of your desktops and all applications it contains. This would be
paradise for a script-kiddy who might not otherwise know his way around a
Linux box.

Once you've set a password and, optionally, a view-only password, the vncserver script will display a
message like the following whenever a server is successfully started:

 New 'X' desktop is home.vonhagen.org:1
 Starting applications specified in /home/wvh/.vnc/xstartup
 Logfile is /home/wvh/.vnc/home.vonhagen.org:1.log

VNC servers export their virtual displays via ports starting at 5900 plus the
number of the display being exported. For example, a VNC server running on
the X Window System display:1 will use port 5901, a VNC server running on
the X Window System display:2 will use port 5902, and so on. If your system
does kernel packet filtering or your network uses a firewall, you must make
sure that you do not block ports 590x (used to export VNC server displays),

port 6000 (used to communicate with the X Window System server), or ports
580x (if you want to communicate with a VNC server over the Web [Hack

#11]).

2.2.3. Connecting to a VNC Server

http://lib.ommolketab.ir

Once you've started a VNC server, you can connect to it from any remote system by executing the
command vncviewer host:display , where host is the host on which the VNC server is running and
display is the number of the X Window System display on which the VNC server is running. Figure 2-

1 shows a connection to a remote SUSE system using the default xstartup script shown in the
previous section. As you can see, the default VNC server setup is a bit austere, even if you are a
window manager bigot or connoisseur of simplicity.

2.2.4. Customizing Your VNC Server's X Window System Environment

Most VNC server configurations automatically start the twm window manager in the VNC server
environment by default. However, the VNC server's use of a startup script makes it easy to start any
window manager, desktop environment, and X Window System applications that you'd prefer to use
in the VNC environment.

Figure 2-1. The default VNC desktop

For low-bandwidth conditions, the twm window manager may still be the best choice: due to its
comparatively minimal feature set, it is relatively lightweight. In higher-bandwidth network

http://lib.ommolketab.ir

environments, however, you may want to use a window manager or desktop environment that you
are more comfortable with. You can easily do this by commenting out the twm entry in your xstartup
file and adding the commands that you want to use to start another window manager or a desktop
environment such as GNOME or KDE. For example, Figure 2-2 shows a connection to a remote SUSE
system when the default xstartup script has been modified to start KDE on that desktop, as in the
following:

 #!/bin/sh
 xrdb $HOME/.Xresources
 # xsetroot -solid grey
 xterm -geometry 80x24+10+10 -ls -title "$VNCDESKTOP Desktop" &
 # twm &
 /opt/kde3/bin/startkde &

If directed to do so when you exit, KDE remembers its state across restarts.
Figure 2-2 therefore shows two xterms being startedthe one from KDE's saved
information about the last time I started it, and the one specified in the VNC
startup script.

Figure 2-2. A VNC desktop using KDE

http://lib.ommolketab.ir

2.2.5. Stopping Your VNC Server

Like any process, a VNC server will always terminate when you shut down or reboot the machine on
which it's running. (No kidding!) However, this isn't the cleanest shutdown mechanism, because it will
leave useless PID files in your ~/.vnc directory and will leave some temporary and socket files in
various locations in your system's /tmp directory. A much cleaner way to shut down a running VNC
server process is to use the vncserver script's -kill option:

 $ vncserver -kill :number

Besides cleanly terminating VNC servers when you're planning to shut down or reboot your systems,
you may also want to manually terminate a VNC server if you have modified its startup file and want
to restart the VNC server with the new window manager, desktop, or X Window System applications.

http://lib.ommolketab.ir

If your system crashes while running a VNC server or the VNC server itself
crashes, you should clean out the files associated with the VNC server in the
/tmp and /tmp/.X11-unix directories. For example, if your VNC server was
running on display number 1, you would delete the files /tmp/.X1-lock and
/tmp/. X11-unix/X1 . Doing so ensures that any newly started VNC server will
start on the first available X display.

2.2.6. Optimizing VNC Performance

You can optimize VNC performance at two different levels, either by minimizing X Window System
updates that have to be communicated between the VNC client and server, or by optimizing how VNC
sends that information between the client and the server.

Minimizing the amount of graphical X Window System traffic sent between the VNC client and server
is largely a matter of reducing updates to a minimum while still retaining a usable X Window System
session. Regardless of the window manager or desktop environment that you're using in VNC, here
are some general tips for improving performance by minimizing graphical updates:

Minimize the color depth of the desktop.

Eliminate window highlighting when windows get focus.

Don't automatically raise windows when they get focus.

Don't use opaque moves when moving windows. Configure your window manager or desktop
environment to move window outlines instead.

If you stick with twm in your VNC sessions, you can further optimize VNC
performance by tweaking its core capabilities to minimize graphical feedback
when it's unneeded. The old AT&T web site for VNC
(http://www.uk.research.att.com/archive/vnc/twmideas.html) provides some
specific tips for optimizing twm for VNC.

Optimizing the way in which the VNC client and server exchange update information is the other
possible way to improve VNC's performance. VNC clients and servers attempt to communicate using
encoded update instructions to minimize network traffic. All graphical updates between the VNC
viewer and server are communicated as rectangles of pixels to be updated. The supported encoding
mechanisms differ based on whether you're using the VNC server/viewer from RealVNC or TightVNC.
The TightVNC viewer enables you to specify a custom sequence of encoding mechanisms to try in
order by using the -encoding option. This option must be followed by a series of supported encodings
enclosed within double quotation marks. The RealVNC viewer enables you to specify a single
preferred encoding mechanism using the -PreferredEncoding option, which must be followed by the
name of the encoding mechanism you want to try first. In either case, the encoding mechanism will
default to sending all information in an unencoded fashion (known as raw encoding) if no supported
encoding mechanism can be negotiated with the server.

The following list shows the encoding mechanisms supported by the RealVNC and TightVNC

http://lib.ommolketab.ir

packages. Different encoding mechanisms will improve performance in different situations, depending
upon conditions such as whether the VNC client and server are running on the same system, the load
on your network, and so on. You may want to refer to this section later to experiment with
customizing VNC server/viewer communications, depending on your network environment and
whether you are actually seeing performance problems. The supported encoding mechanisms are:

CopyRect (TightVNC only)

Copy Rectangle encoding sends only the location and size of a rectangle on the screen from
which data should be copied and the coordinates of its new location.

CoRRE (TightVNC only)

Copy Rise-and-Run-Length Encoding (RRE) is a variation of RRE that uses a maximum of 255 x
255pixel rectangles. Limiting the number of rectangles to values that can be expressed in a
single byte reduces packet size and improves efficiency.

Hextile (both)

Hextile encoding splits the rectangular portion of the screen to be updated into 16 x 16 tiles
that are sent in a predetermined order. The data in each tile is encoded in the raw or CoRRE
format. Hextile is the preferred choice for remote connections over a high-speed network.

Raw (both)

Sends width x height pixel values with no compression or repeat counts. This encoding
mechanism is fastest for local server/viewer connections because there are no bandwidth
limitations on local connections, and it requires no special processing. All VNC clients must
support this encoding type.

RRE (TightVNC only)

Rise-and-Run-Length Encoding is a two-dimensional version of Run-Length Encoding (RLE) that
applies RLE-encoded sequences across different subrectangles. This is extremely efficient when
encoding updates consisting of large blocks of the same color.

Tight (TightVNC only)

Tight encoding uses the zlib library to compress the pixel data, but preprocesses data to
maximize compression while minimizing processing time. It uses JPEG compression internally
to encode color-rich portions of areas to update. This is usually the best choice for modem
connections and low-bandwidth network environments.

Zlib (TightVNC only)

Zlib encoding uses the zlib library to compress raw pixel data. This provides good compression

http://lib.ommolketab.ir

at the expense of the local CPU time required to compress the data.

ZRLE (RealVNC only)

Zlib Run-Length Encoding combines RLE with Zlib compression. Sequences of identical pixels
within the rectangle to be updated are compressed to a single value and repeat count, and the
resulting information is then compressed using Zlib.

Table 2-1 shows the sequence in which a TightVNC viewer tries these different encoding mechanisms
when communicating with a remote or local VNC server.

Table 2-1. Order of encoding mechanisms used by TightVNC

Remote Local

CopyRect 1 2

CoRRE 5 6

Hextile 3 4

Raw 7 1

RRE 6 7

Tight 2 3

Zlib 4 5

2.2.7. See Also

man vncviewer

man vncserver

http://www.tightvnc.com

http://www.realvnc.com

TightVNC binaries for various Unix systems: ftp://ftp.kinetworks.com/tightvnc

OS X VNC server: http://www.redstonesoftware.com/vnc.html

http://www.tightvnc.com
http://www.realvnc.com
http://lib.ommolketab.ir

Hack 11. Access VNC Servers over the Web

With a little extra software, you can access your VNC servers in any web browser .

If you use VNC often enough, you'll eventually find yourself needing access to a VNC viewer from a
computer on which it has not been installed. You can put a copy of the installer or the installed
application on a public share, but manually connecting each time is a pain, especially if you just need
to quickly type a command or check status on the remote machine running your VNC serverand
always carrying a CD or floppy with the VNC viewer application on it is equally irksome.

Fortunately, the people who designed VNC are smart folks, and they thought of a solution to the
roaming user problema hassle-free way to make your VNC servers available even if the system
you're using doesn't have VNC client software installed. All VNC servers include a small built-in web
server that can serve the Java classes needed for any Java-enabled browser to connect to the VNC
server. This lets you access any VNC session that is already running on one of your systems using
any modern, Java-enabled browser. The VNC server listens for HTTP connections on port 5800 plus
the number of the display being exported. Therefore, to view a VNC session running on display 1 of
the host 64bit.vonhagen.org , you would access the URL http://64bit.vonhagen.org:5801/ .

As with any VNC session, the Java classes that implement the VNC client will prompt you for the VNC
server's password before connecting to the VNC server. Figure 2-3 shows a connection to my laptop's
VNC server, on which I am running the Fluxbox window manager (http://fluxbox.sourceforge.net).

Figure 2-3. A VNC desktop in the Firefox web browser

http://lib.ommolketab.ir

2.3.1. Installing Java Classes and Associated Files for the VNC Server

To enable web access to your VNC server(s), you must install the Java class and JAR files, and a few
additional files for the HTTP VNC server on the system where you'll be running it. These files are
installed as part of both the RealVNC and TightVNC server packages, but they can also be obtained
from the RealVNC and TightVNC web sites (http://www.realvnc.com and http://www.tightvnc.com ,
respectively) if they aren't installed on your system for some reason. Where they are installed and
how you let the VNC server know about them depends on the version of the VNC server and the
associated vncserver script that you're running.

If you're running TightVNC, the location where these files are found is specified in the variable
$vncClasses in the vncserver script.

You must also make sure that the following line is not commented out of the vncserver script:

 $cmd .= " -httpd $vncClasses";

If you're running a RealVNC server, the location(s) where these files can be found is specified in the
variable $vncJavaFiles in the vncserver script:

http://lib.ommolketab.ir

 $vncJavaFiles = (((-d "/usr/share/vnc/classes") && "/usr/share/vnc/classes")
 ||
 ((-d "/usr/local/vnc/classes") && "/usr/local/vnc/classes"));

You must also make sure that the following line is not commented out of the vncserver script:

 $cmd .= " -httpd $vncJavaFiles" if ($vncJavaFiles);

Once you've configured the startup script for the Java and other files used by the VNC server, you
should restart any VNC server(s) that you're currently running to ensure that they pick up the files
used by the VNC server's mini-HTTPD daemon.

2.3.2. See Also

"Access Systems Remotely with VNC" [Hack #10]

http://www.tightvnc.com

http://www.realvnc.com

http://www.tightvnc.com
http://www.realvnc.com
http://lib.ommolketab.ir

Hack 12. Secure VNC via SSH

Easily encrypt your remote connections by setting up a secure tunnel.

VNC is a great way of getting access to a graphical desktop on a remote system. However, once
you're connected, VNC uses standard TCP/IP for all traffic between the local viewer and the remote
server. Anyone with a packet sniffer on your local network can grab packets and monitor your traffic,
which is a bad thing if you're using the remote session for administrative tasks that will transmit
passwords.

Luckily, it's quite easy to leverage the encryption provided by SSH, the Secure Shell, in your VNC
sessions. You do this by setting up an SSH tunnel, which is essentially just a mapping between local
and remote ports so that all traffic to a specified port on a remote machine is forwarded via SSH to a
port on your local machine. This hack explains how to combine the power of VNC with the security of
SSH to provide secure connections to remote machines. For general information about SSH, see the
first volume of Linux Server Hacks by Rob Flickenger (O'Reilly), which devotes an entire chapter to
SSH.

2.4.1. Forwarding Remote VNC Ports to Your Current Host

In addition to the standard secure shell functionality that most people use SSH for, SSH also enables
you to forward traffic from a specific port on a remote machine to a specific port on your local
machine. Doing this requires that a VNC server is already running on the remote machine, and that
you establish a standard SSH connection to the remote machine but supply the L (local) option and
an appropriate argument when you execute the ssh command.

The syntax for forwarding ports when using a standard SSH connection is the following:

 $ ssh -L local-port:local-host:remote-port remote-host

As discussed in "Access Systems Remotely with VNC" [Hack #10], standard VNC traffic with a given
host takes place over port 590x, where x is the X Window System display that a specific VNC server

is using. For example, to use SSH to forward VNC traffic from the VNC server running on the X
Window System display:1 of the host nld.vonhagen.org to the same port on your local system,
home.vonhagen.org, you would execute the following command:

 $ ssh -L 5901:home.vonhagen.org:5901 nld.vonhagen.org

http://lib.ommolketab.ir

Once this tunnel is created, point your vncviewer at home.vonhagen.org:1 to establish a connection.
When you supply the VNC password for the VNC server running on nld.vonhagen.org, a standard
VNC window will display on your systembut the connection is secure. You can now type passwords,
write love letters, or surf for a new job without anyone being able to sniff out what you're doing.

Even after forwarding a remote VNC port, the VNC server is still running on its original port on the
remote host. Anyone who knows the VNC password to the remote system will still be able to connect
to the VNC server normally, without the encryption you've set up through your locally forwarded
tunnel.

If you are using the Java VNC viewer [Hack #11], you will also need to
forward the port used by your VNC server's internal HTTP server. A VNC
server's HTTP server uses port 580x, where x is the X Window System display

that a specific VNC server is using. For example, in the previous command, the
VNC server was using X Window System display:1, which meant that it was
using port 5901 for standard VNC connections. Its web server is therefore
using port 5801.

2.4.2. Public or Private VNC Forwarding

When forwarding ports in SSH, you can refer to your local machine using either its public hostname,
which uses its standard IP address, or its loopback name, which maps the remote port to your host's
loopback address. Each approach has its advantages.

Using the loopback address is best for security, because it requires that you be directly connected to
your machine in order to access the remote VNC server through your loopback address. No one else
can access the VNC server without being connected to your machine, since a loopback address
(127.0.0.1) is specific to each host.

On the other hand, you may want to specify your host's public hostname if you want to be able to
access the forwarded VNC from other hosts, or if you want to use a single system as an aggregator
for connections to multiple VNC servers. The latter can be useful in enterprise environments where
you want encrypted VNC connections but don't want to set up each one individually on whatever
computer you're currently using. Using a specific system as a VNC aggregator provides the
convenience of being able to access multiple VNC servers through a single host while still using the
security provided by VNC's encryption, as shown in Figure 2-4.

2.4.3. Forwarding Ports Without Remote Login

Using the standard ssh command and the -L option requires that you actually establish an SSH
connection to a remote machine, tying up whatever terminal session you're using to set up the port
forwarding. To start up SSH port forwarding in the background, you can use the ssh command's -f
(fork) and -N (no command) options, as in the following example:

http://lib.ommolketab.ir

 $ ssh -f -N -L 5901:localhost:5901 nld.vonhagen.org

In this example, unless you've used SSH keys to set up passwordless SSH with the host
nld.vonhagen.org, you'll still be prompted for your remote password. Once you enter it, SSH will set
up the specified port forwarding and then return control to the local shell, rather than starting up a
remote shell and connecting you to it. To terminate SSH port forwarding started in this fashion, you
will have to locate and terminate the process using the Linux ps and kill commands or equivalents.

Figure 2-4. Multiple hosts using a single VNC aggregator

2.4.4. Improving Performance with Compression

Slow connections, such as those via modems and heavily loaded networks, can make using remote
graphical applications painful. In these cases, you can optimize the bandwidth required for
communicating with your remote VNC server by taking advantage of SSH compression. The ssh
command provides a -C (compression) option that uses the same compression algorithms used by
gzip to reduce the amount of data that you have to transfer back and forth over whatever wire you're
using. To add compression to your SSH tunnel, just add the -C option to your existing ssh command
line. For example, the command in the previous section would become the following to invoke
compression:

 $ ssh -C -L 5901:home.vonhagen.org:5901 nld.vonhagen.org

http://lib.ommolketab.ir

This command compresses all data exchanged between home.vonhagen.org and nld.vonhagen.org
over the SSH tunnel.

Compression reduces the amount of data that needs to be exchanged over the tunnel, but it adds
some processing overhead on both the client and the server in order to compress and decompress
the data being exchanged over the tunnel. Compression may not be a good idea on slow or heavily
loaded systems, but it's almost always a good idea over dialup connections. When using actual
network connections, since both system and network load are transient, the only surefire way to
gauge the possible benefits of compression is to experiment with using it.

2.4.5. Optimizing Graphical Updates Between Server and Viewer

As explained in detail in "Access Systems Remotely with VNC" [Hack #10], VNC supports a number
of different ways to encode graphical update information when exchanging data between a VNC
server and viewer. VNC viewers try to negotiate different encoding mechanisms depending on
whether they believe that the VNC server is running locally or on a remote machine. Local
connections always try to use raw encoding before trying any compressed encoding options. Raw
encoding is extremely fast if the VNC server and viewer are running on the same machine, since local
bandwidth is effectively infinite, but it's inefficient when communicating between a remote server and
a local viewer.

When using SSH tunneling to redirect a remote VNC server to a local port, you'll want to override the
default encoding settings to make communication between the VNC server and client more efficient,
since the server is remote. If you're using the RealVNC vncviewer, specify the -PreferredEncoding
hextile option on the vncviewer command line. If you're using TightVNC's vncviewer, you should
specify -encodings "copyrect tight hextile" to take advantage of TightVNC's optimized encoding.

To find out which VNC viewer you're using (and therefore whether to try tight
encoding), you can execute the command vncviewer --help. If you're using
TightVNC, you'll see a string like TightVNC viewer version 1.2.9 as part of the
output of this command. If you're using an RPM-based Linux system, you can
also execute the command: rpm -qf `which vncviewer` to see which package
provided the vncviewer command.

2.4.6. See Also

"Access Systems Remotely with VNC" [Hack #10]

Linux Server Hacks, by Rob Flickenger (O'Reilly)

http://www.tightvnc.com

http://www.realvnc.com

http://www.tightvnc.com
http://www.realvnc.com
http://lib.ommolketab.ir

http://lib.ommolketab.ir

Hack 13. Autostart VNC Servers on Demand

Eliminate the need to manually start VNC servers on remote machines .

In this age of enlightenment and whizzy graphical devices, most Unix servers have graphical consoles
instead of the VT100s or LA123s of days gone by. This is certainly true of most Linux servers, though
most machine rooms save space by installing a single monitor and using a KVM to switch between
the systems that are actually using it at the moment. As explained in "Access Systems Remotely with
VNC" [Hack #10] , the traditional mode of operation for VNC is to SSH/telnet/whatever to a remote
system, manually start a VNC server, and then nip back to the system you're actually using and start
the VNC viewer there. It's easy enoughbut isn't the whole "SSH there, stand on one leg, start this,
pop back here, start that here" business irritating?

This hack explains how to avoid all that by integrating the VNC X Window System server directly into
your graphical X Window System login environment. The basic idea is that you configure your
machine to use your system's Internet daemon (xinetd or inetd) to start the Xvnc server whenever
an incoming VNC connection is sensed on one or more ports. You also configure your system to use
the X Display Manager Control Protocol (XDMCP) to manage any new X displays, such as the Xvnc
server. When the Xvnc server starts in response to an incoming port request, it displays an XDMCP
login screen, you log in, and voilà!

2.5.1. Integrating Xvnc with inetd or xinetd

The modern Linux Internet daemon xinetd (like its predecessor inetd , which may still be used
somewhere) initiates the daemons associated with various servers in response to incoming requests
on different ports, as defined in the file /etc/services . Throughout the rest of this hack, I'll refer to
xinetd and inetd together as x/inetd , using their specific names whenever necessary to differentiate
between them.

The x/inetd daemon is often referred to as a "super server," because its job is to manage other
server processes. Using x/inetd lowers the load on your systems, because the daemons for these
services don't have to be running all the timex/inetd starts them as needed when an incoming
request is detected. Using x/inetd also heightens security on your systems by providing what are
commonly known as TCP wrappers a central mechanism for enabling or denying TCP access to a
number of services through entries in the files /etc/hosts.allow and /etc/hosts.deny , respectively.

The first step in integrating VNC with x/inetd is to create an appropriate entry for VNC in the text file
/etc/services . On new systems that I set up, I decided that automatic VNC sessions would start on
port 5908choosing a value higher than 5900 will prevent collisions when a user manually starts a
VNC session on the server using a lower port number. An appropriate /etc/services entry for
automatically starting VNC in response to incoming requests on port 5908 is the following:

http://lib.ommolketab.ir

 vnc 5908/tcp # Xvnc

Once you've created this entry in /etc/services , you must next define what happens in response to
an incoming request on this port.

If you're using xinetd , you must create the file /etc/xinetd.d/vnc , which contains various settings for
how xinetd should respond to incoming requests, which application it should start, and so on. Here's
a sample /etc/xinetd.d/vnc file:

 # default: on
 # description: The vnc server provides remote desktop connections
 #
 service vnc
 {
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = nobody
 server = /usr/bin/Xvnc
 server_args = :8 -inetd -once -query localhost -depth 24 \
 -geometry 1280x1024 -securitytypes=none
 }

The server_args entry should be on a single line, but I've broken it into two in this example for
readability. The arguments that you specify to the Xvnc server are highly dependent on the version
and source of the Xvnc server that you're running. The arguments shown in the previous example
mean the following:

:8

Specifies the X Window System display on which the Xvnc server should start.

-inetd

Runs the Xvnc server as a daemon and expects it to be run from x/inetd .

-once

Starts the Xvnc server from scratch when a connection is initiated, and terminates the server
when the connection terminates. This also blocks multiple copies of the Xvnc server from
starting on the same port.

http://lib.ommolketab.ir

-query localhost

Tells the Xvnc server to query a specific machine for an XDMCP login (more about that in the
next section). In this case, the Xvnc server will contact the loopback interface on localhost ,
which has the IP address 127.0.0.1.

-depth 24

Specifies the color depth of the Xvnc server's X Window server.

-geometry 1280x1024

Specifies the virtual screen size and resolution at which to start the Xvnc server. Some
common values are 800x600, 1024x768, 1280x1024 , and 1600x1280 . As a general rule, the
value you specify should be less than the size of the display on the system you're using to
connect to the Xvnc server, or you may have problems accessing the window controls. You can
use odd dimensions like 1000 x 50 to have as large a window as possible on a 1024 x 768
display that fits between graphical elements such as taskbars and sidebars.

-securitytypes=none

Specifies that the Xvnc server shouldn't use its own internal security mechanism (vncpasswd)
to allow access to the VNC server, since XDMCP will handle this for you.

Depending on the version of Xvnc that's installed on your system, you may need other or additional
options:

-ac

If you're using TightVNC's version of Xvnc , you'll need to use this option instead of -
securitytypes=none to avoid using Xvnc 's default access controls. The -securitytypes=none
argument is used by RealVNC's Xvnc .

-fp fontpath

Some versions of Xvnc need to know the font path for the X Window System fonts that they
should use. Most modern Linux systems run an X font server by default on port 7100, so an
appropriate initial value to try is -fp unix:/7100 . If this doesn't work or you're not running a
font server, you can explicitly list any number of directories as a single, comma-separated
argument to the -fp option.

If you're still using inetd , the equivalent of the /etc/xinetd.d/vnc file is a single entry in the file
/etc/inetd.conf . Here's an example entry that matches the previous xinetd example:

 vnc stream tcp nowait nobody /usr/sbin/tcpd /usr/bin/Xvnc :8 -inetd \
 -once -query localhost -depth 24 -geometry 1280x1024 \
 -securitytypes=none

http://lib.ommolketab.ir

As with the server_args enTRy in the xinetd example, this should all appear on a single line in your
/etc/inetd.conf fileI've only broken it across multiple lines here for readability. The same caveats
about possible alternate/extra arguments apply to an /etc/inetd.conf entry.

2.5.2. Activating XDMCP

XDMCP is a network protocol used for initiating login sessions on X Window System display devices.
Originally developed in 1989, XDMCP is primarily associated with X terminals [Hack #14]), but it
can be used with any X Window System devicesuch as, in this case, the X server started by Xvnc .

Most systems that come up in graphics mode use an X Window System display manager to provide a
graphical login and subsequently start the window manager or desktop environment of your choice.
Graphics mode is usually runlevel 5 for most Linux systems, or any of runlevels 2 through 5 if you're
a Debian or Ubuntu fan. By default, the X display manager manages the X Window System device
associated with the console, but it is optionally responsible for responding to XDMCP requests and
initiating the appropriate X Window System login sessions on new X Window System devices. XDMCP
support is a configuration option for all X display managers, but it is usually disabled by default since
most display managers only need to support X login sessions on their consoles.

How you activate XDMCP support depends on which display manager you're using, which is usually
determined by the default desktop system used on your Linux system. GNOME uses a display
manager called gdm , usually found in /usr/bin/gdm (which calls /usr/bin/gdm-binary) or in
/opt/gnome/bin/gdm on KDE-based systems such as SUSE. KDE uses one called kdm , usually found
in /opt/kde3/bin/kdm . The classic X Window display manager, often used on systems where neither
GNOME nor KDE is installed, is xdm , and it is usually found in /usr/X11R6/bin/xdm . If you are
running Red Hat Linux, you can check the script /etc/X11/prefdm to see how your system selects its
default display manager and which one it is. You can also figure out which display manager your
system is actually running by looking for the string dm in a system process listing, as in the following
example:

 $ ps -ef | grep dm
 root 5137 1 0 May25 ? 00:00:00 /opt/kde3/bin/kdm
 root 5167 5137 65 May25 ? 3-01:52:35 /usr/X11R6/bin/X \
 -br vt7 -auth /var/lib/xdm/authdir/authfiles/A:0-K7ItZv
 wvh 29664 24116 0 13:42 pts/11 00:00:00 grep -i dm

In this case, the system is running kdm as its display manager, so you'll have to correctly configure
kdm to support XDMCP. Needless to say, each of these X Window System display managers has its
own configuration file, in which you must enable XDMCP so that when Xvnc queries the localhost , the
local display manager will initiate an X login session.

If the system on which you are configuring Xvnc runs gdm , the GNOME desktop provides a
convenient application called gdmsetup for configuring gdm . Start gdmsetup as root or by using sudo
, select the XDMCP tab, and select Enable XDMCP to activate XDMCP support in gdm the next time
you restart the X Window System. Figure 2-5 shows this tab selected in gdmsetup , with XDMCP
enabled.

http://lib.ommolketab.ir

Figure 2-5. XDMCP activation in gdmsetup

You can also manually modify the gdm configuration file as an alternative to running gdmsetup . On
many Linux systems, this configuration file is /etc/X11/gdm/gdm.conf .

If the system on which you are configuring Xvnc runs kdm , you can either use the administrative
utilities provided by your system or manually modify the kdm and system configuration files that
control its behavior. For example, on SUSE systems, you can use the YaST administrative modules
from the Control Center (Control Center YaST2 modules Network Devices Remote
Administration) to activate remote access to the display manager. Figure 2-6 shows this panel in the
Control Center.

If you'd prefer to tweak the configuration files yourself, you can modify the primary kdm
configuration file (/opt/kde3/share/config/kdm/kdmrc) with a text editor, changing the Enable enTRy
in the [xdmcp] section to true and making sure that the Port=177 entry is not commented out. You
will also have to modify the file /etc/sysconfig/displaymanager , setting the
DISPLAYMANAGER_REMOTE_ACCESS variable to yes . You can then run /sbin/SuSEconfig to cause SUSE to
perform the correct internal updates.

Figure 2-6. XDCMP configuration in SUSE's YaST utility

http://lib.ommolketab.ir

Once you have modified your display manager to support XDMCP, you will need to restart the display
manager with the correct settings. The easiest way to ensure a complete restart is to reboot your
system, but if you are running critical services on that system, you can also use the telinit or init
commands to take your system to a nongraphical runlevel (telinit number-of-runlevel or init
number-of-runlevel) and then return to a graphical runlevel, such as runlevel 2 for Debian-based

distributions or runlevel 3 for most others. You can then use telinit to return to runlevel 5. Some
flavors of Linux provide scripts (such as SUSE's rcxdm restart command) that will automatically
terminate the X Window System and restart the display manager for you without switching runlevels.

Updates to the X Window System are a common part of any system update or
upgrade. If you have manually modified configuration files, double-check your
configuration files after applying updates that modify either X or the desktop
environment that you're using to make sure that XDCMP support is still enabled
in your display managerif it isn't, this hack will cease to work.

2.5.3. Starting the Viewer

Once you've set up your system to initiate Xvnc in response to incoming requests and have
configured your display manager to respond to XDMCP requests, go to another system and start your
favorite VNC viewer application, pointing to a port that you specified in /etc/xinet.d/vnc . After a few
moments, you should see something like Figure 2-7 . Congratulationsinitiating VNC sessions to your
host(s) is now easier than ever before, and you no longer have to start VNC manually on those
systems like an electronic catcher's mitt to service incoming VNC requests!

http://lib.ommolketab.ir

Figure 2-7. A successful Xvnc connection using XDMCP

Because the X Window session running in VNC is using an alternate display,
you may need to make sure that you set the DISPLAY environment variable
correctly within it in order to start other X Window System applications. For
example, if you are running Xvnc on port 5908, you may need to set the
display in your shell appropriately using a command such as export
DISPLAY=:8.0 .

2.5.4. Troubleshooting Xvnc Startup

If you're lucky, you're already looking at Figure 2-7 and thinking "problems what problems?"
However, if your vncviewer simply hangs or terminates with information-packed messages such as
"vncviewer: ConnectToTcpAddr: connect: Connection refused" or "Unable to connect to VNC server,"
don't despair. These problems are easily resolved.

http://lib.ommolketab.ir

If your vncviewer connection to the remote machine simply hangsi.e., you press Return and nothing
happenschances are that the ports associated with your VNC setup are being firewalled on the
remote machine, the local machine, or somewhere in between. Check to make sure that whatever
ports you put in /etc/services on the remote system are actually available and that a process is
listening on the XDMCP port. An easy way to do this is by executing the netstat -an command and
filtering its output for port 177, the port used by XDMCP, as in the following example:

 $ netstat -an | grep 177
 udp 0 0 :::177 :::*

If you do not see any output from this command, make sure you have correctly configured XDMCP
support in your display manager and that the Xvnc entries in /etc/xinetd.d/vnc are not disabled.
Worst-case, you can reboot your system to make sure everything starts up correctly.

If you still can't establish a VNC connection to your system, make sure no firewall rules are blocking
any of the ports used by XDMCP or Xvnc . An easy (but completely insecure) way to do this is to
temporarily terminate your firewalls or punt all your active rules using a command such as iptables
-F . First try this on the system that you are trying to connect to; then, if you still can't connect, try it
on the system you are trying to connect from. If you can connect successfully after disabling the
firewall, review your system's firewall configuration and relax the appropriate rules to enable remote
VNC connections. Remember to reactivate your firewalls after reconfiguring themyou don't want the
entire seventh-grade class of PS150 in Seoul to be able to try getting graphical logins on your
machine!

2.5.5. See Also

"Access Systems Remotely with VNC" [Hack #10]

"Secure VNC via SSH" [Hack #12]

Linux Server Hacks , by Rob Flickenger (O'Reilly)

http://www.tightvnc.com

http://www.realvnc.com

http://www.tightvnc.com
http://www.realvnc.com
http://lib.ommolketab.ir

Hack 14. Put Your Desktops on a Thin Client Diet

Centralize administration by using the Linux Terminal Server Project and existing or
inexpensive desktop systems to give your users the computing power they need at a price
you can afford.

Though the cost of hardware is constantly decreasing, it is still greater than zero. Putting a high-
powered workstation on everyone's desk is a nice idea, but not everyone needs a dual-processor Mac
or Linux box to get their work done. The key requirement for most users is access to the applications
and data they're working on and enough memory to work with them.

The Linux Terminal Server Project (LTSP; http://www.ltsp.org) lets you boot desktop systems from a
remote server, gives users access to their applications and data when they log in, and provides a
graphical, X Window System working environment that is functionally identical to booting from a local
disk. This can provide substantial cost savings by enabling you to deploy or reuse less-expensive
hardware on your users' desktops, since it reduces the amount of local storage and other hardware
that any desktop system requires. A processor that is too slow to keep up with the demands of
today's applications can still function quite nicely when its sole function is to update a display and
respond to mouse and keyboard input.

Centralizing system resources on high-powered servers also provides substantial benefits to system
administrators by eliminating the need to individually maintain and upgrade desktop operating
systems and application software. All the software that a desktop system requires beyond a boot
floppy or network boot information is stored on the server.

The LTSP also provides a great alternative to deploying and maintaining dual-boot systems
throughout your enterprise or installing X Window System software on every Windows box if users
only need to run Linux software occasionally. Give the users LTSP boot disks configured for their
desktop systems and have them reboot using these disks. Problem solved! They have Linux systems
on their desktops until they reboot.

Version 4.1 of the LTSP was the latest version at the time this book was
written. Installation, configuration, and conceptual information should be
similar for any newer version that may exist by the time that you read this.

2.6.1. Understanding the LTSP Client Boot Process

In case the notion of systems booting and getting all their software over a network is new to you, this
section provides an overview of the boot process for an LTSP client system. Being able to visualize
how LTSP clients and servers interact will minimize configuration problems and will also be useful if

http://www.ltsp.org
http://lib.ommolketab.ir

you need to diagnose performance or connectivity problems in the future.

LTSP client and servers interact in the following way when you boot an LTSP client:

The client boots and contacts a DHCP server to obtain its IP address, the name of the Linux
kernel to download and boot, and the NFS location of a directory structure that it should use as
the root filesystem for that kernel.

1.

The client contacts the TFTP server on the LTSP kernel and downloads the specified kernel into
local memory.

2.

The client boots the downloaded kernel, using the NFS root filesystem as the root filesystem for
that kernel.

3.

The client runs the standard Linux startup script /etc/rc.sysinit, which starts various services
required by the system, sets up swapping, and so on.

4.

The client uses the information in /etc/lts.conf in the NFS-mounted root filesystem to contact
whatever X Window System display manager is running on the specified system and display an
X display manager login screen on the client's screen.

5.

Once you log in, you are logged in on the LTSP server system. The client system is running only the X
Window System software necessary to manage network connections, run an X Window System
server, and so on.

Though you can use lower-powered systems as LTSP clients, this doesn't mean
that every PC currently serving as a doorstop at your site can be recycled as a
desktop LTSP client system. The PCs you use as LTSP clients must have
sufficient resources to run the X Window System, use a reasonable screen
resolution, display multiple windows that may be graphically complex, and be
able to exchange data over the network relatively quickly. Pentium systems
running at 166 MHz or greater, with a minimum of 32 MB of memory and a 4-
MB video card, are quite suitable for use as LTSP clients. Adding 100-MB
Ethernet cards, more memory, and 8-MB or greater video cards will provide a
better user experience and will enable you to configure the X Window System
to operate at higher resolutions and with greater color depth.

2.6.2. Downloading and Installing the LTSP Software

You can download the LTSP administrative and configuration utilities as a tarball with an installer
(http://www.ltsp.org/ltsp-utils-0.11.tgz) or as an RPM (http://www.ltsp.org/ltsp-utils-0.11-
0.noarch.rpm). You can also download the latest LTSP software by following the download link from
its Sourceforge project site at http://sourceforge.net/projects/lts/.

As part of the initial configuration process, the LTSP administration utility downloads additional
packages that the LTSP server(s) and clients require. These additional packages provide the kernel, X
Window System utilities, and other components of the root filesystem used when LTSP clients boot
from the server in order to start their X sessions. During the LTSP configuration process, you can

http://www.ltsp.org/ltsp-utils-0.11.tgz
http://www.ltsp.org/ltsp-utils-0.11-
http://sourceforge.net/projects/lts/
http://lib.ommolketab.ir

either download these additional packages over the network or load them from a local CD-ROM or
directory that provides them. To save time during the installation process and simplify installation in
general, you should download an ISO image of a CD-ROM that contains all of these packages from
http://ltsp.mirrors.tds.net/pub/ltsp/isos/ltsp-4.1-1.iso.

If you've downloaded a tarball of the LTSP utilities, unpack it and execute the install.sh script to
install the utilities on the system that you want to be your LTSP server. If you've downloaded the
RPM, simply install it with your favorite RPM invocation. Mine is:

 # rpm -Uvvh ltsp-utils-0.11-0.noarch.rpm

If you've download the ISO of the packages required by the LTSP server, burn it to a CD-ROM and
mount the CD-ROM (or mount the ISO using a loopback device if you're in a hurry or don't have a CD
burner handy). Now the real fun begins!

2.6.3. Configuring and Starting the LTSP Server

To actually install the packages that an LTSP server needs and create your default LTSP configuration
file, su to root (use su - to provide a pristine root environment) and execute the ltspadmin command.
This command provides a terminal-oriented interface that enables you to install the packages and
configure the system services required by required by an LTSP server. Figure 2-8 shows the
ltspadmin utility's initial screen in an xterm.

Figure 2-8. The initial screen of the ltspadmin utility

The first step in configuring an LTSP server is to configure the installer itself. Use the arrow keys to
select the "Configure the installer options" menu option. The installer prompts you for the location
from which to retrieve the packages required by the installer, providing a network source by default.
If you've installed them locally, supply the pathname to the directory containing the packages in the
form of a URL that begins with file://, followed by the full pathname. (This means that your URL must
begin with three slashes: two for the protocol specification and one for the beginning of the path to
the directory containing the packages. For example, if you burned a CD-ROM and mounted it as
/mnt/cdrom, your URL would be file:///mnt/cdrom.)

http://ltsp.mirrors.tds.net/pub/ltsp/isos/ltsp-4.1-1.iso
http://lib.ommolketab.ir

Next, you'll be prompted for the directory in which you want to install these packages on your server.
You'll need to have about 350 MB free on the partition where this directory is located in order to do a
complete install of all the LTSP software.

Finally, identify any HTTP or FTP proxies you want to use (or specify none), and then enter y to
accept the values that you've entered. The screen shown in Figure 2-8 will be displayed again.

The next step is to select the Install/Update LTSP Packages option, which displays the screen shown
in Figure 2-9.

Figure 2-9. The ltspadmin utility's Select Packages screen

Press A to select all the packages listed, and press Q to exit this screen and begin installing those
packages. You'll have to answer y to an "are you really, really sure" prompt, and then package
installation to the specified directory will begin.

Once all the packages are installed, press Enter and select the Configure LTSP option. This starts the
ltspcfg utility and begins LTSP configuration. ltspcfg first checks and summarizes the status of all the
services that LTSP requires on your server. Press Enter to continue, and you'll see two options: S to
summarize the status of required services of your LTSP server, and C to actually configure them.
Figure 2-10 shows the summary screen.

Figure 2-10. The ltspcfg utility's Summary screen

http://lib.ommolketab.ir

Selecting C displays the screen shown in Figure 2-11, which lists the various aspects of the LTSP
server that have to be configured for the terminal server.

Figure 2-11. The ltspcfg utility's Configuration screen

An LTSP server must provide or have access to the following services in order to function correctly:

DHCP

Assigns the client's IP address and specifies values such as the location of the kernel that the
client must download and boot, the path of the NFS root filesystem used by the client's kernel,
and so on. The DHCP server doesn't need to be running on the LTSP server, but it must be

http://lib.ommolketab.ir

configured correctly wherever it is running to provide the information required by LTSP clients.

NFS

Enables the client to access the root filesystem exported by the LTSP server, use swapfiles that
live on the LTSP server over NFS, and so on.

TFTP

Enables the client to download the kernel that it will boot. The TFTP server does not need to be
running on the LTSP server, but it must be configured correctly wherever it is running to
provide the bootable kernel image required by LTSP clients.

XDMCP

Enables users to log in on the client system and establish an X Window System connection to
the LTSP server.

I find it easier to run all the services required by LTSP clients on the LTSP
server, to simplify administrative tasks such as updating the kernel boot image
or changing DHCP parameters. The overhead of maintaining special DHCP and
TFTP servers on the LTSP server is usually less than that of making updates on
multiple systems. However, as discussed in the list above, only NFS and
XDMCP must actually be running on the LTSP server.

We're all sysadmins here, so rather than walking through each step and listing each keypress, I'll just
highlight the services that you have to activate and the types of values that you need to enter:

Runlevel

Set the runlevel at which your LTSP server starts. The LTSP server typically needs to be
running at runlevel 5 to enable graphical logins via XDMCP, though the runlevel associated with
graphical logins differs across Linux distributions. You can also use runlevel 3 (or whatever
your nongraphical, multi-user runlevel is) and manually start the X Window System after each
login, but that's less fun.

Interface selection

Identify the Ethernet interface over which the LTSP server accepts connections. This
information is used in setting up the DHCP and NFS services. Some sites use multiple network
interface cards (NICs) in their LTSP servers and attach all LTSP clients to a specialized subnet
on a dedicated interface to improve performance and minimize the chance of DHCP collisions.

DHCP configuration

http://lib.ommolketab.ir

Add entries to the DHCP configuration file (/etc/dhcpd.conf) that your LTSP clients require
when they get Ethernet addresses from your DHCP server, and make sure that the DHCP
server is started by default at the previously specified runlevel. If the DHCP configuration file
doesn't already exist, the ltspcfg utility creates a template configuration file. You must
subsequently edit this to reflect your local domain, network configuration, and so on. Here are
some examples of the key entries in the DHCP configuration file for LTSP:

 option routers 192.168.6.32;
 option domain-name-servers 192.168.6.32;
 option domain-name "vonhagen.org";
 option root-path "192.168.6.32:/opt2/ltsp-4.1/i386";
 subnet 192.168.6.0 netmask 255.255.255.0 {
 use-host-decl-names on;
 option log-servers 192.168.6.32;
 range 192.168.6.100 192.168.6.120;
 filename "/lts/vmlinuz-2.4.26-ltsp-2";
 }

"Quick and Easy DHCP Setup" [Hack #20] has more detailed information about setting up DHCP and
all the entries in the /etc/dhcpd.conf file.

If you need to provide specific settings for distinct LTSP clients, you can
uniquely identify clients by their MAC addresses and provide client-specific
configuration information in your DHCP configuration file.

TFTP configuration

Make sure the TFTP server is enabled in /etc/xinetd.d/tftp and the directory where it stores
files exists.

Portmapper configuration

Make sure the portmapper, required to map ports to Remote Procedure Call (RPC) services, is
running on the LTSP server so that NFS (and, optionally, NIS) services will work correctly.

NFS configuration

Configure the LTSP server to start NFS at boot time if it doesn't already do so.

XDMCP configuration

Determine which of the available X display managers (gdm, kdm, or xdm) are installed on the
LTSP server, and identify the one that is currently used in runlevel 5. This option also adds
entries to the configuration file used by that display manager so that it will accept connection

http://lib.ommolketab.ir

requests from remote LTSP clients.

Create /etc/hosts entries

Create entries in the LTSP server's /etc/hosts for the range of IP addresses used by LTSP
clients. Most RPC-based services, such as NFS, need to be able to map an IP address to a
hostname and back again. If you are using DNS, you can also add these entries to your DNS
server.

Create /etc/hosts.allow entries

Add entries to the /etc/hosts.allow file for the NFS portmapper and TFTP services required by
LTSP clients. The /etc/hosts.allow file is used by xinetd's TCP wrappers to enable access from
specified hosts or subnets.

Create /etc/exports entries

Add entries to the /etc/exports file used by NFS to identify directories to export, the hosts that
can mount them, and how to mount and access those directories. The entries added by the
ltspcfg program identify the NFS-mounted root filesystem used during the LTSP client boot
process and the NFS directory that contains swapfiles for LTSP clients.

Create the lts.conf file

Create a default Linux Terminal Server configuration file in etc/lts.conf, relative to the root of
your NFS-mounted root filesystem (in other words, relative to the directory named in the root-
path directive in your /etc/dhcp.conf file). This file provides initial values that a client uses for
local configuration and to connect to the LTSP server, and it enables you to provide client-
specific settings when necessary. You may have to modify this file to reflect differences
between systems such as graphics resolutions or PS/2, serial, and USB mice. See the LTSP
documentation for more information about its possible contents.

At this point, you should reboot your LTSP server and verify that all the mandatory services have
started automatically (DHCP, portmapper, NFS, and an X display manager) and that other mandatory
services such as TFTP are enabled. Almost there!

2.6.4. Preparing LTSP Client Boot Media

Once the LTSP server is configured, the next step is to figure out how you want to boot your clients.
There are a variety of ways of booting LTSP clients:

Via the Pre-boot Execution Environment (PXE), if supported by your Ethernet card. PXE is
limited to booting files that are smaller than 32K (which doesn't include the Linux kernel), so
you'll have to configure it to load a network bootstrap program (NBP) first, which then loads the
kernel. Some network cards or motherboards with onboard networking require the use of
specialized PXE bootloaders. LTSP Versions 4.0 and greater provide a PXE bootstrap program

http://lib.ommolketab.ir

known as pxelinux.0. For more information about using pxelinux.0, see
http://www.ltsp.org/README.pxe. Another open source PXE bootstrap program often used with
LTSP is bpbatch. You can get additional information about bpbatch from its web site
(http://www.bpbatch.org) or from http://www.ltsp.org/contrib/bpbatch.txt.

Via Etherboot or Netboot, two open source Linux projects for creating boot ROMs that you can
plug into any network card that supports a boot ROM.

Via floppy disk, by creating an Etherboot image customized for your network card that you write
to a floppy and boot from.

Of these, the most common and easiest to start with is booting from floppy. You simply write the
customized Etherboot image to a floppy and then ensure that the client system is configured to boot
from its floppy disk drive first. The client boots the image on the floppy, which initializes your client's
network interface, then sends out a DHCP request and uses the boot-file and root-path images to
download the kernel and boot using the specified root filesystem.

Creating an Etherboot image customized for your client's network card would be completely outside
the scope of this hack if it weren't for the amazing ROM-O-Matic web site (http://www.rom-o-
matic.net)simply identify your network card, and the web site will generate a boot image for you and
download it to your system. It doesn't get much easier than that!

To create the right ROM image, you need to know the exact PCI ID of your network card. If you're
not sure which card you have, the easiest thing to do is to boot your client using a rescue disk [Hack
#90] or other bootable CD (the Knoppix Live CD included with Knoppix Hacks, also from O'Reilly, is a
personal favorite). After logging in, you can run the lspci command to identify your Ethernet card
and then run the lspci -n command to display the PCI identifiers (two four-digit, colon-separated
numbers) for your card. You can then match these against the versions of your card listed on the
ROM-O-Matic site, click Get ROM, and save the ROM image to your system. You can then write it to a
floppy disk using a command like the following (as root):

 # cat ROM-filename > /dev/fd0

You're now seconds away from turning an old PC into a useful X terminal.

2.6.5. Booting an LTSP Client

Before booting your LTSP client, make sure that all the services required by the LTSP server are
running on the server, and that the client is configured to boot from its floppy disk first.

Drumroll, please! Insert the floppy disk in the client's floppy drive and power on the system. After the
generic POST messages, you should see a message about loading the ROM image, followed by some
Ethernet configuration information and the message "(N)etwork Boot or (Q)uit." Press N, and your

system will download and boot the Linux kernel from your LTSP server. After the standard Linux boot
messages, you will see a screen that displays the login dialog shown in Figure 2-12.

http://www.ltsp.org/README.pxe
http://www.bpbatch.org
http://www.ltsp.org/contrib/bpbatch.txt
http://www.rom-o-
http://lib.ommolketab.ir

Figure 2-12. An LTSP client's GDM login dialog

Congratulationsyour doorstop is now a useful X terminal!

Once you have an LTSP server configured and set up, the only thing you have to do to create
additional client systems is to generate ROM images for the appropriate Ethernet cards, put each on
a floppy, and boot the new client with an appropriate boot floppy. This is especially easy if you tend
to buy your PCs in batches or from a single vendorchances are that many of them will have the same
Ethernet cards and can use the same boot floppies.

2.6.6. See Also

https://www.ltsp.org

"Quick and Easy DHCP Setup" [Hack #20]

"Rescue Me!" [Hack #90]

http://www.rom-o-matic.net

Knoppix Hacks, by Kyle Rankin (O'Reilly)

https://www.ltsp.org
http://www.rom-o-matic.net
http://lib.ommolketab.ir

Hack 15. Run Windows over the Network

Stop deploying Windows systems and software for people who only need occasional
access to a few applications .

Regardless of how you feel about Microsoft, you can't escape the Windows operating system and the
applications that require it. Even companies that live on Linux for development and testing still need
to provide developers with access to Windows systems so that they can share various types of
documents with management in formats that management can understand. This quickly gets
expensive, and it's generally a hassle for the system administrators who have to deploy and manage
these machines, set up the Windows shares de jour on each computer or in user profiles, install the
right software packages, and so on.

Many companies take a first stab at saving money by putting two computers under many desks, and
sharing a monitor, keyboard, and mouse between them using a KVM switch. That's fine, except that
your company pays for the extra systems, Windows licenses, and KVM switches and has to deal with
the administrative and security hassles inherent in deploying two desktops per user. As an
alternative, some companies use the open source WINE project or its commercial variant Crossover
Office (which is a great package, by the way), to run Windows applications natively on Linux
machines.

If you need to give users occasional access to Windows-only applications but want to minimize costs
and administrative hassles, a good solution is to install Windows Terminal Services on a reasonably
beefy Windows system and purchase a pool of Client Access Licenses that are assigned to the users
who need to be able to use the applications. Remote clients can then attach to the Terminal Services
server and run virtual Windows sessions in windows on their desktops. Install the software that
people need to use on the Terminal Services server or in shares defined in your user profiles, and any
remote users connected to the server will be able to run the software they need. Luckily, access to
Windows Terminal Services doesn't even require a Windows system anymoreLinux users, including
those working in an LTSP environment [Hack #14] can easily access Windows Terminal servers
using rdesktop , an open source software package that speaks the Remote Desktop Protocol (RDP)
used by Windows Terminal Services. This hack shows you how it works.

2.7.1. Opening Your Connection

Because rdesktop is a graphical application, you must execute it from a Linux system that is running
the X Window System. This hack discusses options that are found only in more recent versions of
rdesktop , which was at Version 1.4.0 when this book was written. Though it's found on many Linux
distributions, you can always get the latest and greatest version of rdesktop from the sites listed at
the end of this hack.

The most minimal command line that you can use to connect to a system running Windows Terminal
Services is rdesktop host , where host is the name or IP address of the system running Windows

http://lib.ommolketab.ir

Terminal Services. Once connected, a window displaying the standard Windows login screen appears
on your Linux desktop, as shown in Figure 2-13 .

Figure 2-13. The Windows Terminal Services login screen in rdesktop

After you log in and specify the domain that you want to log into (if necessary), your rdesktop
window will display the standard Windows desktop, as shown in Figure 2-14 .

If you centralize Windows services by running Terminal Services on your
domain controller, make sure the users who want to connect to it have the
"Log on Locally" user right or belong to a group with that right. Otherwise,
users will receive the message "The local policy of this system does not permit
you to log on interactively" and be unable to connect.

Like most programs, rdesktop provides a number of options that can simplify access to Windows
Terminal Services. Though they're all on the manpage, I'll go through my favorites here:

http://lib.ommolketab.ir

Table 2-2.

-d The domain to which you want to authenticate.

-f
Full-screen mode. This displays the desktop in a decorationless window that takes over your
desktop. You can toggle decorations (and therefore window controls) by pressing Ctrl-Alt-Enter.

-p Your password in the remote domain.

-u The name of the user that you want to log in as.

Figure 2-14. A successful Windows Terminal Services login in rdesktop

2.7.2. Mapping Local Devices to Your Remote Session

http://lib.ommolketab.ir

If the system running Windows Terminal Services is running Microsoft Windows XP, Windows Server
2003, or any newer version of Windows, one especially cool option not listed in the previous section is
the -r option, which lets you directly map resources on your Linux system to your Windows Terminal
Services connection. This is useful when you want to map a local print queue to a virtual printer in
your Windows Terminal session or access a local drive in your Terminal session (using -r printer
:local-queue-name and -r disk :share-name=/device/path , respectively). For example, to attach

PRN1 to a local print queue named Silentwriter , you would add -r printer:Silentwriter to your
command-line options when executing the rdesktop command. Figure 2-15 shows how your local
print queue shows up in a generic Windows print dialog.

To map your local CD-ROM drive to a share called cdrom , you could add -r disk:cdrom=/dev/cdrom
to the rdesktop command line. If you still use floppies, you could map your local floppy drive to a
share called floppy by adding -r disk:floppy=/dev/fd0 to your rdesktop command line. The name
that you specify as the share must be eight characters or less.

Figure 2-15. A print queue mapped by rdesktop

2.7.3. See Also

http://lib.ommolketab.ir

man rdesktop

rdesktop home page: http://www.rdesktop.org

rdesktop project at Sourceforge: http://sourceforge.net/projects/rdesktop/

http://lib.ommolketab.ir

Hack 16. Secure, Lightweight X Connections with FreeNX

The standard X Window System is very network-intensive. FreeNX compresses and
optimizes X communications and is ideally suited for slow connections such as dialups .

FreeNX is a free, GPL implementation of NoMachine's NX Server (http://www.nomachine.com).
NoMachine has developed a compression technology that substantially reduces the size of X Window
System communications and adds other performance improvements through caching and general
protocol optimization. NoMachine provides several informative white papers about their technology
and its performance at http://www.nomachine.com/documentation.php . If you're already a VNC fan,
NX is definitely worth a look, for performance reasons as well as for the fact that it inherently uses
SSH for secure communications between client and server.

The free and commercial versions of the NX server differ in terms of capabilities (and, of course,
cost). FreeNX provides all of the core capabilities of the commercial NX server for remote connection,
but it does not currently include the SMB and printing (CUPS) support provided by the commercial NX
server. At the moment, commercial server licenses for NoMachine's personal edition cost around 55
euros, which is cheap. They also offer small business and enterprise licenses, which you may be
interested in if you want to have product support, get updates, and get SMB and CUPS support now,
rather than waiting for them to appear and mature in FreeNX. Personally, though I use FreeNX, I
bought a server license because it seemed like the right thing to do. I use the free NoMachine client
everywhere, and I also feel that the NoMachine folks deserve my support for having come up with a
great technology and released it as open source.

This hack explains how to install and configure the open source versions of NoMachine's NX server,
the FreeNX package, and the free commercial NX client from NoMachine.

2.8.1. Installing the FreeNX Server

The FreeNX server consists of two packages: the nx package, which consists of binaries and libraries
compiled from the open source packages from NoMachine; and the freenx package, which is a set of
client scripts that invoke the NX binaries in the right ways. Depending on the Linux distribution that
your server is running, you can obtain these packages from different locations:

Debian

By adding deb http://debian.tu-bs.de/knoppix/nx/slh-debian/ ./to your /etc/apt/sources.list file

Fedora

From http://fedoranews.org/contributors/rick_stout/freenx/

http://debian.tu-bs.de/knoppix/nx/slh-debian/
http://lib.ommolketab.ir

Gentoo

From the Gentoo forums at http://forums.gentoo.org/viewtopic-p-1469066-highlight-
nxssh.html#1469066

Knoppix

From http://debian.tu-bs.de/knoppix/nx/ (overlays for the standard NoMachine server
overlays)

Red Hat 9

From http://apt.physik.fu-berlin.de/redhat/9/en/i386/RPMS.at-bleeding/ or by adding the
appropriate entries to your apt or yum configuration files, as explained at
http://atrpms.net/install.html

SUSE 9.2

On the distribution DVD/CDs or from ftp://ftp.suse.com/pub/suse/i386/supplementary/X/NX

Ubuntu

By adding deb http://kanotix.com/files/debian/ ./to your /etc/apt/sources.list file

If you're using a distribution that isn't listed in the previous section, or you have a policy of installing
nothing on your server without having the source code, you can build the GPL version of the
NoMachine NX server from scratch in several ways: retrieve the source code from
http://www.nomachine.com/download/snapshot/nxsources using wget -r and then follow the
instructions at http://fedoranews.org/contributors/rick_stout/freenx/freenx.txt , or download the
source RPM from one of the distributions listed above (SUSE's SRPM for the open source NX server is
at ftp://ftp.suse.com/pub/suse/i386/supplementary/X/NX/NX-1.4.0-12.1.nosrc.rpm), install it using
rpm or extract its contents into a tarball using alien , and then follow the instructions in the nx.spec
file to see how to build it yourself. I prefer the latter approach, since the source includes any
mandatory patches to build the official RPMs for SUSE, which is my desktop/server distribution of
choice.

As good open source citizens, NoMachine provides a document about building the open source
portions of the NX products in the Documentation center at
http://www.nomachine.com/documentation/pdf/building-components.pdf .

If you manually downloaded RPMs, install them in the standard fashion, as in the following example
(from a Red Hat 9 system):

 # rpm -Uvvh nx-1.4.0-4.1.rh9.at.i386.rpm
 # rpm -Uvvh freenx-0.3.1-0.1.rh9.at.noarch.rpm

http://atrpms.net/install.html
http://www.nomachine.com/download/snapshot/nxsources
http://www.nomachine.com/documentation/pdf/building-components.pdf
http://lib.ommolketab.ir

Next, use the nxsetup application to do the initial configuration of your NX server by specifying the --
install option, as shown below:

 # /usr/bin/nxsetup --install
 Setting up /etc/nxserver …done
 Setting up /var/lib/nxserver/db …done
 Setting up /var/log/nxserver.log …done
 Setting up known_hosts and authorized_keys2 …done
 Setting up permissions …done
 Ok, nxserver is ready.
 PAM authentication enabled:
 All users will be able to login with their normal passwords.
 PAM authentication will be done through SSH.
 Please ensure that SSHD on localhost accepts password authentication.
 You can change this behaviour in the file.
 Have Fun!

This step creates the nx user in the server's /etc/passwd file and sets up the files, directories, and
keys used by FreeNX.

Next, add any users that you want to be able to use the NX server to its user database and set their
passwords, as in the following example:

 # nxserver --adduser wvh
 NX> 100 NXSERVER - Version 1.4.0-03 OS (GPL)
 NX> 1000 NXNODE - Version 1.4.0-03 OS (GPL)
 NX> 716 Public key added to /home/wvh/.ssh/authorized_keys2
 NX> 1001 Bye.
 NX> 999 Bye

 # nxserver --passwd wvh
 NX> 100 NXSERVER - Version 1.4.0-03 OS (GPL)
 New password:
 Password changed.
 NX> 999 Bye

Now you're ready to install and configure the NX client on any systems from which you want to
access the FreeNX server.

2.8.2. Installing the NX Client

NoMachine's free NX clients for various Linux distributions, various flavors of Microsoft Windows,
Apple's Mac OS X, and even Sun's Solaris are available from
http://www.nomachine.com/download.php . The name of the NoMachine client binary is, surprisingly

http://www.nomachine.com/download.php
http://lib.ommolketab.ir

enough, nxclient . Though a free NX client for the KDE environment (called knx) is actively under
development, the NoMachine NX clients are nicely done, work fine, and are free. You'll have to put up
with seeing NoMachine's logo each time you start one up, but that's a small price to payand it's a cool
logo!

SUSE fans can get the knx client from the DVDs/CDs or from
ftp://ftp.suse.com/pub/suse/i386/supplementary/X/NX/ . You can subscribe to
a mailing list about the knx client and FreeNX in general at
https://mail.kde.org/mailman/listinfo/freenx-knx .

If you've downloaded the RPM for the NoMachine NX client, you can install it using a standard RPM
invocation such as:

 # rpm Uvvh rh9-nxclient-1.4.0-91.i386.rpm

Note that the version of the file that you've downloaded, and therefore its name, may have changed
by the time you read this.

After downloading and installing the client on a desktop system, you'll need to copy the FreeNX
server's key to your client installation. This key is located in the file
/var/lib/nxserver/home/.ssh/client.id_dsa.key on a Linux FreeNX server, and it should be copied to
the file /usr/NX/share/client.id_dsa.key on any Linux system where you've installed the NoMachine
client. You must also make this file readable by mere mortals, so chmod it to 644 . Windows client
users should copy this file to the directory C:\Program Files\NX Client for Windows\share .

2.8.3. Configuring and Starting Your NX Client

NX client and server applications are installed in /usr/bin , which is probably already in your path, so
no path munging is required to start an NX client. NoMachine's NX client enables you to create
configuration files that specify parameters with which the nxclient application can be invoked. To
create a configuration file, execute the following command:

 $ nxclient --wizard

A friendly but content-free dialog displays. Click Next, and the dialog shown in Figure 2-16 displays.
Enter a logical name for the connection in the Session text box, and specify the hostname or IP
address of the NX server in the Host text box. You can then modify the slider settings to specify the
type of network/Internet connection you're using, so that the NX client will select appropriate
compression and optimization settings for your connection speed.

Figure 2-16. The initial NX Client configuration dialog

https://mail.kde.org/mailman/listinfo/freenx-knx
http://lib.ommolketab.ir

When you click Next, the dialog shown in Figure 2-17 displays. For standard X connections to a
remote Linux or Unix server, leave the system type set to Unix, and click the KDE drop-down to
select the type of desktop that you'd like the NX server to start for you. Next, click the Available Area
drop-down and select the size of the remote desktop that you'd like to create. I tend to select 1024 x
768 because that's always smaller than the size of my desktop machine's monitor. Using the default
Available Area setting is a better choice if you're using the NX client on a laptop that may or may not
be connected to an external monitor.

Figure 2-17. Specifying NX Client protocols and size

This dialog also enables you to provide an additional level of security by enabling SSL encryption. This
encrypts all traffic between the client and the server, including your initial password exchange.

http://lib.ommolketab.ir

The settings you specify when configuring a NoMachine client are saved in text
configuration files in the ~/.nx/config directory, with the name of your NX client
and a .conf extension. You can subsequently edit these with a text editor if you
decide to modify the existing settings quickly.

When you click Next, a final dialog displays that enables you to create a desktop shortcut or open the
Advanced Configuration dialog, shown in Figure 2-18 . The tabs in this dialog enable you to further
optimize connections between your client and the FreeNX server, customize the paths to various files
on your system, and so on.

Once you've created a configuration, the standard NX Client dialog displays. Enter your password for
the NX server, and the fun begins. The NX client authenticates to the remote NX server, negotiates
connection parameters, and then displays a window in which a remote desktop session starts. You
also get to see the NoMachine logo for a few seconds, which reminds you who should be thanked for
this way-cool technology! Figure 2-19 shows a remote Linux desktop connection to a Red Hat 9
system running the GNOME desktop

Figure 2-18. The optional NX Client Advanced configuration dialog

To terminate your NX client session, simply close the window as you would any other application. Like
VNC connections, NX client connections can be suspended rather than simply terminated, so you'll

http://lib.ommolketab.ir

see a dialog that asks if you want to suspend the session, terminate the session, or cancel the
termination request. If you select Suspend, your existing connection to the remote NX server will be
renewed the next time you start NX Client with the current configuration.

2.8.4. See Also

http://www.nomachine.com

http://openfacts.berlios.de/index-en.phtml?title=FreeNX_FAQ

http://openfacts.berlios.de/index-en.phtml?title=FreeNX_distro_integration

"Secure VNC Connections with FreeNX" [Hack #17]

"Secure Windows Terminal Connections with FreeNX" [Hack #18]

Figure 2-19. A remote FreeNX desktop shown in nxclient

http://www.nomachine.com
http://openfacts.berlios.de/index-en.phtml?title=FreeNX_FAQ
http://openfacts.berlios.de/index-en.phtml?title=FreeNX_distro_integration
http://lib.ommolketab.ir

http://lib.ommolketab.ir

Hack 17. Secure VNC Connections with FreeNX

FreeNX isn't just for the X Window Systemit can also provide secure VNC connections .

If "Secure, Lightweight X Connections with FreeNX" [Hack #16] got you excited about the
performance and possibilities of the FreeNX server for displaying X Window System desktops over
slow connections, just wait there's more! FreeNX also supports translating the protocols used by VNC
into X Window System protocols that it can then exchange with a standard NX client. If you install an
NX client (such as NoMachine's excellent nxclient) on your desktop system, you can use a single
application to both communicate with remote X Window sessions on your NX server and also proxy
through to any VNC server that you can access from the NX server. The VNC server does not have to
be running on the same system as the NX serverthe NX server just needs to be able to contact it
over the network.

Communications between the VNC server and the NX server are not encrypted, but communications
between your NX client and the NX server are. This can be especially useful if you are working
remotely and want to access a VNC server inside your company's network, but you need any
communication taking place over the public Internet to be secure. Your corporate firewall already
supports SSH, so you don't even need to open any other ports to support VNC.

2.9.1. Creating an NX Client Configuration for VNC

The previous hack explained how to obtain and install NoMachine's excellent NX client. To create a
configuration for accessing VNC through your NX client, click the Unix drop-down shown in Figure 2-
17 , and select VNC. The dialog shown in Figure 2-20 will display.

Figure 2-20. VNC configuration in NX Client

http://lib.ommolketab.ir

In this dialog, specify the hostname or IP address of the system on which your VNC server is running,
and the port on which it is running. By default, the port will be 5900 plus the number of the display
that the VNC server is using. For example, if the VNC server was running on display:1 on the remote
system, you would enter 5901 as the port number.

Next, specify the password for the remote VNC server, and check the "Remember my password"
checkbox if you want to make this a permanent part of your configuration. Click OK to close this
dialog, proceed with your standard NX client configuration and save your NX/VNC configuration.

When you start nxclient with that configuration, you'll see a screen like the one shown in Figure 2-21
congratulations, you're securely connected!

Figure 2-21. A remote VNC session in NX Client

http://lib.ommolketab.ir

2.9.2. See Also

http://www.nomachine.com

"Secure, Lightweight X Connections with FreeNX" [Hack #16]

"Secure Windows Terminal Connections with FreeNX" [Hack #18]

http://www.nomachine.com
http://lib.ommolketab.ir

Hack 18. Secure Windows Terminal Connections with
FreeNX

FreeNX isn't just for the X Window System and VNCit can also provide secure Windows
Terminal Services connections.

If "Secure, Lightweight X Connections with FreeNX" [Hack #16] and "Secure VNC Connections with
FreeNX" [Hack #17] got you excited about the performance and possibilities of the FreeNX server
for displaying X Window System and VNC desktops over slow connections, get ready because FreeNX
has even more tricks up its sleeve. FreeNX also supports translating the Remote Desktop Protocol
(RDP) used by Windows Terminal Services into X Window System protocols that it can then exchange
with a standard NX client. If you install an NX client system (such as NoMachine's excellent nxclient)
on your desktop, you can use a single application to communicate with remote X Window sessions on
your NX server, proxy through to any VNC server you can access from the NX server or proxy
through to any Windows Terminal server you can access from the NX server. Like the VNC server,
the Windows Terminal server does not have to be running on the same system as the NX server
which is just as well, because the NX server used by both FreeNX and NoMachine's NX runs only on
Unix and Linux boxes!

Like VNC through FreeNX, communications between the Windows Terminal server and the NX server
are not encrypted, but communications between your NX client and the NX server are. This can be
especially useful if you are working remotely and want to access a Windows Terminal server inside
your company's network, but you need any communication taking place over the public Internet to
be secure. Your corporate firewall already supports SSH, so you don't even need to open any other
ports to support the Windows Terminal server.

2.10.1. Creating an NX Client Configuration for a Windows Terminal
Server

"Secure VNC Connections with FreeNX" [Hack #17] explained how to obtain and install NoMachine's
excellent NX client. To create a configuration for accessing a Windows Terminal server through your
NX client, click the Unix drop-down shown in previously in Figure 2-17, and select RDP. The dialog
shown in Figure 2-22 will display.

In this dialog, specify the hostname or IP address of your Windows Terminal server, whether you
want to use existing credentials to auto-login or see the standard Windows login screen, and whether
you want to run a specific application or the standard Windows desktop.

Click OK to close this dialog, proceed with your standard NX client configuration, and save your
NX/Windows Terminal configuration. When you start nxclient with that configuration, you'll see a
screen like the one shown in Figure 2-23. Congratulationsyou're securely connected!

http://lib.ommolketab.ir

2.10.2. See Also

http://www.nomachine.com

"Secure, Lightweight X Connections with FreeNX" [Hack #16]

"Secure VNC Connections with FreeNX" [Hack #17]

Figure 2-22. Windows Terminal configuration in NX Client

http://www.nomachine.com
http://lib.ommolketab.ir

Hack 19. Remote Administration with Webmin

Webmin provides secure access to logfiles, system statistics, and many common
administration tasks, all from your favorite web browser .

Administering a system can be a tough job. With user accounts to create, services to configure, logs
to check, and all the other duties system administrators face, it can become quite a load. Thankfully,
there's some software out there that can help make life easier for the weary sysadmin. One of these
pieces of software is called Webmin . Webmin allows you to control a large portion of the functionality
of your server from an easy-to-use web interface. Most major services are covered, including
Apache, BIND, SSH, LDAP, Samba, WU-FTP, Sendmail, MySQL, and many others.

Figure 2-23. A Windows Terminal server connection in nxclient

2.11.1. Installation

Installation of Webmin couldn't be easier. If you're running an RPM-based distribution such as SUSE
or Fedora Core, simply grab the latest version from the Webmin home page at

http://lib.ommolketab.ir

http://www.webmin.com . Install Webmin with the following command, where version-number is the

version that you downloaded:

 # rpm install Webmin -version-number .rpm

If you're using a non-RPM-based distribution such as Debian or Slackware, you can install from
source. Simply download the latest tarball from http://www.webmin.com and unpack it to your
system as usual. Navigate into the newly created Webmin directory, and execute the following
command as root:

 # ./setup.sh /usr/local/Webmin

This will start the setup process for Webmin. The script will ask you for a number of options. For most
of these questions, the default answers should suffice. However, there are a few answers that should
be changed for security reasons. For instance, it is widely known that the default port for Webmin is
10000, so when the script asks you what port to run it on, pick something originaljust make sure that
you pick something above port 1024, because port numbers lower than that are typically reserved
for system services. I typically use port 5555. Changing the default port helps protect against
automated tools probing Webmin and discovering your Webmin login by checking its default port.

Also, choose a default username other than admin and definitely specify a password. If you don't, the
password will be left blank and anyone who wants to log in will be able to do so. You should also
make sure that you choose to use SSL for encryption. The setup script will only ask you this if you
have the SSL libraries for Perl installed, so make sure they're loaded before you begin. Without them,
all the information transmitted back and forth between you and Webmin will be transmitted in clear
text, including passwords and other valuable system information.

The final question the script will ask you is if you want Webmin running at boot time. This is largely a
matter of personal preference. I tend to say no and simply SSH in and start Webmin whenever I
need it, which allows it to stay off the radar when it's not in use; however, your mileage may vary
and you should use your own judgment here. If you'll be using it in a trusted environment or don't
mind the limited risk of leaving it on all the time, answer yes , and the script will configure Webmin to
start automatically.

2.11.2. Configure Away!

That's it! You now have a fully functional Webmin interface running on your server. You can access it
by logging into https://localhost:5555 , where 5555 is the port you specified during the setup. If you
installed via rpm , the default port of 10000 was used. Log in with the username and password you
specified earlieryou should see something similar to Figure 2-24 and have a look around.

Figure 2-24. The default Webmin interface in a web browser

http://www.webmin.com
https://localhost:5555
http://lib.ommolketab.ir

As you can see, the Webmin interface has several sections, including System, Networking, Servers,
Hardware, and Cluster. Each of these tabs contains options related to its title. If you'd like to change
the IP address of your server, for instance, select Networking, then Interfaces. Click on the name of
the interface you want to change, and enter your new IP address. You can add new users, manage
your logfiles, configure DNS and Apache, and perform a whole host of other administrative functions
with the same ease we've just demonstrated.

The Servers tab is another area where Webmin shines, and this is where the true capabilities of
Webmin can be seen. Under the Servers tab, you can see the full list of applications that Webmin
supports by default. We've already mentioned quite a few, but let's take a moment to explore
Webmin's capabilities. Clicking the Apache icon will show you many of the options that are available
to you. For this example, let's suppose we want to add a virtual host to Apache. Normally, this would
require manually editing httpd.conf , followed by a restart of the Apache service. With Webmin, we
can do all this with a few simple clicks. The bottom of the configure page for Apache has the options
for creating a virtual serverall you have to do is fill in the blanks and click Create Now. Everything will
be done for you, including restarting Apache to pick up the new virtual server from the configuration
file, without ever having to fire up emacs or vi .

As you can see, Webmin provides numerous options and capabilities. Webmin even makes it easy for
developers to write their own modules to use with it, allowing its capabilities to be expanded and
extended by the community. Webmin can be a lifesaver when you need to install or work with
complicated tools such as Sendmail or DNS in a hurry. It also simplifies managing clustered or high-
availability servers. No matter how you look at it, there's no denying the usefulness of such a
versatile administration tool.

2.11.3. See Also

http://www.webmin.com

Brian Warshawsky

http://www.webmin.com
http://lib.ommolketab.ir

http://lib.ommolketab.ir

Chapter 3. System Services

Section 3.1. Hacks 2028: Introduction

Hack 20. Quick and Easy DHCP Setup

Hack 21. Integrate DHCP and DNS with Dynamic DNS Updates

Hack 22. Synchronize Your Watches!

Hack 23. Centralize X Window System Font Resources

Hack 24. Create a CUPS Print Server

Hack 25. Configure Linux Connections to Remote CUPS Printers

Hack 26. Integrate Windows Printing with CUPS

Hack 27. Centralize Macintosh Printing with CUPS

Hack 28. Define a Secure CUPS Printer

http://lib.ommolketab.ir

3.1. Hacks 2028: Introduction

The term client/server has been used and abused for so long that it isn't all that exciting any
moreunless, of course, you're one of many busy sysadmins who need to provide certain core
capabilities to their zillion-user communities. In this case, the idea of setting up centralized servers to
satisfy the requirements of many clients isn't just a buzzword; it's an efficient use of your time and
system resources, and it simplifies administering those services in the future. This chapter provides
hacks that discuss setting up centralized services for allocating IP addresses to new clients via the
Dynamic Host Configuration Protocol (DHCP), integrating these newly assigned IP addresses with an
existing Domain Name Service (DNS), synchronizing the clocks on all of your systems via the
Network Time Protocol (NTP), and even sharing a consistent set of X Window System fonts
throughout your organization so that all your users can do their status reports using the same
version of Computer Modern Ransom Note Oblique.

Another focus of this chapter is on centralizing print services and systems throughout the
organization for which you're responsible. The mechanisms used to print files on different types of
systems have traditionally been specific to the operating systems that they use. This was okay when
each user had a printer chained to his system with a parallel umbilical cord, or when organizations
used only one operating system to get their work done. However, this type of tunnel vision is
completely unworkable in today's networked, heterogeneous computing environments. Luckily,
unified printing solutions are now available, thanks largely to Michael Sweet and the other folks at
Easy Software Products. Their creation of the Common Unix Printing System (CUPS), which might
better be described as the Completely Universal Printing System, provided a powerful, centralized
printing system that works everywhere. CUPS can handle and manage print jobs from modern
operating systems such as Linux, Microsoft Windows, and Mac OS X to old-school Unix boxes. All you
have to know is what to tweak where, why to tweak it, and how to do so. This chapter provides hacks
that give you all that information and more.

http://lib.ommolketab.ir

Hack 20. Quick and Easy DHCP Setup

Take control of DHCP services to better integrate with other tools in your environment.

There are lots of places where clients are running Linux-based services infrastructures in SOHO
environments. I do this myself at home. When you're in a smaller environment, there are lots of
black-box appliances and all-in-one software packages that will take care of automatically assigning
IP addresses to all the hosts on your network. Some will even let your DNS server know about
dynamically assigned addresses, which is great. However, as the environment grows and more
services and machines are added, this can get to be somewhat cumbersome.

The first time I realized that I might not want my wireless router giving out IP addresses was when I
got a visit from a friend of mine who has a wireless laptop (which happened to be in his truck). While
we were talking, he wanted to show me a web site, but he couldn't remember what it was called. He
had it bookmarked on the laptop, so I told him to go get it, and I'd put his MAC address into my
wireless router's "OK" table. Problem was, I had forgotten the password to my router. I had set it up
months ago, and none of my formula-derived passwords were working. He wound up saying never
mind, and I was really disappointed in that piece of my infrastructure.

After thinking more about that scenario, I realized I shouldn't even need to touch a black-box
appliance to allow a guest to get an IP address in my environment. If I just ran a normal DHCP
server on my Linux box, I could let the wireless router do what it's supposed to do (route wireless
traffic), and leave the rest to my Linux server, which is good at doing most other things (heck, if I
had wireless PCI cards, it could route the wireless traffic as well!).

Another benefit to using your own DHCP server is that you can add in DHCP options that may not be
supported by the appliance. For example, my wireless router will not deliver the IP addresses of NTP
servers or NIS servers to my clients, and it won't tell my PXE-booted clients a filename to go grab
from a DHCP server. In fact, it doesn't even support a "next-server" directive to use for NFS
kickstarts of my Red Hat machines. DHCP really can open up a lot of doors to making a SOHO
environment less about maintaining technology and more about getting business done!

Of course, before I could do any of these really cool things, I had to set up my own DHCP server. I've
only ever used the Internet Systems Consortium's DHCP server, which is the one that comes with
just about all Linux distributions, so that's what I decided to go with. It's also the one I've maintained
in much larger production environments, so I know for sure it's up to whatever task I can throw at it
in a SOHO setting.

3.2.1. Installing a DHCP Server

The first step in this hack is to get the DHCP daemon, dhcpd, installed on your system. On Red Hat
Enterprise Linux systems, the up2date utility can be used to install the server and any dependencies,

http://lib.ommolketab.ir

with the following command:

 # up2date -i dhcp

On Fedora systems, use yum to do the same thing:

 # yum install dhcp

On Debian systems, use the apt-get utility:

 # apt-get install dhcp

Debian stable, at the time of writing, provides a somewhat older version of the
DHCP daemon, which does not contain support for dynamic DNS updates. Nor
does it supply a BIND DNS server that is capable of accepting such updates. If
you need this capability, it is suggested that you use the DHCP server in the
unstable Debian branch or build from source.

For those building from source, you can grab a source tarball from the ISC web site at
http://www.isc.org/index.pl?/sw/dhcp/. To build, the old magic three-command incantation still
works:

 $./configure
 $ make
 # make install

3.2.2. Configuring Simple DHCP Services

DHCP is not difficult to configure. We'll start with simple requirements, and leave more hardcore stuff
to the next hack. The configuration file for this service is /etc/dhcpd.conf. The first few lines of this
file set up global parameters that apply to all hosts served by this DHCP server:

 option domain-name "linuxlaboratory.org";
 option subnet-mask 255.255.255.0;
 deny unknown-clients;

http://www.isc.org/index.pl?/sw/dhcp/
http://lib.ommolketab.ir

 option domain-name-servers 192.168.198.50;
 default-lease-time 600;
 max-lease-time 7200;

The first line assigns a domain name to our environment, which is fairly arbitrary in a small
environment that's not supporting a registered Internet domain. The subnet-mask option ensures that
everyone has the same subnet mask on your network. This may not be the case at your site, in
which case you can specify this parameter in different places in the config file to get the desired
effect.

The deny unknown-clients option keeps the server from providing IP addresses to hosts that are not
specified in the configuration file. The default, for some reason, is to allow this activity.

I have but a single host right now in my budding DMZ: my domain name server, which all of my
internal hosts use. Rather than configuring its address manually on each host (and having to
manually update it if a change is made), I just deliver its address to the clients via DHCP, using the
domain-name-servers directive.

Finally, the lease times are set up such that the default-lease-time is 600 seconds (10 minutes) and
the maximum time a host can go without renewing a lease is 7,200 seconds (2 hours).

Unlike the first section, the next section of the file is not global, but is specific to a subnet. It is
befittingly called a "subnet statement," and you can have as many of these as you have subnets (or
more, but hopefully you see that that would hardly make sense). Here's an entry for my internal
network's subnet:

 subnet 192.168.42.0 netmask 255.255.255.0 {
 range 192.168.42.85 192.168.42.99;
 option broadcast-address 192.168.42.255;
 option routers 192.168.42.1;
 }

Every subnet statement is required to have a netmask specified, regardless of what's in the global
section of the config file. Inside the braces, the first thing you see is that I've set things up so that
hosts that are to receive dynamic addresses on this subnet can receive only IP node numbers
between 85 and 99. This allows me to have 15 dynamically assigned hosts on my net-worka good-
sized pool for now.

Next, I specify the broadcast-address for the domain, which is the address for "all hosts" on the
subnet. And finally, I always specify a router for each subnet, because every subnet must have its
own gateway address. I suppose I could've made this a global option in this case, since all of my
internal hosts are on the same subnet, but if I then added a subnet (which I will when I break
wireless hosts out to their own subnet), I'd have to make changes to different parts of the
configuration instead of just adding a new subnet statement.

We're not done yet, though! You still need to tell the DHCP server about the hosts on your network.
This can be a bit of drudgery, as it requires you to know or find out the MAC addresses of all the
hosts on your network. When DHCP clients start up, they broadcast to request DHCP service, and you

http://lib.ommolketab.ir

only want your DHCP server to respond to those hosts whose MAC addresses are listed in the
configuration file. This beats by a mile the old default wireless gateway configuration of handing out
addresses to the entire neighborhood! Here's a simple, yet fairly typical, host entry in dhcpd.conf:

 host gala {
 hardware ethernet 00:30:65:0f:d8:52;
 fixed-address 192.168.42.58;
 }

The host gala happens to be my Apple G4. The two pieces of information I've provided are the
Ethernet address of the machine and a fixed-address, which is optional but ensures that gala will
always get the exact same IP address every time it renews its lease.

Why the heck would I do that? Doesn't it defeat the "Dynamic" part of DHCP? Well, in some ways,
maybe it does, but there are various reasons why you might do this. First, if you don't use DNS,
you're likely still using /etc/hosts to resolve other hosts on the network. It would be nice not to have
to change these files on each host because a host's IP address has been changed. Forgetting to do so
would be especially bad if that host was, say, the file server where all your important data lives.
Likewise, if it's your desktop IP address that's changed and you don't update the hosts file, the file
server won't resolve your hostname correctly and could export your data to someone else!

Even if you are running a DNS server, you still might want DHCP to assign fixed addresses. For
example, you may not be able to use dynamic DNS updates for one reason or another. It also helps
with troubleshooting: if a host can get different IP addresses at any given time, IP addresses that are
not resolved to hostnames in your logs or tcpdump output become meaningless until and unless you
track down which host had which address at the time specified in the logs.

That said, it's completely optional, and you certainly aren't forced to assign fixed addresses to your
hosts. You can mix and match as wellfor example, when I add my buddy's laptop to my new DHCP
configuration, I don't care what IP address he gets, because he's not going to use any of my in-house
services; he's just going to have Internet access. Here's the entry for his laptop:

 host appio-wireless {
 hardware ethernet 00:90:4B:6D:97:59;
 }

 host appio-wired {
 hardware ethernet 00:90:3D:93:AD:3E;
 }

Now he'll get a randomly assigned address, which of course will be from the 15-address pool specified
in my earlier subnet statement. Notice that I added separate entries for his wired and wireless
interfaces. You can enter as many "one-liner" entries like this as you wantthose entries represent the
simplest form of "host" entry. Keep in mind one important tip, though, which is to remember not to
assign fixed addresses that overlap with the pool you've configured in your subnet statement. For
example, if I had configured host gala with a fixed address of 192.168.42.88, the server would fail to

http://lib.ommolketab.ir

start at all! It's a basic, common-sense effect when you stop to think about it, but I've actually
tripped up on that more than once. Save yourself!

3.2.3. Fire It Up!

Now, start up the DHCP service by running /etc/init.d/dhcp start on your Debian system, or
service dhcpd start on Red Hat/Fedora machines. Once you configure your hosts to actually use
DHCP instead of statically assigned addresses, restart their network services, and they should be
assigned addresses from your shiny new server!

3.2.4. See Also

"Integrate DHCP and DNS with Dynamic DNS Updates" [Hack #21]

http://lib.ommolketab.ir

Hack 21. Integrate DHCP and DNS with Dynamic DNS
Updates

Assign dynamic hostnames and IP addresses, and update your DNS server to reflect
changes with no administrative intervention or scripted hacks.

If any two services are begging to be integrated, it's BIND and DHCP. Dynamically assigning IP
addresses with DHCP isn't so useful if it makes your DNS zone information obsolete! Imagine if all of
your configured printers got dynamically assigned IP addresses from your DHCP server. The next
time your default printer got a new IP address from the DHCP server, addressing that host by name
could return an unexpected result from DNS, because they're not in sync. Where your print job winds
up could be anybody's guess.

With older versions of the ISC DHCP server and BIND, this problem was solved in one of two ways.
First, you could just tell your DHCP server to statically assign addresses to your hosts [Hack #20].
This is still a useful solution to the problem, especially if the DHCP server delivers information besides
an IP address, such as which NTP servers and NIS servers to use. The second option is to grab a tool
(or script one yourself) to perform DNS updates.

In more recent versions of DHCP and BIND, both services support a mechanism for performing
dynamic DNS updates (defined in RFC 2136), whereby an authorized user can add and delete records
from forward and reverse zone files. Recent versions of DHCP also support a more flexible
mechanism for deriving a dynamic hostname from an expression, which can include data sent from
the client in the DHCP request.

Add these together, and you have the ability to, for example, maintain a dynamic address pool that
also assigns hostnames dynamically and then updates the DNS server to reflect the changes. The
alternative to dynamic hostnames is to have the DHCP server use the hostname supplied by the
client, but depending on the environment, this may not be desirable. In situations where there are
frequent visitors from random places, hostname overlapping can cause DNS updates to fail. Also, it's
not always safe to assume that a client will supply a valid hostname (or any hostname, for that
matter).

Let's go over how to get DHCP and BIND to work together to perform dynamic DNS updates.

The very first step that needs to be performed is the generation of a key that the two services will
use to communicate with each other. The DHCP server uses this key to sign update requests sent to
the DNS server, and the DNS server uses it to verify the signed requests from the DHCP server.
BIND 9 comes with a utility to generate this key, called dnssec-keygen. You need to make three
decisions about how to run the key-generation command. The first is the name of the key, the
second is the number of bits used in the key's encryption, and the third is what form the name of the
key will take.

http://lib.ommolketab.ir

Let's have a look at a key generated to represent the host that's allowed to perform the updates.
We'll make it 512 bytes long, and we'll name the key using the fully qualified domain name (FQDN) of
the host. Here's the command:

 # dnssec-keygen -a HMAC-MD5 -b 512 -n HOST apollo.linuxlaboratory.org .

This generates a TSIG key and places it in a file in the current directory. The file is named
K<keyname>+157+<uniqueid>.private. The contents of this file will be something similar to this:

 Private-key-format: v1.2
 Algorithm: 157 (HMAC_MD5)
 Key: y3v81k9O9z6c62KgPNlik8P6QZIEB3yb/Blw/
 XE8QN46RLeC4XkptJiRA56roCcCEGSAdCJb5kmM2/S7MBrmRQ==

The important part here is the long value after the Key keyword. Once you have this value copied to
the proper places in your configuration files, you can get rid of the key files themselves.

3.3.1. Configuring the BIND 9 Name Server

The next step is to configure BIND to allow updates from the DHCP server, using the key you just
generated. We do this step before configuring DHCP to avoid lots of log entries indicating failed
update attempts from the DHCP server during the lag time between completing the configuration of
both services.

The BIND server's named.conf file will need to have its zone blocks altered to contain an update-
policy block, which lets the server know which keys can update what records in which zones. First,
we need to tell the server about all the keys we want it to know about. In our simple setup we only
have one, but some environments may have one key for each host that might be allowed to alter its
own records. Here's a simple block that we can add near the top of the named.conf file to inform the
server of our key:

 key apollo.linuxlaboratory.org. {
 algorithm hmac-md5;
 secret "y3v81k9O9z6c62KgPNlik8P6QZIEB3yb/Blw/
 XE8QN46RLeC4XkptJiRA56roCcCEGSAdCJb5kmM2/S7MBrmRQ==";
 };

Next, we need to reference this key in our update-policy substatements in each zone for which the
key is valid. Here's a typical zone that has been altered to accept updates using this key:

http://lib.ommolketab.ir

 zone "linuxlaboratory.org" in {
 type master;
 file "db.linuxlaboratory.org";

 update-policy {
 grant apollo.linuxlaboratory.org. subdomain linuxlaboratory.org.
 ANY;
 };
 };

Here, our update policy says to allow updates signed with the key apollo.linuxlaboratory.org., as
long as the update is affecting an entry that is a subdomain of linuxlaboratory.org.. Note that the
subdomain keyword includes the hostname. Also, we allow this key to update any record type, by
including the keyword ANY on the end. This doesn't really mean literally any record type, though: it'll
never update, for example, your SOA records! If you want to be explicit, you can list the record types
(for example, A PTR would allow updates only to those record types).

For completeness, here's the reverse zone block, altered with a similar update-policy statement:

 zone "42.168.192.in-addr.arpa" in {
 type master; file "db.192.168.42";

 update-policy {
 grant apollo.linuxlaboratory.org. subdomain 42.168.192.in-addr.arpa
 ANY;
 };
 };

Both zones allow updates to any record type of any host in the zone. This effectively makes our
DHCP server the "sole master" host for performing updates.

3.3.2. Configuring the ISC DHCP Server

Now let's move on to configuring our DHCP server. In our example environment, we have a lot of
hosts grabbing static IP addresses from our DHCP server. We'll also set aside a range to be assigned
to visitors, who will also be assigned dynamic hostnames. This information will be sent to the DNS
server, and the requests will be signed with the same key we used in the BIND configuration.

To get the configuration right, we'll need to add a few extra settings to the global section of the file to
tell the server to do dynamic updates. We'll then define the key to use a block very similar to the one
we put in our named.conf file. Here's the first part of our newly updated dhcpd.conf file:

 ddns-update-style interim;
 deny client-updates;

http://lib.ommolketab.ir

 authoritative;
 option domain-name "linuxlaboratory.org";
 option domain-name-servers 192.168.42.3;

 option subnet-mask 255.255.255.0;
 default-lease-time 600;
 max-lease-time 7200;

 key apollo.protocolostomy.pvt. {
 algorithm hmac-md5;
 secret "y3v81k9O9z6c62KgPNlik8P6QZIEB3yb/Blw/
 XE8QN46RLeC4XkptJiRA56roCcCEGSAdCJb5kmM2/S7MBrmRQ==";
 }

The first two settings relate directly to our goal. ddns-update-style is set to the only value that
allows us to perform DNS updates in newer versions of BIND. There used to be an ad-hoc value that
was valid here, which represented a different mechanism for performing updates, but in newer
versions this value is ignored and will not work. The other valid value here is none, which is used to
explicitly state that the server will not perform updates. You must specify a value for the ddns-
update-style setting on Red Hatbased distributions.

The next setting (deny client-updates;) tells the server to deny any requests that clients may send
to update their own information. We've set this explicitly because we'll be assigning dynamic
hostnames. If we do not set this, the server will try to use the hostname supplied by the client, which
can cause problems in some environments.

The next new part of this file is the block that defines the key to use to sign updates before shipping
them over to the DNS server. It is almost identical to the DNS server configuration file, and it
performs the exact same function.

Once these settings are in place, the next thing to do is define which zones our DHCP server will
attempt to update, on which servers, and using which keys. Here are the zone blocks in our
dhcpd.conf file that we'll need to get things working:

 zone linuxlaboratory.org. {
 primary 127.0.0.1;
 key apollo.linuxlaboratory.org.;
 }

 zone 42.168.192.in-addr.arpa. {
 primary 127.0.0.1;
 key apollo.linuxlaboratory.org.;
 }

These, of course, must be valid zones on the DNS server listed as primary in each block. In our case,
the DNS server is on the local host, so the updates are performed over the local loopback interface
and are signed with the key we created earlier.

http://lib.ommolketab.ir

The last step is to set up dynamic hostnames for visitors, who will get IP addresses from a predefined
range. Here's a configuration block to take care of that:

 subnet 192.168.42.0 netmask 255.255.255.0 {
 range 192.168.42.85 192.168.42.99;
 option broadcast-address 192.168.42.255;
 option routers 192.168.42.1;
 ddns-hostname = concat ("dhcp-", binary-to-ascii (10, 8, "-", leased
 address));
 }

Visitors on our subnet are assigned addresses between node numbers 85 and 99, inclusive. The
hostname the DHCP server will send to the DNS server is defined using the ddns-hostname option.
The value that results from the expression, for the host that is leased the address 192.168.42.99,
will be "dhcp-192-168-42-99.linuxlaboratory.org". The first argument to concat is a static string. The
second is the binary-to-ascii function. The arguments to that function, in order, are the base to use
(10 is simple, familiar, decimal numbers), the width of each value (8 bits), the separator to place
after each 8-bit value (a dash), and the value to act upon, which in this case is a variable defined by
the server. There are many wild schemes for assigning host-names, but this one has served me well
and is very simple.

3.3.3. Starting the Services and Troubleshooting

Restart the named server, and then restart the dhcp server. Both should start without errorif you run
into one, it's likely to be a forgotten comma or a misplaced curly brace or parenthesis. If they both
start without errors you'll at least know that your configuration is syntactically correct, so let's move
on to some other things you might see in the logs.

One of the most common issues revolves around the key and how it is generated and used. You
might see messages like these:

 Sep 3 13:06:11 apollo dhcpd: DHCPDISCOVER from 00:e0:b8:5c:46:c6 via eth0
 Sep 3 13:06:12 apollo dhcpd: DHCPOFFER on 192.168.42.99 to 00:e0:b8:5c:46:
 c6 (moocow) via eth0
 Sep 3 13:06:12 apollo named[13005]: client 127.0.0.1#32880: request has
 invalid signature: TSIG DDNS_UPD: tsig verify failure (BADKEY)
 Sep 3 13:06:12 apollo dhcpd: Unable to add forward map from moocow.
 linuxlaboratory.org to 192.168.42.99: bad DNS key

More than one issue can cause these messages. For example, you might simply have mistyped the
key. Make sure you have quoted strings where you need them, both in the key's value and in the
name of the key. Use the examples above to guide you, as they're taken from a known working
configuration. If that doesn't work, consult the manpages for the configuration files themselves to
make sure you got it right.

http://lib.ommolketab.ir

Another reason you might get these messages is because either you used an invalid name when
generating the key, or you generated the wrong key type. For example, if you ran the dnssec-keygen
command with -n USER and then named the key after the host allowed to perform the update, the
key won't work to validate either a user or a host. You'll also be in hot water if you generated the key
with -n HOST but didn't name the key after the host. Generating the key using the method we used in
this example will get you rolling in no time.

Most other issues are caused by pretty blatant configuration typos or permissions issues. For
example, when BIND accepts an update from the DHCP server, it doesn't rewrite its zone files
immediately. It generally updates them once an hour, and in the interim, it keeps the data in a
journal file. If the journal file doesn't exist, the user that named is running as needs to have
permission to write to the directory where the journal files will live.

When all is well, the logs generated by a successful setup will look similar to this:

 Sep 3 15:07:55 apollo dhcpd: DHCPDISCOVER from 00:0c:f1:d6:3f:32 via eth0
 Sep 3 15:07:55 apollo dhcpd: DHCPOFFER on 192.168.42.98 to 00:0c:f1:d6:3f:
 32 (livid) via eth0
 Sep 3 15:07:55 apollo named[14931]: client 127.0.0.1#32907: updating zone
 'linuxlaboratory.org/IN': adding an RR at 'dhcp-192-168-42-98.
 linuxlaboratory.org' A
 Sep 3 15:07:55 apollo named[14931]: client 127.0.0.1#32907: updating zone
 'linuxlaboratory.org/IN': adding an RR at 'dhcp-192-168-42-98.
 linuxlaboratory.org' TXT
 Sep 3 15:07:55 apollo named[14931]: zone linuxlaboratory.org/IN: sending
 notifies (serial 8)
 Sep 3 15:07:55 apollo dhcpd: Added new forward map from dhcp-192-168-42-98.
 linuxlaboratory.org to 192.168.42.98
 Sep 3 15:07:55 apollo named[14931]: client 127.0.0.1#32907: updating zone
 '42.168.192.in-addr.arpa/IN': deleting rrset at '98.42.168.192.in-addr.arpa'
 PTR
 Sep 3 15:07:55 apollo named[14931]: client 127.0.0.1#32907: updating zone
 '42.168.192.in-addr.arpa/IN': adding an RR at '98.42.168.192.in-addr.arpa'
 PTR
 Sep 3 15:07:55 apollo named[14931]: zone 42.168.192.in-addr.arpa/IN:
 sending notifies (serial 6)
 Sep 3 15:07:55 apollo named[14931]: client 192.168.42.3#32903: received
 notify for zone 'linuxlaboratory.org'
 Sep 3 15:07:55 apollo dhcpd: added reverse map from 98.42.168.192.in-addr.
 arpa. to dhcp-192-168-42-98.linuxlaboratory.org
 Sep 3 15:07:55 apollo dhcpd: DHCPREQUEST for 192.168.42.98 (192.168.42.3)
 from 00:0c:f1:d6:3f:32 (livid) via eth0
 Sep 3 15:07:55 apollo dhcpd: DHCPACK on 192.168.42.98 to 00:0c:f1:d6:3f:32
 (livid) via eth0

3.3.4. See Also

http://lib.ommolketab.ir

"Quick and Easy DHCP Setup" [Hack #20]

http://lib.ommolketab.ir

Hack 22. Synchronize Your Watches!

A simple NTP service that saves you hours of headaches can be set up in minutes.

The Network Time Protocol (NTP) is a service that seeks to synchronize the clocks of all its clients. An
NTP daemon runs on a server, synchronizes its local system's clock with a public NTP server, and
then serves as a time host so clients on the local network, including desktop PCs, can synchronize
their clocks.

The number one reason to do this applies to environments of all sizes, and that reason is to enable
you to easily correlate data in the logfiles on your systems. (It's also a convenient way to ensure that
your coworkers meet you for lunch at the right time.) Even if you have centralized logging, there may
be applications that only log locally, and any localized audit daemons, sar configurations, and login
records kept in utmp and wtmp data files need to be kept in sync so that your troubleshooting or
postmortem investigations don't begin with a list of hosts and their time offsets from the log server.
You should also know that a central log host running Linux and running the syslogd daemon records a
timestamp in the logfiles that corresponds to the time that the message was received, according to
its local time, so that it can at least keep some semblance of order in its own logs.

Further encouragement to use an NTP service for your hosts will come from anyone who has ever
had to maintain NFS servers and clients in an environment that does not synchronize time across the
hosts. This can cause major issues with NFS, resulting in inexplicable "stale file handle" messages
and mysterious make command errors stating that some required file has a "modification time in the
future."

Now that you're convinced that having an NTP service is the right thing to do, let's move on to
configuring a simple NTP server, and configuring your clients to use it.

First, you should make sure that you have the ntpd package installed. SUSE, Fedora, Red Hat,
Mandrake, Debian, and all Debian variants that I've seen (including Ubuntu and Linspire) include
ntpd. Red Hatbased systems even include it for minimal server installations. The configuration file for
the server daemon is /etc/ntpd.conf, so let's start there by having a look at a barebones
configuration:

 ## Default rules for all connections
 restrict default nomodify notrap noquery

 ## Allow full access to the local host
 restrict 127.0.0.1

 ## Our client subnet
 restrict 192.168.42.0 mask 255.255.255.0 nomodify notrap

http://lib.ommolketab.ir

 # Our timeservers
 server ntp.cs.princeton.edu
 server clock.linuxshell.net
 server ntp0.cornell.edu

OK, this is enough to get us started. The first line is a list of configuration keywords. The first two,
restrict and default, define this line as the default access rule for all connections. The next three
disallow remote hosts to modify the local server's configuration (nomodify), deny special ntpdq trap
messages (notrap), and deny ntpdq/ntpdc queries to this server (noquery). Note that the noquery
option is specific to queries regarding the status of the server itself, not the time: time queries are
unaffected by that option.

All those restrictions may seem to make setting up the server pretty useless, but just remember it's
a default rule that will be overridden by rules further down in the file.

The next line of the file, restrict 127.0.0.1, allows full access to the local hostand no, that's not a
typo on my part. If you've never studied the ntpd.conf file, it looks weird to see a line starting with
restrict that ultimately gives full access to the target of the rule. However, the way that the server
reads the file is that it matches up incoming connections with all of the restrict statements, in the
order they appear in the file. The keyword restrict is followed by a hostname, IP address, or the
keyword default, followed by whatever restrictive flags you deem necessary. The absence of these
flags means there are no restrictions, which is why the above line gives full access to the local host!

The next uncommented line gives access to our local subnet (192.168.42.0), so that users on this
subnet can use this machine as their time server but cannot perform actions of any kind on the
service itself.

The next three (uncommented) lines in the file are the servers that the local NTP server will trust for
purposes of synchronizing the local clock. There are thousands of publicly available time servers
worldwide, so consult one of the many lists online, find a few that are geographically close to you,
and use them. You should be able to find a list by browsing the ISC web site, which maintains
information about time server lists at http://ntp.isc.org/bin/view/Servers/WebHome. Do not put IP
addresses in for the servers! As sites evolve, inevitably they incur some alterations in how
networking works, how IP blocks are subnetted, and the like. An IP address change at Cornell
University isn't something you should be concerned with, and you won't have to be if you use
hostnames instead of IP addresses, because sites generally take care to make sure that packets
bound for ntp0.cornell.edu get there regardless of the IP address of that server at the time.

3.4.1. Hey! My Servers Are Gone!

It happens. Maybe you've lost connectivity to the outside world. Maybe you picked three NTP servers
that are at the same site (a bad idea) and they're all down. Regardless, you have clients to serve,
and you need to tell them something. Enter the magical "fudge" statement:

 server 127.127.1.0
 fudge 127.127.1.0 stratum 10

http://ntp.isc.org/bin/view/Servers/WebHome
http://lib.ommolketab.ir

Here, we enter the IP address of the local system's clock in the server line and then "fudge" its
priority to stratum 10. All time servers are automatically assigned strata values based on their
distance from the time source. Many of the public time servers are stratum 2 or 3 time servers. That
means that the only way our local NTP daemon is ever going to use a stratum 10 time server is if it's
the only one available. Most Linux distributions, and many other Unix variants, supply you with a
default ntp.conf file that has this bit of configuration wisdom already uncommented. It's safe to leave
it uncommented, and doing so will mean that you don't have to worry about NTP if you lose outside
connectivity or if you don't catch a hiccup in time server availability right away.

3.4.2. See Also

Very detailed NTP documentation by the creator of NTP, David Mills:
http://www.eecis.udel.edu/~mills/ntp/html/index.html

http://www.eecis.udel.edu/~mills/ntp/html/index.html
http://lib.ommolketab.ir

Hack 23. Centralize X Window System Font Resources

Setting up a central X Window System font server simplifies font distribution and reduces
clutter and resource use on X-based desktop systems.

The X Window System is the underpinning of most of the graphical desktops and window managers
used on Linux and Unix systems today. While alternatives are under development and many people
complain about the CPU impact of the X Window System's constant polling for keyboard and mouse
events, it's hard to argue with successthe X Window System already works and is therefore used
almost everywhere. Also, the demands it puts on modern systems with beefy processors are much
less significant than they were on old workstations or systems running at 300 MHz. As an inherently
network-aware client/server graphics system, X has a lot going for it in terms of usability and
portability, as well as ubiquity, since it's available and supported on almost every system with
graphical capabilities. Still, there are some aspects of X that can be optimizedspecifically, its font
handling. This hack explores how you can set up a central font server to offload local font
requirements to a central resource, saving CPU cycles, disk space on your desktop systems, and
administrative headaches by ensuring that the same fonts are deployed on all desktop systems that
might need them.

3.5.1. Billions and Billions of Fonts…

Obtaining and managing the fonts used by graphical applications has always been a problem,
regardless of the type of system that you're using, and it certainly isn't limited to the X Window
System. I can (painfully) remember choking older Windows and Mac OS boxes by installing too many
fonts. Somewhat worse than the problem of loading and supporting zillions of fonts were aesthetic
problems caused by people's zealous overuse of them. I can remember getting resumes from
prospective employees that looked like they'd been blasted with a shotgun loaded with different fonts
and wingdings. Such is lifeif you build it, they will abuse it. However, sysadmins are the wrong people
to enforce aesthetics. Our job is typically to provide users with the resources they think they need
and to do so in a manageable, easily administered fashion.

Today's X Window System deployments on Linux boxes typically come from either Xfree86.org or
X.org. The latter is more prevalent and is probably "the X Window System of the future" (which some
may view as an oxymoron, but that's another topic). Both of these X Window System
implementations come with a variety of fonts located in subdirectories of /usr/X11R6/lib/X11/fonts.
Each of these subdirectories can contain many different font families as well as individual fonts. The
default X.org configuration on the SUSE system where I'm writing this provides 30 subdirectories of
fonts, and running the fc-list command shows that there are 652 separate fonts available on the
system. In comparison, my Fedora Core 4 systems (where I've installed everything, since disk space
is cheaper than my time) have 185 fonts installed. The SUSE boxes devote around 100 MB of disk
space to font storage, while the FC4 system uses a mere 50 MB. These values would be much higher
if I'd installed all of the fonts that are available for different languages. The number reported by the

http://lib.ommolketab.ir

fc-list command is also independent of any fonts that individual users may have installed locally in
their ~/.fonts directories. Yikes!

Discrepancies between the number of fonts delivered with various Linux distributions and X Window
System implementations make it desirable to share fonts between systems. Disk space is as cheap as
dirt nowadays (certainly cheaper than potting soil), but making the same huge collections of
wonderful fonts available to everyone's X Window System applications is certainly logistically
attractive. In addition to the default sets of fonts provided with Linux distributions, some Linux
applications that may not be part of default system installs come with their own sets of fonts.

Luckily, I'm not the first person to have wished for a centralized mechanism for delivering fonts to X
Window Systems across the college or enterprise. For quite a while, most X Window System
implementations have come with a font server known as xfs (X Font Server, not to be confused with
the XFS journaling filesystem). A previous incarnation of a font server, fs, was provided with older
Linux distributions, but this has since been supplanted by xfs. Most desktop Linux distributions use
xfs to deliver fonts to the local system, but with a few changes to the xfs configuration file and a bit
of organization, you can easily configure one or two centralized font servers to handle your
organization's font requirements and make as many fonts as possible available to all of your X
Window System desktops, window managers, and applications.

3.5.2. Setting Up an X Font Server

Setting up an X font server to serve fonts to your other systems is quite simple. As most modern X
Window System implementations use a font server to deliver fonts to the local system, the most
important step in the reconfiguration process is to open up the X font server to external TCP
requests.

The configuration file that controls the behavior of the xfs font server is the file /etc/X11/fs/config.
(Although the font server executable has a new name, they kept its old name in the path for
consistency's sake.) We'll want to modify a few things in this file, but the critical one for turning a
specific X font server instance into a centralized resource is to comment out the following line by
using a text editor to put a hash mark at the beginning of the line:

 #no-listen = tcp

By removing the no-listen directive, this tells the X font server to begin listening to incoming TCP
requests from other hosts.

Setting up more than one font server is a good idea if you're going to be configuring your desktop
systems to use centralized font resources. To identify other font servers, add an entry to the xfs
configuration file that gives the comma-separated names or IP addresses of the other font servers on
your network and the ports on which they are servicing requests. As an example:

 alternate-servers = font2.vonhagen.org:7100,font3.vonhagen.org:7100

http://lib.ommolketab.ir

This entry tells the font server that it can redirect requests to the alternate font servers
font2.vonhagen.org and font3.vonhagen.org on port 7100 if it has too many connections to handle
itself. The standard port on which X font servers run, which you should probably use, is 7100. You
can use a different port if you'd like, as long as you're consistent both on the font server and on any
clients that want to connect to it.

Next, you'll want to set the port keyword in the xfs configuration file to the integer value of the port
on which the X font server will be listening for incoming requests. Again, port 7100 is the standard
and should thus be used unless you have some reason to use another port.

On some Gentoo Linux distributions, the X font server port is set by the
XFS_PORT directive in the /etc/conf.d/xfs configuration file. If you are using
Gentoo and your font server starts but you can't contact it, check this file to
make sure the font server is actually following the directives that you specified
in its configuration file.

Next, determine the appropriate limits for the number of clients that can connect to the font server
and how the font server should behave when that limit is reached. This is done by a combination of
the client-limit and clone-self settings in the xfs configuration file. The client-limit setting
requires an integer value that determines the maximum number of clients that a specific font server
will support before it refuses service to incoming requests. The clone-self setting requires a Boolean
value and determines how the font server behaves when this limit is reached. If clone-self is on
(true), the font server will start a new instance of itself when it reaches the maximum number of
clients specified. If clone-self is off (false), the font server will attempt to contact any other servers
identified in the alternate-servers entry, in order, until one can be contacted successfully. In
environments with multiple centralized font servers that service large numbers of desktops, I'd
suggest always having clone-self set to false, and starting out with a client-limit of 100. Once
you see how well this performs, you can raise or lower this limit to best balance response time from
the font server (affected by both system load and network bandwidth) with reasonable utilization of
all of your font servers.

As the final step in creating your X font server's configuration file, you'll need to add each directory
that contains X fonts to the comma-separated value for the catalogue statement. The next section
explains how to copy font files from remote systems to the X font server system and create
appropriate entries for them in the font server configuration file.

3.5.3. Copying Fonts to a Font Server

The next step in configuring your font server is to actually populate it with all of the fonts that you
want it to deliver to your X Window System clients. The easiest way to do this is to examine the X
Window System configuration files on each of your types of systems to see where they are currently
getting fonts. This is specified in one or more FontPath statements in the Files section of the X
Window System configuration file, which is either /etc/X11/xorg.conf (for X Window servers from
X.org) or /etc/X11/XF86Config-4 or /etc/X11/XF86Config (for X Window servers from XFree86.org).
If the Files section contains a single, uncommented statement such as the following, that system is
using itself as a local font server:

http://lib.ommolketab.ir

 FontPath "unix/:7100"

For each FontPath entry that points to an actual directory on the system you're examining, first
check if the same directory (with the same contents) exists on the system where you'll be running
your enterprise-wide X font server. If not, you'll need to copy the contents of that directory to the X
font server system, creating the directory if necessary. Once any necessary directories have been
cloned to the X font server system, make sure that those same directories are being identified in the
catalogue statement in the X font server's configuration file. For example, the following are some
sample statements from an X font server configuration file that refers to a local font directory:

 FontPath "/usr/X11R6/lib/X11/fonts/misc:unscaled"
 FontPath "/usr/X11R6/lib/X11/fonts/local"
 FontPath "/usr/X11R6/lib/X11/fonts/75dpi:unscaled"
 FontPath "/usr/X11R6/lib/X11/fonts/misc/sgi:unscaled"

After copying font directories to the machine that will be running the X font server, you will then have
to update the X font server's configuration file, /etc/ X11/fs/config, to have equivalent statements.
Each FontPath statement in the X server's configuration file translates into one of the comma-
separated values associated with the catalogue keyword in the X font server's configuration file.
Thus, an equivalent statement to the previous example would be the following:

 catalogue = /usr/X11R6/lib/X11/fonts/misc:unscaled,
 /usr/X11R6/lib/X11/fonts/75dpi:unscaled,
 /usr/X11R6/lib/X11/fonts/100dpi:unscaled,
 /usr/X11R6/lib/X11/fonts/misc/sgi:unscaled

The last entry in the catalogue statement must not be followed by a comma.

If you copy fonts into an existing font directory on the machine that will be running the X font server,
you should su to root or use the sudo command to re-run the mkfontdir command so that all the
fonts in that directory can be identified and delivered by the X font server.

3.5.4. Starting or Restarting the X Font Server

Almost there! Before restarting the X font server to pick up the new settings and start offering fonts
to any X clients that happen by, check the xfs startup script located in /etc/init.d/xfs to make sure
that it doesn't explicitly specify a different port than the one on which your font server expects to

http://lib.ommolketab.ir

listen. For example, suppose that your startup script contained a statement like the following:

 daemon --check xfs xfs -port -1 -daemon -droppriv -user xfs

You would want to modify this statement to the following:

 daemon --check xfs xfs -port 7100 -daemon -droppriv -user xfs

Some startup scripts use a variable to hold the port number. If this is the case in your font server
startup scripts, make sure that the variable identifies port 7100 as the port on which to run the
server.

You're now officially ready to go! To restart (or start) your X font server, simply execute the following
command:

 # /etc/init.d/xfs restart

If the font server isn't already running, the stop portion of the restart will fail, but the start portion
will start your X font server with all your new options.

Make sure you add the X font server startup fairly early on in your various runlevels, especially if you
start your machine in graphical mode. If the X font server isn't available when you try to start the X
Window System itself, and no local fonts are available, X will fail to start.

3.5.5. Updating Desktop Systems to Use an X Font Server

While there's a bit of work involved in setting up your X font server and making sure it offers all the
fonts your clients will need, switching a desktop system to use a remote X font server is easy. As
mentioned previously, many modern desktop Linux distributions already use a local font server (i.e.,
a font server that is running on the same host as the X server) to deliver fonts. Switching these
systems to use a remote X font server is extremely easy.

The key to where your X server gets its fonts is the Files section of its configuration file. As stated
previously, if the Files section contains a single, uncommented statement such as the following, that
system is using itself as a local font server:

 FontPath "unix/:7100"

http://lib.ommolketab.ir

To switch this system to using the remote font server, change this line to something like the
following:

 FontPath "tcp/fontserver1.vonhagen.org:7100"

You should then restart the X server on your desktop system to ensure that it can contact the X font
server and retrieve the fonts that it needs. If the system cannot contact the font server, starting X
will fail, and you should follow some of the tips in the troubleshooting section of this hack. Otherwise,
you're done!

Though I'm a fan of centralizing X resources such as fonts to make everyone's lives easier, I use a
somewhat paranoid X server configuration file that provides some fallback in case a font server or the
network goes down. For example, the FontPath entries in the xorg.conf files for machines on my
home office network are the following:

 FontPath "tcp/fontserver1.vonhagen.org:7100"
 FontPath "tcp/fontserver2.vonhagen.org:7100"
 FontPath "/usr/X11R6/lib/X11/fonts/75dpi:unscaled"
 FontPath "/usr/X11R6/lib/X11/fonts/misc:unscaled"
 FontPath "/usr/X11R6/lib/X11/fonts/local"

This tells my X servers to try two local font servers first and then fall back to a minimized collection of
local fonts if the font servers don't work for some reason. The font servers are just CNAMEs in my
DNS server, so I can easily move them to different hosts as my computing environment evolves. The
fallback entries cover those rare cases when I just want to start a single machine.

3.5.6. Troubleshooting

If an X server can't contact your font server and that is the only font resource and you haven't
provided any local fallback fonts, the X server will not start and will terminate with a message about
not being able to contact the font server. Luckily, both Linux and the X Window System include some
helpful commands to enable you to diagnose the problem.

First, on the font server, make sure that the font server is actually running by using the ps command,
as in the following example:

 $ ps -ef | grep xfs
 root 13841 31053 0 04:39 pts/13 00:00:00 xfs
 wvh 13848 31053 0 04:39 pts/13 00:00:00 grep -i xfs

Next, check that you can contact it successfully by retrieving a list of the fonts that it provides. You

http://lib.ommolketab.ir

can do this using the fslsfonts command, as in the following example:

 $ fslsfonts -server fontserver1 :7100

This should display a long list of available fonts. If it doesn't, make sure that the font server is
actually listening on the correct port, using a command like the following:

 $ netstat -an | grep 7100
 tcp 0 0 0.0.0.0:7100 0.0.0.0:* LISTEN
 tcp 0 0 :::7100 :::* LISTEN
 unix 2 [ACC] STREAM LISTENING 862009 /tmp/.font-unix/

If you don't see this information and you can't contact the X font server using fslsfonts, make sure
that you commented out the no-listen = tcp entry in your font server's configuration file.

If you see messages like the following when you start your X font server, some of the directories
specified in its configuration file either don't exist or don't contain valid fonts:

 xfs notice: ignoring font path element /usr/X11R6/lib/X11/fonts/Speedo
 (unreadable)
 xfs notice: ignoring font path element /usr/X11R6/lib/X11/fonts/CID
 (unreadable)
 xfs notice: ignoring font path element /usr/X11R6/lib/X11/fonts/local
 (unreadable)

These messages are nonfatal, but you should clean up your font server's configuration file so that no
other sysadmin is confused about whether these directories were supposed to contain fonts that have
somehow gotten "lost."

Finally, double-check that you have the right font server settings in your X server's startup file. You
can use the fallback approach suggested in the previous section to start the X font server using a
small collection of local fonts until you resolve your connectivity problems. While you're working on
them, you can use the fslsfonts and xset fp (set font path for the X Window System) commands
to, respectively, test connectivity to the font server and add it to your current X session for testing
purposes. The xset fp command enables you to add a font server to the list of font sources that X
applications search (known as a font path), using a command like the following:

 $ xset +fp tcp /fontserver1 :7100

You may need to cause the X server to re-probe its font sources by using the xset fp rehash

http://lib.ommolketab.ir

command. While testing, you can also remove elements from your X font path using a command like
the following:

 $ xset -fp tcp /fontserver1 :7100

You can determine the current settings for your X font path (along with other settings) by executing
the xset -q command, which provides a variety of information about your working X Window System
environment.

3.5.7. Summary

The X Window System is a great thing for Linux and Unix users, but the number of available (or
required) fonts can quickly escalate, especially in internationalized (I18N) environments. Some X
Window System applications, such as Wolfram Research's Mathematica, also take advantage of many
custom fonts in order to display results as nicely as possible. (Wolfram's docs even identify a font
server that they export over the Internet for this purpose.)

Centralizing resources such as fonts that are used by many of the machines in your computing
environment can save local disk space and, more importantly, provide a single location where you
can easily install custom fonts that multiple users may require. Be careful, thoughcentral resources
simplify administration, but they can also provide single points of failure unless you architect your
installation correctly.

The disk space required to install most fonts locally is no big deal (or expense) nowadays. However,
centralizing custom fonts is always a good idea. Installing custom fonts locally isn't really a problem
until you upgrade or replace the machine on which they live, at which point you may forget that the
machine had custom fonts installed. Once bitten, twice shy! An X font server is easy preventative
medicine for this sort of problem.

3.5.8. See Also

man xset

man xfs

man fslsfonts

http://www.x.org

http://www.xfree86.org

http://www.x.org
http://www.xfree86.org
http://lib.ommolketab.ir

Hack 24. Create a CUPS Print Server

Let printers announce themselves and create a flexible, modern printing environment by
setting up CUPS.

Today's printers are typically high-quality laser or inkjet printers, often capable of color printing and
near-photographic quality. The original Unix printing system, known as lpd (Line Printer Daemon)
was designed to queue and print jobs that were intended for huge, text-only line printers. As more
sophisticated printers were developed that were capable of higher-quality printouts (such as the
original x9700, Canon-CX, and Imagen-300 laser printers), the original lpd print system continued to
be used, but it required that the jobs you were printing be preprocessed so that they contained the
special commands the printer used internally to produce higher-quality printouts. This quickly became
tedious, because it meant that users had to know which printers they wanted to print to and required
use of the appropriate preformatting commands. Eventually, the lpd system was updated and a
similar printing system known as lp was developed. lp encapsulated the knowledge about the formats
required by specific printers, implementing the necessary preformatting commands into filters (also
known as print drivers) that automatically formatted files as required by the target printers.

The evolution of multiple printing systems for Unix systems was not without pitfalls: it led to
incompatibilities between the different print systems, required recompilation of the filters for specific
printers for multiple Unix systems (if you could get the source code at all), and so on. Eventually, a
company known as Easy Software Products began developing a more generalized printing system for
Unix, Linux, and other Unix-like systems, called the Common Unix Printing System (CUPS). The
original version of CUPS used the standard networked LDP protocol, but it quickly switched to using a
new standard, the Internet Printing Protocol (IPP), which non-Unix/Linux systems such as Windows
can use to print to CUPS printers. Easy Software Products also had the foresight to make the CUPS
source code freely available under the GPL so that it could be compiled for multiple operating systems
and thus become a true, cross-system standard popularized by zillions of users and sysadmins. This
strategy has workedtoday, CUPS is used by every major Linux distribution and most other Unix-like
systems.

Almost every Linux system provides its own administrative tool for print system and printer
configuration: SUSE provides YaST; Red Hat and Fedora Core distributions use printconf-gui; and so
on. Printer configuration would therefore still be a sysadmin nightmare if not for the fact that the
CUPS print daemon provides a built-in administrative tool that is easily accessed through any web
browser via port 631. This provides a standard interface for CUPS configuration (though you're still
welcome to use your Linux distribution's administrative printer configuration tools, if you insist). This
hack focuses on the standard CUPS interface and web-based configuration.

3.6.1. Defining a New Printer in CUPS

http://lib.ommolketab.ir

To define a new printer on any Linux system using the CUPS administrative interface, you must first
make sure that the CUPS daemon, cupsd, is running on your system. You can do this using the ps
command, as shown in the following example:

 $ ps alxww | grep cupsd
 5 4 6923 1 16 0 24540 1452 - Ss ? 0:00 /usr/sbin/cupsd
 0 1000 13304 31053 17 0 536 112 - R+ pts/13 0:00 grep -i cupsd

If it isn't shown in the process listing, you can start it as the root user or via sudo, as in the following
example:

 # /etc/init.d/cups start

You should see an OK message once the system starts the CUPS daemon. Next, open your favorite
web browser and connect to the network address http://127.0.0.1:631. The odd port number comes
from its roots as an IPP print server (the default port for IPP is 631). The screen shown in Figure 3-1
will display.

When you see this screen, click the Do Administration Tasks link. An authentication dialog will display,
into which you enter the name and password of a user who is authorized to do printer configuration
on your system.

The users who can administer printers and the print subsystem differ across
multiple Linux distributions. On SUSE Linux systems, you must add authorized
users to the CUPS authentication file using the lppasswd command (for
example, lppasswda wvh would add the user wvh and prompt you twice for a
password for printer administration by that user). On Red Hat, Fedora Core,
and many other Linux distributions, you can simply enter the root user's login
and password.

Figure 3-1. The web-based CUPS administrative interface

http://127.0.0.1:631
http://lib.ommolketab.ir

Once you successfully enter an authorized user's name and password, the screen shown in Figure 3-2
will display.

Figure 3-2. The main CUPS admin screen

Click Add Printer to display the screen shown in Figure 3-3, where you can begin configuring your
printer. (You can also get to this screen by selecting the Printers item from any CUPS page header
and clicking the Add Printer button, but I think of this as an administrative action and therefore
usually get there from the Admin page.) This hack focuses on configuring a local (physically attached)
printer. "Configure Linux Connections to Remote CUPS Printers" [Hack #25] provides information on
configuring a remote printer is provided in.

http://lib.ommolketab.ir

Figure 3-3. The initial printer definition screen

Enter a memorable short name for the printer in the Name field (most commonly without spaces),
enter a summary of the printer's location in the Location field, and enter a short description of the
printer in the Description field. The latter two are simply text strings, but putting meaningful values in
these fields will help you remember which printer is which if your print server supports multiple
printers. Click Continue to proceed. The screen shown in Figure 3-4 will display.

Figure 3-4. Selecting how your printer is attached

http://lib.ommolketab.ir

Select the device to which your printer is attached from the drop-down list shown in Figure 3-4. As
you can see, some Linux distributions auto-identify the printers attached to various ports when they
perform hardware detection (this example screen was captured on a SUSE Linux system). After
selecting the interface to which your printer is attached, click Continue. The screen shown in Figure
3-5 will display.

Figure 3-5. Selecting your printer's manufacturer

Select the manufacturer of your printer from the drop-down list in Figure 3-5. If the manufacturer of
your printer isn't explicitly listed, your printer probably emulates a printer from some other
manufacturer. (Printers that emulate various Hewlett-Packard printers are quite common. Any printer
that supports PCLHP's Printer Control Languagecan emulate some sort of HP printer.)

You'll note that many print drivers provide two printing options: gimp-print and
foomatic. gimp-print is a print plug-in for the GNU Image Manipulation Program
(GIMP) graphics package that includes many custom print drivers, while
foomatic is a database-driven interface to another set of print drivers. I
generally select whichever is marked as Recommended. If neither is
recommended, it's usually best to start with gimp-print drivers, because gimp-
print can also access foomatic drivers, but foomatic can't access the gimp-print
drivers. Most Linux distributions preinstall these packages when you install
CUPS, but you may have to install them separately on distributions whose goal
is minimizing disk usage.

Click Continue to proceed. A screen like the one shown in Figure 3-6 will display, listing all of the
printers that are available from the selected manufacturer.

http://lib.ommolketab.ir

Figure 3-6. Selecting a specific print driver

Select your printer (or an equivalent) from this list. It's important to select your printer exactly if
possible, to best take advantage of the printer's capabilities. Click Continue to proceed. You'll see a
summary screen telling you that the printer has been set up, which includes creating the right print
queues and configuration entries that are used internally by CUPS.

3.6.2. Testing CUPS Printing

Once you've set up a new printer, the first thing you'll want to do is test printing to it, not just to
ensure that it is correctly configured in terms of ports and drivers, but also to check the default
quality level for the printer. To do this, click the Printers entry in the heading of any CUPS
administrative web page. A screen like the one shown in Figure 3-7 will display.

Click the Print Test Page button. You should see your printer's activity light come on, and the printer
should begin to print a CUPS test page. If the activity light doesn't come on, click the Jobs entry in
the web page to display a page showing the status of the test print job. If this page shows that the
job has completed, your printer is not configured correctly. The most common problems are that the
printer isn't connected to the port that you selected in Figure 3-4, or that you've selected the wrong
print driver. You can review and modify your current settings by clicking the Modify Printer button on
the Printers page, which walks you through the steps described in the previous section using your
current settings as defaults.

Figure 3-7. Summary information about your printer

http://lib.ommolketab.ir

3.6.3. Fine-Tuning Printer Configuration in CUPS

After you've successfully configured a printer and printed a test page, you may want to fine-tune
your printer's print capabilities. To do this, click the Printers entry in the heading of any CUPS
administrative web page, and click the Configure button. A screen like the one shown in Figure 3-8
will display. The contents of this page will depend on the capabilities of your printer and the driver
that you selected, but they will enable you to do things like fine-tune color settings (in the
Adjustment section), select a higher default printing resolution (using the General section's Printout
Mode setting), and so on.

3.6.4. Enabling Remote Printing on the CUPS Server

Depending how CUPS is preconfigured on your Linux distribution, you may need to add your remote
hosts (or your entire network) to the list of acceptable locations in the CUPS daemon's configuration
file, /etc/cups/cupsd.conf. The list of valid locations for incoming print jobs is stored inside the
<Location />… </Location> stanza. On most systems, this looks like the following:

 <Location />
 Order Deny,Allow
 Deny From All
 Allow From 127.0.0.1
 </Location>

http://lib.ommolketab.ir

Figure 3-8. The printer-specific configuration screen

This configuration file entry supports printing to the CUPS server from the host on which the print
server is running. To change the entry so that all hosts on the local network can print, add a line so
the stanza now looks like this:

 <Location />
 Order Deny,Allow
 Deny From All
 Allow From 127.0.0.1

 Allow From 192.168.6.*
 </Location>

This stanza now enables printing from the local host and from all printers on the specified subnet (in
this case, 192.168.6).

3.6.5. Troubleshooting CUPS Printing

CUPS print servers maintain three logfiles (stored in the directory /var/log/cups) that provide some
information about attempts to access or use them:

http://lib.ommolketab.ir

access_log

Records attempts to access the CUPS print server. Can be useful in determining why print jobs
are rejected or discarded.

error_log

Records all errors encountered or produced by the CUPS print server. Can be equally useful in
determining why print jobs are rejected or discarded.

page_log

Keeps track of every page printed by a specified printer, including the host from which the print
job was received, the name of the printer being used, and so on.

Of these, the access_log and error_log files are the most useful for diagnostic purposes. Examining
the end of these files after attempting to print but not receiving any output usually shows meaningful
error messages. For example, if you forgot to update the MIME files and are trying to print to a CUPS
printer from Windows, you may see messages like the following:

 E [05/Sep/2005:17:55:49 -0400] get_job_attrs: job #0 doesn't exist!
 E [05/Sep/2005:17:55:49 -0400] print_job: Unsupported format 'application/
 octet-stream'!
 I [05/Sep/2005:17:55:49 -0400] Hint: Do you have the raw file printing rules
 enabled?

It doesn't get much more helpful than this in terms of identifying the problem and suggesting a fix.

The page_log file can be useful for cost diagnosis. A number of open source
applications are available to parse and summarize the information in this file,
helping you get some idea of your printing costs. Useful applications that do
this sort of thing are PrintAnalyze and phpPrintAnalyzer, both of which are
available from the CUPS web site at http://www.cups.org/links.php. Another
useful script along the same lines is cartridge_usage.pl, a Perl script that
requires that you keep a separate logfile for each new cartridge but does a
great job of identifying the number of pages that each cartridge will print. This
script is available at http://www.ime.usp.br/~feferraz/en/cartusage.html.

3.6.6. Summary

CUPS provides a central system for printing to modern printers on Linux and many other operating
systems. Its combination of support for standards, consistency across platforms, and a common,
web-based administrative interface makes it a powerful, usable package. As we'll see in the next few
hacks, it's easy to configure printing to CUPS print servers from remote Linux, Windows, and
Macintosh systems.

http://www.cups.org/links.php
http://www.ime.usp.br/~feferraz/en/cartusage.html
http://lib.ommolketab.ir

3.6.7. See Also

http://www.cups.org/documentation.php

"Configure Linux Connections to Remote CUPS Printers" [Hack #25]

"Integrate Windows Printing with CUPS" [Hack #26]

"Centralize Macintosh Printing with CUPS" [Hack #27]

"Define a Secure CUPS Printer" [Hack #28]

http://www.cups.org/documentation.php
http://lib.ommolketab.ir

Hack 25. Configure Linux Connections to Remote CUPS
Printers

Quickly set up connections to remote printers using the CUPS web-based interface.

It would be nice if each user had her own printer, so we could all avoid the inherent bottlenecks
caused when some thoughtless user prints a 100-page manual or a bunch of high-resolution vacation
photos to one of your school's or company's central printers. Unfortunately, the purchase and
maintenance costs of high-volume printers can be quite high, so most schools and businesses
concentrate resources on one or two good ones and configure all their desktop systems to send print
jobs to those printers. Luckily, the web-based administrative interface provided by CUPS makes it
quite simple to configure and test connections to remote CUPS printers on Linux systems. Here's
how.

3.7.1. Defining a Remote Printer in CUPS

The basic procedure for defining the remote printer is almost identical to that for creating the CUPS
print server [Hack #24], so I won't insult your intelligence by duplicating screenshots and
instructions here. Instead, I'll just focus on the two screens that are different and that really matter:
the Device screen, where you specify how to connect to the printer; and a new Device URL screen,
where you specify the Universal Resource Locator (URL) that uniquely identifies the remote printer.

After authenticating and beginning the process of adding a printer, you'll need to specify the protocol
with which your client system will communicate with the remote printer. This is done on the Device
screen, shown in Figure 3-9. Instead of selecting a physical connection, you'll usually select the
Internet Printing Protocol (IPP). IPP is a modern protocol for communicating with printers from many
different types of operating systems, and it is therefore the right choice in most modern, mixed-
system environments.

Once you've selected IPP, click Continue to proceed to another Device screen, shown in Figure 3-10.
This screen enables you to specify the URL of the remote printer so that the local system knows
where to find the correct printer.

As shown in Figure 3-10, the URL of remote CUPS printer is in the form ipp://address-or-
name/printers/printer-name, where address-or-name is the IP address or name of the host to which
the printer is physically attached, and printer-name is the name of that printer on the remote host.

The URL shown in this figure reflects the print server that I defined in "Create a CUPS Print Server"
[Hack #24], which is named epson-color200 and is running on the host 192.168.6.64.

http://lib.ommolketab.ir

Figure 3-9. Specifying IPP as your remote printing protocol

Figure 3-10. Specifying the URL for your remote printer

http://lib.ommolketab.ir

Once you've specified the URL for the remote printer, proceed through the rest of the printer
configuration screens [Hack #24]. You'll probably also want to print a test page to ensure that you
can connect to the remote printer and verify that you selected the correct print driver to format
output for the remote printer.

3.7.2. Summary

Configuring print access from any Linux system to a remote CUPS printer is quite easy, as you can
see from the simple case explained in this hack. If you need to restrict access to this printer, you can
manually modify the CUPS configuration file (/etc/cups/cupsd.conf) on the print server, as explained
in "Define a Secure CUPS Printer" [Hack #28].

Using CUPS as the printing and queuing mechanism for your school or enterprise is the perfect
solutionit gives you a powerful, consistent printing utility with a consistent administrative interface
that is independent of different Linux distributions, thanks to its web-oriented focus.

3.7.3. See Also

http://www.cups.org/documentation.php

"Create a CUPS Print Server" [Hack #24]

http://www.cups.org/documentation.php
http://lib.ommolketab.ir

Hack 26. Integrate Windows Printing with CUPS

CUPS is not just a great solution for Linux and Unix printingit can also easily handle your
Windows printing needs.

As we all know, it's important to be able to play nicely with Windows systems in today's academic
and business environments. This may be philosophically unattractive to many of us, but it's a reality.
While printing from Windows systems to Linux print servers is often done using Samba (leveraging
the standard SMB/CIFS networking protocols), you may not want to set up Samba on every desktop
for which you're responsible. Luckily, Microsoft's quest for proprietary standards hasn't eliminated
their support for remote printing using other standard protocols, such as HTTP, which CUPS is happy
to support. This hack explains how to configure Windows systems to print to remote CUPS print
servers using the standard HTTP protocol.

3.8.1. Configuring Printing from Windows 2000/XP Systems

It's really quite easy to configure a Windows 2000 or XP system to print to a remote CUPS printer.
First, select the standard "Add printer" icon from the Printers folder in the Control Panel. Specify that
you want to create a remote printer, and enter a URL of the following form: http://name-or-
address:631/printers/printer-name (as shown in Figure 3-11, which shows the Windows 2000 printer
configuration dialog).

Figure 3-11. Specifying a URL in the Windows 2000 Add Remote Printer
dialog

http://name-or-
http://lib.ommolketab.ir

Continuing with the example used in the previous CUPS-related hacks in this book, I've entered the
URL http://192.168.6.245:631/printers/epsoncolor200. Figure 3-12 shows the equivalent dialog
under Windows XP.

Figure 3-12. Specifying a URL in the Windows XP Add Remote Printer
dialog

http://192.168.6.245:631/printers/epsoncolor200
http://lib.ommolketab.ir

Some combinations of Windows systems and CUPS versions require that you
specify a hostname rather than an IP address in a printer URL. If your remote
print server has a fixed IP address, the easiest way to do this is to create an
entry in the Windows hosts file that maps the IP address to a hostname. This is
the file C:\WINNT\system32\drivers\etc\hosts on Windows 2000 systems, and
the file C:\WINDOWS\system32\drivers\etc\hosts on Windows XP systems. For
example, adding an entry like 192.168.6.245 printserv to this file would
enable me to specify the URL http://printserv:631/printers/epson-color200 for
the remote printer.

Click Next to proceed with configuring the remote printer connection. Because you are connecting to
a remote printer, you may see a dialog like the one shown in Figure 3-13. This dialog demonstrates
that the Windows system is able to contact the remote print server, since the warning message
displays the name of the print driver as known to the remote print server. To satisfy Windows, you
can either choose an installed print driver from the subsequent dialog or locate the print driver on the
Web or on the CD that accompanied your printer purchase.

Figure 3-13. Windows 2000 Print Driver Request dialog

http://printserv:631/printers/epson-color200
http://lib.ommolketab.ir

3.8.2. Server-Side Configuration for HTTP Printing

Once you've finished configuring the printer on the Windows system, you'll need to make a few
modifications to the CUPS printer configuration files on your print server. Because the files you print
are being preformatted on your Windows system, and you are using the HTTP protocol, you will need
to configure the CUPS server on the Linux system to which the printer is connected. You will need to
modify two configuration files to tell the CUPS server how to handle raw data files received via HTTP,
configuring it to send those files directly to the specified print queue with no local formatting.

First, edit the file /etc/cups/mime.types, which defines valid Multipurpose Internet Mail Extensions
(MIME) formats that are supported by the CUPS server. MIME defines a variety of formats that one
might encounter on the Internet (such as in a web browser or in HTTP communications) and defines
how MIME-aware applications should handle them. To enable printing via HTTP, remove the hash
mark (#) at the beginning of the following line:

 #application/octet-stream

Without the leading comment character (the hash mark), this entry tells the CUPS print server that
raw data streams are an acceptable input format. Next, edit the file /etc/cups/mime.convs, which
defines the types of conversions that the CUPS server should perform on various MIME input formats.
To enable printing via HTTP, remove the hash mark at the beginning of the following line:

 #application/octet-stream application/vnd.cups-raw 0

As with the change to the /etc/cups/mime.types file, removing the comment character from the
beginning of this line tells the CUPS server to handle input files in application/octet-stream format by
passing them to a CUPS application that simply inserts them into a print queue without doing any
local formatting.

3.8.3. Troubleshooting Windows Printing to CUPS Servers

The most common cause of being unable to print to a CUPS print server is that the printer is not
configured to accept print jobs from your host's IP address. For more information about this, see the

http://lib.ommolketab.ir

section "Enabling Remote Printing on the CUPS Server" in "Create a CUPS Print Server" [Hack #24].
If you're sure that this is not the problem, check the CUPS logfiles. The CUPS print servers maintain
three logfiles that can provide a variety of information about attempts to access or use them:
access_log, error_log, and page_ log. Of these, the access_log and error_log files are the most useful
for diagnostic purposes. Examining the end of these files after attempting to print but not receiving
any output usually shows meaningful error messages. For example, if you forgot to update the MIME
files and are trying to print to a CUPS printer from Windows, you may see messages like the
following:

 E [05/Sep/2005:17:55:49 -0400] get_job_attrs: job #0 doesn't exist!
 E [05/Sep/2005:17:55:49 -0400] print_job: Unsupported format 'application/
 octet-stream'!
 I [05/Sep/2005:17:55:49 -0400] Hint: Do you have the raw file printing rules
 enabled?

These messages should help you identify the problem and suggest a fix.

3.8.4. See Also

http://www.cups.org/documentation.php

"Create a CUPS Print Server" [Hack #24]

"Share Files Across Platforms Using Samba" [Hack #60]

http://www.cups.org/documentation.php
http://lib.ommolketab.ir

Hack 27. Centralize Macintosh Printing with CUPS

Mac OS X makes CUPS printers readily available from Macintosh systems.

Now that the Mac OS is actually a Unix system with graphical gravy, it's much easier to get to the
underpinnings of the operating system when necessary. Also, because much of the software that
actually powers Mac OS X is now familiar open source software, it's easier than ever to reapply your
existing Linux/Unix knowledge to working with Mac OS X. Integrating Mac OS X printing with a CUPS
server running on a remote Linux system is one of the best examples of this, because Mac OS X
actually uses CUPS as the core of its printing subsystem. This hack explains how to use the familiar
CUPS web interface to quickly and easily set up your Mac OS X systems to print to centralized CUPS
print servers running on Linux systems. If you're still running a version of the Mac OS earlier than
Mac OS X, this hack isn't for you unless you upgrade.

3.9.1. Configuring Access to a Remote CUPS Server

As well as supporting CUPS, Mac OS X also includes its own printer configuration tool, the Printer
Setup Utility. The versions of the Printer Setup Utility provided with Mac OS X 10.4 and above can
locate remote CUPS printers automatically, because CUPS supports the standard Internet Printing
Protocol (IPP). However, just in case you can't find your printer using IPP, this hack explains the
details of configuring a printer using our old friend, the web-based CUPS administrative interface. The
procedure discussed in this section works fine with Versions 10.2 and later of Mac OS X.

Thanks to the fact that Mac OS X uses CUPS, the basic procedure of defining a remote printer on Mac
OS X is almost identical to that of configuring remote printing on Linux systems. It is therefore also
almost identical to that for creating a CUPS print server [Hack #24]. As in "Configure Linux
Connections to Remote CUPS Printers" [Hack #25], I'll focus on the two screens that are different
and that really matter: the Device screen, where you specify how to connect to the printer; and a
new Device URL screen, where you specify the Universal Resource Locator (URL) that uniquely
identifies the remote printer.

After authenticating (using the login and password of any user with administrative privileges) and
beginning the process of adding a printer, you'll need to specify the protocol with which your OS X
system will communicate with the remote printer. This is done on the Device screen, shown in Figure
3-14. Instead of selecting a physical connection, you'll usually select the "Internet Printing Protocol
(http)" entry to specify that you want to use IPP with the HTTP protocol as its transport mechanism.

Figure 3-14. Specifying the protocol for remote printing

http://lib.ommolketab.ir

Once you've selected IPP over HTTP, click Continue to proceed to another Device screen, shown in
Figure 3-15. This screen enables you to specify the URL of the remote printer so that the local
system knows where to find the correct printer.

Figure 3-15. Specifying the URL of the remote printer

http://lib.ommolketab.ir

As shown in Figure 3-15, the URL of the remote CUPS printer is in the form http://address-or-
name/printers/printer-name, where address-or-name is the IP address or name of the host to which
the printer is physically attached, and printer-name is the name of that printer on the remote host.

The URL shown in this figure reflects a different print server than was used previously; it's named
silentwriter and is running on the host 192.168.6.64.

If Windows printers are available in your environment or you are running
Samba on one of your systems and you prefer to print using Windows SMB
protocols, you can select "Windows Printer via SAMBA" as the printing protocol
that you want to use and enter a URL of the form smb://username:
passwd@hostname/printers/printer-name. If you're using a version of Mac OS
X earlier than 10.4, you'll also have to verify that
/usr/libexec/cups/backend/smb is a symbolic link to /usr/bin/smbspool and, if
not, create that link.

Once you've specified the URL for the remote printer, proceed through the rest of the printer
configuration screens [Hack #24]. You'll probably also want to print a test page to ensure that you
can connect to the remote printer and verify that you selected the correct print driver to format
output for the remote printer. You can do that after making sure you've tweaked your server's
configuration to handle HTTP print jobs correctly, as described in the next section.

3.9.2. Server-Side Configuration for HTTP Printing

Once you've finished configuring the printer on the Mac OS X system, you'll need to make a few
modifications to the CUPS printer configuration files on your print server. Because the files that you
print are being preformatted on your OS X system and you are using the HTTP protocol, you will need
to configure the CUPS server on the Linux system to which the printer is connected. You will need to
modify two configuration files to tell the CUPS server how to handle raw data files received via HTTP,
configuring it to simply send those files directly to the specified print queue with no local formatting.

First, edit the file /etc/cups/mime.types, which defines valid Multipurpose Internet Mail Extensions
(MIME) formats that are supported by the CUPS server. MIME defines a variety of formats that one
might encounter on the Internet (such as in a web browser or in HTTP communications) and defines
how MIME-aware applications should handle them. To enable printing via HTTP, remove the hash
mark (#) at the beginning of the following line:

 #application/octet-stream

Without the leading comment character (the hash mark), this entry tells the CUPS print server that
raw data streams are an acceptable input format. Next, edit the file /etc/cups/mime.convs, which
defines the types of conversions that the CUPS server should perform on various MIME input formats.
To enable printing via HTTP, remove the hash mark at the beginning of the following line:

 #application/octet-stream application/vnd.cups-raw 0

http://address-or-
http://lib.ommolketab.ir

As with the change to the /etc/cups/mime.types file, removing the comment character from the
beginning of this line tells the CUPS server to handle input files in application/octet-stream format by
passing them to a CUPS application that simply inserts them into a print queue without doing any
local formatting.

You will need to restart the CUPS print server to make sure that it picks up these changes. The
startup script for your CUPS server is called cups and is typically located in /etc/init.d. To restart the
CUPS print server, execute the following command (or one appropriate for your distribution):

 # /etc/init.d/cups restart

3.9.3. Testing Printing from Mac OS X to Your CUPS Server

At this point, you're ready to try a test print job. In your web browser, select the Printers button in
the CUPS page header. Click the Print Test Page button and verify that a test page prints correctly on
the remote printer. If so, congratulations! If not, check the Jobs status page in your web browser by
clicking Jobs in the CUPS page header. If you've made a syntax error in your URL, you'll see a
message saying "Unable to connect to IPP host: Invalid Argument." Correct the URL, abort the
current test page, and retry printing a test page. If you don't see any error messages but the print
job claims to have completed, see the next section for some debugging tips.

Once you've successfully printed a page from your OS X system, you'll notice that the printer that
you defined using the CUPS web interface is also now visible in the Printer Setup Utility. Magic!

3.9.4. Troubleshooting Mac OS X Printing to CUPS Servers

The most common cause of being unable to print to a CUPS print server is that the printer is not
configured to accept print jobs from your host's IP address [Hack #24].

If you're sure that this is not the problem, check the CUPS logfiles. CUPS print servers maintain three
logfiles that can provide a variety of information about attempts to access or use them: access_log,
error_log, and page_log.Of these, the access_log and error_log files are the most useful for
diagnostic purposes. Examining the end of these files after attempting to print but not receiving any
output usually shows meaningful error messages. For example, if you forgot to update the MIME files
and are trying to print to a CUPS printer from Mac OS X, you may see messages like the following:

 E [05/Sep/2005:17:55:49 -0400] get_job_attrs: job #0 doesn't exist!
 E [05/Sep/2005:17:55:49 -0400] print_job: Unsupported format 'application/
 octet-stream'!
 I [05/Sep/2005:17:55:49 -0400] Hint: Do you have the raw file printing rules
 enabled?

http://lib.ommolketab.ir

Talk about useful error messages! Double-check the changes you made to the CUPS MIME
configuration files, restart the CUPS daemon, and try printing again.

3.9.5. See Also

http://www.cups.org/documentation.php

"Create a CUPS Print Server" [Hack #24]

"Configure Linux Connections to Remote CUPS Printers" [Hack #25]

http://www.cups.org/documentation.php
http://lib.ommolketab.ir

Hack 28. Define a Secure CUPS Printer

Integrated support for various authentication mechanisms makes it easy to limit access to
specific printers with CUPS.

The other CUPS hacks in this chapter have focused on its most excellent web-based administrative
interface and how the interface simplifies and standardizes printer setup, regardless of the type of
CUPS client you're configuring. However, like most Unix/Linux programs, you can also administer the
CUPS server by directly manipulating its configuration file, /etc/cups/cupsd.conf. While this may seem
somewhat intimidating at first blush, the format of this file is actually quite simple and is conceptually
evocative of an Apache configuration file (which we've all probably had to modify at one time or
another). A few simple changes to this file can quickly add a new layer of security to your CUPS
printing environment.

Many sysadmins are paranoid today, and for good reason. Securing your existing systems by
eliminating unnecessary services is just plain smart [Hack #63]. Similarly, there may be cases
where you want to restrict access to certain printers. There are many security and cost reasons for
limiting access to specific printers to certain users or certain IP addresses, whether it's because of
who "owns" the printer (such as your CEO or department head) or because the printer uses platinum
toner to print on gold sheets (and is therefore the wrong place for freshmen to print their CS101
homework). Here's how to do just that with your favorite text editor (which should be emacs) and a
few minutes of your spare time.

You will have to restart the CUPS server after making any changes to the CUPS
configuration file, as discussed in this (or any other) hack. The startup script
for your CUPS server is called cups and is typically located in /etc/init.d. To
restart the CUPS print server after saving your changes to its configuration file,
execute the following command (or one appropriate for your distribution):

 # /etc/init.d/cups restart

3.10.1. Enabling Remote Printing on a CUPS Server

Depending 'on how CUPS is preconfigured on your Linux distribution, you may need to add your
remote hosts (or your entire network) to the list of acceptable locations in the CUPS daemon's
configuration file, /etc/cups/cupsd.conf, so they can print on the printer in the first place. The list of
valid locations for incoming print jobs is stored inside a <Location />…</Location> stanza in the CUPS

http://lib.ommolketab.ir

configuration file. The default CUPS configuration file contains a single Location stanza, which applies
to all printers that the CUPS server knows about. On most systems, this looks like the following:

 <Location />
 Order Deny,Allow
 Deny From All
 Allow From 127.0.0.1
 </Location>

This configuration file entry supports printing to the CUPS server only from the host on which the
print server is running. Many CUPS printer configuration files use the @LOCAL macro to tell CUPS that
any host that has a non-point-to-point connection to the print server can print to the printer. This
generally includes hosts on the local network and typically looks like the following:

 <Location />
 Order Deny,Allow
 Deny From All
 Allow From 127.0.0.1
 Allow from @LOCAL
 </Location>

If you are having problems printing to a specific printer from other hosts on your network, check the
/etc/cups/cupsd.conf file to ensure that the Location stanza includes an @LOCAL entry.

If you want to explicitly configure the CUPS server so that only hosts on a specific local network can
print to the printer, remove the @LOCAL entry and add a line for the local subnet, so that the stanza
now looks something like the following:

 <Location />
 Order Deny,Allow
 Deny From All
 Allow From 127.0.0.1
 Allow From 192.168.6.*
 </Location>

This stanza now enables printing from the local host and from all printers on the specified subnet (in
this case, 192.168.6), as well as the host to which the printer is physically connected.

3.10.2. Restricting Printer Access to Specific IP Addresses

The most straightforward way to create a secure printer is to put the printer in a secure location and

http://lib.ommolketab.ir

physically restrict access to it. If you don't have a secure location available, you can also restrict
printing to a particular printer so that only hosts with specific IP addresses can print to it. To do this,
you simply create a new Location stanza in /etc/cups/cupsd.conf for that printer and use the
Allow/Deny approach introduced in the previous section to identify any IP addresses that you want to
be able to print to the printer. For example, a Location stanza that restricts access to the printer
silentwriter such that only the host to which the printer is actually attached and the host with the IP
address 192.168.6.101 can print to it would be the following:

 <Location /printers/silentwriter>
 Order Deny,Allow
 Deny From All
 Allow From 127.0.0.1
 Allow From 192.168.6.101
 </Location>

3.10.3. Restricting Printer Access to Specific Users

Restricting access to a specific printer based on the IP address of the host that you want to allow to
print to it is useful, but those pesky users often tend to move around from host to host. An
alternative to restricting access by IP address is to require authentication in order to print to a
specified printer. You can do this by using users' standard Linux passwords, but I find it most useful
to require a separate password for printer access. Using standard Linux passwords causes the print
server to invoke the PAM modules for CUPS (defined in /etc/pam.d/cups), which often differ from
Linux distribution to Linux distribution. (PAMs were discussed in "Customize Authentication with
PAMs" [Hack #4]) Also, since most people using Linux systems have Linux passwords, that
approach doesn't really limit access to any significant extent. Using a separate password for printer
access is quite standard across all CUPS-oriented Linux distributions.

You can define a CUPS access password using the lppasswd command. To add a new user to the
CUPS password file (stored in /etc/cups/passwd.md5 by default), execute the following command as
root or via sudo:

 # lppasswda username

You'll be prompted twice for the specified user's password. Once a user has a CUPS password, you
can add this level of authentication to a specific printer by creating a new Location stanza for that
printer (or updating an existing one), as in the following example:

 <Location /printers/silentwriter>
 Order Deny,Allow
 Deny From All
 Allow From 127.0.0.1
 Allow From 192.168.6.*

http://lib.ommolketab.ir

 AuthType Digest
 </Location>

This lets anyone from the 192.168.6 subnet who has a valid CUPS password entry print to the
silentwriter printer. Users will be prompted for this password whenever they try to send print jobs to
the specified printer, as in the following example:

 $ lpr /etc/printcap
 Password for wvh on localhost?

Some applications, such as Microsoft Windows applications running under
WINE, open connections to your default printer when they start up. If you start
them in the background, these programs will appear to hang because they are
prompting you for a printer password in the background, but you're not seeing
the prompt. If you use CUPS passwords and a specific application seems to
hang, try starting it in the foreground (i.e., without a trailing ampersand) to
see if it's actually prompting you for additional information.

3.10.4. Summary

Beyond the simple authentication and IP address entries discussed in this hack, CUPS provides many
other mechanisms for authentication, such as printer classes and alternatives to digest authentication
that are outside the scope of this hack and really deserve a book of their own. As a matter of fact,
there is one: Michael Sweet's book on CUPS is complete and easy to read (and as the original author
of CUPS, he should know all about it). Excellent, complete, and readable documentation is also
available from the CUPS web site (http://www.cups.org/documentation.php).

3.10.5. See Also

http://www.cups.org/documentation.php

CUPS: Common UNIX Printing System, by Michael Sweet (SAMS)

"Create a CUPS Print Server" [Hack #24]

http://www.cups.org/documentation.php
http://www.cups.org/documentation.php
http://lib.ommolketab.ir

Chapter 4. Cool Sysadmin Tools and Tips

Section 4.1. Hacks 2945: Introduction

Hack 29. Execute Commands Simultaneously on Multiple Servers

Hack 30. Collaborate Safely with a Secured Wiki

Hack 31. Edit Your GRUB Configuration with grubby

Hack 32. Give Your Tab Key a Workout

Hack 33. Keep Processes Running After a Shell Exits

Hack 34. Disconnect Your Console Without Ending Your Session

Hack 35. Use script to Save Yourself Time and Train Others

Hack 36. Install Linux Simply by Booting

Hack 37. Turn Your Laptop into a Makeshift Console

Hack 38. Usable Documentation for the Inherently Lazy

Hack 39. Exploit the Power of Vim

Hack 40. Move Your PHP Web Scripting Skills to the Command Line

Hack 41. Enable Quick telnet/SSH Connections from the Desktop

Hack 42. Speed Up Compiles

Hack 43. Avoid Common Junior Mistakes

Hack 44. Get Linux Past the Gatekeeper

Hack 45. Prioritize Your Work

http://lib.ommolketab.ir

4.1. Hacks 2945: Introduction

Behind the calm, collected exterior of the seasoned system administrator is a mad scientist who lives
and breathes only to be the first to discover the next esoteric hack that will provide information, or a
way to act on it, that was previously unknown to all but a very small contingent of tireless caffeine-
swigging hackers.

The reason for this unquenchable thirst goes beyond bragging rights to something more practical
than you might imagine: efficiency. If there's a way to do something better, faster, or in a way that
doesn't require any human intervention, the system administrator will be on constant lookout for a
way to implement that solution.

In this chapter, we're going to take a look at some tools and techniques that we hope are new to
most readers, and that will greatly enhance your productivity. Whether it's a desktop shortcut for
connecting to your hosts, a way to run commands on multiple hosts at the same time, or a way to
type fewer commands at the command line or fewer characters in Vim, we'll show you the tools and
techniques that will enable you to cross the border from system serf to Bitmaster General in no time.

Technical prowess is great, but "soft skills" such as communicating with people and multitasking
count for more and more in today's competitive job market. For that reason, we'll also have a look at
hacking the softer side of system administration, covering areas ranging from time management to
talking to management!

http://lib.ommolketab.ir

Hack 29. Execute Commands Simultaneously on Multiple
Servers

Run the same command at the same time on multiple systems, simplifying administrative
tasks and reducing synchronization problems .

If you have multiple servers with similar or identical configurations (such as nodes in a cluster), it's
often difficult to make sure the contents and configuration of those servers are identical. It's even
more difficult when you need to make configuration modifications from the command line, knowing
you'll have to execute the exact same command on a large number of systems (better get coffee
first). You could try writing a script to perform the task automatically, but sometimes scripting is
overkill for the work to be done. Fortunately, there's another way to execute commands on multiple
hosts simultaneously.

A great solution for this problem is an excellent tool called multixterm , which enables you to
simultaneously open xterms to any number of systems, type your commands in a single central
window and have the commands executed in each of the xterm windows you've started. Sound
appealing? Type once, execute manyit sounds like a new pipelining instruction set.

multixterm is available from http://expect.nist.gov/example/multixterm.man.html , and it requires
expect and tk . The most common way to run multixterm is with a command like the following:

 $ multixterm -xc "ssh %n" host1 host2

This command will open ssh connections to host1 and host2 (Figure 4-1). Anything typed in the area
labeled "stdin window" (which is usually gray or green, depending on your color scheme) will be sent
to both windows, as shown in the figure.

As you can see from the sample command, the xc option stands for execute command, and it must
be followed by the command that you want to execute on each host, enclosed in double quotation
marks. If the specified command includes a wildcard such as %n , each hostname that follows the
command will be substituted into the command in turn when it is executed. Thus, in our example, the
commands ssh host1 and ssh host2 were both executed by multixterm , each within its own xterm
window.

4.2.1. See Also

man multixterm

http://lib.ommolketab.ir

"Enable Quick telnet/SSH Connections from the Desktop" [Hack #41]

"Disconnect Your Console Without Ending Your Session" [Hack #34]

Lance Tost

Figure 4-1. Multiple xterms and a multixterm control window

http://lib.ommolketab.ir

Hack 30. Collaborate Safely with a Secured Wiki

Get out of the business of coding, supporting, debugging, and maintaining project
collaboration sites by using a tool that allows users to create their own sites.

If you're a busy webmaster trying to perform systems work, the last thing you need is yet another
user coming to you with a request to build and host another web site or to install yet another content
management solution. Instead, promote a Wiki solution that can be up and running in seconds, ready
for the user to create and edit content with no further help needed from you.

Wikis evolved around the idea that content can be editable by anyone who happens upon the site and
sees a mistake or has something to add. Webmasters and system administrators alike were wary of
this concept, which sounded like an idea just waiting to be completely abused by spammers,
digivandals, and the like. If you last looked at Wiki solutions when the buzzword was fresh off the
front page of Slashdot and wrote them off as unmanageable or as security issues waiting to happen
(like I did), I urge you to have another look.

MediaWiki is the powerhouse Wiki application that runs the http://wikipedia.com web site. Since
Wikipedia runs the most visible Wiki site in the world and prides itself on being a resource for the
people by the people, what better endorsement do you need for a Wiki application?

Wikis need not be unsecured free-for-alls. Nowadays, you can configure MediaWiki to authenticate to
your internal LDAP server, completely disallow anonymous edits, and greatly restrict the damage that
can be done to your Wiki site. In addition, MediaWiki makes it very easy both to track changes to the
pages of their sites, and to revert to older copies of the pages.

So why use a Wiki if you're just going to lock it down? Wikis make wonderful content management
solutions, for one fundamental reason: they make absolutely no assumptions about the purpose of
your site. Many of the LAMP-based, open source content management solutions are built around the
concept of a news distribution site firstextensions to do everything else, from blogging to forums and
weather to file repositories, are added later, often by members of the respective user communities. If
you're not planning to run a news site, you wind up having to find some hack to make your content
management site act the way you want. If you use extensions to make your site work, you can't just
upgrade right away and assume everything will still function correctly.

I've used dozens of open source content management solutions and, depending on your needs, you'll
probably find many of them to be adequate. But if you support users in academia, R&D, or internal
departments, each project group may have different needs. A simple framework that puts the power
to structure and format the content in the hands of the content creators and users is a powerful tool,
and the ability to restrict access and edits in a number of ways will give both you and your users
peace of mind. If they want a "wide open" site, and you allow for that, that's no problem. But if you
have other security requirements, chances are that with MediaWiki you can implement them easily.

MediaWiki allows you to authenticate to a backend LDAP server or database connection, and there

http://wikipedia.com
http://lib.ommolketab.ir

are patches available to rely on other authentication methods available in your environment. In
addition, you can opt to restrict access such that only registered and logged-in users can edit pages,
create a more open site where anyone can edit pages, or disable registration altogether to create a
site for internal staff documentation.

4.3.1. Installing MediaWiki

Another nice benefit of MediaWiki is that it's a breeze to install. It does require PHP, and its creators
strongly suggest using MySQL as the backend database. Depending on the features you want to use
(for example, image thumbnailing or LDAP authentication), you may need PHP to be compiled against
specific libraries, but the requirements to run a simple site are pretty slim.

If you're hosting your own site (i.e., you have root privileges), installation takes, quite literally,
seconds. All you do is untar the distribution into the document root of your web server, and go to the
site! MediaWiki knows if it's your first visit, and prompts you to perform an installation. Once you
supply the MySQL administrator password, MediaWiki will create a new user, a new database, and all
the necessary tables, which is 90% of the installation process.

If you're running MediaWiki on a hosted remote server, however, you're not likely to have a root
password or an administrative password for MySQL. In this case, you'll want to create the MediaWiki
database first, and then point the installation at this database to create its tables. Unfortunately, I
can't tell you how to do this, as every hosting service will provide different tools to assist you.

Once the installation has been performed successfully, you'll be presented with a link to visit your
new site.

4.3.2. Configuring MediaWiki

Installing it was easy, but how do you lock this thing down? There's about a metric ton of
documentation available on how to do this, but I'll summarize some of the features that are of
primary importance to administrators.

First and foremost is site access. Many sites haven't deployed Wikis because they're under the illusion
that they can't be secured. Not so!

With Version 1.4 of MediaWiki, it's possible to use the configuration file and/or a few SQL statements
to change the functions available to different types of users. Version 1.5, on the other hand, has
quite a robust collection of potential roles that users can play, implemented via user groups. We'll
work with Version 1.5 here, because it'll likely be in its final form by the time this goes to press.

I'm working with 1.5rc4, which can be managed largely in a browser. There are separate pages for
adding, deleting, and blocking users. There is also a page for changing the groups to which users
belong, which will affect the rights they have when they visit your site. In addition, there are plug-ins
available to help you correlate users with all the known IP addresses used by them and perform other
functions not available in the main distribution.

However, there isn't yet an interface for changing the rights for a group, or adding/deleting groups.
For those tasks, you'll need to have shell access to the web server, or you'll need to create a local

http://lib.ommolketab.ir

copy of the LocalSettings.php file, edit it, and copy it back into place to make the changes take effect.
The file is simple to edit, and the documentation for making the changes is more than adequate, but
I'll go over examples of one or two quick changes you might want to make.

If you just want to change the group a user is associated with, you can log in as an administrative
user and go to the Special Pages link. At the bottom of the screen you'll see Restricted special pages
that are listed only when the admin is logged in. This section contains the link to the user rights
management page, which is currently just an interface to change the group memberships of specific
users.

If you want to create a group, you'll need to edit LocalSettings.php and set up the rights available to
the group. To see how the default groups are set up, check the documentation or open up the
includes/DefaultSettings.php file in your install directory. Here are the lines you would add to
LocalSettings.php to add a group called newgroup with permission to read and edit but not to delete:

 $wgGroupPermissions['newgroup']['edit'] = true;
 $wgGroupPermissions['newgroup']['read'] = true;
 $wgGroupPermissions['newgroup']['delete']= false;

As you can see, there's no explicit "create group" function. Assigning rights to a nonexistent group,
as I've done here, will cause the group to be created, and it will be listed as an available group the
next time you go to the user rights page.

Keep in mind that there are global settings as well, for the all group (represented in the configuration
as *). Here are a few default settings for that group from the DefaultSettings.php file:

 $wgGroupPermissions['*']['createaccount'] = true;
 $wgGroupPermissions['*']['read'] = true;
 $wgGroupPermissions['*']['edit'] = true;

If you want to override these settings, just place similar lines in the LocalSettings.php file, setting the
appropriate permissions to true or false as desired. The LocalSettings.php file overrides any
corresponding settings that may be found in the DefaultSettings.php file.

This model gives you the flexibility to, for example, disable anonymous users from creating accounts
at all or allow them only to read, and to require users to log in to edit anything. There are also
additional rights you can give users to make them quasi-administrators, allowing them to create
accounts for other users, delete files, and roll back bad edits.

4.3.3. Getting Started: Data Structure

Once user access is out of the way, probably the most important decisions you'll make in running
your Wiki have to do with how the content on your site will be structured and how your content best
maps to the organizational elements available to you in MediaWiki. There are many useful tools you

http://lib.ommolketab.ir

can use, and all of them are fairly genericagain making no assumptions about the purpose of the site.

There are many ways to use the various organizational elements. If you have just one project group,
they can have their own Wiki devoted to their project. However, you could potentially have several
projects share a single Wiki by providing separate namespaces on the site. A namespace is the
highest-level data element provided in MediaWiki. Within the namespaces are categories, that the
project maintainers themselves can use to break up their sites into various pieces that make sense
for their needs.

Lest you think the pages of the site need to be completely static documents, have a look at the
Templates feature of MediaWiki, which allows you to embed documents within various pages. This
gives you the flexibility to, for example, make your main page nothing but a collection of various
other documents placed into the main page. Maintainers of the various templated pages can then
update their own content, and changes will be reflected on the main page without affecting templates
created by other users.

http://lib.ommolketab.ir

Hack 31. Edit Your GRUB Configuration with grubby

Save tons of typing (and typos), by using a ready-made tool for editing grub. conf.

A machine that doesn't boot doesn't work. And there are many environments in which the grub.conf
file supplied with the distribution just doesn't cut it. Whether you're using kickstart to install a server
farm, or just hacking around with new kernel builds on your web server, you can leave your scripting
skills on the back burner by making use of grubby, a simple command-line tool that will edit your
kernel definitions for you.

Here's an example of a very simple kernel definition from a grub.conf file on a Red Hat Enterprise
Linux server:

 title Red Hat Enterprise Linux AS (2.4.21-32.0.1.EL)
 root (hd0,0)
 kernel /vmlinuz-2.4.21-32.0.1.EL ro root=LABEL=/
 initrd /nitrd-2.4.21-32.0.1.EL.img

This is a fairly standard stanza referred to in the GRUB documentation as an "OS definition" (owing to
GRUB's ability to boot seemingly any operating system in existence). Occasionally, it becomes
necessary to alter the grub.conf file to pass arguments to the kernel at boot time. For example, if you
kickstart a server farm and later add serial console connections to the servers, the kernels will not
automatically detect the console, and GRUB will not automagically add the arguments necessary to
redirect output to the serial terminal device. How to do this is covered in "Use a Serial Console for
Centralized Access to Your Systems" [Hack #76].

This would normally mean hand-editing the grub.conf file to add the argumentsunless you happen to
know about grubby. Here's the command, run as root, that you would use to add the requisite
arguments to all kernels to allow for console redirection:

 # grubby-update-kernel=ALL --args=console=ttyS0,9600

The ALL keyword works with several flags and, in this case, it will add the arguments to every kernel
line in the configuration file. There's also a DEFAULT keyword that will alter only the kernel line of the
default kernel, as per the grub.conf default parameter.

grubby can also alter options to the grub bootloader itself. Using the following commands, you can

http://lib.ommolketab.ir

add a new kernel to the grub.conf file and make it the kernel that grub will boot by default:

 # grubby -add-kernel=/boot/vmlinuz-2.4.21-new -make-default
 # grubby -set-default=/boot/vmlinuz-2.4.21-32.0.1.ELsmp

I used the -make-default flag to set the vmlinuz-2.4.21-new kernel to be the default. If you tell
grubby to change the default kernel to one that the config file doesn't know about, it'll try to do it,
fail, remove the "default" parameter from your config file entirely, and not complain about it one bit.
Since I failed to put my new kernel in place, in the second command, I've reset the default kernel
back to one that was defined earlier by using the set-default parameter.

So how has this saved you any typing? Changing a default kernel is as simple as changing a single
digit in the grub.conf file, right? Well, yes, assuming that you're doing this on a single machine.
However, if you need to run a scripted update to your grub.conf file on all the machines you manage
or you're altering grub.conf during an automated installation to make a customized kernel the
default, I'd much rather use grubby than sed, awk, vi, ed, and/or Perl to do the work. In these cases,
it does save you some typing, not to mention saving you from reinventing the wheel!

http://lib.ommolketab.ir

Hack 32. Give Your Tab Key a Workout

Use bash programmable completion to autocomplete much more than just filenames.

Tab completion in the bash shell isn't new, and I don't know how I'd live without it. Being able to
type, for example, ls fo<tab><tab> and get a list of five or six files that start with "fo" can be very
handy. Got a long script name you always mistype? Just type the first few letters and hit Tab twice,
and bash will try to complete the name for you. This is a wonderful time-saver that I, for one, sorely
miss when I log into other Unix machines where the default shell is csh and tab completion is not set
up by default (causing control characters to appear on the command line instead of nice, clean,
filenames).

In bash v2.04, "programmable" completion was introduced into the shell. This lets you add strange
and wonderful bits of goodness to your bash initialization routines (usually found in ~/.bashrc and
~/.bash_profile).

Your bash initialization routines are dependent on how your shell environment
is set upbash can use a global /etc/bashrc, a ~/.bash_profile, a ~/.bashrc, a
~/.profile, and I believe a ~/.login file to get its initialization info.

Here's quick example:

 complete -f -X '!*.@(sxw|stw|sxg|sgl|doc|dot|rtf|txt|htm|html|odt|\
 ott|odm)' oowriter

This looks pretty cryptic, but really it's quite simple. complete is a bash built-in keyword that causes
the shell to try to complete the text before the cursor on the command line. The -f flag means we'll
be looking to complete a filename. The -X flag specifies that what follows is a pattern to use in
performing the match. Since the shell is actually parsing the entire line, it's important to always
quote your pattern to make sure no shell expansion takes place, causing odd things to happen when
you hit your Tab key.

The pattern itself can be broken down and looked at this way:

 !*.@(extension)

http://lib.ommolketab.ir

The leading exclamation point, in this context, says that when performing filename completion, we'll
be removing things that do not match this pattern. The string *.@(extension) means "anything,

followed by a dot, followed by exactly one occurrence of any of the listed extensions" (here, sxw,
stw, sxg, and so on). The @ character is a bash extended globbing character that means, "match
exactly one occurrence of the pattern." The | characters in our list of extensions are logical "or"
separators. If any match, they'll be included in the file listing generated by hitting the Tab key twice.

The last word on the line (in this case, oowriter) specifies the command to which all the stuff on that
line applies. In other words, this complete line won't be touched unless the command being run is
oowriter.

You can write thousands of these lines if you want, but it would likely take you forever to think of all
the things you'd want to complete, get all the regex patterns right, and then debug the whole thing
to make sure only the right filenames are returned. Alternatively, you could just download a
preconfigured file put together by a fine fellow named Ian MacDonald, creator of the "bash
programmable completion" package, available at
http://www.caliban.org/bash/index.shtml#completion. The package consists mostly of simple
documentation and a file containing a very large collection of bash completion "cheats." A version I
recently downloaded contained over 200 shortcuts!

Many of the shortcuts are very simple file completion patterns that are bound to specific applications,
which is more useful than you could ever know. Being able to type tar xvzff<tab><tab> and have
only those files with a tar.gz extension returned is wonderful, but shortcuts that complete hostnames
after the ssh command (from your known_hosts file) or targets in a Makefile after you type make are
truly time-savers for admins who are constantly doing remote administration and building software
from source.

The great thing is that the only real dependency is the bash shell itself: the rest of what happens is
completely up to you! If you have root access on the local machine, you can create a file under
/etc/profile.d called bash_complete. sh, and paste in a bit of code to set up bash completion in a sane
way. The code comes straight from the bash distribution's README file:

 bash=${BASH_VERSION%.*}; bmajor=${bash%.*}; bminor=${bash#*.}
 if ["$PS1"] && [$bmajor -eq 2] && [$bminor '>' 04] \
 && [-f /etc/bash_completion]; then # interactive shell
 # Source completion code
 . /etc/bash_completion
 fi
 unset bash bmajor bminor

This code does a simple check to make sure the version of bash you're running supports
programmable completion, then checks to see if you're launching an interactive shell before sourcing
the bash programmable completion file.

Putting this code under /etc/profile.d or in your global /etc/bashrc file allows all users on the machine
to reap the benefits of bash programmable completion.

If, on the other hand, you want to use this just for yourself or upload it to your shell account at a
web host, you can paste the same code from above into your own ~/.bashrc file.

http://www.caliban.org/bash/index.shtml#completion
http://lib.ommolketab.ir

4.5.1. See Also

http://www.caliban.org/bash/index.shtml#completion

http://www.caliban.org/bash/index.shtml#completion
http://lib.ommolketab.ir

Hack 33. Keep Processes Running After a Shell Exits

Process-control commands such as nohup and disown make it easy for you to start long-
running processes and keep them running even after you log out.

Suppose you're running a troubleshooting or monitoring tool on your server or compiling a very large
program, and the process is going to need to run for hours, days, or longer. What if you need that
process to keep running even after you've logged out or if your shell session ends before you meant
it to? You can make this happen with the nohup and disown commands.

When you run a shell session, all the processes you run at the command line are child processes of
that shell. If you log out or your session crashes or otherwise ends unexpectedly, SIGHUP (signal to
hang up) kill signals will be sent to its child processes to end them too.

You can get around this by telling the process(es) that you want kept alive to ignore SIGHUP signals.
There are two ways to do this: by using the nohup ("no hangup") command to run the command in an
environment where it will ignore certain termination signals or by using the bash shell's disown
command to make a specified background job independent of the current shell.

4.6.1. Using nohup to Execute Commands

The nohup command provides a quick and easy mechanism for keeping a process running regardless
of whether its parent process is still active. To take advantage of this capability, run your favorite
command, preceded by the nohup command:

 $ nohup command

This executes the specified command and keeps it running even if the parent session ends. If you
don't redirect output from this process, both its output and error messages (stdout and stderr) will be
sent to a file called nohup.out in the current directory. If this file can't be created there, it will be
created in the home directory of the user that ran the command.

You can monitor what's being written to nohup.out using the tail command:

 $ tail f ~/nohup.out

http://lib.ommolketab.ir

You can also explicitly direct the output of your command to a specified file. For example, the
following command line runs the specified command in the background, sends its output to a file
called my_test_output.txt in your home directory and continues running it even if the parent session
ends:

 $ nohup command > ~/my_test_output.txt &

If you don't want to save the output of the specified command, you can discard it (and not create the
nohup.out file) by redirecting output to /dev/null, the Linux bit-bucket:

 $ nohup command > /dev/null &

This runs the command or program in the background, ignores its output by sending it to /dev/null,
and continues running it even if the parent session ends.

If you've used nohup to keep a process running after its parent exits, there is
no way to reconnect to that process if you subsequently want to shoot it down.
However, nohup only protects the process from the SIGHUP signal. You can still
terminate it manually using the big kill hammer, kill9 PID.

4.6.2. Using disown with Background Jobs

If you're using the bash shell, you can tell an existing process to ignore SIGHUPs by using the shell's
disown built-in command:

 $ disown -h jobnumber

This tells a job already running in the background to keep running when its parent process shuts
down. You can find its job number using the shell's jobs command. If you use the disown built-in's -h
option, the running job won't be removed from the jobs table when you disown it, but it will keep
running if the current shell ends. You can still reconnect to this process using the standard bash %job-
number mechanism. If you use the disown built-in with no options, the running job will be removed

from the jobs table: it will still continue running after you log out, but you won't be able to reconnect
to it.

You can also use the disown command to keep all current background jobs running:

 $ disown -ar

http://lib.ommolketab.ir

This tells all running jobs to keep running even if the current shell closes.

4.6.3. See Also

man bash

man1 nohup

Jon Fox

http://lib.ommolketab.ir

Hack 34. Disconnect Your Console Without Ending Your
Session

Start a long-running job at work and connect to it from home or on the road.

Here's the setup: you're a Linux systems consultant with a busy schedule. It's 9 A.M. now, and
you're already an hour into a very large database installation at one site, but you have to be at
another site in about an hour. The build will never finish in time for you to thoroughly test it, create
the developer databases, and set up security restrictions before you leave. What do you do?

One solution, of course, is to talk to your client and tell him you'll be back later to finish up. Another
solution, however, may be to start the job in a screen session and log in later from wherever you
happen to be to finish up. Lest you think that this will involve building yet another piece of software
for your machines, take heart in knowing that screen is usually installed or readily available and
prepackaged for whatever distribution you're running. You can also get more information on screen,
including download information, at the GNU screen home page:
http://www.gnu.org/software/screen/.

Getting started with screen couldn't be simpler. Just open your favorite terminal emulator and run
the command, like this:

 $ screen

You will be greeted with a new shell, running inside a screen session. You can still talk to screen from
within the shell, much like you can talk to any console terminal application from within a shell. The
key combination you use to send input to screen instead of to the shell running inside the screen
session is Ctrl-A. Ctrl-A in screen is similar to the Escape key in viit gets the application's attention so
you can tell it what to do. For example, to access a quick command reference in screen, press Ctrl-A
followed by ?.

The output should be a list of the many commands you can feed to screen. If you don't get any
output, you can make sure you're actually in a screen session by invoking screen with the list flag.
You should see something similar to the following:

 $ screen list
 There is a screen on:
 28820.pts-2.willy (Attached)
 1 Socket in /tmp/screen-jonesy.

http://www.gnu.org/software/screen/
http://lib.ommolketab.ir

You can see from the output that there is a screen session running, to which we are currently
attached. The process ID for this session is 28820, and we've been assigned to pseudo-terminal
number 2. Now let's start a job that we can continue later from another location. A simple way to test
the functionality is to just open a file in an editor such as Vim. Once you have the file open, press
Ctrl-A followed by d, and you will be detached from the screen session and given back your plain old
shell.

At this point, you can leave for your next appointment. Maybe at the next stop you have to do an OS
installation, which leaves you with some free time while the packages are installing. Fire up your
laptop, SSH to the machine where your screen session is running, and type screen r to reattach to
the session already in progress. If you have more than one screen session running, type screen r
pid, where pid is the process ID of the screen session to which you want to attach (discernible from

the screenlist output we went over above).

Of course, trying to associate the process ID of a screen session with what's going on in that session
can be a bit daunting, especially if you have lots of sessions running. Instead of doing that, you can
name your session something meaningful when you launch it. So, when you launch screen for the
purpose of kicking off a long-running software build, just type screen S make, and the next time you
attach to it, you can type screen r make instead of trying to remember which process ID you need to
attach to.

4.7.1. screen Scripting

If you manage more than a few machines, you've probably come up with some way of automating
the process of connecting to some subset of your service machines at login time, or with a desktop
icon, or by some other means that is more automated than manually opening up terminal windows
and typing the commands to connect to each host. If you use SSH keys (Hack #66 in the original
Linux Server Hacks), you can create a simple shell script to automate this process for you. Here's an
example shell script:

 #!/bin/bash

 screen -d -m -S svr1 -t jonesy@svr1 ssh server1.linuxlaboratory.org

 screen -d -m -S svr2 -t jonesy@svr2 ssh server2.linuxlaboratory.org

 screen -d -m -S svr3 -t jonesy@svr3 ssh server3.linuxlaboratory.org

Save this script to your ~/bin directory, and make sure you make it executable!

What makes this script work well is calling screen with the d m flags, which tell screen to start the
session, but not to attach to it. Note as well that I've used S to specify a session name, so when I
want to attach to, say, svr1, I can just type screen r svr1. In addition, I've used the t flag to specify
a title for my shell, which will show in the titlebar of my terminal emulator to help me keep track of
where I am.

http://lib.ommolketab.ir

Running the above script will open up SSH sessions to, in this case, server1,
server2, and server3. It might be tempting to put this into your shell's
initialization script. Do not do this! In environments where home directories
(and therefore, shell init scripts) are shared across hosts, this can create an
endless stream of looping SSH sessions.

4.7.2. See Also

http://www.gnu.org/software/screen/

Linux Server Hacks, by Rob Flickenger (O'Reilly)

"Use script to Save Yourself Time and Train Others" [Hack #35]

http://www.gnu.org/software/screen
http://lib.ommolketab.ir

Hack 35. Use script to Save Yourself Time and Train
Others

The standard script command ensures repeatability and lends itself nicely to training
junior admins.

If you took computer science courses in college, you may have run into the script command before.
Professors often want you to hand in the entire contents of an interactive shell session with
assignments, so what students often do is simply run script as the first command of their session.
That copies all IO taking place in the terminal to a file (named, by default, typescript). When they're
done, they just type exit, and they can then turn in the typescript file to the professor.

script has some uses beyond the classroom as well, though. In some stricter production
environments, everything that gets done to non-testing, full-production systems has to be
"repeatable"in other words, scripted, thoroughly tested, and documented to the point that someone
in change management, with no training in Unix, can do it. One tool that can be used to create the
documentation is script. You'll still have to script your procedure into oblivion, using the corporate
coding standard, but then you can actually record a session where you invoke the tool and hand it
over to the change management personnel, so they can see exactly what they need to do, in order.

One extremely cool feature of the script command is that it can output timing information to a
separate file. The entire terminal session can then be replayed later using the scriptreplay
command, and it will be replayed using the same timing as the original session! This is great for
newer users who have a hard time remembering how to perform tasks that you don't have time to
script for them.

Here's a quick session using the two commands:

 $ script -t 2> timing
 Script started, file is typescript
 $ ls
 Desktop hax hog.sh My Computer ostg src
 $ pwd
 /home/jonesy
 $ file hax
 hax: empty
 $ exit
 exit
 Script done, file is typescript
 $ scriptreplay timing
 $ ls
 Desktop hax hog.sh My Computer ostg src

http://lib.ommolketab.ir

 $ pwd
 /home/jonesy
 $ file hax
 hax: empty
 $ exit
 exit

Using the -t flag tells the script command to output all timing information to standard error, so we
redirect that to a file (here, timing) so that we can use it later. We then call scriptreplay, feeding it
the timing file. We don't have to tell it where the actual session output is in this case, because it looks
for a file named typescript by default, which also happens to be the default session output file for the
script command.

Note that every keystroke is recorded, so if you mess up and hit backspace to delete a few
characters, that'll show up in the replay of the session! Also note that replaying a session is only
guaranteed to work properly on the terminal where the original session output file was created.

If you want a more "real-time" approach to showing someone how to get things done, there's
another way script can help. Create a named pipe and redirect all output to the pipe. Someone else,
logged in remotely, can then cat the pipe and see what's going on while it's happening.

Here's how it works. First, create a named pipe with mkfifo:

 $ mkfifo out

Then run script with the -f flag, which will flush all output to your pipe on every write. Without that
flag, things won't work. The last argument to script is the file to which the output should be sent:

 $ script -f out

You're now in a session that looks and acts completely normal, but someone else can log in from
elsewhere and run the following command to watch the action:

 $ cat out

Everything will be shown to that user as it happens. This is a little easier than remembering how to
set up multi-user screen sessions!

4.8.1. See Also

http://lib.ommolketab.ir

"Disconnect Your Console Without Ending Your Session" [Hack #34]

http://lib.ommolketab.ir

Hack 36. Install Linux Simply by Booting

Let server daemons that are already running in your environment and a simple PXE
configuration make installs as easy as powering on the target hosts.

Many distributions have some form of automated installation. SUSE has AutoYaST, Debian has Fully
Automated Install (FAI), Red Hat has kickstart, and the list goes on. These tools typically work by
parsing a configuration file or template, using keywords to tell the installation program how the
machine will be configured. Most also allow for customized scripts to be run to account for anything
the automated installation template hasn't accounted for.

The end result is a huge time savings. Though an initial time investment is required to set up and
debug a template and any other necessary tools, once this is done, you can use a single template file
to install all machines of the same class, or quickly edit a working template file to allow for the
automated installation of a "special case" target host. For example, a template for a web server can
quickly be edited to take out references to Apache and replace them with, say, Sendmail.

The only downside to automated installations is that, without any supporting infrastructure in place to
further automate things, you have to boot to a CD or some other media and issue a command or two
to get the installation process rolling. It would really be wonderful if installing Linux were as simple as
walking through the machine room (or lab, or anyplace else where there are a lot of target hosts that
need installing), powering on all the new machines, and walking away. Let's have a look at how this
(and more!) can be accomplished.

In my examples, I'll be using the Red Hat/Fedora kickstart mechanism for my automated
installations, but other tools can accomplish similar if not identical results.

4.9.1. Preparatory Steps

The list of components you'll need to configure may sound slightly intimidating, but it's much easier
than it looks, and once you get it to work once, automating the setup process and replicating the
ease of installation is a breeze. Before you do anything, though, make sure that the hosts you want
to install have network cards that support a Preboot eXecution Environment (PXE). This is a standard
booting mechanism supported by firmware burned into the network card in your server. Most server-
grade network cards, and even recent desktop network cards, support PXE. The way to check is
generally to enter the BIOS settings and see if there's an option to enable PXE, or to carefully watch
the boot messages to see if there are settings there for PXE booting. On a lot of systems, simply
hitting a function key during bootup will cause the machine to boot using PXE.

4.9.1.1. Configuring DHCP.

http://lib.ommolketab.ir

When you know for sure that your machines support PXE, you can move on to configuring your
DHCP/BOOTP server. This service will respond to the PXE broadcast coming from the target node by
delivering an IP address, along with the name of a boot file and the address of a host from which the
boot file can be retrieved. Here's a typical entry for a target host:

 host pxetest {
 hardware ethernet 0:b:db:95:84:d8;
 fixed-address 192.168.198.112;
 next-server 192.168.101.10;
 filename "/tftpboot/linux-install/pxelinux.0";
 option ntp-servers 192.168.198.10, 192.168.198.23;
 }

All the lines above are perfectly predictable in many environments. Only the lines in bold type are
specific to what we're trying to accomplish. Once this information is delivered to the client, it knows
what filename to ask for and which server to ask for that file.

At this point, you should be able to boot the client, tell it to PXE boot, and see it get an IP address
and report to you what that address is. In the event that you have a PXE implementation that tells
you nothing, you can check the DHCP server logs for confirmation. A successful DHCP request and
response will look something like this in the logs:

 Aug 9 06:05:55 livid dhcpd: [ID 702911 daemon.info] DHCPDISCOVER from 00:
 40:96:35:22:ff (jonesy-thinkpad) via 172.16.1.1
 Aug 9 06:05:55 livid dhcpd: [ID 702911 daemon.info] DHCPOFFER on 192.168.
 198.101 to 00:40:96:35:22:ff (jonesy-thinkpad) via 192.168.198.100

4.9.1.2. Configuring a TFTP server.

Once the machine is able to get an IP address, the next thing it will try to do is get its grubby RJ45
connectors on a boot file. This will be housed on a TFTP server. On many distributions, a TFTP server
is either included or readily available. Depending on your distribution, it may or may not run out of
inetd or xinetd. If it is run from xinetd, you should be able to enable the service by editing
/etc/xinetd.d/in.tftpd and changing the disable option's value to no. Once that's done, restarting
xinetd will enable the service. If your system runs a TFTP server via inetd, make sure that an entry
for the TFTP daemon is present and not commented out in your /etc/inted.conf file. If your system
runs a TFTP server as a permanent daemon, you'll just have to make sure that the TFTP daemon is
automatically started when you boot your system.

Next, we need to create a directory structure for our boot files, kernels, and configuration files.
Here's a simple, no-frills directory hierarchy that contains the bare essentials, which I'll go over in a
moment:

 /tftpboot/

http://lib.ommolketab.ir

 linux-install/
 pxelinux.0
 vmlinuz
 initrd.img
 pxelinux.cfg/
 default

First, run this command to quickly set up the directory hierarchy described above:

 $ mkdir -p /tftpboot/linux-install/pxelinux.cfg

The -p option to mkdir creates the necessary parent directories in a path, if they don't already exist.
With the directories in place, it's time to get the files! The first one is the one our client is going to
request: pxelinux.0. This file is a simple bootloader meant to enable the system to do nothing more
than grab a configuration file, from which it learns which kernel and initial ramdisk image to grab in
order to continue on its way. The file itself can be obtained from the syslinux package, which is
readily available for almost any distribution on the planet. Grab it (or grab the source distribution),
install or untar the package, and copy the pxelinux.0 file over to /tftpboot/linux-install/pxelinux.0.

Once that file is delivered to the client, the next thing the client does is look for a configuration file. It
should be noted here that the syslinux-supplied pxelinux.0 always looks for its config file under
pxelinux.cfg by default. Since our DHCP server only specifies a boot file, and you could have a
different configuration file for every host you PXE boot, it looks for the config file using the following
formula:

It looks for a file named using its own MAC address, in all-uppercase hex, prefixed by the hex
representation of its ARP type, with all fields separated by dashes. So, using our example target
host with the MAC address 00:40:96:35:22:ff, the file would be named 01-00-40-96-35-22-FF.
The 01 in the first field is the hex representation of the Ethernet ARP type (ARP type 1).

1.

Next, it looks for a file named using the all-uppercase hex representation of the client IP
address. The syslinux project provides a binary called gethostip for figuring out what this is,
which is much nicer than doing it in your head. Feeding my IP address to this command returns
COA8C665.

2.

If neither of these files exists, the client iterates through searching for files named by lopping
one character off the end of the hex representation of its IP address (COA8C66, COA8C6,
COA8C, COA8…you get the idea).

3.

If there's still nothing, the client finally looks for a file named default. If that's not there, it fails
to proceed.

4.

In our simple test setup, we've just put a file named default in place, but in larger setups, you can
set up a configuration file for each class of host you need to install. So, for example, if you have 40
web servers to install and 10 database servers to install, you don't need to create 50 configuration
filesjust create one called web-servers and one called db-servers, and make symlinks that are unique

http://lib.ommolketab.ir

to the target hosts, either by using gethostip or by appending the ARP type to the MAC address, as
described above.

Whichever way you go, the configuration file needs to tell the client what kernel to boot from, along
with any options to pass to the kernel as it boots. If this sounds familiar to you, it should, because it
looks a lot like a LILO or GRUB configuration. Here's our default config file:

 default linux

 label linux
 kernel vmlinuz
 append ksdevice=eth0 load_ramdisk=1 prompt_ramdisk=0 network
 ks=nfs:myserver:/kickstart/Profiles/pxetest

I've added a bunch of options to our kernel. The ksdevice and ks= options are specific to Red Hat's
kickstart installation mechanism; they tell the client which device to use for a network install (in the
event that there is more than one present) and how and where to get the kickstart template,
respectively. From reading the ks= option, we can see that the installation will be done using NFS
from the host myserver. The kickstart template is /kickstart/Profiles/pxetest.

The client gets nowhere, however, until it gets a kernel and ramdisk image. We've told it to use
vmlinuz for the kernel and the default initial ramdisk image, which is always initrd.img. Both of these
files are located in the same directory as pxelinux.0. The files are obtained from the distribution
media that we're attempting to install. In this case, since it's Red Hat, we go to the isolinux directory
on the boot CD and copy the kernel and ramdisk images from there over to /tftpboot/linux-install.

4.9.2. Getting It Working

Your host is PXE-enabled; your DHCP server is configured to deliver the necessary information to the
target host; and the TFTP server is set up to provide the host with a boot file, a configuration file, a
kernel, and a ramdisk image. All that's left to do now is boot! Here's the play-by-play of what takes
place, for clarity's sake:

You boot and press a function key to tell the machine to boot using PXE.1.

The client broadcasts for, and hopefully gets, an IP address, along with the name and location of
a boot file.

2.

The client contacts the TFTP server, asks for the boot file, and hopefully gets one.3.

The boot file launches and then contacts the TFTP server again for a configuration file, using the
formula we discussed previously. In our case it will get the one named default, which tells it how
to boot.

4.

The client grabs the kernel and ramdisk image specified in default and begins the kickstart using
the NFS server specified on the kernel append line.

5.

http://lib.ommolketab.ir

5.

4.9.3. Quick Troubleshooting

Here are some of the problems you may run into and how to tackle them:

If you get TFTP ACCESS VIOLATION errors, these can be caused by almost anything. However,
the obvious things to check are that the TFTP server can actually access the file (using a TFTP
client) and that the DHCP configuration for the target host lists only a filename parameter
specifying pxelinux.0, and doesn't list the BOOTP bootfile-name parameter.

If you fail to get a boot file and you get a "TFTP open timeout" or some other similar timeout,
check to make sure the TFTP server is allowing connections from the client host.

If you fail to get an IP address at all, grep for the client's MAC address in the DHCP logs for
clues. If you don't find it, your client's broadcast packets aren't making it to the DHCP server, in
which case you should look for a firewall/ACL rule as a possible cause of the issue.

If you can't seem to get the kickstart configuration file, make sure you have permissions to
mount the NFS source, make sure you're asking for the right file, and check for typos!

If everything fails and you can test with another identical box or another vmlinuz, do it, because
you might be running into a flaky driver or a flaky card. For example, the first vmlinuz I used in
testing had a flaky b44 network driver, and I couldn't get the kickstart file. The only change I
made was to replace vmlinuz, and all was well.

http://lib.ommolketab.ir

Hack 37. Turn Your Laptop into a Makeshift Console

Use minicom and a cable (or two, if your laptop doesn't have a serial port) to connect to
the console port of any server.

There are many situations in which the ability to connect to the serial console port of a server can be
a real lifesaver. In my day-to-day work, I sometimes do this for convenience, so I can type
commands on a server's console while at the same time viewing some documentation that is
inevitably available only in PDF format (something I can't do from a dumb terminal). It's also helpful
if you're performing tasks on a machine that is not yet hooked up to any other kind of console or if
you're on a client site and want to get started right away without having to learn the intricacies of the
client's particular console server solution.

4.10.1. Introducing minicom

How is this possible? There's an age-old solution that's provided as a binary package by just about
every Linux distribution, and it's called minicom. If you need to build from source, you can download
it at http://alioth.debian.org/projects/minicom/. minicom can do a multitude of great things, but
what I use it for is to provide a console interface to a server over a serial connection, using a null
modem cable (otherwise known as a crossover serial cable).

Actually, that's a big, fat lie. My laptop, as it turns out, doesn't have a serial port! I didn't even look
to confirm that it had one when I ordered it, but I've found that many newer laptops don't come with
one. If you're in the same boat, fear not! Available at online shops everywhere, for your serial
connection pleasure, are USB-to-serial adapters. Just plug this thing into a USB port, then connect
one end of the null modem cable to the adapter and the other end to the server's serial port, and
you're in business.

With hardware concerns taken care of, you can move on to configuring minicom. A default
configuration directory is usually provided on Debian systems in /etc/minicom. On Red Hat systems,
the configuration files are usually kept under /etc and do not have their own directory. Customizing
the configuration is generally done by running this command as root:

 # minicom s

This opens a text-based interface where you can make the necessary option changes. The
configuration gets saved to a file called minirc.dfl by default, but you can use the "Save setup as"
menu option to give the configuration a different name. You might want to do that in order to provide
several configuration files to meet different needsthe profile used at startup time can be passed to

http://alioth.debian.org/projects/minicom/
http://lib.ommolketab.ir

minicom as a lone argument.

For example, if I run minicom -s, and I already have a default profile stored in minicom.dfl, I can, for
instance, change the baud rate from the default 9,600 to 115,200 and then save this as a profile
named fast. The file created by this procedure will be named minicom.fast, but when I start up I just
call the profile name, not the filename, like this:

 $ minicom fast

Of course, this assumes that a regular user has access to that profile. There is a user access file,
named minicom.users, that determines which users can get to which profiles. On both Debian and
Red Hat systems, all users have access to all profiles by default.

A slightly simpler way to get a working configuration is to steal it. Here is a barebones configuration
for minicom. Though it's very simple, it's really the only one I've ever needed:

 # Machine-generated file - use "minicom -s" to change parameters.
 pu port /dev/ttyUSB0
 pu baudrate 9600
 pu bits 8
 pu parity N
 pu stopbits 1
 pu minit
 pu mreset
 pu mconnect
 pu mhangup

I included here the options stored to the file by default, even though they're not used. The unused
settings are specific to situations in which minicom needs to perform dialups using a modem. Note in
this config file that the serial device I'm using (the local device through which minicom will
communicate) is /dev/ttyUSB0. This device is created and assigned by a Linux kernel module called
usbserial. If you're using a USB-to-serial adapter and there's no indication that it's being detected
and assigned to a device by the kernel, check to make sure that you have this module. Almost every
distribution these days provides the ubserial module and dynamically loads it when needed, but if you
build your own kernels, make sure you don't skip over this module! In your Linux kernel configuration
file, the option CONFIG_USB_SERIAL should be set to y or m. It should not be commented out.

The next setting is the baudrate, which has to be the same on both the client and the server. In this
case, I've picked 9,600, not because I want to have a turtle-slow terminal, but because that's the
speed configured on the servers to which I usually connect. It's plenty fast enough for most things
that don't involve tailing massive logfiles that are updated multiple times per second.

The next three settings dictate how the client will be sending its data to the server. In this case, a
single character will be eight bits long, followed by no parity bit and one stop bit. This setting
(referred to as "8N1") is by far the most common setting for asynchronous serial communication.
These settings are so standard that I've never had to change them in my minicom.conf filein fact, the

http://lib.ommolketab.ir

only setting I do change is the baud rate.

4.10.2. Testing It

Once you have your configuration in place, connect your null modem or USB-to-serial adapter to your
laptop and connect the other end to the serial console port on the server. If you're doing this for the
first time, the serial console port on the server is a 15-pin male connection that looks a lot like the
male version of a standard VGA port. It's also likely to be the only place you can plug in a null
modem cable! If there are two of them, generally the one on the top (in a vertical configuration) or
on the left (in a horizontal configuration) will be ttyS0 on the server, and the other will be ttyS1.

After you've physically connected the laptop to the server, the next thing to do is fire up a terminal
application and launch minicom:

 $ minicom

This command will launch minicom with its default configuration. Note that on many systems,
launching the application alone doesn't do much: you have to hit Enter once or twice to get a login
prompt returned to you.

4.10.3. Troubleshooting

I've rarely had trouble using minicom in this way, especially when the server end is using agetty to
provide its of the communication, because agetty is pretty forgiving and can adjust for things like
seven-bit characters and other unusual settings. In the event that you have no output or your output
looks garbled, check to make sure that the baud rate on the client matches the baud rate on the
server. Also make sure that you are, in fact, connected to the correct serial port! On the server, try
typing the following to get a quick rundown of the server settings:

 $ grep agetty /etc/inittab
 co:2345:respawn:/sbin/agetty ttyS0 9600 vt100-nav
 $

This output shows that agetty is in fact running on ttyS0 at 9600 baud. The vt100-nav option on the
end is put there by the Fedora installation program, which sets up your inittab entry by default if
something is connected to the console port during installation. The vt100-nav option sets the TERM
environment variable. If you leave this setting off, most Linux machines will just set this to vt100 by
default, which is generally fine. If you want, you can tell minicom to use an alternate terminal type
on the client end with the -t flag.

If you're having trouble launching minicom, make sure you don't have restrictions in place in the
configuration file regarding who is allowed to use the default profile.

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Hack 38. Usable Documentation for the Inherently Lazy

Web-based documentation is great, but it's not very accessible from the command line.
However, manpages can be with you always.

I know very few administrators who are big fans of creating and maintaining documentation. It's just
not fun. Not only that, but there's nothing heroic about doing it. Fellow administrators aren't going to
pat you on the back and congratulate you on your wicked cool documentation. What's more, it's
tough to see how end users get any benefit when you document stuff that's used only by
administrators, and if you're an administrator writing documentation, it's likely that everyone in your
group already knows the stuff you're documenting!

Well, this is one way to look at it. However, the fact is that turnover exists, and so does growth. It's
possible that new admins will come on board due to growth or turnover in your group, and they'll
have to be taught about all of the customized tools, scripts, processes, procedures, and hacks that
are specific to your site. This learning process is also a part of any new admin's enculturation into the
group, and it should be made as easy as possible for everyone's benefit, including your own.

In my travels, I've found that the last thing system administrators want to do is write documentation.
The only thing that might fall below writing documentation on their lists of things they're dying to do
is writing web-based documentation. I've tried to introduce in-browser WYSIWYG HTML editors, but
they won't have it. Unix administrators are quite happy using Unix tools to do their work. "Give me
Vim or give me death!"

Another thing administrators typically don't want to do is learn how to use tools like LaTeX, SGML, or
groff to create formal documentation. They're happiest with plain text that is easily typed and easily
understood by anyone who comes across the raw file. Well, I've found a tool that enables
administrators to create manpages from simple text files, and it's cool. It's called txt2man.

Of course, it comes with a manpage, which is more than enough documentation to use the tool
effectively. It's a simple shell script that you pass your text file to, along with any options you want to
pass for a more polished end result, and it spits out a perfectly usable manpage. Here's how it works.

I have a script called cleangroup that I wrote to help clean up after people who have departed from
our department (see "Clean Up NIS After Users Depart" [Hack #77]). It goes through our NIS map
and gets rid of any references made to users who no longer exist in the NIS password map. It's a
useful script, but because I created it myself there's really no reason that our two new full-time
administrators would know it exists or what it does. So I created a new manpage directory, and I
started working on my manpages for all the tools written locally that new admins would need to know
about. Here is the actual text I typed to create the manpage:

 NAME
 cleangroup - remove users from any groups if the account doesn't exist

http://lib.ommolketab.ir

 SYNOPSIS
 /usr/local/adm/bin/cleangroup groupfile
 DESCRIPTION
 cleangroup is a perl script used to check each uid found in the group file
 against the YP password map. If the user doesn't exist there, the user is
 removed from the group.

 The only argument to the file is groupfile, which is required.

 ENVIRONMENT
 LOGNAME You need to be root on the YP master to run this
 script successfully.

 BUGS
 Yes. Most certainly.

 AUTHOR

 Brian Jones jonesy@linuxlaboratory.org

The headings in all caps will be familiar to anyone who has read his fair share of manpages. I saved
this file as cleangroup.txt. Next, I ran the following command to create a manpage called
cleangroup.man:

 $ txt2man -t cleangroup -s 8 cleangroup.txt > cleangroup.man

When you open this manpage using the man command, the upper-left and right corners will display
the title and section specified on the command line with the -t and -s flags, respectively. Here's the
finished output:

 cleangroup(8) cleangroup(8)

 NAME
 cleangroup-remove users from any groups if the account doesn't exist
 SYNOPSIS
 /var/local/adm/bin/beta/cleangroup groupfile

 DESCRIPTION
 cleangroup is a perl script used to check each uid found in the group
 file against the YP password map. If the user doesn't exist there,
 the user is removed from the group.

 The only argument to the file is groupfile, which is required.

 ENVIRONMENT
 LOGNAME
 You need to be root on nexus to run this script successfully.

http://lib.ommolketab.ir

 BUGS
 Yes. Most certainly.

 AUTHOR

 Brian Jones jonesy@cs.princeton.edu

For anyone not enlightened as to why I chose section 8 of the manpages, you should know that the
manpage sections are not completely arbitrary. Different man sections are for different classes of
commands. Here's a quick overview of the section breakdown:

Table 4-1.

1 User-level commands such as ls and man

2 System calls such as gethostname and setgid

3 Library calls such as isupper and getchar

4 Special files such as fd and fifo

5 Configuration files such as ldap.conf and nsswitch.conf

6 Games and demonstrations

7 Miscellaneous

8 Commands normally run by the root user, such as MAKEDEV and pvscan

Some systems have a section 9 for kernel documentation. If you're planning on making your own
manpage section, try to pick an existing one that isn't being used, or just work your manpages into
one of the existing sections. Currently, man only traverses manX directories (where X is a single digit),

so man42 is not a valid manpage section.

Though the resulting manpage isn't much different from the text file, it has the advantage that you
can actually use a standard utility to read it, and everyone will know what you mean when you say
"check out man 8 cleangroup." That's a whole lot easier than saying "go to our intranet, click on
Documentation, go to Systems, then Linux/Unix, then User Accounts, and click to open the PDF."

If you think that txt2man can handle only the simplest of manpages, it has a handy built-in help that
you can send to itself; the resulting manpage is a pretty good sample of what txt2man can do with
just simple text. Run this command (straight from the txt2man manpage) to check it out:

 $ txt2man -h 2>&1 | txt2man -T

This sends the help output for the command back to txt2man, and the -T flag will preview the output
for you using more or whatever you've set your PAGER environment variable to. This flag is also a

http://lib.ommolketab.ir

quick way to preview manpages you're working on to make sure all of your formatting is correct
instead of having to create a manpage, open it up, realize it's hosed in some way, close it, and open
it up again in your editor. Give it a try!

http://lib.ommolketab.ir

Hack 39. Exploit the Power of Vim

Use Vim's recording and keyboard macro features to make monotonous tasks lightning
fast.

Every administrator, at some point in his career, runs into a scenario in which it's unclear whether a
task can be performed more quickly using the Vim command . (a period) and one or two other
keystrokes for every change, or using a script. Often, admins wind up using the . command because
they figure it'll take less time than trying to figure out the perfect regex to use in a Perl, sed, or awk
script.

However, if you know how to use Vim's "recording" feature, you can use on-the-fly macros to do your
dirty work with a minimum of keystrokes. What's more, if you have tasks that you have to perform
all the time in Vim, you can create a keyboard macros for those tasks that will be available any time
you open your editor. Let's have a look!

4.12.1. Recording a Vim Macro

The best way to explain this is with an example. I have a file that is the result of the dumping of all
the data in my LDAP directory. It consists of the LDIF entries of all the users in my environment.

One entry looks like this:

 dn: cn=jonesy,ou=People,dc=linuxlaboratory,dc=org
 objectClass: top
 objectClass: person
 objectClass: organizationalPerson
 objectClass: inetOrgPerson
 objectClass: posixAccount
 objectClass: evolutionPerson
 uid: jonesy
 sn: Jones
 cn: Brian K. Jones
 userPassword: {crypt}eRnFAci.Ie2Ny
 loginShell: /bin/bash
 uidNumber: 3025
 gidNumber: 410
 homeDirectory: /u/jonesy
 gecos: Brian K. Jones,STAFF
 mail: jonesy@linuxlaboratory.org
 roomNumber: 213

http://lib.ommolketab.ir

 fileas: Jones, Brian K.
 telephoneNumber: NONE
 labeledURI: http://www.linuxlaboratory.org
 businessRole: NONE
 description: NONE
 homePostalAddress: NONE
 birthDate: 20030101
 givenName: Brian
 displayName: Brian K. Jones
 homePhone: 000-000-0000
 st: NJ
 l: Princeton
 c: UStitle: NONE
 o: Linuxlaboratory.orgou: Systems Group

There are roughly 1,000 entries in the file. What I need to do, for every user, is tag the end of every
labeledURI line with a value of ~username. This will reflect a change in our environment in which

every user has some web space accessible in her home directory, which is found on the Web using
the URL http://www.linuxlibrary.org/~username. Some entries have more lines than others, so
there's not a whole heckuva lot of consistency or predictability to make my job easy. You could
probably write some really ugly shell script or Perl script to do this, but you don't actually even have
to leave the cozy confines of Vim to get it done. First, let's record a macro. Step 1 is to type (in
command mode) qn, where n is a register label. Valid register labels are the values 09 and az. Once
you do that, you're recording, and Vim will store in register n every single keystroke you enter, so

type carefully! Typing q again will stop the recording.

Here are the keystrokes I used, including my keystrokes to start and stop recording:

 qz
 /uid:<Enter>
 ww
 yw
 /labeledURI<Enter>
 A
 /~
 <Esc>
 p
 q

The first line starts the recording and indicates that my keystrokes will be stored in register z. Next, I
search for the string uid: (/uid:), move two words to the right (ww), and yank (Vim-ese for copy)
that word (yw). Now I have the username, which I need to paste on the end of the URL that's already
in the file. To accomplish this, I do a search for the labeledURI attribute (/labeledRUI), indicate that
I am going to append to the end of the current line (A), type a /~ (because those characters need to
be there and aren't part of the user's ID), and then hit Esc to enter command mode and immediately
hit p to paste the copied username. Finally, I hit q to stop recording.

http://www.linuxlibrary.org/~username
http://lib.ommolketab.ir

Now I have a nice string of keystrokes stored in register z, which I can view by typing the following
command:

 :register z
 "z /uid: ^Mwwyw/labeledURI: ^MA/~^[p

If you can see past the control characters (M̂ is Enter and ^[is Escape), you'll see that everything I
typed is there. Now I can call up this string of keystrokes any time I want by typing (again, in
command mode) @z. It so happens that there are 935 entries in the file I'm working on (I used wc l

on the file to get a count), one of which has been edited already, so if I just place my cursor on the
line underneath the last edit I performed and type 934@z, that will make the changes I need to every
entry in the file. Sadly, I have not found a way to have the macro run to the end of the file without
specifying a number.

4.12.2. Creating Vim Shortcut Keys

I happen to really like the concept of WYSIWYG HTML editors. I like the idea of not having to be
concerned with tag syntax. To that extent, these editors represent a decent abstraction layer,
enabling me to concentrate more on content than form. They also do away with the need to
remember the tags for things such as greater than and less than characters and nonbreaking spaces,
which is wonderful.

Unfortunately, none of these shiny tools allows me to use Vim keystrokes to move around within a
file. I'm not even asking for search and replace or any of the fancy register stuff that Vim offersjust
the simple ability to move around with the h, j, k, and l keys, and maybe a few other
conveniences. It took me a long time to figure out that I don't need to compromise anymore! I can
have the full power of Vim and use it to create an environment where the formatting, while not
completely invisible, is really a no-brain-required activity.

Here's a perfect example of one way I use Vim keyboard shortcuts every day. I have to write some of
my documentation at work in HTML. Any time my document contains a command that has to be run,
I enclose that command in <code></code> tags. This happens a lot, as the documentation I write at
work is for an audience of sysadmins like me. The other two most common tags I use are the <p></p>
paragraph tags and the <h2></h2> tags, which mark off the sections in the documentation. Here's a
line I've entered in my ~/.vimrc file so that entering code tags is as simple as hitting F12 on my
keyboard.

 imap <F12> <code> </code> <Esc>2F>a

The keyword imap designates this mapping as being active only in insert mode. I did this on purpose,
because I'm always already in insert mode when I realize I need the tags. Next is the key I'm
mapping to, which is, in this case, F12. After that are the actual tags as they will be inserted. Had I
stopped there, hitting F12 in insert mode would put in my tags and leave my cursor to the right of
them. Because I'm too lazy to move my cursor manually to place it between the tags, I put more

http://lib.ommolketab.ir

keystrokes on the end of my mapping. First, I enter command mode using the Esc key. The 2F> bit
says to search from where the cursor is backward to the second occurrence of >, and then the a
places the cursor, back in insert mode, after the > character. I never even realize I ever left insert
modeit's completely seamless!

http://lib.ommolketab.ir

Hack 40. Move Your PHP Web Scripting Skills to the
Command Line

PHP is so easy, it's made web coders out of three-year-olds. Now, move that skill to the
CLI!

These days, it's rare to find a person who works with computers of any kind for a living who has not
gotten hooked on PHP. The barrier to entry for coding PHP for the Web is a bit lower than coding Perl
CGI scripts, if only because you don't have to compile PHP scripts in order to run them. I got hooked
on PHP early on, but I no longer code much for the Web. What I have discovered, however, is that
PHP is a very handy tool for creating command-line scripts, and even one-liners on the command
line.

Go to the PHP.net function reference (http://www.php.net/manual/en/funcref.php) and check out
what PHP has to offer, and you'll soon find that lots of PHP features of PHP are perfect for command-
line programming. PHP has built-in functions for interfacing with syslog, creating daemons, and
utilizing streams and sockets. It even has a suite of POSIX functions such as getpwuid and getpid.

For this hack, I'll be using PHP5 as supplied in the Fedora Core 4 distribution. PHP is readily available
in binary format for SUSE, Debian, Red Hat, Fedora, Mandrake, and other popular distributions.
Some distros have not yet made the move to PHP5, but they'll likely get there sooner rather than
later.

Obviously, the actual code I use in this hack will be of limited use to you. The idea is really to make
you think outside the box, using skills you already have, coding in PHP and applying it to something
unconventional like system administration.

4.13.1. The Code

Let's have a look at some code. This first script is really simple; it's a simplified version of a script I
use to avoid having to use the standard ldapsearch tool with a whole bunch of flags. For example, if I
want to search a particular server in another department for users with the last name Jones and get
back the distinguished name (dn) attribute for each of these users, here's what I have to type:

 $ ldapsearch -x -h ldap.linuxlaboratory.org -b"dc= linuxlaboratory,dc=org " '
 (sn=Jones)' dn

Yucky. It's even worse if you have to do this type of search often. I suppose you could write a shell

http://www.php.net/manual/en/funcref.php
http://lib.ommolketab.ir

script, but I found that PHP was perfectly capable of handling the task without relying on the
ldapsearch tool being on the system at all. In addition, PHP's universality is a big pluseveryone in my
group has seen PHP before, but some of them code in tcsh, which is different enough from ksh or
bash to be confusing. Don't forget that the code you write today will become someone else's problem
if a catastrophic bug pops up while you're on a ship somewhere sipping margaritas, far from a cell
phone tower. Anyway, here's my script, which I call dapsearch:

 #!/usr/bin/php
 <?php

 $conn=ldap_connect("ldap.linuxlaboratory.org")
 or die("Connect failed\n");

 $bind = ldap_bind($conn)
 or die("Bind failed\n");

 $answer = ldap_search($conn, "dc=linuxlaboratory,dc=org", "($argv[1])") ;
 $output = ldap_get_entries($conn, $answer);

 for ($i=0; $i < count($output); $i++) {
 if(!isset($output[$i])) break;
 echo $output[$i]["dn"]."\n";
 }
 echo $output["count"]." entries returned\n";
 ?>

There are a couple of things to note in the code above. On the first line is your everyday "shebang"
line, which contains the path to the binary that will run the code, just like in any other shell or Perl
script. If you're coding on your desktop machine for later deployment on a machine you don't control,
you might replace that line with one that looks like this:

 #!/usr/bin/env php

This does away with any assumption that the PHP binary is in a particular directory by doing a
standard PATH search for it, which can be more reliable.

In addition, you'll notice that the <?php and ?> tags are there in the shell script, just like they are in
web scripts. This can be useful in cases where you have static text that you'd like output to the
screen, because you can put that text outside the tags instead of using echo statements. Just close
the tag, write your text, then open a new set of tags, and the parser will output your text, then start
parsing PHP code when the tags open again.

Also, you can see I've simplified things a bit by hard-coding the attribute to be returned (the dn
attribute), as well as the server to which I'm connecting. This script can easily be altered to allow for
that information to be passed in on the command line as well. Everything you pass on the command
line will be in the argv array.

http://lib.ommolketab.ir

4.13.2. Running the Code

Save the above script to a file called dapsearch, make it executable, and then run it, passing along
the attribute for which you want to search. In my earlier ldapsearch command, I wanted the
distinguished name attributes of all users with the last name "Jones." Here's the (greatly shortened)
command I run nowadays to get that information:

 $ dapsearch sn= Jones

This calls the script and passes along the search filter, which you'll see referenced in the code as
$argv[1]. This might look odd to Perl coders who are used to referencing a lone argument as either
@_, $_,or $argv[0]. In PHP, $argv[0] returns the command being run, rather than the first argument
handed to it on the command line.

Speaking of the argv array, you can run into errors while using this feature if your installation of PHP
doesn't enable the argv and argc arrays by default. If this is the case, the change is a simple one:
just open up your php.ini file (the configuration file for the PHP parser itself) and set
register_argc_argv to on.

http://lib.ommolketab.ir

Hack 41. Enable Quick telnet/SSH Connections from the
Desktop

Desktop launchers and a simple shell script make a great combo for quick telnet and SSH
connections to remote systems.

Many of us work with a large number of servers and often have to log in and out of them. Using KDE
or GNOME's Application Launcher applet and a simple shell script, you can create desktop shortcuts
that enabled you to quickly connect to any host using a variety of protocols.

To do this, create a script called connect, make it executable, and put it in a directory that is located
in your PATH. This script should look like the following:

 #!/bin/bash

 progname='basename $0'

 type="single"

 if ["$progname" = "connect"] ; then
 proto=$1
 fqdn=$2
 shift
 shift
 elif ["$progname" = "ctelnet"]; then
 proto="telnet"
 fqdn=$1
 shift
 elif ["$progname" = "cssh"]; then
 proto="ssh"
 fqdn=$1
 shift
 elif ["$progname" = "mtelnet"]; then
 proto="telnet"
 fqdn=$1
 hosts=$*
 type="multi"
 elif ["$progname" = "mssh"]; then
 proto="ssh"
 fqdn=$1
 hosts=$*
 type="multi"

http://lib.ommolketab.ir

 fi
 args=$*

 #
 # Uncomment the xterm command and comment out the following if/else/fi
 clause
 # if you just want to use xterms everywhere
 #
 # xterm +mb -sb -si -T "${proto}::${fqdn}" -n ${host} -bg black -fg yellow -
 e ${proto} ${fqdn} ${args}
 #
 # Change Konsole to gnome-console and specify correct options if KDE is not
 installed
 #
 if ["$type" != "multi"]; then
 konsole -T "${proto}::${fqdn}" --nomenubar --notoolbar ${extraargs}
 -e ${proto} ${fqdn} ${args}
 else
 multixterm -xc "$proto %n" $hosts
 fi

After creating this script and making it executable, create symbolic links to this script called cssh,
ctelnet, mssh, and mtelnet in that same directory. As you can see from the script, the protocol and
commands that it uses are based on the way in which the script was called.

To use this script when you are using KDE, right-click on the desktop and select Create New File
 Link to Application. This displays a dialog like the one shown in Figure 4-2. Enter the name of the

script that you want to execute and the host that you want to connect to, and save the link.

Figure 4-2. Creating a desktop launcher in KDE

http://lib.ommolketab.ir

To use this script when you are using GNOME, right-click on the desktop and select Create Launcher.
This displays a dialog like the one shown in Figure 4-3. Enter the name of the script that you want to
execute and the host that you want to connect to, and save the link.

Figure 4-3. Creating a desktop launcher in GNOME

http://lib.ommolketab.ir

Using either of these methods, you quickly create desktop shortcuts that allow you to initiate a
connection to a remote system by clicking on the link on your desktopno fuss, no muss!

4.14.1. See Also

"Execute Commands Simultaneously on Multiple Servers" [Hack #29]

Lance Tost

http://lib.ommolketab.ir

Hack 42. Speed Up Compiles

While compiling, make full use of all of your computers with a distributed compiling
daemon

Many other distribution users make fun of the Gentoo fanboys, because Gentoo users have to spend
a lot of time compiling all of their code. And even though these compiles can take hours or days to
complete, Gentooists still tout their distribution as being one of the fastest available. Because of their
constant need to compile, Gentoo users have picked up a few tricks on making the process go faster,
including using distcc to create a cluster of computers for compiling. distcc is a distributed compiling
daemon that allows you to combine the processing power of other Linux computers on your network
to compile code. It is very simple to set up and use, and it should produce identical results to a
completely local compile. Having three machines with similar speeds should make compiling 2.6 times
faster. The distcc home page at http://distcc.samba.org has testimonials concerning real user's
experiences using the program. Using this hack, you can get distcc to work with any Linux
distribution, which will make compiling KDE and GNOME from scratch quick and easy.

distcc does not require the machines in your compile farm to have shared
filesystems, synchronized clocks, or even the same libraries and headers.
However, it is a good idea to make sure you are on the same major version
number of the compiler itself.

Before getting started with distcc, first you must know how to perform a parallel make when building
code. To perform a parallel make, use the j option in your make command:

 dbrick@rivendell:$ make j3; make j3 modules

This will spawn three child processes that will make maximum use of your processor power by
ensuring that there is always something in the queue to be compiled. A general rule of thumb for how
many parallel makes to perform is to double the number of processors and then add one. So a single
processor system will have j3 and a dual processor system j5. When you start using distcc, you
should base the j value on the total number of processors in your compiling farm. If you have eight
processors available, then use j17.

4.15.1. Using distcc

http://distcc.samba.org
http://lib.ommolketab.ir

You can obtain the latest version of distcc from http://distcc.samba.org/download.html. Just
download the archive, uncompress it, and run the standard build commands:

 dbrick@rivendell:$ tar -jxvf distcc-2.18.3.tar.bz2
 dbrick@rivendell:$ cd distcc-2.18.3
 dbrick@rivendell:$./configure && make && sudo make install

You must install the program on each machine you want included in your compile farm. On each of
the compiling machines, you need to start the distccd daemon:

 root@bree:# distccd daemon N15
 root@moria:# distccd daemon N15

These daemons will listen on TCP port 3632 for instructions and code from the local machine (the one
which you are actually compiling software for). The N value sets a niceness level so the distributed
compiles won't interfere too much with local operations. Read the distccd manpage for further
options.

On the client side, you need to tell distcc which computers to use for distributed compiles. You can do
this by creating an environment variable:

 dbrick@rivendell:$ export DISTCC_HOSTS='localhost bree moria'

Specify localhost to make sure your local machine is included in the compiles. If your local machine is
exceptionally slow, or if you have a lot of processors to distribute the load to, you should consider not
including it at all. You can use machine IP addresses in place of names. If you don't want to set an
environment variable, then create a distcc hosts file in your home directory to contain the values:

 dbrick@rivendell:$ mkdir ~/.distcc

 dbrick@rivendell:$ echo "localhost bree moria" > ~/.distcc/hosts

To run a distributed compile, simply pass a CC=distcc option to the make command:

 dbrick@rivendell:$ make j7 CC=distcc

It's that simple to distribute your compiles. Read the manpages for distcc and distccd to learn more
about the program, including how to limit the number of parallel makes a particular computer in your

http://distcc.samba.org/download.html
http://lib.ommolketab.ir

farm will perform.

4.15.2. Distribute Compiles to Windows Machines

Though some clever people have come up with very interesting ways to distribute compiles to a
Windows machine using Cygwin, there is an easier way to perform the same task using a live CD
distribution known as distccKnoppix, which you can download from
http://opendoorsoftware.com/cgi/http.pl?p=distccKNOPPIX. Be sure to download the version that has
the same major version number of gcc as your local machine.

To use distccKnoppix, simply boot the computer using the CD, note it's IP address, and then enter
that in your distcc hosts file or environment variable as instructed earlier. Happy compiling!

David Brickner

http://opendoorsoftware.com/cgi/http.pl?p=distccKNOPPIX
http://lib.ommolketab.ir

Hack 43. Avoid Common Junior Mistakes

Get over the junior admin hump and land in guru territory.

No matter how "senior" you become, and no matter how omnipotent you feel in your current role,
you will eventually make mistakes. Some of them may be quite large. Some will wipe entire
weekends right off the calendar. However, the key to success in administering servers is to mitigate
risk, have an exit plan, and try to make sure that the damage caused by potential mistakes is
limited. Here are some common mistakes to avoid on your road to senior-level guru status.

4.16.1. Don't Take the root Name in Vain

Try really hard to forget about root. Here's a quick comparison of the usage of root by a seasoned
vet versus by a junior administrator.

Solid, experienced administrators will occasionally forget that they need to be root to perform some
function. Of course they know they need to be root as soon as they see their terminal filling with
errors, but running su -root occasionally slips their mind. No big deal. They switch to root, they run
the command, and they exit the root shell. If they need to run only a single command, such as a
make install, they probably just run it like this:

 $ su -c 'make install'

This will prompt you for the root password and, if the password is correct, will run the command and
dump you back to your lowly user shell.

A junior-level admin, on the other hand, is likely to have five terminals open on the same box, all
logged in as root. Junior admins don't consider keeping a terminal that isn't logged in as root open on
a production machine, because "you need root to do anything anyway." This is horribly bad form, and
it can lead to some really horrid results. Don't become root if you don't have to be root!

Building software is a good example. After you download a source package, unzip it in a place you
have access to as a user. Then, as a normal user, run your ./configure and make commands. If
you're installing the package to your ~/bin directory, you can run make install as yourself. You only
need root access if the program will be installed into directories to which only root has write access,
such as /usr/local.

My mind was blown one day when I was introduced to an entirely new meaning of "taking the root
name in vain." It doesn't just apply to running commands as root unnecessarily. It also applies to

http://lib.ommolketab.ir

becoming root specifically to grant unprivileged access to things that should only be accessible by
root!

I was logged into a client's machine (as a normal user, of course), poking around because the user
had reported seeing some odd log messages. One of my favorite commands for tracking down issues
like this is ls -lahrt/etc, which does a long listing of everything in the directory, reverse sorted by
modification time. In this case, the last thing listed (and hence, the last thing modified) was
/etc/shadow. Not too odd if someone had added a user to the local machine recently, but it so
happened that this company used NIS+, and the permissions had been changed on the file!

I called the number they'd told me to call if I found anything, and a junior administrator admitted
that he had done that himself because he was writing a script that needed to access that file. Ugh.

4.16.2. Don't Get Too Comfortable

Junior admins tend to get really into customizing their environments. They like to show off all the cool
things they've recently learned, so they have custom window manager setups, custom logging
setups, custom email configurations, custom tunneling scripts to do work from their home machines,
and, of course, custom shells and shell initializations.

That last one can cause a bit of headache. If you have a million aliases set up on your local machine
and some other set of machines that mount your home directory (thereby making your shell
initialization accessible), things will probably work out for that set of machines. More likely, however,
is that you're working in a mixed environment with Linux and some other Unix variant. Furthermore,
the powers that be may have standard aliases and system-wide shell profiles that were there long
before you were.

At the very least, if you modify the shell you have to test that everything you're doing works as
expected on all the platforms you administer. Better is just to keep a relatively bare-bones
administrative shell. Sure, set the proper environment variables, create three or four aliases, and
certainly customize the command prompt if you like, but don't fly off into the wild blue yonder
sourcing all kinds of bash completion commands, printing the system load to your terminal window,
and using shell functions to create your shell prompt. Why not?

Well, because you can't assume that the same version of your shell is running everywhere, or that
the shell was built with the same options across multiple versions of multiple platforms! Furthermore,
you might not always be logging in from your desktop. Ever see what happens if you mistakenly set
up your initialization file to print stuff to your terminal's titlebar without checking where you're
coming from? The first time you log in from a dumb terminal, you'll realize it wasn't the best of ideas.
Your prompt can wind up being longer than the screen!

Just as versions and build options for your shell can vary across machines, so too can "standard"
commandsdrastically! Running chown -R has wildly different effects on Solaris than it does on Linux
machines, for example. Solaris will follow symbolic links and keep on truckin', happily skipping about
your directory hierarchy and recursively changing ownership of files in places you forgot existed. This
doesn't happen under Linux. To get Linux to behave the same way, you need to use the -H flag
explicitly. There are lots of commands that exhibit different behavior on different operating systems,
so be on your toes!

Also, test your shell scripts across platforms to make sure that the commands you call from within
the scripts act as expected in any environments they may wind up in.

http://lib.ommolketab.ir

4.16.3. Don't Perform Production Commands "Off the Cuff"

Many environments have strict rules about how software gets installed, how new machines are built
and pushed into production, and so on. However, there are also thousands of sites that don't enforce
any such rules, which quite frankly can be a bit scary.

Not having the funds to come up with a proper testing and development environment is one thing.
Having a blatant disregard for the availability of production services is quite another. When
performing software installations, configuration changes, mass data migrations, and the like, do
yourself a huge favor (actually, a couple of favors):

Script the procedure!

Script it and include checks to make sure that everything in the script runs without making any
assumptions. Check to make sure each step has succeeded before moving on.

Script a backout procedure.

If you've moved all the data, changed the configuration, added a user for an application to run
as, and installed the application, and something blows up, you really will not want to spend
another 40 minutes cleaning things up so that you can get things back to normal. In addition, if
things blow up in production, you could panic, causing you to misjudge, mistype, and possibly
make things worse. Script it!

The process of scripting these procedures also forces you to think about the consequences of what
you're doing, which can have surprising results. I once got a quarter of the way through a script
before realizing that there was an unmet dependency that nobody had considered. This realization
saved us a lot of time and some cleanup as well.

4.16.4. Ask Questions

The best tip any administrator can give is to be conscious of your own ignorance. Don't assume you
know every conceivable side effect of everything you're doing. Ask. If the senior admin looks at you
like you're an idiot, let him. Better to be thought an idiot for asking than proven an idiot by not
asking!

http://lib.ommolketab.ir

Hack 44. Get Linux Past the Gatekeeper

What not to do when trying to get Linux into your server room.

Let's face it: you can't make use of Linux Server Hacks (Volume One or Two) unless you have a Linux
server to hack! I have learned from mistakes made by both myself and others that common
community ideals are meaningless in a corporate boardroom, and that they can be placed in a more
tiefriendly context when presented to decision-makers. If you use Linux at home and are itching to
get it into your machine room, here are some common mistakes to avoid in navigating the political
side of Linux adoption in your environment.

4.17.1. Don't Talk Money

If you approach the powers that be and lead with a line about how Linux is free (as in beer), you're
likely doing yourself a disservice, for multiple reasons. First, if you point an IT manager at the Debian
web site (home of what's arguably the only "totally free in all ways" Linux distribution) and tell him to
click around because this will be his new server operating system, he's going to ask you where the
support link is. When you show him an online forum, he's going to think you are completely out in left
field.

Linux IRC channels, mailing lists, and forums have given me better support for all technology,
commercial or not, than the vendors themselves. However, without spending money on vendor
support, your IT manager will likely feel that your company has no leverage with the vendor and no
contractual support commitment from anyone. There is no accountability, no feel-good engineer in
vendor swag to help with migrations, and no "throat to choke" if something goes wrong.

To be fair, you can't blame him much for thinking thishe's just trying to keep his job. What do you
think would happen if some catastrophic incident occurred and he was called into a meeting with all
the top brass and, when commanded to report status, he said "I've posted the problem to the
linuxgoofball.org forums, so I'll keep checking back there. In the meantime, I've also sent email to a
mailing list that one of the geeks in back said was pretty good for support…"? He'd be fired
immediately!

IT departments are willing to spend money for software that can get the job done. They are also
willing to spend money for branded, certified vendor support. This is not wasted money. To the
extent that a platform is only one part of a larger technology deployment, the money spent on the
software and on support is their investment in the success of that deployment. If it costs less for the
right reasons (fewer man hours required to maintain, greater efficiency), that's great. But "free" is
not necessary, expected, or even necessarily good.

It is also not Linux's greatest strength, so leading with "no money down" is also doing an injustice to
the people who create and maintain it. The cost of Linux did many things that helped it get where it is

http://lib.ommolketab.ir

today, not the least of which was to lower the barrier of entry for new users to learn how to use a
Unix-like environment. It also lowered the barrier of entry for developers, who were able to grow the
technological foundation of Linux and port already trusted applications such as Sendmail and Apache
to the platform, making it a viable platform that companies were willing to adopt in some small way.
Leading with the monetary argument implies that that's the best thing about Linux, throwing all of its
other strengths out the window.

4.17.2. Don't Talk About Linux in a Vacuum

It's useless (at best) to talk about running Linux in your shop without talking about it in the context
of a solution that, when compared to the current solution, would be more useful or efficient.

To get Linux accepted as a viable platform, you have to start somewhere. It could be a new
technology deployment, or it could be a replacement for an existing service. To understand the best
way to get Linux in the door, it's important to understand all of the aspects of your environment. Just
because you know that management is highly displeased with the current office-wide instant
messaging solution doesn't mean that Jabber is definitely the solution for them. Whining to your boss
that you should just move to Jabber and everything would be great isn't going to get you anywhere,
because you've offered no facts about Jabber that make your boss consider it an idea with any merit
whatsoever. It also paints you in a bad light, because making blanket statements like that implies
that you think you know all there is to know about an office-wide IM solution.

Are you ready for the tough questions? Have you even thought about what they might be? Do you
know the details of the current solution? Do you know what might be involved in migrating to another
solution? Any other solution? Do you know enough about Jabber to take the reins or are you going to
be sitting at a console with a Jabber book open to Section 1.3 when your boss walks in to see how
your big, high-profile, all-users-affected project is going?

"Linux is better" isn't a credible statement. "A Linux file-sharing solution can work better at the
department level because it can serve all of the platforms we support" is better. But what you want
to aim for is something like "I've seen deployments of this service on the Linux platform serve 1,500
users on 3 client platforms with relatively low administrative overhead, whereas we now serve 300
clients on only 1 platform, and we have to reboot twice a week. Mean-while, we have to maintain a
completely separate server to provide the same services to other client platforms." The first part of
this statement is something you might hear in a newbie Linux forum. The last part inspires
confidence and hits on something that IT managers care aboutserver consolidation.

When talking to decision makers about Linux as a new technology or replacement service, it's
important to understand where they perceive value in their current solution. If they deployed the
current IM solution because it was inexpensive to get a site license and it worked with existing client
software without crazy routing and firewall changes, be ready. Can existing client software at your
site talk to a Jabber server? Is there infrastructure in place to push out software to all of your clients?

It's really simple to say that Linux rocks. It's considerably more difficult to stand it next to an existing
solution and justify the migration cost to a manager whose concerns are cost recovery, ROI, FTEs,
and man-hours.

4.17.3. Don't Pitch Linux for Something It's Not Well Suited For

http://lib.ommolketab.ir

Linux is well suited to performing an enormous variety of tasks that are currently performed using
lower-quality, higher-cost, proprietary software packages (too many to namesee the rest of this book
for hints). There's no reason to pitch it for tasks it can't handle, as this will only leave a bad taste in
the mouths of those whose first taste of Linux is a complete and utter failure.

What Linux is suitable for is 100% site-dependent. If you have a large staff of mobile, non-technical
salespeople with laptops who use VPN connections from wireless hotspot sites around the globe, and
you have a few old ladies manning the phones in the office all day, the desktop might not be the
place for Linux to shine.

On the other hand, if you have an operator on a switchboard built in the 1920s, and the lifeblood of
the business is phone communication, a Linux-based Asterisk PBX solution might be useful and much
appreciated!

The point is, choose your battles. Even in Unix environments, there will be resistance to Linux,
because some brands of Unix have been doing jobs for decades that some cowboy now wants Linux
to perform. In some cases, there is absolutely no reason to switch.

Sybase databases have run really well on Sun servers for decades. Sybase released a usable version
of their flagship product for Linux only about a year ago. This is not an area you want to approach for
a migration (new deployments may or may not be another story). On the other hand, some features
of the Linux syslog daemon might make it a little nicer than Solaris as a central log host. Some
software projects readily tell you that they build, develop, and test on Linux. Linux is the reference
Unix implementation in some shops, so use that leverage to help justify a move in that direction. Do
your homework and pick your battles!

4.17.4. Don't Be Impatient

Personally, I'd rather have a deployment be nearly flawless than have it done yesterday. Both would
be wonderful, but if history is any indication, that's asking too much.

Don't bite off more than you can chew. Let Linux grow on your clients, your boss, and your users.
Get a mail server up and running. Get SpamAssassin, procmail, and a webmail portal set up on an
Apache server. Then maintain it, optimize it, and secure it. If you do all this, Linux will build its own
track record in your environment. Create a mailing list server. Build an LDAP-based white pages
directory that users can point their email applications at to get user information. If you play your
cards right, a year from now people will begin to realize that relatively few resources have been
devoted to running these services, and that, generally, they "just work." When they're ready to move
on to larger things, whom do you think they'll turn to? The guy who wanted to replace an old lady's
typewriter with a dual-headed Linux desktop?

Think again. They'll be calling you.

http://lib.ommolketab.ir

Hack 45. Prioritize Your Work

Perhaps no one in the company needs to learn good time management more than system
administrators, but they are sometimes the last people to attempt to organize their work
lives.

Like most system administrators, you probably find it next to impossible to keep up with the
demands of your job while putting in just 40 hours a week. You find yourself working evenings and
weekends just to keep up. Sometimes this is fun, as you get to work with new technologiesand let's
face it, most sysadmins like computers and often work on them even in their free time. However,
working 60-hour weeks, month after month, is not a good situation to be in. You'll never develop the
social life you crave, and you won't be doing your company a service if you're grouchy all the time
because of lack of sleep or time away. But the work keeps coming, and you just don't see how you'll
ever be able to cram it all into a standard work week…which is why you need this hack about task
prioritization. I know, it's not really a hack about Linux servers, but it is a hack about being a
sysadmin, which means it should speak directly to everyone reading this book.

4.18.1. Prioritizing Tasks

Managing your tasks won't only ensure you get everything done in a timely manner. It will also help
you make better predictions as to when work can be done and, more importantly, it will make your
customers happier because you'll do a better job of meeting their expectations about when their
requests will be met. The next few sections discuss the methods you can use to order your tasks.

4.18.1.1. Doing tasks in list order.

One method for ordering your tasks is to not spend time doing it. Make the decision simple and just
start at the top of the task list and work your way down, doing each item in order. In the time you
might have spent fretting about where to start, chances are you'll have completed a couple of smaller
items. In addition, because the first items on the list are usually tasks you couldn't complete the
previous day, you'll often be working on the oldest items first.

Doing your to-do items in the order they appear is a great way to avoid procrastination. To quote the
Nike advertisements, "Just do it."

If your list is short enough that you can get through all the items in one day, this scheme makes
even more senseif it doesn't matter if a task gets done early in the day or late in the day, who cares
in what order it's completed? Of course, that's not often the case…

http://lib.ommolketab.ir

4.18.1.2. Prioritizing based on customer expectations.

Here's a little secret I picked up from Ralph Loura when he was my boss at Bell Labs. If you have a
list of tasks, doing them in any order takes (approximately) the same amount of time. However, if
you do them in an order that is based on customer expectations, your customers will perceive you as
working faster. Same amount of work for you, better perception from your customers. Pretty cool,
huh?

So what are your customer expectations? Sure, all customers would love all requests to be completed
immediately, but in reality they do have some conception that things take time. User expectations
may be unrealistic, and they're certainly often based on misunderstandings of the technology, but
they still exist.

We can place user expectations into a few broad categories:

Some requests should be handled quickly.

Examples include requests to reset a password, allocate an IP address, and delete a protected
file. One thing these requests have in common is that they often involve minor tasks that hold
up larger tasks. Imagine the frustration a user experiences when she can't do anything until a
password is reset, but you take hours to get it done.

"Hurry up and wait" tasks should be gotten out of the way early.

Tasks that are precursors to other tasks are expected to happen quickly. For example, ordering
a small hardware item usually involves a lot of work to push the order through purchasing,
then a long wait for the item to arrive. After that, the item can be installed. If the wait is going
to be two weeks, there is an expectation that the ordering will happen quickly so that the two-
week wait won't stretch into three weeks.

Some requests take a long time.

Examples include installing a new PC, creating a service from scratch, or anything that requires
a purchasing process. Even if the vendor offers overnight shipping, people accept that
overnight is not "right now."

All other work stops to fix an outage.

The final category is outages. Not only is there an expectation that during an outage all other
work will stop to resolve the issue, but there is an expectation that the entire team will work on
the project. Customers generally do not know that there is a division of labor within a sysadmin
team.

Now that we understand our customers' expectations better, how can we put this knowledge to good
use? Let's suppose we had the tasks shown in Figure 4-4 on our to-do list.

http://lib.ommolketab.ir

Figure 4-4. Tasks that aren't prioritized by customer expectations

If we did the tasks in the order listed, completing everything on the day it was requested in six and a
half hours of solid work (plus an hour for lunch), we could be pretty satisfied with our performance.
Good for us.

However, we have not done a good job of meeting our customers' perceptions of how long things
should have taken. The person that made request "T7" had to wait all day for something that he
perceived should have taken two minutes. If I was that customer, I would be pretty upset. For the
lack of an IP address, the installation of a new piece of lab equipment was delayed all day.

(Actually, what's more likely to happen is that the frustrated, impatient customer wouldn't wait all
day. He'd ping IP addresses until he found one that wasn't in use at that moment and "temporarily
borrow" that address. If this were your unlucky day, the address selected would conflict with
something and cause an outage, which could ruin your entire day. But I digress….)

Let's reorder the tasks based on customer perceptions of how long things should take. Tasks that are
perceived to take little time or to be urgent will be batched up and done early in the day. Other tasks
will happen later. Figure 4-5 shows the reordered tasks.

Figure 4-5. Tasks ordered based on customer expectations

http://lib.ommolketab.ir

We begin the day by doing the two tasks (T1 and T7) that customers expect to happen quickly and
that will hold up other, larger, projects. We succeed in meeting the perceived amount of time that
these tasks should take, and everyone's happy.

4.18.2. Prioritizing Projects

The previous section described ways to prioritize individual tasks. Now I'll present some useful
techniques for prioritizing projects.

4.18.2.1. Prioritization for impact.

Let's say that you and your fellow sysadmins brain-stormed 20 great projects to do next year.
However, you only have the budget and manpower to accomplish a few of them. Which projects
should you pick?

It's tempting to pick the easy projects and do them first. You know how to do them, and there isn't
much controversy surrounding them, so at least you'll know that they'll be completed.

It's also very tempting to pick out the fun projects, or the politically safe projects, or the projects that
are the obvious next steps based on past projects.

Ignore those temptations, and find the projects that will have the biggest positive impact on your
organization's goals. It's actually better to do one big project that will have a large positive impact
than many easy projects that are superficialI've seen it many times. Also, an entire team working on
one goal works better than everyone having a different project, because we work better when we
work together.

Here's another way to look at it. All projects can fit into one of the four categories listed in Figure 4-
6.

http://lib.ommolketab.ir

Figure 4-6. Project impact versus effort

Doing category A projects first seems like the obvious course. An easy project that will have a big
impact is rare, and when such projects magically appear in front of us, doing them always looks like
the right choice. (Warning: Be careful, because their A status may be a mirage!)

It's also obvious to avoid category D projects. A project that is difficult and won't change much
shouldn't be attempted.

However, most projects are either in category B or C, and it's human nature to be drawn to the easy
C projects. We can fill our year with easy projects, list many accomplishments, and come away
looking very good. However, highly successful companies train management to reward workers who
take on category B projectsthe difficult but necessary ones.

If you think about it in terms of Return on Investment (ROI), it makes sense. You're going to spend a
certain amount of money this year. Do you spend it on many small projects, each of which will not
have a big impact? No, you look at what will have the biggest positive impact and put all your
investment into that effort.

It's important to make sure that these "big-impact" projects are aligned with your company's
goalsimportant for the company and important for you too. You will be more highly valued that way.

4.18.2.2. Prioritizing requests from your boss.

If your boss asks you to do something, and it's a quick task (not a major project), do it right away.
For example, if your boss asks you to find out approximately how many PCs are running the old
version of Windows, get back to her with a decent estimate in a few minutes.

It helps to understand the big picture. Usually, such requests are made because your boss is putting
together a much larger plan or budget (perhaps a cost estimate for bringing all PCs up to the latest
release of Windows), and you can hold up her entire day by not getting back to her quickly with an
answer.

Why does this matter? Well, your boss decides what happens at your next salary review. Do I need
to say more? Maybe I do. Your boss will have a fixed amount of money to dole out for all raises. If
she gives more to Moe, Larry is going to get less. When your boss is looking at the list of people on
the team, do you want her to look at your name and think "he sure did get me an estimate of the
number of out-of-date Windows PCs quickly. Gosh, he always gets me the things I need quickly." Or
do you want your boss to be thinking "you know, the entire budget was held up for a day because I

http://lib.ommolketab.ir

was waiting for that statistic." Or worse yet "all the times I looked foolish in front of my boss because
I was late, it was because I was waiting for [insert your name here] to get me a piece of information.
So-and-so isn't getting a good raise this year." Keeping the boss happy is always a good idea!

4.18.3. Summary

Managing your priorities ensures that you meet your customers' expectations and get the work with
the biggest impact done in a timely manner. However, prioritization is just one part of a time-
management solution. Though you can go to general time-management books for more ideas, I
humbly suggest a reading of my book, Time Management for System Administrators (O'Reilly).

Tom Limoncelli

http://lib.ommolketab.ir

Chapter 5. Storage Management and
Backups

Section 5.1. Hacks 4655: Introduction

Hack 46. Create Flexible Storage with LVM

Hack 47. Combine LVM and Software RAID

Hack 48. Create a Copy-on-Write Snapshot of an LVM Volume

Hack 49. Clone Systems Quickly and Easily

Hack 50. Make Disk-to-Disk Backups for Large Drives

Hack 51. Free Up Disk Space Now

Hack 52. Share Files Using Linux Groups

Hack 53. Refine Permissions with ACLs

Hack 54. Make Files Easier to Find with Extended Attributes

Hack 55. Prevent Disk Hogs with Quotas

http://lib.ommolketab.ir

5.1. Hacks 4655: Introduction

One of the core responsibilities of any computer system is to provide enough storage space to enable
users to get their work done. Storage requirements depend largely on the types of files your users
work with, which may range in size from the 100200 KB that many word processing documents use
to the megabytes of disk space consumed by music and image files. Add the gigabytes of old email
that most people have lying around, and you can see that today's users require more disk space than
ever before.

The obvious solution to increasing storage requirements is to add more disks and disk controllers.
However, simply adding filesystems to your machine can result in an administrative nightmare of
symbolic links that reflect the migration paths of certain directories as they move from disk to disk in
search of lebensraum. This chapter opens with a hack that helps you address increasing storage
requirements in a cool, calm, organized fashion by using logical volumes. This storage management
technique makes it easy to add disk space to existing filesystems without having to move anything
anywhere.

Once you've added new disk space in one fashion or another, backing up today's large drives can
pose a problem, so we've included hacks to help you back up and clone modern systems without
needing a stack of mag tapes or tape cartridges that reaches to the moon. This chapter also includes
a hack that explains how to combine RAID with logical volumes to increase system reliability in
general. You can't eliminate backups, but you can easily minimize the need for restores.

This chapter will also discuss how to help your users use disk space intelligently by sharing central
collections of files whenever possible, preventing disk space bloat because all 500 of your users have
their own copies of every file that their team has ever worked on. And because huge directories and
filesystems often make it more difficult to find the specific file you're looking for, we've added a hack
about how to take advantage of Linux extended attributes to tag files with metadata that makes
them easier to locate. This chapter ends with a hack that discusses Linux quotas, which provide an
excellent mechanism to identify the biggest users of disk space on your systems and even enable you
to set limits on per-user or per-group disk consumption. An ounce of protection is worth a pound of
cureor, in this case, a few hundred gigabytes, the cost of new disks, and the associated
administrative overhead.

http://lib.ommolketab.ir

Hack 46. Create Flexible Storage with LVM

"User disk requirements expand to consume all available space" is a fundamental rule of
system administration. Prepare for this in advance using Logical Volume Management
(LVM).

When managing computer systems, a classic problem is the research project or business unit gone
haywire, whose storage requirements far exceed their current allocation (and perhaps any amount of
storage that's currently available on the systems they're using). Good examples of this sort of thing
are simulation and image analysis projects, or my research into backing up my entire CD collection
on disk. Logical volumes, which are filesystems that appear to be single physical volumes but are
actually assembled from space that has been allocated on multiple physical partitions, are an elegant
solution to this problem. The size of a logical volume can exceed the size of any of the physical
storage devices on your system, but it cannot exceed the sum of all of their sizes.

Traditional solutions to storage management have their limitations. Imposing quotas [Hack #55],
can prevent users from hogging more than their fair share of disk resources, helping your users
share their resources equitably. Similarly, paying scrupulous attention to detail in cleaning out old
user accounts can maximize the amount of space available to the active users on your system.
However, neither of these approaches solves the actual problem, which is the "fixed-size" aspect of
disk storage. Logical volumes solve this problem in a truly elegant fashion by making it easy to add
new disk storage to the volumes on which existing directories are located. Without logical volumes,
you could still add new disk storage to the system by formatting new disks and partitions and
mounting them at various locations in the existing filesystem, but your system would quickly become
an unmanageable administrative nightmare of mount points and symbolic links pointing all over the
place.

Linux has had two implementations of logical volumes, aptly known as LVM and LVM2. LVM2, which is
backward compatible with logical volumes created with LVM, is the version that is provided by default
with 2.6-based systems. This hack focuses on LVM2, although newer LVM technologiessuch as the
Enterprise Volume Management System (EVMS), which was originally developed by IBM and is now
an active SourceForge project (http://sourceforge.net/projects/evms)are actively under
development.

5.2.1. Logical Volume Buzzwords

When using logical volumes, the pool of storage space from which specific volumes are created is
known as a volume group. Volume groups are created by first formatting specific physical devices or
partitions as physical volumes, using the pvcreate command, and then creating the volume group on
some number of physical volumes using the vgcreate command. When the volume group is created,
it divides the physical volumes of which it is composed into physical extents, which are the actual
allocation units within a volume group. The size of each physical extent associated with a specific

http://sourceforge.net/projects/evms
http://lib.ommolketab.ir

volume group can be set from 8 KB to 512 MB in powers of 2 when the volume group is created, with
a default size of 4 MB.

Nowadays, all of the individual commands related to physical and logical
volumes are implemented by one central binary called lvm. Most Linux
distributions install symbolic links to this binary with the names of the
traditional, individual commands for physical and logical volume management.
The hacks in this chapter use the names of the specific commands, but you can
also always execute them by prefacing them with the lvm command. For
example, if your distribution doesn't install the symlinks, you could execute the
pvcreate command by executing lvm pvcreate.

When you create a volume group, a directory with the same name as that volume group is created in
your system's /dev directory, and a character-special device file called group is created in that
directory. As you create logical volumes from that volume group, the block-special files associated
with each of them are also created in this directory.

Once you've created a volume group, you can use the lvcreate command to create logical volumes
from the accumulation of storage associated with that volume group. Physical extents from the
volume group are allocated to logical volumes by mapping them through logical extents, which have
a one-to-one correspondence to specific physical extents but provide yet another level of abstraction
between physical and logical storage space. Using logical extents reduces the impact of certain
administrative operations, such as moving the physical extents on a specific physical volume to
another physical volume if you suspect (or, even worse, know) that the disk on which a specific
physical volume is located is going bad.

Once you have created a logical volume, you can create your favorite type of filesystem on it using
the mkfs command, specifying the type of filesystem by using the -t type option. You can then
modify your /etc/fstab file to mount the new logical volume wherever you want, and you're in
business. The rest of the hack shows you how to perform the actions I've just described.

5.2.2. Allocating Physical Volumes

You can use either existing partitions or complete disks as storage for logical volumes. As the first
step in your LVM odyssey, you must use the pvcreate command to create physical volumes on those
partitions or disks in order to identify them to the system as storage that you can assign to a volume
group and subsequently use in a logical volume. There are several ways to allocate an entire disk for
use with LVM2:

Make sure the disk does not contain a partition table and create a single physical volume on the
disk.

Create a single partition on the disk and create a physical volume on that partition.

Create multiple partitions on your disk and create physical volumes on each.

Each of these has advantages and disadvantages, but I prefer the third as a general rule. The first

http://lib.ommolketab.ir

two approaches don't localize disk problems, meaning that sector failures on the disk can kick the
entire physical volume out of your volume group and therefore quite possibly prevent recovery or
repair. You can minimize the hassle inherent in this situation by combining RAID and LVM [Hack
#47], but you can minimize headaches and lost data in the first place (without using RAID) by
manually partitioning the disk and allocating each of those smaller partitions as physical volumes. To
do this, use the fdisk command to create reasonably sized, manageable partitions that are clearly
identified as Linux LVM storage, and then use the pvcreate command to create physical volumes on
each, as in the following example:

 # fdisk /dev/hdb

 The number of cylinders for this disk is set to 30401.
 There is nothing wrong with that, but this is larger than 1024,
 and could in certain setups cause problems with:

 1) software that runs at boot time (e.g., old versions of LILO)
 2) booting and partitioning software from other OSs
 (e.g., DOS FDISK, OS/2 FDISK)

 Command (m for help): p

 Disk /dev/hdb: 250.0 GB, 250059350016 bytes
 255 heads, 63 sectors/track, 30401 cylinders
 Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System

 Command (m for help): n
 Command action
 e extended
 p primary partition (1-4)
 p
 Partition number (1-4): 1
 First cylinder (1-30401, default 1):
 Using default value 1
 Last cylinder or +size or +sizeM or +sizeK (1-30401, default 30401):
 Using default value 30401

 Command (m for help): t
 Selected partition 1
 Hex code (type L to list codes): 8e
 Changed system type of partition 1 to 8e (Linux LVM)

 Command (m for help): p

 Disk /dev/hdb: 250.0 GB, 250059350016 bytes
 255 heads, 63 sectors/track, 30401 cylinders
 Units = cylinders of 16065 * 512 = 8225280 bytes

 Device Boot Start End Blocks Id System
 /dev/hdb1 1 30401 244196001 8e Linux LVM

http://lib.ommolketab.ir

 Command (m for help): w
 The partition table has been altered!

 Calling ioctl() to re-read partition table.
 Syncing disks.
 #

In some older versions of LVM, pvcreate will complain if it finds a partition table
on a disk that you are allocating as a single physical volume. If this is the case
with the version of LVM that you are using, you'll need to allocate the entire
disk as a physical volume. To do this, make sure you wipe any existing
partition table (using dd if=/dev/zero of=/dev/ DISK bs=512 count=1, where
DISK is the base name of the disk, such as /dev/hda, /dev/sda, and so

onwhatever is appropriate for your system).

With most modern versions of LVM2, this is not the casedisks can have existing
partition tables and still be allocated in their entirety for use with LVM. Any
partitions that you create on a disk for use as a physical volume should have
their types set to Linux Logical Volume (0x8e) when you use fdisk (or any
equivalent utility) to partition the disk. Always be kind to your fellow
sysadmins. You won't necessarily always work for the same company, and you
should always follow the sysadmin's golden rule: leave behind understandable
systems, as you would have other sysadmins leave behind understandable
systems for you.

In the preceding example and throughout this hack, I'm creating a single partition on a disk and
using it as a physical volume. This is to keep the sample output from fdisk shorter than the rest of
the book. In actual practice, as explained previously, I suggest creating smaller partitions of a more
manageable size40 GB or soand using them as physical volumes. It doesn't matter to LVM whether
they're primary or extended partitions on your disk drive. Using smaller partitions helps localize disk
problems that you may encounter down the road.

After creating partitions you want to use as physical volumes, use the pvcreate command to allocate
them for use as physical volumes, as in this example:

 # pvcreate /dev/hdb1
 Physical volume "/dev/hdb1" successfully created

You can then confirm the status and size of your new physical volume by using the pvdisplay
command:

 # pvdisplay
 --- NEW Physical volume --
 PV Name /dev/hdb1

http://lib.ommolketab.ir

 VG Name
 PV Size 232.88 GB
 Allocatable NO
 PE Size (KByte) 0
 Total PE 0
 Free PE 0
 Allocated PE 0
 PV UUID hy8hck-B5lp-TLZf-hyD4-U9Mu-EFn8-wob9Km

5.2.3. Assigning Physical Volumes to Volume Groups

Once you've created one or more physical volumes, you need to add them to a specific volume group
so that they can be allocated for use in a logical volume. Adding a physical volume to a volume group
is done with the vgcreate command, as in the following example:

 # vgcreate data /dev/hdb1
 Volume group "data" successfully created

If you have multiple physical volumes to add to your volume group, simply specify them after the
first physical volume. You can then confirm the status of your new volume group by using the
vgdisplay command:

 # vgdisplay data
 --- Volume group ---
 VG Name data
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 1
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 0
 Open LV 0
 Max PV 0
 Cur PV 1
 Act PV 1
 VG Size 232.88 GB
 PE Size 4.00 MB
 Total PE 59618
 Alloc PE / Size 0 / 0
 Free PE / Size 59618 / 232.88 GB
 VG UUID SeY0pJ-Q0Ej-AQbT-Fri0-tai6-5oED-7ujb1F

http://lib.ommolketab.ir

5.2.4. Creating a Logical Volume from a Volume Group

As mentioned previously, creating a physical volume divides the allocated space in that volume into
physical extents. Unlike traditional inode-based storage, filesystems that use logical volumes track
free space by preallocated units of space known as extents. Extents are physically linear series of
blocks that can be read one after the other, minimizing disk head movement.

When you create a logical volume, you must specify its size. If you're only creating a single logical
volume, you probably want to create it using all of the available space in the volume group where you
create it.

The number of free extents is listed as the Free PE entry in the output of the pvdisplay command for
each partition in the volume group (in this case, only the disk /dev/hdb1):

 # pvdisplay /dev/hdb1
 --- Physical volume ---
 PV Name /dev/hdb1
 VG Name data
 PV Size 232.88 GB / not usable 0
 Allocatable yes
 PE Size (KByte) 4096
 Total PE 59618
 Free PE 59618
 Allocated PE 0
 PV UUID 90BP0t-OZeQ-2Zbl-DCmh-iEJu-p8Je-SLm1Gg

 # pvdisplay /dev/hdb1 | grep "Free PE"
 Free PE 59618

You could also infer this value by looking at the volume group itself, but the output there requires a
little more thought:

 # vgdisplay data
 --- Volume group ---
 VG Name data
 System ID
 Format lvm2
 Metadata Areas 1
 Metadata Sequence No 2
 VG Access read/write
 VG Status resizable
 MAX LV 0
 Cur LV 1
 Open LV 0

http://lib.ommolketab.ir

 Max PV 0
 Cur PV 1
 Act PV 1
 VG Size 232.88 GB
 PE Size 4.00 MB
 Total PE 59618
 Alloc PE / Size 59618 / 232.88 GB
 Free PE / Size 0 / 0
 VG UUID SeY0pJ-Q0Ej-AQbT-Fri0-tai6-5oED-7ujb1F

This output shows that a total of 59,618 physical extents have been allocated to this volume group,
but it also shows them all as being in use. They're considered to be in use because they are allocated
to the volume groupthis doesn't reflect whether they actually contain data, are mounted anywhere,
and so on.

Your next step is to use the lvcreate command to create logical volumes within the volume group
you just defined, using as much of the volume as you want to allocate to the new logical volume. To
create a logical volume called music that uses all the space available in the data volume group, for
example, you would execute the following command:

 # lvcreate -l 59618 data -n music
 Logical volume "music" created

You can then use the lvdisplay command to get information about the logical volume you just
created:

 # lvdisplay
 --- Logical volume ---
 LV Name /dev/data/music
 VG Name data
 LV UUID yV06uh-BshS-IqiK-GeIi-A3vm-Tsjg-T0kCT7
 LV Write Access read/write
 LV Status available
 # open 0
 LV Size 232.88 GB
 Current LE 59618
 Segments 1
 Allocation inherit
 Read ahead sectors 0
 Block device 253:0

As you can see from this output, the actual access point for the new logical volume music is the
directory /dev/data/music, which was created when the volume was created by the lvcreate
command.

http://lib.ommolketab.ir

When you create a logical volume, the logical volume system also creates an appropriate entry in the
directory /dev/mapper that maps the logical volume to the physical volume from which it was
created, as in the following example:

 # ls /dev/mapper
 control data-music

Now that we've created the logical volume, let's see how the output from pvdisplay changes to
reflect this allocation:

 # pvdisplay /dev/hdb1
 --- Physical volume ---
 PV Name /dev/hdb1
 VG Name data
 PV Size 232.88 GB / not usable 0
 Allocatable yes (but full)
 PE Size (KByte) 4096
 Total PE 59618
 Free PE 0
 Allocated PE 59618
 PV UUID 90BP0t-OZeQ-2Zbl-DCmh-iEJu-p8Je-SLm1Gg

This output now shows that there are no free physical extents on the physical volume, because all of
them have been allocated to the logical volume that we created from the volume group with which
this physical volume is associated.

Now that we've created a logical volume, we have to put a filesystem on it in order to actually use it
on our Linux box. You do this using the mkfs command that's appropriate for the type of filesystem
you want to create. I'm a big XFS fan, so I'd use the following command to create an XFS filesystem
on the new logical volume and mount it at /mnt/music on my system:

 # mkfs -t xfs /dev/data/music
 meta-data=/dev/data/music isize=256 agcount=16, agsize=3815552 blks
 = sectsz=512
 data = bsize=4096 blocks=61048832, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
 naming =version 2 bsize=4096
 log =internal log bsize=4096 blocks=29809, version=1
 = sectsz=512 sunit=0 blks
 realtime =none extsz=65536 blocks=0, rtextents=0
 #
 # mount -t xfs /dev/data/music /mnt/music

http://lib.ommolketab.ir

Doing a standard disk free listing on my system shows that the new volume is mounted and
available:

 Filesystem 1K-blocks Used Available Use% Mounted on
 /dev/sda1 10490040 3763676 6726364 36% /
 tmpfs 511956 44 511912 1% /dev/shm
 /dev/sda3 257012 43096 213916 17% /boot
 /dev/sda8 160010472 127411776 32598696 80% /home
 /dev/sda5 4200824 986308 3214516 24% /tmp
 /dev/sda6 31462264 5795132 25667132 19% /usr
 /dev/sda7 31454268 15228908 16225360 49% /usr/local
 /dev/hda1 241263968 196779092 32229292 86% /opt2
 /dev/mapper/data-music
 244076092 272 244075820 1% /mnt/music

Note that mounting the logical volume /dev/data/music actually mounted the control device for that
logical volume, which is /dev/mapper/data-music. This enables the logical volume system to better
track allocations, especially in the case where a logical volume is composed of physical volumes that
reside on physically distinct disks (which isn't the case in this simple example, but almost certainly
will be in a production environment).

To make sure that your new logical volume is automatically mounted each time you boot your
system, add the following entry to your /etc/fstab file:

 /dev/data/music /mnt/music xfs defaults,noatime 0 0

You'll note that I specified the noatime option in the /etc/fstab mount options for my logical volume,
which tells the filesystem not to update inodes each time the files or directories associated with them
are accessed. This eliminates what I consider frivolous updates to the logical volume (I don't really
care when a file was accessed last) and therefore reduces some of the wear and tear on my drives.

That's itnow that I have all this new space, it's time for me to go back up some more of my music
collection…but that's outside the scope of this hack.

5.2.5. Suggestions

One general suggestion that I've found useful is to keep / and /boot on physical partitions, and use
ext3 for those filesystems. The recovery tools for ext2/ext3 filesystems are time-tested and
sysadmin-approved. If you can at least easily boot your system in single-user mode, you have a
much better chance of recovering your logical volumes using established tools.

Also, always use multiple partitions on your systems. Resist the urge to simplify things by creating a
single huge logical volume as / and putting everything in there. This makes complete system backups
huge and provides a single point of failure. The time you save during installation will be spent tearing
your hair out later if disk problems take your system to its knees. A recovery disk and a lost weekend

http://lib.ommolketab.ir

are no substitutes for proper initial planning.

5.2.6. See Also

"Combine LVM and Software RAID" [Hack #47]

The EVMS Project: http://sourceforge.net/projects/evms

LVM HOWTO: http://www.tldp.org/HOWTO/LVM-HOWTO/

http://sourceforge.net/projects/evms
http://www.tldp.org/HOWTO/LVM-HOWTO/
http://lib.ommolketab.ir

Hack 47. Combine LVM and Software RAID

Combining the flexibility of LVM with the redundancy of RAID is the right thing for critical
file servers.

RAID (Redundant Array of Inexpensive Disks or Redundant Array of Independent Disks, depending on
who you ask) is a hardware and/or software mechanism used to improve the performance and
maintainability of large amounts of disk storage through some extremely clever mechanisms. As the
name suggests, RAID makes a large number of smaller disks (referred to as a RAID array) appear to
be one or more large disks as far as the operating system is concerned. RAID was also designed to
provide both performance and protection against the failure of any single disk in your system, which
it does by providing its own internal volume management interface.

RAID is provided by specialized disk controller hardware, by system-level software, or by some
combination of both. The support for software RAID under Linux is known as the multiple device (md)
interface. Hardware RAID has performance advantages over software RAID, but it can be a problem
in enterprise environments because hardware RAID implementations are almost always specific to
the hardware controller you are using. While most newer hardware RAID controllers from a given
manufacturer are compatible with their previous offerings, there's never any real guarantee of this,
and product lines do occasionally change. I prefer to use the software RAID support provided by
Linux, for a number of reasons:

It's completely independent of the disk controllers you're using.

It provides the same interface and customization mechanisms across all Linux distributions.

Performance is actually quite good.

It can be combined with Linux Logical Volume Management (LVM) to provide a powerful, flexible
mechanism for storage expansion and management.

Hardware RAID arrays usually enable you to remove and replace failed drives without shutting down
your system. This is known as hot swapping, because you can swap out drives while the system is
running (i.e., "hot"). Hot swapping is supported by software RAID, but whether or not it's possible
depends on the drive hardware you're using. If you're using removable or external FireWire, SCSI, or
USB drives with software RAID (though most USB drives are too slow for this purpose), you can
remove and replace failed drives on these interfaces without shutting down your system.

5.3.1. Mirroring and Redundancy

To support the removal and replacement of drives without anyone but you noticing, RAID provides

http://lib.ommolketab.ir

services such as mirroring, which is the ability to support multiple volumes that are exact, real-time
copies of each other. If a mirrored drive (or a drive that is part of a mirrored volume) fails or is taken
offline for any other reason, the RAID system automatically begins using the failed drive's mirror, and
no one notices its absence (except for the sysadmins who have to scurry for a replacement).

As protection against single-device failures, most RAID levels support the use of spare disks in
addition to mirroring. Mirroring protects you when a single device in a RAID array fails, but at this
point, you are immediately vulnerable to the failure of any other device that holds data for which no
mirror is currently available. RAID's use of spare disks is designed to immediately reduce this
vulnerability. In the event of a device failure, the RAID subsystem immediately allocates one of the
spare disks and begins creating a new mirror there for you. When using spare disks in conjunction
with mirroring, you really only have a non-mirrored disk array for the amount of time it takes to
clone the mirror to the spare disk. However, as explained in the next section, the automatic use of
spare disks is supported only for specific RAID levels.

RAID is not a replacement for doing backups. RAID ensures that your systems
can continue functioning and that users and applications can have
uninterrupted access to mirrored data in the event of device failure. However,
the simultaneous failure of multiple devices in a RAID array can still take your
system down and make the data that was stored on those devices unavailable.
If your primary storage fails, only systems of which you have done backups
(from which data can therefore be restored onto your new disks) can be
guaranteed to come back up.

5.3.2. Overview of RAID Levels

The different capabilities provided by hardware and software RAID are grouped into what are known
as different RAID levels. The following list describes the most common of these (for information about
other RAID levels or more detailed information about the ones listed here, grab a book on RAID and
some stimulants to keep you awake):

RAID-0

Often called stripe mode, volumes are created in parallel across all of the devices that are part
of the RAID array, allocating storage from each in order to provide as many opportunities for
parallel reads and writes as possible. This RAID level is strictly for performance and does not
provide any redundancy in the event of a hardware failure.

RAID-1

Usually known as mirroring, volumes are created on single devices and exact copies (mirrors)
of those volumes are maintained in order to provide protection from the failure of a single disk
through redundancy. For this reason, you cannot create a RAID-1 volume that is larger than
the smallest device that makes up a part of the RAID array. However, as explained in this
hack, you can combine Linux LVM with RAID-1 to overcome this limitation.

http://lib.ommolketab.ir

RAID-4

RAID-4 is a fairly uncommon RAID level that requires three or more devices in the RAID array.
One of the drives is used to store parity information that can be used to reconstruct the data
on a failed drive in the array. Unfortunately, storing this parity information on a single drive
exposes this drive as a potential single point of failure.

RAID-5

One of the most popular RAID levels, RAID-5 requires three or more devices in the RAID array
and enables you to support mirroring through parity information without restricting the parity
information to a single device. Parity information is distributed across all of the devices in the
RAID array, removing the bottleneck and potential single point of failure in RAID-4.

RAID-10

A high-performance modern RAID option, RAID-10 provides mirrored stripes, which essentially
gives you a RAID-1 array composed of two RAID-0 arrays. The use of striping offsets the
potential performance degradation of mirroring and doesn't require calculating or maintaining
parity information anywhere.

In addition to these RAID levels, Linux software RAID also supports linear mode, which is the ability
to concatenate two devices and treat them as a single large device. This is rarely used any more
because it provides no redundancy and is functionally identical to the capabilities provided by LVM.

5.3.3. Combining Software RAID and LVM

Now we come to the conceptual meat of this hack. Native RAID devices cannot be partitioned.
Therefore, unless you go to a hardware RAID solution, the software RAID modes that enable you to
concatenate drives and create large volumes don't provide the redundancy that RAID is intended to
provide. Many of the hardware RAID solutions available on motherboards export RAID devices only
as single volumes, due to the absence of onboard volume management software. RAID array vendors
get around this by selling RAID arrays that have built-in software (which is often Linux-based) that
supports partitioning using an internal LVM package. However, you can do this yourself by layering
Linux LVM over the RAID disks in your systemsin other words, by using software RAID drives as
physical volumes that you then allocate and export to your system as logical volumes. Voilà!
Combining RAID and LVM gives you flexible volume management with the warm fuzzy feeling of
redundancy provided by RAID levels such as 1, 5, and 10. It just doesn't get much better than that.

5.3.4. Creating RAID Devices

RAID devices are created by first defining them in the file /etc/raidtab and then using the mkraid
command to actually create the RAID devices specified in the configuration file.

For example, the following /etc/raidtab file defines a linear RAID array composed of the physical
devices /dev/hda6 and /dev/hdb5:

http://lib.ommolketab.ir

 raiddev /dev/md0
 raid-level linear
 nr-raid-disks 2

 chunk-size 32
 persistent-superblock 1
 device /dev/hda6
 raid-disk 0
 device /dev/hdb5
 raid-disk 1

Executing the mkraid command to create the device /dev/md0 would produce output like the
following:

 # mkraid /dev/md0
 handling MD device /dev/md0
 analyzing super-block
 disk 0: /dev/hda6, 10241406kB, raid superblock at 10241280kB
 disk 1: /dev/hdb5, 12056751kB, raid superblock at 12056640kB

If you are recycling drives that you have previously used for some other purpose on your system, the
mkraid command may complain about finding existing filesystems on the disks that you are allocating
to your new RAID device. Double-check that you have specified the right disks in your /etc/raidtab
file, and then use the mkraid command's f option to force it to use the drives, regardless.

At this point, you can create your favorite type of filesystem on the device /dev/md0 by using the
mkfs command and specifying the type of filesystem by using the appropriate -t type option. After

creating your filesystem, you can then update the /etc/fstab file to mount the new volume wherever
you want, and you're in business.

A linear RAID array is RAID at its most primitive, and isn't really useful now that Linux provides
mature logical volume support. The /etc/raidtab configuration file for a RAID-1 (mirroring) RAID
array that mirrors the single-partition disk /dev/hdb1 using the single partition /dev/hde1 would look
something like the following:

 raiddev /dev/md0
 raid-level 1
 nr-raid-disks 2
 nr-spare-disks 0
 chunk-size 4
 persistent-superblock 1
 device /dev/hdb1
 raid-disk 0
 device /dev/hde1
 raid-disk 1

http://lib.ommolketab.ir

Other RAID levels are created by using the same configuration file but specifying other mandatory
parameters, such as a third disk for RAID levels 4 and 5, and so on. See the references at the end of
this hack for pointers to more detailed information about creating and using devices at other RAID
levels.

An important thing to consider when creating mirrored RAID devices is the
amount of load they will put on your system's device controllers. When creating
mirrored RAID devices, you should always try to put the drive and its mirror on
separate controllers so that no single drive controller is overwhelmed by disk
update commands.

5.3.5. Combining RAID and LVM

As mentioned earlier, RAID devices can't be partitioned. This generally means that you have to use
RAID devices in their entirety, as a single filesystem, or that you have to use many small disks and
create a RAID configuration file that is Machiavellian in its complexity. A better alternative to both of
these (and the point of this hack) is that you can combine the strengths of Linux software RAID and
Linux LVM to get the best of both worlds: the safety and redundancy of RAID with the flexibility of
LVM. It's important to create logical volumes on top of RAID storage and not the reverse, thougheven
software RAID is best targeted directly at the underlying hardware, and trying to (for example)
mirror logical devices would stress your system and slow performance as both the RAID and LVM
levels competed to try to figure out what should be mirrored where.

Combining RAID and LVM is quite straightforward. Instead of creating a filesystem directly on top of
/dev/md0, you define /dev/md0 as a physical volume that can be associated with a volume group
[Hack #46]. You then create whatever logical volumes you need within that volume group, format
them as described earlier in this hack, and mount and use them however you like on your system.

If you decide to use Linux software RAID and LVM and support for these is not
compiled into your kernel, you must remember to update any initial RAM disks
that you use to include the RAID and LVM kernel modules. I generally use a
standard ext2/ext3 partition for /boot on my systems, which is where the
kernel and initial RAM disks live. This avoids boot-strapping problems, such as
when the system needs information from a logical volume or RAID device but
has not yet loaded the kernel modules necessary to get that information.

To expand your storage after creating this sort of setup, you physically add additional new devices to
your system, define the new RAID device in /etc/raidtab (as /dev/md1, etc.), and run the mkraid
command followed by the name of the new device to have your system create and recognize it as a
RAID volume. You then create a new physical volume on the resulting device, add that to your
existing volume group, and then either create new logical volumes in that volume group or use the
lvextend command to increase the size of your existing volumes. Here's a sample sequence of
commands to do all of this (using the mirrored /etc/raidtab from the previous section):

http://lib.ommolketab.ir

 # mkraid /dev/md0
 # pvcreate /dev/md0
 # vgcreate data /dev/md0
 # vgdisplay data | grep "Total PE"
 Total PE 59618
 # lvcreate -n music -l 59618 data
 Logical volume "music" created
 # mkfs -t xfs /dev/data/music
 meta-data=/dev/mapper/data-music isize=256 agcount=16, agsize=3815552 blks
 = sectsz=512
 data = bsize=4096 blocks=61048832, imaxpct=25
 = sunit=0 swidth=0 blks, unwritten=1
 naming =version 2 bsize=4096
 log =internal log bsize=4096 blocks=29809, version=1
 = sectsz=512 sunit=0 blks
 realtime =none extsz=65536 blocks=0, rtextents=0
 # mount /dev/mapper/data-music /mnt/music

These commands create a mirrored RAID volume called /dev/md0 using the storage on /dev/hdb1
and /dev/hde1 (which live on different controllers), allocate the space on /dev/md0 as a physical
volume, create a volume group called data using this physical volume, and then create a logical
volume called music that uses all of the storage available in this volume group. The last two
commands then create an XFS filesystem on the logical volume and mount that filesystem on
/mnt/music so that it's available for use. To make sure that your new logical volume is automatically
mounted each time you boot your system, you'd then add the following entry to your /etc/fstab file:

 /dev/data/music /mnt/music xfs defaults,noatime 0 0

Specifying the noatime option in the /etc./fstab mount options for my logical
volume tells the filesystem not to update inodes each time the files or
directories associated with them are accessed.

Until the Linux LVM system supports mirroring, combining software RAID and LVM will give you the
reliability and redundancy of RAID with the flexibility and power of LVM. Combining software RAID
and LVM on Linux is conceptually elegant and can help you create a more robust, flexible, and reliable
system environment. Though RAID levels that support mirroring require multiple disks and thus
"waste" some potential disk storage by devoting it to mirroring rather than actual, live storage, you'll
be glad that you used them if any of your disks ever fail.

5.3.6. See Also

Linux software RAID HOWTO: http://unthought.net/Software-RAID.HOWTO/Software-

http://unthought.net/Software-RAID.HOWTO/Software-
http://lib.ommolketab.ir

RAID.HOWTO.html

"Create Flexible Storage with LVM" [Hack #46]

http://lib.ommolketab.ir

Hack 48. Create a Copy-on-Write Snapshot of an LVM
Volume

Logical volumes don't just provide a great way to supply flexible storage they can also
provide a great way to preserve files that have changed recently, simplifying restores and
reducing restore requests.

A snapshot is a copy of a logical volume that reflects the contents of that logical volume when the
snapshot was created. With a copy-on-write snapshot, each time a file changes in the original
volume, the contents of the original file (as of the time that the snapshot was made) are preserved in
the snapshot volume. In other words, the complete contents of the original file are copied to the
snapshot volume when you write changes to the file in the original volume. Implementing a copy-on-
write volume to track changed files is like having a built-in backup mechanism, because it provides
you with a point-in-time copy of the filesystem that is contained on your logical volume. This copy of
your filesystem can then be used for retrieving files that have accidentally been deleted or modified.
For system administrators, copy-on-write snapshots can be particularly useful in preserving the
original copies of system configuration files (just in case you ever make a mistake). However, their
real beauty is in preserving copies of volumes containing users' home directories. I've found that
taking a nightly snapshot of the logical volume that contains the users' home directories and
automatically mounting it enables most users to satisfy their own restore requests by simply
retrieving the original copies of lost or incorrectly modified files from the snapshot. This makes them
happier and also lightens my workload. Not a bad combination!

This hack explains how to create a snapshot of an existing volume and mount it, and provides some
examples of how the snapshot preserves your original files when they are modified in the parent
volume.

5.4.1. Kernel Support for Snapshots

Snapshots of logical volumes are created and maintained with the help of the dm_snapshot
filesystem driver. This is built as a loadable kernel module on most modern Linux distributions. If you
cannot find this module or snapshots simply do not work on your system, cd to your kernel source
directory (typically /usr/src/linux) and check your kernel configuration file to make sure this module
is either built in or available as a kernel module, as in the following example:

 $ cd /usr/src/linux
 $ grep i DM-SNAPSHOT .config
 CONFIG_SM_SNAPSHOT=m

http://lib.ommolketab.ir

In this case, the dm-snapshot driver is available as a loadable kernel module. If the value of the
CONFIG_DM_SNAPSHOT configuration variable is n, this option is not available in your kernel. You will
have to rebuild your kernel with this driver built in (a value of y) or as a loadable kernel module (a
value of m) in order to take advantage of logical volume snapshots as discussed in this hack.

Even if the dm_snapshot module is available on your system, you may need to
manually load it using the standard modprobe command, as in the following
example:

 # modprobe dm_snapshot

5.4.2. Creating a Snapshot

This section explains how to create a snapshot of an existing filesystem. The filesystem that you are
taking a snapshot of must reside on a logical volume, as shown by the presence of the device mapper
directory in the following example:

 # df -Ph /test
 Filesystem Size Used Avail Use% Mounted on
 /dev/mapper/testvg-testvol 485M 18M 442M 4% /test

Next we'll use the dd command to create a few sample files in the test volume for use in testing later
in this hack:

 # dd if=/dev/zero of=/test/5M bs=1048576 count=5
 5+0 records in
 5+0 records out
 # dd if=/dev/zero of=/test/10M bs=1048576 count=10
 10+0 records in
 10+0 records out

To create a snapshot of the testvol volume, execute a command like the following:

 # lvcreate -s -L 100M -n testsnap /dev/testvg/testvol
 Logical volume "testsnap" created

In this example, I allocated 100 MB for the snapshot. This means that we can make 100 MB in

http://lib.ommolketab.ir

changes to the original volume before the snapshot is full. Snapshots eventually fill up because they
are preserving old data, and there is no way to purge the files that it has preserved because it is a
snapshot of another volume, not an original logical volume itself. Once a snapshot is 100% used, it
becomes uselessyou must remove it and create a new snapshot.

To confirm that the snapshot was created correctly, use the lvs command to display logical volume
status information:

 # lvs
 LV VG Attr LSize Origin Snap% Move Copy%
 testsnap testvg swi-a- 100.00M testvol 0.02
 testvol testvg owi-ao 500.00M

5.4.3. Mounting a Snapshot

Having a snapshot of a logical volume is fairly useless unless you enable people to access it. To
mount the sample testsnap snapshot, use a standard mount command such as the following:

 # mount /dev/testvg/testsnap /testsnap
 # df -Ph /test*
 Filesystem Size Used Avail Use% Mounted on
 /dev/mapper/testvg-testvol 485M 18M 442M 4% /test
 /dev/mapper/testvg-testsnap 485M 18M 442M 4% /testsnap

Note that a snapshot volume always lives in the same volume group as the
logical volume of which it is a copy.

Just to be sure, you can use the ls command to verify that both the snapshot and the original
volume are available:

 # ls -l /test
 total 15436
 -rw-r--r--1 root root 10485760 Apr 21 23:48 10M
 -rw-r--r--1 root root 5242880 Apr 21 23:48 5M
 drwx------2 root root 12288 Apr 21 23:15 lost+found

 # ls -l /testsnap/
 total 15436
 -rw-r--r--1 root root 10485760 Apr 21 23:48 10M
 -rw-r--r--1 root root 5242880 Apr 21 23:48 5M
 drwx------2 root root 12288 Apr 21 23:15 lost+found

http://lib.ommolketab.ir

Now, create a 50-MB file in the /test filesystem and examine what happens to the /testsnap
filesystem and the snapshot usage (using our favorite lvs command):

 # dd if=/dev/zero of=/test/50M bs=1048576 count=50
 50+0 records in
 50+0 records out
 # df -Ph /test*
 Filesystem Size Used Avail Use% Mounted on
 /dev/mapper/testvg-testvol 485M 68M 392M 15% /test
 /dev/mapper/testvg-testsnap 485M 18M 442M 4% /testsnap
 # ls -l /test
 total 66838

 -rw-r--r--1 root root 10485760 Apr 21 23:48 10M
 -rw-r--r--1 root root 52428800 Apr 22 00:09 50M
 -rw-r--r--1 root root 5242880 Apr 21 23:48 5M
 drwx------2 root root 12288 Apr 21 23:15 lost+found
 # ls -l /testsnap/
 total 15436
 -rw-r--r--1 root root 10485760 Apr 21 23:48 10M
 -rw-r--r--1 root root 5242880 Apr 21 23:48 5M
 drwx------2 root root 12288 Apr 21 23:15 lost+found
 # lvs
 LV VG Attr LSize Origin Snap% Move Copy%
 testsnap testvg swi-ao 100.00M testvol 50.43
 testvol testvg owi-ao 500.00M

Notice that the 50-MB file does not immediately show up in /testsnap, but some of the snapshot
space has been used up (50.43%).

Next, simulate a user accidentally removing a file by removing /test/10M and examine the results:

 # rm /test/10M
 rm: remove regular file `/test/10M'? y
 # df -Ph /test*
 Filesystem Size Used Avail Use% Mounted on
 /dev/mapper/testvg-testvol 485M 58M 402M 13% /test
 /dev/mapper/testvg-testsnap 485M 18M 442M 4% /testsnap

Note that disk space utilization in your snapshot increased slightly:

 # lvs
 LV VG Attr LSize Origin Snap% Move Copy%

http://lib.ommolketab.ir

 testsnap testvg swi-ao 100.00M testvol 50.44
 testvol testvg owi-ao 500.00M

When using the lvs command after significant file operations, you may need to
wait a few minutes for the data that lvs uses to be updated.

If you now need to recover the file 10M, you can get it back by simply copying it out of the snapshot
(to somewhere safe). Say goodbye to most of your restore headaches!

Remember, once the snapshot is 100% full, its contents can no longer be relied upon, because no
new files can be written to it and it is therefore no longer useful for tracking recent updates to its
parent volume. You should monitor the size of your snapshots and recreate them as needed. I find
that recreating them once a week and remounting them keeps them up to date and also usually
prevents "snapshot overflow."

5.4.4. See Also

Snapshot section of the LVM HWOTO: http://www.tldp.org/HOWTO/LVM-
HOWTO/snapshots_backup.html

"Create Flexible Storage with LVM" [Hack #46]

"Combine LVM and Software RAID" [Hack #47]

Lance Tost

http://www.tldp.org/HOWTO/LVM-
http://lib.ommolketab.ir

Hack 49. Clone Systems Quickly and Easily

Once you've customized and fine-tuned a sample machine, you can quickly and easily
deploy other systems based on its configuration by simply cloning it.

Now that Linux is in widespread use, many businesses that don't want to roll their own Linux systems
simply deploy out-of-the-box systems based on supported distributions from sources such as SUSE,
Mandriva, Turbo Linux, and Red Hat. Businesses that need a wider array of system or application
software than these distributions provide often spend significant effort adding this software to their
server and desktop systems, fine-tuning system configuration files, setting up networking, disabling
unnecessary services, and setting up their corporate distributed authentication mechanisms. All of
this takes a fair amount of time to get "just right"it also takes time to replicate on multiple systems
and can be a pain to recreate if this becomes necessary. You do have backups, don't you?

To speed up deploying multiple essentially identical systems, the classic Unix approach that I used to
take in the "bad old days" was to purchase large numbers of disks that were the same size, use the
Unix dd utility to clone system disks containing my tricked out systems to new disks, and then deploy
the cloned disks in each new system of the specified type. This still works, but the downside of this
approach is that the dd utility copies every block on a disk, regardless of whether it's actually in use
or not. This process can take hours, even for relatively small disks, and seems interminable when
cloning today's larger (200-GB and up) drives.

Thanks to the thousands of clever people in the open source community, faster and more modern
solutions to this classic problem are now readily available for Linux. The best known are Ghost for
Linux (a.k.a. g4l, http://sourceforge.net/projects/g4l/), which takes its name from the commercial
Ghost software package from Symantec (formerly Norton) for Windows systems, and partimage, the
popular GNU Partition Image application (http://www.partimage.org). Both of these are open source
software packages that are designed to create compressed images of partitions on your systems and
make it easy for you to restore these partition images on different drives. The Ghost for Linux
software is largely targeted for use on bootable system disks and provides built-in support for
transferring the compressed filesystem or disk images that it creates to central servers using FTP. It
is therefore extremely useful when you need to boot and back up a system that won't boot on its
own. This hack focuses on partimage because it is easier to build, deploy, and use as an application
on a system that is currently running. Of course, you have to have enough local disk space to store
the compressed filesystem images, but that's easy enough to dig up nowadays. Like Ghost for Linux,
you can't use partimage to create an image of a filesystem that is currently mounted, because a
mounted filesystem may change while the image is being created, which would be "a bad thing."

http://sourceforge.net/projects/g4l/
http://www.partimage.org
http://lib.ommolketab.ir

The ability to create small, easily redeployed partition images is growing in
popularity thanks to virtual machine software such as Xen, where each virtual
machine requires its own root filesystem. Though many people use a loopback
filesystem for this, those consume memory on both the host and client.
partimage makes it easy to clone existing partitions that have been customized
for use with Xen, which is something you can easily do while your system is
running if you have already prepared a Xen root filesystem on its own partition.

partimage easily creates optimal, compressed images of almost any type of filesystem that you'd find
on a Linux system (and even many that you would not). It supports ext2fs/ext3fs, FAT16/32, HFS,
HPFS, JFS, NTFS, ReiserFS, UFS, and XFS partitions, though its support for both HFS (the older Mac
OS filesystem) and NTFS (the Windows filesystem de jour) is still experimental.

5.5.1. Building partimage

partimage is easy enough to build, but it has a fair number of dependencies. To build partimage, you
must build or already have installed the following libraries:

liblzo

Used for fast compression. Available from http://www.oberhumer.com/opensource/lzo.

libmcrypt

An encryption library required for newer versions of partimage. Available from
http://mcrypt.hellug.gr/lib/index.html.

libnewt

A text-oriented, semi-graphical interface. Available from http://www.partimage.org/deps/newt-
0.50.tar.gz.

libslang

An internationalization package used by newt. Available from http://www.s-lang.org.

libssl

A Secure Sockets Layer library required for newer versions of partimage. Available from
http://www.openssl.org. Must be built in shared mode after configuring it using the following
configure command:

 # ./configure --prefix=/usr -shared

http://www.oberhumer.com/opensource/lzo
http://mcrypt.hellug.gr/lib/index.html
http://www.partimage.org/deps/newt-
http://www.s-lang.org
http://www.openssl.org
http://lib.ommolketab.ir

libz

Used for gzip compression. Available from http://www.zlib.org.

libbz2

Necessary for bzip2 compression. Available at http://sources.redhat.com/bzip2.

Once you've built and installed any missing libraries, you can configure and compile partimage using
the standard commands for building most modern open source software:

 # ./configure && make install

The fun begins once the build and installation is complete. The final product of the make command is
two applications: partimage, which is the application that you run on a system to create an image of
an existing partition; and partimaged, which is a daemon that you can run on a system in order to be
able to save partition images to it over the network, much like the built-in FTP support provided by
Ghost for Linux.

At the time that this book was written, the latest version of partimage was
0.6.4, which was not 64-bit clean and could not be compiled successfully on
any of my 64-bit systems. If you need to run partimage on a 64-bit system
and no newer version is available by the time that you read this (or if you're
just in a hurry), you can always download precompiled static binaries for your
Linux system. Precompiled static binaries are available from the partimage
download page listed at the end of this hack.

5.5.2. Cloning Partitions Using partimage

Using partimage to create a copy of an existing unmounted partition is easy. Because partimage
needs raw access to partitions, you must execute the partimage command as root or via sudo. As
shown in Figure 5-1, the initial partimage screen enables you to select the partition of which you
want to create an image, the full pathname to which you want to save the partition image, and the
operation that you want to perform (in this case, saving a partition into a file). To move to the next
screen, press F5 or use the Tab key to select the Next button and press Enter.

Figure 5-1. Selecting a partition to image and specifying the output file

http://www.zlib.org
http://sources.redhat.com/bzip2
http://lib.ommolketab.ir

The second partimage backup screen, shown in Figure 5-2, enables you to specify the compression
mechanism that you want to use in the image file. Here you can specify that you want to check the
consistency of the partition that you are imaging before creating the partition image file, which is
always a good idea since you don't want to clone an inconsistent filesystem. You can also optionally
specify that you want to add a descriptive comment to the file, which is often a good idea if you are
going to be saving and working with a large number of partition image files. You can also specify
what partimage should do after the image file has been created: wait for input, quit automatically,
halt the machine, and so on. (The latter is probably only useful if you've booted from a rescue disk
containing partimage in order to image one of the system partitions on your primary hard drive.)
Press F5 to proceed to the next screen.

Note that the existing type of the partition in /dev/hdb6 is ReiserFS. The
existing type of the target partition and the size of the partition that was
backed up do not matter (as long as the target partition can hold the
uncompressed contents of the partition image file). When restoring a partition
image, the partition that is being populated with its contents is automatically
created using the same type of filesystem as was used in the filesystem
contained in the image file, but using all available space on the target partition.

If you specified that you wanted to check the consistency of the filesystem before imaging it,
partimage checks the filesystem and displays a summary screen that you can close after reviewing it
by pressing Enter. partimage then proceeds to create an image file of the specified partition, as
shown in Figure 5-3, displaying a summary screen when the image has been successfully created. If
you specified Wait (i.e., wait for inputthe default) as the action to perform after creating the image
file, you will have to press Enter to close the summary screen and exit partimage.

http://lib.ommolketab.ir

Figure 5-2. Specifying compression methods and other options

Figure 5-3. Creating the partition image file

5.5.3. Restoring Partitions Using partimage

Using partimage to restore a partition image to an existing partition is even simpler than creating the

http://lib.ommolketab.ir

image in the first place. The initial partimage restore screen, shown in Figure 5-4, is the same as that
shown in Figure 5-1. It enables you to identify the partition to which you want to restore the partition
image, the name of the image file that you want to restore from, and the action that you want to
perform (in this case, restoring a partition from a file). To move to the next screen, press F5 or use
the Tab key to select the Next button and press Enter.

Figure 5-4. Selecting a partition to restore to and the partition image file

The second partimage restore screen, shown in Figure 5-5, enables you to run a consistency check
by performing a dry run of restoring from the image file and also enables you to zero out unused
blocks on the target filesystem when it is created. As with the image-creation process, you can also
specify what partimage should do after the image file has been restored: wait for input, quit
automatically, halt or reboot the machine, and so on. Press F5 to proceed to the next screen.

partimage then proceeds to restore the partition image file to the specified partition, as shown in
Figure 5-6, displaying a summary screen by default when the image has been successfully restored.
If you specified Wait (i.e., wait for inputthe default) as the action to perform after creating the image
file, you will have to press Enter to close the summary screen and exit partimage.

Figure 5-5. Specifying restore options and completion behavior

http://lib.ommolketab.ir

Figure 5-6. Restoring the partition image

5.5.4. Summary

Creating partition image files of customized, optimized, and fine-tuned desktop and server partitions
provides a quick and easy way of cloning those systems to new hardware. You can always clone
partitions containing applications, such as /opt,/var,/usr, and /usr/local. (Your actual partition
scheme is, of course, up to you.) If your new systems have the same devices as the system on which
the image file was created, you can even easily copy preconfigured system partitions such as /boot
and / itself. Either way, applications such as partimage can save you lots of time in configuring
additional hardware by enabling you to reuse your existing customizations as many times as you
want to.

http://lib.ommolketab.ir

5.5.5. See Also

"Make Disk-to-Disk Backups for Large Drives" [Hack #50]

Ghost for Linux home page: http://sourceforge.net/projects/g4l/

Ghost for Linux download page: ftp://fedoragcc.dyndns.org

partimage home page: http://www.partimage.org

partimage download page: http://www.partimage.org/download.en.html

System Rescue CD home page: http://www.sysresccd.org

http://sourceforge.net/projects/g4l/
http://www.partimage.org
http://www.partimage.org/download.en.html
http://www.sysresccd.org
http://lib.ommolketab.ir

Hack 50. Make Disk-to-Disk Backups for Large Drives

Today's hard drives are large enough that you could spend the rest of your life backing
them up to tape. Putting drive trays in your servers and using removable drives as a
backup destination provides a modern solution.

Some of us are old, and therefore remember when magnetic tape was the de facto backup medium
for any computer system. Disk drives were small, and tapes were comparatively large. Nowadays,
the reverse is generally true disk drives are huge, and few tapes can hold more than a fraction of a
drive's capacity. But these facts shouldn't be used as an excuse to skip doing backups! Backups are
still necessary, and they may be more critical today than ever, given that the failure of a single drive
can easily cause you to lose multiple partitions and hundreds of gigabytes of data.

Luckily, dynamic device buses such as USB and FireWire (a.k.a. IEEE 1094) and adaptors for
inexpensive ATA drives to these connection technologies provide inexpensive ways of making any
media removable without disassembling your system. Large, removable, rewritable media can truly
simplify life for you (and your operators, if you're lucky enough to have some). A clever combination
of removable media and a good backup strategy will make it easy for you to adapt disk drives to your
systems to create large, fast, removable media devices that can solve your backup woes and also get
you home in time for dinner (today's dinner, even). If you're fortunate enough to work somewhere
that can buy the latest, partial terabyte backup tape technology, I'm proud to know you. This hack is
for the rest of us.

5.6.1. Convenient Removable Media Technologies for Backups

Depending on the type of interfaces available on your servers, an easy way to roll your own
removable media is to purchase external drive cases that provide USB or FireWire interfaces, but in
which you can insert today's largest IDE or SATA disk drives. Because both USB and FireWire support
dynamic device detection, you can simply attach a new external drive to your server and power it up,
and the system will assign it a device identifier. If you don't know every possible device on your
system, you can always check the tail of your system's logfile, /var/log/messages, to determine the
name of the device associated with the drive you've just attached. Depending on how your system is
configured, you may also need to insert modules such as uhci_hcd, ehci_hcd, and usb_storage in
order to get your system to recognize new USB storage devices, or ohci1394 for FireWire devices.

This presumes that the default USB and FireWire controller modules (usbcore
and sbp2, respectively) are already being loaded by your kernel (as well as the
SCSI emulation module, scsi_mod, if you need it), and that what you really
need is support for recognizing hot-plug storage devices.

http://lib.ommolketab.ir

Empty external drive cases with USB and/or FireWire interfaces start at around $35 on eBay or from
your local computer vendor, but can run much higher if you decide you want a case that holds
multiple drives. I was a Boy Scout eons ago and have been a sysadmin for a long time, and I like to
"be prepared." I therefore further hedge my external drive options by putting drive trays in the
external cases, so that I can quickly and easily swap drives in and out of the external cases without
having to look for a screwdriver in a time of crisis.

Figure 5-7 shows a sample drive tray. Drive trays come with a small rack that you mount in a
standard drive bay and a drive tray into which you insert your hard drive. This combination makes it
easy to swap hard drives in and out of the external drive case without opening it. I also put drive
racks in the standard drive bays in my servers so that I can quickly add or replace drives as needed.

If you decide to use USB as the underpinnings of a removable media approach
to backups, make sure that the USB ports on your servers support USB 2.0.
USB 1.x is convenient and fine for printing, connecting a keyboard or mouse,
and so on, when speed is really not a factor. However, it's painfully slow when
transferring large amounts of data, which is the best-case scenario for new
backups and the worst-case scenario for all others.

Figure 5-7. A removable drive rack with drive tray inserted

5.6.2. Choosing the Right Backup Command

Once you have a mechanism for attaching removable storage devices to your system and have a few
large drives ready, it's important to think through the mechanism that you'll use for backups. Most

http://lib.ommolketab.ir

traditional Unix backups are done using specialized backup and restore commands called dump and
restore, but these commands take advantage of built-in knowledge about filesystem internals and
therefore aren't portable across all of the different filesystems available for Linux. (A version of these
commands for ext2/ext3 filesystems is available at http://dump.sourceforge.net.) Another
shortcoming of the traditional dump/restore commands for Unix/Linux is that they reflect their origins
in the days of mag tapes by creating output data in their own formats in single output files (or,
traditionally, a stream written to tape). This is also true of more generic archiving commands that are
also often used for backups, such as tar, cpio, and pax.

If you're using logical volumes, "Create a Copy-on-Write Snapshot of an LVM
Volume" [Hack #48] explained how to create a copy-on-write snapshot of a
volume that automatically picks up a copy of any file that's modified on its
parent volume. That's fine for providing a mechanism that enables people to
recover copies of files that they've just deleted, which satisfies the majority of
restore requests. However, copy-on-write volumes don't satisfy the most basic
tenet of backupsthou shalt not store backups on-site. (There are exceptions,
such as if you're using a sophisticated distributed filesystem such as AFS or
OpenAFS, but that's a special case that we'll ignore here.) The removable
storage approach satisfies the off-site backup rule as long as you actually take
the backup drives elsewhere.

So I can use the same backup scripts and commands regardless of the type of Linux filesystem that
I'm backing up, I prefer to use file-and directory-level commands such as cp rather than filesystem-
level commands. This is easy to do when doing disk-to-disk backups, because the backup medium is
actually a disk that contains a filesystem that I mount before starting the backup. After mounting the
drive, I use a script that invokes cp to keep the backup drive synchronized with the contents of the
filesystem that I'm backing up, using a cp command such as the following:

 # cp dpRux /home /mnt/home-backup

As you can see from this example, the script creates mount points for the backup filesystems that
indicate their purpose, which makes it easier for other sysadmins to know why a specific drive is
mounted on any given system. I use names that append the string backup to the name of the
filesystem that I'm backing uptherefore, /mnt/home-backup is used as a mount point for the backup
filesystem for the filesystem mounted as /home. You're welcome to choose your own naming
convention, but this seems intuitive to me. The cp options that I use have the following implications:

Table 5-1.

http://dump.sourceforge.net
http://lib.ommolketab.ir

d
Don't dereference symbolic links (i.e., copy them as symbolic links rather than copying what they
point to).

p Preserve modes and ownership of the original files in the copies.

R Recursively copy the specified directory.

u Copy files only when the original file is newer than an existing copy, or if no copy exists.

v Display information about each file that is copied.

x Don't follow mount points to other filesystems.

5.6.3. The Code

The actual script that I use to do these sorts of backups is the following (feel free to use or modify it
if you'd like):

 #!/bin/bash
 #
 # wvh's simple backup script using cp
 #

 if [$# != 2] ; then
 echo " Usage: cp_backup partition backup-device"
 echo " Example: cp_backup /home /dev/sda1"
 exit
 fi

 VERBOSE="no"
 STDOPTS="-dpRux"
 LOGFILE="/var/log/backup/simple.log"

 TARGETBASE=`echo $1 | sed -e 's;^\/;;' -e 's;\/;-;g'`
 FULLTARGET="/mnt/"$TARGETBASE"-backup"
 DATE=`date`
 export BACKUPTASK="$1 to $2"

 trap cleanup 1 2 3 6

 cleanup()
 {
 echo " Uh-oh, caught signal: tidying up…" | tee -a $LOGFILE
 DATE=`date`
 umount $FULLTARGET
 echo "Aborted simple backups of $BACKUPTASK $DATE" | tee -a $LOGFILE
 exit 1
 }

 if [! -d /var/log/backup] ; then

http://lib.ommolketab.ir

 mkdir -p /var/log/backup
 fi

 echo "Starting simple backups of $BACKUPTASK at $DATE" | tee -a $LOGFILE

 if [! -d $FULLTARGET] ; then
 echo " Creating mountpoint $FULLTARGET" | tee -a $LOGFILE
 mkdir -p $FULLTARGET
 fi

 MOUNTED=`df | grep $FULLTARGET`

 if ["x$MOUNTED" != "x"] ; then
 echo " Something is already mounted at $FULLTARGET - exiting" | tee -a
 $LOGFILE
 exit
 fi

 mount $2 $FULLTARGET

 if [x$? != "x0"] ; then
 echo " Mount of backup volume $2 failed - exiting" | tee -a $LOGFILE
 exit
 fi

 #
 # This block keeps copies of important system files on all backup volumes
 # in a special directory called .123_admin. They're small, it's only slow
 # once, and I'm paranoid.
 #
 if [! -d $FULLTARGET"/.123_admin"] ; then
 mkdir -p $FULLTARGET"/.123_admin/conf"
 fi
 echo " Backing up system files to $FULLTARGET/.123_admin" | tee -a $LOGFILE
 cd /etc
 cp -u passwd group shadow $FULLTARGET"/.123_admin"
 if [-d sysconfig] ; then
 cp -uR sysconfig $FULLTARGET"/.123_admin"
 fi
 find . -name "*.conf" -print | while read file ; do
 cp -u $file $FULLTARGET"/.123_admin/conf"
 done

 #
 # Now we actually do the cp backups
 #
 DATE=`date`
 echo " Starting actual backup of $BACKUPTASK at $DATE" | tee -a $LOGFILE
 cd $1

 if [x$VERBOSE != "xno"] ; then
 cp $STDOPTS"v" . $FULLTARGET

http://lib.ommolketab.ir

 else
 cp $STDOPTS . $FULLTARGET
 fi

 umount $FULLTARGET

 DATE=`date`
 echo "Completed simple backups of $BACKUPTASK at $DATE" | tee -a $LOGFILE

You'll note that I don't log each file that's being backed up, though that would be easy to do if
running the script in verbose mode by using the tee command to clone the cp command's output to
the logfile. The traditional Unix/Linux dump and restore commands use the file /etc/dumpdates to
figure out which full and incremental backups to use in order to restore a specific file or filesystem,
but this isn't necessary in this case because we're copying the updated files from the specified
partition to a full backup of that partition, not just doing an incremental backup in traditional
Unix/Linux terms.

5.6.4. Running the Code

If you're following along at home, you can use this script by entering it in your favorite text editor,
saving it to a file called cp_backup in /usr/local/bin, making it executable (chmod 755
/usr/local/bin/cp_backup), and then executing it (after making sure that you've mounted a spare
disk as a backup target, and that the spare disk is the same size as or larger than the filesystem that
you want to back up). For example, to back up the partition mounted as /mnt/music on my system
(which contains 100% legally purchased music in digital form) to a 250-GB disk containing the single
partition /dev/sda1, I would use the following command:

 # /usr/local/bin/cp_backup /mnt/music /dev/sda1

You can even automate these sorts of backups by adding an entry that executes them to root's
crontab file. As the root user or via sudo, execute the crontab e command and append a line like the
following to the end of the file:

 0 2 * * * $/usr/local/bin/cp_backup /mnt/music /dev/sda1

This will run the cp_backup script to back up /mnt/music to /dev/sda1 every night at 2 A.M.

5.6.5. Choosing What to Back Up

The previous sections explained why disk-to-disk backups are the smartest choice for low-cost
backups of today's huge disk drives, and advocated file-and directory-level commands as an easy

http://lib.ommolketab.ir

backup mechanism that is independent of the actual format of the filesystem that houses the data
you're backing up. Keeping a large number of spare drives around can be costly, though, so I try to
minimize the number of filesystems that I back up. The traditional Unix/Linux dump command does
this through entries in the /etc/fstab file that identify whether the filesystem should be backed up or
notif the entry in the next-to-last column in /etc/fstab is non-zero, the filesystem will be backed up.
My general rule is to only back up filesystems that contain user data. Standard Linux filesystems such
as / and /usr can easily be recreated from the distribution media or from partition images [Hack
#49]. Since the backup script I use keeps copies of system configuration files, I'm not that worried
about preserving system configuration information.

5.6.6. Summary and Tips

This hack provides an overview of doing modern backups and a script that I use to do them on most
of the systems I deploy. To use this approach, the target devices that you're backing up to have to
have at least as much space as the filesystem that you're backing up, and you'll have to preen or
wipe the daily backup devices every so often (generally after a full backup) in order to minimize the
number of copies of files and directories that have been deleted from the live filesystem but still exist
on the backup drives. If your systems use logical volumes that span multiple disks, you'll have to use
equivalent, multi-disk backup devices, but they can often be simpler, cheaper devices than those that
house your live data. For example, if you're backing up filesystems that live on a RAID array, you
don't have to have a RAID backup deviceyou can get away with sets of drives that are large enough
to hold the data itself, not its mirrors or checksum disks.

http://lib.ommolketab.ir

Hack 51. Free Up Disk Space Now

Moving large files to another partition isn't always an option, especially if running
services are holding them open. Here are a few tips for truncating large files in
emergency situations.

Server consolidation takes planning, and it usually means adjusting the way you set up your OS
installations. Running multiple services on a single OS image means not only increased network
traffic to the same hardware, but increased disk usage for logfiles.

What's more is that administrators' thirst for more data about the services they run has resulted in a
tendency for logging to be more verbose these days than it was in the past, partially because the
tools for analyzing the data are getting better.

However, someday you'll inevitably be faced with a situation where you're receiving pages from some
form of service monitoring agent telling you that your web server has stopped responding to
requests. When you log in, you immediately type df h to see if what you suspect is true, and it isyour
verbose logging has just bitten you by filling up the partition, leaving your web server unable to write
to its logfiles, and it has subsequently stopped serving pages and become useless. What to do?

There are several commands you can use to deal with this. If the service is completely dead, you
could actually move the file to another partition, or simply run rm -f logfile if you know that the

data is not particularly useful. If the service is still running, however, and needs its logfile to be
available in order to do anything useful, truncation may be the way to go. Some admins have a
watchdog script that polls for large files created by noncritical services and truncates them before
they get out of control, without having to restart the service. A command that might appear in a
script to do this (which can also be issued at a command line) is:

 $ cat /dev/null > filename

Obviously, you should run this command as root if the file you are truncating requires elevated
privileges. Why use /dev/null? You could also use the following command:

 $ cat > filename

This is certainly a little shorter, but the downfall here is that it doesn't exit by itselfyou need to
terminate it manually. On the command line, that means typing Ctrl-C to exit.

http://lib.ommolketab.ir

While these commands definitely work, I'd like to show you what I believe to be the shortest file
truncation command known to bash. It goes a little something like this:

 $ > filename

The above command has no dependency on anything except for the redirection operator >.
Essentially, you are redirecting what's on the left of the operator (which is to say, nothing) into the
file in question. What makes this perfectly elegant is that it exits all by itself and leaves behind a file
of zero bytes in length. What more could an admin ask for?

Technically, understanding what has happened above involves knowing how redirection in the shell
works. In the bash shell, if the redirection operator is pointing to the right (i.e., >), what is being
directed is the standard output of whatever is on the left. Since we've specified no command on the
lefthand side, the standard output is nothing, and our redirection operator happily overwrites our
large file, replacing the contents with…nothing.

http://lib.ommolketab.ir

Hack 52. Share Files Using Linux Groups

Traditional Unix/Linux groups have always made it easy to share files among users.

Though this is more of a basic system capability than a hack, creating files that other users can both
read and write can be done in various ways. The easiest way to do this is to make all files and
directories readable and writable by all users, which is the security equivalent of putting a sign on
your computer reading, "Please screw this up." No sysadmin in his right mind would do this, and
most would also want to protect their users against accidentally setting themselves up for a
catastrophe by doing so.

This hack provides an overview of how to use Linux protections to create directories that can be
protected at the group level, but in which all members of that group will be able to read and write
files. This doesn't involve any special scripts or software packages, but provides a simple refresher
that will help you help your users get their work done as efficiently as possible and with as few phone
calls or pages to you as possible.

5.8.1. Linux Protections 101

Basic Linux protection modes, inherited from Unix, provide the ability to protect files and directories
at three basic levels:

Owner-specific permissions that control what the person who owns a file can do

Group-specific permissions that control what other members of the group that owns a file or
directory can do

One more set of permissions that control what anyone else on the system can do

These permissions are reflected in the leftmost entry in the long listing of any file or directory, as in
the following example:

 $ ls -al /home/top-secret
 total 8
 drwxrwx---2 ts top-secret 80 2005-07-04 16:02 .
 drwxr-xr-x 8 root root 184 2005-07-04 15:57 ..
 -rw-r--r--1 wvh top-secret 5386 2005-07-04 16:02 wmd_overview.sxw

This listing shows three sets of Unix permissions: those for the directory in which the command was

http://lib.ommolketab.ir

executed (.), those for that directory's parent directory (..), and those for a file in that directory
(wmd_overview.sxw). The permissions for the directory show that it is owned by the user ts and the
group top-secret, and that the directory can only be read, written to, or searched by the user ts or
anyone in the top-secret group. The permissions entry for the wmd_overview.sxw file say that the file
can be read or written to by its owner (wvh) and by any member of the top-secret group. In practice,
this seems pretty straightforwardanyone in the top-secret group who needs to modify the
wmd_overview.sxw file can just open it, make their changes, and save the file. Because only the user
ts user and people in the top-secret group have access to the directory in the first place, it seems like
a natural place for members of the group to create files that they can share with other group
members.

5.8.2. Setting the umask to Create Sharable Files

The ownership and permissions on files that a user creates are controlled by three things: the user's
user ID when creating the file, the group to which she belongs, and her default protection file
settings, known as her umask. The umask is a numeric value that is subtracted from the permissions
used when creating or saving files or directories.

In the previous example, assume that the users wvh and juser are both members of the top-secret
group. The user juser creates a file called juser_comments.txt in the /home/top-secret directory, but
its protections are set to -rw-r--r--.

This means that no other user in the top-secret group can modify this file unless juser changes the
permissions so that the file is also writable by group members, which can be done with either of the
following commands:

 $ chmod 660 juser_comments.txt
 $ chmod g+w,o-r juser_comments.txt

You find out a user's default umask setting by issuing the umask command, which is a built-in
command in most Linux shells. By default, most users' umasks are set to 0022 so that newly created
files are writable only by their owners, as in the example in the previous paragraph.

Setting the user's umask to 0002 may seem like an easy way to ensure that files are created with
permissions that enable other group members to modify them. This turns off the world-writable bit
for the file, but leaves the group-writable bit set. However, there are two problems with this
approach:

It affects every file that the user creates, including files that are typically kept private, such as
the user's mailbox.

It applies only to the group to which the user belonged at the time the file was created.

If you want to use a group-writable umask setting everywhere, the first of these issues is usually
solved by turning off the executable and read permissions for group members and standard users on
your home directory. (In Unix/Linux permissions, the executable bit on a directory determines
whether the directory is searchable.) This means that while the files being created there are writable

http://lib.ommolketab.ir

by group members, group members can't view the directory or locate the files in the first place.

If you don't want to globally set your umask to create files that are group-writable, another common
approach is to define an alias for file creation (in your shell's startup file, such as ~/.bashrc) that
automatically sets file permissions appropriately, as in the following example:

 alias newfile=`(umask 0002 ; touch $1)`

This command forks a sub-shell, sets the umask within that shell, and then creates the file and exits
the sub-shell. You can do the same sort of thing without forking a sub-shell by manually changing the
file permissions within an alias:

 alias newfile=`touch $1; chmod 660 $1`

Any of these solutions works fine if the group that you want to be able to share files with is the group
that you initially belong to when you log in, known as your login group.

Linux enables users to belong to multiple groups at the same time, in order to let people work on
multiple projects that are protected at the group level. For the purposes of creating files, Linux users
function as members of a single group at any given time, and they can change the group that is in
effect via the newgrp command. However, as explained in the next section, you can also set Linux
directory protections to control the group that owns files created in a particular directory.

5.8.3. Using Directory Permissions to Set Group Membership

Directory permissions in Linux have a different impact on the group ownership of files created in a
directory than they do in other Unix-like operating systems. On BSD-based systems, for example,
files created in a directory are always created with the group ownership of the group that owns the
directory. On Linux systems, files created in a directory retain the group membership of the user that
was in effect at the time the file was created.

However, you can easily force group membership under Linux by taking advantage of a special
permission mode, known as the s-bit. Unix systems have traditionally used this bit to enable users to
run applications that require specific user or group privileges, but when set on a directory, the s-bit
causes any files created in that directory to be created with the group membership of the directory
itself. The s-bit on a directory is set using the command chmod g+s filename. If the s-bit is set on a

specific directory, the x in the group permissions for that directory is replaced with an s.

The following is an example of group ownership after the s-bit has been set on the same /home/top-
secret directory (note the s in the executable bit of the group settings):

 # chmod g+s /home/top-secret
 # ls -al

http://lib.ommolketab.ir

 total 8
 drwxrws---2 ts top-secret 80 2005-07-04 16:02 .
 drwxr-xr-x 8 root root 184 2005-07-04 15:57 ..
 -rw-r--r--1 wvh top-secret 5386 2005-07-04 16:02 wmd_overview.sxw

At this point, creating any file in this directory gives it the same group ownership as the directory, as
in the following example:

 $ touch testfile.txt
 $ ls -al
 total 8
 drwxrws--- 2 ts top-secret 112 2005-07-04 16:06 .
 drwxr-xr-x 8 root root 184 2005-07-04 15:57 ..
 -rw-r--r-- 1 wvh top-secret 0 2005-07-04 16:06 testfile.txt
 -rw-rw-r-- 1 wvh top-secret 5386 2005-07-04 16:02 wmd_overview.sxw

Because of the umask settings discussed earlier, this file was created with a mode that made it both
user- and group-writable, which is exactly what you want.

As you can see, Unix groups provide a useful and flexible mechanism for enabling users to share
access to selected files and directories. They work in the same way on every modern Unix system,
and thus provide a portable and standard protection mechanism.

5.8.4. See Also

"Refine Permissions with ACLs" [Hack #53]

http://lib.ommolketab.ir

Hack 53. Refine Permissions with ACLs

Access control lists bring granular permissions control to your files and directories.

Standard Unix/Linux file permissions are fine if you have a relatively small number of users with
limited requirements for sharing and working on the same files. ("Share Files Using Linux Groups"
[Hack #52] explained the classic approaches to enabling multiple users to work on the same files.)
However, using groups to control shared access requires the intervention of a system administrator
and can result in incredibly huge and complex /etc/group files. This makes it difficult to set the group
memberships for any new accounts correctly and requires frequent sysadmin intervention as users
leave or move between projects. ACLs, which are supported in most modern Linux distributions,
eliminate this hassle by providing a fine-grained set of permissions that users can impose on their
own directories, going far beyond the permissions and protections provided by standard Linux
groups.

Simply put, an ACL is a list of Linux users and/or groups and the access rights that they have to a
specific file or directory. ACLs enable you to define totally granular permissions such as "only the
users wvh and alex can write this file, but the user juser can at least read it" without requiring that
you create any special-purpose Linux groups.

ACLs as implemented on Linux systems today are defined by the draft Portable Operating System
Interface (POSIX) standard 1003.1e, draft 17, from the Institute of Electrical and Electronics
Engineers (IEEE). This is not an official standard, but it is publicly available and has become the
foundation for ACL implementations for modern operating systems such as Linux. (See the end of
this hack for pointers to this document on the Web.)

5.9.1. Installing and Activating ACL Support

To use ACLs to enhance the granularity of permissions on your system, you must have several things
in place:

Your kernel must be compiled with both enhanced attribute and ACL support for the type(s) of
filesystem(s) that you are using.

Your filesystem(s) must be mounted with extended attribute and ACL support enabled [Hack
#54].

You must install the user-space ACL utilities (chacl, getfacl, and setfacl) in order to examine and
set ACLs.

http://lib.ommolketab.ir

5.9.1.1. Kernel ACL support.

Most modern Linux distributions provide support for ACLs in the default kernels that they deliver. If
you have access to the configuration file used to build your kernel, you can use the grep utility to
check to make sure that the POSIX_ACL configuration variable associated with the types of filesystems
that you are using is set to y, as in the following example:

 $ grep POSIX_ACL /boot/config-2.6.8-24.16-default
 EXT2_FS_POSIX_ACL=y
 EXT3_FS_POSIX_ACL=y
 REISERFS_FS_POSIX_ACL=y
 JFS_POSIX_ACL=y
 XFS_POSIX_ACL=y

If the POSIX_ACL value associated with any of the types of filesystems you are using is set to n, you
will have to enable it, save the updated kernel configuration, and recompile your kernel in order to
use ACLs. To enable the appropriate POSIX_ACL value, you will also have to enable extended
attributes for that filesystem. Extended attributes must be separately enabled for each type of
filesystem you are using (with the exception of the XFS journaling filesystem, which inherently
supports them). The kernel configuration options that enable them are located on the File Systems
pane in your favorite kernel configuration editor (make xconfig, make menuconfig, and so on). See
"Make Files Easier to Find with Extended Attributes" [Hack #54] for more information about
enabling and using extended attributes.

5.9.1.2. fstab ACL support.

Once you are running a kernel with support for POSIX ACLs, you will also need to make sure that the
filesystems in which you want to use ACLs are mounted with ACL support enabled. Check your
/etc/fstab file to verify this. Filesystems mounted with ACL support will have the acl keyword in the
mount options portions of their entries in the file. In the following example, the reiserfs filesystem on
/dev/sda6 is mounted with ACL support, while the ext3 filesystem on /dev/hda1 is not:

 /dev/sda6 /usr reiserfs noatime,acl,user_xattr 1 2
 /dev/hda1 /opt2 ext3 defaults 0 0

If your kernel supports ACLs, you can edit this file to enable ACL support when you initially mount a
filesystem by adding the acl keyword to the mount options for that filesystem, as in the following
example:

 /dev/hda1 /opt2 ext3 defaults,acl 0 0

http://lib.ommolketab.ir

After updating this file, you can enable ACL support in currently mounted filesystems without
rebooting by executing a command like the following, which would remount the example ext3
filesystem /dev/hda1, activating ACL support:

 # mount -o remount,acl /dev/hda1

5.9.1.3. User-space ACL support.

The last step in using ACLs on your system is to make sure that the user-space applications that
enable you to display and set ACLs are present. If your system uses a package management system,
you can query that system's database to see if the acl package and its associated library, libacl, are
installed. The following is an example query on a system that uses RPM:

 # rpm -qa | grep acl
 acl-2.2.25-2
 libacl-2.2.25-2

You can also look for the utilities themselves, using the which command:

 # which getfacl
 /usr/bin/getfacl
 # which setfacl
 /usr/bin/setfacl
 # which chacl
 /usr/bin/chacl

If the acl package is not installed and the binaries are not present on your system, you can find the
source code or binary packages for your system by following links from http://acl.bestbits.at. You'll
need to install these packages before continuing.

5.9.2. Overview of Linux ACLs and Utilities

Linux supports two basic types of ACLs:

ACLs used to control access to specific files and directories

Per-directory ACLs (known as mask ACLs), which define the default ACLs that will be assigned
to any files created within that directory

http://acl.bestbits.at
http://lib.ommolketab.ir

Conversationally and in print, ACLs are represented in a standard format consisting of three colon-
separated fields:

The first field of an ACL entry is the entry type, which can be one of the following: user (u),
group (g), other (o), or mask (m).

The second field of an ACL entry is a username, numeric UID, group name, or numeric GID,
depending on the value of the first field. If this field is empty, the ACL refers to the user or
group that owns the file or directory. mask and other ACLs must have an empty second field.

The third field lists the access permissions for the ACL. These are represented in two forms:

A standard Unix-like permissions string or "rwx" (read, write, and execute permissions,
where execute permissions on directories indicate the ability to search those directories).
Each letter may be replaced by a dash (-), indicating that no access of that type is
permitted. These three permissions must appear in this order.

A relative symbolic form that is preceded by a plus sign (+) or a caret symbol (^), much
like the symbolic permissions that are designed for use with the chmod command by people
who are octally challenged. In this ACL representation, the + or ^ symbols are followed by
single r, w, or x permission characters, indicating that these permissions should be added
to the current set for a file or directory (+) or removed from the current set (^) for a
given file or directory.

When listed or stored in files, different ACL entries are separated by white space or new lines.
Everything after a # character to the end of a line is considered a comment and is ignored.

The Linux acl package provides the following three utilities for ACL creation, modification, and
examination:

chacl

Lets you change, examine, or remove user, group, mask,or other ACLs on files or directories

getfacl

Lets you examine file ACLs for files and directories

setfacl

Lets you set file and directory ACLs

5.9.3. Displaying Current ACLs

As an example of using ACLs, let's use a directory with the following contents and permissions:

http://lib.ommolketab.ir

 $ ls -al
 total 49
 drwxr-xr-x 2 wvh users 80 2005-07-04 13:59 .
 drwxr-xr-x 106 wvh users 5288 2005-07-04 14:47 ..
 -rw-r-----1 wvh users 44032 2005-07-04 13:58 resume.xml

The default ACL for this directory is the following:

 $ getfacl .
 # file: .
 # owner: wvh
 # group: users
 user::rwx
 group::r-x
 other::r-x

The default ACL for the file resume.xml is the following:

 $ getfacl resume.xml
 # file: resume.xml
 # owner: wvh
 # group: users
 user::rw-
 group::r--
 other::---

The default ACL for a file in a directory for which a default ACL has not been set reflects the default
Unix permissions associated with the user that created the file. The default Unix permissions for a file
are based on the setting of the umask environment variable [Hack #52].

5.9.4. Setting ACLs

There are three common ways to change the ACL of a file or directory:

By setting it explicitly using the setfacl command, which overwrites any existing ACL settings

By using the setfacl command with the -m (modify) option to modify an existing ACL

By using the chacl command to modify an existing ACL

For the examples in this hack, I'll use the chacl command to change ACLs, since this doesn't

http://lib.ommolketab.ir

overwrite the existing ACL. It also provides a bit more information about how ACLs really work than
the shorthand version of the setfacl command.

For example, to add the user alex as someone who can read the file resume.xml, I would use a chacl
(change ACL) command like the following:

 $ chacl u::rw-,g::r--,o::---,u:alex:r--,m::rw- resume.xml

No, that isn't static from a bad modem or Internet connection (though it probably is a command in
the old TECO editor)that's the way ACLs look in real life. As mentioned previously, ACLs consist of
three colon-separated fields that represent the permissions of the user (the owner of the file), group
(the group ownership of the file), and others. When changing an ACL with the chacl command, you
need to first specify the ACL of the file and then append the changes that you want to make to that
ACL. The u::rw-,g::r--,o::--- portion of the ACL in this example is the existing ACL of the file; the
u:alex:r--,m::rw- portion specifies the new user that I want to add to the ACL for that file and the
effective rights mask to be used when adding that user. The effective rights mask is the union of all
of the existing user, group, and other permissions for a file or directory. You must specify a mask
when adding a random user to the ACL for a file.

Using the getfacl command to retrieve the ACL for my resume shows that the user alex has indeed
been added to the list of people who have access to the file:

 $ getfacl resume.xml
 # file: resume.xml
 # owner: wvh
 # group: wvh
 user::rwx
 group::r--
 other::---
 user:alex:r--
 mask::rw-

Though the content is the same, the format of the output of the getfacl
command depends on the version of the ACL suite that is being used on your
Linux system.

Using the ls -al command shows that the visible, standard Unix file and directory permissions
haven't changed:

 $ ls -al
 total 49
 drwxr-xr-x 2 wvh users 80 2005-07-04 13:59 .
 drwxr-xr-x 106 wvh users 5288 2005-07-04 14:47 ..

http://lib.ommolketab.ir

 -rw-r-----1 wvh users 44032 2005-07-04 13:58 resume.xml

You can verify that the user alex now has access to the file by asking him to attempt to read the file.
(If you know his password, you can check this yourself by su'ing to that user or by connecting to
your machine over the network, logging in as alex, and examining the file using a text editor or a
command such as more or cat.)

Even more interesting and useful than just giving specific individuals read access to files is the ability
to give specific users the ability to write to specific files. For example, to add the user alex as
someone who can both read and write to the file resume.xml, I would use a chacl command like the
following:

 $ chacl u::rw-,g::r--,o::---,u:alex:rw-,m::rw- resume.xml

Using the getfacl command shows that the user alex now has both read and write access to the file:

 $ getfacl resume.xml
 # file: resume.xml
 # owner: wvh
 # group: users
 user::rw-
 group::rw-
 other::---
 user:alex:rw-
 mask::rw-

As before, you can verify that the user alex now has both read and write access to the file by asking
him to attempt to read and write to the file. (If you know the test user's password, you can check
this yourself by connecting to your machine over the network, logging in as that user, and editing
and saving the file using a text editor.)

I'm a big fan of ACLs, primarily because they give knowledgeable users total control over who can
access their files and directories. ACLs remove one of the main administrative complaints about Unix
systems: the need for root access to set up granular permissions. As a fringe benefit, they also
silence one more argument for using systems such as Windows 2000/2003/XP.

5.9.5. See Also

"Share Files Using Linux Groups" [Hack #52]

"Make Files Easier to Find with Extended Attributes" [Hack #54]

http://lib.ommolketab.ir

POSIX.1e draft specification: http://wt.xpilot.org/publications/posix.1e

POSIX ACLs on Linux: http://www.suse.de/~agruen/acl/linux-acls/online

http://wt.xpilot.org/publications/posix.1e
http://www.suse.de/~agruen/acl/linux-acls/online
http://lib.ommolketab.ir

Hack 54. Make Files Easier to Find with Extended
Attributes

Define file- and directory-specific metadata to make it easier to find critical data.

Most projects and users organize their files by taking advantage of the inherently hierarchical nature
of the Linux filesystem. Conceptually related items are given meaningful names and stored in
hierarchical directories with equally memorable or evocative names. But unfortunately, file and
directory names and structures that were memorable at the time of creation are not always equally
memorable a month or two later, when you're desperately looking for a specific file.

Extended attributes are name/value pairs that you can associate with any file or directory in a Linux
filesystem. These are a special type of metadata, which is the term for data about data, such as
modification and access times, user and group ownership, protections, and so on. Extended attributes
can be associated with any object in a Linux filesystem that has an inode. The names of extended
attributes can be up to 256 bytes long, are usually standard ASCII text, and (like standard Linux
strings) are terminated by the first NULL byte. The value of an attribute can be up to 64 KB of
arbitrary data in any format.

Extended attributes are often used for system purposes, by tagging files with metadata about who
can access them, and under what circumstances. This hack discusses how extended attributes can be
extremely useful for any user or system administrator who wants to tag important files and
directories with information that makes them easier to find, work with, track modifications to, and so
on.

5.10.1. Getting and Installing Extended Attribute Support

Extended attributes are currently supported by all major Linux filesystems for desktop and server
use, including ext2, ext3, reiserfs, JFS, and XFS. They are not currently supported in NFS filesystems,
even if they are being set and used in the actual filesystem being exported via NFSthe code that
transfers file data and metadata across the network does not currently understand extended
attributes.

Like the ACLs [Hack #53], using extended attributes also requires that your kernel supports them,
that the filesystems in which you want to use them are mounted with extended attribute support,
and that the user-space utilities for displaying and setting the values of different extended attributes
(attr, getfattr, and setfattr) are compiled and installed on your system.

http://lib.ommolketab.ir

The JFS and XFS filesystems automatically support extended attributes in the
2.6 Linux kernel. If you are using an earlier version of the kernel, see
http://acl.bestbits.at for links to any patches needed to add extended attribute
support to the kernel you are using.

5.10.1.1. Configuring your kernel for extended attributes.

Most modern Linux distributions provide support for extended attributes in the default kernels that
they deliver. If you have access to the configuration file used to build your kernel, you can use the
grep utility to check that the FS_XATTR configuration variable associated with your ext2, ext3,or
reiserfs filesystem is set to y, as in the following example:

 $ grep FS_XATTR /boot/config-2.6.8-24.16-default
 CONFIG_EXT2_FS_XATTR=y
 CONFIG_EXT3_FS_XATTR=y
 CONFIG_REISERFS_FS_XATTR=y

If the FS_XATTR value associated with the type of filesystem you are using is set to n, you will have to
enable that configuration variable, save the updated kernel configuration, and recompile your kernel
in order to use extended attributes. Extended attributes must be separately enabled for each type of
filesystem you are using (with the exception of the XFS journaling filesystem, which inherently
supports them). The kernel configuration options that enable them are located on the File Systems
pane in your favorite kernel configuration editor (make xconfig, make menuconfig, and so on).

5.10.1.2. Configuring fstab for extended attributes.

Once you are running a kernel with support for extended attributes, you will need to make sure that
the filesystems in which you want to use extended attributes are mounted with extended attribute
support enabled. Check your /etc/fstab file to verify this. Filesystems mounted with extended
attribute support will have the user_ xattr keyword in the mount options portions of their entries in
the file. In the following example, the reiserfs filesystem on /dev/sda6 is mounted with extended
attribute support, while the ext3 filesystem on /dev/hda1 is not:

 /dev/sda6 /usr reiserfs noatime,user_xattr 1 2
 /dev/hda1 /opt2 ext3 defaults 0 0

If your kernel supports extended attributes, you can edit this file to enable extended attribute
support when you initially mount a filesystem by adding the user_xattr keyword to that filesystem's
mount options, as in the following example:

http://acl.bestbits.at
http://lib.ommolketab.ir

 /dev/hda1 /opt2 ext3 defaults,user_xattr 0 0

After updating this file, you can enable extended attribute support in currently mounted filesystems
without rebooting by executing a command like the following, which would enable extended attribute
support in the example ext3 filesystem /dev/hda1:

 # mount -o remount,user_xattr /dev/hda1

5.10.1.3. Installing user-space applications for extended attributes.

The last step in using extended attributes on your system is to make sure that the user-space
applications that enable you to display and set attributes are present. The Linux attr package
provides the following three utilities for extended creation, modification, and examination:

attr

Lets you set, get, or remove an extended attribute on any filesystem object(s) represented by
an inode (files, directories, symbolic links, and so on)

getfattr

Lets you examine extended attributes for any filesystem object(s)

setfacl

Lets you set extended attributes for any filesystem object(s)

If your system uses a package management system, you can query that system's database to see if
the attr package and its associated library, libattr, are installed. The following is an example query on
a system that uses RPM:

 # rpm -qa | grep attr
 libattr-2.4.16-2
 attr-2.4.16-2

You can also look for the utilities themselves, using the which command:

 # which attr

http://lib.ommolketab.ir

 /usr/bin/attr
 # which getfattr
 /usr/bin/getfattr
 # which setfattr
 /usr/bin/setfattr

If the attr package is not installed and the binaries are not present on your system, you can find the
source code or binary packages for your system by following links from http://acl.bestbits.at. You
must install this package before continuing with the rest of this hack.

5.10.2. Displaying Extended Attributes and Their Values

Both the attr and getfattr commands enable you to display the name and value of a specific
extended attribute on a given file or files. To look for the value of the extended attribute backup for
the file hack_attrs.txt, I could use either of the following commands:

 $ attr -g backup hack_attrs.txt
 Attribute "backup" had a 3 byte value for hack_attrs.txt:
 yes

 $ getfattr -n user.backup hack_attrs.txt
 # file: hack_attrs.txt
 user.backup="yes"

As you'd expect, querying the attributes of a file that does not have any returns nothing.

Note that these two commands require slightly different attribute syntax, which
is confusing at best. User-defined extended attributes in the ext2, ext3, JFS,
and reiserfs filesystems are always prepended with the string "user". The attr
command is an older command for retrieving extended attributes and is
primarily intended for use with extended attributes in the XFS journaling
filesystem; therefore, it follows slightly different (older) syntax conventions. As
a general rule, you should always use the getfattr command to accurately
query extended attributes across different filesystems.

It is sometimes useful to query all of the extended attributes on a specific file, which you can do with
the getfattr command's -d option:

 $ getfattr -d hack_attrs.txt
 # file: hack_attrs.txt
 user.backup="yes"
 user.status="In progress"

http://acl.bestbits.at
http://lib.ommolketab.ir

If you are only interested in seeing the value of an extended attribute without any additional
explanation, you can use the getfattr command's --only-values option, as in the following
example:

 $ getfattr -n user.backup --only-values hack_attrs.txt
 yes$

Note that the output of this command does not have a newline appended, so any scripts from which
you invoke this command must take into account the fact that its output will appear to include the
bash prompt of the user who executed the script (here, a $).

5.10.3. Setting Extended Attributes

System capabilities such as SELinux make internal use of extended attributes. These attributes are
not viewable or settable by normal users. However, normal users can take advantage of extended
attributes to provide convenient meta-information about the files that they are working on,
simplifying searching and eliminating the "now what was I working on?" problem.

Setting extended attribute values can be done with either the attr or setfattr commands. The
following are examples of setting the user.status attribute to the value "In progress" using each of
these commands:

 $ attr -s status -V "In Progress" hack_attrs.txt
 Attribute "status" set to a 11 byte value for hack_attrs.txt:
 In Progress

 $ setfattr -n status -v "In progress" hack_attrs.txt
 setfattr: hack_attrs.txt: Operation not supported

 $ setfattr -n user.status -v "In progress" hack_attrs.txt

As you'll note from the second of these examples, the setfattr command explicitly requires that you
identify the attribute you are setting as being a user-defined extended attribute. Attempting to set an
attribute in any other attribute namespace, or to create a namespace, results in the "Operation not
supported" error shown in this example. The third example command shows the correct syntax for
setting a user-defined extended attribute with setfattr.

5.10.4. Removing Extended Attributes

http://lib.ommolketab.ir

The ability to set user-defined extended attributes isn't completely useful for associating user-defined
metadata unless you can also remove existing attributes. You can do this with both the attr and
setfattr commands, though the setfattr command is recommended because its syntax is
consistent with the values returned by the getfattr command. For example, you can remove the
user.status attribute from the file hack_attrs.txt using either of the following commands:

 $ attr -r status hack_attrs.txt
 $ setfattr -x user.status hack_attrs.txt

5.10.5. Searching Using Extended Attributes

Extended attributes are inherently interesting, but the proof of their value is in using them cleverly.
On my systems, I use a shell script called find_by_attr to query extended attributes and display a list
of files that contain a specific extended attribute. The script is the following:

 #!/bin/bash
 #
 # Simple script to find files by attribute and value
 # - Bill von Hagen (wvh)
 #

 if [$# -lt 3] ; then
 echo "Usage: find_by_attr attribute value files…"
 exit -1
 fi

 attr=$1
 val=$2

 shift 2

 #
 # Set IFS to TAB to allow files with space in their names
 #
 IFS=' '

 for file in $* ; do
 result=`getfattr -d "$file" | grep $attr | \
 sed -e "s;user\.$attr=;;" -e "s;$attr=;;" -e 's;";;g'`
 if [x$result = x$val] ; then
 echo $file
 fi

 done

http://lib.ommolketab.ir

Using the getfattr command's -d option to dump all file/directory attributes and then searching the
output for the attribute specified as the first argument with a value of the second argument may
seem like overkill, but I did this to eliminate error messages from files on which the specified
attribute has not been set.

You can invoke this script either from the command line, by specifying explicit filenames, or as the
target of a find command, as in the following example:

 $ find . -exec find_by_attr backup yes {} \; 2>/tmp/find_by_attr.$$.err

Note that you'll want to redirect standard error to a temporary file (as shown here) or to /dev/null in
order to eliminate any noise from filenames that can't be resolved, such as bad symlinks and the like.

I use this script in combination with the user.backup extended attribute that I used in the previous
command examples to identify critical files that I back up daily. This makes it easy for me to use the
script as input to a backup command to save an archive of the files that I am actively working on.

Extended attributes are powerful tools that are immediately useful to users and system
administrators. They serve as the foundation for Linux desktop search tools such as the GNOME
project's Beagle tool, and they provide an infinitely flexible way of passing information to other
programs, identifying specific files to multiple users, and accomplishing many other tasks. Once you
become familiar with using extended attributes, you'll find yourself using them in more and varied
ways. As SUSE says, "Have a lot of fun!"

http://lib.ommolketab.ir

Hack 55. Prevent Disk Hogs with Quotas

Wasting disk space can cost you resources and bloat backup times and storage
requirements. Setting up disk quotas provides a quick solution.

Every network has one of those users who's the quintessential digital packrat, storing files and emails
for years and years, regardless of their content or relative unimportance. With the growing popularity
of digital media files that can range from 3 MB to 3 GB in size, these users can fill a disk to capacity
in very little time. To prevent these types of users from crashing your server, consider implementing
disk quotas to keep them in line.

5.11.1. Setting Up Disk Quotas

There are a few steps to setting up quotas, but it's a relatively simple process. After setting up
quotas, you'll either have to reboot your system or manually unmount and remount any partitions to
which you've added quotas. Adding and configuring disk quotas is best done while the system is in
single-user mode or otherwise down for maintenance.

Let's first explore the basic concepts of disk quotas, which are soft and hard limits. The soft limit is
the maximum number of disk blocks or inodes that the user can use. Once this number is exceeded,
the user is warned and allowed to continue for a specified grace period. Once that grace period
expires, the user may no longer allocate any additional blocks or inodes (depending on how you have
the quota configured).

Hard limits are indeed hard. A hard limit may never be exceeded, and once it's reached the user will
automatically be barred from using further disk space.

5.11.2. Installing the Quota Software

Your system may or may not already have the software for implementing and managing disk quotas
installed. It is usually located in /sbin or /usr/sbin, depending on your Linux distribution. To check, su
to root and use the which command to determine if the quotacheck package is installed, as in the
following example:

 # which quotacheck
 /sbin/quotacheck

If you get a response from the which command (as shown above), you have the quota software

http://lib.ommolketab.ir

installed and can proceed to the next step. If you don't already have it, the latest version can be
found at http://www.sourceforge.net/projects/linuxquota. The software installs with the typical
commands:

 # ./configure, make, make install

Alternatively, if you're using a package- or RPM-based distribution, you can install the quota software
via your package manager. For instance, with Ubuntu or Debian you can simply issue the following
command:

 $ sudo apt-get install quota

This will install and configure the software for you. SUSE users can use YaST to accomplish the same
thing. These days, many distributions come with quota enabled by default, though, so most likely you
won't have to worry about it.

5.11.3. Entering Single-User Mode

To configure your partitions to work with quotas, you'll need to bring the system into single-user
mode. If this is not possible for you, at the very least you'll want to make sure that no one is logged
in when you start this process, and that the system will remain in a quiet state [Hack #3]. To bring
the system down to single-user mode, physically log into the console and issue the following
command:

 # init 1

This will bring the system into single-user mode, thereby disabling all network services (such as ssh
and ftp).

5.11.4. Editing /etc/fstab

Navigate to the /etc directory. Fire up vi (or your favorite text editor) and edit the file /etc/fstab. The
contents of an /etc/fstab file from a typical one-disk system might look something like the following:

 LABEL=/ / ext3 defaults 1 1
 LABEL=/boot /boot ext3 defaults 1 2
 none /dev/pts devpts gid=5,mode=620 0 0
 none /dev/shm tmpfs defaults 0 0
 LABEL=/data /data ext3 defaults 1 3

http://www.sourceforge.net/projects/linuxquota
http://lib.ommolketab.ir

 none /proc proc defaults 0 0
 none /sys sysfs defaults 0 0
 LABEL=SWAP-hda2 swap swap defaults 0 0

The only change that you need to make to this file is to add the usrquota option next to the partitions
on which you wish to enable disk quotas. Once you've done that, you're done editing the fstab
filesimply save it and exit your text editor to commit your changes to the file.

Next, you'll need to remount your filesystems so that your changes to the filesystem mount options
will take effect. If, for example, you want to remount the /data partition, you can do this by simply
issuing the following command:

 # mount o remount /data

Once the partition is remounted, you're ready to revert back into your original runlevel. To do so,
issue the command init 5 or init 3, depending on what your original runlevel was.

5.11.5. Initializing the Quota Configuration Files

You'll then need to create two files in the root of each partition to which you've just added quotas.
These two files are named aquota.user for userbased disk quotas and aquota.group for group-based
quotas. You can create both of these files using the touch command. Make sure you change the
access permissions with the command chmod 600. This will help prevent your disk quotas from being
circumvented.

Once you've created these files, you'll need to import your user and group data into the quota files
that you just created in each filesystem. This might take a long time if you had to do it by hand, but
thankfully there's an automated utility to do it for you:

 # quotacheck vguam

The options tell the quotacheck command to be verbose (v), to check group (g) and user (u) quotas
on all (a) filesystems on which quotas have been enabled, and not to try to mount (m) the filesystem
as read-only in order to do the check.

The first time you use the quotacheck command, it might return an error telling you that it can't save
the quota settings. This is normal and can safely be ignored.

5.11.6. Configuring Your Quotas

Now that you've created and initialized the files, you may now edit the quota information. This can be

http://lib.ommolketab.ir

accomplished with the edquota command. This command offers several options that are of interest to
us. The three most prominent are u, g, and t. Using any of these options launches your default text
editor to edit the relevant configuration files. The u flag allows you to edit the quotas on a per-user
basis, while the g flag acts on a per-group basis (the t option will be explained in just a bit). Both of
these configuration files are largely the same, so we'll just look at the user file here:

 $ sudo edquota -u jdouble
 Disk quotas for user jdouble (uid 1001):
 Filesystem blocks soft hard inodes soft hard
 /dev/hda1 100000 200000 250000 127 0 0

As you can see, there are two main ways in which you may limit users: via the total number of blocks
they can utilize, or via the total number of inodes (i.e., the total number of files the user may have
on the partition). I tend to use blocks when allocating disk space, but you may of course do as you
see fit. While assigning quotas, keep in mind that 1,000 blocks equals 1 MB. In the example above,
you can see that the user jdouble is currently using 100 MB of space and has a soft limit of 200MB
and a hard limit of 250MB. The listing under inodes tells us that jdouble has 127 files on the
filesystem /dev/hda1. You might also note that as the hard and soft limits after the inodes listing are
set to zero, there is no quota for the total number of files the user can have.

The edquota t command allows you to configure grace periods for your users. Grace periods are
periods of time during which users are allowed to temporarily violate their disk quotas while they
receive warnings regarding their disk utilization. Once the grace period has ended, the user may no
longer violate her quota, and the soft-limit quota is enforced. You'll see something like this when you
run this command:

 # edquota -t
 Grace period before enforcing soft limits for users:
 Time units may be: days, hours, minutes, or seconds
 Filesystem Block grace period Inode grace period
 /dev/hda1 3days 99days

Be sure to set something reasonable here so that your users have at least a few minutes to free up
some space if they accidentally overrun their quotas.

Even with quotas enabled, you'll probably be interested to know which of your users are utilizing the
most disk space. Thankfully, there's a built-in feature to handle that as well. The repquota command,
which takes a directory or filesystem as an argument, will give you a brief report of your users' total
disk utilization, as well as their configured hard and soft limits.

 # repquota /
 *** Report for user quotas on device /dev/hda1
 Block grace time: 3days; Inode grace time: 99days
 Block limits File limits
 User used soft hard grace used soft hard grace

http://lib.ommolketab.ir

 --
 root -- 20932272 0 0 73865 0 0
 daemon -- 44 0 0 4 0 0
 man -- 396 0 0 21 0 0
 news -- 4 0 0 1 0 0
 postfix -- 88 0 0 45 0 0
 jdouble -- 100000 200000 250000 127 0 0
 klog -- 8 0 0 3 0 0
 kida -- 2800 0 0 181 0 0
 cupsys -- 72 0 0 11 0 0
 fetchmail-- 4 0 0 1 0 0
 hal -- 8 0 0 2 0 0

Through this report, you can see the disk utilization of every user on the system, including our test
case jdouble. Any user with the default 0 under the hard or soft column is not subject to disk quotas.

By using the report feature within a cron job, you can be updated on disk utilization as often as you'd
like. I have this information emailed to me every weekday morning so that I can keep track of my
users and hunt down those pesky disk hogs. To do this, I added the following entry to root's crontab
file using the crontab e command as root:

 0 5 * * * repquota -a

This tells the cron processes to check all filesystems on which quotas are enabled at 5 A.M. every day
and to mail the output of the repquota command to root. Configuring disk quotas can be a lifesaver if
you run a heavily used, multi-user server and can be made even more powerful if you take
advantage of the group features of disk quotas. The Linux quota system's group mechanism provides
a way of creating different levels of users, from those that may only need 10MB of space all the way
up to those who want (and actually need) gigabytes of space.

5.11.7. See Also

man edquota

man repquota

man quota

man quotacheck

man quotactl

Brian Warshawsky

http://lib.ommolketab.ir

Chapter 6. Standardizing, Sharing, and
Synchronizing Resources

Section 6.1. Hacks 5662: Introduction

Hack 56. Centralize Resources Using NFS

Hack 57. Automount NFS Home Directories with autofs

Hack 58. Keep Filesystems Handy, but Out of Your Way

Hack 59. Synchronize root Environments with rsync

Hack 60. Share Files Across Platforms Using Samba

Hack 61. Quick and Dirty NAS

Hack 62. Share Files and Directories over the Web

http://lib.ommolketab.ir

6.1. Hacks 5662: Introduction

Once you finally get over the hump of setting up centralized access to various resources in your
environment, you won't know how you lived without it. Maintaining resources in a central location for
use by the masses saves endless numbers of trips to peoples' offices, and it can save you money
because you'll only have to back up a central file server instead of its individual clients.

This chapter will delve into various methods of file sharing, each applicable in different circumstances.
For web farms, an NFS server can store the web pages, making backups and repurposing a breeze.
For end user file access, Samba can provide cross-platform, authenticated file sharing. For web-
based collaboration, have a look at WebDAV.

http://lib.ommolketab.ir

Hack 56. Centralize Resources Using NFS

Make recovering from disasterand preparing for itsimpler by centralizing shared resources
and service configuration.

A key goal of all system administrators is to maximize the availability of the services they maintain.
With an unlimited budget you could create a scenario where there are two or three "hot standby"
machines for every one machine in production, waiting to seamlessly take over in the event of a
problem. But who has an unlimited budget?

Standalone machines that store their own local copies of configuration and data can be nice, if you
have lots of them, and you have load balancers, and you have a good cloning mechanism so you
don't spend all your time making sure all of your mail servers (for example) are identical. Oh yeah,
and when you make a configuration change to one, you'll need a system to push it out to the other
clones. This could take quite a bit of time and/or money to get rightand this doesn't even touch on
the expense of putting backup software on every single machine on your network. I'm sure there are
some smaller sites using standard Unix and Linux utilities for backup and nothing else, but the
majority of sites are using commercial products, and they're not cheap!

Wouldn't it be nice if a test box could be repurposed in a matter of minutes to take over for a server
with a failed drive? Wouldn't it be great if you only needed to back up from a couple of file servers
instead of every single service machine? NFS, the Network File System, can get you to this place, and
this hack will show you how.

Admins new to Linux, particularly those coming from Microsoft products, may not be familiar with
NFS, the file-sharing protocol used in traditional Unix shops. What's great about NFS is that it allows
you to store configuration files and data in a centralized location and transparently access that
location from multiple machines, which treat the remote share as a local filesystem.

Let's say you have five Apache web servers, all on separate hardware. One is the main web presence
for your company, one is a backup, and the other three perform other functions, such as hosting user
home pages, an intranet site, and a trouble-ticket system. They're all configured to be standalone
machines right now, but you want to set things up so that the machine that's currently just a hot
standby to the main web server can serve as a standby for pretty much any web server.

To do this, we'll create an NFS server with mountable partitions that provide the configuration
information, as well as the content, to the web servers. The first step is to configure the NFS server.

6.2.1. Configuring the NFS Server

To configure the NFS server, you must first create a directory hierarchy to hold Apache configurations
for all of your different web servers, since it's hubris to assume they're all configured identically.
There are numerous ways to organize the hierarchy. You could try to emulate the native filesystem

http://lib.ommolketab.ir

as closely as possible, using symlinks to get it all perfect. You could also create a tree for each web
server to hold its configuration, so that when you add another web server you can just add another
directory on the NFS server for its configuration. I've found the latter method to be a bit less taxing
on the brain.

The first thing to do on the NFS server is to create the space where this information will live. Let's say
your servers are numbered web1 through web5. Here's an example of what the directory structure
might look like:

 /servconf
 mail/
 common/
 web/
 web1/
 conf/
 httpd.conf
 access.conf
 modules.conf
 conf.d/
 php4.conf
 web2/
 conf/
 httpd.conf
 access.conf
 modules.conf
 conf.d/
 php4.conf
 python.conf
 mod_auth_mysql.conf

This sample hierarchy illustrates a few interesting points. First, notice the directories mail/ and
common/. As these show, the configuration tree doesn't need to be limited to a single service. In
fact, it doesn't actually have to be service-specific at all! For example, the common/ tree can hold
configuration files for things like global shell initialization files that you want to be constant on all
production service machines (you want this, believe me) and the OpenSSH server configuration file,
which ensures that the ssh daemon acts the same way on each machine.

That last sentence brings up another potential benefit of centralized configuration: if you want to
make global changes to something like the ssh daemon, you can make the changes in one place
instead of many, since all of the ssh daemons will be looking at the centralized configuration file.
Once a change is made, the daemons will need to be restarted or sent a SIGHUP to pick up the
change. "Execute Commands Simultaneously on Multiple Servers" [Hack #29]) shows a method
that will alow you to do this on multiple servers quickly.

All of this is wonderful, and some sites can actually use a hierarchy like this to have a single NFS
server provide configuration to all the services in their department or business. However, it's
important to recognize that, depending on how robust your NFS deployment is, you could be setting
yourself up with the world's largest single point of failure. It's one thing to provide configuration to all
your web servers, in which case a failure of the NFS server affects the web servers. It's quite another

http://lib.ommolketab.ir

to use a single NFS server to provide configuration data to every production service across the board.
In this case, if there's a problem with the file server, you're pretty much dead in the water, all owing
to a glitch in a single machine! It would be smart to either invest in technologies that ensure the
availability of the NFS service, or break up the NFS servers to lessen the impact of a failure of any
one server.

Now it's time to export our configuration tree. It's important to note that some NFS daemons are
somewhat "all or nothing" in the sense that they cannot export a subdirectory of an already exported
directory. The exception to that rule is if the subdirectory is actually living on a separate physical
device on the NFS server. For safety's sake, I've made it a rule never to do this anyway, in the event
that changes in the future cause the subdirectory to share a device with its parent. Note that the
same rule applies to exporting a subdirectory and then trying to export a parent directory separately.

Some implementations of the nfsd server do allow subdirectory exports, but for the sake of simplicity
I avoid this, because it has implications as to the rules applied to a particular exported directory and
can make debugging quite nightmarish.

Let's see how this works. Using the above "best practices," you cannot export the whole /servconf
tree in our example to one server, and then export mail/ separately to the mail servers. You can
export each of the directories under /servconf separately if /servconf itself is not exported, but that
would make it slightly more work to repurpose a server, because you'd have to make sure
permissions were in place to allow the mount of the new configuration tree, and you'd have to make
sure the /etc/fstab file on the NFS client was updatedotherwise, a reboot would cause bad things to
happen.

It's easier just to export the entire /servconf tree to a well-defined subset of the machines, so that
/etc/fstab never has to be changed and permissions are not an issue from the NFS server side of the
equation. That's what we'll do here. The file that tells the NFS server who can mount what is almost
always /etc/exports. After all this discussion, here's the single line we need to accomplish the goal of
allowing our web servers to mount the /servconf directory:

 /servconf 192.168.198.0/24(ro,root_squash) @trusted(rw,no_root_squash)

The network specified above is a DMZ where my service machines live. Two important things to note
here are the options applied to the export. The ro option ensures that changes cannot be made to the
configuration of a given machine by logging into the machine itself. This is for the sake of heightened
security, to help guarantee that a compromised machine can't be used to change the configuration
files of all the other machines. Also to that end, I've explicitly added the root_squash option. This is a
default in some NFS implementations, but I always state it explicitly in case that default ever changes
(this is generally good practice for all applications, by the way). This option maps UID 0 on the client
to nobody on the server, so even root on the client machine cannot make changes to files anywhere
under the mount point.

The second group of hosts I'm exporting this mount point to are those listed in an NIS netgroup
named trusted. This netgroup consists of two machines that are locked down and isolated such that
only administrators can get access to them. I've given those hosts read/write (rw) access, which
allows administrators to make changes to configuration files from machines other than the NFS
server itself. I've also specified the no_root_squash option here, so that admins can use these
machines even to change configuration files on the central server owned by root.

http://lib.ommolketab.ir

For the Apache web server example, we can create a very similar hierarchy on our NFS server to
store content served up by the servers, and export it in the exact same way we did for the
configuration. However, keep in mind that many web sites assume they can write in the directories
they own, so you'll need to make sure that you either export a writable directory for these
applications to use, or export the content tree with read/write privileges.

6.2.2. Configuring the NFS Clients

Getting NFS clients working is usually a breeze. You'll need to decide where you want the local
Apache daemon to find its configuration and content, create the mount points for any trees you'll
need to mount, and then edit the /etc/fstab file to make sure that the directory is always mounted at
boot time.

Generally, I tend to create the local mount points under the root directory, mainly for the sake of
consistency. No matter what server I'm logged in to, I know I can always run ls -l / and see all of
the mount points on that server. This is simpler than having to remember what services are running
on the machine, then hunting around the filesystem to check that the mount points are all there.
Putting them under / means that if I run the mount command to see what is mounted, and something
is missing, I can run one command to make sure the mount point exists, which is usually the first
step in troubleshooting an NFS-related issue.

I also attempt to name the mount point the same as the exported directory on the server. This
makes debugging a bit simpler, because I don't have to remember that the mount point named
webstuff on the client is actually servconf on the server. So, we create a mount point on the NFS
client like this:

 # mkdir /servconf

Then we add a line like the following to our /etc/fstab file:

 mynfs:/servconf /servconf nfs ro,intr,nfsvers=3,proto=tcp 0 0

Now we're assured that the tree will be mounted at boot time. The other important factor to consider
is that the tree is mounted before the service that needs the files living there is started. It should be
safe to assume that this will just work, but if you're trying to debug services that seem to be ignoring
configuration directives, or that fail to start at all, you'll want to double check, just in case!

6.2.3. Configuring the Service

We've now mounted our web server configuration data to all of our web servers. Let's assume for
now that you've done the same with the content. What we've essentially accomplished is a way to

http://lib.ommolketab.ir

have one hot spare machine, which also mounts all of this information, that can take over for any
failed web server in the blink of an eye. Two ways to get it to work are to use symlinks or to edit the
service's initialization script.

To use the symlink method, you consult the initialization script for the service. In the case of Apache,
the script will most likely be /etc/init.d/apache or /etc/init.d/httpd. This script, like almost all service
initialization scripts, will tell you where the daemon will look for its configuration file(s). In my case, it
looks under /etc/apache. The next thing to do is to move this directory out of the way and make a
symlink to the directory that will take its place. This is done with commands like the following:

 # mv /etc/apache /etc/apache.DIST
 # ln -s /servconf/web/web1 /etc/apache

Now when the service starts up, it will use whichever configuration files are pointed to by the
symlink. The critical thing to make sure of here is that the files under the mount point conform to
what the initialization script expects. For example, if the initialization script for Apache in this case
was looking for /etc/apache/config/httpd.conf, it would fail to start at all, because the /etc/apache
directory is now a symlink to a mount point that has put the file under a subdirectory called conf/, not
config/. These little "gotchas" are generally few, and are worked out early in the testing phase of any
such deployment.

Now, if we want to make our hot spare look like web3 instead of web1, we can simply remove the
symlink we had in place, create a new symlink to point to web3's configuration directory, and restart
the service. Note that if all of the web servers mount the content in the same way under the same
mount points, you don't have to change any symlinks for content, since the configuration file in
Apache's case tells the daemon where to find the content, not the initialization script! Here are the
commands to change the personality of our hot spare to web3:

 # rm /etc/apache; ln -s /servconf/web/web3 /etc/apache
 # /etc/init.d/apache restart

The commands used to restart Apache can vary depending on the platform. You might run the
apachectl program directly, or you might use the service command available on some Linux
distributions.

6.2.4. A Final Consideration

You can't assume that you're completely out of the woods just because a server looks and acts like
the one it replaces. In the case of Apache, you'll also want to make sure that your hot spare is
actually reachable by clients without them having to change any of their bookmarks. This might
involve taking down the failed web server and assigning its IP address to the hot spare or making the
DNS record for the failed web server point to the hot spare.

http://lib.ommolketab.ir

Hack 57. Automount NFS Home Directories with autofs

Let users log in from any machine and be in familiar territory.

If you administer an environment that supports large numbers of users who occasionally need access
to any one of a wide array of hosts on your network, you might find it a bit tiring having to answer
support calls every time your users try to log into a machine only to find that their home directories
are nowhere to be found. Sure, you could run over and edit the /etc/fstab file to NFS-mount the
remote home directories and fix things using that machine's NFS client, but there are a couple of
downsides to handling things in this way.

First, your /etc/fstab file will eventually grow quite large as you add more and more mounts. Second,
if a user leaves your department, you'll be left with the choice of either dealing with failed mount
requests in your logfiles (assuming you removed the user's home directory at the time of departure)
or running around and editing files on all of the machines that have the entry causing the error.
Which machines have the offending entry? Well, you'll just have to look, won't you? This is not a
position you want to find yourself in if you maintain large labs, clusters, and testing or development
environments.

One thought might be to mount a directory from an NFS server that holds the /etc/fstab file. This is
asking for trouble, since this file is in charge of handling not only NFS mounts, but the mounts of your
local devices (read: hard drives). In the end, you're sure to find that centralizing this file on an NFS
share is impossible, since the local machine needs to mount the hard drives before it can do anything
with the network, including mounting NFS shares.

A good solution is one that allows you to mount NFS shares without using /etc/fstab. Ideally, it could
also mount shares dynamically, as they are requested, so that when they're not in use there aren't
all of these unused directories hanging around and messing up your ls -l output. In a perfect world,
we could centralize the mount configuration file and allow it to be used by all machines that need the
service, so that when a user leaves, we just delete the mount from one configuration file and go on
our merry way.

Happily, you can do just this with the Linux autofs daemon. The autofs daemon lives in the kernel
and reads its configuration from "maps," which can be stored in local files, centralized NFS-mounted
files, or directory services such as NIS or LDAP. Of course, there has to be a master configuration file
to tell autofs where to find its mounting information. That file is almost always stored in
/etc/auto.master. Let's have a look at a simple example configuration file:

 /.autofs file:/etc/auto.direct --timeout 300
 /mnt file:/etc/auto.mnt --timeout 60
 /u yp:homedirs --timeout 300

http://lib.ommolketab.ir

The main purpose of this file is to let the daemon know where to create its mount points on the local
system (detailed in the first column of the file), and then where to find the mounts that should live
under each mount point (detailed in the second column). The rest of each line consists of mount
options. In this case, the only option is a timeout, in seconds. If the mount is idle for that many
seconds, it will be unmounted.

In our example configuration, starting the autofs service will create three mount points. /u is one of
them, and that's where we're going to put our home directories. The data for that mount point comes
from the homedirs map on our NIS server. Running ypcat homedirs shows us the following line:

 hdserv:/vol/home:users

The server that houses all of the home directories is called hdserv. When the automounter starts up,
it will read the entry in auto.master, contact the NIS server, ask for the homedirs map, get the above
information back, and then contact hdserv and ask to mount /vol/home/users. (The colon in the file
path above is an NIS-specific requirement. Everything under the directory named after the colon will
be mounted.) If things complete successfully, everything that lives under /vol/home/users on the
server will now appear under /u on the client.

Of course, we don't have to use NIS to store our mount mapswe can store them in an LDAP directory
or in a plain-text file on an NFS share. Let's explore this latter option, for those who aren't working
with a directory service or don't want to use their directory service for automount maps.

The first thing we'll need to alter is our auto.master file, which currently thinks that everything under
/u is mounted according to NIS information. Instead, we'll now tell it to look in a file, by replacing the
original /u line with this one:

 /u file:/usr/local/etc/auto.home --timeout 300

This tells the automounter that the file /usr/local/etc/auto.home is the authoritative source for
information regarding all things mounted under the local /u directory.

In the file on my system are the following lines:

 jonesy -rw hdserv:/vol/home/users/&
 matt -rw hdserv:/vol/home/usrs/&

What?! One line for every single user in my environment?! Well, no. I'm doing this to prove a point.
In order to hack the automounter, we have to know what these fields mean.

The first field is called a key. The key in the first line is jonesy. Since this is a map for things to be
found under /u, this first line's key specifies that this entry defines how to mount /u/jonesy on the
local machine.

http://lib.ommolketab.ir

The second field is a list of mount options, which are pretty self-explanatory. We want all users to be
able to mount their directories with read/write access (-rw).

The third field is the location field, which specifies the server from which the automounter should
request the mount. In this case, our first entry says that /u/jonesy will be mounted from the server
hdserv. The path on the server that will be requested is /vol/home/users/&. The ampersand is a
wildcard that will be replaced in the outgoing mount request with the key. Since our key in the first
line is jonesy, the location field will be transformed to a request for hdserv:/vol/home/users/jonesy.

Now for the big shortcut. There's an extra wildcard you can use in the key field, which allows you to
shorten the configuration for every user's home directory to a single line that looks like this:

 * -rw hdserv:/vol/home/users/&

The * means, for all intents and purposes, "anything." Since we already know the ampersand takes
the value of the key, we can now see that, in English, this line is really saying "Whichever directory a
user requests under /u, that is the key, so replace the ampersand with the key value and mount that
directory from the server."

This is wonderful for two reasons. First, my configuration file is a single line. Second, as user home
directories are added and removed from the system, I don't have to edit this configuration file at all.
If a user requests a directory that doesn't exist, he'll get back an error. If a new directory is created
on the file server, this configuration line already allows it to be mounted.

http://lib.ommolketab.ir

Hack 58. Keep Filesystems Handy, but Out of Your Way

Use the amd automounter, and some handy defaults, to maintain mounted resources
without doing without your own local resources.

The amd automounter isn't the most ubiquitous production service I've ever seen, but it can certainly
be a valuable tool for administrators in the setup of their own desktop machines. Why? Because it
gives you the power to be able to easily and conveniently access any NFS share in your environment,
and the default settings for amd put all of them under their own directory, out of the way, without
you having to do much more than simply start the service.

Here's an example of how useful this can be. I work in an environment in which the /usr/local
directories on our production machines are mounted from a central NFS server. This is great,
because if we need to build software for our servers that isn't supplied by the distribution vendor, we
can just build it from source in that tree, and all of the servers can access it as soon as it's built.
However, occasionally we receive support tickets saying that something is acting strangely or isn't
working. Most times, the issue is environmental: the user is getting at the wrong binary because
/usr/local is not in her PATH, or something simple like that. Sometimes, though, the problem is ours,
and we need to troubleshoot it.

The most convenient way to do that is just to mount the shared /usr/local to our desktops and use it
in place of our own. For me, however, this is suboptimal, because I like to use my system's /usr/local
to test new software. So I need another way to mount the shared /usr/local without conflicting with
my own /usr/local. This is where amd comes in, as it allows me to get at all of the shares I need, on
the fly, without interfering with my local setup.

Here's an example of how this works. I know that the server that serves up the /usr/local partition is
named fs, and I know that the file mounted as /usr/local on the clients is actually called /linux/local
on the server. With a properly configured amd, I just run the following command to mount the
shared directory:

 $ cd /net/fs/linux/local

There I am, ready to test whatever needs to be tested, having done next to no configuration
whatsoever!

The funny thing is, I've run into lots of administrators who don't use amd and didn't know that it
performed this particular function. This is because the amd mount configuration is a little bit cryptic.
To understand it, let's take a look at how amd is configured. Soon you'll be mounting remote shares
with ease.

http://lib.ommolketab.ir

6.4.1. amd Configuration in a Nutshell

The main amd configuration file is almost always /etc/amd.conf. This file sets up default behaviors for
the daemon and defines other configuration files that are authoritative for each configured mount
point. Here's a quick look at a totally untouched configuration file, as supplied with the Fedora Core 4
am-utils package, which supplies the amd automounter:

 [global]
 normalize_hostnames = no
 print_pid = yes
 pid_file = /var/run/amd.pid
 restart_mounts = yes
 auto_dir = /.automount
 #log_file = /var/log/amd
 log_file = syslog
 log_options = all
 #debug_options = all
 plock = no
 selectors_on_default = yes
 print_version = no
 # set map_type to "nis" for NIS maps, or comment it out to search for all
 # types
 map_type = file
 search_path = /etc
 browsable_dirs = yes
 show_statfs_entries = no
 fully_qualified_hosts = no
 cache_duration = 300

 # DEFINE AN AMD MOUNT POINT
 [/net]
 map_name = amd.net
 map_type = file

The options in the [global] section specify behaviors of the daemon itself and rarely need changing.
You'll notice that search_path is set to /etc, which means it will look for mount maps under the /etc
directory. You'll also see that auto_dir is set to /.automount. This is where amd will mount the
directories you request. Since amd cannot perform mounts "in-place," directly under the mount point
you define, it actually performs all mounts under the auto_dir directory, and then returns a symlink
to that directory in response to the incoming mount requests. We'll explore that more after we look
at the configuration for the [/net] mount point.

From looking at the above configuration file, we can tell that the file that tells amd how to mount
things under /net is amd.net. Since the search_path option in the [global] section is set to /etc, it'll
really be looking for /etc/amd.net at startup time. Here are the contents of that file:

http://lib.ommolketab.ir

 /defaults fs:=${autodir}/${rhost}/root/${rfs};opts:=nosuid,nodev
 * rhost:=${key};type:=host;rfs:=/

Eyes glazing over? Well, then let's translate this into English. The first entry is /defaults, which is
there to define the symlink that gets returned in response to requests for directories under [/net] in
amd.conf. Here's a quick tour of the variables being used here:

${autodir} gets its value from the auto_dir setting in amd.conf, which in this case will be
/.automount.

${rhost} is the name of the remote file server, which in our example is fs. It is followed closely
by /root, which is really just a placeholder for / on the remote host.

${rfs} is the actual path under the / directory on the remote host that gets mounted.

Also note that fs: on the /defaults line specifies the local location where the remote filesystem is to
be mounted. It's not the name of our remote file server.

In reality, there are a couple of other variables in play behind the scenes that help resolve the values
of these variables, but this is enough to discern what's going on with our automounter. You should
now be able to figure out what was really happening in our simple cd command earlier in this hack.

Because of the configuration settings in amd.conf and amd.net, when I ran the cd command earlier, I
was actually requesting a mount of fs:/linux/local under the directory /net/fs/linux/local.amd, behind
my back, replaced that directory with a symlink to /.automount/fs/root/linux/local, and that's where I
really wound up. Running pwd with no options will say you're in /net/fs/linux/local, but there's a quick
way to tell where you really are, taking symlinks into account. Look at the output from these two pwd
commands:

 $ pwd
 /net/fs/linux/local
 $ pwd -P
 /.automount/root/fs/linux/local

TheP option reveals your true location.

So, now that we have some clue as to how the amd.net /defaults entry works, we need to figure out
exactly why our wonderful hack works. After all, we haven't yet told amd to explicitly mount
anything!

Here's the entry in /etc/amd.net that makes this functionality possible:

 * rhost:=${key};type:=host;rfs:=/

http://lib.ommolketab.ir

The * wildcard entry says to attempt to mount any requested directory, rather than specifying one
explicitly. When you request a mount, the part of the path after /net defines the host and path to
mount. If amd is able to perform the mount, it is served up to the user on the client host. The rfs=/
bit means that amd should request whatever directory is requested from the server under the root
directory of that server. So, if we set rfs=/mnt and then request /linux/local, the request will be for
fs:/mnt/linux/local.

http://lib.ommolketab.ir

Hack 59. Synchronize root Environments with rsync

When you're managing multiple servers with local root logins, rsync provides an easy way
to synchronize the root environments across your systems.

Synchronizing files between multiple computer systems is a classic problem. Say you've made some
improvements to a file on one machine, and you would like to propagate it to others. What's the best
way? Individual users often encounter this problem when trying to work on files on multiple computer
systems, but it's even more common for system administrators who tend to use many different
computer systems in the course of their daily activities.

rsync is a popular and well-known remote file and directory synchronization program that enables
you to ensure that specified files and directories are identical on multiple systems. Some files that
you may want to include for synchronization are:

.profile

.bash_profile

.bashrc

.cshrc

.login

.logout

Choose one server as your source server (referred to as srchost in the examples in this hack). This is

the server where you will maintain the master copies of the files that you want to synchronize across
multiple systems' root environments. After selecting this system, you'll add a stanza to the rsync
configuration file (/etc/rsyncd.conf) containing, at a minimum, options for specifying the path to the
directory that you want to synchronize (path), preventing remote clients from uploading files to the
source server (read only), the user ID that you want synchronization to be performed as (uid), a list
of files and directories that you want to exclude from synchronization (exclude), and the list of files
that you want to synchronize (include). A sample stanza will look like this:

 [rootenv]
 path = /
 uid = root # default uid is nobody
 read only = yes
 exclude = * .*
 include = .bashrc .bash_profile .aliases
 hosts allow = 192.168.1.

http://lib.ommolketab.ir

 hosts deny = *

Then add the following command to your shell's login command file (.profile, .bash_profile, .login,
etc.) on the source host:

 rsync -qa rsync://srchost/rootenv /

Next, you'll need to manually synchronize the files for the first time. After that, they will
automatically be synchronized when your shell's login command file is executed. On each server you
wish to synchronize, run this rsync command on the host as root:

 rsync -qa rsync://srchost/rootenv /

For convenience, add the following alias to your .bashrc file, or add an equivalent statement to the
command file for whatever shell you're using (.cshrc, .kshrc, etc.):

 alias envsync='rsync -qa rsync::/srchost/rootenv / && source .bashrc'

By running the envsync alias, you can immediately sync up and source your rc files.

To increase security, you can use the /etc/hosts.allow and /etc/hosts.deny files to ensure that only
specified hosts can use rsync on your systems [Hack #64]

6.5.1. See Also

man rsync

Lance Tost

http://lib.ommolketab.ir

Hack 60. Share Files Across Platforms Using Samba

Linux, Windows, and Mac OS X all speak SMB/CIFS, which makes Samba a one-stop shop
for all of their resource-sharing needs.

It used to be that if you wanted to share resources in a mixed-platform environment, you needed
NFS for your Unix machines, AppleTalk for your Mac crowd, and Samba or a Windows file and print
server to handle the Windows users. Nowadays, all three platforms can mount file shares and use
printing and other resources through SMB/CIFS, and Samba can serve them all.

Samba can be configured in a seemingly endless number of ways. It can share just files, or printer
and application resources as well. You can authenticate users for some or all of the services using
local files, an LDAP directory, or a Windows domain server. This makes Samba an extremely
powerful, flexible tool in the fight to standardize on a single daemon to serve all of the hosts in your
network.

At this point, you may be wondering why you would ever need to use Samba with a Linux client,
since Linux clients can just use NFS. Well, that's true, but whether that's what you really want to do
is another question. Some sites have users in engineering or development environments who
maintain their own laptops and workstations. These folks have the local root password on their Linux
machines. One mistyped NFS export line, or a chink in the armor of your NFS daemon's security, and
you could be inadvertently allowing remote, untrusted users free rein on the shares they can access.
Samba can be a great solution in cases like this, because it allows you to grant those users access to
what they need without sacrificing the security of your environment.

This is possible because Samba can be (and generally is, in my experience) configured to ask for a
username and password before allowing a user to mount anything. Whichever user supplies the
username and password to perform the mount operation is the user whose permissions are enforced
on the server. Thus, if a user becomes root on his local machine it needn't concern you, because local
root access is trumped by the credentials of the user who performed the mount.

6.6.1. Setting Up Simple Samba Shares

Technically, the Samba service consists of two daemons, smbd and nmbd. The smbd daemon is the
one that handles the SMB file- and print-sharing protocol. When a client requests a shared directory
from the server, it's talking to smbd. The nmbd daemon is in charge of answering NetBIOS over IP
name service requests. When a Windows client broadcasts to browse Windows shares on the
network, nmbd replies to those broadcasts.

The configuration file for the Samba service is /etc/samba/smb.conf on both Debian and Red Hat
systems. If you have a tool called swat installed, you can use it to help you generate a working
configuration without ever opening vijust uncomment the swat line in /etc/inetd.conf on Debian

http://lib.ommolketab.ir

systems, or edit /etc/xinetd.d/swat on Red Hat and other systems, changing the disable key's value
to no. Once that's done, restart your inetd or xinetd service, and you should be able to get to swat's
graphical interface by pointing a browser at http://localhost:901.

Many servers are installed without swat, though, and for those systems editing the configuration file
works just fine. Let's go over the config file for a simple setup that gives access to file and printer
shares to authenticated users. The file is broken down into sections. The first section, which is always
called [global], is the section that tells Samba what its "personality" should be on the network. There
are a myriad of possibilities here, since Samba can act as a primary or backup domain controller in a
Windows domain, can use various printing subsystem interfaces and various authentication
backends, and can provide various different services to clients.

Let's take a look at a simple [global] section:

 [global]
 workgroup = PVT
 server string = apollo
 hosts allow = 192.168.42. 127.0.0.
 printcap name = CUPS
 load printers = yes
 printing = CUPS
 logfile = /var/log/samba/log.smbd
 max log size = 50
 security = user
 smb passwd file = /etc/samba/smbpasswd
 socket options = TCP_NODELAY SO_RCVBUF=8192 SO_SNDBUF=8192
 interfaces = eth0
 wins support = yes
 dns proxy = no

Much of this is self-explanatory. This excerpt is taken from a working configuration on a private
SOHO network, which is evidenced by the hosts allow values. This option can take values in many
different formats, and it uses the same syntax as the /etc/hosts.allow and /etc/hosts.deny files (see
hosts_access(8) and "Allow or Deny Access by IP Address" [Hack #64]). Here, it allows access from
the local host and any host whose IP address matches the pattern 192.168.42.*. Note that a
netmask is not given or assumedit's a pure regex match on the IP address of the connecting host.
Note also that this setting can be removed from the [global] section and placed in each subsection.
If it exists in the [global] section, however, it will supersede any settings in other areas of the
configuration file.

In this configuration, I've opted to use CUPS as the printing mechanism. There's a CUPS server on
the local machine where the Samba server lives, so Samba users will be able to see all the printers
that CUPS knows about when they browse the PVT workgroup, and use them (more on this in a
minute).

The server string setting determines the server name users will see when the host shows up in a
Network Neighborhood listing, or in other SMB network browsing software. I generally set this to the
actual hostname of the server if it's practical, so that if users need to manually request something
from the Samba server, they don't try to ask to mount files from my Linux Samba server by trying to

http://localhost:901
http://lib.ommolketab.ir

address it as "Samba Server."

The other important setting here is security. If you're happy with using the /etc/samba/smbpasswd
file for authentication, this setting is fine. There are many other ways to configure authentication,
however, so you should definitely read the fine (and copious) Samba documentation to see how it
can be integrated with just about any authentication backend. Samba includes native support for
LDAP and PAM authentication. There are PAM modules available to sync Unix and Samba passwords,
as well as to authenticate to remote SMB servers.

We're starting with a simple password file in our configuration. Included with the Samba package is a
tool called mksmbpasswd.sh, which will add users to the password file en masse so you don't have to
do it by hand. However, it cannot migrate Unix passwords to the file, because the cryptographic
algorithm is a one-way hash and the Windows hash sent to Samba by the clients doesn't match.

To change the Samba password for a user, run the following command on the server:

 # smbpasswd username

This will prompt you for the new password, and then ask you to confirm it by typing it again. If a user
ran the command, she'd be prompted for her current Samba password first. If you want to manually
add a user to the password file, you can use the -a flag, like this:

 # smbpasswd -a username

This will also prompt for the password that should be assigned to the user.

Now that we have users, let's see what they have access to by looking at the sections for each share.
In our configuration, users can access their home directories, all printers available through the local
CUPS server, and a public share for users to dabble in. Let's look at the home directory configuration
first:

 [homes]
 comment = Home Directories
 browseable = no
 writable = yes

The [homes] section, like the [global] section, is recognized by the server as a "special" section.
Without any more settings than these few minimal ones, Samba will, by default, take the username
given during a client connection and look it up in the local password file. If it exists, and the correct
password has been provided, Samba clones the [homes] section on the fly, creating a new share
named after the user. Since we didn't use a path setting, the actual directory that gets served up is
the home directory of the user, as supplied by the local Linux system. However, since we've set
browseable = no, users will only be able to see their own home directories in the list of available

http://lib.ommolketab.ir

shares, rather than those of every other user on the system.

Here's the printer share section:

 [printers]
 comment = All Printers
 path = /var/spool/samba
 browseable = yes
 public = yes
 guest ok = yes
 writable = no
 printable = yes
 use client driver = yes

This section is also a "special" section, which works much like the [homes] special section. It clones
the section to create a share for the printer being requested by the user, with the settings specified
here. We've made printers browseable, so that users know which printers are available. This
configuration will let any authenticated user view and print to any printer known to Samba.

Finally, here's our public space, which anyone can read or write to:

 [tmp]
 comment = Temporary file space
 path = /tmp
 read only = no
 public = yes

This space will show up in a browse listing as "tmp on Apollo," and it is accessible in read/write mode
by anyone authenticated to the server. This is useful in our situation, since users cannot mount and
read from each other's home directories. This space can be mounted by anyone, so it provides a way
for users to easily exchange files without, say, gumming up your email server.

Once your smb.conf file is in place, start up your smb service and give it a quick test. You can do this
by logging into a Linux client host and using a command like this one:

 $ smbmount '//apollo/jonesy' ~/foo/ -o username= jonesy, workgroup=PVT

This command will mount my home directory on Apollo to ~/foo/ on the local machine. I've passed
along my username and the workgroup name, and the command will prompt for my password and
happily perform the mount. If it doesn't, check your logfiles for clues as to what went wrong.

You can also log in to a Windows client, and see if your new Samba server shows up in your Network
Neighborhood (or My Network Places under Windows XP).

http://lib.ommolketab.ir

If things don't go well, another command you can try is smbclient. Run the following command as a
normal user:

 $ smbclient -L apollo

On my test machine, the output looks like this:

 Domain=[APOLLO] OS=[Unix] Server=[Samba 3.0.14a-2]

 Sharename Type Comment
 --------- ---- -------
 tmp Disk Temporary file space
 IPC$ IPC IPC Service (Samba Server)
 ADMIN$ IPC IPC Service (Samba Server)
 MP780 Printer MP780
 hp4m Printer HP LaserJet 4m
 jonesy Disk Home Directories
 Domain=[APOLLO] OS=[Unix] Server=[Samba 3.0.14a-2]
 Server Comment
 --------- -------

 Workgroup Master
 --------- -------
 PVT APOLLO

This list shows the services available to me from the Samba server, and I can also use it to confirm
that I'm using the correct workgroup name.

http://lib.ommolketab.ir

Hack 61. Quick and Dirty NAS

Combining LVM, NFS, and Samba on new file servers is a quick and easy solution when
you need more shared disk resources.

Network Attached Storage (NAS) and Storage Area Networks (SANs) aren't making as many people
rich nowadays as they did during the dot-com boom, but they're still important concepts for any
system administrator. SANs depend on high-speed disk and network interfaces, and they're
responsible for the increasing popularity of other magic acronyms such as iSCSI (Internet Small
Computer Systems Interface) and AoE (ATA over Ethernet), which are cool and upcoming
technologies for transferring block-oriented disk data over fast Ethernet interfaces. On the other
hand, NAS is quick and easy to set up: it just involves hanging new boxes with shared, exported
storage on your network.

"Disk use will always expand to fill all available storage" is one of the immutable laws of computing.
It's sad that it's as true today, when you can pick up a 400-GB disk for just over $200, as it was
when I got my CS degree and the entire department ran on some DEC-10s that together had a
whopping 900 MB of storage (yes, I am old). Since then, every computing environment I've ever
worked in has eventually run out of disk space. And let's face itadding more disks to existing
machines can be a PITA (pain in the ass). You have to take down the desktop systems, add disks,
create filesystems, mount them, copy data around, reboot, and then figure out how and where you're
going to back up all the new space.

This is why NAS is so great. Need more space? Simply hang a few more storage devices off the
network and give your users access to them. Many companies made gigabucks off this simple
concept during the dot-com boom (more often by selling themselves than by selling hardware, but
that's beside the point). The key for us in this hack is that Linux makes it easy to assemble your own
NAS boxes from inexpensive PCs and add them to your network for a fraction of the cost of
preassembled, nicely painted, dedicated NAS hardware. This hack is essentially a meta-hack, in which
you can combine many of the tips and tricks presented throughout this book to save your
organization money while increasing the control you have over how you deploy networked storage,
and thus your general sysadmin comfort level. Here's how.

6.7.1. Selecting the Hardware

Like all hardware purchases, what you end up with is contingent on your budget. I tend to use
inexpensive PCs as the basis for NAS boxes, and I'm completely comfortable with basing NAS
solutions on today's reliable, high-speed EIDE drives. The speed of the disk controller(s), disks, and
network interfaces is far more important than the CPU speed. This is not to say that recycling an old
300-MHz Pentium as the core of your NAS solutions is a good idea, but any reasonably modern 1.5-
GHz or greater processor is more than sufficient. Most of what the box will be doing is serving data,
not playing Doom. Thus, motherboards with built-in graphics are also fine for this purpose, since fast,

http://lib.ommolketab.ir

hi-res graphics are equally unimportant in the NAS environment.

In this hack, I'll describe minimum requirements for hardware characteristics
and capabilities rather than making specific recommendations. As I often say
professionally, "Anything better is better." That's not me taking the easy way
outit's me ensuring that this book won't be outdated before it actually hits the
shelves.

My recipe for a reasonable NAS box is the following:

A mini-tower case with at least three external, full-height drive bays (four is preferable) and a
500-watt or greater power supply with the best cooling fan available. If you can get a case with
mounting brackets for extra cooling fans on the sides or bottom, do so, and purchase the right
number of extra cooling fans. This machine is always going to be on, pushing at least four disks,
so it's a good idea to get as much power and cooling as possible.

A motherboard with integrated video hardware, at least 10/100 onboard Ethernet
(10/100/1000 is preferable), and USB or FireWire support. Make sure that the motherboard
supports booting from external USB (or FireWire, if available) drives, so that you won't have to
waste a drive bay on a CD or DVD drive. If at all possible, on-board SATA is a great idea, since
that will enable you to put the operating system and swap space on an internal disk and devote
all of the drive bays to storage that will be available to users. I'll assume that you have on-
board SATA in the rest of this hack.

A 1.5-GHz or better Celeron, Pentium 4, or AMD processor compatible with your motherboard.

256 MB of memory.

Five removable EIDE/ATA drive racks and trays, hot-swappable if possible. Four are for the
system itself; the extra one gives you a spare tray to use when a drive inevitably fails.

One small SATA drive (40 GB or so).

Four identical EIDE drives, as large as you can afford. At the time I'm writing this, 300-GB
drives with 16-MB buffers cost under $150. If possible, buy a fifth so that you have a spare and
two others for backup purposes.

An external CD/DVD USB or FireWire drive for installing the OS.

I can't really describe the details of assembling the hardware because I don't know exactly what
configuration you'll end up purchasing, but the key idea is that you put a drive tray in each of the
external bays, with one of the IDE/ATA drives in each, and put the SATA drive in an internal drive
bay. This means that you'll still have to open up the box to replace the system disk if it ever fails, but
it enables you to maximize the storage that this system makes available to users, which is its whole
reason for being. Putting the EIDE/ATA disks in drive trays means that you can easily replace a failed
drive without taking down the system if the trays are hot-swappable. Even if they're not, you can
bounce a system pretty quickly if all you have to do is swap in another drive and you already have a
spare tray available.

At the time I wrote this the hardware setup cost me around $1000 (exclusive of the backup hard

http://lib.ommolketab.ir

drives) with some clever shopping, thanks to http://www.pricewatch.com. This got me a four-bay
case; a motherboard with onboard GigE, SATA, and USB; four 300-GB drives with 16-MB buffers;
hot-swappable drive racks; and a few extra cooling fans.

6.7.2. Installing and Configuring Linux

As I've always told everyone (regardless of whether they ask), I always install everything, regardless
of which Linux distribution I'm using. I personally prefer SUSE for commercial deployments, because
it's supported, you can get regular updates, and I've always found it to be an up-to-date distribution
in terms of supporting the latest hardware and providing the latest kernel tweaks. Your mileage may
vary. I'm still mad at Red Hat for abandoning everyone on the desktop, and I don't like GNOME
(though I install it "because it's there" and because I need its libraries to run Evolution, which is my
mailer of choice due to its ability to interact with Microsoft Exchange). Installing everything is easy.
We're building a NAS box here, not a desktop system, so 80% of what I install will probably never be
used, but I hate to find that some tool I'd like to use isn't installed.

To install the Linux distribution of your choice, attach the external CD/DVD drive to your machine and
configure the BIOS to boot from it first and the SATA drive second. Put your installation media in the
external CD/DVD drive and boot the system. Install Linux on the internal SATA drive. As discussed in
"Reduce Restart Times with Journaling Filesystems" [Hack #70], I use ext3 for the /boot and /
partitions on my systems so that I can easily repair them if anything ever goes wrong, and because
every Linux distribution and rescue disk in the known universe can handle ext2/ext3 partitions. There
are simply more ext2/ext3 tools out there than there are for any other filesystem. You don't have to
partition or format the drives in the bayswe'll do that after the operating system is installed and
booting.

Done installing Linux? Let's add and configure some storage.

6.7.3. Configuring User Storage

Determining how you want to partition and allocate your disk drives is one of the key decisions you'll
need to make, because it affects both how much space your new NAS box will be able to deliver to
users and how maintainable your system will be. To build a reliable NAS box, I use Linux software
RAID to mirror the master on the primary IDE interface to the master on the secondary IDE interface
and the slave on the primary IDE interface to the slave on the secondary IDE interface. I put them in
the case in the following order (from the top down): master primary, slave primary, master
secondary, and slave secondary. Having a consistent, specific order makes it easy to know which is
which since the drive letter assignments will be a, b, c, and d from the top down, and also makes it
easy to know in advance how to jumper any new drive that I'm swapping in without having to check.

By default, I then set up Linux software RAID and LVM so that the two drives on the primary IDE
interface are in a logical volume group [Hack #47].

On systems with 300-GB disks, this gives me 600 GB of reliable, mirrored storage to provide to
users. If you're less nervous than I am, you can skip the RAID step and just use LVM to deliver all
1.2 TB to your users, but backing that up will be a nightmare, and if any of the drives ever fail, you'll
have 1.2 TB worth of angry, unproductive users. If you need 1.2 TB of storage, I'd strongly suggest
that you spend the extra $1000 to build a second one of the boxes described in this hack. Mirroring is
your friend, and it doesn't get much more stable than mirroring a pair of drives to two identical

http://www.pricewatch.com
http://lib.ommolketab.ir

drives.

If you experience performance problems and you need to export filesystems
through both NFS and Samba, you may want to consider simply making each
of the drives on the main IDE interface its own volume group, keeping the
same mirroring layout, and exporting each drive as a single filesystemone for
SMB storage for your Windows users and the other for your Linux/Unix NFS
users.

The next step is to decide how you want to partition the logical storage. This depends on the type of
users you'll be delivering this storage to. If you need to provide storage to both Windows and Linux
users, I suggest creating separate partitions for SMB and NFS users. The access patterns for the two
classes of users and the different protocols used for the two types of networked filesystems are
different enough that it's not a good idea to export a filesystem via NFS and have other people
accessing it via SMB. With separate partitions they're still both coming to the same box, but at least
the disk and operating system can cache reads and handle writes appropriately and separately for
each type of filesystem.

Getting insights into the usage patterns of your users can help you decide what type of filesystem
you want to use on each of the exported filesystems [Hack #70]. I'm a big ext3 fan because so
many utilities are available for correcting problems with ext2/ext3 filesystems.

Regardless of the type of filesystem you select, you'll want to mount it using noatime to minimize file
and filesystem updates due to access times. Creation time (ctime) and modification time (mtime) are
important, but I've never cared much about access time and it can cause a big performance hit in a
shared, networked filesystem. Here's a sample entry from /etc/fstab that includes the noatime mount
option:

 /dev/data/music /mnt/music xfs defaults,noatime 0 0

Similarly, since many users will share the filesystems in your system, you'll want to create the
filesystem with a relatively large log. For ext3 filesystems, the size of the journal is always at least
1,024 filesystem blocks, but larger logs can be useful for performance reasons on heavily used
systems. I typically use a log of 64 MB on NAS boxes, because that seems to give the best tradeoff
between caching filesystem updates and the effects of occasionally flushing the logs. If you are using
ext3, you can also specify the journal flush/sync interval using the commit=number-of-seconds mount

option. Higher values help performance, and anywhere between 15 and 30 seconds is a reasonable
value on a heavily used NAS box (the default value is 5 seconds). Here's how you would specify this
option in /etc/fstab:

 /dev/data/writing /mnt/writing ext3 defaults, cls, commit=15 0 0

A final consideration is how to back up all this shiny new storage. I generally let the RAID subsystem
do my backups for me by shutting down the systems weekly, swapping out the mirrored drives with a

http://lib.ommolketab.ir

spare pair, and letting the RAID system rebuild the mirrors automatically when the system comes
back up. Disk backups are cheaper and less time-consuming than tape [Hack #50], and letting
RAID mirror the drives for you saves you the manual copy step discussed in that hack.

6.7.4. Configuring System Services

Fine-tuning the services running on the soon-to-be NAS box is an important step. Turn off any
services you don't need [Hack #63]. The core services you will need are an NFS server, a Samba
server, a distributed authentication mechanism, and NTP. It's always a good idea to run an NTP
server [Hack #22] on networked storage systems to keep the NAS box's clock in sync with the rest
of your environmentotherwise, you can get some weird behavior from programs such as make.

You should also configure the system to boot in a non-graphical runlevel, which is usually runlevel 3
unless you're a Debian fan. I also typically install Fluxbox [Hack #73] on my NAS boxes and
configure X to automatically start that rather than a desktop environment such as GNOME or KDE.
Why waste cycles?

"Centralize Resources Using NFS" [Hack #56] explained setting up NFS and "Share Files Across
Platforms Using Samba" [Hack #60] shows the same for Samba. If you don't have Windows users,
you have my congratulations, and you don't have to worry about Samba.

The last step involved in configuring your system is to select the appropriate authentication
mechanism so that you have the same users on the NAS box as you do on your desktop systems.
This is completely dependent on the authentication mechanism used in your environment in general.
Chapter 1 of this book discusses a variety of available authentication mechanisms and how to set
them up. If you're working in an environment with heavy dependencies on Windows for infrastructure
such as Exchange (shudder!), it's often best to bite the bullet and configure the NAS box to use
Windows authentication. The critical point for NAS storage is that your NAS box must share the same
UIDs, users, and groups as your desktop systems, or you're going to have problems with users using
the new storage provided by the NAS box. One round of authentication problems is generally enough
for any sysadmin to fall in love with a distributed authentication mechanismwhich one you choose
depends on how your computing environment has been set up in general and what types of machines
it contains.

6.7.5. Deploying NAS Storage

The final step in building your NAS box is to actually make it available to your users. This involves
creating some number of directories for the users and groups who will be accessing the new storage.
For Linux users and groups who are focused on NFS, you can create top-level directories for each
user and automatically mount them for your users using the NFS automounter and a similar
technique to that explained in [Hack #57], wherein you automount your users' NAS directories as
dedicated subdirectories somewhere in their accounts. For Windows users who are focused on
Samba, you can do the same thing by setting up an [NAS] section in the Samba server configuration
file on your NAS box and exporting your users' directories as a named NAS share.

6.7.6. Summary

http://lib.ommolketab.ir

Building and deploying your own NAS storage isn't really hard, and it can save you a significant
amount of money over buying an off-the-shelf NAS box. Building your own NAS systems also helps
you understand how they're organized, which simplifies maintenance, repairs, backups, and even the
occasional but inevitable replacement of failed components. Try ityou'll like it!

6.7.7. See Also

"Combine LVM and Software RAID" [Hack #47]

"Centralize Resources Using NFS" [Hack #56]

"Share Files Across Platforms Using Samba" [Hack #60]

"Reduce Restart Times with Journaling Filesystems" [Hack #70]

http://lib.ommolketab.ir

Hack 62. Share Files and Directories over the Web

WebDAV is a powerful, platform-independent mechanism for sharing files over the Web
without resorting to standard networked filesystems.

WebDAV (Web-based Distributed Authoring and Versioning) lets you edit and manage files stored on
remote web servers. Many applications support direct access to WebDAV servers, including web-
based editors, file-transfer clients, and more. WebDAV enables you to edit files where they live on
your web server, without making you go through a standard but tedious download, edit, and upload
cycle.

Because it relies on the HTTP protocol rather than a specific networked filesystem protocol, WebDAV
provides yet another way to leverage the inherent platform-independence of the Web. Though many
Linux applications can access WebDAV servers directly, Linux also provides a convenient mechanism
for accessing WebDAV directories from the command line through the davfs filesystem driver. This
hack will show you how to setup WebDAV support on the Apache web server, which is the most
common mechanism for accessing WebDAV files and directories.

6.8.1. Installing and Configuring Apache's WebDAV Support

WebDAV support in Apache is made possible by the mod_dav module. Servers running Apache 2.x
will already have mod_dav included in the package apache2-common, so you should only need to
make a simple change to your Apache configuration in order to run mod_dav. If you compiled your
own version of Apache, make sure that you compiled it with theenable-dav option to enable and
integrate WebDAV support.

To enable WebDAV on an Apache server that is still running Apache 1.x, you
must download and install the original Version 1.0 of mod_dav, which is stable
but is no longer being actively developed. This version can be found at
http://www.webdav.org/mod_dav/.

If WebDAV support wasn't statically linked into your version of Apache2, you'll need to load the
modules that provide WebDAV support. To load the Apache2 modules for WebDAV, do the following:

 # cd /etc/apache2/mods-enabled/
 # ln -s /etc/apache2/mods-available/dav.load dav.load
 # ln -s /etc/apache2/mods-available/dav_fs.load dav_fs.load
 # ln -s /etc/apache2/mods-available/dav_fs.conf dav_fs.conf

http://www.webdav.org/mod_dav/
http://lib.ommolketab.ir

Next, add these two commands to your httpd.conf file to set variables used by Apache's WebDAV
support:

 DAVLockDB /tmp/DAVLock
 DAVMinTimeout 600!

These can be added anywhere in the top level of your httpd.conf filein other words, anywhere that is
not specific to the definition of a single directory or server. The DAVLockDB statement identifies the
directory where locks should be stored. This directory must exist and should be owned by the Apache
service account's user and group. The DAVMinTimeout variable specifies the period of time after which
a lock will automatically be released.

Next, you'll need to create a WebDAV root directory. Users will have their own subdirectories beneath
this one, so it's a bit like an alternative /home directory. This directory must be readable and writable
by the Apache service account. On most distributions, this user will probably be called apache or
www-data. You can check this by searching for the Apache process in ps using one of the following
commands:

 # ps -ef | grep apache2
 # ps -ef | grep httpd

A good location for the WebDAV root is at the same level as your Apache document root. Apache's
document root is usually at /var/www/apache2-default (or, on some systems, /var/www/html). I
tend to use /var/www/webdav as a standard WebDAV root on my systems.

Create this directory and give read and write access to the Apache service account (apache, www-
data, or whatever other name is used on your systems):

 # mkdir /var/www/webdav
 # chown root:www-data /var/www/webdav
 # chmod 750 /var/www/webdav

Now that you've created your directory, you'll need to enable it for WebDAV in Apache. This is done
with a simple Dav On directive, which can be located inside a directory definition anywhere in your
Apache configuration file (httpd.conf):

 <Directory /var/www/webdav>
 Dav On
 </Directory>

http://lib.ommolketab.ir

6.8.2. Creating WebDAV Users and Directories

If you simply activate WebDAV on a directory, any user can access and modify the files in that
directory through a web browser. While a complete absence of security is convenient, it is not "the
right thing" in any modern computing environment. You will therefore want to apply the standard
Apache techniques for specifying the authentication requirements for a given directory in order to
properly protect files stored in WebDAV.

As an example, to set up simple password authentication you can use the htpasswd command to
create a password file and set up an initial user, whom we'll call joe:

 # mkdir /etc/apache2/passwd
 # htpasswd -c /etc/apache2/passwd/htpass.dav joe

The htpasswd command's -c flag creates a new password file, over-writing any
previously created file (and all usernames and passwords it contains), so it
should only be used the first time the password file is created.

The htpasswd command will prompt you once for joe's new WebDAV password, and then again for
confirmation. Once you've specified the password, you should set the permissions on your new
password file so that it can't be read by standard users but is readable by any member of the Apache
service account group:

 # chown root:www-data /etc/apache2/passwd/htpass.dav
 # chmod 640 /etc/apache2/passwd/htpass.dav

Next, the sample user joe will need a WebDAV directory of his own, with the right permissions set:

 # mkdir /var/www/webdav/joe
 # chown www-data:www-data /var/www/webdav/joe
 # chmod 750 /var/www/webdav/joe

The sample user will also need to use the password file that you just created with htpasswd to
authenticate access to his directory, so you'll have to update httpd.conf with another directive for
that directory:

 <Directory /var/www/webdav/joe/>

http://lib.ommolketab.ir

 require user joe
 </Directory>

WebDAV in Apache uses the same authorization conventions as any Apache
authentication declaration. You can therefore require group membership,
enable access to a single directory by multiple users by listing them, and so on.
See your Apache documentation for more information.

Now just restart your Apache server, and you're done with the Apache side of things:

 # /usr/sbin/apache2ctl restart

At this point, you should be able to connect to your web server and access files in
/var/www/webdav/joe as the user joe from any WebDAV-enabled application.

6.8.3. See Also

General information about WebDAV: http://webdav.org

Linux davfs module: http://dav.sourceforge.net

Jon Fox

http://webdav.org
http://dav.sourceforge.net
http://lib.ommolketab.ir

Chapter 7. Security
Section 7.1. Hacks 6368: Introduction

Hack 63. Increase Security by Disabling Unnecessary Services

Hack 64. Allow or Deny Access by IP Address

Hack 65. Detect Network Intruders with snort

Hack 66. Tame Tripwire

Hack 67. Verify Fileystem Integrity with Afick

Hack 68. Check for Rootkits and Other Attacks

http://lib.ommolketab.ir

7.1. Hacks 6368: Introduction

We've come a long way since the 1980s, when Richard Stallman advocated using a carriage return as
your passwordand a long, sad trip it's been. Today's highly connected systems and the very existence
of the Internet have provided exponential increases in productivity. The downside of this connectivity
is that it also provides infinite opportunities for malicious intruders to crack your systems. The goals
in attempting this range from curiosity to industrial espionage, but you can't tell who's who or take
any chances. It's the responsibility of every system administrator to make sure that the systems that
they're responsible for are secure and don't end up as worm-infested zombies or warez servers
serving up bootleg software and every episode of SG-1 to P2P users everywhere.

The hacks in this chapter address system security at multiple levels. Several discuss how to set up
secure systems, detect network intrusions, and lock out hosts that clearly have no business trying to
access your machines. Others discuss software that enables you to record the official state of your
machine's filesystems and catch changes to files that shouldn't be changing. Another hack discusses
how to automatically detect well-known types of Trojan horse software that, once installed, let
intruders roam unmolested by hiding their existence from standard system commands. Together, the
hacks in this chapter discuss a wide spectrum of system security applications and techniques that will
help you minimize or (hopefully) eliminate intrusions, but also protect you if someone does manage
to crack your network or a specific box.

http://lib.ommolketab.ir

Hack 63. Increase Security by Disabling Unnecessary
Services

Many network services that may be enabled by default are both unnecessary and
insecure. Take the minimalist approach and enable only what you need.

Though today's systems are powerful and have gobs of memory, optimizing the processes they start
by default is a good idea for two primary reasons. First, regardless of how much memory you have,
why waste it by running things that you don't need or use? Secondly, and more importantly, every
service you run on your system is a point of exposure, a potential cracking opportunity for the
enlightened or lucky intruder or script kiddie.

There are three standard places from which system services can be started on a Linux system. The
first is /etc/inittab. The second is scripts in the /etc/rc.d/rc?. d directories (/etc/init.d/rc?.d on SUSE

and other more LSB-compliant Linux distributions). The third is by the Internet daemon, which is
usually inetd or xinetd. This hack explores the basic Linux startup process, shows where and how
services are started, and explains easy ways of disabling superfluous services to minimize the places
where your systems can be attacked.

7.2.1. Examining /etc/inittab

Changes to /etc/inittab itself are rarely necessary, but this file is the key to most of the startup
processes on systems such as Linux that use what is known as the "Sys V init" mechanism (this
startup mechanism was first implemented on AT&T's System V Unix systems). The /etc/inittab file
initiates the standard sequence of startup scripts, as described in the next section. The commands
that start the initialization sequence for each runlevel are contained in the following entries from
/etc/inittab. These run the scripts in the runlevel control directory associated with each runlevel:

 l0:0:wait:/etc/rc.d/rc 0
 l1:1:wait:/etc/rc.d/rc 1
 l2:2:wait:/etc/rc.d/rc 2
 l3:3:wait:/etc/rc.d/rc 3
 l4:4:wait:/etc/rc.d/rc 4
 l5:5:wait:/etc/rc.d/rc 5
 l6:6:wait:/etc/rc.d/rc 6

When the init process (the seminal process on Linux and Unix systems) encounters these entries, it
runs the startup scripts in the directory associated with its target runlevel in numerical order, as

http://lib.ommolketab.ir

discussed in the next section.

7.2.2. Optimizing Per-Runlevel Startup Scripts

As shown in the previous section, there are usually seven rc?.d directories, numbered 0 through 6

that are found in the /etc/init.d or the /etc/rc.d directory, depending on your Linux distribution. The
numbers correspond to the Linux runlevels. A description of each runlevel, appropriate for the age
and type of Linux distribution that you're using, can be found in the init man page. (Thanks a lot,
Debian!) Common runlevels for most Linux distributions are 3 (multi-user text) and 5 (multi-user
graphical).

The directory for each runlevel contains symbolic links to the actual scripts that start and stop various
services, which reside in /etc/rc.d/init.d or /etc/init.d. Links that begin with S will be started when
entering that runlevel, while links that begin with K will be stopped (or killed) when leaving that
runlevel. The numbers after the S or K determine the order in which the scripts are executed, in
ascending order.

The easiest way to disable a service is to remove the S script that is associated with it, but I tend to
make a directory called DISABLED in each runlevel directory and move the symlinks to start and kill
scripts that I don't want to run there. This enables me to see what services were previously started
or terminated when entering and leaving each runlevel, should I discover that some important
service is no longer functioning correctly at a specified runlevel.

7.2.3. Streamlining Services Run by the Internet Daemon

One of the startup scripts in the directory for each runlevel starts the Internet daemon, which is inetd
on older Linux distributions or xinetd on most newer Linux distributions. The Internet daemon starts
specified services in response to incoming requests and eliminates the need for your system to
permanently run daemons that are accessed only infrequently. If your distribution is still using inetd
and you want to disable specific services, edit /etc/inetd.conf and comment out the line related to the
service you wish to disable. To disable services managed by xinetd, cd to the directory
/etc/xinetd.conf, which is the directory that contains its service control scripts, and edit the file
associated with the service you no longer want to provide. To disable a specific service, set the
disabled entry in each stanza in its control file to yes. After making changes to /etc/inetd.conf or any
of the control files in /etc/xinetd.conf, you'll need to send a HUP signal to inetd or xinetd to cause it to
restart and re-read its configuration information:

 # kill HUP PID

Many Linux distributions provide tools that simplify managing rc scripts and
xinetd configuration. For example, Red Hat Linux provides chkconfig, while
SUSE Linux provides this functionality within its YaST administration tool.

Of course, the specific services each system requires depends on what you're using it for. However, if

http://lib.ommolketab.ir

you're setting up an out-of-the-box Linux distribution, you will often want to deactivate default
services such as a web server, an FTP server, a TFTP server, NFS support, and so on.

7.2.4. Summary

Running extra services on your systems consumes system resources and provides opportunities for
malicious users to attempt to compromise your systems. Following the suggestions in this hack can
help you increase the performance and security of the systems that you or the company you work for
depend upon.

Lance Tost

http://lib.ommolketab.ir

Hack 64. Allow or Deny Access by IP Address

Using the power of your text editor, you can quickly lock out malicious systems.

When running secure services, you'll often find that you want to allow and/or deny access to and
from certain machines. There are many different ways you can go about this. For instance, you could
implement access control lists (ACLs) at the switch or router level. Alternatively, you could configure
iptables or ipchains to implement your access restrictions. However, a simpler method of
implementing access control is via the proper configuration of the /etc/hosts.allow and
/etc/hosts.deny files. These are standard text files found in the /etc directory on almost every Linux
system. Like many configuration files found within Linux, they can appear daunting at first glance,
but with a little help, setting them up is actually quite easy.

7.3.1. Protecting Your Machine with hosts.allow and hosts.deny

Before we jump into writing complex network access rules, we need to spend a few moments
reviewing the way the Linux access control software works. Inbound packets to tpcd, the Linux TCP
daemon, are filtered through the rules in hosts.allow first, and then, if there are no matches, they are
checked against the rules in hosts.deny. It's important to note this order, because if you have
contradictory rules in each file you should be aware that the rule in hosts.allow will always be
implemented, as the first match is found there. This ceases the filtering, and the incoming packets
are never checked against hosts.deny. If a matching rule is not found in either file, access is granted.

In their most simple form, the lines in each of these files should conform to the following format:

 daemon-name: hostname or ip-address

Here's a more recognizable example:

 sshd: 192.168.1.55,192.168.155.56

If we inserted this line into hosts.allow, all SSH traffic between our local host and 192.168.1.55 and
192.168.1.56 would be allowed. Conversely, if we placed it in hosts.deny, no SSH traffic would be
permitted from those two machines to the local host. This would seem to limit the usability of these
files for access controlbut wait, there's more!

http://lib.ommolketab.ir

The Linux TCP daemon provides an excellent language and syntax for configuring access control
restrictions in the hosts.allow and hosts.deny files. This syntax includes pattern matching, operators,
wildcards, and even shell commands to extend the capabilities. This might sound confusing at first,
but we'll run through some examples that should clear things up. Continuing with our previous SSH
example, let's expand the capabilities of the rule a bit:

 #hosts.allow
 sshd: .foo.bar

In the example above, take note of the leading dot. This tells Linux to match anything with .foo.bar in
its hostname. In this example, both www.foo.bar and mail.foo.bar would be granted access.
Alternatively, you can place a trailing dot to filter anything that matches the prefix:

 #hosts.deny
 sshd: 192.168.2.

This would effectively block SSH connections from every address between 192. 168.2.1 and
192.168.2.255. Another way to block a subnet is to provide the full network address and subnet
mask in the xxx.xxx.xxx.xxx/mmm.mmm.mmm.mmm format, where the xs represent the network
address and the ms represent the subnet mask.

A simple example of this is the following:

 sshd: 192.168.6.0/255.255.255.0

This entry is equivalent to the previous example but uses the network/subnet mask syntax.

Several other wildcards can be used to specify client addresses, but we'll focus on the two that are
most useful: ALL and LOCAL. ALL is the universal wildcard. Everything will match this, and access will
be granted or denied based on which file you've used it in. Being careless with this wildcard can leave
you open to attacks that you would normally think you're safe from, so make sure that you mean to
open up a service to the world when you use it in hosts.allow. LOCAL is used to specify any hostname
that doesn't have a dot (.) within it. This can be used to match against any entries contained in the
local /etc/hosts file.

7.3.2. Configuring hosts.allow and hosts.deny for Use

Now that we've mastered all that, let's move on to a more complex setup. We'll set up a hosts.allow
configuration that allows SSH connections from anywhere and restricts HTTP traffic to our local
network and entries specifically configured in our hosts file. As intelligent sysadmins, we know that
telnet shares many of the same security features as string cheese, so we'll use hosts.deny to deny

http://lib.ommolketab.ir

telnet connections from everywhere as well.

First, edit hosts.allow to read:

 sshd: ALL
 httpd: LOCAL, 192.168.1.0/255.255.255.0

Next, edit hosts.deny to read:

 telnet: ALL

As you can see, securing your machine locally isn't that hard. If you need to filter on a much more
complicated scale, employing network-level ACLs or using iptables to create specific packet-filtering
rules might be appropriate. However, for simple access control, the simplicity of hosts.allow and
hosts.deny can't be beat.

One thing to keep in mind is that it is typically bad practice to perform this kind of filtering upon
hostnames. If you rely on hostnames, you're also relying on name resolution. Should your network
lose the ability to resolve hostnames, you could potentially leave yourself wide open to attack, or
cause all your protected services to come to a screeching halt as all network traffic to them is denied.
Usually, it's better to play it safe and stick to IP addresses.

7.3.3. Hacking the Hack

Wouldn't it be cool if we could set up a rule in our access control files that alerted us whenever an
attempt was made from an unauthorized IP address? The hosts.allow and hosts.deny files provide a
way to do just that! To make this work, we'll have to use the shell command option from the
previously mentioned syntax. Here's an example hosts.deny config to get you started:

 sshd: 192.168.2. spawn (/bin/echo illegal connection attempt from %h %a to
 %d %p at 'date' >>/var/log/unauthorized.log | tee /var/log/unauthorized.log|
 mail root

Using this command in our hosts.deny file will append the hostname (%h), address (%a), daemon
process (%d), and PID (%p), as well as the date and time, to the file /var/log/unauthorized.log.
Traditionally, the finger or safe_ finger commands are used; however, you're certainly not limited
to these.

7.3.4. See Also

http://lib.ommolketab.ir

man tcpd

http://www.die.net/doc/linux/man/man5/hosts.allow.5.html

Brian Warshawsky

http://www.die.net/doc/linux/man/man5/hosts.allow.5.html
http://lib.ommolketab.ir

Hack 65. Detect Network Intruders with snort

Let snort watch for network intruders and log attacksand alert you when problems arise.

Security is a big deal in today's connected world. Every school and company of any decent size has
an internal network and a web site, and they are often directly connected to the Internet. Many
connected sites use dedicated firewall hardware to allow only certain types of access through certain
network ports or from certain network sites, networks, and subnets. However, when you're traveling
and using random Internet connections from hotels, cafes, or trade shows, you can't necessarily bank
on the security that your academic or work environment traditionally provides. Your machine may
actually be on the Net, and therefore a potential target for script kiddies and dedicated hackers
anywhere. Similarly, if your school or business has machines that are directly on the Net with no
intervening hardware, you may as well paint a big red bull's-eye on yourself.

Most Linux distributions nowadays come with built-in firewalls based on the in-kernel packet-filtering
rules that are supported by the most excellent iptables package. However, these can be complex
even to iptables devotees, and they can also be irritating if you need to use standard old-school
transfer and connectivity protocols such as TFTP or telnet, since these are often blocked by firewall
rule sets. Unfortunately, this leads many people to disable the firewall rules, which is the conceptual
equivalent of dropping your pants on the Internet. You're exposed!

This hack explores the snort package, an open source software intrusion detection system (IDS) that
monitors incoming network requests to your system, alerts you to activity that appears to be
spurious, and captures an evidence trail. While there are a number of other popular open source
packages that help you detect and react to network intruders, none is as powerful, flexible, and
actively supported as snort.

7.4.1. Installing snort

The source code for snort is freely available from its home page at http://www.snort.org. At the time
this book was written, the current version was 2.4. Because snort needs to be able to capture and
interpret raw Ethernet packets, it requires that you have the Packet Capture library and headers
(libpcap) installed on your system. libpcap is installed as a part of most modern Linux distributions,
but it is also available in source form from http://www.tcpdump.org.

You can configure and build snort with the standard configuration, build, and install commands used
by any software package that uses autoconf:

 $ tar zxf snort-2.4.0.tar.gz
 $ cd snort-2.4.0
 $./configure

http://www.snort.org
http://www.tcpdump.org
http://lib.ommolketab.ir

 [much output removed]
 $ make
 [much output removed]

As with most open source software, installing into /usr/local is the default. You can change this
behavior by specifying a new location, using the configure command's --prefix option. To install
snort, su to root or use sudo to install the software to the appropriate subdirectories of /usr/local
using the standard make install command:

 # make install

At this point, you can begin using snort in various simple packet capture modes, but to take
advantage of its full capabilities, you'll want to create a snort configuration file and install a number of
default rule sets, as explained in the next section.

7.4.2. Configuring snort

snort is a highly customizable IDS that is driven by a combination of configuration statements and
loadable rule sets. The default snort configuration file is the file /etc/snort.conf, though you can use a
configuration file in any location by specifying the full path to and name of the configuration file using
the snort command's -c option. The snort source package includes a generic configuration file that is
preconfigured to load many sets of rules, which are also available from the snort web site at
http://www.snort.org/pub-bin/downloads.cgi.

To get up-to-the-minute rule sets, subscribe to the latest snort updates from
the SourceFire folks, the people who wrote, support, and update snort.
Subscriptions are explained at http://www.snort.org/rules/why_subscribe.html.
This is generally a good idea, especially if you're using snort in a business
environment, but this hack focuses on using the free rule sets that are also
available from the snort site.

It's perfectly fine to create your own configuration file, but since the template provided with the snort
source is quite complete and shows how to take advantage of many of the capabilities of snort, we'll
focus on adapting the template configuration file to your system.

To begin customizing snort, su to root and create two directories that we'll use to hold information
produced by and about snort:

 # mkdir -p /var/log/snort
 # mkdir -p /etc/snort/rules

http://www.snort.org/pub-bin/downloads.cgi
http://www.snort.org/rules/why_subscribe.html
http://lib.ommolketab.ir

The /var/log/snort directory is required by snort; this is where alerts are recorded and packet
captures are archived. The /etc/snort directory and its subdirectories are where I like to centralize
snort configuration information and rules. You can select any location that you want, but the
instructions in this hack will assume that you're putting everything in /etc/snort.

Next, cd to /etc/snort and copy the files snort.conf and unicode.map to the parent directory (/etc).
The /etc directory is the default location specified in the source code for these core snort
configuration files. As we'll see in the rest of this hack, we'll put everything else in our own /etc/snort
directory.

Now you can bring up the file /etc/snort.conf in your favorite text editor (which should be emacs, by
the way), and start making changes.

First, set the value of the HOME_NET variable to the base value of your home or business network. This
prevents snort from logging outbound and generic intermachine communication on your network
unless it triggers an IDS rule.

If the machine on which you'll be running snort gets its IP address via DHCP,
you can set HOME_NET using the declaration var HOME_NET $eth0_ADDRESS, which
sets the variable to the IP address assigned to your Ethernet interface. Note
that this will require restarting snort if the interface goes down and comes back
up while snort is running.

Next, set the variable EXTERNAL_NET to identify the hosts/networks from which you want to monitor
traffic. To avoid logging local traffic between hosts on the network, the most convenient setting is
!$HOME_NET:

 var EXTERNAL_NET !$HOME_NET

Forgetting the $ is a common mistake that will generate an error about snort
not being able to resolve the address HOME_NET. Make sure you include the $
so that snort references the value of the $HOME_NET variable, not the string
HOME_NET.

If your network runs various servers, the next step is to update the configuration file to identify the
hosts on which they are running. This enables snort to focus on looking for certain types of attacks on
systems that are actually running those services. snort provides a number of variables for various
services, all of which are set to the value of the HOME_NET variable by default:

 # List of DNS servers on your network
 var DNS_SERVERS $HOME_NET
 # List of SMTP servers on your network
 var SMTP_SERVERS $HOME_NET
 # List of web servers on your network
 var HTTP_SERVERS $HOME_NET

http://lib.ommolketab.ir

 # List of sql servers on your network
 var SQL_SERVERS $HOME_NET
 # List of telnet servers on your network
 var TELNET_SERVERS $HOME_NET
 # List of snmp servers on your network
 var SNMP_SERVERS $HOME_NET

Next, copy the classification.config and reference.config files to /etc/snort and set the include
statements for these in snort.conf to point to the full path to these files:

 include /etc/snort/classification.config
 include /etc/snort/reference.config

Now set the value of the RULE_PATH variable in the snort configuration file to /etc/snort/rules (this
variable can point anywhere, of course, but I prefer to centralize as much of the snort configuration
information in /etc/snort as possible):

 var RULE_PATH /etc/snort/rules

Finally, configure snort's output plug-ins to log rule transgressions (known as alerts) however you'd
like. By default, snort enables you to log alerts to the system log and various databases, and also
makes it easy for you to define custom alert mechanisms. I'll focus on using the system log, since
that's the most common (and generic) logging mechanism. To enable logging alerts to the system log
(/var/log/messages), simply uncomment the following line in /etc/snort.conf:

 output alert_syslog: LOG_AUTH LOG_ALERT

Almost there! You're now ready to download and install the rules files that are referenced in your
snort configuration file. As mentioned previously, you should seriously consider subscribing to these if
you're using snort in an enterprise environment, both in order to support further development of
snort and because it's simply the right thing to do. For the purposes of this hack, you can retrieve
and install the free (unregistered user) rules files from http://www.snort.org/pub-bin/downloads.cgi
by searching the page for the "unregistered user release" section and retrieving a gzipped tarball of
the rules that match the version of snort you've built.

To install these rules, change directory to your /etc/snort directory and su to root or use sudo to
extract the contents of the tarball with a standard tar incantation:

 $ cd /etc/snort
 $ sudo tar zxvf /home/wvh/snortrules-pr-2.4.tar.gz

http://www.snort.org/pub-bin/downloads.cgi
http://lib.ommolketab.ir

This will create /rules and /doc subdirectories in /etc/snort. (Again, these rules can actually live
anywhere on your system since their location is identified by the RULE_PATH variable in the snort
configuration file. We set this variable to /etc/snort/rules earlier.)

7.4.3. Starting snort

At this point, you're ready to run snort. Though snort offers a daemon mode, it's generally useful to
run it in interactive mode from the command line until you're sure you've made the correct
modifications to your /etc/snort.conf file. To do this, execute the following command:

 # snort -A full

You'll see a lot of output as snort parses your configuration file and rule sets. If you've done
everything right and not made any typos, this output will conclude with the following block of output:

 --== Initialization Complete ==--

 ,,_ -*> Snort! <*-
 o")~ Version 2.4.0 (Build 18) x86_64
 '''' By Martin Roesch & The Snort Team: http://www.snort.org/team.html
 (C) Copyright 1998-2005 Sourcefire Inc., et al.

If you see this, all is well and snort is running correctly. If not, correct the problems identified by the
snort error messages (which are usually quite good), and try the snort command again until snort
starts correctly.

One especially common and irritating message when getting started using snort is the following:

 socket: Address family not supported by protocol

You will see this message if your system's kernel is not configured to support the CONFIG_PACKET
option, which enables applications (the packet capture library, in this case) to read directly from
network interfaces. This capability can be compiled directly into the kernel, but it's more commonly
built as a loadable kernel module (LKM) with the name af_packet.ko (af_packet.o if you're still
running a pre-2.6 Linux kernel).

If this capability is provided as an LKM on your system, you can generally load it by executing the
modprobe af_packet.ko command as root or via sudo. If modprobe doesn't work for some reason, you

http://lib.ommolketab.ir

can load the module directly using the insmod command. The name of the appropriate /lib/modules
subdirectory where the module is located is contingent on the version of the kernel you're running,
which you can determine by executing the uname -r command. For example:

 # uname -r
 2.6.11.4-21.8-default
 # insmod /lib/modules/2.6.11.4-21.8-default/kernel/net/packet/af_packet.ko
 Testing Snort

The fact that snort is running without complaints is all well and good, but executing correctly isn't the
same thing as doing what you want it to do. It's therefore useful to actually test snort by triggering
one of its rules. The easiest of these to trigger are the port scan rules. To test these, connect to a
machine outside your network and issue the nmap command, identifying the machine on which you're
running snort as the target, as in the following example:

 $ nmap -P0 24.3.53.235
 Starting nmap V. 2.54BETA31 (www.insecure.org/nmap/)
 Warning: You are not root -- using TCP pingscan rather than ICMP
 Nmap run completed -- 1 IP address (0 hosts up) scanned in 60 seconds

You can now check /var/log/snort, in which you should see a filenames alert with contents like the
following:

 a[**] [122:17:0] (portscan) UDP Portscan [**]
 09/14-20:53:16.024463 24.3.53.235 -> 192.168.6.64
 RAW TTL:0 TOS:0xC0 ID:29863 IpLen:20 DgmLen:163

You will also see a directory with the name 24.3.53.235. This directory contains logs of the offending
packets that triggered the alert. Congratulations! snort is working correctly.

If you have port forwarding active on a home or business gateway, you'll
probably see a file with the IP address of the gateway instead of the IP address
of the host from which you did the port scan.

Once you're satisfied that snort is working correctly, you'll probably want to terminate the interactive
snort session we started earlier and restart snort in daemon mode, using the following command:

 # snort -A full -D

http://lib.ommolketab.ir

This starts snort in the background and sends its initialization messages to /var/log/messages. To
add this command to your system's startup mechanisms, either append it to a startup script such as
/etc/rc.local or integrate it into the standard system startup process by creating a start/stop script in
/etc/init.d and adding the appropriate symbolic links to the /etc/rc.runlevel directory that

corresponds to the default runlevel for the system on which you're running snort.

7.4.4. Advanced snort

You can extend snort in an infinite number of ways. One of the easiest is to take advantage of more
of its default capabilities by activating additional rule sets that are provided in the bundle that you
downloaded but are commented out of the default snort configuration file template. Some of my
favorites to uncomment are the following:

 include $RULE_PATH/web-attacks.rules
 include $RULE_PATH/backdoor.rules
 include $RULE_PATH/shellcode.rules
 include $RULE_PATH/virus.rules

Once you uncomment these and restart snort, you'll probably start to see additional snort alerts such
as the following:

 [**] [1:651:8] SHELLCODE x86 stealth NOOP [**]
 [Classification: Executable code was detected] [Priority: 1]
 09/15-04:49:32.299135 70.48.80.189:6881 -> 192.168.6.64:52757
 TCP TTL:109 TOS:0x0 ID:53803 IpLen:20 DgmLen:1432 DF
 AP Seq: 0x1869E9D1 Ack: 0x18F60ED8 Win: 0xFFFF TcpLen: 32
 TCP Options (3) => NOP NOP TS: 719694 594700245
 [Xref => http://www.whitehats.com/info/IDS291]

Better to know about attempted attacks than to be blissfully unaware! Of course, whether or not you
want to monitor your network for these types of attacks is entirely dependent on your site's network
policieswhich is why they're commented out of the snort configuration file template. Your mileage
may vary, but I find these quite useful.

7.4.5. Summary

snort is an extremely powerful, flexible, and configurable intrusion detection system. This hack
focused on getting it up and running in a standard fashionexplaining how to create your own rules
and take advantage of all of its capabilities would require its own book. Actually, a number of books
on snort are available, as well as extensive discussions in more general networking texts such as
O'Reilly's own Network Security Hacks, by Andrew Lockhart.

http://lib.ommolketab.ir

If you're interested in a simpler network-monitoring package, PortSentry
(http://sourceforge.net/projects/sentrytools/) is one of the best known, though it hasn't been
updated for quite a while now. However, snort is a much more powerful tool and is actively under
development. Newer snort developments include the ability to actively respond to certain types of
attacks by sending certain types of packages (known as flexresp, or flexible response) and increasing
integration with dynamic notification tools on both the Linux and Windows platforms. In today's
connected world, you can't really afford not to firewall your hosts and scan for clever folks that can
still punch through your defenses. In the open source world, there's no better tool for the latter task
than snort.

7.4.6. See Also

"Monitor Network Traffic with MRTG" [Hack #79]

Network Security Hacks, by Andrew Lockhart (O'Reilly)

man snort

Snort Central: http://www.snort.org

http://sourceforge.net/projects/sentrytools/
http://www.snort.org
http://lib.ommolketab.ir

Hack 66. Tame Tripwire

The Tripwire program is a great intrusion-detection system, but it can also be a pain to
configure. Save yourself time and trouble with these tips and tricks.

Do you ever wake up in a cold sweat at night, worrying about someone compromising your servers?
Have you ever found yourself wondering if the ls binary that you execute on your machine is actually
telling you the truth about the files in your home directory? If so, welcome to the wonderful world of
system administrator paranoia. And here's a tip: you should look into the possibility of deploying an
intrusion-detection system on your servers so that you can rest easy every night.

There are many different types of IDS out there. Some focus on analyzing incoming network
connections, some simply monitor logs and send alerts to sleeping sysadmins, and others analyze the
binaries, configuration files, and libraries on a system and notify sysadmins of any changes. Tripwire
is an excellent example of the third type of IDS software. It creates a database of the characteristics
of the files in your filesystem and can then monitor the integrity of every single file and directory on
your server. But while such security can be massively reassuring to the paranoid sysadmin, it doesn't
come without a cost. Tripwire can be a beast to set up and configure properly, and hours of tweaking
may be required to tune it properly for your filesystem. However, with a little bit of help, you can
have Tripwire running strong on your system without too much effort.

7.5.1. Installing Tripwire

Obviously, the first step is to obtain and install the software. You have two options for this. The first,
and by far the easiest, is to use your package management software to install Tripwire. Alternatively,
you can install from an RPM available on a third-party site. The procedure I'm going to go through is
for installing Tripwire on Fedora Core 4 via the RPM available on an independent Fedora software site,
but the procedure should be similar for any other RPM-based distribution.

First, download the RPM from http://rpm.chaz6.com/?p=fedora/tripwire/tripwire-2.3.1-
18.fdr.3.1.fc4.i686.rpm. Install it as normal from the command line:

 # rpm -Uvh tripwire-2.3.1-18.fdr.3.1.fc2.i686.rpm

If you don't have any unsatisfied dependencies, the RPM will successfully load Tripwire onto your
system.

Now that the application is installed, take a moment to become familiar with the configuration files

http://rpm.chaz6.com/?p=fedora/tripwire/tripwire-2.3.1-
http://lib.ommolketab.ir

that control Tripwire. There are two main files, and we'll cover each of them in detail.

7.5.2. Tripwire's Execution Configuration File

The file /etc/tripwire/twcfg.txt controls the environment and manner in which Tripwire operates. It is
in this file that you can specify alternate installation directories, the location of the policy and
database files, where to output reports, and where to find the site and local keys so that everything
can be securely signed. The following is a sample twcfg.txt file:

 ROOT =/usr/sbin
 POLFILE =/etc/tripwire/tw.pol
 DBFILE =/var/lib/tripwire/$(HOSTNAME).twd
 REPORTFILE =/var/lib/tripwire/report/$(HOSTNAME)-$(DATE).twr
 SITEKEYFILE =/etc/tripwire/site.key
 LOCALKEYFILE =/etc/tripwire/$(HOSTNAME)-local.key
 EDITOR =/bin/vi
 LATEPROMPTING =false
 LOOSEDIRECTORYCHECKING =false
 MAILNOVIOLATIONS =true
 EMAILREPORTLEVEL =3
 REPORTLEVEL =3
 MAILMETHOD =SENDMAIL
 SYSLOGREPORTING =false
 MAILPROGRAM =/usr/sbin/sendmail -oi -t

Most of the directives within this file are self-explanatory; however, there are a few that can be
somewhat misleading. My favorites are:

LATEPROMPTING

Controls how long Tripwire will wait before asking for a password. If this option is set to true,
Tripwire will wait as long as possible before prompting the user for a password. This limits the
password's time of exposure within system memory, therefore keeping it more secure.

LOOSEDIRECTORYCHECKING

Used to configure Tripwire to notice how files change within directories that are modified. If this
is set to false and a file within a watched directory changes, Tripwire will notify you that both
the directory and the file have changed. When set to true, it will simply notify you that the file
has changed. This option is present to prevent you from becoming inundated with redundant
messages within the Tripwire reports.

MAILNOVIOLATIONS

http://lib.ommolketab.ir

Instructs Tripwire whether or not to email you even if everything has checked out okay. When
set to true, tripwire will send you email just to let you know everything is okay. When set to
false, only problem reports are sent.

EMAILREPORTLEVEL

Configures the level of detail that Tripwire should report. Experiment with this one and see how
you prefer it. Alternatively, you may override this option when launching Tripwire from the
command line.

MAILMETHOD

Enables you to identify how Tripwire reports are delivered via email. There are two possible
values: SMTP, for using an open SMTP relay; and SENDMAIL, for using your own Sendmail server.
This variable should be configured to reflect the configuration of your network and mail servers.

MAILPROGRAM

Tells Tripwire where to find the mail program you want it to use to send out email notifications.

SYSLOGREPORTING

Tells Tripwire whether or not it should report its findings to syslog. Working directly with syslog
can help to configure this further.

Now that we've configured how Tripwire will execute and behave, let's examine the configuration file
that controls how and what it analyzes.

7.5.3. Tripwire's Policy Configuration File

The file /etc/tripwire/twpol.txt tells Tripwire how you want your filesystem monitored. This file can
seem overwhelming at first, but don't panic! It's actually quite straightforward once you know what
you're looking at. Tripwire includes a sample configuration file on which you can base your
configuration. In our case some tweaking will be needed, as this template file is geared toward a
default Red Hat system.

The first part of the configuration file that you should pay attention to is the section labeled @@section
FS. This section provides the details that should be taken into account when checking different types
of files. For instance, SIG_HI is used to monitor files that are critical aspects of a system's overall
vulnerability, including binaries devoted to kernel modification, IP and routing commands, and a host
of other applications. Another good one to pay attention to is SEC_LOG, which notes ownership
permissions, inodes, and other attributes. Files watched by this parameter will not trip the alarm if
their file sizes change, as log files often do.

The best way to learn the syntax of the Tripwire policy file is by modifying an existing config file. We
won't go into much detail hereTripwire is powerful and complex enough that a complete explanation
of effective Tripwire policies deserves a book of its ownbut we will go through one simple

http://lib.ommolketab.ir

modification.

Since this file is based on a default Red Hat installation, YaST would not be protected if we were to
install it on a SUSE box. Let's make some minor changes to the twpol.txt file to fix that:

 #protect the yast binaries
 (
 rulename = "Watch Yast Binaries"
 severity = $(SIG_CRIT)
)
 {
 /sbin/yast -> $ (SEC_CRIT) ;
 /sbin/yast2 -> $ (SEC_CRIT) ;
 /sbin/zast -> $ (SEC_CRIT) ;
 /sbin/zast2 -> $ (SEC_CRIT) ;
 }

This is a very simple rule that doesn't take advantage of even a quarter of Tripwire's customization
features. In this case, the entries between the opening parentheses define the name of the rule and
its severity. The parentheses are followed by a list of binaries to check, enclosed within curly braces.

As you can imagine, creating a perfect Tripwire policy will take some trial and error. You'll need to
take into account every application that you have installed and make sure that they're being
adequately monitored. Start with the sample policy, and begin adding and modifying from there. It
will take a few runs, but sooner or later you'll end up with a perfect policy for your system. For more
information on generating a strong policy and a full explanation of the features, consult the man page
for Tripwire and the official open source Tripwire documentation at
http://sourceforge.net/project/shownotes.php?release_id=18142.

7.5.4. Preparing Tripwire for Use

Once you have Tripwire configured, you need to perform a couple of steps before you can run it. To
begin, cd to /etc/tripwire and run the Tripwire installation script:

 # ./twinstall.sh

Once you've done this, you'll need to accept the license agreement by typing accept at the prompt.
After you've accepted the license terms, you'll then move on to generating the site and local keys.
These are keys that Tripwire uses to sign your configuration files, policies, and the filesystem
database. Be sure to use good, strong keys for this:

 --
 Creating key files…

http://sourceforge.net/project/shownotes.php?release_id=18142
http://lib.ommolketab.ir

 (When selecting a passphrase, keep in mind that good passphrases typically
 have upper and lower case letters, digits and punctuation marks, and are
 at least 8 characters in length.)

 Enter the site keyfile passphrase:
 Verify the site keyfile passphrase:
 Generating key (this may take several minutes)…Key generation complete.

Once the key files have been generated, you'll have to enter your site and local passphrases again so
that Tripwire can sign your configuration files. Using your unique passphrase to generate a key to
sign the important application files ensures that no one will be able to replace your configuration files
with doctored ones that might ignore suspicious activity. Signing them also keeps them from being
read in plain text.

Once everything is installed, the next step is to initialize your Tripwire database. Do this by running
the following command:

 # /usr/sbin/tripwire init

When you do this for the first time, you're likely to get a lot of errors. This is OK; you'll just need to
note what errors come up and fix them in the policy file. It might take several minutes to fully
initialize your Tripwire database, so don't worry if you think it's taking too long.

7.5.5. Running Your First Filesystem Integrity Check

Once the database has been initialized, you'll want to run your first integrity check:

 # /usr/sbin/tripwire check

Again, this will take a few minutes, but when it's done you can examine the report that it generates
on stdout for changes that have occurred within your filesystem.

Once you've done that, there's not much to do but fine-tune your policy file and add Tripwire to cron
to run as often as you want. To add Tripwire to root's list of nightly cron jobs, run the following
command as root:

 # crontab -e

This will open root's crontab file in your default text editor. Add the following line, substituting the
appropriate path:

http://lib.ommolketab.ir

 0 1 * * * /path/to/tripwire -check

This will schedule Tripwire to run every night at 1 A.M. Running Tripwire once per night is usually
sufficient (especially because, depending on the complexity of your Tripwire configuration file, it can
take a long time to run).

As you make changes to your twpolicy.txt and twcfg.txt files, you'll need to use the twadmin tool to
re-encrypt them with your passphrase. To recreate your policy, use the following syntax:

 # /usr/sbin/twadmin create-polfile S site.key /etc/tripwire/twpol.txt

7.5.6. TripWire Tips

You should follow a few simple policies and procedures in order to keep your Tripwire installation
secure. First, don't leave the twpol.txt and twcfg.txt files that you used to generate your Tripwire
database on your hard drive. Instead, store them somewhere off the server. If your system's security
is compromised, as long as these files aren't available the intruder will not be able to view them to
identify any unmonitored parts of your filesystem. Second, it's a good idea to change the Tripwire
configuration and policy files so that your database is stored on some form of read-only media, such
as a CD. This prevents anyone from being able to recreate your database with modifications, thus
hiding root-kits or other malware. And finally, don't wait until your machine has been exposed to the
Internet to install and configure Tripwire. It will serve you best when it's been installed on a clean
machine and is able to begin keeping track of your filesystem from a fresh install. This way, you can
be assured that you're not monitoring a system that has already been compromised.

While it might seem at first that Tripwire is too overwhelming to bother with, this is not actually the
case. The policy file is good at scaring people off, and the default settings and initial setup can
generate a lot of noise and strange error messages. However, with a little bit of work and some
exploration of your own filesystem, you can learn quite a bit about how your system operates while
you configure Tripwire. In addition, Tripwire has many uses outside the security realm. For example,
you can use Tripwire to ensure that an application uninstalls all of its components or to identify all the
changes made when you install an RPM. The possible uses for Tripwire are endless, and after you've
mastered it, it can be an incredibly powerful tool for monitoring and maintaining your systems.

Brian Warshawsky

http://lib.ommolketab.ir

Hack 67. Verify Fileystem Integrity with Afick

Monitor filesystem integrity with this easy-to-use tool.

Online security concerns grow every day as new viruses and worms are released. Because of this, it
is now more important than ever to monitor your server's filesystem for signs of compromise. "Tame
Tripwire" [Hack #66] introduced intrusion detection systems and discussed using the filesystem
integrity checker Tripwire to monitor the multitude of changes that occur within your filesystem.
Tripwire is an excellent tool, but to many people the steep learning curve is a big turnoff in deploying
it. If for whatever reason Tripwire isn't for you, other integrity checkers are available. This is Linux,
after all! Afick (Another File Integrity Checker) is one such tool that provides numerous configuration
methods, including a perl/tk GUI and a Web-min module. This hack will get you up and running using
Afick while your other sysadmin friends are still reading the Tripwire manual.

7.6.1. Installing Afick

There are few dependencies involved in deploying Afick. Since Afick is written in Perl, you'll obviously
need to have Perl and its libraries installed. Beyond that, simply download the source code from
http://afick.sourceforge.net, unpack it to your favorite build location, and run the installation as
follows:

 # perl Makefile

If you don't want to install the perl/tk GUI, you can ignore any warnings you may see regarding
missing perl/tk modules.

Once Perl has finished processing the Makefile, run the following command to actually install the
software:

 # make install

Now that we've built and installed Afick, let's configure it and put it through its paces.

7.6.2. Configuring Afick to Match Your System

http://afick.sourceforge.net
http://lib.ommolketab.ir

The first step in configuring Afick to suit your filesystem is editing the Afick configuration file, which
determines what attributes of your filesystem Afick pays attention to when scanning, and thus how it
knows when to alert you to specific changes. Afick provides a default configuration file, but as every
system is different, you should not depend on it to keep your server safe. Ultimately, fine-tuning
Afick to match your filesystem will be a process of trial and error.

To start this process, first take a look at the Afick configuration file, which is called linux.conf and is
located in the directory where you unpacked Afick. The configuration file contains several sections,
two of which are of particular interest to us. The file is presented and laid out in a very user-friendly
manner, making the sections of the file very easy to differentiate.

The first section we're interested in is the alias section. In this section, we'll set up the different
combinations of file checks that Afick can perform. We will later apply the aliases defined here to
specific types of files and directories. Here are some common aliases:

 # alias :
 #########
 DIR = p+i+n+u+g
 ETC = p+d+i+u+g+s+md5
 Logs = p+n+u+g
 MyRule = p+d+i+n+u+g+s+b+md5+m

The first part of each directive is simply the name of the alias being defined. You'll use this later to
assign these aliases to specific files and directories. The second part of each alias is a list of the
filesystem checks to be performed, separated by plus signs. A list of these options is presented in
Table 7-1 for your reference.

Table 7-1. Afick filesystem check options

Option Associated filesystem check

md5 Verify md5 checksum of file contents

sha1 Verify sha1 checksum of file contents

d Verify major and minor number of device

i Verify inode number

p Verify file permissions

n Verify number of links

u Verify file ownership (user)

g Verify file ownership (group)

s Verify file size

b Verify number of blocks allocated to file

http://lib.ommolketab.ir

Option Associated filesystem check

m Verify last modidication time (mtime)

c Verify last change time (ctime)

a Verify last access time (atime)

The second part of the configuration file we're interested in is the Files to Scan section. In this
section, you can define which individual Afick checks or combinations of them that you defined as
aliases will be performed against specific files and directories on your filesystem. Here are some
examples for you to use to start the process of tuning your configuration:

 /etc/adjtime ETC
 /etc/aliases.db ETC -md5
 /etc/mail/statistics ETC -md5
 /etc/dhcpd.conf c+sha1+s+p
 !/etc/cups/certs/0

This excerpt highlights much of the syntax of the config file. Each of the first three files uses the
predefined ETC alias to specify what attributes should be checked. However, the second two use the -
md5 directive to tell Afick to use the ETC alias minus the md5 checking option. This approach is useful
if you'd like to specify a generic alias to work from with a little modification for different files. The
fourth entry checks only the last modification time, sha1 checksum, file size, and permissions of the
file /etc/dhcpd.conf. The final entry listed above uses the ! option (or bang, for you old school *nixers
out there), which tells Afick not to check the specified file or directory at all. This option should be
used sparingly, and only where truly necessary.

7.6.3. Running Afick

Once you've taken a few minutes to adjust the configuration file to suit your filesystem, you're ready
to run Afick for the first time. Afick operates by creating a snapshot of your filesystem in the form of
a database. When you run Afick for the first time, this database will be initialized, stored, and used as
the basis for comparison in later integrity checks. To create the database, run the following
command:

 # afick -c /path_to_linux.conf /linux.conf -i

The -c directive tells Afick where to find the configuration file it should use, while the -i tells Afick to
create an initial database. This operation may take a few minutes, but when it completes you'll find
the database in the location specified in the first directive within your linux.conf file. Once the initial
database is created, wait a few moments and rerun Afick, this time with the -k option:

m Verify last modidication time (mtime)

c Verify last change time (ctime)

a Verify last access time (atime)

The second part of the configuration file we're interested in is the Files to Scan section. In this
section, you can define which individual Afick checks or combinations of them that you defined as
aliases will be performed against specific files and directories on your filesystem. Here are some
examples for you to use to start the process of tuning your configuration:

 /etc/adjtime ETC
 /etc/aliases.db ETC -md5
 /etc/mail/statistics ETC -md5
 /etc/dhcpd.conf c+sha1+s+p
 !/etc/cups/certs/0

This excerpt highlights much of the syntax of the config file. Each of the first three files uses the
predefined ETC alias to specify what attributes should be checked. However, the second two use the -
md5 directive to tell Afick to use the ETC alias minus the md5 checking option. This approach is useful
if you'd like to specify a generic alias to work from with a little modification for different files. The
fourth entry checks only the last modification time, sha1 checksum, file size, and permissions of the
file /etc/dhcpd.conf. The final entry listed above uses the ! option (or bang, for you old school *nixers
out there), which tells Afick not to check the specified file or directory at all. This option should be
used sparingly, and only where truly necessary.

7.6.3. Running Afick

Once you've taken a few minutes to adjust the configuration file to suit your filesystem, you're ready
to run Afick for the first time. Afick operates by creating a snapshot of your filesystem in the form of
a database. When you run Afick for the first time, this database will be initialized, stored, and used as
the basis for comparison in later integrity checks. To create the database, run the following
command:

 # afick -c /path_to_linux.conf /linux.conf -i

The -c directive tells Afick where to find the configuration file it should use, while the -i tells Afick to
create an initial database. This operation may take a few minutes, but when it completes you'll find
the database in the location specified in the first directive within your linux.conf file. Once the initial
database is created, wait a few moments and rerun Afick, this time with the -k option:

http://lib.ommolketab.ir

 # afick -c /path_to_linux.conf /linux.conf -k

The -k option tells Afick to compare the existing filesystem against the snapshot in the database and
report any errors. It is at this point that you'll begin the trial-and-error phase of your Afick
configuration. As errors and changes are reported, sort through them and modify your configuration
file accordingly. As long as you aren't changing things, and your system is in a quiet state, what will
show up are things on your system that are probably constantly changing. In some cases it will be
appropriate to continue monitoring attributes such as ownership and inodes, but not mtime or atime
values. Experiment and adjust your config file accordingly. Once you can run Afick without returning
a flood of alerts, you're ready to add it to root's crontab to automate it to run on a schedule. To have
Afick added to root's crontab, run the following command as root:

 # crontab -e

This will open root's crontab in your default text editor. Add the following line, substituting the
appropriate path:

 0*/8 * * * root /path_to_afick.cron/afick.cron

This will schedule Afick to run every eight hours, emailing root with any changes that occur.

7.6.4. Securing Afick

Once you've reached this point in your configuration, you should consider moving your database to a
read-only storage medium. In my experience, an old zip disk is an excellent choice (although you can
also use a CD-R or DVD). To move your database to a zip disk, first mount the zip drive and then run
the following command:

 # mv /var/lib/afick/afick.pag /mnt/zip/afick.pag

Once you've done this, make sure you modify your configuration file to point to your newly moved
database using a database := /path/to/database entry. You can then move your configuration file

over to the zip disk as well, and flip the switch on the back of the zip disk to mark the disk as being
read-only. By doing this, you're protecting your database and configuration file from being modified
by anyone without physical access to the server.

7.6.5. Updating Your Database

http://lib.ommolketab.ir

When you make changes to your filesystem, you'll need to update your database. You can do this by
issuing the following command:

 # afick -c /path_to_linux.conf /linux.conf -u

Once the command finishes executing, your database is updated. You should perform an update any
time you upgrade an application, apply new software or kernel patches, or perform any other activity
that will alter your filesystem.

7.6.6. Conclusion

As you can probably tell, Afick is a less complicated version of Tripwire. The two applications share
many similarities, but I find Afick to be the more useful and user-friendly of the two. In my
experience with Afick, I've found a few other uses for it beyond ensuring my system isn't
compromised. Among these uses are ensuring that applications properly uninstall themselves as well
as tracking the exact changes made by running applications. There are many other uses to be found
for this and other integrity checkers, and just a little bit of experimentation is guaranteed to reveal
one or two that are relevant to you.

7.6.7. See Also

"Tame Tripwire" [Hack #66]

http://afick.sourceforge.net

Brian Warshawsky

http://afick.sourceforge.net
http://lib.ommolketab.ir

Hack 68. Check for Rootkits and Other Attacks

Let chkrootkit automatically check your externally facing machines for rootkits and other
attacks.

A rootkit is a software package that enables an unauthorized user to obtain root or administrative
privileges on a machine. Rootkits are usually installed by exploiting a known security problem. Once
installed, they can capture passwords, monitor system status, send system authentication
information to other hosts, and even execute programs at scheduled intervals.

While rootkits are conceptually quite interesting, being "rooted" (the term for being compromised
such that unauthorized people have root access to your system) is not. Luckily, just as there are
plenty of scripts that automate installing rootkits, there are also some great software packages that
detect rootkits and identify compromised systems and applications. Some packages, such as Tripwire
[Hack #66] and Afick [Hack #67], generally monitor file sizes and signatures and let you know if
something has changed that shouldn't have. This hack explores chkrootkit, one of the most powerful
and popular software packages for actually detecting rootkits themselves and discusses how to install
and use it to detect and close down invasions.

7.7.1. Types of Rootkits

Linux rootkits work in various ways, usually as kernel modules, user-space software packages that
replace system binaries, or a combination of both. Kernel rootkits insert loadable kernel modules that
replace system calls with hacked versions that capture information and often hide information about
specific processes from the user, whereas user-space rootkits generally replace system binaries such
as ps, login, passwd, and so on with hacked versions that also capture information and hide
information about specific processes and directories. For example, the t0rn rootkit mentioned in the
"True Confessions" sidebar replaces system binaries such as ps, top, and ls with versions that won't
list anything that is running from its /usr/src/.puta directory. Pretty clever, actually.

chkrootkit runs on Linux systems using any 2.x kernel and has also been used and tested on
FreeBSD 2.2.x, 3.x, 4.x and 5.x systems; OpenBSD 2.x and 3.x systems; NetBSD 1.6.x systems;
Solaris 2.5.1, 2.6, 8.0, and 9.0 systems; and various HP-UX, Tru64, and BSDI system releases. At
the time that this book was written, chkrootkit could detect rootkits such as 55808.A Worm, Adore
LKM, Adore Worm, AjaKit, Anonoying, Aquatica, ARK, Bobkit, dsc-rootkit, duarawkz, Ducoci, ESRK,
Fu, George, Gold2, Hidrootkit, Illogic, Kenga3, kenny-rk, knark LKM, Lion Worm, LOC, LPD Worm,
lrk, Madalin, Maniac-RK, MithRa's Rootkit, Monkit, Omega Worm, OpenBSD rk v1, Optickit, Pizdakit,
Ramen Worm, rh-shaper, RK17, Romanian, RSHA, RST.b trojan, Scalper, Sebek LKM, ShitC Worm,
Shkit, Showtee, shv4, SK, Slapper A-D, SucKIT, TC2 Worm, t0rn, TRK, Volc, Wormkit Worm, x.c
Worm, zaRwT, and ZK.

A basic problem in rootkit detection is that any system on which a rootkit has been installed can't be

http://lib.ommolketab.ir

trusted to detect rootkits. This can be resolved by doing regular system maintenance by running
chkrootkit from a bootable CD. We'll come back to that later. For now, let's install chkrootkit and put
it through its paces.

True Confessions

Hi, my name is Bill, and one of my systems was rooted once. Where better to confess my
sysadmin indiscretions than in a book that will hopefully be read by zillions of people?

Years ago, long before home gateways and Network Address Translation (NAT) boxes
were sub-$100 consumer electronics devices, I built my own home gateway, like most
Linux geeks. By putting an extra Ethernet card in an ancient Pentium box and writing a
few ipfwadm rules (the ancestor of yesterday's ipchains and today's iptables), I could do
NAT and masquerading of my internal systems through my external network interface.
This worked fine 24x7 for quite a while, modulo the occasional power failure, and I used
it to run my home name server and route to external DNS servers. I never updated any
of the software on the box, based on the "don't fix it if it isn't broken" rule (which is a
very bad rule for sysadmins to follow when it comes to security updates). One day, I
logged in on the box to check something and noticed that the output from my favorite
invocation of the ps command didn't display output in the same way that it usually did.
So I checked /var/log/messages and found a few messages that indicated that someone
had been probing my DNS server, attempting to induce a buffer overflow. I poked
around a bit andno big surprisefound that the machine had been hacked and the t0rn
rootkit (http://www.sans.org/y2k/t0rn.htm) was installed.

My reaction to this was different than most. Since none of my home machines
themselves were hacked (I checked) and I was curious, I changed all of my passwords
on systems that I might have contacted since the rootkit had been installed (from work,
of course, not from home), and stopped doing anything at home that required a remote
password for a few days. I then put a README.txt file in /usr/src/.puta, which is where
t0rn puts most of its files, saying something along the lines of "Hi there, congrats, and
how'd you get in?" I got mail within a day or so from the guy who'd hacked my box, we
exchanged a few mail messages through the anonymous remailer he was using, and he
turned me on to some of the rootkits that he had access to. I would have been
completely anal about this if this was a work machine, but as it was, he seemed like a
pretty smart guy and I learned a few things. I rebuilt the machine (with updated
software) within a week or two, anywayI'm friendly, but not suicidal.

The point here is not that my system was hacked, but rather that the potential is always
out there. Crackers can often exploit newly discovered or unpatched problems in system
software to install rootkits on your system, some of which are both fast and clever.
Adding chkrootkit to your system's toolbox can help you detect this sort of invasion and
shut it down as quickly as possible.

7.7.2. Obtaining, Building, and Installing chkrootkit

http://www.sans.org/y2k/t0rn.htm
http://lib.ommolketab.ir

chkrootkit is open source and is freely available from http://www.chkrootkit.org/download. The
current version at the time this book was written was 0.45. Newer versions are better, since each
version of chkrootkit adds software and support for detecting more and more rootkits. The chkrootkit
executable is a shell script that runs the binaries and other scripts that are included as part of the
chkrootkit package.

After downloading the source tarball, you can build chkrootkit as shown in the following example:

 $ tar zxf chkrootkit.tar.gz
 $ cd chkrootkit-0.45
 $ make
 *** stopping make sense ***
 make[1]: Entering directory `/home/wvh/src/chkrootkit-0.45'
 gcc -DHAVE_LASTLOG_H -o chklastlog chklastlog.c
 gcc -DHAVE_LASTLOG_H -o chkwtmp chkwtmp.c
 gcc -DHAVE_LASTLOG_H -D_FILE_OFFSET_BITS=64 -o ifpromisc ifpromisc.c
 gcc -o chkproc chkproc.c
 gcc -o chkdirs chkdirs.c
 gcc -o check_wtmpx check_wtmpx.c
 gcc -static -o strings-static strings.c
 gcc -o chkutmp chkutmp.c
 make[1]: Leaving directory `/home/wvh/src/chkrootkit-0.45'

chkrootkit's Makefile doesn't provide an install target, so you must either manually copy its binaries
somewhere or run it from the directory in which you built it. If you do the latter, I'd suggest
removing all the source code files to make it harder for anyone who has cracked your system to hack
your chkrootkit installationnot impossible, just harder.

7.7.3. Running chkrootkit

Once you've built chkrootkit, you simply run it from wherever you've put the binaries by executing
./chkrootkit or by invoking the full pathname to the chkrootkit shell script. You must execute
chkrootkit as the root user or via sudo. The output from a run of chkrootkit looks like the following:

 # ./chkrootkit
 ROOTDIR is '/'
 Checking 'amd'… not found
 Checking 'basename'… not infected
 Checking 'biff'… not found
 Checking 'chfn'… not infected
 Checking 'chsh'… not infected
 Checking 'cron'… not infected
 Checking 'date'… not infected
 Checking 'du'… not infected
 Checking 'dirname'… not infected
 Checking 'echo'… not infected

http://www.chkrootkit.org/download
http://lib.ommolketab.ir

 Checking 'egrep'… not infected
 Checking 'env'… not infected
 Checking 'find'… not infected
 Checking 'fingerd'… not found
 Checking 'gpm'… not infected
 Checking 'grep'… not infected
 Checking 'hdparm'… not infected
 Checking 'su'… not infected
 Checking 'ifconfig'… not infected
 Checking 'inetd'… not tested
 Checking 'inetdconf'… not found
 Checking 'identd'… not found
 Checking 'init'… not infected
 Checking 'killall'… not infected
 Checking 'ldsopreload'… not infected
 Checking 'login'… not infected
 Checking 'ls'… not infected
 Checking 'lsof'… not infected
 Checking 'mail'… not infected
 Checking 'mingetty'… not infected
 Checking 'netstat'… not infected
 Checking 'named'… not infected
 Checking 'passwd'… not infected
 Checking 'pidof'… not infected
 Checking 'pop2'… not found
 Checking 'pop3'… not found
 Checking 'ps'… not infected
 Checking 'pstree'… not infected
 Checking 'rpcinfo'… not infected
 Checking 'rlogind'… not found
 Checking 'rshd'… not found
 Checking 'slogin'… not infected
 Checking 'sendmail'… not infected
 Checking 'sshd'… not infected
 Checking 'syslogd'… not infected
 Checking 'tar'… not infected
 Checking 'tcpd'… not infected
 Checking 'tcpdump'… not infected
 Checking 'top'… not infected
 Checking 'telnetd'… not found
 Checking 'timed'… not found
 Checking 'traceroute'… not infected
 Checking 'vdir'… not infected
 Checking 'w'… not infected
 Checking 'write'… not infected
 Checking 'aliens'… no suspect files
 Searching for sniffer's logs, it may take a while… nothing found
 Searching for HiDrootkit's default dir… nothing found
 Searching for t0rn's default files and dirs… nothing found
 Searching for t0rn's v8 defaults… nothing found
 Searching for Lion Worm default files and dirs… nothing found
 Searching for RSHA's default files and dir… nothing found

http://lib.ommolketab.ir

 Searching for RH-Sharpe's default files… nothing found
 Searching for Ambient's rootkit (ark) default files and dirs…nothing found
 Searching for suspicious files and dirs, it may take a while…
 /usr/lib/jvm/java-1.4.2-sun-1.4.2.08/jre/.systemPrefs
 /usr/lib/perl5/5.8.6/x86_64-linux-thread-multi/.packlist
 Searching for LPD Worm files and dirs… nothing found
 Searching for Ramen Worm files and dirs… nothing found
 Searching for Maniac files and dirs… nothing found
 Searching for RK17 files and dirs… nothing found
 Searching for Ducoci rootkit… nothing found
 Searching for Adore Worm… nothing found
 Searching for ShitC Worm… nothing found
 Searching for Omega Worm… nothing found
 Searching for Sadmind/IIS Worm… nothing found
 Searching for MonKit… nothing found
 Searching for Showtee… nothing found
 Searching for OpticKit… nothing found
 Searching for T.R.K… nothing found
 Searching for Mithra… nothing found
 Searching for OBSD rk v1… nothing found
 Searching for LOC rootkit… nothing found
 Searching for Romanian rootkit… nothing found
 Searching for Suckit rootkit… nothing found
 Searching for Volc rootkit… nothing found
 Searching for Gold2 rootkit… nothing found
 Searching for TC2 Worm default files and dirs… nothing found
 Searching for Anonoying rootkit default files and dirs… nothing found
 Searching for ZK rootkit default files and dirs… nothing found
 Searching for ShKit rootkit default files and dirs… nothing found
 Searching for AjaKit rootkit default files and dirs… nothing found
 Searching for zaRwT rootkit default files and dirs… nothing found
 Searching for Madalin rootkit default files… nothing found
 Searching for Fu rootkit default files… nothing found
 Searching for ESRK rootkit default files… nothing found
 Searching for anomalies in shell history files… nothing found
 Checking 'asp'… not infected Checking 'bindshell'… not infected
 Checking 'lkm'… chkproc: nothing detected
 Checking 'rexedcs'… not found
 Checking 'sniffer'…
 eth0: not promisc and no PF_PACKET sockets
 vmnet8: not promisc and no PF_PACKET sockets
 vmnet1: not promisc and no PF_PACKET sockets
 Checking 'w55808'… not infected
 Checking 'wted'… chkwtmp: nothing deleted
 Checking 'scalper'… not infected
 Checking 'slapper'… not infected
 Checking 'z2'… chklastlog: nothing deleted
 Checking 'chkutmp'… chkutmp: nothing deleted

It seems like I'm clean, and that's a lot of tests! As you can see, chkrootkit first checks a variety of

http://lib.ommolketab.ir

system binaries for strings that would indicate that they've been hacked, then checks for the
indicators of known rootkits, checks network ports for spurious processes, and so on. I feel better
already.

If you are running additional security software such as PortSentry
(http://sourceforge.net/projects/sentrytools/), you may get false positives
(i.e., reports of problems that aren't actually problems) from the bindshell test,
which looks for processes that are monitoring specific ports.

If you want to be even more paranoid than chkrootkit's normal behavior, you can run chkrootkit with
its -x (expert) option. This option causes chkrootkit to display detailed test output in order to give
you the opportunity to detect potential problems that may be evidence of rootkits that the version of
chkrootkit that you're using may not (yet) be able to identify.

7.7.4. Automating chkrootkit

Running chkrootkit "every so often" is a good idea, but running it regularly via cron is a better one.
To run chkrootkit automatically, log in as root, su to root, or use sudo to run crontab -e and add
chkrootkit to root's list of processes that are run automatically by cron. For example, the following
entry would run chkrootkit every night at 1 A.M. and would mail its output to root@hq.vonhagen.org:

 03***(cd /path/to/chkrootkit; ./chkrootkit 2>&1 | mail -s "chkrootkit \
 output" root@hq.vonhagen.org)

7.7.5. Summary

A basic problem in rootkit detection is that any system on which a rootkit has been installed can't be
trusted to detect rootkits. Even if you follow the instructions in this hack and run chkrootkit via cron,
you only have a small window of opportunity before the clever cracker checks root's crontab entry
and either disables or hacks chkrootkit itself. The combination of chkrootkit and software such as
Tripwire or Afick can help make this window as small as possible, but regular system security checks
of externally facing machines from a bootable CD that includes chkrootkit, such as Inside Security's
Insert Security Rescue CD (http://sourceforge.net/projects/insert/), is your best solution for
identifying rootkits so that you can restore compromised systems.

7.7.6. See Also

http://www.chkrootkit.org

"Tame Tripwire" [Hack #66]

http://sourceforge.net/projects/sentrytools/
http://sourceforge.net/projects/insert/
http://www.chkrootkit.org
http://lib.ommolketab.ir

"Verify Fileystem Integrity with Afick" [Hack #67]

Insert Security Rescue CD: http://www.inside-security.de/insert_en.html

Rootkit Hunter: http://www.rootkit.nl

Windows users: http://research.microsoft.com/rootkit/

Windows users: http://www.sysinternals.com/utilities/rootkitrevealer.html

http://www.inside-security.de/insert_en.html
http://www.rootkit.nl
http://research.microsoft.com/rootkit/
http://www.sysinternals.com/utilities/rootkitrevealer.html
http://lib.ommolketab.ir

Chapter 8. Troubleshooting and
Performance

Section 8.1. Hacks 6977: Introduction

Hack 69. Find Resource Hogs with Standard Commands

Hack 70. Reduce Restart Times with Journaling Filesystems

Hack 71. Grok and Optimize Your System with sysctl

Hack 72. Get the Big Picture with Multiple Displays

Hack 73. Maximize Resources with a Minimalist Window Manager

Hack 74. Profile Your Systems Using /proc

Hack 75. Kill Processes the Right Way

Hack 76. Use a Serial Console for Centralized Access to Your Systems

Hack 77. Clean Up NIS After Users Depart

http://lib.ommolketab.ir

8.1. Hacks 6977: Introduction

You'd be amazed at how often "optimizing performance" really translates into "troubleshooting." If
something is misconfigured or otherwise broken, it's likely that your first inkling that something is
wrong is a result of poor performance, either of the service in question or the host on which it's
running.

Performance is a relative term. It's important to know what a system looks like when it's running
under no load in order to be able to measure the impact of adding incrementally more users and
services.

In this chapter, we'll give you the tools and techniques to troubleshoot your way to better
performance, to optimize resources the system reserves for its slated tasks, and to deal with
resource hogs on your systems and networks.

http://lib.ommolketab.ir

Hack 69. Find Resource Hogs with Standard Commands

You don't need fancy, third-party software or log analyzers to find and deal with a crazed
user on a resource binge.

There are times when users will consume more than their fair share of system resources, be it CPU,
memory, disk space, file handles, or network bandwidth. In environments where users are logging in
on the console (or invoking the login utility by some other means), you can use pam_limits,or the
ulimit utility to keep them from going overboard.

In other environments, neither of these is particularly useful. On development servers, for example,
you could be hosting 50 developers on a single machine where they all test their code before moving
it further along toward a production rollout. Machines of this nature are generally set up to allow for
things like cron jobs to run. While it's probably technically possible to limit the resources the cron
utility can consume, that might be asking for trouble, especially when you consider that there are
many jobs that run out of cron on behalf of the system, such as makewhatis and LogWatch.

In general, the developers don't want to hog resources. Really, they don't. It makes their work take
longer, and it causes their coworkers to unleash a ration of grief on them. On top of that, it annoys
the system administrators, who they know can make their lives, well, "challenging." That said,
resource hogging is generally not a daily or even weekly occurrence, and it hardly justifies the cost of
third-party software, or jumping through hoops to configure for every conceivable method of
resource consumption.

Usually, you find out about resource contention either through a monitoring tool's alert email or from
user email complaining about slow response times or login shells hanging. The first thing you can do
is log into the machine and run the top command, which will show you the number of tasks currently
running, the amount of memory in use, swap space consumption, and how busy the CPUs are. It also
shows a list of the top resource consumers, and all of this data updates itself every few seconds for
your convenience. Here's some sample output from top:

 top - 21:17:48 up 26 days, 6:37, 2 users, load average: 0.18, 0.09, 0.03
 Tasks: 87 total, 2 running, 83 sleeping, 2 stopped, 0 zombie
 Cpu(s): 14.6% us, 20.6% sy, 0.0% ni, 64.1% id, 0.0% wa, 0.3% hi, 0.3% si
 Mem: 2075860k total, 1343220k used, 732640k free, 216800k buffers
 Swap: 4785868k total, 0k used, 4785868k free, 781120k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 3098 jonesy 25 0 4004 1240 956 S 8.7 0.1 0:11.42 hog.sh
 30033 jonesy 15 0 6400 2100 1656 S 0.7 0.1 0:02.57 sshd
 8083 jonesy 16 0 2060 1064 848 R 0.3 0.1 0:00.06 top
 1 root 16 0 1500 516 456 S 0.0 0.0 0:01.91 init

http://lib.ommolketab.ir

As you can see, the top resource consumer is my hog.sh script. It's been running for about 11
seconds (shown in the TIME+ column), has a process ID of 3098, and uses 1240K of physical
memory. A key field here is the NI field. This is referred to as the nice value. Users can use the renice
utility to give their jobs lower priorities, to help ensure that they do not get in the way of other jobs
scheduled to be run by the kernel scheduler. The kernel runs jobs based on their priorities, which are
indicated in the PR field. As an administrator in the position of trying to fix problems without stepping
on the toes of your usership, a first step in saving resources might be to renice the hog.sh script.
You'll need to run top as root to renice a process you don't own. You can do this by hitting R on your
keyboard, at which point top will ask you which process to reprioritize:

 top - 21:19:07 up 26 days, 6:38, 2 users, load average: 0.68, 0.26, 0.09
 Tasks: 88 total, 4 running, 82 sleeping, 2 stopped, 0 zombie
 Cpu(s): 19.6% us, 28.9% sy, 0.0% ni, 49.8% id, 0.0% wa, 1.0% hi, 0.7% si
 Mem: 2075860k total, 1343156k used, 732704k free, 216800k buffers
 Swap: 4785868k total, 0k used, 4785868k free, 781120k cached
 PID to renice: 3098

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 3098 jonesy 25 0 4004 1240 956 R 14.3 0.1 0:22.37 hog.sh

Typing in the process ID and pressing Enter will cause top to ask you what value you'd like to nice
the process to. I typed in 15 here. On the next refresh, notice the change in my script's statistics:

 top - 21:20:22 up 26 days, 6:39, 2 users, load average: 1.03, 0.46, 0.18
 Tasks: 87 total, 1 running, 84 sleeping, 2 stopped, 0 zombie
 Cpu(s): 1.3% us, 22.3% sy, 13.6% ni, 61.5% id, 0.0% wa, 0.7% hi, 0.7% si
 Mem: 2075860k total, 1343220k used, 732640k free, 216800k buffers
 Swap: 4785868k total, 0k used, 4785868k free, 781120k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
 3098 jonesy 39 15 4004 1240 956 S 12.0 0.1 0:31.34 hog.sh

Renicing a process is a safety precaution. Since you don't know what the code does, you don't know
how much pain it will cause the user if you kill it outright. Renicing will help make sure the process
doesn't render the system unusable while you try to dig for more information.

The next thing to check out is the good old ps command. There are actually multiple ways to find out
what else a given user is running. Try this one:

 $ ps ef | grep jonesy
 jonesy 28820 1 0 Jul31 ? 00:00:00 SCREEN
 jonesy 28821 28820 0 Jul31 pts/3 00:00:00 /bin/bash
 jonesy 30203 28821 0 Jul31 pts/3 00:00:00 vim XF86Config

http://lib.ommolketab.ir

 jonesy 30803 1 0 Jul31 ? 00:00:00 SCREEN
 jonesy 30804 30803 0 Jul31 pts/4 00:00:00 /bin/bash
 jonesy 30818 1 0 Jul31 ? 00:00:00 SCREEN -l
 jonesy 30819 30818 0 Jul31 pts/5 00:00:00 /bin/bash

This returns a full listing of all processes that contain the string jonesy. Note that I'm not selecting by
user here, so if some other user is running a script called "jonesy-is-a-horrible-admin," I'll know
about it. Here I can see that the user jonesy is also running a bunch of other programs. The PID of
each process is listed in the second column, and the parent PID (PPID) of each process is listed in the
third column. This is useful, because I can tell, for example, that PID 28821 was actually started by
PID 28820, so I can see here that I'm running an instance of the bash shell inside of a screen
session.

To get an even better picture that shows more clearly the relationship between child and parent
processes, try this command:

 $ ps fHU jonesy

This will show the processes owned by user jonesy in hierarchical form, like this:

 UID PID PPID C STIME TTY TIME CMD
 jonesy 25760 25758 0 15:34 ? 00:00:00 sshd: jonesy@notty

 jonesy 25446 25444 0 Jul29 ? 00:00:06 sshd: jonesy@notty
 jonesy 20761 20758 0 16:28 ? 00:00:03 sshd: jonesy@pts/0
 jonesy 20812 20761 0 16:28 pts/0 00:00:00 -tcsh
 jonesy 12543 12533 0 12:11 ? 00:00:00 sshd: jonesy@notty
 jonesy 12588 12543 0 12:11 ? 00:00:00 tcsh -c /usr/local/libexec/sft
 jonesy 12612 12588 0 12:11 ? 00:00:00 /usr/local/libexec/sftp-serv
 jonesy 12106 12104 0 10:49 ? 00:00:01 sshd: jonesy@pts/29
 jonesy 12135 12106 0 10:49 pts/29 00:00:00 -tcsh
 jonesy 12173 12135 0 10:49 pts/29 00:00:01 ssh livid
 jonesy 10643 10641 0 Jul28 ? 00:00:07 sshd: jonesy@pts/41
 jonesy 10674 10643 0 Jul28 pts/41 00:00:00 -tcsh
 jonesy 845 10674 0 15:49 pts/41 00:00:06 ssh newhotness
 jonesy 7011 6965 0 10:15 ? 00:01:39 sshd: jonesy@pts/21
 jonesy 7033 7011 0 10:15 pts/21 00:00:00 -tcsh
 jonesy 17276 7033 0 11:01 pts/21 00:00:00 -tcsh
 jonesy 17279 17276 0 11:01 pts/21 00:00:00 make
 jonesy 17280 17279 0 11:01 pts/21 00:00:00 /bin/sh -c bibtex paper;
 jonesy 17282 17280 0 11:01 pts/21 00:00:00 latex paper
 jonesy 17297 7033 0 11:01 pts/21 00:00:00 -tcsh
 jonesy 17300 17297 0 11:01 pts/21 00:00:00 make
 jonesy 17301 17300 0 11:01 pts/21 00:00:00 /bin/sh -c bibtex paper;
 jonesy 17303 17301 0 11:01 pts/21 00:00:00 latex paper
 jonesy 6820 6816 0 Jul28 ? 00:00:03 sshd: jonesy@notty

http://lib.ommolketab.ir

 jonesy 6209 6203 0 22:15 ? 00:00:01 sshd: jonesy@pts/31
 jonesy 6227 6209 0 22:15 pts/31 00:00:00 -tcsh

As you can see, I have a lot going on! These processes look fairly benign, but this may not always be
the case. In the event that a user is really spawning lots of resource-intensive processes, one thing
you can do is renice every process owned by that user in one fell swoop. For example, to change the
priority of everything owned by user jonesy to run only when nothing else is running, I'd run the
following command:

 $ renice 20 -u jonesy
 1001: old priority 0, new priority 19

Doing this to a user who has caused the system load to jump to 50 or so can usually get you back
down to a level that makes the system usable again.

8.2.1. What About Disk Hogs?

The previous commands will not help you with users hogging disk space. If your user home
directories are all on the same partition and you're not enforcing quotas, anything from a runaway
program to a penchant for music downloads can quickly fill up the entire partition. This will cause
common applications such as email to stop working altogether. If your mail server is set up to mount
the user home directories and deliver mail to folders in the home directories, it won't be amused!

When a user calls to say email is not working, the first command you'll want to run is this one:

 $ df h
 Filesystem Size Used Avail Use% Mounted on
 fileserver:/export/homes
 323G 323G 0G 100% /.autofs/u

Well, that's a full filesystem if I ever saw one! The df command shows disk usage/free disk statistics
for all mounted filesystems by default, or for whatever filesystems it receives as arguments. Now, to
find out the identity of our disk hog, become root, and we'll turn to the du command:

 # du s B 1024K /home/* | sort n

The du command above produces a summary (-s) for each directory under /home, presenting the
disk usage of each directory in 1024K (1 MB) blocks. We then pipe the output of the command to the
sort command, which we've told to sort it numerically instead of alphabetically by feeding it the n

http://lib.ommolketab.ir

flag. With this output, you can see right away where the most disk space is being used, and you can
then take action in some appropriate fashion (either by contacting the owner of a huge file or
directory, or by deleting or truncating an out-of-control log file [Hack #51].

8.2.2. Bandwidth Hogging

Users who are hogging network bandwidth are rarely difficult to spot using the tools we've already
discussed. However, if the culprit isn't obvious for some reason, you can lean on a core fundamental
truth about Unix-like systems that goes back decades: everything is a file.

You can probe anything that can be represented as a file with the lsof command. To get a list of all
network files (sockets, open connections, open ports), sorted by username, try this command:

 $ lsof i -P| sort k3

The i flag to lsof says to select only network-related files. The -P flag says to show the port numbers
instead of trying to map them to service names. We then pipe the output to our old friend sort,
which we've told this time to sort based on the third field or "key," which is the username. Here's
some output

 sshd 1859 root 3u IPv6 5428 TCP *:22 (LISTEN)
 httpd 1914 root 3u IPv6 5597 TCP *:80 (LISTEN)
 sendmail 16643 root 4u IPv4 404617 TCP localhost.localdomain:
 25 (LISTEN)
 httpd 1914 root 4u IPv6 5598 TCP *:443 (LISTEN)
 dhcpd 5417 root 6u IPv4 97449 UDP *:67

 sshd 24916 root 8u IPv4 4660907 TCP localhost.localdomain:
 6010 (LISTEN)
 nmbd 7812 root 9u IPv4 161622 UDP *:137
 snmpd 25213 root 9u IPv4 4454614 TCP *:199 (LISTEN)
 sshd 24916 root 9u IPv6 4660908 TCP localhost:6010 (LISTEN)
 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME

These are all common services, of course, but in the event that you catch a port or service here that
you don't recognize, you can move on to using tools such as an MRTG graph [Hack #79], ngrep,
tcpdump, or snmpget/snmpwalk [Hack #81] to try to figure out what the program is doing, where
its traffic is headed, how long it has been running, and so on. Also, since lsof shows you which
processes are holding open which ports, problems that need immediate attention can be dealt with
using standard commands to renice or kill the offending process.

http://lib.ommolketab.ir

Hack 70. Reduce Restart Times with Journaling
Filesystems

Large disks and filesystem problems can drag down the boot process unless you're using
a journaling filesystem. Linux gives you plenty to choose from.

Computer systems can only successfully mount and use filesystems if they can be sure that all of the
data structures in each filesystem are consistent. In Linux and Unix terms, consistency means that all
of the disk blocks that are actually used in some file or directory are marked as being in use, all
deleted blocks aren't linked to anything other than the list of free blocks, all directories in the
filesystem actually have parent directories, and so on. This check is done by filesystem consistency
check applications, the best known of which is the standard Linux/Unix fsck application. Each
filesystem has its own version of fsck (with names like fsck.ext3, fsck.jfs, fsck.reiserfs, and so on)
that understands and "does the right thing" for that particular filesystem.

When filesystems are mounted as part of the boot process, they are marked as being in use ("dirty").
When a system is shut down normally, all its on-disk filesystems are marked as being consistent
("clean") when they are unmounted. When the system reboots, filesystems that are marked as being
clean do not have to be checked before they are mounted, which saves lots of time in the boot
process. However, if they are not marked as clean, the laborious filesystem consistency check
process begins. Because today's filesystems are often quite large and therefore contain huge chains
of files, directories, and subdirectories, each using blocks in the filesystem, verifying the consistency
of each filesystem before mounting it is usually the slowest part of a computer's boot process.
Avoiding filesystem consistency checks is therefore the dream of every sysadmin and a goal of every
system or filesystem designer. This hack explores the basic concepts of how a special type of
filesystem, known as a journaling filesystem, expedites system restart times by largely eliminating
the need to check filesystem consistency when a system reboots.

8.3.1. Journaling Filesystems 101

Some of the more inspired among us may keep a journal to record what's happening in our lives.
These come in handy if we want to look back and see what was happening to us at a specific point in
time. Journaling filesystems operate in a similar manner, writing planned changes to a filesystem in a
special part of the disk, called a journal or log, before actually applying them to the filesystem. (This
is hard to do in a personal journal unless you're psychic.) There are multiple reasons journaling
filesystems record changes in a log before applying them, but the primary reason for this is to
guarantee filesystem consistency.

Using a log enforces consistency, because sets of planned changes are grouped together in the log
and are replayed transactionally against the filesystem. When they are successfully applied to the
filesystem, the filesystem is consistent, and all of the changes in the set are removed from the log. If

http://lib.ommolketab.ir

the system crashes while transactionally applying a set of changes to the filesystem, the entries
remain present in the log and are applied to the filesystem as part of mounting that filesystem when
the system comes back up. Therefore, the filesystem is always in a consistent state or can almost
always quickly be made consistent by replaying any pending transactions.

I say "almost always" because a journaling filesystem can't protect you from
bad blocks appearing on your disks or from general hardware failures, which
can cause filesystem corruption or loss. See "Recover Lost Partitions" [Hack
#93], "Recover Data from Crashed Disks" [Hack #94], and "Repair and
Recover ReiserFS Filesystems" [Hack #95] for some suggestions if fsck
doesn't work for you.

8.3.2. Journaling Filesystems Under Linux

Linux offers a variety of journaling filesystems, preintegrated into the primary kernel code.
Depending on the Linux distribution that you are using, these may or may not be compiled into your
kernel or available as loadable kernel modules. Filesystems are activated in the Linux kernel on the
File Systems pane of your favorite kernel configuration mechanism, accessed via make xconfig or (for
luddites) make menuconfig. The options for the XFS journaling filesystem are grouped together on a
separate pane, XFS Support.

The journaling filesystems that are integrated into the Linux kernel at the time this book was written
are the following:

ext3

ext3 adds high-performance journaling capabilities to the standard Linux ext2 filesystem on
which it's based. Existing ext2 filesystems can easily be converted to ext3, as explained later in
this hack.

JFS

The Journaled File System (JFS) was originally developed by International Business Machines
(IBM) for use on their OS/2 and AIX systems. JFS is a high-performance journaling filesystem
that allocates disk space as needed from pools of available storage in the filesystem (known as
allocation groups) and therefore creates inodes as needed, rather than preallocating everything
as traditional Unix/Linux filesystems do. This provides fast storage allocation and also removes
most limitations on the number of inodes (and therefore files and directories) that can be
created in a JFS filesystem.

ReiserFS

Written by Hans Reiser and others with the financial support of companies such as SUSE,
Linspire, mp3.com, and many others, ReiserFS is a high-performance, space-efficient
journaling filesystem that is especially well suited to filesystems that contain large numbers of
files. ReiserFS was the first journaling filesystem to be integrated into the Linux kernel code

http://lib.ommolketab.ir

and has therefore been popular and stable for quite a while. It is the default filesystem type on
Linux distributions such as SUSE Linux.

Reiser4

Written by Hans Reiser and others with the financial support of the Defense Advanced Research
Projects Agency (DARPA), Reiser4 is the newest of the journaling filesystems discussed in this
hack. Reiser4 is a very high-performance, transactional filesystem that further increases the
extremely efficient space allocation provided by ReiserFS. It is also designed to be extended
through plug-ins that can add new features without changing the core code.

XFS

Contributed to Linux by Silicon Graphics, Inc. (SGI), XFS (which doesn't really stand for
anything) is a very high-performance journaling filesystem that dynamically allocates space
and creates inodes as needed (like JFS), and supports a special (optional) real-time section for
files that require high-performance, real-time I/O. The combination of these features provides
a fast filesystem without significant limitations on the number of inodes (and therefore files and
directories) that can be created in an XFS filesystem.

Each of these filesystem has its own consistency checker, filesystem creation tool, and related
administrative tools. Even if your kernel supports the new type of filesystem that you've selected,
make sure that your filesystems also include its administrative utilities, installed separately through
your distribution's package manager, or you're in for a bad time the next time you reboot and a
filesystem check is required.

The purpose of this hack is to explain why journaling filesystems are a good idea for most of the local
storage that is attached to the systems you're responsible for, and to provide some tips about
integrating journaling filesystems into existing systems. I can't really say more about these here
without turning this hack into a tome on Linux filesystemswhich I already wrote a few years ago
(Linux Filesystems, SAMS Publishing), though it's now somewhat dated. All of these journaling
filesystems are well established and have been used on Linux systems for a few years. Reiser4 is the
newest of these and is therefore the least time-tested, but Hans assures us all that no one does
software engineering like the Namesys team.

8.3.3. Converting Existing Filesystems to Journaling Filesystems

Traditional Linux systems use the ext2 filesystem for local filesystems. Because the journaling
filesystems available for Linux all use their own allocation and inode/storage management
mechanisms, the only journaling Linux filesystem that you can begin using with little effort is the ext3
filesystem, which was designed to be compatible with ext2.

To convert an existing ext2 filesystem to an ext3 filesystem, all you have to do is add a journal and
tell your system that it is now an ext3 filesystem so that it will start using the journal. The command
to create a journal on an existing ext2 filesystem (you must be root or use sudo) is the following:

 # tune2fs -j /dev/ filesystem

http://lib.ommolketab.ir

If you create a journal on a mounted ext2 filesystem, it will initially be created
as the file .journal in the root of the filesystem and will automatically be hidden
when you reboot or remount the filesystem as an ext3 filesystem.

You will need to update /etc/fstab to tell the mount command to mount your converted filesystem as
an ext3 filesystem and reboot to verify that all is well.

In general, if you want to begin using any of the non-ext3 journaling filesystems discussed in this
chapter with any existing system, you'll need to do the following:

Build support for that journaling filesystem into your Linux kernel, make it available as a
loadable kernel module, or verify that it's already supported in your existing kernel.

Make sure you update the contents of any initial RAM disk you used during the boot process to
include any loadable kernel modules for the new filesystem(s) that you are using.

Install the administrative tools associated with the new filesystem type, if they aren't already
available on your system. These include a minimum of new mkfs.filesystem-type and
fsck.filesystem-type utilities, and may also include new administrative and filesystem repair

utilities.

Manually convert your existing filesystems to the new journaling filesystem format by creating
new partitions or logical volumes that are at least as large as your existing filesystems,
formatting them using the new filesystem format, and recursively copying the contents of your
existing filesystems into the new ones.

Go to single-user mode, unmount your existing filesystems, and update the entries in /etc/fstab
to reflect the new filesystem types (and the new disks/volumes where they are located unless
you're simply replacing an existing disk with one or more new ones).

When migrating the contents of existing partitions and volumes to new partitions and volumes in
different filesystem formats, always back up everything first and test each of the new partitions
before wiping out its predecessor. Forgetting any of the steps in the previous list can turn your well-
intentioned system improvement experience into a restart nightmare if your system won't boot
correctly using its sexy new filesystems.

8.3.4. Summary

Journaling filesystems can significantly improve system restart times, provide more efficient use of
the disk space available on your partitions or volumes, and often even increase general system
performance. I personally tend to use ext3 for system filesystems such as / and /boot, since this
enables me to use all of the standard ext2 filesystem repair utilities if these filesystems become
corrupted. For local storage on SUSE systems, I generally use ReiserFS, because that's the default
there and it's great for system partitions (such as your mail and print queues) because of its super-
efficient allocation.

http://lib.ommolketab.ir

I tend to use XFS for physical partitions on Linux distributions other than SUSE Linux, because I've
used it for years on Linux and SGI boxes, it has always been stable in my experience, and the real-
time section of XFS filesystems is way cool. I generally use ext3 on logical volumes because the
dynamic allocation mechanisms used by JFS and XFS and ReiserFS's tree-balancing algorithms place
extra overhead on the logical volume subsystem. They all still work fine on logical volumes, of course.

8.3.5. See Also

"Recover Lost Partitions" [Hack #93]

"Recover Data from Crashed Disks" [Hack #94]

"Repair and Recover ReiserFS Filesystems" [Hack #95]

man tune2fs

ext3 home page: http://e2fsprogs.sourceforge.net/ext2.html

JFS home page: http://jfs.sourceforge.net

ReiserFS/Reiser4 home page: http://www.namesys.com

XFS home page: http://oss.sgi.com/projects/xfs/

http://e2fsprogs.sourceforge.net/ext2.html
http://jfs.sourceforge.net
http://www.namesys.com
http://oss.sgi.com/projects/xfs/
http://lib.ommolketab.ir

Hack 71. Grok and Optimize Your System with sysctl

Instead of interacting directly with /proc files, you can get and set kernel options in a
flash with the sysctl command.

In days of old, sysctl referred to a header file or system call that C programmers could use to change
kernel settings from a program. The files under /proc/sys/ are often collectively referred to as the
sysctl interface, because they can be written to, and changes made to the files will be picked up by
the running kernel without rebooting. This feature was implemented in the kernel as early as Version
2.0 (but don't quote me).

These days, sysctl is a kernel call, an interface, and a command that allows administrators to easily
interact with the kernel. It also allows for a proper startup configuration file, so you don't have to
rebuild kernels everywhere to disable IP forwarding, for example. Enabling and disabling IP
forwarding was one of the first things I ever used the sysctl interface for. Enabling IP forwarding for
your Linux router used to be done with a command like this:

 # echo 1 > /proc/sys/net/ipv4/ip_forward

The content of the file was "0" by default, indicating that forwarding was not turned on. Echoing a "1"
into the file turned it on.

Enter the sysctl command. Now we can all easily see every single setting available to us through the
interface with a simple command:

 # sysctl -a
 net.ipv4.tcp_keepalive_time = 7200
 net.ipv4.ipfrag_time = 30
 net.ipv4.ip_dynaddr = 1
 net.ipv4.ipfrag_low_thresh = 196608
 net.ipv4.ipfrag_high_thresh = 262144
 net.ipv4.tcp_max_tw_buckets = 180000
 net.ipv4.tcp_max_orphans = 16384
 net.ipv4.tcp_synack_retries = 5

 net.ipv4.tcp_syn_retries = 5
 net.ipv4.ip_nonlocal_bind = 0
 net.ipv4.ip_no_pmtu_disc = 0
 net.ipv4.ip_autoconfig = 0
 net.ipv4.ip_default_ttl = 64

http://lib.ommolketab.ir

 net.ipv4.ip_forward = 0
 …

On my desktop Debian system, this returned over 400 "key=value" -formatted records. The keys on
the left are dotted representations of file paths under /proc/sys. For example, the setting for
net.ipv4.ip_forward can be found in /proc/sys/net/ipv4/ip_forward. If you know what you're looking
for, though, you can specify what you want as an argument to sysctl:

 # /sbin/sysctl net.ipv4.ip_forward
 net.ipv4.ip_forward = 0

So if you always wanted to know more about your kernel, consider it done. How about customizing
the kernel settings? You have choices. You can make temporary changes to the kernel using the -w
flag to "write" a new setting:

 # sysctl -w net.ipv4.ip_forward=1

On the other hand, if you want to make a more permanent change, you can put your custom settings
into the /etc/sysctl.conf file, which will ensure that your settings are applied automatically when the
kernel boots. (Actually, it's not read right when the kernel is launched, per se, but at some point
before a login prompt is displayed to the console. Exactly when the variables are set varies from
distribution to distribution, but if you grep for sysctl under /etc/init.d, you're sure to find it in a
hurry!)

The configuration file consists of records that look identical to the output of sysctl -a. Here's an
example configuration file:

 # Controls IP packet forwarding
 net.ipv4.ip_forward = 0

 # Controls source route verification
 net.ipv4.conf.default.rp_filter = 1

 # Controls the System Request debugging functionality of the kernel
 kernel.sysrq = 0

 # Controls whether core dumps will append the PID to the core filename.
 # Useful for debugging multi-threaded applications.
 kernel.core_uses_pid = 1

 # Decrease the time default value for tcp_fin_timeout connection.
 net.ipv4.tcp_fin_timeout = 30

http://lib.ommolketab.ir

 # Decrease the time default value for tcp_keepalive_time connection
 net.ipv4.tcp_keepalive_time = 1800

 # Turn off tcp_window_scaling
 net.ipv4.tcp_window_scaling = 0

 # Turn off the tcp_sack
 net.ipv4.tcp_sack = 0

 # Turn off tcp_timestamps
 net.ipv4.tcp_timestamps = 0

 # Increase transport socket buffers to improve performance of nfs (and
 networking
 # in general)
 # 'rmem' is 'read memory', 'wmem' is 'write memory'.
 net.core.rmem_max = 262143
 net.core.rmem_default = 262143
 net.core.wmem_max = 262143
 net.core.wmem_default = 262143

 net.ipv4.tcp_rmem = 4096 87380 8388608
 net.ipv4.tcp_wmem = 4096 87380 8388608

 # These are for both security and performance

 net.ipv4.icmp_echo_ignore_broadcasts = 1
 net.ipv4.icmp_ignore_bogus_error_responses = 1

When all is said and done, the hardest part of using the sysctl interface is learning what all the
variables actually mean and how they apply to your particular situation. I hope the comments in my
sample file can help out a bit. Also check out the documentation of the /proc files that comes with the
kernel source distribution to get started.

http://lib.ommolketab.ir

Hack 72. Get the Big Picture with Multiple Displays

Using two monitors with a single system gives you more room to work. The latest
versions of the X Window System make this easier than ever before.

Many of the hacks in this book discuss how to better monitor system and process status, how to use
the Web for basic computing infrastructure functions, and so on. This hack explains how to get
enough display space so that you can actually see all of that information by attaching two video cards
and two monitors to any Linux system and configuring the XFree86 or X.org X Window System for
what is known as multi-head display.

Whenever possible, add a second graphics card of the same type as the one
that is already in your system, or replace your existing graphics card with one
that supports two monitors. This will enable you to use the same X server to
control both graphics cards and their associated displays. Similarly, it's a good
idea to add a second monitor of exactly the same size and with exactly the
same maximum display resolution as your existing monitor. This will simplify
synchronizing graphics modes across the two monitors (and in the X Window
System configuration sections for each display).

This hack creates two separate displays, one on each of your monitors. An alternate approach would
be to use the X Window System's Xinerama extension to create one single display that spans two
monitors. (See http://www.tldp.org/HOWTO/Xinerama-HOWTO/ for more information about
Xinerama.) With two separate displays you cannot move windows from one to the other, though you
can create windows on a specific display by specifying the display that you want to use on an X
application's command line. I find Xinerama disconcerting because windows can be split across the
two displays, which makes them a tad hard to read because of the casing on my monitors. I find
separate displays easier to use and cleaner looking. Your mileage may vary.

X Window System configuration information is stored in the file /etc/X11/xorg.conf if you are using
the X11 server from X.org, or in /etc/X11/XF86Config if you are using an XFree86-based X11 server.
After adding the hardware to your system and booting in a nongraphical, multi-user mode such as
runlevel 3, the procedure for modifying this file to use a multi-head display is as simple as the
following few steps.

First, you need to create two Monitor sections in your X server's configuration file. Make sure you use
a unique Identifier name for each monitor:

 Section "Monitor"
 Identifier "Monitor 0"
 VendorName "Monitor Vendor"

http://www.tldp.org/HOWTO/Xinerama-HOWTO/
http://lib.ommolketab.ir

 ModelName "Model X"
 HorizSync 30.0 - 50.0
 VertRefresh 60.0 - 60.0
 EndSection

 Section "Monitor"
 Identifier "Monitor 1"
 VendorName "Monitor Vendor"
 ModelName "Model Y"
 HorizSync 30.0 - 50.0
 VertRefresh 60.0 - 60.0
 EndSection

Next, create a Device section for each graphics card in your system. As with the monitors, be sure to
use a unique Identifier for each graphics card:

 Section "Device"
 Identifier "VideoCard 0"
 Driver "drivername"
 VendorName "Vendor"
 BusID "PCI:00:15:0"
 EndSection

 Section "Device"
 Identifier "VideoCard 1"
 Driver "drivername"
 VendorName "Vendor"
 BusID "PCI:1:0:0"
 EndSection

The BusID enables the X server to correctly and uniquely define each display in your configuration file,
and its value can be found from the output of the lspci command. The BusID can be found at the
beginning of the first line of lspci output that identifies the graphics card. The format is slightly
different than what you will need to put in your configuration file: lspci reports in hexadecimal, while
you must use decimal notation in your configuration file. The output of the lspci command is also
xx:yy.z, which you must express as xx:yy:z in your configuration filenote that the period in the lspci

output must be replaced with a colon in your configuration file.

 # lspci | grep VGA
 00:0f.0 VGA compatible controller: nVidia Corporation NV11 [GeForce2 MX/MX
 400] (rev b2)
 01:00.0 VGA compatible controller: nVidia Corporation NV15 [GeForce2 GTS/
 Pro] (rev a4)

http://lib.ommolketab.ir

My favorite tool for converting hex to decimal is the standard Linux bc utility.
You can specify bc's input base using the ibase =base command and leave its

output set to decimal (the default). For example, the following shows how to
convert 10 hex to decimal (OK, that's not very hard, but this is an example,
and a simple example does make things clear):

 $ bc q
 ibase=16
 10
 16

After specifying the input base, you simply enter a hex value and press Return,
and bc displays the decimal equivalent. Type Ctrl-D to exit bc.

The next thing to add to your X server's configuration file is two Screen sections. Each section will use
one of the Monitor and Device stanzas that you defined previously. The resolution and color depth of
the two can be different if you so desire but are usually the same:

 Section "Screen"
 Identifier "Screen 0"
 Device "VideoCard 0"
 Monitor "Monitor 0"
 DefaultDepth 24
 SubSection "Display"
 Depth 24
 Modes "800x600" "640x480"
 EndSubSection
 EndSection

 Section "Screen"
 Identifier "Screen 1"
 Device "VideoCard 1"
 Monitor "Monitor 1"
 DefaultDepth 24
 SubSection "Display"
 Depth 24
 Modes "1024x768" "800x600" "640x480"
 EndSubSection
 EndSection

Now, you must tie all of these pieces together in the ServerLayout section (normally at the top of
your configuration file:

http://lib.ommolketab.ir

 Section "ServerLayout"
 Identifier "Multihead layout"
 Screen 0 "Screen 0" 0 0
 Screen 1 "Screen 1" RightOf "screen 0"
 InputDevice "Mouse0" "CorePointer"
 InputDevice "Keyboard0" "CoreKeyboard"
 InputDevice "DevInputMice" "AlwaysCore"
 EndSection

The 0 0 next to Screen 0 means that this screen will start at position 0,0. Screen 1 will be located to
the right of Screen 0.

Now that that's done, start the X Window System using your favorite startx or xinit command. If X
does not start correctly, double-check the entries that you added to your configuration file for syntax
errors, paying particular attention to the BusID values in the Device stanzas.

Redirecting the output of the startx or xinit command to a file can help
capture error messages that you can use to debug your configuration files.
Executing xinit> & x_startup.txt can be extremely useful, unless you can
read much faster than I can.

Once X is working correctly, you can start a graphical application so that it starts on the screen of
your choice by using the display option that is accepted by almost every X Window System
command. For example, to start an xterm on Screen 1, you would execute the command xterm
display :0.1. This display value specifies that the application use Screen 1 of the current display
(display 0) on the current host. The general form of a display value is the following:

 hostname:displaynumber.screennumber

Using a multi-head display may be a bit disconcerting at first, especially when your mouse pointer
crosses from one monitor to the other, but you'll quickly find that the additional display real estate is
well worth any amount of acclimation.

8.5.1. See Also

"Monitor Network Traffic with MRTG" [Hack #79]

Lance Tost

http://lib.ommolketab.ir

Hack 73. Maximize Resources with a Minimalist Window
Manager

Using window managers rather than desktop environments can improve the performance
of slower systems or simply leave more system resources available for actual computing .

Graphical user interfaces such as KDE and GNOME are slick and easy to use, but all that eye candy
has a priceexecuting and managing all of those graphical bells and whistles requires a certain
percentage of system resources. A typical idle KDE desktop on SUSE 9 Enterprise occupies around
370 MB of RAM. For today's servers with multiple gigabytes of RAM, this may not be an issue.
However, if you're running a legacy server that contains less than a gig of RAM, you could certainly
benefit from the use of a more modest graphics system, known as a window manager . Window
managers focus on displaying and managing windows, not drag and drop and other luxuries. One of
the best lightweight window managers is Fluxbox , an open source software package available online
and derived from the Blackbox window manager, which is itself an open source clone of the window
manager used on old workstations from NeXT. Using Fluxbox can decrease the amount of RAM
required by your GUI by over 100 MB, and also eliminates the ten zillion background processes that
desktop environments such as KDE start to support things like drag and drop, automatic file
associations, and so on. This hack explains how to build and install Fluxbox so that you can devote
more of your system's memory to the applications that you actually want to run.

8.6.1. Getting and Installing Fluxbox

As usual, the easiest method of installing Fluxbox is via an RPM packaged for your distribution. These
can be found on the Fluxbox home page, http://Fluxbox.sourceforge.net . In this example, we'll
compile from source so that we can pass a few options to make Fluxbox a little more familiar. Grab
the tarball from the home page, and extract it to a working directory. Navigate into the newly
created directory, and run configure as follows:

 $./configure with kde with-gnome

This will allow Fluxbox to use the KDE and GNOME panel icons. Once the configure script has finished,
run the following command as root to build Fluxbox:

 # make && make install

http://lib.ommolketab.ir

This will compile Fluxbox (which doesn't require root privileges) and install it for you (which requires
root privileges, since you have to be able to write to subdirectories of /usr/local). The name of the
actual executable for Fluxbox is fluxbox (no initial cap). Now we just need to configure X to start
Fluxbox as your window manager.

8.6.2. Start Me Up, Scotty!

If you installed on a SUSE or Red Hat system using an RPM, you can simply select Fluxbox as your
session type from the login screen. Otherwise, navigate to your home directory and find a file called
either .xsession or .xinitrc . If a file matching one of those names doesn't exist, you'll need to create
one. Which one you create depends largely on how your system starts Xsee the Fluxbox
documentation for more information.

In this case, we'll edit .xinitrc . Open it with your favorite text editor and enter the following line:

 exec /usr/local/bin/fluxbox

where /usr/local/bin is the directory in which you installed your fluxbox executable (/usr/local/bin is
usually the default installation location). You'll then need to change the file ownership properties via
chmod :

 $ chmod 700 .xinitrc

You can now log out and right back in. Depending on your distribution, either fluxbox will start
automatically, or you'll be able to select it as your session type from the login manager. Either way,
upon logging in you'll be greeted (very quickly!) by a plain-looking screen. Right-clicking on the
desktop brings up a menu with various options on it. If you configured it with the KDE and GNOME
options as I suggested, some of the tools from those environments might be available to you right
away. Figure 8-1 shows a sample Fluxbox screen running a single xterm with the Firefox web
browser open, and displaying my default Fluxbox menu as the result of a right-click on the
background.

Figure 8-1. Fluxbox in all its minimal glory

http://lib.ommolketab.ir

8.6.3. Configure Fluxbox

The next step is to begin customizing Fluxbox to your liking. As you can see from Figure 8-1 ,
Fluxbox is highly configurable. The biggest piece of Fluxbox configuration is customizing its main
menu. This is the menu that is displayed whenever you click on the desktop, and it is completely
configurable. The menu is controlled via a text file called menu . This file is located in your .fluxbox
directory, which is automatically created in your home directory the first time you run Fluxbox. The
layout of the file is very simple:

 [begin] (Fluxbox)
 [exec] (xterm) {xterm}
 [exec] (mozilla) {mozilla}
 [exec] (Run) {fbrun}
 [submenu] (Terminals)
 [exec] (xterm) {xterm}

 [exec] (gnome-terminal) {gnome-terminal}
 [exec] (console) {console}

http://lib.ommolketab.ir

 [end]
 [submenu] (Net)
 [submenu] (Utilities)
 [exec] (Ethereal) {ethereal}
 [submenu] (Browsers)
 [exec] (mozilla) {mozilla}
 [exec] (conqueror) {kfmclient openProfile webbrowsing}
 [end]
 [end]

This example is a sample section from my Fluxbox menu file. As you can see, this is a fairly simple
configuration file. The top line is the title of my menu. In this example, each menu item is preceded
by the [exec] command, which tells Fluxbox that this is a system command that it should actually
execute. The first argument in the regular parentheses is the name you want displayed for the
application, while the text within the curly braces specifies the command you would run from the
command line to execute the program. Note that if the application you're trying to add to your menu
isn't located within your default path, you'll need to specify the full path to the executable. Each
sequentially lower portion of your menu is marked by the [submenu] command. Specify the end of a
menu with the [end] command. Items that you want directly available can be placed at the top,
under the title.

Fluxbox startup files can also invoke internal Fluxbox commands, which are identified within square
brackets just like the [exec] instruction, as in the following example:

 [exit] (Exit)

This creates an Exit menu item that executes the internal Fluxbox exit command. When deploying
systems that run Fluxbox for users and start in graphical runlevels, you may find Fluxbox menu
commands like the following to be quite handy:

 [exec] (Shut Down System) {sudo shutdown h now}
 [exec] (Reboot System) {sudo shutdown r now}
 [exit] (Log Out)

These assume that the user has been granted certain privileges in the sudo application, and create
the standard sorts of menu items that users who may be unfamiliar with Linux typically expect to see
in their graphical user interface.

The options discussed in this section are only the tip of the Fluxbox
configuration iceberg. See the Fluxbox man page for a complete list of available
Fluxbox configuration commands and options.

http://lib.ommolketab.ir

8.6.4. The Slit

The Slit is one of the coolest features of Fluxbox. You can think of the Slit as a version of the OS X
Dashboard that's always available. It contains small dockable applications (commonly known as dock
apps) that are able to run in withdrawn mode, which simply means that they run independently in
the background. This is typically designated by a -w flag when running the application from the
command line. Note that not all applications can run in this manner, but many are specifically
designed to run this way. I typically start any dock apps that I want to run by putting them in my
.xinitrc file, starting them in the background before actually starting the Fluxbox window manager.
The order in which applications appear in the Slit is defined by putting their names in the desired
order in the slitlist file in your .fluxbox directory.

The Slit is an exceptional way to display statistics such as memory and processor utilization using the
proper dock apps. You can find dock apps at http://freshmeat.net and http://www.dockapps.org .

8.6.5. Make It Pretty!

There is a large community of people on the Internet who devote a lot of time to creating custom
Fluxbox themes. These themes can be found at the Fluxbox home page, as well as around the Net.
Installing a theme is as simple as downloading it and adding it to the ~/.fluxbox/styles directory.
These styles will then be selectable from the Fluxbox Menu submenu. If such a directory doesn't
exist, search for your global Fluxbox share directory (usually /usr/local/share/ Fluxbox). The location
of this directory will vary depending on your method of installation.

8.6.6. Minimal Hassle

After a little bit of configuration, you might find that you prefer the simple layout of Fluxbox to
heavier window managers such as GNOME and KDE. In addition to preserving server resources,
Fluxbox is a great application to use to extend the life of an old laptop or desktop that just can't hack
the high demands of a heavier desktop solution.

Another memory-saving tip related to GUIs is to start your system in a
nongraphical runlevel (typically, runlevel 3) and then manually start your
window manager by using the xinit or startx commands after you've logged
in. This eliminates the memory overhead of the xwm, kdm , or gdm display
managers, which are the processes that provide support for graphical logins,
and can save you another 80 MB or so of memory. See the man page for xinit
for more information.

8.6.7. See Also

http://fluxbox.sourceforge.net

http://www.dockapps.org

man fluxbox

http://fluxbox.sourceforge.net
http://www.dockapps.org
http://lib.ommolketab.ir

man xinit

man sudo

Brian Warshawsky

http://lib.ommolketab.ir

Hack 74. Profile Your Systems Using /proc

The /proc filesystem holds a wealth of informationand with a little bit of scripting you can
use it to create profiles of your servers.

The key to recognizing anomalies on your server is to have a good understanding and knowledge of
what things look like when it's healthy. A great place to start hunting for information is the /proc
filesystem. This filesystem is a portal into the depths of what the running kernel and the system load
look like, and it provides a full profile of the hardware in use on the local system.

When I install a new server, one of the first things I do is take a sort of profile "snapshot," so that I
can get a good picture of what the system resources look like on an idle system. I also do this just
before and after I install or fire up new software or system services, so I can get a measure of an
application's impact on the availability of system resources and so that I have a "cheat sheet" for
looking up the system's installed hardware.

The script I use is very rough around the edges and wasn't written for the purpose of working on any
machine you might ever run across, but it does work on a good number of Linux servers I've
encountered. Let's have a look at each part of the script, along with the output it produces.

The first thing the script does is record the hostname and kernel version information, along with the
first several lines of output from the top command, so I can see the load, number of users/processes,
and so on:

 #!/bin/bash
 echo ""
 echo "#########BASIC SYSTEM INFORMATION########"
 echo HOSTNAME: `cat /proc/sys/kernel/hostname`
 echo DOMAIN: `cat /proc/sys/kernel/domainname`
 echo KERNEL: `uname -r`
 top -b | head -8

Here's the output for this part of the script:

 #########BASIC SYSTEM INFORMATION########
 HOSTNAME: willy
 DOMAIN: pvt
 KERNEL: 2.4.21-32.0.1.ELsmp

 22:53:14 up 7 days, 15:36, 12 users, load average: 0.00, 0.02, 0.00

http://lib.ommolketab.ir

 114 processes: 113 sleeping, 1 running, 0 zombie, 0 stopped
 CPU states: cpu user nice system irq softirq iowait idle
 total 0.0% 0.0% 0.4% 0.0% 0.0% 6.8% 92.6%
 cpu00 0.0% 0.0% 0.9% 0.0% 0.0% 7.8% 91.1%
 cpu01 0.0% 0.0% 0.0% 0.0% 0.0% 7.8% 92.1%

The hostname information is there so I'll know what I'm looking at when I refer back to the output
again in the future. The domain listed here is actually the NIS domain to which the box is bound.
Depending on the environment, this can be an important bit of troubleshooting informationbut if
you're in an NIS environment, you already knew that. What you're probably wondering is why I
bothered to use /proc for this instead of system commands to get the hostname and domain name
information. The answer is because I've found that using files under /proc is more reliable than
assuming that system commands are in your default path. For things like hostname, chances are it's
there, but three different tools can be installed for domain name information. A typical Red Hat host
has domainname, ypdomainname, and dnsdomainname. On Red Hat systems, these are all symlinks to
the hostname command. On my Debian stable box, there is no domainname command at all. However,
the /proc/sys/kernel/domainname file is on most machines I come across, so using it makes the
script more flexible.

Next up, let's have a look at the part of the script that gathers filesystem information:

 echo "######## FILESYSTEM INFORMATION #########"
 echo ""
 echo "SUPPORTED FILESYSTEM TYPES:"
 echo ---------------------
 echo `cat /proc/filesystems | awk -F'\t' '{print $2}'`
 echo ""
 echo "MOUNTED FILESYSTEMS:"
 echo ---------------------
 cat /proc/mounts

Again, here's the output:

 SUPPORTED FILESYSTEM TYPES:

 sysfs rootfs bdev proc sockfs pipefs futexfs tmpfs eventpollfs devpts ext2
 ramfs iso9660 devfs mqueue usbfs ext3 reiserfs supermount vfat

 MOUNTED FILESYSTEMS:

 /dev/root / reiserfs rw 0 0
 none /dev devfs rw 0 0
 none /proc proc rw,nodiratime 0 0
 sysfs /sys sysfs rw 0 0
 devpts /dev/pts devpts rw 0 0
 tmpfs /dev/shm tmpfs rw 0 0

http://lib.ommolketab.ir

 usbfs /proc/bus/usb usbfs rw 0 0
 none /dev/shm tmpfs rw 0 0
 /dev/hdb1 /mnt/hdb1 ext3 rw,noatime 0 0
 /dev/hdb2 /mnt/hdb2 reiserfs rw,noatime 0 0

This is not information that's likely to change on a standalone server, but in a large environment with
many NFS mounts and running automounters, it can be useful information to have. The supported
filesystem information is also handy if you're in a shop that builds its own kernels, because it'll let you
know if your new junior admin made the novice mistake of forgetting to add ext3 or vfat support to
the kernel.

This next bit is only slightly more complex. It summarizes information about IDE devices, their model
numbers, the devices they're assigned to on the system (hda, hdb, etc.), and, in case you don't
recognize the models, exactly what kinds of devices they are. Here's the IDE device portion of the
script:

 echo "IDE DEVICES BY CONTROLLER"
 echo ------------------------
 for i in `ls /proc/ide | grep ide`
 do
 echo $i:
 for j in `ls /proc/ide/$i | grep hd`
 do
 echo ""
 echo " $j"
 echo " --------"
 echo " model: `cat /proc/ide/$i/$j/model`"
 echo " driver: `cat /proc/ide/$i/$j/driver`"
 echo " device type: `cat /proc/ide/$i/$j/media`"
 if [-e /proc/ide/$i/$j/geometry]; then
 echo " geometry:" `cat /proc/ide/$i/$j/geometry`
 fi
 echo ""
 done
 done

And here's the output:

 ###### IDE SUBSYSTEM INFORMATION ########

 IDE DEVICES BY CONTROLLER

 ide0:

 hdb

http://lib.ommolketab.ir

 model: ST3200822A
 driver: ide-disk version 1.18
 device type: disk
 ide1:
 hdd

 model: FX4830T
 driver: ide-cdrom version 4.61
 device type: cdrom

This tells me that there are two IDE controllers, a CD-ROM drive, and one IDE hard drive on the
machine. I also know that the CD drive is going to be mountable as /dev/hdd (something that might
be less obvious on a machine with lots of IDE devices). Keep in mind that I could've gotten even
more information if I wanted to require root privileges to run this script! For example, to see the
settings for /dev/hdb, I need to be root. I can then run this command:

 # cat /proc/ide/hdb/settings

This will give me more information than I could ever want to know about my hard drive. Here's a
sampling:

 name value min max mode
 ---- ----- --- --- ----
 acoustic 0 0 254 rw
 address 1 0 2 rw
 bios_cyl 24321 0 65535 rw
 bios_head 255 0 255 rw
 bios_sect 63 0 63 rw
 bswap 0 0 1 r
 current_speed 66 0 70 rw
 failures 0 0 65535 rw
 init_speed 66 0 70 rw
 io_32bit 1 0 3 rw
 keepsettings 0 0 1 rw
 lun 0 0 7 rw
 max_failures 1 0 65535 rw
 multcount 16 0 16 rw
 nice1 1 0 1 rw
 nowerr 0 0 1 rw
 number 1 0 3 rw
 pio_mode write-only 0 255 w
 unmaskirq 1 0 1 rw
 using_dma 1 0 1 rw
 wcache 1 0 1 rw

http://lib.ommolketab.ir

There's a ton of information in the files under /proc. Scripts like this one can be greatly expanded
upon and make a wonderful tool for consulting administrators. Send it to a client and have him send
you the output via email, or use it to take a snapshot of a machine when you set it up so that when a
client calls up you're ready with the information about the host in question.

8.7.1. The Code

Here's a copy of the entire script in one place, for easy review:

 #!/bin/bash
 echo ""
 echo "#########BASIC SYSTEM INFORMATION########"
 echo HOSTNAME: `cat /proc/sys/kernel/hostname`
 echo DOMAIN: `cat /proc/sys/kernel/domainname`
 echo KERNEL: `uname -r`
 top -b | head -8
 echo "######## FILESYSTEM INFORMATION #########"
 echo ""
 echo "SUPPORTED FILESYSTEM TYPES:"
 cho ---------------------
 echo `cat /proc/filesystems | awk -F'\t' '{print $2}'`
 echo ""
 echo "MOUNTED FILESYSTEMS:"
 echo ---------------------
 cat /proc/mounts
 echo "IDE DEVICES BY CONTROLLER"
 echo ------------------------
 for i in `ls /proc/ide | grep ide`
 do
 echo $i:
 for j in `ls /proc/ide/$i | grep hd`
 do
 echo ""
 echo " $j"
 echo " --------"
 echo " model: `cat /proc/ide/$i/$j/model`"
 echo " driver: `cat /proc/ide/$i/$j/driver`"
 echo " device type: `cat /proc/ide/$i/$j/media`"
 if [-e /proc/ide/$i/$j/geometry]; then
 echo " geometry:" `cat /proc/ide/$i/$j/geometry`
 fi
 echo ""
 done
 done

http://lib.ommolketab.ir

Hack 75. Kill Processes the Right Way

The Linux kill command enables you to terminate processes normally or by using a
sledgehammer.

If you spend much time as a Linux user or administrator, sooner or later you're going to have to end
a process (often simply a program that no longer responds to user input or that just won't seem to
go away). The safest way to kill a process is to simply use the kill command, with no modifiers or
flags. First use the ps ef command to determine the process ID (PID) of the process you want to kill,
and then simply type this command:

 # kill -pid

The standard kill command usually works just fine, terminating the offending process and returning
its resources to the system. However, if your process has started child processes, simply killing the
parent can potentially leave the child processes running, and therefore still consuming system
resources. In order to prevent such so-called "zombie processes," you should make sure that you kill
any and all child processes before you kill their respective parent processes.

8.8.1. Killing Processes in the Right Order

You can identify child process and their parents by using the Linux ps -ef command and examining
each entry, looking at the column labeled PPID (parent process ID). However, if you're only
interested in a specific family of processes, using the grep command makes life easier.

Let's look at an example. If we're trying to kill the httpd process, we'll need to kill its child processes
before we can kill the parent. As a shortcut, use the following command to determine the PIDs that
we'll need to terminate:

 # ps ef | grep httpd
 [root@aardvark kida]# ps -ef | grep httpd
 root 23739 1 0 Jun06 ? 00:00:07 /usr/sbin/httpd
 apache 24375 23739 0 Jul17 ? 00:00:01 /usr/sbin/httpd
 apache 24376 23739 0 Jul17 ? 00:00:00 /usr/sbin/httpd
 apache 24377 23739 0 Jul17 ? 00:00:01 /usr/sbin/httpd
 apache 24378 23739 0 Jul17 ? 00:00:00 /usr/sbin/httpd
 apache 24379 23739 0 Jul17 ? 00:00:00 /usr/sbin/httpd
 apache 24380 23739 0 Jul17 ? 00:00:01 /usr/sbin/httpd

http://lib.ommolketab.ir

 apache 24383 23739 0 Jul17 ? 00:00:00 /usr/sbin/httpd
 apache 24384 23739 0 Jul17 ? 00:00:01 /usr/sbin/httpd

The first column tells us the user that owns each process, and the second and third columns tell us
their PIDs and PPIDs, respectively. The first process listed, with the PPID of 1, is the parent process.
When a process has a PPID of 1, that means it was started by init at boot time.

The first thing to try now that we have the parent process ID is to try to gracefully take it down by
using the following command:

 # kill 1 23739

The -1 option tells the kill command to attempt to end the process as if the user who started it has
logged out. When you use this option, the kill command also attempts to go through and kill child
processes left behind. This won't always work, thoughyou may still need to go through and kill child
processes manually first, before killing the parent process. To kill more than one process at a time,
simply separate the PIDs with spaces on the kill command line:

 # kill 24384 24383 24380

A second option is to send a TERM signal to the parent process in an attempt to kill it and its child
processes. This can be done using the following command:

 # kill TERM 23739

Alternatively, you can attempt to kill all the processes within the same process group using killall.
The killall command enables you to specify the names of the processes you want to terminate,
rather than their PIDs, which can save you a lot of ps commands and eyestrain:

 # killall httpd

8.8.2. Stopping and Restarting a Process

At some point, you might find yourself wanting to simply stop and restart a process. Instead of
issuing the sequence of commands to manually kill and then restart your process, try using the
following command:

http://lib.ommolketab.ir

 # kill HUP 23739

This will have Linux perform the process shutdown gently, and then restart it immediately. This is
especially handy when you're working on configuring an application that needs its process restarted
after changes to its configuration files.

8.8.3. The Last Resort

If the regular kill or kill 1 commands don't work, you can always bring out the all-powerful kill 9
command:

 # kill 9 23739

This extremely powerful and dangerous command forces a process to stop in its tracks, without
allowing it to clean up after itself. This can lead to unutilized system resources and is generally not
recommended unless all other options have failed.

After using the kill 9 (or the synonymous kill s SIGKILL) command, be sure to use ps ef again to
make sure you don't have any zombie processes left. You can only eliminate a zombie process by
terminating its parent process, which is fine if the parent process can safely be terminated or
restarted but problematic if the zombie process has ended up being owned by the init process (PID
1). You do not want to kill the init process unless you know its implications and really mean to do
that, because killing init will shut down your system. If you have zombie processes whose parent is
init, and they are consuming significant amounts of system resources, you will need to reboot the
machine at some point in order to clean up the process table.

8.8.4. See Also

man kill

man ps

Brian Warshawsky

http://lib.ommolketab.ir

Hack 76. Use a Serial Console for Centralized Access to
Your Systems

Keep a secret backdoor handy for midnight emergencies.

Imagine the following scenario. It's 3 A.M., and you're the administrator on call. All of a sudden,
you're jolted awake by the pager rattling itself off the side of your nightstand. A critical server isn't
responding to network polls, and you're unable to SSH into it to determine what the problem is. You
are now faced with a tough decisionno one wants to get dressed and head into the office at 3 A.M.,
but this server is essential to your company's online presence. What do you do? The good news is
that with proper fore-sight and planning, you can avoid this kind of decision altogether with a console
server.

A console server is a device to which you can connect the consoles of multiple systems. You can then
connect to the console server to get easy access to any of those systems. Devices that enable you to
connect multiple serial ports and quickly switch between them are readily available from many
different vendors. A quick Google search for "serial console server" will list more potential vendors
than you probably want to know about.

This hack explains how to configure your Linux systems so that they can use serial ports for console
output rather than the traditional graphical displays that we're used to on Linux systems. Not only
are serial consoles inexpensive compared to multiple graphical displays, but they are easy to access
remotely and fast because there is no graphical overhead.

8.9.1. The Options

Before you rush off to implement a console server, you need to consider several options. Various
commercial options are available that provide many different flavors of console server. However, the
method we're going to discuss here is a bit more do-it-yourself, and can ultimately be much cheaper
to implement than a commercial option.

Another option to explore is whether or not your hardware already supports serial port console
access via the BIOS. If it does, this might all be a moot point for you. However, this kind of hardware
support is fairly rare, so odds are you're going to have to decide between an expensive proprietary
method, or an easy-to-implement open source method.

If you're still reading, it would appear that you've decided to go the easy open source route. Good for
you! The first thing to keep in mind when designing your console server is its physical deployment.
The server will need to be kept fairly close to your critical servers. It will also need to have one or
more serial ports available. A variety of vendors provide multi-serial-port PCI cards, so find the one
that seems to best suit your situation and stay with it. If you only need to connect to one or two
devices, consider sticking with the onboard serial ports typically found on most servers.

http://lib.ommolketab.ir

8.9.2. Start at the Beginning: The Bootloader

We'll now begin the process of configuring the console client, which, confusingly enough, is your
production server. We need to configure the bootloader to both send output and receive input via the
serial port. This isn't as difficult as it might sound, so have no fear. Several bootloaders are available
for Linux, but by far the most prevalent are GRUB and LILO. In this hack we'll cover setting up
console access through GRUB. Though LILO is certainly an effective bootloader and is capable of
performing the same functions as GRUB, it doesn't contain as many of the features that make GRUB
an attractive choice for this application.

When we configure the bootloader to redirect system input and output, we're actually indirectly
configuring the Linux kernel to redirect the system's I/O. These configurations are made by modifying
the configuration files for GRUB, thereby changing the way that GRUB boots the Linux kernel. GRUB's
configuration file can be found under the /etc (or sometimes /boot/grub) directory, and is aptly
named grub.conf (on some distributions this file may be named menu.lst).

Before we dive into configuring the bootloader, let's take a moment to examine a typical grub.conf
file:

 # grub.conf generated by anaconda
 #
 # Note that you do not have to rerun grub after making changes to this file
 # NOTICE: You have a /boot partition. This means that
 # all kernel and initrd paths are relative to /boot/, eg.
 # root (hd0,0)
 # kernel /vmlinuz-version ro root=/dev/hda3
 # initrd /initrd-version.img
 #boot=/dev/hda
 default=0
 timeout=5
 splashimage=(hd0,0)/grub/splash.xpm.gz
 hiddenmenu
 title Fedora Core (2.6.11-1.27_FC3)
 root (hd0,0)
 kernel /vmlinuz-2.6.11-1.27_FC3 ro root=LABEL=/
 initrd /initrd-2.6.11-1.27_FC3.img

Some people recommend removing the splashimage directives, because graphical images are not
appropriate for serial consoles. However, I've never had an issue with this. Whether or not you'll
need to remove these directives will largely depend on the version of GRUB you're using. If it's fairly
recent, it should be able to ignore these lines without an issue. Otherwise, simply comment out or
remove the splashimage reference.

Now that you have that worked out, let's modify the configuration file to redirect all input and output
to the serial port. The standard settings for serial port communications are 9,600 baud, no parity,
and 8 bits. It's important to remember these settings, as they will become necessary later when you

http://lib.ommolketab.ir

need to configure the console server to communicate with the client. To pass these settings on to the
kernel, add the following lines to the top of your grub.conf file.

 serial --unit=0 --speed=9600 --word=8 --parity=no --stop=1
 terminal --timeout=30 serial console

These lines should appear directly above your default directive. Most of the flags passed are self-
explanatory, but let's look at the ones that may not be so clear. The --unit flag tells the kernel to
redirect everything to the first serial port the kernel can identify. This will remain the same boot after
boot, so you don't need to worry about it changing. The --word directive is used to set the number of
bits that are to be used in communications with the console server. This can be set to 5, 6, 7,or 8.
Take note that almost everything communicates using either 7 or 8 bits, and 8 bit is a nearly
industry-wide standard. Using a lower number for this option can end up coming back to bite you
should ASCII values greater than 127 be displayed. The --parity flag is used in this case to disable
the use of parity error checking of the data transmitted from one end of the null modem connection
to the other. The -stop directive is used to set the method by which a null modem data transmission
is terminated.

The second line we added instructs the kernel to use both the serial port and the console to display
output. Whichever one receives input first becomes the default console. Herein lies one of the above-
mentioned features that makes GRUB an excellent choice for this project. By specifying both the
serial and console options, we are able to effectively utilize two different devices as the console.

Once you've made the changes, reboot the server so the new GRUB directives can take effect. We'll
now move on to configuring your console server to communicate with the client.

8.9.3. Putting It All Together

First, you need to make sure you have a serial cable connecting your console server to the client. (Be
sure to connect the serial cable to the same port you configured the kernel to redirect I/O to, or you'll
end up staring at a whole lot of nothing!) Then you'll need a program to communicate via the null
modem. There are several available, but for overall ease of use and maximum features, I
recommend minicom. To start minicom, run the following command as root:

 # minicom -s

This will bring you directly into the minicom configuration screen. Select "Serial Port Setup" and
change the configuration to match what you set up earlier in GRUB. Once that's done, save your
changes and exit. You should be taken to the main minicom screen. If you don't see anything, hit
Return once, and you should be greeted with the login prompt for your server. Congratulationsas
long as your network remains alive, you now have remote console access to your server!

http://lib.ommolketab.ir

For more information about installing and configuring minicom, see "Turn Your
Laptop into a Makeshift Console" [Hack #37].

Once everything is assembled and minicom is installed, all you have to do it to SSH to your console
server, start minicom with the correct serial device, and access the console of your troubled system.
Voilà! What could be easier?

8.9.4. Where to Go from Here

What we've created here is the most basic application of a console server. As I mentioned earlier, this
can be expanded with the addition of a multi-port serial card. With a little extra time spent cabling
and configuring your bootloaders, you can effectively deploy console servers across your entire
network. Another trick to keep in mind is the deceptively simple RJ45 to DB9 serial adaptor. These
little guys allow you to use a strand of cat5 network cable to connect to a serial port. I have actually
used them in conjunction with patch panels to provide myself console access to network equipment
from my desk. You can pick up one of these lifesaving gadgets from any networking supply company
for under a few dollars.

Another way to increase the usefulness of your console server is to include a modem attached to the
console server in your setup. This can be configured to accept incoming calls, thereby allowing you to
connect to your console server over the phone line in the event of a network outage. I would highly
recommend this, as the remote console server does you no good if your problem lies somewhere else
on the network.

You'll only need to use a serial console server once to prove to yourself that it's well worth the half-
hour or so it might take you to get it configured. At 3 A.M., when you're able to reboot a server
remotely and bring it back online without so much as putting on a pair of pants, you'll agree that the
foresight for such an occasion is priceless.

8.9.5. See Also

http://www.linuxjournal.com/article/7206

Brian Warshawsky

http://www.linuxjournal.com/article/7206
http://lib.ommolketab.ir

Hack 77. Clean Up NIS After Users Depart

Don't let your NIS maps go stale! The NIS password map obviously needs maintenance,
but don't forget to remove departed users from the groups they belonged to as well.

Many sites use NIS, in part because it's been there for many years and is an extremely reliable,
acceptably fast, and relatively low-overhead way to run a centralized authentication directory. Over
the years, tons of systems software has been written to take advantage of information supplied by
NIS servers for the purposes of providing information or security to the client systems.

Though there are tools available to take care of most user-management tasks when the users reside
on the local system, many of these tools don't have full support for NIS, and NIS-specific versions of
these tools have yet to appear. As a result, certain portions of your NIS directory can become stale.

The NIS group map is a perfect example of this occurrence. The standard userdel command doesn't
support NIS, and the groupmod command doesn't support removing a user from a group, let alone an
NIS group. Most of the NIS-specific commands are either for searching the maps (e.g., ypmatch and
ypcat), getting information about your client system (e.g., ypwhich and ypdomainname), or getting
information about the NIS server (e.g., yppoll). No tools are available for grooming the NIS maps
without opening an editor and removing entries by hand.

Therefore, if you haven't been vigilant about maintaining the maps to ensure that they're always
consistent with reality, you can build up lots of stale accounts. Many sites are very vigilant about
removing users from the password map, but even that is often a manual process involving opening
the map in an editor and deleting the line corresponding to the departed user. What I've found,
though, is that the group map is often forgotten, so you may wind up with 40 or 50 users who are
assigned to groups, but whose accounts no longer exist. This makes the data in that map less usable,
and depending on how the data is used, it could cause problems over time.

Take, for example, a mail server that uses the group map to create mail aliases corresponding to
group names. A stale group map will place a bunch of nonexistent users in your mail aliases, which
will cause your mail logs to grow out of control logging errors about nonexistent usersnot to mention
that mail to a "stale" alias will cause end users to receive bounce errors from the mail server.

I've written a Perl script to take care of cleaning up after user accounts that no longer exist. It sifts
through the group map, and for each user, it checks for the existence of that user's account in the
password map. Any users that aren't listed in the password map are neatly removed from the group
map. I call the script cleangroup.

8.10.1. The Code

 #!/usr/bin/perl

http://lib.ommolketab.ir

 ## looks up all members of each group via 'ypmatch $user passwd' and
 ## deletes any users from a given group file which aren't found.
 ## Output goes to STDOUT!

 if($#ARGV < 0) {
 die "Must specify group file.\n" ;
 }
 $grpfile = $ARGV[0] ;
 open(GRPFILE, "<$grpfile") || die "can't read $grpfile: $!\n" ;

 while(<GRPFILE>) {
 chomp ;
 ($group,$pwd,$id,$members) = split(/:/) ;
 @unames = split(/,/, $members);
 foreach $i (@unames){
 if($i ne "root"){

 if(! `ypmatch $i passwd 2>/dev/null`){
 $members =~ s/\b$i\b//g ;
 }
 }
 }
 $members =~ s/,,/,/ ;
 $members =~ s/,$// ;
 $members =~ s/^,// ;
 print "$group:$pwd:$id:$members\n" ;
 }
 close(GRPFILE) ;

8.10.2. Running the Code

I run cleangroup in the directory containing the NIS maps. For safety's sake, I have the script output
to stdout instead of changing the map in-place. I redirect the output to a file, run a quick diff to see
what was changed, and then copy the new map over the old one. Here are the commands I use:

 # ./cleangroup groupmap > newgroupmap

 # diff groupmap newgroupmap

This should output lines similar to the following:

 104c104
 < stuff:*:20205:ken,maria,mike,tier,matt,jonesy,russ,allen

 > stuff:*:20205:ken,maria,mike,tier,matt,russ,allen

http://lib.ommolketab.ir

 252c252
 < things:*:140:dan,chase,chandler,christian,chance,steph,jonesy

 > things:*:140: dan,chase,chandler,christian,chance,steph

You'll notice that in each case the account jonesy was removed, once from the middle of the list and
once from the end. I've yet to have any problems with this script, so I hope you find it as useful as I
have!

http://lib.ommolketab.ir

Chapter 9. Logfiles and Monitoring
Section 9.1. Hacks 7888: Introduction

Hack 78. Avoid Catastrophic Disk Failure

Hack 79. Monitor Network Traffic with MRTG

Hack 80. Keep a Constant Watch on Hosts

Hack 81. Remotely Monitor and Configure a Variety of Networked Equipment

Hack 82. Force Standalone Apps to Use syslog

Hack 83. Monitor Your Logfiles

Hack 84. Send Log Messages to Your Jabber Client

Hack 85. Monitor Service Availability with Zabbix

Hack 86. Fine-Tune the syslog Daemon

Hack 87. Centralize System Logs Securely

Hack 88. Keep Tabs on Systems and Services

http://lib.ommolketab.ir

9.1. Hacks 7888: Introduction

The only thing worse than disastrous disk failures, runaway remote hosts, and insidious security
incidents is the gut-wrenching feeling that comes with the realization that they probably could've
been avoided.

To avert catastrophe, often the best tool you can have is access to data that enables you to take
proactive steps. Whether it's having a disk tell you when it's about to expire or being informed of
network or service outages, tools that aggregate data and alert you to anomalies are invaluable to
system and network administrators. The goal of this chapter is to show you how to get data you
don't currently have, and how to use data you do have in more useful ways.

http://lib.ommolketab.ir

Hack 78. Avoid Catastrophic Disk Failure

Access your hard drive's built-in diagnostics using Linux utilities to predict and prevent
disaster.

Nobody wants to walk in after a power failure only to realize that, in addition to everything else,
because of a dead hard drive they now have to rebuild entire servers and grab backed-up data from
tape. Of course, the best way to avoid this situation is to be alerted when something is amiss with
your SCSI or ATA hard drive, before it finally fails. Ideally the alert would come straight from the
hard drive itself, but until we're able to plug an RJ-45 directly into a hard drive we'll have to settle for
the next best thing, which is the drive's built-in diagnostics. For several years now, ATA and SCSI
drives have supported a standard mechanism for disk diagnostics called "Self Monitoring, Analysis,
and Reporting Technology" (SMART), aimed at predicting hard drive failures. It wasn't long before
Linux had utilities to poll hard drives for this vital information.

The smartmontools project (http://smartmontools.sourceforge.net) produces a SMART monitoring
daemon called smartd and a command-line utility called smartctl, which can do most things on
demand that the daemon does in the background periodically. With these tools, along with standard
Linux filesystem utilities such as debugfs and tune2fs, there aren't many hard drive issues you can't
fix.

But before you can repair anything or transform yourself into a seemingly superpowered hard-drive
hero with powers on loan from the realm of the supernatural, you have to know what's going on with
your drives, and you need to be alerted to changes in the status of the health of your drives.

First, you should probably get to know your drives a bit, which smartctl can help out with. If you
know that there are three drives in use on the system, but you're not sure which one the system is
labeling /dev/hda, run the following command:

 # smartctl -i /dev/hda

This will tell you the model and capacity information for that drive. This is also very helpful in figuring
out which vendor you'll need to call for a replacement drive if you bought the drive yourself. Once
you know what's what, you can move on to bigger tasks.

Typically, before I even set up the smartd daemon to do long-term, continuous monitoring of a drive,
I first run a check from the command line (using the smartctl command) to make sure I'm not
wasting time setting up monitoring on a disk that already has issues. Try running a command like the
following to ask the drive about its overall health:

http://smartmontools.sourceforge.net
http://lib.ommolketab.ir

 # smartctl -H /dev/hda
 smartctl version 5.33 [i386-redhat-linux-gnu] Copyright (C) 2002-4 Bruce
 Allen
 Home page is http://smartmontools.sourceforge.net/

 === START OF READ SMART DATA SECTION ===
 SMART overall-health self-assessment test result: PASSED

Well, this is good newsthe drive says it's in good shape. However, there really wasn't much to look at
there. Let's get a more detailed view of things using the -a, or "all," flag. This gives us lots of output,
so let's go over it in pieces. Here's the first bit:

 # smartctl -a /dev/hda
 smartctl version 5.33 [i386-redhat-linux-gnu] Copyright (C) 2002-4 Bruce
 Allen
 Home page is http://smartmontools.sourceforge.net/

 === START OF INFORMATION SECTION ===
 Device Model: WDC WD307AA
 Serial Number: WD-WMA111283666
 Firmware Version: 05.05B05
 User Capacity: 30,758,289,408 bytes
 Device is: In smartctl database [for details use: -P show]
 ATA Version is: 4
 ATA Standard is: Exact ATA specification draft version not indicated
 Local Time is: Mon Sep 5 17:48:09 2005 EDT
 SMART support is: Available - device has SMART capability.
 SMART support is: Enabled

This is the exact same output that smartctl -i would've shown you earlier. It tells you the model, the
firmware version, the capacity, and which version of the ATA standard is implemented with this drive.
Useful, but not really a measure of health per se. Let's keep looking:

 === START OF READ SMART DATA SECTION ===
 SMART overall-health self-assessment test result: PASSED

This is the same output that smartctl -H showed earlier. Glad we passed, but if we just barely made
it, that's not passing to a discriminating administrator. More!

 General SMART Values:
 Offline data collection status: (0x05) Offline data collection activity
 was aborted by an interrupting

http://lib.ommolketab.ir

 command
 from host.
 Auto Offline Data Collection:
 Disabled.
 Self-test execution status: (113) The previous self-test completed
 having
 the read element of the test failed.

These are the values of the SMART attributes the device supports. We can see here that offline data
collection is disabled, which means we can't run "offline" tests (which run automatically when the disk
would otherwise be idle). We can enable it using the command smartctl -o on, but this may not be
what you want, so let's hold off on that for now. The self-test execution status shows that a read
operation failed during the last self-test, so we'll keep that in mind as we continue looking at the
data:

 Total time to complete Offline
 data collection: (2352) seconds.
 Offline data collection
 capabilities: (0x1b) SMART execute Offline immediate.
 Auto Offline data collection on/off
 support.
 Suspend Offline collection upon new
 command.
 Offline surface scan supported.
 Self-test supported.
 No Conveyance Self-test supported.
 No Selective Self-test supported.
 SMART capabilities: (0x0003) Saves SMART data before entering
 power-saving mode.
 Supports SMART auto save timer.
 Error logging capability: (0x01) Error logging supported.
 No General Purpose Logging support.

This output is just a list of the general SMART-related capabilities of the drive, which is good to know,
especially for older drives that might not have all of the features you would otherwise assume to be
present. Capabilities and feature support in the drives loosely follow the version of the ATA standard
in place when the drive was made, so it's not safe to assume that an ATA-4 drive will support the
same feature set as an ATA-5 or later drive.

Let's continue on our tour of the output:

 Short self-test routine
 recommended polling time: (2) minutes.
 Extended self-test routine
 recommended polling time: (42) minutes.

http://lib.ommolketab.ir

When you tell this drive to do a short self-test, it'll tell you to wait two minutes for the results. A long
test will take 42 minutes. If this drive were new enough to support other self-test types (besides just
"short" and "extended"), there would be lines for those as well. Here's the next section of output:

 SMART Attributes Data Structure revision number: 16
 Vendor Specific SMART Attributes with Thresholds:
 ID# ATTRIBUTE_NAME FLAG VALUE WORST THRESH TYPE UPDATED
 WHEN_FAILED RAW_VALUE
 1 Raw_Read_Error_Rate 0x000b 200 200 051 Pre-fail Always
 - 0
 3 Spin_Up_Time 0x0006 101 091 000 Old_age Always
 - 2550
 4 Start_Stop_Count 0x0012 100 100 040 Old_age Always
 - 793
 5 Reallocated_Sector_Ct 0x0012 198 198 112 Old_age Always
 - 8
 9 Power_On_Hours 0x0012 082 082 000 Old_age Always
 - 13209
 10 Spin_Retry_Count 0x0013 100 100 051 Pre-fail Always
 - 0
 11 Calibration_Retry_Count 0x0013 100 100 051 Pre-fail Always
 - 0
 12 Power_Cycle_Count 0x0012 100 100 000 Old_age Always
 - 578
 196 Reallocated_Event_Count 0x0012 196 196 000 Old_age Always
 - 4
 197 Current_Pending_Sector 0x0012 199 199 000 Old_age Always
 - 10
 198 Offline_Uncorrectable 0x0012 199 198 000 Old_age Always
 - 10
 199 UDMA_CRC_Error_Count 0x000a 200 253 000 Old_age Always
 - 0
 200 Multi_Zone_Error_Rate 0x0009 200 198 051 Pre-fail Offline
 - 0

Details on how to read this chart, in gory-enough detail, are in the sysctl manpage. The most
immediate values to concern yourself with are the ones labeled Pre-fail. On those lines, an indicator
of the need for immediate action is if the VALUE column output descends to or below the value in the
ThrESH column. Continuing on:

 SMART Error Log Version: 1
 No Errors Logged

 SMART Self-test log structure revision number 1
 Num Test_Description Status Remaining LifeTime(hours)
 LBA_of_first_error

http://lib.ommolketab.ir

 # 1 Extended offline Completed: read failure 10% 97
 57559262
 # 2 Extended offline Aborted by host 50% 97 -
 # 3 Short offline Completed without error 00% 97 -

 Device does not support Selective Self Tests/Logging

This output is the log output from the last three tests. The numbering of the tests is actually the
reverse of what you might think: the one at the top of the list, labeled as #1, is actually the most
recent test. In that test we can see that there was a read error, and the LBA address of the first
failure is posted (57559262). If you want to see how you can associate that test with an actual file,
Bruce Allen has posted a wonderful HOWTO for this at
http://smartmontools.sourceforge.net/BadBlockHowTo.txt.

Now that you've seen what smartctl can find out for us, let's figure out how to get smartd configured
to automate the monitoring process and let us know if danger is imminent.

Fortunately, putting together a basic configuration takes mere seconds, and more complex
configurations don't take a great deal of time to put together, either. The smartd process gets its
configuration from /etc/smartd.conf on most systems, and for a small system (or a ton of small
systems that you don't want to generate copious amounts of mail), a line similar to the following will
get you the bare essentials:

 /dev/hda -H -m jonesy@linuxlaboratory.org

This will do a (very) simple health status check on the drive, and email me only if it fails. If a health
status check fails, it means the drive could very well fail in the next 24 hours, so have an extra drive
handy!

There are more sophisticated setups as well that can alert you to changes in the status that don't
necessarily mean certain death. Let's look at a more complex configuration line:

 /dev/hda -l selftest -l error -I 9 -m jonesy@linuxlaboratory.org -s L/../../
 7/02

This one will look for changes in the self-test and error logs for the device, run a long self-test every
Sunday between 2 and 3 A.M. and send me messages about any attribute except for ID 9, the
Power_On_Hours attribute, which I don't care about for the purposes of determining whether a disk is
bad (you can check the sysctl -a output to determine an attribute's ID). The -I attribute is often
used with attribute numbers 194 or 231, which usually is the temperature. It would be bad to get
messages about the constantly changing temperature of the drive!

Once you have your configuration file in order, the only thing left to do is start the service. Inevitably,
you'll get more mail than you'd like in the first initial runs, but as time goes on (and you read more of

http://smartmontools.sourceforge.net/BadBlockHowTo.txt
http://lib.ommolketab.ir

the huge manpage) you'll learn to get what you want from smartd. For me, just the peace of mind is
worth the hours I've spent getting a working configuration. When you're able to avert certain
catastrophe for a client or yourself, I'm sure you'll say the same.

http://lib.ommolketab.ir

Hack 79. Monitor Network Traffic with MRTG

The Multi-Router Traffic Grapher provides a quick visual snapshot of network traffic,
making it easy to find and resolve congestion .

There are many reasons it's a good idea to capture data pertaining to your network and bandwidth
usage. Detailed visual representations of such data can be incredibly useful in determining the causes
of network outages, bottlenecks, and other issues. Collecting such detailed data used to require
sophisticated and expensive equipment, but with the advent of Linux and the widespread use of
SNMP, we now have a new tool to simplify and expand the possibilities of bandwidth monitoring. This
tool is called the Multi-Router Traffic Grapher (MRTG), and this hack shows you how to set it up and
use it.

9.3.1. Requirements

MRTG has a few simple dependencies that you may need to fulfill before you dive right into the
installation. For starters, you need to have a web server up and running. Apache is typically
recommended, but you may be able to get it to work with other web servers. You'll also need Perl
installed and working on your system, and MRTG will require three libraries to build its graphs. The
first, gd , is used to generate the graphs that make MRTG what it is. The second is libpng , which is
used to generate the images of the graphs. Finally, to compress these images, you'll need the zlib
library. Download locations for all three of these libraries can be found at the MRTG home page
(http://people.ee.ethz.ch/~oetiker/webtools/mrtg/).

9.3.2. Installation

Once you have the dependencies installed, you can begin the MRTG installation. First, download and
untar the source to your build location. Start the MRTG installation with the following command:

 $./configureprefix=/usr/local/mrtg-2

If this produces an error message, you may have to specify where you installed the previously
mentioned libraries:

 # ./configureprefix=/usr/local/mrtg-2 --with-gf=/ path/to/gd\

 --with-z=/path/to/z --with-png=/ path/to/png

http://lib.ommolketab.ir

If you need help determining where those libraries were installed, run the following command for
each library to find its location:

 # find / -type fname libpng

Once configuration is complete, follow it up with a typical make install :

 # make && make install

The next step is to create the mrtg.cfg file that MRTG will use to determine which devices on your
network to query. If you had to create this by hand, things could get a little hairy. Fortunately for us,
however, MRTG comes with a command-line configuration tool called cfgmaker that greatly simplifies
the creation of the .cfg . Detailed documentation on cfgmaker is available at the MRTG home page,
but the following example should be enough to get you started:

 # cfgmakerglobal 'WorkDir: /path/to/web/root/mrtg' \
 --output=/etc/mrtg.cfg \
 --global'Options[_]: bits, growright' --output=/etc/mrtg.cfg \

 SNMP-community-name@address.router1 \

 SNMP-community-name@address.router2 \
 Global 'Options[_]: bits, growright' --ifref=descry \

 --ifdescr=alias SNMP-community-name@address.switch.1

This will create the configuration file /etc/mrtg.cfg , which will tell MRTG to create bandwidth graphs
for router1 , router2 , and switch1 . The graphs will use bits as the primary measurement on the y-
axis and will grow toward the righthand side. Theglobal options add entries that apply to this
configuration as a whole, while those that are not specified as global apply only to the devices in
which we specify them. The location of the configuration file to create is specified by theoutput
option.

With a valid config file in hand, we can now run MRTG for the first time. Each time you run MRTG,
you'll need to specify the location from which you want it to read the config file. Also, unless you've
added it to your path, you'll need to type out the full path to the executable.

 # /usr/local/bin/mrtg-2/bin/mrtg /etc/mrtg.cfg

You will see some errors the first two times you run MRTG, but pay them no mindit's simply
complaining because it can't find any previous MRTG data. After running the command, your MRTG
web root should be filled with PNG files. This is great, except it's a pain to look at them like this, and

http://lib.ommolketab.ir

they're not exactly labeled in a human friendly format. The solution to this problem can be found in
the indexmaker tool. indexmaker works just like the cfgmaker tool, only instead of generating config
files, it generates an HTML template with which we can display our MRTG graphs:

 # indexmakeroutput=/path/to/web/root/index.html \
 title="My Network MRTG"sort=title

This will create an index.html file that sorts and displays our data in a much more user-friendly
format, as shown in Figure 9-1 . You can then modify the index file just as you would any HTML file
to make it display any other information you wish.

Figure 9-1. Network traffic graphs created from MRTG data

9.3.3. Automating MRTG

The only thing left to do is to automate the process. MRTG wouldn't be very useful if you had to start

http://lib.ommolketab.ir

it manually every time, so we'll have to automate it by adding it to cron. Add the following entry to
root's crontab to run MRTG every five minutes:

 */5 * * * * /usr/local/mrtg-2/bin/mrtg /etc/mrtg.cfg \
 --logging /var/log/mrtg.log

Don't get impatient waiting to see your pretty new graphs. It will take a day or so for them to begin
displaying truly useful data. Once you've had them running for a while, though, you'll be able to pick
out all kinds of useful trends in your bandwidth utilization. For instance, you might notice that your
bandwidth tends to spike between 8:30 and 9:00 A.M., and then again after lunch. This will help you
better understand the utilization of your network, and in turn better serve it. It can be fascinating to
simply watch your bandwidth utilization materialize, and then use the information to track and follow
trends in network activity. MRTG will create yearly graphs as well as hourly, monthly, and daily
graphs. Having such detailed information at your fingertips can help you understand just how much
traffic you gained after your web site was Slashdotted, and how your popularity increased even after
the story ran.

MRTG has a million uses, and they're not just limited to tracking bandwidth utilization. With a little
modification, you can use it to measure almost anything you want. For more information on
modifying MRTG to display other statistics, see the MRTG home page.

9.3.4. See Also

http://people.ee.ethz.ch/~oetiker/webtools/mrtg/

"Monitor Service Availability with Zabbix" [Hack #85]

Brian Warshawsky

http://people.ee.ethz.ch/~oetiker/webtools/mrtg/
http://lib.ommolketab.ir

Hack 80. Keep a Constant Watch on Hosts

Monitor load or other statistics for multiple hosts on your desktop or on the command
line.

rstatd is an RPC-based kernel statistics server that is either included with or available for every form
of Unix I've ever used. It isn't something new. In fact, I suspect that its age might cause it to slip
under the radar of younger admins, who might not know it if it hasn't appeared on the front page of
Freshmeat recently. Hopefully, the information here will pique your interest in this very useful tool.

When I say that rstatd provides "kernel statistics," I'm referring to things such as CPU load, page
swapping statistics, network IO statistics, and the like. Of course, providing this information to
administrators in a way that is useful can sometimes be challenging, but there are a few tools
available to help.

To make these tools useful, you must have a running rstatd daemon. Note that rstatd is dependent
on the portmap daemon, which should already be running if you're using other RPC-based services
such as NIS or NFS. To do a quick check to make sure these are running, you can run the following
command:

$ rpcinfo p
 program vers proto port
 100000 2 tcp 111 portmapper
 100000 2 udp 111 portmapper
 100001 3 udp 646 rstatd
 100001 2 udp 646 rstatd
 100001 1 udp 646 rstatd

Without any other arguments, this will show you the status of the local host. If you put a hostname
on the end of the above command, it will show you the status of a remote host. Now we're ready to
point some tools at this host!

First and foremost among these tools is the standard rup command, which is available on Linux and
other Unix platforms. It's a simple rstatd client utility, but with the right tools you can use it to
produce output similar to that produced by the top commandonly instead of monitoring processes on
the local host, you can monitor the load on multiple machines. Here's a command you can run to
have a list of hosts, sorted by load average, updated every five seconds:

$ watch -n 5 rup -l host1 host2 host3 host4 host5
 host3 up 12 days, 7:33, load average: 0.00, 0.00, 0.00

http://lib.ommolketab.ir

 host4 up 12 days, 7:28, load average: 0.00, 0.00, 0.00
 host1 up 12 days, 6:11, load average: 0.05, 0.04, 0.05
 host2 up 12 days, 6:11, load average: 0.05, 0.04, 0.05
 host5 up 12 days, 7:29, load average: 0.09, 0.06, 0.01

This is okay if you have no access to any kind of graphical environment. Of course, it takes over your
terminal, so you'll at least need to run it inside a screen session [Hack #34] or in a separate virtual
terminal. Another problem here is that it's just simple raw data output; it doesn't alert you to any
events, like host4's load going through the stratosphere.

For that, we can move into graphical clients. An old favorite of mine is xmeter, which was developed
long ago and has since seemingly been forgotten and abandoned. Its configuration takes a little time
to sift through (it's not graphical), but it does come with a manpage to help out, and once it's
configured the only thing you'll ever have to change is the list of hosts to monitor. It provides
configuration options to change the color of the output based on thresholds, so if the load of a
machine gets to be a bit out of control, the color change is likely to catch your eye. Figure 9-2 shows
a shot of xmeter monitoring the load on multiple hosts.

Figure 9-2. xmeter display monitoring load on multiple servers

http://lib.ommolketab.ir

A more recent development in the world of rstatd data-collection tools is jperfmeter, which is a Java-
based, cross-platform monitor with a more polished interface and a graphical configuration tool. It
does not yet (at the time of writing) support thresholds, and it's missing a few other finer details, but
it's a brand new tool, so I'm sure it will get there at some point.

There are other tools available for remote server statistics monitoring, but you may also want to look
into building your own, using either the Rstat::Client Perl module or the RPC or rstat interfaces for
other languages, such as Python, Java, or C/C++.

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Hack 81. Remotely Monitor and Configure a Variety of
Networked Equipment

Using SNMP, you can collect information about almost any device attached to your
network.

For everything that has a network interface, chances are there's some form of Simple Network
Management Protocol (SNMP) daemon that can run on it. Over the years, SNMP daemons have been
added to everything from environmental sensors to UPSs to soda vending machines. The point of all
of this is to be able to remotely access as much information about the host as humanly possible. As
an added bonus, proper configuration can allow administrators to change values on the host remotely
as well.

SNMP daemon packages are available for all of the widely used distributions, along with possibly
separate packages containing a suite of SNMP command-line tools. You might have come across the
snmpwalk or snmpget commands before in your travels, or you might've seen similarly named
functions in scripting languages such as Perl and PHP.

Let's have a look at a small bit of a "walk" on an SNMP-enabled Linux host and use it to explain how
this works:

$ snmpwalk -v2c -c public livid interfaces
 IF-MIB::ifNumber.0 = INTEGER: 4
 IF-MIB::ifIndex.1 = INTEGER: 1
 IF-MIB::ifIndex.2 = INTEGER: 2
 IF-MIB::ifIndex.3 = INTEGER: 3
 IF-MIB::ifIndex.4 = INTEGER: 4
 IF-MIB::ifDescr.1 = STRING: lo
 IF-MIB::ifDescr.2 = STRING: eth0
 IF-MIB::ifDescr.3 = STRING: eth1
 IF-MIB::ifDescr.4 = STRING: sit0
 IF-MIB::ifType.1 = INTEGER: softwareLoopback(24)
 IF-MIB::ifType.2 = INTEGER: ethernetCsmacd(6)
 IF-MIB::ifType.3 = INTEGER: ethernetCsmacd(6)
 IF-MIB::ifType.4 = INTEGER: tunnel(131)
 IF-MIB::ifPhysAddress.1 = STRING:
 IF-MIB::ifPhysAddress.2 = STRING: 0:a0:cc:e7:24:a0
 IF-MIB::ifPhysAddress.3 = STRING: 0:c:f1:d6:3f:32
 IF-MIB::ifPhysAddress.4 = STRING: 0:0:0:0:3f:32
 IF-MIB::ifAdminStatus.1 = INTEGER: up(1)
 IF-MIB::ifAdminStatus.2 = INTEGER: up(1)
 IF-MIB::ifAdminStatus.3 = INTEGER: down(2)

http://lib.ommolketab.ir

 IF-MIB::ifAdminStatus.4 = INTEGER: down(2)
 IF-MIB::ifOperStatus.1 = INTEGER: up(1)
 IF-MIB::ifOperStatus.2 = INTEGER: up(1)
 IF-MIB::ifOperStatus.3 = INTEGER: down(2)
 IF-MIB::ifOperStatus.4 = INTEGER: down(2)

As you can see, there's a good bit of information here, and I've cut out the bits that aren't important
right now. Furthermore, this is only one part of one SNMP "tree" (the "interfaces" tree). Under that
tree lie settings and status information for each interface on the system. If you peruse the list, you'll
see separate values for each interface corresponding to things like the interface description (the
name the host calls the interface), the physical address, and the interface type.

But what is this "tree" I'm speaking of? SNMP data is actually organized much like LDAP data, or DNS
data, or even your Linux system's file hierarchythey're all trees! Our output above has hidden some
of the detail from us, however. To see the actual path in the tree for each value returned, we'll add
an option to our earlier command:

$ snmpwalk -Of -v2c -c public livid interfaces
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifNumber.0 = INTEGER: 4
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifIndex.1 =
 INTEGER: 1
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifIndex.2 =
 INTEGER: 2
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifIndex.3 =
 INTEGER: 3
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifIndex.4 =
 INTEGER: 4
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr.1 =
 STRING: lo
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr.2 =
 STRING: eth0
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr.3 =
 STRING: eth1
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifDescr.4 =
 STRING: sit0
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifType.1 =
 INTEGER: softwareLoopback(24)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifType.2 =
 INTEGER: ethernetCsmacd(6)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifType.3 =
 INTEGER: ethernetCsmacd(6)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifType.4 =
 INTEGER: tunnel(131)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifPhysAddress.1 =
 STRING:
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifPhysAddress.2 =
 STRING: 0:a0:cc:e7:24:a0
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifPhysAddress.3 =
 STRING: 0:c:f1:d6:3f:32

http://lib.ommolketab.ir

 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifPhysAddress.4 =
 STRING: 0:0:0:0:3f:32
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifAdminStatus.1 =
 INTEGER: up(1)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifAdminStatus.2 =
 INTEGER: up(1)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifAdminStatus.3 =
 INTEGER: down(2)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifAdminStatus.4 =
 INTEGER: down(2)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifOperStatus.1 =
 INTEGER: up(1)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifOperStatus.2 =
 INTEGER: up(1)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifOperStatus.3 =
 INTEGER: down(2)
 .iso.org.dod.internet.mgmt.mib-2.interfaces.ifTable.ifEntry.ifOperStatus.4 =
 INTEGER: down(2)

Now we can clearly see that the "interfaces" tree sits underneath all of those other trees. If you
replaced the dot separators with a forward slashes, it would look very much like a directory
hierarchy, with the value after the last dot being the filename and everything after the equals sign
being the content of the file. Now this should start to look a little more familiarmore like the output of
a find command than something completely foreign (I hope).

A great way to get acquainted with an SNMP-enabled (or "managed") device is to simply walk the
entire tree for that device. You can do this by pointing the snmpwalk command at the device without
specifying a tree, as we've done so far. Be sure to redirect the output to a file, though, because
there's far too much data to digest in one sitting! To do this, use a command like the following:

 $ snmpwalk -Ov -v2c -c public livid > livid.walk

You can run the same command against switches, routers, firewalls, and even some specialized
devices such as door and window contact sensors and environmental sensors that measure the heat
and humidity in your machine room.

9.5.1. The Code

Even just sticking to Linux boxes offers a wealth of information. I've written a script in PHP, runnable
from a command line, that gathers basic information and reports on listening TCP ports, using only
SNMP. Here's the script:

 #!/usr/bin/php

http://lib.ommolketab.ir

 <?php
 snmp_set_quick_print(1);
 $string = "public";
 $host = "livid";
 check_snmp($host);
 spitinfo($host);

 function check_snmp($box)//see if this box is running snmp before we throw
 //requests at it.
 {
 $string="public";
 $infocheck = @snmpget("$box", "$string", "system.sysDescr.0");
 if(! $infocheck)
 {
 die("SNMP doesn't appear to be running on $box");
 }
 else
 {
 return $infocheck;
 }
 }
 function spitinfo($host)//retrieves and displays snmp data.
 {
 $string = "public";
 $hostinfo = @snmpget("$host","$string","system.sysDescr.0");
 list ($k)=array(split(" ", $hostinfo));
 $os = $k[0];
 $hostname = @snmpget("$host","$string","system.sysName.0");
 $user = @snmpget("$host","$string","system.sysContact.0");
 $location = @snmpget("$host","$string","system.sysLocation.0");
 $macaddr = @snmpget
 ("$host","$string","interfaces.ifTable.ifEntry.
 ifPhysAddress.2");
 $ethstatus =
 @snmpget("$host","$string","interfaces.ifTable.ifEntry.
 ifOperStatus.2");
 $ipfwd = @snmpget("$host","$string","ip.ipForwarding.0");
 $ipaddr = @gethostbyname("$host");
 $info=array("Hostname:"=>"$hostname","Contact:"=>"$user",
 "Location:"=>"$location","OS:"=>"$os","MAC Address:"=>
 "$macaddr","IP Address:"=>"$ipaddr","Network Status"=>
 "$ethstatus",
 "Forwarding:"=>"$ipfwd");
 print "$host\n";
 tabdata($info);
 print "\nTCP Port Summary\n";
 snmp_portscan($hostname);
 }
 function tabdata($data)
 {
 foreach($data as $label=>$value)
 {

http://lib.ommolketab.ir

 if($label){
 print "$label\t";
 }else{
 print "Not Available";
 }
 if($value){
 print "$value\n";
 }else{
 print "Not Available";
 }
 }
 }

 function snmp_portscan($target)
 {
 $listen_ports = snmpwalk("$target", "public", ".1.3.6.1.2.1.6.13.1.3.
 0.0.0.0");
 foreach($listen_ports as $key=>$value)
 {
 print "TCP Port $value (" . getservbyport($value, 'tcp') . ")
 listening \n";
 }
 }

 ?>

9.5.2. Running the Code

Save this script to a file named report.php, and make it executable (chmod 775 report.php). Once
that's done, run it by issuing the command ./report.php.

I've hard-coded a value for the target host in this script to shorten things up a bit, but you'd more
likely want to feed a host to the script as a command-line argument, or have it read a file containing
a list of hosts to prod for data. You'll also probably want to scan for the number of interfaces, and do
other cool stuff that I've left out here to save space. Here's the output when run against my Debian
test system:

 Hostname: livid
 Contact: jonesy(jonesy@linuxlaboratory.org
 Location: Upstairs office
 OS: Linux
 MAC Address: 0:a0:cc:e7:24:a0
 IP Address: 192.168.42.44
 Network Status up
 Forwarding: notForwarding

 TCP Port Summary
 TCP Port 80 (http) listening

http://lib.ommolketab.ir

 TCP Port 111 (sunrpc) listening
 TCP Port 199 (smux) listening
 TCP Port 631 (ipp) listening
 TCP Port 649 () listening
 TCP Port 2049 (nfs) listening
 TCP Port 8000 () listening
 TCP Port 32768 () listening

You'll notice in the script that I've used numeric values to search for in SNMP. This is because, as in
many other technologies, the human-readable text is actually mapped from numbers, which are what
the machines use under the covers. Each record returned in an snmpwalk has a numeric object
identifier, or OID. The client uses the Management Information Base (MIB) files that come with the
Net-SNMP distribution to map the numeric OIDs to names. In a script, however, speed will be of the
essence, so you'll want to skip that mapping operation and just get at the data.

You'll also notice that I've used SNMP to do what is normally done with a port scanner, or with a
bunch of calls to some function like (in PHP) fsockopen. I could've used function calls here, but it
would have been quite slow because we'd be knocking on every port in a range and awaiting a
response to see which ones are open. Using SNMP, we're just requesting the host's list of which ports
are open. No guessing, no knocking, and much, much faster.

http://lib.ommolketab.ir

Hack 82. Force Standalone Apps to Use syslog

Some applications insist on maintaining their own set of logs. Here's a way to shuffle
those entries over to the standard syslog facility .

The dream is this: working in an environment where all infrastructure services are running on Linux
machines [Hack #44] using easy-to-find open source software such as BIND, Apache, Sendmail, and
the like. There are lots of nice things about all these packages, not the least of which is that they all
know about and embrace the standard Linux/Unix syslog facilities. What this means is that you can
tell the applications to log using syslog , and then configure which log entries go where in one file
(syslog.conf), instead of editing application-specific configuration files.

For example, if I want Apache to log to syslog , I can put a line like this one in my httpd.conf file:

 ErrorLog syslog

This will, by default, log to the local7 syslog facility. You can think of a syslog facility as a channel into
syslog . You configure syslog to tell it where entries coming in on a given channel should be written.
So, if I want all messages from Apache coming in on the local7 channel to be written to /var/log/httpd
, I can put the following line in /etc/syslog.conf :

 local7.* /var/log/httpd

You can do this for the vast majority of service applications that run under Linux. The big win is that if
an application misbehaves, you don't have to track down its logfilesyou can always consult syslog.conf
to figure out where your applications are logging to.

In reality, though, most environments are not 100% Linux. Furthermore, not all software is as syslog
-friendly as we'd like. In fact, some software has no clue what syslog is, and these applications
maintain their own logfiles, in their own logging directory, without an option to change that in any
way. Some of these applications are otherwise wonderful services, but systems people are notoriously
unrelenting in their demand for consistency in things like logging. So here's the meat of this hack: an
example of a service that displays selfish logging behavior, and one way to go about dealing with it.

Fedora Directory Server (FDS) can be installed from binary packages on Red Hatbased distributions,
as well as on Solaris and HP-UX. On other Linux distributions, it can be built from source. However, on
no platform does FDS know anything about the local syslog facility. Enter a little-known command
called logger .

http://lib.ommolketab.ir

The logger command provides a generic shell interface to the syslog facility on your local machine.
What this means is that if you want to write a shell or Perl script that logs to syslog without writing
syslog -specific functions, you can just call logger from within the script, tell it what to write and which
syslog facility to write it to, and you're done!

Beyond that, logger can also take its input from stdin , which means that you can pipe information
from another application to logger , and it will log whatever it receives as input from the application.
This is truly beautiful, because now I can track down the FDS logs I'm interested in and send them to
syslog with a command like this:

 # exec tail -f /opt/fedora-ds/slapd-ldap/logs/access.log | logger -p local0. debug &

I can then tell my syslog daemon to watch for all of the messages that have been piped to logger and
sent to syslog on local0 and to put them in, say, /var/ log/ldap/access.log .

The debug on the end of the facility name is referred to in syslog parlance as a priority . There are
various priority levels available for use by each syslog facility, so a given application can log messages
of varying severity as being of different priorities [Hack #86] . FDS is a good example of an
application where you'd want to utilize prioritiesthe access log for FDS can be extremely verbose, so
you're likely to want to separate those messages into their own logfile. Its error log is rarely written to
at all, but the messages there can pertain to the availability of the service, so you might want those
messages to go to /var/log/messages . Rather than using up another whole syslog facility to get those
messages to another file, just run a command like this one:

 # tail -f /opt/fedora-ds/slapd-ldap/logs/error.log | logger -p local0.notice

Now let's tell syslog to log the messages to the proper files. Here are the configuration lines for the
access and error logs:

 local0.debug /var/log/ldap/access.log
 local0.notice /var/log/messages

There is one final enhancement you'll probably want to make, and it has to do with logger 's output.
Here's a line that made it to a logfile from logger as we ran it above, with just a -p flag to indicate the
facility to use:

 Aug 26 13:30:12 apollo logger: connection refused from 192.168.198.50

Well, this isn't very useful, because it lists logger as the application reporting the log entry! You can
tell logger to masquerade as another application of your choosing using the -t flag, like this:

http://lib.ommolketab.ir

 # tail -f access.log | logger -p local0.debug -t FDS

Now, instead of the reporting application showing up as logger :, it will show up as FDS :.

Of course, there are probably alternatives to using logger , but they sometimes involve writing Perl or
PHP daemons that perform basically the same function as our logger solution. In the long run, you
may be able to come up with a better solution for your site, but for the "here and now" fix, logger is a
good tool to have on your toolbelt.

http://lib.ommolketab.ir

Hack 83. Monitor Your Logfiles

Use existing tools or simple homemade scripts to help filter noise out of your logfiles.

If you support a lot of services, a lot of hosts, or both, you're no doubt familiar with the problem of
making efficient use of logfiles. Sure, you can have a log reporting tool send you log output hourly,
but this information often goes to waste because of the extremely high noise-to-signal ratio. You can
also try filtering down the information and using a tool such as logwatch to report on just those
things most important to you on a daily basis. However, these reports won't help alert you to
immediate, impending danger. For that, you need more than a reporting tool. What you really need is
a log monitor; something to watch the logs continually and let you know about anything odd.

Log monitors in many environments come in human form: administrators often keep several terminal
windows open with various logs being tailed into them, or they use something like root-tail to get
those logs out of windows and right into their desktop backgrounds. You can even send your output
to a Jabber client [Hack #84]. This is wonderful stuff, but again, it doesn't help filter out any of the
unwanted noise in logfiles, and it's not very effective if all the humans are out to lunch (so to speak).

There are a number of solutions to this problem. One is simply to make sure that your services are
logging at the right levels and to the right syslog facilities, and then make sure your syslog daemon
is configured to break things up and log things to the right files. This can help to some degree, but
what we want is to essentially have a real-time, always-running "grep" of our logs that will alert us to
any matches that are found by sending us email, updating a web page, or sending a page.

9.7.1. Using log-guardian

There are a couple of tools out there that you can use for log monitoring. One is log-guardian, which
is a Perl script that allows you to monitor multiple logfiles for various user-supplied patterns. You can
also configure the action that log-guardian takes when a match is found. The downside to using log-
guardian is that you must have some Perl knowledge to configure it, since actions supplied by the
user are in the form of Perl subroutines, and other configuration parameters are supplied in the form
of Perl hashes. All of these are put directly into the script itself or into a separate configuration file.
You can grab log-guardian from its web site: http://www.tifaware.com/perl/log-guardian/. Once
downloaded, you can put the log-guardian.pl script wherever you store local system tools, such as
under /opt or in /var/local. Since it doesn't come with an init script, you'll need to add a line similar to
this one to your system's rc.local file:

 /var/local/bin/log-guardian &

http://www.tifaware.com/perl/log-guardian/
http://lib.ommolketab.ir

The real power of log-guardian comes from Perl's File::Tail module, which is a fairly robust bit of
code that acts just like tail -f. This module is required for log-guardian. To determine whether you
have it installed, you can run something like locate perl | grep Tail, or run a quick Perl one-liner
like this at the command line:

 $ perl -e "use File::Tail;"

If that returns a big long error beginning with "Can't find Tail/File.pm" or something similar, you'll
need to install it using CPAN, which should be dead simple using the following command:

 # perl -MCPAN -e shell

This will give you a CPAN shell prompt, where you can run the following command to get the module
installed:

 > install File::Tail

The File::Tail module is safe for use on logfiles that get moved, rolled, or replaced on a regular
basis, and it doesn't require you to restart or even think about your script when this happens. It's
dead-easy to use, and its more advanced features will allow you to monitor multiple logfiles
simultaneously.

Here's a simple filter I've added to the log-guardian script itself to match on sshd connections coming
into the server:

 '/var/log/messages' => [
 {
 label => 'SSH Connections',
 pattern => "sshd",
 action => sub {
 my $line = $_[1];
 print $line;
 }
 },
],

That's about as simple a filter you can write for log-guardian. It matches anything that gets written
to /var/log/messages that has the string sshd in it and prints any lines it finds to stdout. From there,
you can send it to another tool for further processing or pipe it to the mail command, in which case
you could run log-guardian like this:

http://lib.ommolketab.ir

 # /var/local/bin/log-guardian | mail jonesy@linuxlaboratory.org

Of course, doing this will send every line in a separate email, so you might prefer to simply let it run
in a terminal. You'll be able to monitor this output a little more easily than the logfiles themselves,
since much of the noise has been filtered out for you.

This sshd filter is just one examplethe "pattern" can consist of any Perl code that returns some string
that the program can use to match against incoming log entries, and the "action" performed in
response to that match can be literally anything you're capable of inventing using Perl. That makes
the possibilities just about endless!

9.7.2. Using logcheck

The logcheck utility is not a real-time monitor that will alert you at the first sign of danger. However,
it is a really simple way to help weed out the noise in your logs. You can download logcheck from
http://sourceforge.net/projects/sentrytools/.

Once downloaded, untar the distribution, cd to the resulting directory, and as root, run make linux.
This will install the logcheck files under /usr/local. There are a few files to edit, but the things that
need editing are simple one-liners; the configuration is very intuitive, and the files are very well
commented.

The main file that absolutely must be checked to ensure proper configuration is
/usr/local/etc/logcheck.sh. This file contains sections that are marked with tags such as
CONFIGURATION and LOGFILE CONFIGURATION, so you can easily find those variables in the file that
might need changing. Probably the most obvious thing to change is the SYSADMIN variable, which tells
logcheck where to send output.

 SYSADMIN=user@mydomain.com

You should go over the other variables as well, because path variables and paths to binaries are also
set in this file.

Once this is ready to go, the next thing you'll want to do is edit root's crontab file, which you can do
by becoming root and running the following command:

 # crontab -e

You can schedule logcheck to run as often as you want. The following line will schedule logcheck to
run once an hour, every day, at 50 minutes after the hour:

http://sourceforge.net/projects/sentrytools/
http://lib.ommolketab.ir

 50 * * * * /bin/sh /usr/local/etc/logcheck.sh

You can pick any time period you want, but once per hour (or less in smaller sites or home networks)
should suffice.

Once you've saved the crontab entry, you'll start getting email with reports from logcheck about
what it's found in your logs that you might want to know about. It figures out which log entries go
into the reports by using the following methodology:

It matches a string you've noted as significant by putting it in /usr/local/etc/logcheck.hacking.

It does not match a string you've noted as being noise by putting it in
/usr/local/etc/logcheck.ignore.

These two files are simply lists of strings that logcheck will try to match up against entries in the logs
it goes through to create the reports. There is actually a third file as well,
/usr/local/etc/logcheck.violations.ignore, which contains strings that are matched only against entries
that are already flagged as violations. There's an example of this in the INSTALL file that comes with
the distribution that is more perfect than anything I can think of, so I'll reiterate it here:

 Feb 28 21:00:08 nemesis sendmail[5475]: VAA05473: to=crowland, ctladdr=root
 (0/0), delay=00:00:02, xdelay=00:00:01, mailer=local, stat=refused

 Feb 28 22:13:53 nemesis rshd: refused connect from hacker@evil.com:1490

 The top entry is from sendmail and is a fairly common error. The stat line
 indicates that the remote host refused connections (stat=refused). This can
 happen for a variety of reasons and generally is not a problem.

 The bottom line however indicates that a person (hacker@evil.com) has tried
 unsuccessfully to start an rsh session on my machine. This is bad (of
 course you shouldn't be running rshd to begin with).

 The logcheck.violations file will find the word 'refused' and will flag it
 to be logged; however, this will report both instances as being bad and you
 will get false alarms from sendmail (both had the word 'refused').

To get around these false positive without also throwing out things you want to know about, you put
a line like this in /usr/local/etc/logcheck.violations.ignore:

 mailer=local, stat=refused

This will match only the Sendmail log entry and will be ignored. Any other entries will be caught if

http://lib.ommolketab.ir

they contain the string "refused".

Of course, it will likely take you some time to fine-tune the reports logcheck sends, but the model of
forcing you to tell the tool to explicitly ignore things ensures that it ignores only what you tell it to,
instead of making assumptions about your environment.

http://lib.ommolketab.ir

Hack 84. Send Log Messages to Your Jabber Client

Use hidden features of syslog and a quick script to send syslog messages straight to your
desktop.

So you've finally gotten your machine room set up with centralized logging. Now you no longer need
to open 50 different terminal windows to tail logs on all of your web servers. Instead, you just open
one session to the central log host, tail the log, and go about your business.

But what if you could have the really important log messages, maybe only those going to the
auth.warning facility, sent directly to your desktop in a way that will catch your attention even if you
leave and come back only after the message has already scrolled by in your tail session?

You can actually accomplish this in a number of ways, but my favorite is by sending anything that
comes through my syslog filter to my Jabber client. As most of you probably know, Jabber is an open
source instant messaging protocol supported by Linux clients such as GAIM and Kopete.

This hack works because it turns out that syslog has the ability to send or copy messages to a named
pipe (or FIFO). A pipe in the Linux world is a lot like a pipe in a plumber's world: you send something
in one end, and it comes out (or is accessible through) the other end. By this logic, you can see that
if I can have warnings sent to a pipe, I should be able to attach to that pipe some form of faucet from
which I can access those messages. This is exactly what we'll do. For example, to send only those
messages that pertain to failed login attempts (auth.warning) to a named pipe, you'd put the
following line in /etc/syslog.conf:

 auth.warning |/var/log/log-fifo

With that in place, you next need to create the log-fifo named pipe, which you can do with the
following command:

 # mkfifo /var/log/log-fifo

The next time you restart your syslog daemon, messages will be sent to log-fifo. You can quickly test
that it's working by running the following command and watching the output:

 # less -f /var/log/log-fifo

http://lib.ommolketab.ir

To get these messages to an open Jabber client, you can have a script read from log-fifo, wrap it in
the appropriate XML, and send it off for routing to your target Jabber account. The script I use is a
hacked up version of DJ Adams's original jann Perl script and requires the Net::Jabber module, which
is readily available for (if not already installed on) most distributions. I call it jann-log.

9.8.1. The Code

This script reads syslog output from a FIFO and forwards it as a Jabber message:

 #!/usr/bin/perl
 use Net::Jabber qw(Client);
 use strict;
 # Announce resources
 my %resource = (
 online => "/announce/online",
);
 # default options
 my %option = (
 server => "moocow:5222",
 user => "admin",
 type => "online",
);
 # Default port if none specified
 $option{server} = "moocow:5222";
 # Ask for password if none given
 unless ($option{pass}) {
 print "Password: ";
 system "stty -echo";
 $option{pass} = <STDIN>;
 system "stty echo";
 chomp $option{pass};
 print "\n";
 }
 # Connect to Jabber server
 my ($host, $port) = split(":", $option{server}, 2);
 print "Connecting to $host:$port as $option{user}\n";
 my $c = new Net::Jabber::Client;
 $c->Connect(
 hostname => $host,
 port => $port,
) or die "Cannot connect to Jabber server at $option{server}\n";
 my @result;
 eval {
 @result = $c->AuthSend(
 username => $option{user},
 password => $option{pass},
 resource => "GAIM",

http://lib.ommolketab.ir

);
 };
 die "Cannot connect to Jabber server at $option{server}\n" if $@;
 if ($result[0] ne "ok") {
 die "Authorisation failed ($result[1]) for user $option{user} on
 $option{server}\n";
 }
 print "Sending $option{type} messages\n";
 # The message. Change the file name in this 'open' line to
 # the name of your fifo.
 open(STATUS, "cat /var/log/log-fifo 2>&1 |")
 || die "UGH: there's issues: $!";
 while (<STATUS>) {
 my $xml .= qq[<subject>] .
 ($option{type} eq "online" ? "Admin Message" : "MOTD") .
 qq[</subject>];
 my $to = $host . $resource{$option{type}};
 $xml .= qq[<message to="$to">];
 $xml .= qq[<body>];
 my $message = $_;
 $xml .= XML::Stream::EscapeXML($message);
 $xml .= qq[</body>];
 $xml .= qq[</message>] ;
 $c->SendXML($xml);
 print $xml;
 }

9.8.2. Running the Code

Place this script in a place accessible only by you and/or your admin team (for example,
/var/local/adm/bin/jann-log) and change the permissions so that the script is writable and executable
only by your admin group. Then open up a Jabber client on your desktop and connect to your Jabber
server. Once that's done, run the script. It should confirm that it has connected to the Jabber server
and is awaiting messages from the FIFO.

A simple way to test your auth.warning facility on the server where jann-log is listening for messages
is to SSH to the host and purposely use the wrong password to try to log in.

http://lib.ommolketab.ir

Hack 85. Monitor Service Availability with Zabbix

It's nice to have some warning before those help calls come flooding in. Be the first to
know what's happening with critical servers on your network !

It will happen to everyone sooner or later: you'll be minding your own business, blissfully unaware
that the network is crashing to its knees until a secretary claims that the Internet is down. By that
time, the bosses have all noticed, and everyone wants answers. Full-blown panic kicks in, and you
race around the office, pinging things at random to try to figure out what's happening. Wouldn't it be
nice if you had some sort of detailed real-time network map that could monitor services and tell you
what was going on? Zabbix to the rescue! Zabbix is a host monitoring tool that can do amazing
things. Read on to see how you can apply it in your own network.

9.9.1. Dependencies

Zabbix is a complicated beast, so there are naturally a few dependencies to note before you rush
headlong into the installation. Zabbix is written in PHP, so make sure you have a relatively recent
version installed. If you haven't upgraded in a while, this might be the time to do so. Since Zabbix is
completely web-based, you'll obviously need a web server as well. Par for the course, Apache or
Apache2 is the recommended server of choice. Make sure when you install Apache that you configure
it with mod-php enabled as well. This ensures that Apache can understand the embedded PHP that
makes Zabbix what it is. Then, make sure you have the PHP GD library installed (available from
http://www.boutell.com/gd/). While Zabbix will technically run without this, it's not recommended,
as this is the library that generates the network maps and graphs that make Zabbix so useful.
Finally, you'll need a SQL database. While Zabbix supports both PostgreSQL and MySQL, in this
example we'll be using MySQL.

9.9.2. Installing Zabbix

Unfortunately, installing Zabbix isn't as straightforward as many applications we've discussed so far.
Some parts of its installation, which I'll highlight as we go along, are optional.

The first step in getting Zabbix up and running is to download and untar the source code. You can
find this at the home page (http://www.zabbix.com). At the time this book was written, the latest
version was 1.0. Download the archive file of the latest version, untar it in your normal build location,
and navigate to the new directory. First, we'll need to configure Zabbix to make use of the database
choice we've selected (MySQL) and to use SNMP. Run the following command to prepare the
installation:

 $./configurewith-mysqlwith net-snmp

http://www.boutell.com/gd/
http://lib.ommolketab.ir

This shouldn't take too long, so don't grab a beer just yet! Before you move on to the make , you'll
need to take a second to prepare the MySQL database for Zabbix. Navigate to the create / directory
and then start MySQL, create the Zabbix database, and concatenate the .sql scripts to populate the
tables:

mysqlu <username> -p <password>
 Mysql> create database Zabbix;
 Mysql> quit;
cd create/mysql

cat schema.sql |mysqlu <username> -p <password> Zabbix
cd ../data

cat data.sql |mysqlu <username> -p <password> Zabbix

You can now jump back to the root of the Zabbix directory and issue the make command.

Once the make completes, take a moment to copy the contents of the bin /directory to somewhere in
your path. I tend to use /usr/local/bin .

 # cp bin/* /usr/local/bin

This is a fairly unsophisticated installation mechanism, but you're almost done. Now we have to set a
few variables so that PHP knows how to properly access your database. Navigate to
frontend/php/include in your Zabbix source directory and open the file db.inc.php in your favorite
text editor. Make the following changes:

 $DB_TYPE ="MySQL";
 $DB_SERVER ="localhost";
 $DB_DATABASE ="Zabbix";

 $DB_USER ="<MySQL username here>"

 $DB_PWD ="<MySQL password here>"

The $DB_DATABASE variable is the name of the database you created in MySQL for Zabbix earlier. Once
these changes have been made, copy the PHP files to your web root:

 # cpR frontends/php/* /srv/www/htdocs/

Now make the directory /etc/zabbix and copy the sample configuration files to it:

http://lib.ommolketab.ir

 # mkdir /etc/zabbix
 # cp misc/conf/zabbix_suckerd.conf /etc/zabbix/zabbix_suckerd.conf
 # cp misc/conf/zabbix_trapperd.conf /etc/zabbix/zabbix_trapperd.conf

These sample configuration files are fine for small-time applications, but if you're planning on
deploying Zabbix on a large-scale or enterprise rollout you should read the configuration files section
of the online Zabbix manual, available at http://www.zabbix.com/manual/v1.1/config_files.php .
Doing so will save you many headaches in the future. Once these files are moved, you're done with
the installation! All that's left is to fire up the Zabbix daemons and ensure that they work:

 # zabbix_suckerd
 # zabbix_trapperd

Assuming everything went as planned, you can now point your web browser to http://127.0.0.1 and
see your new Zabbix installation. When you get to the login screen, enter Admin for your username
and leave the password field blank. Once logged in, take a moment to change the default password.

9.9.3. Monitoring Hosts

After that installation, you certainly deserve to do something easy now! Fortunately, Zabbix seems to
be designed with ease in mind. Let's start adding some hosts to monitor. The upper section of the
screen has the navigation bars that you'll use to navigate around Zabbix. Click Hosts to add a new
host to your monitoring. Figure 9-3 shows the fields available when adding a new host on the Hosts
tab in Zabbix.

Figure 9-3. The Zabbix Hosts tab

http://127.0.0.1
http://lib.ommolketab.ir

You'll see here that you have several options when adding your new hosts. Fill in the options to suit
your needs and click Add. Note that if you'd rather monitor by hostname than by DNS (which is often
an excellent idea), checking the Use IP Address box will give you an additional box to provide the IP
address to monitor. For example, let's assume we want to configure Zabbix to notify us if
192.168.2.118 ever stops serving FTP traffic. To do so, on the Hosts tab, we would enter
192.168.2.118 in the Host field. We'd then change the port to 22 since we're interested in FTP traffic.
Next, move over to the Items tab. We'll need to type in a description for this item, so we'll call it
Home-FTP . Under Type, select "Simple check." In the Key field, enter "ftp." The rest we can leave as it
is. Now wait a few minutes, and check the Latest Values tab. You should see an option there for
192.168.2.118 (or the hostname if you gave it one). Since the FTP server is running, we get a return
value of 1 . Had the server not been running, we would see 0 in that field. Notice that to the right you
have the option to graph, trend, and compare data collected over time. This allows for detailed data
analysis on the uptime and availability of your servers. It is also an excellent demonstration of the
graphical qualities of Zabbix.

9.9.4. Mapping the Network

The last aspect of Zabbix that we'll look at is the mapping feature (shown in Figure 9-4). This is an
excellent tool for providing a quick reference map of the network showing detailed status. To begin,
click on the lower Network Maps button. Create a new network map by filling in the name you wish to
call your new map. If you'll have a lot of hosts to monitor, change the size of the map to make it
bigger. Click Add to continue. Once you've created your map, it's time to add some hosts to it. Select
the host we created in the previous example, Home-FTP . You can then select the coordinates you

http://lib.ommolketab.ir

wish for the icon representing Home-FTP to be displayed on. Select the Server icon and click Add. The
page will refresh, and when it finishes loading, you'll see your icon representing Home-FTP on the
map. You can continue adding hosts and placing them on the map until you have a full representation
of your network.

9.9.5. The Details

What we've covered here is a fraction of the capabilities of Zabbix. If you'd like to get more in depth
with it, you can install the Zabbix agents on the machines you wish to monitor. Once you've done
that, you can monitor statistics such as CPU utilization, drive space, and anything else that can be
monitored via SNMP. You can also define custom triggers to alert you right away to emergency
situations. Trigger definition is highly detailed and can get quite elaborate and complex. If you'd like
to learn more about this incredibly flexible network monitoring tool, check out the Zabbix web page
at http://www.zabbix.com for more information. There is a fairly active forum there dedicated to
helping users in need and sharing configuration tips and tricks.

Brian Warshawsky

Figure 9-4. The mapping features of Zabbix

http://lib.ommolketab.ir

Hack 86. Fine-Tune the syslog Daemon

You can't see problems that aren't being reported. Correctly setting up the system log
daemon and logging levels ensures that you always know what's going on.

Linux systems log boot information, process status information, and a significant amount of access
and error information in the system logfile, /var/log/messages, using a system daemon known as
syslog. But when was the last time you looked at this file? If you've never spent any time fine-tuning
the syslog daemon, your system logfile probably contains a tragically jumbled mess of cron
completion notices, boot notices, MARK entries, and any number of other service or daemon log
messages. Imagine if you could configure syslog to dump all that information where you wanted it,
and sort it all too…. Well, this is Linux we're talking about here, so of course you can configure syslog
any way you want!

9.10.1. Making Sense of syslog.conf

A configuration file called /etc/syslog.conf controls the syslog daemon. As unimaginative as the config
file's name might be, learn it well because this is a file you'll need to become very familiar with if you
want to master the intricacies of Linux system logging. The file may not make a whole lot of sense
upon first glance, but here's a simple syslog.conf file that I'll use to explain the syntax further:

 # Log all kernel messages to the console.
 # Logging much else clutters up the screen.
 # kern.* /dev/console
 # Log anything (except mail) of level info or higher.
 # Don't log private authentication messages!
 *.info;mail.none;authpriv.none;cron.none /var/log/messages
 # The authpriv file has restricted access.
 authpriv.* /var/log/secure
 # Log all the mail messages in one place.
 mail.* -/var/log/maillog
 # Log cron stuff
 cron.* /var/log/cron
 # Everybody gets emergency messages
 *.emerg *
 # Save news errors of level crit and higher in a special file.
 uucp,news.crit /var/log/spooler
 # Save boot messages also to boot.log
 local7.* /var/log/boot.log

http://lib.ommolketab.ir

As you can see in the noncommented lines in this example, there are three main parts to each active
line of the configuration file. The first entry on a line is called the facility, which is the underlying
subsystem that creates the log messages for the logfiles. There are 13 predefined system facility
values: auth, authpriv, cron, daemon, ftp, kern, lpr, mail, mark, news, syslog, user, and uucp. In
addition to these, there are also eight others, named local0 through local7, which are for programs to
use when implementing their own syslog messages. Each of the predefined facilities refers to a
specific aspect of the system. For instance, auth refers to the Linux authorization system, including
programs such as login and su. The mark facility is used internally for syslog, and should be left alone
for the time being. The daemon facility is for other system daemons that are not listed specifically.
You can represent all available facilities by using the asterisk (*) symbol.

The second part to a configuration line is the priority, which is separated from its associated facility
by a period. Every time a part of the system sends a message to syslog, that message is coded with
a priority. Basically, the program is letting syslog know how important this message is. From lowest
to highest, the priority levels are debug, info, notice, warning, err, crit, alert, and emerg. The higher
the priority, the more important the message is. Once you hit the emerg priority, the system is
rapidly approaching a kernel panic and is probably unusable. You can represent messages of any
priority by using the asterisk symbol. For example, local7.* means "messages of any priority from
the local7 facility."

The third and final aspect of the configuration line is the action. This is basically just a short section
that tells syslog what to do with the information it has received. To better explain this, let's look at an
example line from the sample configuration file provided above:

 # Log cron stuff
 cron.* /var/log/cron

Few things are more annoying than scrolling through /var/log/messages and having to wade through
all the cron messages, so this kind of configuration option comes in handy. This example means that
messages of all priorities issued by the cron facility should be sent to the /var/log/cron logfile. As
mentioned previously, the asterisk is a wildcard feature that tells syslog to apply the same rule to
every message from cron, regardless of its priority. You can do similar things with the asterisk
wildcard for the facility, such as instructing syslog to send every message of priority warning or
higher to a specific logfile:

 *.warning /var/log/problems

9.10.2. Real-Time Alerts from the System Log

Other wildcard features that can be used include the at sign (@), for sending messages to remote
syslog hosts; a dash (-), for telling syslog not to sync the disks after every message; and an asterisk
in the actions section of the configuration to alert everyone on the system to an issue. For instance,
look at the following example from the sample configuration file:

http://lib.ommolketab.ir

 # Everybody gets emergency messages
 *.emerg *

The final asterisk on this line tells syslog to send a message out to every user online via the wall
(Write to ALL users) command to let them know of any emergency conditions. These messages will
appear in every active terminal window on the system. You can think of configurations like this as
Linux's emergency broadcast system.

Another interesting line in the example syslog.conf file shown earlier in this hack is the line that
addresses kernel syslog messages. Rather than being sent to a logfile, all these messages are sent to
the console instead. One popular trick using this feature is to direct many of the syslog messages to a
virtual console instead of the main console. I often do this on machines that aren't used much for
local work but still have monitors. For example, specifying this line:

 auth,kern.* /dev/tty5

allows me to see the syslog messages of everyone who logs onand any issues with the kernelsimply
by switching the machine to virtual console 5 (Alt-F5) and leaving it there with the monitor on. Now,
whenever I walk by that machine, I can keep track of users logging on and off, or anything else I've
set it up to do. When I need to work on the server and that would be in the way, I just switch back to
my primary console (Alt-F1), and the messages continue to be sent to console 5.

9.10.3. Centralizing Logs for Convenient Access

Another interesting syslog option is remote logging. While syslog itself allows for remote logging,
there is a more robust solution to be found in syslog-ng [Hack #87], a new version of syslog. syslog
allows you to send messages to remote hosts, but it does so in plain text across the network, so you
should use this feature with caution. Here's how it works: by adding an at sign and a hostname or IP
address in the action section of the configuration file, you can specify that syslog send its messages
to another waiting remote syslog server. The remote syslog server will need to have the syslog
daemon started with the r option to allow it to listen on port 514 for incoming syslog messages. The
following line shows an example of sending all critical kernel messages to the remote machine
aardvark for safekeeping.

 kern.crit @aardvark

Remote logging can be extremely helpful in the event of a system crash, as it allows you to see log
messages that you might otherwise be unable to access (since the system that issued them is down).
As previously mentioned, these messages are sent in plain text across the network, so be sure to use
syslog's remote logging with cautionand never do it across the Internet. Also, note that if you send
certain types of messages to a remote log server, they are not recorded locally unless you create
another entry that also sends those same messages to the local log, as in the following example:

http://lib.ommolketab.ir

 kern.crit @aardvark
 kern.crit /var/log/messages

Another interesting potential security issue with syslog's remote logging is that
starting the syslog daemon with the r option to receive remote log entries
means that any host can send a log message to that host. The syslog facility
doesn't have a way of identifying specific hosts that it should receive messages
from, so it just holds up a big electronic catcher's mitt and accepts anything
that comes its way.

The syslog daemon can be customized in many different ways, but it's somewhat dated in terms of
both capabilities and security. "Centralize System Logs Securely" [Hack #87] provides newer and
even more configurable approach to system logging.

9.10.4. See Also

man syslog

"Centralize System Logs Securely" [Hack #87]

Brian Warshawsky

http://lib.ommolketab.ir

Hack 87. Centralize System Logs Securely

Protect your valuable logfiles from prying eyes

In "Fine-Tune the syslog Daemon" [Hack #86], we discussed configuration of the syslog daemon. As
useful and even necessary as this logging service is, though, it's beginning to show its age. In
response to that, a company name BalaBit has devoted both time and resources to bringing us the
next generation of syslog, syslog-ng, which addresses many of the problems that plague the original.
Improvements include using TCP instead of UDP to communicate with remote log hosts and a much
more configurable interface to your system's logging capabilities. From a security standpoint, the
implementation of TCP is a great advancementthat allows us to use additional applications such as
stunnel to create encrypted tunnels to protect the contents of logfiles as they are sent to the central
log host. In this hack, we examine such a deployment.

9.11.1. Getting Started

To implement encrypted remote logging, you'll need to download and compile three programs. Let's
start with stunnel. Grab the latest instance of the source code from
http://www.stunnel.org/download/source.html. Once you've got the tarball, unpack it and navigate
to your newly created directory. You can now follow the typical installation procedure:

 $./configure
 $ make
 # make install

You'll now need to grab the source for syslog-ng and libol, a library required by syslog-ng. You can
download each of these from http://www.balabit.com/downloads/syslog-ng/. Untar and install libol
first, then syslog-ng. Installation of these two applications uses the previous typical source install
three-step.

Once you've successfully installed stunnel, syslog-ng, and libol, you'll need to create encryption
certificates for all the machines between which you want to transfer secure log information.

9.11.2. Creating Your Encryption Certificates

To transfer log data securely between a remote host and a central log host, communication between
the two must be encrypted. In order to successfully use encryption, both hosts must be able to verify

http://www.stunnel.org/download/source.html
http://www.balabit.com/downloads/syslog-ng/
http://lib.ommolketab.ir

their identities and share the encryption keys used for reading and writing the encrypted data. This
information is provided by SSL certificates, which can either be granted by a third party or created
yourself for use within your organization. (For more than you probably want to know about SSL and
certificates, see the SSL HOWTO at http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/.)

At this point, you must create multiple certificates: one for use by the central log server, and one for
each client that sends log information to the server. Later in this section, you'll install the server
certificate on your server and distribute the client certificates to the hosts for which they were
created.

The process for creating certificates varies slightly based on the Linux distribution you're using. For a
Red Hat system, it is as follows:

 # cd /usr/share/ssl/certs
 # make syslog-ng-server.pem
 # make syslog-ng-client.pem

As each certificate is generated, the script will ask you several questions regarding your location,
hostname, organization, and email address. Once all the questions have been answered, your
certificates are generated. Your next step is to verify that only root has access to them:

 [root@aardvark certs]# ls -l *.pem
 -rw-------1 root root 2149 Aug 14 12:12 syslog-ng-client.pem
 -rw-------1 root root 2165 Aug 14 12:12 syslog-ng-server.pem
 [root@aardvark certs]#

There is one last thing you'll need to do before you start distributing your certificates: extract the
CERTIFICATE section from each certificate that is going to a client machine and concatenate the
extracted sections into a single file named syslog-ng-client.pem, which you will put on your server
along with the server key. The CERTIFICATE key data in a certificate file is the information between
the following two lines:

 -----BEGIN CERTIFICATE-----
 -----END CERTIFICATE-----

Copy the syslog-ng-client.pem file over to the /etc/stunnel directory on the server and place a copy
of each client's own certificate in that client's /etc/stunnel directory. This may sound somewhat
complicated, so let's summarize: all you're doing here is extracting the CERTIFICATE from each client's
certificate file, concatenating that information into one large client certificate that will reside on your
server (along with the server's certificate), and then copying the individual client certificates to the
hosts for which they were intended.

http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/
http://lib.ommolketab.ir

9.11.3. Configuring stunnel

Now, on the server side, edit your stunnel.conf file to read as follows:

 cert = /etc/stunnel/syslog-ng-server.pem
 CAfile = /etc/stunnel/syslog-ng-client.pem
 verify = 3
 [5140]
 accept = your.server.ip:5140
 connect = 127.0.0.1:514

Then make similar changes to stunnel.conf on the client side:

 client = yes
 cert = /etc/stunnel/syslog-ng-client.pem
 CAfile = /etc/stunnel/syslog-ng-server.pem
 verify = 3
 [5140]
 accept = 127.0.0.1:514
 connect = your.server.ip:5140

9.11.4. Configuring syslog-ng

Once those changes have been made, it's time to start working on creating your syslog-ng.conf file.
The syntax of this file has a steep learning curve and is well beyond the scope of this hack, so use
what I'm about to show you as a starting point, and work from there. Far more detail can be found
online and in the manpages. On your central log server, add the following to /etc/syslog-ng/syslog-
ng.conf:

 options { long_hostnames(off);
 sync(0);
 keep_hostname(yes);
 chain_hostnames(no); };
 source src {unix-stream("/dev/log");
 pipe("/proc/kmsg");
 internal();};
 source stunnel {tcp(ip("127.0.0.1")
 port(514)
 max-connections(1));};
 destination remoteclient {file("/var/log/remoteclient");};
 destination dest {file("/var/log/messages");};
 log {source(src); destination(dest);};
 log {source(stunnel); destination(remoteclient);};

http://lib.ommolketab.ir

Then, add the following to your syslog-ng.conf file on each client:

 options {long_hostnames(off);
 sync(0);};
 source src {unix-stream("/dev/log"); pipe("/proc/kmsg");
 internal();};
 destination dest {file("/var/log/messages");};
 destination stunnel {tcp("127.0.0.1" port(514));};
 log {source(src);destination(dest);};
 log {source(src);destination(stunnel);};

9.11.5. Testing

Once you've done all this, you can start stunnel and syslog-ng to see if everything is working. Before
you do so, though, make sure you stop the syslogd service. You don't want the two of them stepping
on each other. To test whether your remote logging is working, use the logger command:

 # logger This is a Test

Then, on your log server, search (or grep) /var/log/messages (or wherever you have remote logs)
for "This is a Test". If you get a response, congratulationseverything is working fine, and you now
have encrypted remote logging!

9.11.6. Where Next?

While remote logging has always been a useful and even necessary process, sending valuable system
information unencrypted across the void has long been a security risk. Thanks to syslog-ng and
stunnel, we no longer have to worry about that. In addition, the flexibility of syslog-ng has moved
leaps and bounds beyond what syslogd was ever capable of. It truly is the Next Generation of system
logging daemons.

That flexibility comes with a price, thoughthe syslog-ng configuration file is a complex beast. If you
spend a little time getting to know it, however, you'll find that it's not quite as hard as it looks. I can
assure you that the complexity of the syntax is proportional to its adaptability once you understand
it. Listed below are some resources you can consult online for help in configuring your syslog-ng
instance to meet your needs.

9.11.7. See Also

http://lib.ommolketab.ir

http://www.balabit.hu/static/syslog-ng/reference/book1.html

http://www.stunnel.org/examples/syslog-ng.html

"Fine-Tune the syslog Daemon" [Hack #86]

Brian Warshawsky

http://www.balabit.hu/static/syslog-ng/reference/book1.html
http://www.stunnel.org/examples/syslog-ng.html
http://lib.ommolketab.ir

Hack 88. Keep Tabs on Systems and Services

Consolidate home-grown monitoring scripts and mechanisms using Nagios.

Monitoring is a key task for administrators, whether you're in a small environment of 50100 servers
or are managing many sites globally with 5,000 servers each. At some point, trying to keep up with
the growth in the number of new services and servers deployed, and reflecting changes across many
disparate monitoring solutions, becomes a full-time job!

Admins often monitor not only the availability of a system (using simple tools such as ping), but also
the health of the services running on the systemthe network devices that connect the systems to
each other; peripheral devices such as printers, copiers, uninterruptible power supplies (UPSs); and
even air conditioners and other equipment. Often, these tools perform simple connections to services
and use SNMP and rstatd data collection and specialized environmental monitoring devices to gain a
complete view of the data centers.

While there are plenty of solutions out there for collecting and aggregating this data in some sane
way, I've found Nagios to provide the perfect balance between simplicity and power. Nagios is a
solution that meets the requirements of our mid-sized organization's computing environment quite
well, for reasons such as these:

Dependency checking

If all your printers are on a single switch, and that switch goes down, would you rather get a
page about each of 50 unavailable printers or a single page saying "the printer switch is
down"? Nagios can be configured (or not) to follow a logical path, so that one unreachable
device triggers the checking of other devices upon which the first failure is dependent. If a
printer is down, Nagios first checks to make sure the printer switch is up before notifying
anyone. If that printer switch is up and someone is running around unplugging printers, you'll
get a lot of pages, but if the switch is down you'll be notified of the larger problem, not its
consequences. Further, if that printer switch is unreachable because a router between Nagios
and the printer switch is down or unavailable, you'll get that message instead, which can save
you some troubleshooting time and makes the pages far more interesting and useful.

Downtime scheduling

When you have a host of different tools monitoring your environment, or a single tool that
doesn't allow for downtime scheduling, your pager will go nuts as you bring down your
environment and possibly again on the way back up. Mix this with a situation in which there is
no dependency checking and you'll soon find a group of administrators walking around while
their pagers lie vibrating in their desk drawers. With Nagios, you can schedule downtimes and

http://lib.ommolketab.ir

avoid the hassle.

Recovery notification

Many people use monitoring solutions that do simple "ping" monitoring, which tells you if a
machine is unreachable. However, if it was unreachable because of a temporary power glitch
that caused a switch to momentarily freak out, and the agent never lets you know that the
machine became available again one minute later, you could be wasting gobs of time driving
over to the site for a problem that has already corrected itself. Nagios will notify you of
recoveries.

A lot of solutions don't provide these benefits. Throw in solutions that are tough to customize, don't
provide service checks for specialized appliances or services, and are tough to integrate with the few
tools you might have that do work well, and you have big headaches and a downhill trend in the
morale of your administrators.

9.12.1. Enter Nagios

I've found that Nagios provides an extremely simple way of taking many of our disparate scripts,
notification modules, ping checkers, and other tools, and putting them all under the Nagios umbrella
as "plug-ins" without my having to change much of anything. In fact, the monitoring functionality
that comes preconfigured with Nagios is all handled through shell, Perl, or C programs that Nagios
calls in the background.

The barrier to entry was actually so low that within a day I had a very basic Nagios configuration up
and running, with a web interface, email notifications, and basic service and host checks working. By
the end of the week, I had configured Nagios to be more discriminating in its notifications (e.g., notify
only the DBA if the database service became unavailable, but only the Sun admins if the database
server went down). I had also configured host and service dependencies, and told it about our next
two scheduled downtimes. I had even found existing plug-ins for Nagios that allowed for the
retirement of a couple of our home-grown scripts for monitoring things like a NetApp filer and a
MySQL database. Things were looking up!

What's more is that the Nagios web interface, while it keeps useful enough statistics to help pinpoint
when a problem started or predict your disk needs on a file server over the next year, can also easily
be integrated with standard tools such as MRTG [Hack #79] or Cacti.

If you want to get really hardcore, you can also use Nagios to collect SNMP traps, or go fully
distributed by using Nagios agents, rather than a central polling mechanism, across your machine
room.

The only downside to Nagios that I've found so far is that, while configuration is pretty brainless,
there is no configuration GUI or automation, so it all has to be done by hand (which can be somewhat
cumbersome and very time-consuming). The payoff is there, though, so let's check out some
configuration details. I'll cover only the most basic configuration, because documenting a full-blown
Nagios deployment could be another book unto itself!

First you'll need to install Nagios, either using your distribution's package management system (for a
binary install) or by going to http://www.nagios.org to grab the source and installing according to the
plentiful documentation.

http://www.nagios.org
http://lib.ommolketab.ir

9.12.2. Hosts, Services, and Contacts, Oh My!

We'll start simple. Your machine room consists of hosts. These hosts run services. If either a host or
a service that it runs becomes unavailable, you'll want Nagios to notify a contact. Thus, the first thing
to do is tell Nagios about these entities. To do this, we add entries in the hosts.cfg, services.cfg, and
contacts.cfg files. These files may be located under /etc/nagios if your installation was preconfigured
(as on a SUSE system or a Red Hat RPM install), or wherever you told it to put configuration files
during a source install (/usr/local/etc/nagios, by default).

Here's a simple hosts.cfg entry that tells Nagios some basic information about a host:

 define host{
 use generic-host
 host_name newhotness
 alias Jonesy's Desktop
 address 128.112.9.52
 parents myswitch
 }

You'll notice that all this information is specific to my desktop machine. There's nothing here about
how to check the availability of the host, when to check it, or anything else. This is because Nagios
allows you to configure a template host entry to hold all of that information (since it's likely to be
identical for large numbers of hosts). The template used in the above entry is called generic-host,
and can be found near the top of the hosts.cfg file. The generic-host template entry looks like this:

 define host{
 name generic-host
 notifications_enabled 1
 event_handler_enabled 1
 flap_detection_enabled 1
 process_perf_data 1
 notification_interval 360
 notification_period 24x7
 notification_options d,u,r
 contact_groups sysstaff
 check_command check-host-alive
 max_check_attempts 10
 retain_status_information 1
 retain_nonstatus_information 1
 register 0
 }

This one entry does all the heavy lifting for the rest of the devices that reference this template. They
will all be checked using the check-host-alive check command, which is a scripted ping command.

http://lib.ommolketab.ir

Per the notification_period key's value, they'll be monitored 24 hours a day, 7 days a week. The
notification_options line says to send notifications if the status of the machine is either down (d),
unreachable (u), or recovered (r). The flap_detection_enabled option is turned on here, as well. This
is a feature of Nagios that seeks to save you from getting pages from services or hosts that change
state frequently due to temporary aberrations in network connectivity, host response times, or
services that are purposely restarted to pick up automated updates. You have to admit, putting all
this detail into one entry is better than putting it into every host entry!

Let's move on to services. A typical services.cfg entry looks like this:

 define service{
 use generic-service
 host_name ftpserver
 service_description FTP
 is_volatile 0
 check_period 24x7
 max_check_attempts 3
 normal_check_interval 5
 retry_check_interval 1
 contact_groups sysstaff
 notification_interval 120
 notification_period 24x7
 notification_options w,u,c,r
 check_command check_ftp
 }

This is the entry for my FTP server. Again, it includes only the information specific to the FTP server;
all the rest of the information comes from the template named generic-service, whose settings are
applied to all of the services whose entries refer to it using the use generic-service directive. Notice
that I use a service-specific check command called check_ftp. The check_ftp command is just a shell
script that attempts to make a connection to the FTP service on ftpserver.

You've no doubt noticed that both the host and service checks send mail to sysstaff if there's a
problem. But what is sysstaff? It's actually not an email alias (although you can use one if you like).
Instead, it's configured within Nagios itself, in the contacts.cfg and contactgroups.cfg files. Let's have
a look! Here's an entry for a contact from the contacts.cfg file:

 define contact{
 contact_name jonesy
 alias Jonesy
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options c,r
 host_notification_options d,r
 service_notification_commands notify-by-email
 host_notification_commands host-notify-by-email
 email jonesy@linuxlaboratory.org
 }

http://lib.ommolketab.ir

This is my contact entry. It says that I'm to be notified of any host or service failures 24 hours a day,
7 days a week. However, I've hacked my entry so that instead of being notified of every change in
state, I'm only notified when services (service_notification_options) are critical (c) and when they
recover (r), and when hosts (host_notification_options) are down (d) and when they recover (r).
There's an entry like this for everyone who will receive notifications about service or host status from
Nagios.

Once all of the contacts are defined, you can group them together to form Nagios-specific groups in
contactgroups.cfg. Here's an example:

 define contactgroup{
 contactgroup_name sysstaff
 alias The Systems Guys
 members jonesy,bill,joe
 }

That wasn't so hard, was it? Just remember that anyone in a contact group must first be defined as a
contact in contacts.cfg.

At this point you have only a very simple configuration, but it's enough to fire up Nagios and have it
monitor the hosts and services you defined and notify those who are defined as contacts. Before you
do that, though, you should run the following command to do a syntax check:

 $ nagios -v /etc/nagios/nagios.cfg

This runs Nagios in "verify" mode, and we've fed it the main Nagios configuration file, which contains
a line for every other configuration file in use. If there's a problem, Nagios will spit out plenty of
information for you to find, check out, and fix the problem. In these early stages, the most common
issues will probably be related to configuration files defined in nagios.cfg that are not yet being used.
For example, since we haven't used the dependency configuration file, you'll want to comment out
any references to it in nagios.cfg.

If you received no errors, you're in good shape. You might see "warnings" that point out possible
problems to you during config verification, but in many cases these warnings are for things that are
intentional, such as contacts that are not assigned to a contact group (which is not required and not
always desirable). Once you've verified that the warnings are harmless, or fixed whatever issues
existed and reverified things, you can fire up Nagios and begin receiving notifications via email about
the hosts and services you've configured.

9.12.3. See Also

http://lib.ommolketab.ir

http://www.nagios.org

http://www.nagios.org
http://lib.ommolketab.ir

Chapter 10. System Rescue, Recovery, and
Repair

Section 10.1. Hacks 89100: Introduction

Hack 89. Resolve Common Boot and Startup Problems

Hack 90. Rescue Me!

Hack 91. Bypass the Standard Init Sequence for Quick Repairs

Hack 92. Find Out Why You Can't Unmount a Partition

Hack 93. Recover Lost Partitions

Hack 94. Recover Data from Crashed Disks

Hack 95. Repair and Recover ReiserFS Filesystems

Hack 96. Piece Together Data from the lost+found

Hack 97. Recover Deleted Files

Hack 98. Permanently Delete Files

Hack 99. Permanently Erase Hard Disks

Hack 100. Recover Lost Files and Perform Forensic Analysis

http://lib.ommolketab.ir

10.1. Hacks 89100: Introduction

No computing system survives contact with the environment. The excellence of your sysadmin skills
can't stop hardware from failingit can only help you best recover from failed disk drives, controllers,
and other calamities that drown your inbox with support requests (if anyone can send mail at all) and
result in long lines of cranky users standing outside your office like shoppers trying to return broken
gifts after the holiday season. "You do have backups from 10 minutes ago, don't you?" you hear
them cry.

Data recovery is more critical today than ever, since the loss of a single disk or filesystem can mean
hundreds of gigabytes of lost data. But don't worryall is not necessarily lost. You can come out of
many systems failures with your wizard hat fully intact, and perhaps even sporting a few new stars.

The hacks in this chapter provide a variety of hard-won tips on how to deal with systems that
suddenly won't boot on their own, how to bring into line balky filesystems that you can't access or
unmount, and even how to recover deleted files or data from failed hard drives. Some of the
techniques in this chapter have retrieved data from Linux systems whose disks more closely
resembled blocks of wood than advanced storage devices.

As an interesting spin on recovery and restoration, this chapter also includes hacks on how to
permanently delete files and wipe hard disks so that they can safely be disposed of without donating
your corporate secrets to the competition or your music collection to the RIAA. We stop short of
describing how to physically wipe hard disks, though (i.e., using a hammer)most people can work
that one out (and we looked a tad too gleeful in the figures we submitted).

http://lib.ommolketab.ir

Hack 89. Resolve Common Boot and Startup Problems

Malicious crackers, overenthusiastic software updates, or simple hardware failures can
prevent you from rebooting or accessing a system. The first thing to do is to relax and try
a few standard tips and tricks to get your ailing system back on its feet.

Sooner or laterusually just before one of your users is about to submit her thesis or you have a
meeting to present the IT strategy document you've been working on for weeksyou'll find that
attempting to boot one of your systems results in a variety of cryptic error messages, a blinking
cursor, or a graphical user interface that won't accept any keyboard or mouse input. In other words,
not the standard Linux login you're used to at all. Of course, you have backups of your critical files
elsewhere, but if your system isn't running for one reason or another, backups are just a distant
security blanket. In all likelihood, your data is probably still present on the host formerly known as
"your desktop machine," but you just can't boot the box to get to it. What's a girl to do?

Depending on the types of errors you're seeing, you may need anything from a crash course in BIOS
settings, a PhD in the use of fsck and its friends, or some way of booting your system and accessing
your data quickly. This hack discusses some of the standard tips and tricks for trying to get your box
running on its own. If the tips in this hack aren't sufficient, see "Rescue Me!" [Hack #90] for the big
hammer, which is creating a bootable CD containing a Linux distribution that provides the tools you
need to repair an ailing Linux box. You can then apply the tools provided on that CD to repair your
filesystems, recover partitions, and perform the other hacks listed at the end of this one that will
enable you to get your system back and booting on its own.

10.2.1. Check BIOS Settings

If your system doesn't boot at all, the first thing to check is whether it's actually finding the device
from which you expect it to boot. If you've recently added a disk to your system or changed its
hardware configuration in any way, chances are that your BIOS settings are simply wrong. For
example, I have a 64-bit server with a variety of removable drives that boots off an internal disk. For
some reason, each time I add, remove, or change one of the removable drives, the BIOS forgets that
it's supposed to boot off an internal SATA drive and insists on trying to boot from one of my music
archives or one of the disks containing user home directories. Crap.

The standard symptoms of a system that has become confused about its boot settings are a blinking
cursor after the system has tried to initiate the boot process, or a message saying something like "No
bootable devices found." To make sure that your system is actually attempting to boot from the right
device, you'll have to investigate its Basic Input/Output System (BIOS) settings.

On many systems, either there's a boot splash screen that hides the command needed to enter the
BIOS, or the display comes up after this information has already been displayed. Most modern

http://lib.ommolketab.ir

systems enable you to access their BIOS settings by pressing the Delete key (the one in the cluster
of keys with Home, End, Page Up, and Page Down) as soon as the system powers up. The system will
still perform some initial checks, but it will then display a BIOS settings screen. If pressing Delete
does not provide access to your system's BIOS, other popular keys/key combinations to try (in order)
are F2, F1, F3, F10, Esc, Ctrl-Alt-Esc, Ctrl-Alt-Insert, and Control-Alt-S. One of these should give you
access to your system's BIOS, though trying them all can be somewhat tedious and time-consuming.

Most modern x86 boxes feature one of a small number of different BIOS types. Two of the more
popular BIOS types are the different Award BIOS screens shown in Figures 10-1 and 10-2.

Figure 10-1. An Award BIOS with vertical menus

In the BIOS shown in Figure 10-1, the boot settings are stored in the Advanced Settings screen,
which you can navigate to using the down arrow key. Press Return to display this screen once its
name is highlighted. On the Advanced Settings screen, use the down arrow key to navigate to the
First Boot Device entry, and press Return to display your choices. Use the arrow keys to select the
entry corresponding to your actual boot drive, and press Return. You can then press the Escape key
to exit this screen, and press F10 to save the new settings, exit the BIOS settings screen, and
reboot.

Figure 10-2. An Award BIOS with horizontal menus

http://lib.ommolketab.ir

In the BIOS shown in Figure 10-2, the boot settings are stored in the Boot screen, which you can
navigate to using the right arrow key. Press Return to display this screen once its name is
highlighted. On the Boot screen, use the down arrow key to navigate to the Hard Drive entry, and
press Return to display a list of available drives. You can then highlight the correct drive using the
arrow keys and press Return to select it. Once the correct hard drive is selected, you can use the plus
symbol to move that entry to be the first bootable device, and then press F10 to save the new
settings, exit the BIOS settings screen, and reboot.

If the BIOS boot settings for the system on which you're having problems
appear to be correct, this is probably not the root of your problem, and you
should change these settings only as a last resort. Changing too many
variables at one time is a normal reaction to an unbootable system, but it's
rarely the right one.

Depending on the types and configuration of the drives in your system, you may have to experiment
a bit with BIOS boot device settings before your system will boot correctly. If the BIOS doesn't find a
drive that you know to be physically present, the drive may have failed, in which case there isn't all
that much you can do without drive-specific hardware recovery techniques that are outside the scope
of this book. If the BIOS finds the drive but you can't read the disk's partition table using the rescue
CD, see "Recover Lost Partitions" [Hack #93] for suggestions about recreating the partition table. If
the partition table is fine but you can't mount or repair one or more partitions, see "Recover Data
from Crashed Disks" [Hack #94] for suggestions about recovering data from the disk.

10.2.2. Fixing Runlevel or X Window System Problems

http://lib.ommolketab.ir

Most Linux distributions nowadays provide some sort of free online update service. These are great
for keeping your system up to date with the newest, brightest, shiniest software available for your
distribution. If you get a bogus update, however, they can also incapacitate your systemand some of
the more common bogus updates that I've seen are updates to the X Window System (for X.org or,
in the past, XFree86). Unfortunately, the fix that corrects someone else's problem may take your GUI
to its knees, where it doesn't accept keyboard or mouse input. If you can't get your X Window
System display to respond to keyboard or mouse input, try the following:

Switch to another virtual console by pressing Ctrl-Alt-F1 or Ctrl-Alt-F2, log in there, and edit
/etc/inittab to start at another runlevel until you can correct the problem. The specific inittab
line you are looking for is:

 id:5:initdefault:

You need to change the 5 to another runlevel (usually 3). Some distributions, such as Ubuntu
and Gentoo, merely require you to stop the display manager from running, which usually means
removing the xdm, gdm, or kdm service from the boot process. Once you've done this, reboot.

Go to another machine and SSH or telnet into the system where you're having problems. Once
logged in, su and edit /etc/inittab to start at another runlevel (usually 3) until you can correct
the problem. Reboot.

If you can't do either of the previous suggestions (for example, if no other machine is handy or
you've disabled virtual consoles and gettys to optimize performance), use the information
provided later in this hack to reboot in single-user mode. You can then edit /etc/inittab to start
at another runlevel until you can correct the problem. Reboot.

Once you're in a nongraphical runlevel, you can perform repair tasks such as running filesystem
repair utilities, repairing your X Window System configuration, and so on.

10.2.3. Regenerating a Default X Window System Configuration File

If you can boot your system successfully in a nongraphical runlevel but cannot start the X Window
System automatically or manually, your configuration file may simply be hosed (in technical terms).
Whether this happened because you've installed an updated version of the X Window System, your
root filesystem took a hit and the file was deleted, or you've "fine-tuned" your configuration files to
the point where X won't start any more, you can start from scratch by generating a default X Window
System configuration file that you can then use as a starting point to correct the problems you're
seeing. Both the X.org and XFree86 implementations of the X Window System provide a -configure
option that enables you to generate a default configuration file. Depending on which X Window
System server you have on your Linux system, log in as root and execute one of the following two
commands to generate a default configuration file:

 # Xorg -configure

http://lib.ommolketab.ir

 # XFree86 -configure

These commands cause the X server to probe your graphics hardware and generate a default X
Window System configuration file in the /root directory called xorg.conf.new or XF86Config.new. You
can then test this generic configuration file by starting your X server with the following command:

 # X -config /root/filename

If the X server starts correctly, replace your default X configuration file with the new one and (after
creating a backup copy) resume normal use or finetuning. One common failing is that X won't start
because it can't detect your mouse. If this happens, check the InputDevice section of the
configuration file you created for the value of the Device option. If this is simply /dev/mouse, try
changing it to /dev/input/mice and restarting X using the updated configuration file.

If you're having problems starting or configuring X in general, your video card
may use a chipset that is not yet supported by the version of the X Window
System that you're using. If this happens, you can try using a lowest common
denominator as a fallback. Video Electronic Standards Association (VESA) is
supported by most cards and should enable X to work at lower resolutions on
almost any system with graphical capabilities. To use VESA, simply set the
Driver line in your Device section to be vesa.

10.2.4. Booting to Single-User Mode

If you're having problems booting to a specified runlevel, you may need to boot to single-user mode
in order to repair your system. This can happen for a number of reasons, most commonly because of
filesystem consistency problems, but also because of things such as the failure of any of the low-level
system initialization scripts.

If you're using the GRUB bootloader, press any key to interrupt the standard GRUB boot process, use
the arrow keys to select the kernel you want to boot, and press the e key to edit the boot options for
that kernel. Select the line containing the actual boot options (usually the first line), press e again to
edit that command line, and append the command single to the end of the command line. You can
then press b to boot with those boot options, and your system will go through the standard boot
process but terminate either at a root shell prompt or by prompting you for your root password
before starting that shell.

If you're still using the LILO bootloader, you can do the same thing by entering the name of the boot
stanza that you want to boot (usually linux), followed by a space and the -s directive. Again, you
should get a root shell prompt or a request for the root password in a few seconds.

If you're having problems starting a single-user shell, there may still be a problem in some low-level
aspect of your boot process, or (gasp) you may have forgotten or be unable to supply the root
password. In this case, see "Bypass the Standard Init Sequence for Quick Repairs" [Hack #91] for a

http://lib.ommolketab.ir

quick way of bypassing the /sbin/init process and starting a shell directly.

10.2.5. Resolving Filesystem Consistency Problems

When a system doesn't boot because it claims that one or more of your partitions is inconsistent and
therefore needs to be repaired, you're in luckit's hard to see disk corruption as a good thing, but it
beats some of the alternatives. At least your system found the boot sector, booted off the right drive,
and got to the point where it found enough applications to try to check your filesystems.

One of the most common problems when booting a system is resolving filesystem consistency
problems encountered during boot time. When you shut down a system normally, the system
automatically unmounts all of its filesystems, marking them as "clean" so that it can recognize that
they are in a consistent state when you next boot the system. If a system crashes for some reason,
the filesystems are not marked as clean and must therefore be checked for consistency and
correctness the next time you boot the system. Different types of filesystems each have their own
filesystem consistency verification and repair utilities. In most cases, your system will automatically
run these for you as part of the boot process and will correct any filesystem consistency problems
that these utilities detect. Sometimes, however, you're not so lucky, and you'll have to run these
utilities manually to correct serious filesystem problems.

Similarly, if you're using the XFS filesystem, all the vanilla repair utility does is return trUE, since it
expects that the XFS filesystem can correctly replay the journal and fix any problems as part of its
mount process. If that's not the case, you can find yourself in single-user mode if the boot and root
partitions are OK. If not, see "Rescue Me!" [Hack #90] for information about getting a rescue CD,
because you're going to need it.

The details of manually running each filesystem's consistency-checking utility are outside the scope of
this hack, but it's at least useful to know which utility to use if you have to manually repair a
filesystem. Table 10-1 shows the filesystem consistency utilities that you use to manually repair
various types of Linux filesystems.

Table 10-1. Repair utilities for different Linux filesystems

Filesystem Utility

ext2, ext3 e2fsck

JFS jfs_fsck

reiserfs reiserfsck

XFS xfs_check, xfs_repair

In the case of the XFS filesystem, xfs_check is a shell script that simply identifies problems in a
specified filesystem, which you must then use the xfs_repair utility to correct.

http://lib.ommolketab.ir

10.2.6. See Also

RIP home page: http://www.tux.org/pub/people/kent-robotti/looplinux/rip/

"Rescue Me!" [Hack #90]

"Bypass the Standard Init Sequence for Quick Repairs" [Hack #91]

http://www.tux.org/pub/people/kent-robotti/looplinux/rip/
http://lib.ommolketab.ir

Hack 90. Rescue Me!

So you've tried all the standard tips and tricks to get your system to boot on its own, and
nothing has worked. In that case, a bootable Linux system on a CD may be your new best
friend.

Hardware failure, filesystem corruption, overzealous upgrades, and significant tweaking of your
system's startup process are among the things that can cause your system to fail to boot
successfully. Assuming you've gotten to this point and the suggestions in "Resolve Common Boot and
Startup Problems" [Hack #89] didn't work out, your next good alternative is to download, burn, and
boot from what is known as a "rescue disk."

It's always a good idea to keep a bootable rescue disk handy. Download and
burn one before you have problems, so that you'll have one to use should you
ever need it.

A rescue disk is a small Linux distribution that boots and runs from a CD and provides the kernel and
operating system capabilities that you need to access your hardware, as well as the tools you need to
resolve problems with the interaction between that hardware and the desktop or server system
you're trying to boot. The things that a rescue disk must provide fall into four general categories:

A kernel and drivers for the storage devices attached to your system and, preferably, at least
one of the network interface(s) available on that system.

Disk repair utilities for various types of filesystems, including logical volume management (LVM)
utilities.

System utilities such as mount that enable you to access data from the filesystems on the ailing
machine, boot tools such as GRUB that enable you to verify (and optionally update) the
system's boot process, and so on. These often include the tools used to recover from systems
problems, as discussed in "Recover Lost Partitions" [Hack #93] (gpart) and "Recover Data
from Crashed Disks" [Hack #94] (ddrescue).

Standard utilities, such as a text editor to correct and update text files used by the system
during the boot process (such as /etc/inittab), the configuration files used by various services,
and the system startup scripts in the /etc/rc.d or /etc/init.d directory (depending on your
distribution)

Though there are plenty of rescue disks around, including many graphical Live-CD Linux distributions,
my personal favorite for years has been Kent Robotti's RIP (Recovery Is Possible!) disk, available
from http://www.tux.org/pub/people/kent-robotti/looplinux/rip/. This is a relatively small (25 MB)

http://www.tux.org/pub/people/kent-robotti/looplinux/rip/
http://lib.ommolketab.ir

rescue disk that does not offer any graphical user interface but does provide a complete set of up-to-
date filesystem repair utilities for ext2, ext3, JFS, reiserfs, reiser4, and XFS filesystems, as well as
the LVM2 utilities for mounting and managing logical volumes. As a nongraphical rescue disk, it
targets experienced sysadmins who are comfortable at the command line, which you should be when
trying to rescue or recover data from an ailing system.

10.3.1. Downloading and Burning the Rescue Disk

The two ISO images on the RIP page differ in terms of the bootloaders they useone uses GRUB, and
the other uses the standard ISOLINUX bootloader. I prefer to use the latter because it is simpler, so I
always retrieve the file RIP-13.4.iso.bin, which is a binary CD image that you can burn directly to CD
and then use to boot your system.

The standard Linux command-line CD-burning utility is called cdrecord. Prior to the 2.6 Linux kernel,
using an IDE CD writer with cdrecord required the use of a loadable kernel module that provided
SCSI emulation for IDE, because cdrecord expected SCSI identifiers when specifying the target
output device. With the 2.6 kernel, CD-burning utilities can use ATA CD drives directly, without any
special modules.

Once you've retrieved the file, you'll need to identify your system's CD burner(s). To do this, su to
root and then execute the cdrecord -scanbus command. This causes cdrecord to probe the system
for suitable devices and display the information that you'll need to supply in order to write to them.
Here's an example:

 # cdrecord -scanbus
 Cdrecord 2.0 (i686-pc-linux-gnu) Copyright (C) 1995-2002 J#rg Schilling
 Linux sg driver version: 3.1.24
 Using libscg version 'schily-0.7'
 scsibus0:
 0,0,0 0) 'TOSHIBA ' 'DVD-ROM SD-R1202' '1026' Removable CD-ROM
 0,1,0 1) *
 0,2,0 2) *
 0,3,0 3) *
 0,4,0 4) *
 0,5,0 5) *
 0,6,0 6) *
 0,7,0 7) *

Once you've identified the device associated with your CD burner, burn the CD image to a writable
CD-ROM using a command such as the following:

 # cdrecord -v dev=0,0,0 speed=4 RIP-13.4.iso.bin

This command will produce very verbose output (due to the use of the -v option) and will wait nine
seconds before actually starting to write to the disc, just in case you change your mind. Once writing

http://lib.ommolketab.ir

begins, the cdrecord command displays a status line that it continues to update until the entire file is
written to the CD.

10.3.2. Using the Rescue CD

Once you've created the rescue CD, you need only put it in the ailing system and reboot. If your
system is not configured to boot from the CD drive before booting from a hard disk partition, you
may need to change your system's boot sequence in the BIOS settings in order to get the system to
boot from the CD.

Once you've booted from the rescue CD, you can quickly and easily perform tasks such as the
following:

Run standard system repair commands to repair filesystem consistency [Hacks #89and #95].

Configure your system's network interface so that you can bring the system up on your
network.

Create archive files of critical files and directories and transfer those files to other systems using
the ncftp utility supplied on the rescue disk.

Correct other boot problems [Hack #89].

10.3.3. See Also

RIP home page: http://www.tux.org/pub/people/kent-robotti/looplinux/rip/

http://www.tux.org/pub/people/kent-robotti/looplinux/rip/
http://lib.ommolketab.ir

Hack 91. Bypass the Standard Init Sequence for Quick
Repairs

Get as close to the metal as you can when resolving startup problems.

If you're having problems booting a system to single-user mode, both the LILO and GRUB Linux
bootloaders provide a great shortcut to help you get a shell prompt on an ailing system. This hack is
especially useful if your password or shadow file has been damaged, a critical system binary is
damaged or missing, orheaven forbidyou've actually forgotten the root password on one of your
systems.

By default, Linux systems use the /sbin/init process to start all other processes, including the root
shell that you get when you boot a system in single-user mode. Both LILO and GRUB enable you to
specify an alternate binary to run instead of the init process, though, using the init=command boot

option. By specifying /bin/bash as the command to start, you can get a quick prompt on your
machine without exec'ing init or going through any of the other steps in your system's normal startup
process.

The shell that is started when you exec /bin/bash directly does not have job
control (Ctrl-Z) and does not respond to interrupts (Ctrl-C), so be very careful
what commands you run from this shell. Don't run any commands that do not
automatically terminate or prompt for subcommands that enable you to exit
and return to the shell.

If you're using the GRUB bootloader, press any key to interrupt the standard GRUB boot process, use
the arrow keys to select the kernel you want to boot, and press the e key to edit the boot options for
that kernel. Select the line containing the actual boot options (usually the first line), press the e key
again to edit that command line, and append the command init=/bin/sh to the end of the command
line. You can then press b to boot with those boot options. You should see a shell prompt in a few
seconds.

If you're still using the LILO bootloader, you can do the same thing by entering the name of the boot
stanza you want to boot (usually linux), followed by a space and the init=/bin/sh command. Again,
you should get a shell prompt in a few seconds.

After getting a shell prompt, you should remount /proc to make sure that commands such as ps (and
anything else that uses the /proc filesystem) work correctly. You can do this by executing the
following command as root (or via sudo):

 # mount -t proc none /proc

http://lib.ommolketab.ir

If you need to create files on your system (for example, if you're creating a file archive that you want
to migrate to another system "just in case"), you must also remount your root filesystem in
read/write mode, since at this early point in the boot process it is mounted read-only. To do this,
execute the following command as root (or via sudo):

 # mount -o remount,rw /

You can now execute commands such as the filesystem repair commands [Hack #89], start your
Ethernet interface manually by executing /sbin/ifconfig with a static IP address, or perform any other
commands that you need to do in order to repair your current system or migrate data from it to
another system.

http://lib.ommolketab.ir

Hack 92. Find Out Why You Can't Unmount a Partition

If you can't unmount a disk because it's busy, you can use the lsof and fuser commands to
find open files or pesky attached processes.

The popularity of removable drives and their usability for things such as backups [Hack #50] makes
mounting and unmounting partitions a fairly common activity while a system is running. Another not-
so-common but more critical sysadmin activity is the need to unmount a drive in an emergency, such
as when one of your users has accidentally deleted his thesis or the source code for your next-
generation product, or the disk begins getting write errors and you need to initiate recovery ASAP. In
either case, it's truly irritating when you can't unmount a partition because some unknown process is
using it in one way or another. Shutting down a system just to unmount a disk so that you can
remove or repair it is clearly overkill. Isn't there a better way? Of course there isread on.

10.5.1. Background

One of the most basic rules of Linux/Unix is that you can't unmount a partition while a process is
writing to or running from it. Trying to do so returns an informative but fairly useless message like
the following:

 $ sudo umount /mnt/music
 umount: /mnt/music: device is busy
 umount: /mnt/music: device is busy

In some cases, terminating the processes associated with a partition is as easy as looking through all
your windows for suspended or background processes that are writing to the partition in question or
using it as their current working directory and terminating them. However, on multi-user, graphical
systems with many local and remote users, this isn't always as straightforward as you'd like.

As progress toward an ultimate solution to this frustration, special-purpose Linux specifications such
as Carrier-Grade Linux (CGL) require some "forced unmount" functionality in the kernel
(http://developer.osdl.org/dev/fumount/), and the umount command includes a force (-F) option for
NFS filesystems. That's all well and good, but those of us who are using vanilla Linux distributions on
local disks still need a practical solution that doesn't require patching each kernel or killing a fly with a
hammer through an immediate shutdown.

http://developer.osdl.org/dev/fumount/
http://lib.ommolketab.ir

Recent versions of the umount command provide a l option to "lazily" unmount
a filesystem immediately, and then try to clean up references to the filesystem
as the processes associated with them terminate. This is certainly interesting
and can be useful, but I generally prefer to know what's going on if I can't
unmount a filesystem that I think I should be able to unmount. Your mileage
may vary.

Linux provides two commands that you can use to identify processes running on a filesystem so that
you can (hopefully) terminate them in one way or another: fuser (find user process) and lsof (list
open files). The key difference between the two is that the fuser command simply returns the
process IDs (PIDs) of any processes associated with the file or directory specified as an argument,
while the lsof command returns a full process listing that provides a variety of information about the
processes associated with its argument(s). Both are quite useful, and which you use is up to you. The
next two sections show how to use each of these commands to help find the pesky process(es) that
are keeping you from unmounting a partition.

The Open Source Development Lab's forced unmount page, referenced at the
end of this hack, provides a cool but crude script called funmount that tries to
automatically combine a number of passes of fuser with the appropriate
unmount commands to "do the right thing" for you when you need to forcibly
unmount a specified partition. It's worth a look.

10.5.2. Finding Processes That Are Using a Filesystem

The fuser command returns the PIDs of all the processes associated with the device or mounted
filesystem that is specified as an argument, along with terse information that summarizes the way in
which each process is using the filesystem. To search for all processes associated with a mounted
filesystem or device, you need to specify the m option, followed by the name of the filesystem or its
mount point. For example, the following fuser command looks for processes associated with the
filesystem mounted at /mnt/music on my system:

 $ fuser -m /mnt/music
 /mnt/music: 29846c 31763c

Each process ID returned by the fuser command is followed by a single letter that indicates how the
specified process is using the filesystem. The most common of these is the letter c, which indicates
that the process is using a directory on that filesystem as its current working directory. In the
previous example, you can see that both of the processes listed are using the filesystem as their
current working directory.

Once you have this sort of output, you can use the grep command to search for each of the specified
process IDs and see what they're actually doing, as in the following example:

http://lib.ommolketab.ir

 $ ps alxww | grep 29846
 0 1000 29846 7797 16 0 9992 2284 wait Ss pts/13 0:00 /bin/bash
 4 0 29912 29846 16 0 24608 1364 finish T pts/13 0:00 su
 0 1000 31763 29846 16 0 10292 2480 - S+ pts/13 0:00 vi playlist.m3u
 0 1000 31789 30009 17 0 3788 764 - R+ pts/14 0:00 grep -i 29846

By default, the fuser command returns all active processes. However, as we can (accidentally) see in
the above process listing, there is also a terminated su process that is a child of the process that
fuser identified, which could prevent us from unmounting the filesystem in question. To provide a
more complete fuser output listing, you should generally run the fuser command as root (or via
sudo), and also specify the a option to ensure that all processes are listed, regardless of their states,
as in the following example:

 $ sudo fuser -am /dev/mapper/data-music
 /dev/mapper/data-music: 29846c 29912c 29916c 31763c 32088

As you can see, fuser now picks up the process ID of the su process.

If you're really in a hurry, you can also specify the fuser command's k option,
which kills any processes it finds. It's generally a good idea to try to find the
processes in question and terminate them cleanly, but in some cases you may
just want to kill the processes as quickly as possible (for example, when you're
hoping to subsequently recover deleted files and want to prevent filesystem
updates).

10.5.3. Listing Open Files

The fuser command returns PIDs that require subsequent interpretation to figure out which files
they're actually using on the specified filesystem (though the status indicator appended to each PID
gives you a quick idea of how each process is using the filesystem). In contrast, the lsof command
returns more detailed information about processes that have open files on a specified filesystem, and
may tell you everything that you need to know in one swell foop. For example, the following is the
output of the lsof command on the same filesystem used in the previous examples:

 $ lsof /mnt/music
 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 bash 29846 wvh cwd DIR 253,0 64 131 /mnt/music/test
 vi 31763 wvh cwd DIR 253,0 64 131 /mnt/music/test
 vi 31763 wvh 4u REG 253,0 12288 133 /mnt/music/test/.playlist.
 m3u.swp

http://lib.ommolketab.ir

The first column (COMMAND) shows each command that the system is running that is associated with
the file, directory, or mount point that you specified as an argument. The last column (NAME) identifies
the file or directory that each command is actually associated with. The FD column shows the active
file descriptors associated with the process or, in the case of a shell or command, the fact that the
shell or command is using the specified directory as its current working directory (cwd).

As with fuser, when run by a standard user the output of lsof shows only active processes. To get
more complete output, you should generally run the lsof command as root (or via sudo), as in the
following example:

 $ sudo lsof /mnt/music
 COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
 bash 29846 wvh cwd DIR 253,0 64 131 /mnt/music/test
 su 29912 root cwd DIR 253,0 17 128 /mnt/music
 bash 29916 root cwd DIR 253,0 17 128 /mnt/music
 vi 31763 wvh cwd DIR 253,0 64 131 /mnt/music/test
 vi 31763 wvh 4u REG 253,0 12288 133 /mnt/music/test/.playlist.
 m3u.swp

You can see that the output of this instance of the lsof command picked up the suspended su
process, and also identifies the bash shell associated with this process.

Unlike the fuser command, the lsof command doesn't provide an option to automatically terminate
the processes it has located, but it provides a good deal more information to begin with. Once you
know exactly what they're doing and are sure that it's safe to kill them, you can always quickly
terminate each process manually from the command line in order to unmount the filesystem.

10.5.4. Summary

The fuser and lsof commands are useful additions to your Linux sysadmin toolset. fuser quickly
delivers information about active processes and provides an option to automatically and instantly
terminate processes associated with the filesystems or files that you specify as arguments, but its
output requires subsequent interpretation (if you have time to play detective). The lsof command
returns more detailed information about the associated processes (although additional interpretation
may still be required), and can also display information about network-related files and sockets that
may be open (see its manpage or FAQ for more details). However, it doesn't include an option to
quickly terminate all of the processes in one go. In my experience, fuser is faster, but lsof provides
a much richer spectrum of information. Each is useful at different times, depending on what you're
looking for and how quickly you need to find (and perhaps kill) it.

10.5.5. See Also

http://www.osdl.org/lab_activities/carrier_grade_linux

http://developer.osdl.org/dev/fumount/

http://www.osdl.org/lab_activities/carrier_grade_linux
http://developer.osdl.org/dev/fumount/
http://lib.ommolketab.ir

ftp://lsof.itap.purdue.edu/pub/tools/unix/lsof/FAQ

http://lib.ommolketab.ir

Hack 93. Recover Lost Partitions

If you can't mount any of the partitions on a hard drive, you may simply need to recreate
the partition table. Here's a handy utility for identifying possible partition entries.

Seeing messages like "/dev/FOO: device not found" is never a good thing. However, this message
can be caused by a number of different problems. There isn't much you can do about a complete
hardware failure, but if you're "lucky" your disk's partition table may just have been damaged and
your data may just be temporarily inaccessible.

If you haven't rebooted, execute the cut lproc /partitions command to see if
it still lists your device's partitions.

Unless you have a photographic memory, your disk contains only a single partition, or you were
sufficiently disciplined to keep a listing of its partition table, trying to guess the sizes and locations of
all of the partitions on an ailing disk is almost impossible without some help. Thankfully, Michail
Brzitwa has written a program that can provide exactly the help you need. His gpart (guess
partitions) program scans a specified disk drive and identifies entries that look like partition
signatures. By default, gpart displays only a listing of entries that appear to be partitions, but it can
also automatically create a new partition table for you by writing these entries to your disk. That's a
scary thing to do, but it beats the alternative of losing all your existing data.

If you're just reading this for information and aren't actually in the midst of a
lost data catastrophe, you may be wondering how to back up a disk's partition
table so that you don't have to depend on a recovery utility like gpart. You can
easily back up a disk's master boot record (MBR) and partition table to a file
using the following dd command, where FOO is the disk and FILENAME is the

name of the file to which you want to write your backup:

 # dd if=/dev/FOO of=FILENAME bs=512 count=1

If you subsequently need to restore the partition table to your disk, you can do
so with the following dd command, using the same variables as before:

 # dd if=FILENAME of=/dev/FOO bs=1 count=64 skip=446
 seek=446

http://lib.ommolketab.ir

The gpart program works by reading the entire disk and comparing sector sequences against a set of
filesystem identification modules. By default, gpart includes filesystem identification modules that can
recognize the following types of partitions: beos (BeOS), bsddl (FreeBSD/NetBSD/386BSD), ext2 and
ext3 (standard Linux filesystems), fat (MS-DOS FAT12/16/32), hpfs (remember OS/2?), hmlvm
(Linux LVM physical volumes), lswap (Linux swap), minix (Minix OS), ntfs (Microsoft Windows
NT/2000/XP/etc.), qnx4 (QNX Version 4.x), rfs (ReiserFS Versions 3.5.11 and greater), s86dl (Sun
Solaris), and xfs (XFS journaling filesystem). You can write additional partition identification modules
for use by gpart (JFS fans, take note!), but that's outside the scope of this hack. For more
information about expanding gpart, see its home page at http://www.stud.uni-
hannover.de/user/76201/gpart and the README file that is part of the gpart archive.

10.6.1. Looking for Partitions

As an example of gpart's partition scanning capabilities, let's first look at the listing of an existing
disk's partition table as produced by the fdisk program. (BTW, if you're questioning the sanity of the
partition layout, this is a scratch disk that I use for testing purposes, not a day-to-day disk.) Here's
fdisk's view:

 # fdisk -l /dev/hdb
 Disk /dev/hdb: 60.0 GB, 60022480896 bytes
 255 heads, 63 sectors/track, 7297 cylinders Units = cylinders of 16065 * 512
 = 8225280 bytes
 Device Boot Start End Blocks Id System
 /dev/hdb1 1 25 200781 83 Linux
 /dev/hdb2 26 57 257040 82 Linux swap / Solaris
 /dev/hdb3 58 3157 24900750 83 Linux
 /dev/hdb4 3158 7297 33254550 5 Extended
 /dev/hdb5 3158 3337 1445818+ 83 Linux
 /dev/hdb6 3338 3697 2891668+ 83 Linux
 /dev/hdb7 3698 4057 2891668+ 83 Linux
 /dev/hdb8 4058 4417 2891668+ 83 Linux
 /dev/hdb9 4418 4777 2891668+ 83 Linux
 /dev/hdb10 4778 5137 2891668+ 83 Linux
 /dev/hdb11 5138 5497 2891668+ 83 Linux
 /dev/hdb12 5498 5857 2891668+ 83 Linux
 /dev/hdb13 5858 6217 2891668+ 83 Linux
 /dev/hdb14 6218 6577 2891668+ 83 Linux
 /dev/hdb15 6578 6937 2891668+ 83 Linux
 /dev/hdb16 6938 7297 2891668+ 83 Linux

Let's compare this with gpart's view of the partitions that live on the same disk:

 # gpart /dev/hdb

http://www.stud.uni-
http://lib.ommolketab.ir

 Begin scan…

 Possible partition(Linux ext2), size(196mb), offset(0mb)
 Possible partition(Linux swap), size(251mb), offset(196mb)
 Possible partition(Linux ext2), size(24317mb), offset(447mb)
 Possible partition(Linux ext2), size(1411mb), offset(24764mb)
 Possible partition(Linux ext2), size(2823mb), offset(26176mb)
 Possible partition(Linux ext2), size(2823mb), offset(29000mb)
 Possible partition(Linux ext2), size(2823mb), offset(31824mb)
 Possible partition(Linux ext2), size(2823mb), offset(34648mb)
 Possible partition(Linux ext2), size(2823mb), offset(37471mb)
 Possible partition(Linux ext2), size(2823mb), offset(40295mb)
 Possible partition(Linux ext2), size(2823mb), offset(43119mb)
 Possible partition(Linux ext2), size(2823mb), offset(45943mb)
 Possible partition(Linux ext2), size(2823mb), offset(48767mb)
 Possible partition(Linux ext2), size(2823mb), offset(51591mb)
 Possible partition(Linux ext2), size(2823mb), offset(54415mb)
 End scan.

 Checking partitions…
 * Warning: more than 4 primary partitions: 15.
 Partition(Linux ext2 filesystem): primary
 Partition(Linux swap or Solaris/x86): primary
 Partition(Linux ext2 filesystem): primary
 Partition(Linux ext2 filesystem): primary
 Partition(Linux ext2 filesystem): invalid primary
 Partition(Linux ext2 filesystem): invalid primary
 Partition(Linux ext2 filesystem): invalid primary
 Partition(Linux ext2 filesystem): invalid primary
 Partition(Linux ext2 filesystem): invalid primary
 Partition(Linux ext2 filesystem): invalid primary
 Partition(Linux ext2 filesystem): invalid primary
 Partition(Linux ext2 filesystem): invalid primary
 Partition(Linux ext2 filesystem): invalid primary
 Partition(Linux ext2 filesystem): invalid primary
 Partition(Linux ext2 filesystem): invalid primary
 Ok.
 Guessed primary partition table:
 Primary partition(1)
 type: 131(0x83)(Linux ext2 filesystem)
 size: 196mb #s(401562) s(63-401624)
 chs: (0/1/1)-(398/6/63)d (0/1/1)-(398/6/63)r
 Primary partition(2)
 type: 130(0x82)(Linux swap or Solaris/x86)
 size: 251mb #s(514080) s(401625-915704)
 chs: (398/7/1)-(908/6/63)d (398/7/1)-(908/6/63)r
 Primary partition(3)
 type: 131(0x83)(Linux ext2 filesystem)
 size: 24317mb #s(49801496) s(915705-50717200)
 chs: (908/7/1)-(1023/15/63)d (908/7/1)-(50314/10/59)r
 Primary partition(4)
 type: 131(0x83)(Linux ext2 filesystem)

http://lib.ommolketab.ir

 size: 1411mb #s(2891632) s(50717268-53608899)
 chs: (1023/15/63)-(1023/15/63)d (50314/12/1)-(53183/6/58)r

Doing the math can be a bit tedious, but calculating the partition size and offsets shows that they are
actually the same. gpart found all of the partitions, including all of the logical partitions inside the
disk's extended partition, which can be tricky. If you don't want to do the math yourself, gpart
provides a special -c option for comparing its idea of a disk's partition table against the partitions that
are listed in an existing partition table. Using gpart with the -c option returns 0 if the two are
identical or the number of differences if the two differ.

10.6.2. Writing the Partition Table

Using fdisk to recreate a partition table can be a pain, especially if you have multiple partitions of
different sizes. As mentioned previously, gpart provides an option that automatically writes a new
partition table to the scanned disk. To do this, you need to specify the disk to scan and the disk to
write to on the command line, as in the following example:

 # gpart -W /dev/ FOO /dev/ FOO

If you're paranoid (and you should be, even though your disk is already hosed), you can back up the
existing MBR before writing it by adding the -b option to your command line and specifying the name
of the file to which you want to back up the existing MBR, as in the following example:

 # gpart -b FILENAME -W /dev/ FOO /dev/ FOO

As mentioned at the beginning of this hack, a disk failure may simply be the result of a bad block that
happens to coincide with your disk's primary partition table. If this happens to you and you don't
have a backup of the partition table, gpart does an excellent job of guessing and rewriting your disk's
primary partition table. If the disk can't be mounted because it is severely corrupted or otherwise
damaged, see "Recover Data from Crashed Disks" [Hack #94] and "Piece Together Data from the
lost+found" [Hack #96] for some suggestions regarding more complex and desperate data recovery
hacks.

10.6.3. See Also

"Rescue Me!" [Hack #90]

http://lib.ommolketab.ir

Hack 94. Recover Data from Crashed Disks

You can recover most of the data from crashed hard drives with a few simple Linux tricks.

As the philosopher once said, "Into each life, a few disk crashes must fall." Or something like that.
Today's relatively huge disks make it more tempting than ever to store large collections of data
online, such as your entire music collection or all of the research associated with your thesis. Backups
can be problematic, as today's disks are much larger than most backup media, and backups can't
restore any data that was created or modified after the last backup was made. Luckily, the fact that
any Linux/Unix device can be accessed as a stream of characters presents some interesting
opportunities for restoring some or all of your data even after a hard drive failure. When disaster
strikes, consult this hack for recovery tips.

This hack uses error messages and examples produced by the ext2fs filesystem
consistency checking utility associated with the Linux ext2 and ext3
filesystems. You can use the cloning techniques in this hack to copy any Linux
disk, but the filesystem repair utilities will differ for other types of Linux
filesystems. For example, if you are using ReiserFS filesystems, see "Repair
and Recover ReiserFS Filesystems" [Hack #95] for details on using the special
commands provided by its filesystem consistency checking utility, reiserfsck.

10.7.1. Popular Disk Failure Modes

Disks generally go bad in one of three basic ways:

Hardware failure that prevents the disk heads from moving or seeking to various locations on
the disk. This is generally accompanied by a ticking noise whenever you attempt to mount or
otherwise access the filesystem, which is the sound of disk heads failing to launch or locate
themselves correctly.

Bad blocks on the disk that prevent the disk's partition table from being read. The data is
probably still there, but the operating system doesn't know how to find it.

Bad blocks on the disk that cause a filesystem on a partition of the disk to become unreadable,
unmountable, and uncorrectable.

The first of these problems can generally be solved only by shipping your disk off to a firm that
specializes in removing and replacing drive internals, using cool techniques for recovering data from
scratched or flaked platters, if necessary. The second of these problems is discussed in "Recover Lost
Partitions" [Hack #93]. This hack explains how to recover data that appears to be lost due to the

http://lib.ommolketab.ir

third of these problems: bad blocks that corrupt filesystems to the point where standard filesystem
repair utilities cannot correct them.

If your disk contains more than one partition and one of the partitions that it
contains goes bad, chances are that the rest of the disk will soon develop
problems. While you can use the techniques explained in this hack to clone and
repair a single partition, this hack focuses on cloning and recovering an entire
disk. If you clone and repair a disk containing multiple partitions, you will
hopefully find that some of the copied partitions have no damage. That's great,
but cloning and repairing the entire disk is still your safest option.

10.7.2. Attempt to Read Block from Filesystem Resulted in Short Read…

The title of this section is one of the more chilling messages you can see when attempting to mount a
filesystem that contained data the last time you booted your system. This error always means that
one or more blocks cannot be read from the disk that holds the filesystem you are attempting to
access. You generally see this message when the fsck utility is attempting to examine the filesystem,
or when the mount utility is attempting to mount it so that it is available to the system.

A short read error usually means that an inode in the filesystem points to a block on the filesystem
that can no longer be read, or that some of the metadata about your filesystem is located on a block
(or blocks) that cannot be read. On journaling filesystems, this error displays if any part of the
filesystem's journal is stored on a bad block. When a Linux system attempts to mount a partition
containing a journaling filesystem, its first step is to replay any pending transactions from the
filesystem's journal. If these cannot be readvoilà!short read.

10.7.3. Standard Filesystem Diagnostics and Repair

The first thing to try when you encounter any error accessing or mounting a filesystem is to check
the consistency of the filesystem. All native Linux filesystems provide consistency-checking
applications. Table 10-2 shows the filesystem consistency checking utilities for various popular Linux
filesystems.

Table 10-2. Different Linux filesystems and their associated repair
utilities

Filesystem type Diagnostic/repair utilities

ext2, ext3 e2fsck, fsck.ext2, fsck.ext3, tune2fs, debugfs

JFS jfs_fsck, fsck.jfs

reiserfs reiserfsck, fsck.reiserfs, debugresiserfs

XFS fsck.xfs, xfs_check

http://lib.ommolketab.ir

The consistency-checking utilities associated with each type of Linux filesystem have their own ins
and outs. In this section, I'll focus on trying to deal with short read errors from disks that contain
partitions in the ext2 or ext3 formats, which are the most popular Linux partition formats. The ext3
filesystem is a journaling version of the ext2 filesystem, and the two types of filesystems therefore
share most data structures and all repair/recovery utilities. If you are using another type of
filesystem, the general information about cloning and repairing disks in later sections of this hack still
applies.

If you're using an ext2 or ext3 filesystem, your first hint of trouble will come from a message like the
following, generally encountered when restarting your system. This warning comes from the e2fsck
application (or a symbolic link to it, such as fsck.ext2 or fsck.ext3):

 # e2fsck /dev/hda1
 e2fsck: Attempt to read block from filesystem resulted in short read

If you see this message, the first thing to try is to cross your fingers and hope that only the disk's
primary superblock is bad. The superblock contains basic information about the filesystem, including
primary pointers to the blocks that contain information about the filesystem (known as inodes).
Luckily, when you create an ext2 or ext3 filesystem, the filesystem-creation utility (mke2fs or a
symbolic link to it named mkfs.ext2 or mkfs.ext3) automatically creates backups copies of your disk's
superblock, just in case. You can tell the e2fsck program to check the filesystem using one of these
alternate superblocks by using its -b option, followed by the block number of one of these alternate
superblocks within the filesystem with which you're having problems. The first of these alternate
superblocks is usually created in block 8193, 16384, or 32768, depending on the size of your disk.
Assuming that this is a large disk, we'll try the last as an alternative:

 # e2fsck -b 32768 /dev/hda1
 e2fsck: Attempt to read block from filesystem resulted in short read while
 checking ext3 journal for /dev/hda1

You can determine the locations of the alternate superblocks on an unmounted
ext3 filesystem by running the mkfs.ext3 command with the n option, which
reports on what the mkfs utility would do but doesn't actually create a
filesystem or make any modifications. This may not work if your disk is
severely corrupted, but it's worth a shot. If it doesn't work, try 8192, 16384,
and 32768, in that order.

This gave us a bit more information. The problem doesn't appear to be with the filesystem's
superblocks, but instead is with the journal on this filesystem. Journaling filesystems minimize
system restart time by heightening filesystem consistency through the use of a journal [Hack #70].
All pending changes to the filesystem are first stored in the journal, and are then applied to the
filesystem by a daemon or internal scheduling algorithm. These transactions are applied atomically,

http://lib.ommolketab.ir

meaning that if they are not completely successful, no intermediate changes that are part of the
unsuccessful transactions are made. Because the filesystem is therefore always consistent, checking
the filesystem at boot time is much faster than it would be on a standard, non-journaling filesystem.

10.7.4. Removing an ext3 Filesystem's Journal

As mentioned previously, the ext3 and ext2 filesystems primarily differ only in whether the filesystem
contains a journal. This makes repairing most journaling-related problems on an ext3 filesystem
relatively easy, because the journal can simply be removed. Once the journal is removed, the
consistency of the filesystem in question can be checked as if the filesystem was a standard ext2
filesystem. If you're very lucky, and the bad blocks on your system were limited to the ext3 journal,
removing the journal (and subsequently fsck'ing the filesystem) may be all you need to do to be able
to mount the filesystem and access the data it contains.

Removing the journal from an ext3 filesystem is done using the tune2fs application, which is
designed to make a number of different types of changes to ext2 and ext3 filesystem data. The
tune2fs application provides the -O option to enable you to set or clear various filesystem features.
(See the manpage for tune2fs for complete information about available features.) To clear a
filesystem feature, you precede the name of that feature with the caret (^) character, which has the
classic Computer Science 101 meaning of "not." Therefore, to configure a specified existing filesystem
so that it thinks that it does not have a journal, you would use a command line like the following:

 # tune2fs -f -O ^has_journal /dev/hda1
 tune2fs 1.35 (28-Feb-2004)
 tune2fs: Attempt to read block from filesystem resulted in short read
 while reading journal inode

Darn. In this case, the inode that points to the journal seems to be bad, which means that the
journal can't be cleared. The next thing to try is the debugfs command, which is an ext2/ext3
filesystem debugger. This command provides an interactive interface that enables you to examine
and modify many of the characteristics of an ext2/ext3 filesystem, as well as providing an internal
features command that enables you to clear the journal. Let's try this command on our ailing
filesystem:

 # debugfs /dev/hda1
 debugfs 1.35 (28-Feb-2004)
 /dev/hda1: Can't read an inode bitmap while reading inode bitmap

 debugfs: features
 features: Filesystem not open
 debugfs: open /dev/hda1
 /dev/hda1: Can't read an inode bitmap while reading inode bitmap
 debugfs: quit

http://lib.ommolketab.ir

Alas, the debugfs command couldn't access a bitmap in the filesystem that tells it where to find
specific inodes (in this case, the journal's inode).

If you are able to clear the journal using the tune2fs or debugfs command, you
should retry the e2fsck application, using its -c option to have e2fsck check for
bad blocks in the filesystem and, if any are found, add them to the disk's bad
block list.

Since we can't fsck or fix the filesystem on the ailing disk, it's time to bring out the big hammer.

10.7.5. Cloning a Bad Disk Using ddrescue

If bad blocks are preventing you from reading or repairing a disk that contains data you want to
recover, the next thing to try is to create a copy of the disk using a raw disk copy utility. Unix/Linux
systems have always provided a simple utility for this purpose, known as dd, which copies one
file/partition/disk to another and provides commands that enable you to proceed even in the face of
various types of read errors. You must put another disk in your system that is at least the same size
or larger than the disk or partition that you are attempting to clone. If you copy a smaller disk to a
larger one, you'll obviously be wasting the extra space on the larger disk, but you can always recycle
the disk after you extract and save any data that you need from the clone of the bad disk.

To copy one disk to another using dd, telling it not to stop on errors, you would use a command like
the following:

 # dd if=/dev/hda of=/dev/hdb conv=noerror,sync

This command would copy the bad disk (here, /dev/hda) to a new disk (here, /dev/hdb), ignoring
errors encountered when reading (noerror) and padding the output with an appropriate number of
nulls when unreadable blocks are encountered (sync).

dd is a fine, classic Unix/Linux utility, but I find that it has a few shortcomings:

It is incredibly slow.

It does not display progress information, so it is silent until it is done.

It does not retry failed reads, which can reduce the amount of data that you can recover from a
bad disk.

Therefore, I prefer to use a utility called ddrescue, which is available from
http://www.gnu.org/software/ddrescue/ddrescue.html. This utility is not included in any Linux
distribution that I'm aware of, so you'll have to download the archive, unpack it, and build it from
source code. Version 0.9 was the latest version when this book was written.

The ddrescue command has a large number of options, as the following help message shows:

http://www.gnu.org/software/ddrescue/ddrescue.html
http://lib.ommolketab.ir

 # ./ddrescue -h
 GNU ddrescue - Data recovery tool.
 Copies data from one file or block device to another,
 trying hard to rescue data in case of read errors.

 Usage: ./ddrescue [options] infile outfile [logfile]
 Options:
 -h, --help display this help and exit
 -V, --version output version information and exit
 -B, --binary-prefixes show binary multipliers in numbers [default SI]
 -b, --block-size=<bytes> hardware block size of input device [512]
 -c, --cluster-size=<blocks> hardware blocks to copy at a time [128]
 -e, --max-errors=<n> maximum number of error areas allowed
 -i, --input-position=<pos> starting position in input file [0]
 -n, --no-split do not try to split error areas
 -o, --output-position=<pos> starting position in output file [ipos]
 -q, --quiet quiet operation
 -r, --max-retries=<n> exit after given retries (-1=infinity) [0]
 -s, --max-size=<bytes> maximum size of data to be copied
 -t, --truncate truncate output file
 -v, --verbose verbose operation
 Numbers may be followed by a multiplier: b = blocks, k = kB = 10^3 = 1000,
 Ki = KiB = 2^10 = 1024, M = 10^6, Mi = 2^20, G = 10^9, Gi = 2^30, etc…
 If logfile given and exists, try to resume the rescue described in it.
 If logfile given and rescue not finished, write to it the status on exit.
 Report bugs to bug-ddrescue@gnu.org #

As you can see, ddrescue provides many options for controlling where to start reading, where to start
writing, the amount of data to be read at a time, and so on. I generally only use the --max-retries
option, supplying -1 as an argument to tell ddrescue not to exit regardless of how many retries it
needs to make in order to read a problematic disk. Continuing with the previous example of cloning
the bad disk /dev/hda to a new disk, /dev/hdb, that is the same size or larger, I'd execute the
following command:

 # ddrescue --max-retries=-1 /dev/hda /dev/hdb
 Press Ctrl-C to interrupt
 rescued: 3729 MB, errsize: 278 kB, current rate: 26083 kB/s
 ipos: 3730 MB, errors: 6, average rate: 18742 kB/s
 opos: 3730 MB
 Copying data…

The display is constantly updated with the amount of data read from the first disk and written to the
second, including a count of the number of disk errors encountered when reading the disk specified
as the first argument.

http://lib.ommolketab.ir

Once ddrescue completes the disk copy, you should run e2fsck on the copy of the disk to eliminate
any filesystem errors introduced by the bad blocks on the original disk. Since there are guaranteed to
be a substantial number of errors and you're working from a copy, you can try running e2fsck with
the -y option, which tells e2fsck to answer yes to every question. However, depending on the types
of messages displayed by e2fsck, this may not always worksome questions are of the form Abort?
(y/n), to which you probably do not want to answer "yes."

Here's some sample e2fsck output from checking the consistency of a bad 250-GB disk containing a
single partition that I cloned using ddrescue:

 # fsck -y /dev/hdb1
 fsck 1.35 (28-Feb-2004)
 e2fsck 1.35 (28-Feb-2004)
 /dev/hdb1 contains a file system with errors, check forced.
 Pass 1: Checking inodes, blocks, and sizes
 Root inode is not a directory. Clear? yes

 Inode 12243597 is in use, but has dtime set. Fix? yes
 Inode 12243364 has compression flag set on filesystem without compression
 support. Clear? yes
 Inode 12243364 has illegal block(s). Clear? yes
 Illegal block #0 (1263225675) in inode 12243364. CLEARED.
 Illegal block #1 (1263225675) in inode 12243364. CLEARED.
 Illegal block #2 (1263225675) in inode 12243364. CLEARED.
 Illegal block #3 (1263225675) in inode 12243364. CLEARED.
 Illegal block #4 (1263225675) in inode 12243364. CLEARED.
 Illegal block #5 (1263225675) in inode 12243364. CLEARED.
 Illegal block #6 (1263225675) in inode 12243364. CLEARED.
 Illegal block #7 (1263225675) in inode 12243364. CLEARED.
 Illegal block #8 (1263225675) in inode 12243364. CLEARED.
 Illegal block #9 (1263225675) in inode 12243364. CLEARED.
 Illegal block #10 (1263225675) in inode 12243364. CLEARED.
 Too many illegal blocks in inode 12243364.
 Clear inode? yes

 Free inodes count wrong for group #1824 (16872, counted=16384).
 Fix? yes
 Free inodes count wrong for group #1846 (16748, counted=16384).
 Fix? yes

 Free inodes count wrong (30657608, counted=30635973).
 Fix? yes
 [much more output deleted]

Once e2fsck completes, you'll see the standard summary message:

 /dev/hdb1: ***** FILE SYSTEM WAS MODIFIED *****
 /dev/hdb1: 2107/30638080 files (16.9% non-contiguous), 12109308/61273910

http://lib.ommolketab.ir

 blocks

10.7.6. Checking the Restored Disk

At this point, you can mount the filesystem using the standard mount command and see how much
data was recovered. If you have any idea how full the original filesystem was, you will hopefully see
disk usage similar to that in the recovered filesystem. The differences in disk usage between the
clone of your old filesystem and the original filesystem will depend on how badly corrupted the
original filesystem was and how many files and directories had to be deleted due to inconsistency
during the filesystem consistency check.

Remember to check the lost+found directory at the root of the cloned drive
(i.e., in the directory where you mounted it), which is where fsck and its
friends place files and directories that could not be correctly linked into the
recovered filesystem. For more detailed information about identifying and
piecing things together from a lost+found directory, see "Piece Together Data
from the lost+found" [Hack #96].

You'll be pleasantly surprised at how much data you can successfully recover using this techniqueas
will your users, who will regard you as even more wizardly after a recovery effort such as this one.
Between this hack and your backups (you do backups, right?), even a disk failure may not cause
significant data loss.

10.7.7. See Also

"Recover Lost Partitions" [Hack #93]

"Repair and Recover ReiserFS Filesystems" [Hack #95]

"Piece Together Data from the lost+found" [Hack #96]

"Recover Deleted Files" [Hack #97]

http://lib.ommolketab.ir

Hack 95. Repair and Recover ReiserFS Filesystems

Different filesystems have different repair utilities and naming conventions for recovered
files. Here's how to repair a severely damaged ReiserFS filesystem.

"Recover Data from Crashed Disks" [Hack #94] explained how to use the ddrescue utility to clone a
disk or partition that you could not check the consistency of or read, and how to use the ext2/ext3
e2fsck utility to check and correct the consistency of the cloned disk or partition. This hack explains
how to repair and recover severely damaged ReiserFS filesystems.

The ReiserFS filesystem was the first journaling filesystem that was widely used on Linux systems.
Journaling filesystems such as ext3, JFS, ReiserFS, and XFS save pending disk updates as atomic
transactions in a special on-disk log, and then asynchronously commit those updates to disk,
guaranteeing filesystem consistency at any given point. Developed by a team led by Hans Reiser,
ReiserFS incorporates many of the cutting-edge concepts of the time into a stable journaling
filesystem that is the default filesystem type on Linux distributions such as SUSE. For more
information about the ReiserFS filesystem, see its home page at http://www.namesys.com.

ReiserFS filesystems have their own utility, reiserfsck, which provides special options for repairing
and recovering severely damaged ReiserFS filesystems. Like fsck, the reiserfsc utility uses a
lost+found directory, located at the root of the filesystem, to store undamaged files or directories
that could not be relinked into the filesystem correctly during the consistency check. However, unlike
with ext2/ext3 filesystems, this directory is not created when a ReiserFS filesystem is created; it is
only created when it is needed. If it has already been created by a previous reiserfsck consistency
check, the existing lost+found directory is used.

10.8.1. Correcting a Damaged ReiserFS Filesystem

Though ReiserFS filesystems guarantee filesystem consistency through journaling, hardware
problems can still prevent a ReiserFS filesystem from reading or correctly replaying its journal. Like
inconsistencies in any Linux filesystem that is automatically mounted at boot time, this will cause
your system's boot process to pause and drop you into a root shell (after you supply the root
password). The following is a sample problem report from the reiserfsck application:

 reiserfs_open: the reiserfs superblock cannot be found on /dev/hda2.

 Failed to open the filesystem.

 If the partition table has not been changed, and the partition is
 valid and it really contains a reiserfs partition, then the
 superblock is corrupted and you need to run this utility with

http://www.namesys.com
http://lib.ommolketab.ir

 --rebuild-sb.

When you see a problem such as this, check /var/log/messages for any reports of problems on the
specified partition or the disk that contains it. For example:

 Jun 17 06:48:20 64bit kernel: hdb: drive_cmd: status=0x51
 { DriveReady SeekComplete Error }
 Jun 17 06:48:20 64bit kernel: hdb: drive_cmd: error=0x04 { DriveStatusError }
 Jun 17 06:48:20 64bit kernel: ide: failed opcode was: 0xef

If you see drive errors such as these, clone the drive before it actually fails [Hack #94], and then
attempt to correct filesystem problems on the cloned disk. If you see no disk errors, it's safe to try to
resolve the problem on the original disk. Either way, you should then use the following steps to
correct ReiserFS consistency problems (I'll use /dev/hda2 as an example, but you should replace this
with the actual name of the partition with which you're having problems):

If the disk reported superblock problems, execute the reiserfsck -rebuild-sb partition

command to rebuild the superblock. You'll be prompted for the ReiserFS version (3.6 if you are
running a Linux kernel newer than 2.2.x), the block size (4096 by default, unless you specified
a custom block size when you created the filesystem), the location of the journal (an internal
default unless you changed it when you created the partition), and whether the problem
occurred as a result of trying to resize the partition. After reiserfsck performs its internal
calculations, you'll be prompted as to whether you should accept its suggestions. The answer to
this should always be "yes," unless you want to try resolving the problem manually using the
reiserfstune application, which would require substantial wizardry on your part. Here's an
example:

 # reiserfsck --rebuild-sb /dev/hda2
 reiserfsck 3.6.18 (2003 www.namesys.com)
 [verbose messages deleted]
 Do you want to run this program?[N/Yes] (note need to type Yes if you
 do): Yes
 reiserfs_open: the reiserfs superblock cannot be found on /dev/hda2.
 what the version of ReiserFS do you use[1-4]
 (1) 3.6.x
 (2) >=3.5.9 (introduced in the middle of 1999) (if you use linux 2.
 2, choose this one)
 (3) < 3.5.9 converted to new format (don't choose if unsure)
 (4) < 3.5.9 (this is very old format, don't choose if unsure)
 (X) exit
 1
 Enter block size [4096]: 4096
 No journal device was specified. (If journal is not available, re-run
 with --no-journal-available option specified).

1.

http://lib.ommolketab.ir

 Is journal default? (y/n)[y]: y
 Did you use resizer(y/n)[n]: n
 rebuild-sb: no uuid found, a new uuid was generated (9966c3a3-7962-4a9b
 b027-7ea921e567ac)

 Reiserfs super block in block 16 on 0x302 of format 3.6 with standard
 journal
 Count of blocks on the device: 2048272
 Number of bitmaps: 63
 Blocksize: 4096
 Free blocks (count of blocks - used [journal, bitmaps, data, reserved]
 blocks): 0
 Root block: 0
 Filesystem is NOT clean
 Tree height: 0
 Hash function used to sort names: not set
 Objectid map size 0, max 972
 Journal parameters:
 Device [0x0]
 Magic [0x0]
 Size 8193 blocks (including 1 for journal header) (first block 18)
 Max transaction length 1024 blocks
 Max batch size 900 blocks
 Max commit age 30
 Blocks reserved by journal: 0
 Fs state field: 0x1:
 some corruptions exist.
 sb_version: 2
 inode generation number: 0
 UUID: 9966c3a3-7962-4a9b-b027-7ea921e567ac
 LABEL:
 Set flags in SB:
 Is this ok ? (y/n)[n]: y
 The fs may still be unconsistent. Run reiserfsck --check.

Try running the reiserfscheck partition command, as suggested. If you're lucky, this will

resolve the problem, in which case you can skip the rest of the steps in this list and go to the
next section. However, if the partition contains additional errors, this command will fail with a
message like the one shown here:

 # reiserfsck --check /dev/hda2
 reiserfsck 3.6.18 (2003 www.namesys.com)
 [verbose messages deleted]
 Do you want to run this program?[N/Yes] (note need to type Yes if you
 do): Yes
 ###########
 reiserfsck --check started at Sun Jun 26 21:54:58 2005
 ###########
 Replaying journal..

2.

http://lib.ommolketab.ir

 Reiserfs journal '/dev/hda2' in blocks [18..8211]: 0 transactions
 replayed
 Checking internal tree..
 Bad root block 0. (--rebuild-tree did not complete)
 Aborted

If the reiserfsckcheck partition command fails, you need to rebuild the data structures that
organize the filesystem tree by using the reiserfsckrebuild-tree partition command, as

suggested. You will also want to specify the S option, which tells reiserfsck to scan the entire
disk. This forces reiserfsck to do a complete rebuild, as opposed to trying to minimize its data
structure updates. The following shows an example of using this command:

 # reiserfsck --rebuild-tree -S /dev/hda2
 reiserfsck 3.6.18 (2003 www.namesys.com)
 [verbose messages deleted]
 Do you want to run this program?[N/Yes] (note need to type Yes if you
 do): Yes
 Replaying journal..
 Reiserfs journal '/dev/hda2' in blocks [18..8211]: 0 transactions
 replayed
 ###########
 reiserfsck --rebuild-tree started at Sun Jun 26 21:56:29 2005
 ###########
 Pass 0:
 ####### Pass 0 #######
 The whole partition (2048272 blocks) is to be scanned
 Skipping 8273 blocks (super block, journal, bitmaps) 2039999 blocks will
 be read
 100% left 0, 9230 /sec
 383 directory entries were hashed with "r5" hash.
 Selected hash ("r5") does not match to the hash set in the super block
 (not set).
 "r5" hash is selected
 Flushing..finished
 Read blocks (but not data blocks) 2039999
 Leaves among those 2032
 Objectids found 390
 Pass 1 (will try to insert 2032 leaves):
 ####### Pass 1 #######
 Looking for allocable blocks .. finished
 100% left 0, 225 /sec
 Flushing..finished
 2032 leaves read
 1975 inserted
 57 not inserted
 non-unique pointers in indirect items (zeroed) 444
 ####### Pass 2 #######
 Pass 2:
 100% left 0, 0 /sec

3.

http://lib.ommolketab.ir

 Flushing..finished
 Leaves inserted item by item 57

 Pass 3 (semantic):
 ####### Pass 3 #########
 Flushing..finished
 Files found: 359
 Directories found: 25
 Broken (of files/symlinks/others): 2
 Pass 3a (looking for lost dir/files):
 ####### Pass 3a (lost+found pass) #########
 Looking for lost directories: done 1, 1 /sec
 Looking for lost files: Flushing..finished
 Objects without names 4
 Files linked to /lost+found 4
 Pass 4 - finished
 Deleted unreachable items 23
 Flushing..finished
 Syncing..finished
 ###########
 reiserfsck finished at Sun Jun 26 22:00:26 2005
 ###########

Pass 3a in this sample output shows that some files were linked into the
filesystem's lost+found directory. See the next section of this hack for
information about those files.

Once this command completes, try manually mounting the partition that you had problems with,
as in the following example:

 # mount -t reiserfs /dev/hda2 /mnt/restore

4.

If the mount completes successfully, check the lost+found directory for recovered files (their
naming conventions are explained in the next section):

 # ls -al /mnt/restore/lost+found
 total 179355
 drwx------ 2 root root 144 2005-06-26 20:44 .
 drwxr-xr-x 27 root root 1176 2005-06-26 20:24 ..
 -rw-r--r-- 1 root root 33745969 2005-06-26 20:24 350_355
 -rw-r--r-- 1 root root 27046983 2005-06-26 20:24 350_356
 -rw-r--r-- 1 root root 67049649 2005-06-26 20:24 350_357
 -rw-r--r-- 1 root root 55630200 2005-06-26 20:24 350_358

5.

http://lib.ommolketab.ir

If you experienced problems with one partition on a drive and saw disk errors in the system log
(/var/log/messages), you should also check the consistency of all other data partitions on the
disk using reiserfsck or the consistency checker that is appropriate for any other type of
filesystem you are using. You can list the partitions on the disk and their types using the fdiskl
command, as in the following example:

 # fdisk -l /dev/hda
 Disk /dev/hda: 60.0 GB, 60022480896 bytes

 255 heads, 63 sectors/track, 7297 cylinders
 Units = cylinders of 16065 * 512 = 8225280 bytes
 Device Boot Start End Blocks Id System
 /dev/hda1 * 1 13 104391 83 Linux
 /dev/hda2 14 1033 8193150 83 Linux
 /dev/hda3 1034 1098 522112+ 82 Linux swap / Solaris
 /dev/hda4 1099 7297 49793467+ f W95 Ext'd (LBA)
 /dev/hda5 1099 2118 8193118+ 83 Linux
 /dev/hda6 2119 3138 8193118+ 83 Linux
 /dev/hda7 3139 4158 8193118+ 83 Linux
 /dev/hda8 4159 5178 8193118+ 83 Linux
 /dev/hda9 5179 6198 8193118+ 83 Linux
 /dev/hda10 6199 7218 8193118+ 83 Linux

10.8.2. Identifying Files and Directories in the ReiserFS lost+found

To explore a filesystem's lost+found directory, you must first mount the filesystem, using the
standard Linux mount command, which you must execute as the root user. When mounting ReiserFS
filesystems, you must use the mount command's t reiserfs option to identify the filesystem as a
ReiserFS filesystem and therefore mount it appropriately. Once the filesystem is mounted, cd to the
lost+found directory at the root of that filesystem, which will be located in the directory where you
mounted the filesystem. If this directory contains any files or directories, you're in luckthere's more
data in your filesystem than just the standard files and directories it contains!

As with the lost+found directories used by other types of Linux filesystems, the entries in a ReiserFS
lost+found directory are files and directories whose parent inodes or directories were damaged and
discarded during the consistency check. You will have to do a bit of detective work to find out what
these are, but two factors work in your favor:

The names of the files and directories in the lost+found directory for ReiserFS filesystems are
based on the ReiserFS nodes associated with the lost files or directories and their parents and
are in the form NNN_NNN (parent_file/dir). Files and directories with the same numbers in the first

portions of their names are usually associated with each other.

The reiserfsck program simply re-links unconnected files and directories into the lost+found
directory, which preserves the creation, access, and modification timestamps associated with

http://lib.ommolketab.ir

those files and directories.

Aside from the different naming conventions used by the files in a ReiserFS lost+found directory, the
process of identifying related files and directories is the same as that described in "Piece Together
Data from the lost+found" [Hack #96]. See that hack for more information.

10.8.3. See Also

"Recover Lost Partitions" [Hack #93]

"Recover Data from Crashed Disks" [Hack #94]

"Recover Deleted Files" [Hack #97]

http://lib.ommolketab.ir

Hack 96. Piece Together Data from the lost+found

fsck and similar programs save lost or unlinked files and directories automatically. Here's
how to figure out what they are.

The fsck utility, created by Ted Kowalski and others at Bell Labs for ancient versions of Unix, removed
much of the black magic from checking and correcting the consistency of Unix filesystems. No one
wept many tears for the passing of fsck's predecessors, icheck and ncheck, since fsck is far smarter
and encapsulates a lot of knowledge about filesystem organization and repair. One of the coolest
things that fsck brought to Unix filesystems was the notion of the lost+found directory at the root of
a Unix filesystem. Though actually created by utilities associated with filesystem creation (newfs,
mkfs, mklost+found, and so on, depending on the filesystem and version of Unix or Linux that you're
using), the lost+found directory is there expressly for the use of filesystem repair utilities such as
fsck, e2fsck, xfs_repair, and so on.

The idea behind the lost+found directory was to preallocate a specific directory with a relatively large
number of directory entries, to be used as an electronic catcher's mitt for storing files and directories
whose actual locations in the filesystem can't be determined during a filesystem consistency check.
When a utility such as fsck performs a full filesystem consistency check, its primary goal is to verify
the integrity of the filesystem, which means that filesystem metadata such as lists of free and
allocated blocks, inodes, or extents (typically stored as bitmaps) are correct, all files and directories
in the filesystem are correctly linked into the filesystem, directory and file attributes are correct, and
so on. Unfortunately, preserving corrupted data is a secondary concern during filesystem consistency
checking and repair. Inconsistent files or directories are usually simply purged during a filesystem
consistency check, but the contents of directories that are purged may still themselves be consistent.
When this situation occurs during a filesystem consistency check, the contents of such directories are
automatically linked to existing (empty) entries in that filesystem's lost+found directory. On older
Unix systems, the hard links to these "recovered" files and directories were given names
corresponding to their inode numbers. On ext2 or ext3 Linux filesystems, the hard links to such files
and directories are given names beginning with a hash mark (#) and followed by the inode number.

When you encounter a severely corrupted filesystem or recover one as part of a repair or recovery
[Hack #94], you will almost always find files and directories in that filesystem's lost+found directory
after fsck'ing the filesystem. Here are some tips on how to figure out what they contain, what files
and directories they may have been, and how to put them back into the actual filesystem.

This hack focuses on piecing things together for an ext2 or ext3 filesystem, but
the procedure for identifying files and directories applies to other filesystems as
well. For some ReiserFS-specific tips, see "Repair and Recover ReiserFS
Filesystems" [Hack #95].

http://lib.ommolketab.ir

10.9.1. Exploring the lost+found

To explore a filesystem's lost+found directory, you must first mount the filesystem using the
standard Linux mount command, which you must execute as the root user. Once the filesystem is
mounted, cd to the lost+found directory at the root of that filesystem, which will be located in the
directory where you mounted the filesystem. If this directory contains any files or directories, you're
in luckthere's more data in your filesystem than just the standard files and directories it contains!

The entries in the lost+found directory are files and directories whose parent inodes or directories
were damaged and discarded during the consistency check. You will have to do a bit of detective
work to find out what these are, but two factors work in your favor:

The names of the files and directories in the lost+found directory for an ext2/ext3 filesystem
are based on the numbers of the inodes associated with the lost files or directories.

The e2fsck program simply re-links unconnected files and directories into the lost+found
directory, which preserves the creation, access, and modification timestamps associated with
those files and directories.

The first thing to do when exploring an ext2 or ext3 lost+found directory is to prepare an area on
another disk to which you can temporarily copy files and directories as you attempt to reconstruct
their organization. In this hack, I'll use the example /usr/restore, but you can use any location. As
you proceed with exploration and reconstruction, it is important not to modify the files in the
lost+found directory in any way other than by copying them elsewhere, or you may lose helpful
timestamp information.

Just to be safe, first redirect a long directory listing of the contents of the lost+found directory into a
file in your restore area, as in the following example:

 # cd /mnt/baddisk
 # lslt > /usr/restore/listing.txt

This listing is a precaution against accidental modification of those files. Here's a section of the
sample output from the lost+found directory from "Recover Lost Partitions" [Hack #93]:

 # ls -lt
 total 2116264
 drwx------3 root root 16384 2005-06-17 18:14 .
 drwxr-xr-x 6 root root 4096 2005-06-17 18:14 ..
 -rw-r--r--1 wvh users 48873341 2005-02-12 08:41 #11993089
 -rw-r--r--1 wvh users 26737789 2005-02-12 08:41 #11993090
 -rw-r--r--1 wvh users 27987253 2005-02-12 08:41 #11993091
 -rw-r--r--1 wvh users 24691821 2005-02-12 08:41 #11993092
 -rw-r--r--1 wvh users 25752913 2005-02-12 08:41 #11993093
 -rw-r--r--1 wvh users 15258373 2005-02-12 08:41 #11993094
 -rw-r--r--1 wvh users 16291065 2005-02-12 08:41 #11993095
 -rw-r--r--1 wvh users 25151049 2005-02-12 08:41 #11993096

http://lib.ommolketab.ir

 -rw-r--r--1 wvh users 27290257 2005-02-12 08:41 #11993097
 -rw-r--r--1 wvh users 31643 2005-02-12 08:41 #11993098
 -rw-r--r--1 wvh users 2751 2005-02-12 08:41 #11993099
 -rw-r--r--1 wvh users 2670 2005-02-12 08:41 #11993100
 -rw-r--r--1 wvh users 35270097 2005-01-28 05:29 #14811137
 -rw-r--r--1 wvh users 39914258 2005-01-28 05:29 #14811138
 -rw-r--r--1 wvh users 39709879 2005-01-28 05:30 #14811139
 -rw-r--r--1 wvh users 58648049 2005-01-28 05:30 #14811140
 -rw-r--r--1 wvh users 29533858 2005-01-28 05:30 #14811141
 -rw-r--r--1 wvh users 27692066 2005-01-28 05:30 #14811142
 -rw-r--r--1 wvh users 29308352 2005-01-28 05:30 #14811143
 -rw-r--r--1 wvh users 564 2005-01-28 05:30 #14811144
 -rw-r--r--1 wvh users 809 2005-01-28 05:30 #14811145
 -rw-r--r--1 wvh users 156 2005-01-28 05:30 #14811146
 drwxr-xr-x 2 lmp users 4096 2005-01-22 21:46 #30507055
 drwxr-xr-x 2 lmp users 4096 2005-01-22 21:45 #30507031
 -rw-r--r--1 wvh users 29523256 2005-01-18 05:21 #3063821
 [much more output removed]

As you can see from this example, the files and directories in my lost+found directory are nicely
grouped by date and inode number, and many of them were last modified on the same date. This is
typical of partitions that are essentially written to once and then used as a source of data. In this
case, the partition I lost was a repository for an online music collection for my server's users,
consisting of audio files and associated files such as playlists and recording descriptions, so I have a
good idea of how the files and directories were originally organized on the disk that went bad. The
disk consisted of directories named by artist and date, each of which contained the recordings and
associated files for the artist's performance on that date.

10.9.2. Recovering Directories from the lost+found

The first thing to do when exploring and recovering the contents of a lost+found directory is to copy
out any directories that already contain related sets of files. You can then explore the contents of
these directories at your leisure, putting the recovered files back into a live filesystem on your
machine.

As you can see from the previous code listing, my lost+found directory contains two directories,
#30507055 and #30507031. Listing both of these shows the following:

 # ls -l \#30507055 \#30507031
 #30507031:
 total 0

 #30507055:
 total 222380

 -rw-r--r-- 1 lmp users 915 2005-01-22 21:45 monroe1967-05-15d2.ffp.txt

http://lib.ommolketab.ir

 -rw-r--r-- 1 lmp users 11694266 2005-01-22 21:45 monroe1967-05-15d2t01.flac
 -rw-r--r-- 1 lmp users 14046056 2005-01-22 21:45 monroe1967-05-15d2t02.flac
 -rw-r--r-- 1 lmp users 21405678 2005-01-22 21:45 monroe1967-05-15d2t03.flac
 -rw-r--r-- 1 lmp users 10724376 2005-01-22 21:45 monroe1967-05-15d2t04.flac
 -rw-r--r-- 1 lmp users 19590818 2005-01-22 21:45 monroe1967-05-15d2t05.flac
 -rw-r--r-- 1 lmp users 13981201 2005-01-22 21:45 monroe1967-05-15d2t06.flac
 -rw-r--r-- 1 lmp users 13576225 2005-01-22 21:45 monroe1967-05-15d2t07.flac
 -rw-1r--r-- 1 lmp users 12057959 2005-01-22 21:45 monroe1967-05-15d2t08.flac
 -rw-r--r-- 1 lmp users 15432553 2005-01-22 21:45 monroe1967-05-15d2t09.flac
 -rw-r--r-- 1 lmp users 19475592 2005-01-22 21:46 monroe1967-05-15d2t10.flac
 -rw-r--r-- 1 lmp users 13427860 2005-01-22 21:46 monroe1967-05-15d2t11.flac
 -rw-r--r-- 1 lmp users 16973390 2005-01-22 21:46 monroe1967-05-15d2t12.flac
 -rw-r--r-- 1 lmp users 12077969 2005-01-22 21:46 monroe1967-05-15d2t13.flac
 -rw-r--r-- 1 lmp users 26182260 2005-01-22 21:46 monroe1967-05-15d2t14.flac
 -rw-r--r-- 1 lmp users 6718719 2005-01-22 21:46 monroe1967-05-15d2t15.flac
 -rw-r--r-- 1 lmp users 405 2005-01-22 21:46 playlist.m3u

The directory #30507031 is empty and can safely be ignored, but the directory #30507055 seems to
contain an intact collection of related files. Based on the filenames, I know that this is a live
performance by the bluegrass artist Bill Monroe from May 15, 1967, and that it was created by the
user lmp. (By the way, you will rarely be this lucky!) To preserve this directory, I'll recursively copy it
to my restore area, giving it an appropriate name:

 # cprp \#30507055 /usr/restore/monroe1967-05-15

Note the use of the cp command's p option, to preserve user and group ownership and timestamps.

If I can't easily identify the contents of a directory in the lost+found, I generally copy it to my restore
area, giving it a name based on the directory's timestamp. The inode number in the old filesystem is
meaningless after a copy, but a visual clue for knowing when the directory was last updated may be
useful when trying to figure out what it contains, especially if a project or system user or group owns
the directory.

10.9.3. Recovering Recognizable Groups of Files

When recovering files that are essentially preorganized by their creation dates, I usually create
recovery directories in my restore area based on the timestamps and use this as a preliminary
organizer when copying the files there. The previous code listing shows two groups of files, one
created on Feb12, 2005 (2005-02-12) and another created on January 28, 2005 (2005-01-28). I
would thus create two corresponding directories and use wildcards to copy the associated files into
those directories, as in the following example:

 # mkdir /usr/restore/2005-02-12 /usr/restore/2005-01-28
 # cpp \#11993??? /usr/restore/2005-02-12

http://lib.ommolketab.ir

 # cpp \#148111?? /usr/restore/2005-01-28

Next, let's try to figure out what each of these directories actually contains. Change directory to one
of the restore directories and examine its contents using the file command:

 # cd /usr/restore/2005-02-12
 # file *
 #11993089: data
 #11993090: data
 #11993091: data
 #11993092: data
 #11993093: data
 #11993094: data
 #11993095: data
 #11993096: data
 #11993097: data
 #11993098: JPEG image data, JFIF standard 1.01
 #11993099: ASCII English text, with CRLF line terminators
 #11993100: ASCII text, with CRLF line terminators
 #11993101: ASCII English text

Looking at the text files in any directory usually provides some information about the contents of that
directory. Let's use the head command to examine the first 10 lines of each of the text files:

 $ head *99 *100 *101
 ==> #11993099 <==
 EAC extraction logfile from 8. February 2005, 23:22 for CD
 Cheap Trick 1981-01-22d1t / Unknown Title

 Used drive : HP DVD Writer 300n Adapter: 1 ID: 1
 Read mode : Burst
 Read offset correction : 0
 Overread into Lead-In and Lead-Out : No

 Used output format : Internal WAV Routines
 44.100 Hz; 16 Bit; Stereo

 ==> #11993100 <==
 EAC extraction logfile from 8. February 2005, 23:49 for CD
 Cheap Trick 1981-01-22d2t / Unknown Title

 Used drive : HP DVD Writer 300n Adapter: 1 ID: 1
 Read mode : Burst
 Read offset correction : 0
 Overread into Lead-In and Lead-Out : No

http://lib.ommolketab.ir

 Used output format : Internal WAV Routines
 44.100 Hz; 16 Bit; Stereo

 ==> #11993101 <==
 1981-01-22d1t01 Stop This Game.shn
 1981-01-22d1t02 Go For The Throat (Use Your Own Imagination).shn
 1981-01-22d1t03 Hello There.shn
 1981-01-22d1t04 I Want You To Want Me.shn
 1981-01-22d1t05 I Love You Honey But I Hate Your Friends.shn
 1981-01-22d1t06 Clock Strikes Ten.shn
 1981-01-22d1t07 Can't Stop It But I'm Gonna Try.shn
 1981-01-22d1t08 Baby Loves To Rock And Roll.shn
 1981-01-22d1t09 Gonna Raise Hell.shn
 1981-01-22d2t01 Heaven Tonight.shn

This tells me that the first two files contain logfiles produced when ripping audio from the CDs that
originally contained these live recordings, while the last (#11993101) contains a playlist for the files
in the original directory. Let's see if looking at more of one of the logfiles can tell us more about the
files in this directory:

 $ head -20 *99
 EAC extraction logfile from 8. February 2005, 23:22 for CD
 Cheap Trick 1981-01-22d1t / Unknown Title

 Used drive : HP DVD Writer 300n Adapter: 1 ID: 1
 Read mode : Burst
 Read offset correction : 0
 Overread into Lead-In and Lead-Out : No

 Used output format : Internal WAV Routines
 44.100 Hz; 16 Bit; Stereo

 Other options :
 Fill up missing offset samples with silence : Yes
 Delete leading and trailing silent blocks : No
 Installed external ASPI interface

 Track 1
 Filename G:\Cheap Trick\Cheap Trick 1981-01-22 Dallas, Tx(Reunion Arena)\
 1981-01-22d1t01 Stop This Game.wav

Hooray! This appears to be a live concert by the band Cheap Trick from January 22, 1981, recorded
in Dallas. Let's verify that one of the files reported as data actually contains consistent data that is in
the lossless Shorten (SHN) format, as listed in the playlist file. We can do this using the shninfo
command, which is part of the Linux Shorten command suite:

http://lib.ommolketab.ir

 # shninfo *11993089
 --

 file name: #11993089
 handled by: shn format module
 length: 8:19.10
 WAVE format: 0x0001 (Microsoft PCM)
 channels: 2
 bits/sample: 16
 samples/sec: 44100
 average bytes/sec: 176400
 rate (calculated): 176400
 block align: 4
 header size: 44 bytes
 data size: 88047120 bytes
 chunk size: 88047156 bytes
 total size (chunk size + 8): 88047164 bytes
 actual file size: 48873341 (compressed)
 compression ratio: 0.5551
 CD-quality properties:
 CD quality: yes
 cut on sector boundary: yes
 long enough to be burned: yes
 WAVE properties:
 non-canonical header: no
 extra RIFF chunks: no
 Possible problems:
 inconsistent header: no
 file probably truncated: n/a
 junk appended to file: n/a
 Extra shn-specific info:
 seekable: no

Another success! Unfortunately, there's no way to verify which of the recovered files is which of the
files listed in the playlist, but let's see if we got all of the Shorten files that were in the original
directory. We can do this in a number of ways, but the easiest is to count the number of lines in the
playlist file and compare this number against the number of files in the recovered directory:

 $ wc -l *101
 18 #11993101
 $
 $ ls -l | wc -l
 14

Unfortunately, this shows that the playlist file contains 18 entries, while there are only 14 files in the
recovered directory, 3 of which are text files and 1 of which is a JPEG file. This means that we only
recovered 10 of the files containing music in the original directory: the others apparently were

http://lib.ommolketab.ir

located on disk blocks that had gone bad on the original disk or were otherwise inconsistent. Oh
well10 is definitely better than 0!

To complete the recovery process for this directory, I would rename the directory with something
more meaningful than its creation date (perhaps cheaptrick1981-22-01_dallas) and then play the
Shorten files one by one, renaming them once I recognized them.

10.9.4. Examining Individual Files

The end of the listing of our lost+found directory at the beginning of this hack showed one file,
#3063821, that was not accompanied by files with similar inode numbers or timestamps. This means
either that the file is the only one that could be recovered from a damaged directory, or that the file
was located at the top level of the recovered filesystem but could not be relinked into the filesystem
correctly.

Examining individual files in a lost+found directory is similar to examining a group of files. First, use
the file command to try to figure out the type of data contained in the file, as in the following
example:

 # file \#3063821
 #3063821: FLAC audio bitstream data, 16 bit, stereo, 44.1 kHz, 11665332
 samples

Depending on the type of data contained in the file, you can use utilities associated with that file type
to attempt to get more information about its contents. For text files, you can simply use utilities such
as cat or more. For binary files in a nonspecific format, you can either make an educated guess based
on the type of files that you know were stored on the filesystem, or you can use generic utilities such
as strings to search for text strings in the binary file that may give you a clue to its identity. In this
case, the file is a lossless FLAC audio file, so we can use the metaflac command's list and block-
number options to examine the comments in the FLAC header that are stored in block number 2, and
see if we can get any useful information:

 # metaflac --list \#3063821block-number=2
 METADATA block #2
 type: 4 (VORBIS_COMMENT)
 is last: false
 length: 254
 vendor string: reference libFLAC 1.1.0 20030126
 comments: 8
 comment[0]: REPLAYGAIN_TRACK_PEAK=0.64492798
 comment[1]: REPLAYGAIN_TRACK_GAIN=-5.84 dB
 comment[2]: REPLAYGAIN_ALBUM_PEAK=0.98718262
 comment[3]: REPLAYGAIN_ALBUM_GAIN=-4.77 dB

 comment[4]: ALBUM=Old Waldorf SF
 comment[5]: ARTIST=Pere Ubu
 comment[6]: DATE=79

http://lib.ommolketab.ir

 comment[7]: GENRE=Avantgarde

I am indeed lucky! The creator of this file was thoughtful enough to include comments, which identify
this file as a recording by Pere Ubu, created in 1979 at the Old Waldorf in San Francisco.
Unfortunately, the title isn't listed, but I can now play the file using flac123 in the hopes of identifying
it so that I can copy it to the /usr/restore area with a meaningful filename.

10.9.5. Summary

The examples provided in this hack show a variety ways of examining and reorganizing files that
were saved by the e2fsck program in a filesystem's lost+found directory. I was quite lucky in these
examples (modulo the fact that I had filesystem consistency problems in the first place), since the
disk that had problems contained a large number of sets of files that were for the most part
organized in a specific way. However, you can use these same techniques to examine the contents of
any lost+found directoryand even if you've lost many files and directories, remember that recovering
anything is always much better than losing everything.

10.9.6. See Also

"Recover Lost Partitions" [Hack #93]

"Recover Data from Crashed Disks" [Hack #94]

"Recover Deleted Files" [Hack #97]

http://lib.ommolketab.ir

Hack 97. Recover Deleted Files

Deleting a file doesn't make it lost forever. Here's a quick method for finding deleted text
files.

Sooner or later everyone has an "oh no second" when they realize that they've just deleted a critical
file. The best feature of old Windows and DOS boxes was that they used a simplistic File Allocation
Table (FAT) filesystem that made it easy to recover deleted files. Files could easily be recovered
because they weren't immediately deleted: deleting a file just marked its entries as unused in the file
allocation table; the blocks that contained the file data might not be reused until much later. Zillions
of utilities were available to undelete files by reactivating their FAT entries.

Linux filesystems are significantly more sophisticated than FAT filesystems, which has the
unfortunate side effect of complicating the recovery of deleted files. When you delete a file, the
blocks associated with that file are immediately returned to the free list, which is a bitmap maintained
by each filesystem that shows blocks that are available for allocation to new or expanded files.
Luckily, the fact that any Linux/Unix device can be accessed as a stream of characters gives you the
chance to recover deleted files using standard Linux/Unix utilitiesbut only if you act quickly!

This hack focuses on explaining how to recover lost text files from partitions on your hard drive. Text
files are the easiest type of file to recover, because you can use standard Linux/Unix utilities to
search for sequences of characters that you know appear in the deleted files. In theory, you can
attempt to undelete any file from a Linux partition, but you have to be able to uniquely describe what
you're looking for.

10.10.1. Preventing Additional Changes to the Partition

As quickly as possible after discovery that a critical file has been deleted, you should unmount the
partition on which the file was located. (If you don't think anyone is actually using that partition but
you can't unmount it, read "Find Out Why You Can't Unmount a Partition" [Hack #92].)

In some cases, such as partitions that are actively being used by the system or are shared by
multiple users, this will require that you take the system down to single-user mode and unmount the
partition at that point. The easiest way to do this is cleanly is with the shutdown command, as in the
following example:

 # shutdown now "Going to single-user mode to search for deleted files…"

Of course, it would be kindest to your users to give them more warning, but your chances of

http://lib.ommolketab.ir

recovering the deleted file decrease with every second that the system is running and users or the
system can create files on the partition that holds your deleted file. Once the system is in single-user
mode, unmount the partition containing the deleted file as quickly as possible. You're now ready to
begin your detective work.

10.10.2. Looking for the Missing Data

The standard Linux/Unix grep utility is your best friend when searching for a deleted text file on an
existing disk partition. After figuring out a text string that you know is in the deleted file, execute a
command like the following, and then go out for a cup of coffee while it runsdepending on the size of
the partition you're searching, this can take quite a while:

 # grepaB10A100i fibonacci /dev/hda2 > fibonacci.out

In this case, I'm searching for the string "fibonacci" in the filesystem on /dev/hda2, because I
accidentally deleted some sample code that I was writing for another book. As in this example, you'll
want to redirect the output of the grep command into a file, because it will be easier to edit. Also,
because of the amount of preceding and trailing data that is actually incredibly long lines of binary
characters, you will need to have several megabytes free on the partition where you are running the
command.

The options I've used in my grep command are the following:

-a treats the device that you're searching as a series of ASCII characters.
-BN Saves N lines before the line that matches the string that you're looking for. In this case,

I'm saving 10 lines before the string "fibonacci."
-AN Saves N lines after the line that matches the string you're looking for. In this case, I'm

saving 100 lines after the string "fibonacci" (this was a short code example).
-i Searches for the target string without regard to whether any of the characters in the string
are in upper- or lowercase.

After the command finishes, start your favorite text editor to edit the output file (fibonacci.out, in our
example) to remove preceding and trailing data that you don't want, as shown in Figure 10-3. Some
such data will almost certainly be present.

Figure 10-3. Recovered file shown in emacs

http://lib.ommolketab.ir

When the time it takes to edit and clean up the recovered file is weighed against the time needed to
recreate the deleted file, you'll usually find it's worth the effort to attempt recovery. Once you're
satisfied that you have recovered your file, you can remount the partition where it was formerly
located and make the system available to users againand be more careful next time!

10.10.3. See Also

"Recover Lost Partitions" [Hack #93]

"Recover Data from Crashed Disks" [Hack #94]

"Repair and Recover ReiserFS Filesystems" [Hack #95]

"Recover Lost Files and Perform Forensic Analysis" [Hack #100]

http://lib.ommolketab.ir

Hack 98. Permanently Delete Files

Deleting a file typically just makes it harder to find, not impossible. Using a simple utility
to write over files that you delete can help ensure that your data is gone for good.

We all store personal, secret, or potentially embarrassing data on our machines at one time or
another. Whether it's last year's tax returns, instructions to your bank in the Cayman Islands, or a
risque picture of your husband or wife, everybody has some data that they don't want anyone else to
see, and no one keeps their computers forever. What do you do with your old machines? In business
environments, they often simply get passed down the user food chain until they die. Are they wiped
clean before each transfer? Rarely.

As we all know from the various Windows utilities that have been around for years to enable you to
recover files (and from "Recover Deleted Files" [Hack #97] and "Recover Lost Files and Perform
Forensic Analysis" [Hack #100]), just because you've deleted a file doesn't mean that it's actually
gone from your disk. There's a good chance that the data blocks associated with any deleted file are
still present on your disk for quite a while, and could be recovered by someone who was desperate or
persistent enough.

You probably won't be surprised to hear that Linux, the OS of a thousand utilities, provides an out-of-
the-box solution for truly deleting files. To recover a deleted file, you must reassemble the file, either
by walking through the free list or by looking for the data that the file contained. The Linux shred
utility makes files unrecoverable by overwriting all of their data blocks with random data patterns,
meaning that even if you can piece a deleted file back together, its contents will be random garbage.
The shred utility is part of the Linux coreutils package (the same package that brings you popular
utilities such as ls, pwd, cp, and mv, which means that it is found at /usr/bin/shred on almost every
desktop Linux distribution.

10.11.1. Using the shred Utility

Using the shred utility to overwrite the contents of an existing file with random junk is easy. As an
example, my online banking service enables me to download information about banking transactions
in Quicken Interchange Format (QIF), which gnucash can import into my personal copy of my
banking records. A snippet of one of these files looks like the following:

 !Type:Bank
 D10/08/2004
 PWIRE TRANSFER FEE
 N
 T-11.00

http://lib.ommolketab.ir

 ^
 D10/07/2004
 PPAYPAL INST XFER
 N
 T-217.20
 ^
 D10/07/2004
 PNAT CITY ATM CASH WITHDRAWAL
 N
 T-240.00
 ^
 D10/06/2004
 PGIANT EAGLE IN, VERONA,PA
 N
 T-11.76

Assuming that I have a copy of one of these files (named, say, EXPORT-11-oct-2004.QIF) on my
laptop from work, I'd really like to make sure that this data is wiped when I trade up to a newer
machine and my old laptop goes to someone else. Rather than actually wiping the entire hard drive
[Hack #99], I could simply use shred to overwrite and randomize this file, using the following
command:

 $ shred -n 3 -vz EXPORT-11-oct-2004.QIF
 The output from this command looks like the following:
 shred: EXPORT-11-oct-2004.QIF: pass 1/4 (random)…
 shred: EXPORT-11-oct-2004.QIF: pass 2/4 (random)…
 shred: EXPORT-11-oct-2004.QIF: pass 3/4 (random)…
 shred: EXPORT-11-oct-2004.QIF: pass 4/4 (000000)…

The options I've passed to the shred command cause it to overwrite the file with three passes of
random data (-n 3), be verbose (v), and write a final pass of zeros over the file after completing the
random overwrite passes (z). If you don't specify the number of overwrite passes to perform, shred's
default behavior is to overwrite the file 25 times, which should be random enough for just about
anyone.

Once this command has completed, let's look at the file again:

 $ cat -v EXPORT-11-oct-2004.QIF | more
 ^@
 ^@
 ^@
 ^@
 [much more similar data deleted]

http://lib.ommolketab.ir

As you can see, the contents of this file are gone.

In most cases, when shredding a file you would also use the -u option to tell shred to automatically
truncate and delete the file after overwriting it, but I didn't use that option here so that I could
demonstrate that the contents of the file are actually gone. One very cool thing about using shred is
that it overwrites the file in place, so you're pretty much guaranteed that the contents of the file are
irretrievably gone. Gee, I hope I imported that file into gnucash, now that I think about it….

10.11.2. See Also

man shred

[Hack #99]

http://lib.ommolketab.ir

Hack 99. Permanently Erase Hard Disks

Before discarding old hardware, make sure you're not accidentally giving away
proprietary or personal data.

Most government agenciescertainly the ones with three-letter nameshave extremely stringent
requirements for wiping hard drives before they discard old computing equipment. These
requirements usually also extend to any contractors who have done work for them. Some security
requirements are so stringent that disks must be destroyed, rather than simply erased, before the
hardware can be discarded. The quickest and easiest way to do this (and the mechanism preferred by
more militant sysadmins) is to take the disks in question to the local shooting gallery (guns, that is)
and put a few rounds through them. For information on how to totally disable a disk using this
mechanism, check out a recent copy of Field & Stream. However, if you prefer to erase a disk using
software, read on.

Lest you think that finding embarrassing data on hard drives is simply
anecdotal, I have some good experience with this myself. I collect old
workstations, and I once bought an ancient, still-working Tektronix Unix
system that I managed to hack into since I didn't have the install media for
uTek. Once in, I did a bit of exploring and found that the system had
apparently last been used as a node in a Bondage and Domination BBS. Now
that was some interesting (and scary) mail!

10.12.1. Using shred to Wipe Hard Drives

"Permanently Delete Files" [Hack #98] introduced the shred utility, which is designed to overwrite
the contents of specified files on a Linux system with random data. Thanks to the approach that
Linux and Unix take to devices ("everything is a file"), you can also use shred to wipe a hard drive by
specifying the base name of the drive as the name of the target file, as in the following example:

 # shred -n 3 -vz /dev/> drive-name

On most Linux systems, the first IDE hard drive is /dev/hda, the first SCSI disk is /dev/sda, the
second IDE disk is /dev/hdb, and so on. The command to wipe a primary IDE disk would therefore
be:

http://lib.ommolketab.ir

 # shred -n 3 -vz /dev/hda

If you're using shred to randomize the contents of one or more hard drives, you'll have to repeat
your favorite shred command, specifying each drive as an argument. You can also let shred do its
default 25 passes by excluding the -n 3 option on the command line, but this will take a really long
time when wiping an entire hard drive. (If you have a very large disk, shred could conceivably still be
running when the next edition of this book comes out!)

You'll have to be logged in as root in order to access the device directly, and you must also have
booted from a disk other than the one you want to wipe. Because shred is part of the standard
coreutils package, it is found on most rescue disks, in CD-based Linux distributions such as Knoppix,
and in the Rescue Mode boot option for most Linux distributions.

10.12.2. Using Darik's Boot and Nuke

Another option when you want to completely erase a hard drive is to use a specialized boot floppy or
CD that's designed for only that purpose. Darik's Boot and Nuke (DBAN) application
(http://dban.sourceforge.net) is delivered in exactly that fashion and also supports an automated
search-and-destroy mode that seeks out every hard drive in your system and does an extremely
thorough job of overwriting the disks with random data. Because DBAN is delivered as a boot disk
and is designed to wipe disks (and only wipe disks), you should consider it to be the sysadmin's
equivalent of a loaded gun. Be careful! Luckily, booting a system from a DBAN boot floppy or CD
displays the screen shown in Figure 10-4, rather than simply beginning its search and destroy
mission.

Figure 10-4. The DBAN boot screen

DBAN is provided as part of the System Rescue CD (http://www.sysresccd.org), but it must be

http://dban.sourceforge.net
http://www.sysresccd.org
http://lib.ommolketab.ir

started manually in that case. DBAN supports wiping IDE, SCSI, and SATA drives, and it even
provides a variety of approaches to wiping your disks, as shown in Figure 10-5. To see this screen in
DBAN, press F3 at the boot prompt. To select a specific wipe method, enter its name and press
Return.

Figure 10-5. Wipe options in DBAN

DBAN is widely used by government agencies with stringent security requirements, such as the
Department of Energy and the National Nuclear Security Agency. For once, "good enough for
government work" is a positive comment! DBAN can be your software hammer if you want to
permanently erase a drive without physically beating it to death or shooting it. No software solution
can beat physical destruction, and truly desperate people might still be able to recover something
from a disk that was wiped with DBAN, but it's unlikely that the eBay purchaser of one of your old
systems is going to spend the five- or six-figure dollar amount required to do so.

10.12.3. Summary

Wiping disks is always a good idea when you take a machine out of circulation, sell it, or recycle it.
Make sure you do backups of anything you want to save first, of course! DBAN is my preferred
solution for wiping disks, but make sure that you label the CD carefully and then hide it just in case
some of your more curious offspring or friends decide to use it as a boot disk and press Return at its
boot prompt. Tools such as DBAN and shred will do a great job of making sure that only the most
compulsive and wealthy randoms could even hope to resurrect any potentially embarrassing data
from your old systems.

10.12.4. See Also

http://www.sysresccd.org

http://www.sysresccd.org
http://lib.ommolketab.ir

http://dban.sourceforge.net

DBAN FAQ: http://dban.sourceforge.net/faq/index.html

"Permanently Delete Files" [Hack #98]

http://dban.sourceforge.net
http://dban.sourceforge.net/faq/index.html
http://lib.ommolketab.ir

Hack 100. Recover Lost Files and Perform Forensic
Analysis

The Sleuth Kit and Autopsy are designed for computer forensics, but they also provide a
great suite of tools for helping you recover lost data .

Most people know forensicsthe application of domain knowledge to legal questionsbest from television
shows like Quincy (for old people and TV Land fans) or CSI (for younger people). Computer
Forensics, a science that's growing for a variety of reasons, tries to answer questions like "what the
heck happened to my system?" "who hacked in here and what did they change/" and "how did my
accountant get all my corporate funds into his Swiss bank account without my noticing?" Even if you
don't have one of these specific problems, it's a downright interesting field. What self-respecting
computer geek wouldn't like the opportunity to legally burst in somewhere, seize or clone disk drives,
do his best to hack in and examine them, and get paid for it, too?

All fun aside, forensic analysis of computer data can save your company's data or bacon (or perhaps
both) in court, as well as helping law enforcement officials track down the crackers and thieves who
give real hackers a bad name. This hack provides an overview of The Sleuth Kit, the best-known
open source software package for computer forensics, and Autopsy, which provides a web-based,
graphical frontend to The Sleuth Kit and integrated support for other security and consistency-
checking software. The Sleuth Kit (TSK) is based on an earlier collection of forensics tools known as
The Coroner's Toolkit (TCT), which is available at http://www.porcupine.org/forensics/tct.html . The
Sleuth Kit runs on Linux/Unix systems and can recover files and analyze data from NTFS, FAT, ext2,
ext3 , UFS1, and UFS2 filesystems.

Walking you through a complete forensic recovery session would require its own book, so the HOWTO
portions of this hack will simply explain how to build and install both packages and how to use some
of the tools in The Sleuth Kit to recover lost files more easily than you can with the mechanisms
discussed in "Recover Deleted Files" [Hack #97] .

10.13.1. Building and Installing The Sleuth Kit

The Sleuth Kit and the associated Autopsy package are not provided by default with most Linux
distributions, but they're easy enough to build and install. If you're building The Sleuth Kit and
Autopsy yourself for installation on your primary system, you can download the latest version of The
Sleuth Kit from http://www.sleuthkit.org/sleuthkit/download.php and the latest version of Autopsy
from http://www.sleuthkit.org/autopsy/download.php .

http://lib.ommolketab.ir

One of the key concepts of forensic software is, of course, that you need to be
able to run it from a safe, secure environment in order to analyze disks (or disk
images) from other systems, so one of the best ways to get and use The Sleuth
Kit and Autopsy is to get a bootable CD with these packages installed. My
personal favorites are the Penguin Sleuth Kit
(http://www.linuxforensics.com/downloads.html), the F.I.R.E. (Forensic and
Incident Response Environment) CD (http://fire.dmzs.com), and, for BSD
fans, the Snarl Bootable Forensics CD (https://sourceforge.net/projects/snarl/
). Each of the CDs includes The Sleuth Kit and a variety of other forensics-
related software.

You should always build and install The Sleuth Kit before building and installing Autopsy, because
Autopsy's configuration process will ask you for the location of the installed TSK. The downloadable
TSK source is provided as a gzipped tar file. To extract its contents and build the software (using
Version 2.02 as an example, which was the current version when this book was written), do the
following:

 $ tar zxvf sleuthkit-2.02.tar.gz
 $ cd sleuthkit-2.02
 $ make

The Sleuth Kit does not offer an install option, so I generally build it in /usr/local/src and then use
sudo or become root to create a symbolic link from /usr/local/sleuthkit to /usr/local/src/sleuthkit-
version . I then add /usr/local/sleuthkit/bin to my path, and I'm good to go.

10.13.2. Building and Installing Autopsy and Related Software

The source code for Autopsy is also provided as a downloadable, gzipped tar file. You really only need
to install Autopsy if you're interested in forensic analysis. If you're only interested in recovering files
using The Sleuth Kit, that's most easily done from the command line (as of the time this book was
writtenthings may have changed by the time you read this).

As mentioned earlier, Autopsy also integrates some other forensics software with the core capabilities
provided by The Sleuth Kitnamely, a Reference Data Set (RDS) consisting of the digital signatures of
known, traceable software applications, which includes hash values for many common hacking scripts
and can thus be very useful when trying to determine how a system was hacked. These digital
signatures are available from the National Software Reference Library (NSRL), a National Institute of
Science and Technology (NIST) project, at the download page
http://www.nsrl.nist.gov/Downloads.htm . This page provides ISO images of four CDs, each of which
provides signatures for a class of software:

ISO 1 contains the signatures of non-English software.

ISO 2 contains the signatures of common operating systems.

ISO 3 contains the signatures of a huge amount of application software.

http://www.nsrl.nist.gov/Downloads.htm
http://lib.ommolketab.ir

ISO 4 contains the signatures of standard image and graphics files and formats.

These signatures are contained in the file NSRLFile.txt , which is itself contained in a ZIP file in each
of the ISO images. You can produce one true signature file by downloading all of the ISOs, mounting
them, and concatenating together all of the resulting files. You'll need 8 GB of free space when you're
doing this, because the complete concatenated file is 4 GB in size! The following example uses RDS
2.9 as an example, which was the current version when this book was written. After creating the
directory /usr/local/nsrl , do the following for each of the ISOs:

 # mount -o loop RDS_29[ABCD].iso /mnt

 # unzip /mnt/rds_29[abcd].zip NSRLfile.txt
 # mv NSRLFile.txt NSRLFile.txt.[ABCD]
 # umount /mnt

You can then concatenate them using the following command:

 $ cat NSRLFile.txt.A NSRLFile.txt.B NSRLFile.txt.C NSRLFile.txt.D >
 NSRLFile.txt

You should then punt all of the NSRLFile.txt.X files, because you no longer need the individual
versions.

You're now ready to build and install Autopsy. To extract the Autopsy source code and build the
software (using Version 2.05 as an example, which was the current version when this book was
written), do the following:

 $ tar zxvf autopsy-2.05.tar.gz
 $ cd autopsy-2.05
 $ make

 Autopsy Forensic Browser Installation
 perl found: /usr/bin/perl

 Autopsy uses the grep utility from your local system.
 grep found: /usr/bin/grep

 Autopsy uses forensic tools from The Sleuth Kit.
 http://www.sleuthkit.org/sleuthkit/
 Enter the directory where you installed it:
 /usr/local/sleuthkit

 Sleuth Kit bin directory was found
 Version 2.02 found
 Required version found

http://lib.ommolketab.ir

 The NIST National Software Reference Library (NSRL) contains
 hash values of known good and bad files.

 http://www.nsrl.nist.gov
 Have you purchased or downloaded a copy of the NSRL (y/n) [n] y Enter the
 directory where you installed it:
 /usr/local/nsrl
 NSRL database was found (NSRLFile.txt)

 Autopsy saves configuration files, audit logs, and output to the
 Evidence Locker directory.
 Enter the directory that you want to use for the Evidence Locker:
 /usr/local/evidence_locker
 /usr/local/evidence_locker already exists

 Settings saved to conf.pl.
 Execute the './autopsy' command to start with default settings.

You can then run the autopsy command via sudo or as the root user, because it needs root privileges
in order to mount disk images, write to the evidence locker directory (unless you've set its ownership
so that normal users can write there), and so on:

 # ./autopsy
 ==
 Autopsy Forensic Browser
 http://www.sleuthkit.org/autopsy/
 ver 2.05
 ==
 Evidence Locker: /usr/local/evidence_locker
 Start Time: Sun Sep 11 16:57:23 2005
 Remote Host: localhost
 Local Port: 9999
 Open an HTML browser on the remote host and paste this URL in it:
 http://localhost:9999/autopsy
 Keep this process running and use <ctrl-c> to exit

To begin using Autopsy, simply connect to the specified URL using a web browser. As mentioned
earlier, stepping through a complete forensic recovery session using Autopsy could easily require its
own book, but Autopsy is quite user-friendly in terms of walking you through each step of creating a
unique directory (referred to as a "case") to hold the results of the forensic examination of a specific
disk, disk image, or set of multiple disks or images. I've found Autopsy to be quite useful for
identifying deleted files, such as those shown in Figure 10-6 .

Figure 10-6. Browsing a directory of deleted files in Autopsy

http://lib.ommolketab.ir

10.13.3. Using The Sleuth Kit to Recover Deleted Files

The extent to which you can recover files using The Sleuth Kit (and therefore Autopsy) is completely
dependent on the characteristics of the type of filesystem used on each disk or disk image that you're
examining. ext2 and ext3 filesystems zero out inodes when the files associated with them are
deleted, but the applications provided in The Sleuth Kit can simplify recovering any type of file whose
contents you can uniquely identify. This can be problematic when trying to recover binaries, but it's
great for text files.

The Sleuth Kit can analyze disks or disk images. To copy an existing partition or disk to a file for
forensic analysis, run a command like the following via sudo or as the root user:

 # dd if=/dev/disk-or-partition bs=1024 of=name-of-image-file conv=noerror

Once you have an image of the partition that contains the data you want to recover, make sure that
/usr/local/sleuthkit/bin is in your path, and follow the steps below to recover deleted text files. I'll
look for the /etc/passwd file in the sample image file hd5_image_etc_files_deleted.img . This is a

http://lib.ommolketab.ir

clone of my system's root disk, in which I've deleted every text file in /etc . (Good thing I only did
that as an example!)

Looking for a deleted text file requires the following steps:

Use TSK's dls command to extract all of the unallocated space from the disk image into a single
file, which expedites the process of searching for the file that you've deleted:

 $ dls hd5_image_etc_files_deleted.img > dls_output.dls

1.

Next, use the standard strings command to search for all text strings in the output file
produced by the previous step, and write that information to a file:

 $ strings -t d dls_output.dls > dls_output.dls.str

2.

Use grep to search for a string that identifies the file you're looking for as uniquely as possible.
I'll search for the string :0:0:, which shouldn't appear in too many files other than the
/etc/passwd file:

 $ grep ":0:0:" dls_output.dls.str
 130746025 (scsi0:0:0:0)
 130998233 if (!strncmp(line, "PSPCAM", 6)
)root:x:0:0:root:/root:/bin/bash
 131698688 root:x:0:0:root:/root:/bin/bash
 150589440 root:x:0:0:root:/root:/bin/bash
 156106752 root:x:0:0:root:/root:/bin/bash
 176209920 root:x:0:0:root:/root:/bin/bash
 182677504 root:x:0:0:root:/root:/bin/bash
 187670528 root:x:0:0:root:/root:/bin/bash
 [snip]

3.

The numeric value at the beginning of each line identifies the numeric byte offset for the string
you're looking for in the file that contains text strings from the file containing unallocated
blocks. Use the standard Linux dc (desktop calculator) command to divide this offset by the
filesystem's block size (4096 for ext2/ext3 filesystems, by default) in order to get the right
value. I'm looking for the block/fragment that contains the string found in the third entry in the
previous output, which is located at byte offset 131698688:

 $ dc
 131698688
 4096 / p

4.

http://lib.ommolketab.ir

 32153
 q

Next, use the dcalc command to convert the address from the unallocated block file into the
address in the original disk image file:

 $ dcalc -u 32153 hd5_image_etc_files_deleted.img
 34152

5.

Finally, use the dcat command to display the contents of the specified block in the fragment:

 $ dcat hd5_image_etc_files_deleted.img 34152
 root:x:0:0:root:/root:/bin/bash
 bin:x:1:1:bin:/bin:/bin/bash
 daemon:x:2:2:Daemon:/sbin:/bin/bash
 lp:x:4:7:Printing daemon:/var/spool/lpd:/bin/bash
 mail:x:8:12:Mailer daemon:/var/spool/clientmqueue:/bin/false
 games:x:12:100:Games account:/var/games:/bin/bash
 wwwrun:x:30:8:WWW daemon apache:/var/lib/wwwrun:/bin/false
 ftp:x:40:49:FTP account:/srv/ftp:/bin/bash
 nobody:x:65534:65533:nobody:/var/lib/nobody:/bin/bash
 man:x:13:62:Manual pages viewer:/var/cache/man:/bin/bash
 news:x:9:13:News system:/etc/news:/bin/bash
 uucp:x:10:14:Unix-to-Unix CoPy system:/etc/uucp:/bin/bash
 at:x:25:25:Batch jobs daemon:/var/spool/atjobs:/bin/bash
 messagebus:x:100:101:User for D-BUS:/var/run/dbus:/bin/false
 mdnsd:x:78:65534:mDNSResponder runtime user:/var/lib/mdnsd:/bin/false
 postfix:x:51:51:Postfix Daemon:/var/spool/postfix:/bin/false
 ntp:x:74:65534:NTP daemon:/var/lib/ntp:/bin/false
 sshd:x:71:65:SSH daemon:/var/lib/sshd:/bin/false
 haldaemon:x:101:102:User for haldaemon:/var/run/hal:/bin/false
 gdm:x:50:15:Gnome Display Manager daemon:/var/lib/gdm:/bin/bash
 ^@^
 @^@^@
 ^@^
 @^@^@
 ^@^
 @^@^@
 ^@^
 @^@^@
 [snip]

6.

Voilà! If it looks like a password file and smells like a password file…

http://lib.ommolketab.ir

Whenever I use this approach, I typically redirect the output of the dcat
command into a file, which I can then edit to remove the trailing junk that you
see at the end of the last example.

Had I been fumble-fingered enough to actually delete all the files in a real /etc directory, I'd also have
to recover /etc/group , possibly /etc/shadow (depending on the authentication mechanism that the
system uses), and /etc/fstab, but all of these could easily be recovered using the same approach.

10.13.4. Summary

The Sleuth Kit and Autopsy are powerful packages that do an incredible amount of work for you if
you're trying to recover deleted text files and are basically essential if you're trying to do computer
forensics work on the Linux platform.

A huge number of other open source packages that purportedly help recover deleted files are also
available. One of the most promising of these is Foremost (http://foremost.sourceforge.net), which
is open source but was written by two special agents in the United States Air Force Office of Special
Investigations. (No, I'm not kidding.) Foremost uses file header and footer signatures and internal
data structures to help identify binary files on a disk or in a disk image. It is currently being
updatedthe current version (1.0 Beta when this book was written) is hard-wired to accept specific file
formats, but they're adding a flexible configuration, which is very promising for sysadmins who need
to be able to recover binary files such as Microsoft Office documents, image files, and so on. If you've
always wanted to get involved in open source software, this is a great project to start with.

10.13.5. See Also

"Recover Data from Crashed Disks" [Hack #94]

"Recover Deleted Files" [Hack #97]

File System Forensic Analysis , by Brian Carrier (Addison Wesley)

Forensic Discovery , by Dan Farmer and Wietse Venema (Addison Wesley)

The Sleuth Kit: http://www.sleuthkit.org/sleuthkit/

Autopsy: http://www.sleuthkit.org/autopsy/

The Sleuth Kit's newsletter: http://www.sleuthkit.org/informer/

The Coroner's Toolkit: http://www.porcupine.org/forensics/tct.html

Foremost: http://foremost.sourceforge.net

More forensics links: http://www.sleuthkit.org/links.php

http://lib.ommolketab.ir

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The tools on the cover of Linux Server Hacks, Volume Two are hatchets, a type of ax. The hatchet is
a single-handed striking tool used primarily to cut and split wood. Based on the wedge, one of the six
simple machines of physics, the ax is one of the earliest man-made tools. It dates back from 100,000
to 500,000 years, but its simplicity and efficiency make it indispensable to this day.

Jamie Peppard was the production editor and proofreader for Linux Server Hacks, Volume Two.
Rachel Wheeler was the copyeditor. Darren Kelly and Claire Cloutier provided quality control. Loranah
Dimant, Jansen Fernald, and Lydia Onofrei provided production assistance. Johnna Dinse wrote the
index.

Karen Montgomery designed the cover of this book, based on a series design by Edie Freedman. The
cover image was created from an original photograph from the CMCD collection. Karen Montgomery
produced the cover layout with Adobe InDesign CS using Adobe's Helvetica Neue and ITC Garamond
fonts.

David Futato designed the interior layout. This book was converted by Keith Fahlgren from Microsoft
Word to FrameMaker 5.5.6 using Open Source XML technologies. The text font is Linotype Birka; the
heading font is Adobe Helvetica Neue Condensed; and the code font is LucasFont's TheSans Mono
Condensed. The illustrations that appear in the book were produced by Robert Romano, Jessamyn
Read, and Lesley Borash using Macromedia FreeHand MX and Adobe Photoshop CS. This colophon
was written by Jamie Peppard.

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

accounts

 distributed authentication and

 local authentication and

ACLs (access control lists)

 current

 setting

 support

 types

 utilities

Afick

authentication

 distributed

 LDAP

 local

 login

 Samba

 winbindd

 Windows

 debugging

Auto YaST

automated installation

 TFTP server and

automation

 chkrootkit

 MRTG

Autopsy

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

backups

 commands

 removable media

bad blocks

bad disks

bandwidth

BIND

BIND 9 name server configuration

BIOS

boot up

 BIOS settings and

 single-user mode

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

chrootkit

 automating

 installation

 running

client

 LTSP

 boot media preparation

 boot process

 booting

cloning bad disks

cloning systems

commands

 backups

 logger

 running on multiple servers

 userdel

compiling kernel

 distributed compiling daemon

 speed

compression

configuration

 amd

 DHCP

 DHCP services

 Fluxbox

 fstab

 Kerberos server

 kernel

 MediaWiki

 NFS clients

 NFS server

 NFS service

 NX clients

 OpenLDAP

 printers

 printing

 Windows 2000

 Samba 2nd 3rd

 snort

configuration files

 PAMs (Pluggable Authentication Modules)

http://lib.ommolketab.ir

 missing

crashed disks

 types

CUPS

 system services

 Linux connections to remote printers

CUPS (Common Unix Printing System)

 HTTP printing

 print testing

 printer configuration

 printers

 printing troubleshooting

 remote access configuration

 remote printer definition

 remote printing

 server

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

databases

DBAN (Darik's Boot and Nuke)

dd utility

ddrescue

debugging

deleted files

 TSK and

deny access

desktop

 NoMachine.com

 NX

 remote Windows

DHCP (Dynamic Host Configuration Protocol)

 automatic installation and

 LTSP and

 PXE and

 server

directories

 ACLs

directory permissions

directory services

distcc Knoppix

distributed authentication

domain

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

encoding mechanisms for VNC

encryption

 logs

ext3 journaling filesystem

extended attributes

 displaying

 kernel configuration

 removing

 searching for

 setting

 support

 user-space applications

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

FAI (Fully Automated Install)

FDS (Fedora Directory Server)

file sharing

 directory permissions

 unmask and

files

 ACLs

filesystems

 consistency resolution

 converting to journaling filesystems

 diagnostics

Fluxbox

 configuration

 Slit

 themes

font server

 X Windows

 copying fonts to

 desktop systems and

 restarting

 troubleshooting

fonts

 server setup

FreeNX

 server installation

fstab

fstab ACL support

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Gentoo

Ghost for Linux

gpart

GPL (General Public License)

graphical updates

group entries

grubby command line tool

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

hosts.allow

hosts.deny

hot swapping

HTTP printing server-side configuration

 CUPS

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

inetd

 service streamlining

 Xvnc integration

init process

installation

 ACLs

 Autopsy

 DHCP server

 extended attribute support

 FreeNX server

 Kerberos

 Kerberos applications

 Kerberos clients

 LDAP clients/servers

 MediaWiki

 MRTG

 NIS clients/servers

 NX clients

 snort

 Tripwire

 TSK

IP addresses

ISC DHCP server configuration

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

JFS (Journaled File System)

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

KDC (Kerberos Key Distribution Center)

Kerberos

 client installation

 login authentication

 server configuration

 server installation

 servers

 configuration

 tickets

 tokens

kernel configuration

kernel support

kickstart

krb-telnet

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

LDAP (Lightweight Directory Access Protocol)

 authentication

 clients

 OpenLDAP

ldapsearch

LDIF (LDAP Data Interchange Format) files

levels of RAID

Linux-PAM library

local authentication

log-guardian

logcheck utility

logger command

logical volumes

 creating from volume group

 logical extents

login

 authentication

 deny

 PAMs used

 root

 VNC port forwarding and

LogWatch

lpd

lsof command 2nd

LTSP

 DHCP and

 NFS and

 server configuration

 TFTP and

 XDMCP and

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Macintosh printing

 testing

macros

 recording

makewhatis

md (multiple device) interface

Meaning of Life

MediaWiki

 configuration

 installation

 Wikis

 installation

minicom

mirroring

multixterm

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

NFS

 client configuration

 LTSP and

 server configuration

 service configuration

NIS (Network Information Service)

 client installation

 client setup

 passwords and

 server installation

 server setup

NTP (Network Time Protocol)

NX clients

 configuration

 installation

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

OpenLDAP

 server configuration

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

PAM-aware applications

pam_limits

PAMs (Pluggable Authentication Modules)

 configuration files

 login and

 overview

 pam_winbind.so

partimage

 building

 partition cloning

 partition restore

partition tables

partitions

 gpart and

 restoring with partimage

 scanning

passwords

 migrating to LDAP

 NIS and

 vncserver script

performance

 VNC

PHP

 ldapsearch and

physical extents

physical volumes

 allocating

 volume group assignment

ports

 forwarding to host

 forwarding without remote login

 public/private forwarding

printers

 configuration

 new

 remote

printing

 remote

 restricting

 troubleshooting CUPS

protection modes

http://lib.ommolketab.ir

PXE (Preboot execution Environment)

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

RAID (Redundant Array of Inexpensive Disks)

 device creation

 levels

 md interface

 mirroring and

rdesktop

RDP (Remote Desktop Protocol)

recording macros with Vim

recovery

 lost+found and

redundancy

Reiser4 journaling filesystem

ReiserFS journaling filesystem

remote connectivity

 CUPS printers

 CUPS server

remote printing

removable media

rescue disk creation

rstatd daemon

runlevel problems

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Samba

 authentication in

 configuration 2nd 3rd 4th 5th

 mount

 share setup

samba-winbind package

scripts

 backups

 screen sessions

security

 hosts.allow and

 hosts.deny and

 Kerberos and

 Tripwire

server

 VNC

 JAR file installation

 Java class installation

 starting

 startup

server-side configuration

servers

 commands

 DHCP

 FreeNX

 LDAP (Lightweight Directory Access Protocol)

 group entry migration

 password migration

 user migration

 LTSP

 NFS

 NIS

 OpenLDAP

 VNC

 viewer updates

 X Windows font server setup

short read error

shortcut keys

shred utility 2nd

SIGHUP signals

single-user mode boot

http://lib.ommolketab.ir

Slit

SMART (Self Monitoring

smartctl utility

smartd daemon

smartmontools

smb-client package

smbpasswd command

snort

 configuration

 starting

software

 LTSP

 download

SSH tunnel setup

startup

 Xvnc

 troubleshooting

startup troubleshooting 2nd

stunnel

support

 ACLs (access control lists)

 fstab

 user-space

syslog-ng

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

text editors

TFTP server

 automatic installation and

tickets (Kerberos)

TightVNC

tokens

top-secret group

traffic monitoring

Tripwire

 Afick and

 configuration

 execution file

 policy file

 database update

 installation

TSK (The Sleuth Kit)

 Autopsy

 installation

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

UIDs (user IDs)

ulimit

user account disabling

 instantly

user-space applications

user-space support for ACLs

userdel command

users

 restricting printing

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Viewers

 VNC

 starting

Vim

 macro recording

VNC

 encoding mechanisms

 performance

 servers

 compression and

 connecting to

 TightVNC and

vncserver

 Xvnc server start

volume groups

 logical volume creation

 physical volume assignment

volumes

 physical volumes

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Wikipedia

Wikis

 data structure

 MediaWiki

winbindd

Windows

 authentication

 debugging

 testing

Windows 2000 printing configuration

Windows XP printing configuration

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

X Windows

 environment customization

 VNC and

XFS journaling filesystem

xinetd

xterms

 multixterm and

Xvnc

 inetd integration

 xinetd integration

http://lib.ommolketab.ir

	Linux Server Hacks, Volume Two
	Table of Contents
	Copyright
	Credits
	About the Authors
	Contributors
	Acknowledgments

	Preface
	Why Linux Server Hacks, Volume Two?
	How to Use This Book
	How This Book Is Organized
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Safari® Enabled
	Got a Hack?

	Chapter 1. Linux Authentication
	Section 1.1. Hacks 19: Introduction
	Hack 1. Disable User Accounts Instantly
	Hack 2. Edit Your Password File for Greater Access Control
	Hack 3. Deny All Access in One Second or Less
	Hack 4. Customize Authentication with PAMs
	Hack 5. Authenticate Linux Users with a Windows Domain Controller
	Hack 6. Centralize Logins with LDAP
	Hack 7. Secure Your System with Kerberos
	Hack 8. Authenticate NFS-Lovers with NIS
	Hack 9. Sync LDAP Data with NIS

	Chapter 2. Remote GUI Connectivity
	Section 2.1. Hacks 1019: Introduction
	Hack 10. Access Systems Remotely with VNC
	Hack 11. Access VNC Servers over the Web
	Hack 12. Secure VNC via SSH
	Hack 13. Autostart VNC Servers on Demand
	Hack 14. Put Your Desktops on a Thin Client Diet
	Hack 15. Run Windows over the Network
	Hack 16. Secure, Lightweight X Connections with FreeNX
	Hack 17. Secure VNC Connections with FreeNX
	Hack 18. Secure Windows Terminal Connections with FreeNX
	Hack 19. Remote Administration with Webmin

	Chapter 3. System Services
	Section 3.1. Hacks 2028: Introduction
	Hack 20. Quick and Easy DHCP Setup
	Hack 21. Integrate DHCP and DNS with Dynamic DNS Updates
	Hack 22. Synchronize Your Watches!
	Hack 23. Centralize X Window System Font Resources
	Hack 24. Create a CUPS Print Server
	Hack 25. Configure Linux Connections to Remote CUPS Printers
	Hack 26. Integrate Windows Printing with CUPS
	Hack 27. Centralize Macintosh Printing with CUPS
	Hack 28. Define a Secure CUPS Printer

	Chapter 4. Cool Sysadmin Tools and Tips
	Section 4.1. Hacks 2945: Introduction
	Hack 29. Execute Commands Simultaneously on Multiple Servers
	Hack 30. Collaborate Safely with a Secured Wiki
	Hack 31. Edit Your GRUB Configuration with grubby
	Hack 32. Give Your Tab Key a Workout
	Hack 33. Keep Processes Running After a Shell Exits
	Hack 34. Disconnect Your Console Without Ending Your Session
	Hack 35. Use script to Save Yourself Time and Train Others
	Hack 36. Install Linux Simply by Booting
	Hack 37. Turn Your Laptop into a Makeshift Console
	Hack 38. Usable Documentation for the Inherently Lazy
	Hack 39. Exploit the Power of Vim
	Hack 40. Move Your PHP Web Scripting Skills to the Command Line
	Hack 41. Enable Quick telnet/SSH Connections from the Desktop
	Hack 42. Speed Up Compiles
	Hack 43. Avoid Common Junior Mistakes
	Hack 44. Get Linux Past the Gatekeeper
	Hack 45. Prioritize Your Work

	Chapter 5. Storage Management and Backups
	Section 5.1. Hacks 4655: Introduction
	Hack 46. Create Flexible Storage with LVM
	Hack 47. Combine LVM and Software RAID
	Hack 48. Create a Copy-on-Write Snapshot of an LVM Volume
	Hack 49. Clone Systems Quickly and Easily
	Hack 50. Make Disk-to-Disk Backups for Large Drives
	Hack 51. Free Up Disk Space Now
	Hack 52. Share Files Using Linux Groups
	Hack 53. Refine Permissions with ACLs
	Hack 54. Make Files Easier to Find with Extended Attributes
	Hack 55. Prevent Disk Hogs with Quotas

	Chapter 6. Standardizing, Sharing, and Synchronizing Resources
	Section 6.1. Hacks 5662: Introduction
	Hack 56. Centralize Resources Using NFS
	Hack 57. Automount NFS Home Directories with autofs
	Hack 58. Keep Filesystems Handy, but Out of Your Way
	Hack 59. Synchronize root Environments with rsync
	Hack 60. Share Files Across Platforms Using Samba
	Hack 61. Quick and Dirty NAS
	Hack 62. Share Files and Directories over the Web

	Chapter 7. Security
	Section 7.1. Hacks 6368: Introduction
	Hack 63. Increase Security by Disabling Unnecessary Services
	Hack 64. Allow or Deny Access by IP Address
	Hack 65. Detect Network Intruders with snort
	Hack 66. Tame Tripwire
	Hack 67. Verify Fileystem Integrity with Afick
	Hack 68. Check for Rootkits and Other Attacks

	Chapter 8. Troubleshooting and Performance
	Section 8.1. Hacks 6977: Introduction
	Hack 69. Find Resource Hogs with Standard Commands
	Hack 70. Reduce Restart Times with Journaling Filesystems
	Hack 71. Grok and Optimize Your System with sysctl
	Hack 72. Get the Big Picture with Multiple Displays
	Hack 73. Maximize Resources with a Minimalist Window Manager
	Hack 74. Profile Your Systems Using /proc
	Hack 75. Kill Processes the Right Way
	Hack 76. Use a Serial Console for Centralized Access to Your Systems
	Hack 77. Clean Up NIS After Users Depart

	Chapter 9. Logfiles and Monitoring
	Section 9.1. Hacks 7888: Introduction
	Hack 78. Avoid Catastrophic Disk Failure
	Hack 79. Monitor Network Traffic with MRTG
	Hack 80. Keep a Constant Watch on Hosts
	Hack 81. Remotely Monitor and Configure a Variety of Networked Equipment
	Hack 82. Force Standalone Apps to Use syslog
	Hack 83. Monitor Your Logfiles
	Hack 84. Send Log Messages to Your Jabber Client
	Hack 85. Monitor Service Availability with Zabbix
	Hack 86. Fine-Tune the syslog Daemon
	Hack 87. Centralize System Logs Securely
	Hack 88. Keep Tabs on Systems and Services

	Chapter 10. System Rescue, Recovery, and Repair
	Section 10.1. Hacks 89100: Introduction
	Hack 89. Resolve Common Boot and Startup Problems
	Hack 90. Rescue Me!
	Hack 91. Bypass the Standard Init Sequence for Quick Repairs
	Hack 92. Find Out Why You Can't Unmount a Partition
	Hack 93. Recover Lost Partitions
	Hack 94. Recover Data from Crashed Disks
	Hack 95. Repair and Recover ReiserFS Filesystems
	Hack 96. Piece Together Data from the lost+found
	Hack 97. Recover Deleted Files
	Hack 98. Permanently Delete Files
	Hack 99. Permanently Erase Hard Disks
	Hack 100. Recover Lost Files and Perform Forensic Analysis

	Colophon
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

