
The Essential Guide to

Dreamweaver CS3
with CSS, Ajax, and PHP

David Powers

8598FM.qxd 6/27/07 5:24 PM Page i

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Essential Guide to Dreamweaver CS3
with CSS, Ajax, and PHP

Copyright © 2007 by David Powers

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval

system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-859-7

ISBN-10 (pbk): 1-59059-859-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the

trademark owner, with no intention of infringement of the trademark.

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or

visit www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com,

or visit www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to

any person or entity with respect to any loss or damage caused or alleged to be caused directly or
indirectly by the information contained in this work.

The source code for this book is freely available to readers at www.friendsofed.com in the
Downloads section.

Credits

Lead Editor
Chris Mills

Technical Reviewer
Tom Muck

Editorial Board
Steve Anglin, Ewan Buckingham,
Gary Cornell, Jonathan Gennick,
Jason Gilmore, Jonathan Hassell,

Chris Mills, Matthew Moodie,
Jeffrey Pepper, Ben Renow-Clarke,

Dominic Shakeshaft,
Matt Wade, Tom Welsh

Project Manager
Tracy Brown Collins

Copy Edit Manager
Nicole Flores

Copy Editor
Heather Lang

Assistant Production Director
Kari Brooks-Copony

Production Editor
Kelly Winquist

Compositor
Dina Quan

Artist
April Milne

Proofreader
April Eddy

Indexer
Julie Grady

Interior and Cover Designer
Kurt Krames

Manufacturing Director
Tom Debolski

8598FM.qxd 6/27/07 5:24 PM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.friendsofed.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

CONTENTS AT A GLANCE

Foreword. xix

About the Author . xxi

About the Technical Reviewer . xxii

Acknowledgments . xxiii

Introduction . xxiv

Chapter 1: Dreamweaver CS3—Your Creative Partner 1

Chapter 2: Building Dynamic Sites with Ajax and PHP 33

Chapter 3: Getting the Work Environment Ready 67

Chapter 4: Setting Up a PHP Site . 103

Chapter 5: Adding a Touch of Style . 135

Chapter 6: Creating a CSS Site Straight Out of the Box 161

Chapter 7: Building Site Navigation with the Spry Menu Bar 183

Chapter 8: Sprucing Up Content with Spry Widgets 209

Chapter 9: Building Online Forms and Validating Input. 247

iv

8598FM.qxd 6/27/07 5:24 PM Page iv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10: Introducing the Basics of PHP . 295

Chapter 11: Using PHP to Process a Form . 325

Chapter 12: Working with PHP Includes and Templates 363

Chapter 13: Setting Up MySQL and phpMyAdmin. 401

Chapter 14: Storing Records in a Database . 429

Chapter 15: Controlling Access to Your Site 473

Chapter 16: Working with Multiple Tables . 519

Chapter 17: Searching Records and Handling Dates 571

Chapter 18: Using XSLT to Display Live News Feeds and XML 617

Chapter 19: Using Spry to Display XML . 653

Chapter 20: Getting the Best of Both Worlds with PHP and Spry. . . . 693

Index . 731

v

8598FM.qxd 6/27/07 5:24 PM Page v

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CONTENTS

Foreword. xix

About the Author . xxi

About the Technical Reviewer . xxii

Acknowledgments . xxiii

Introduction . xxiv

Chapter 1: Dreamweaver CS3—Your Creative Partner 1

Getting your bearings in Dreamweaver . 3
Starting up . 3

Creating a new document . 4
Setting new document preferences . 5

Exploring the workspace . 7
Insert bar . 9
Document window . 11

Organizing your workspace . 14
Rearranging panels . 14
Saving and sharing customized workspace layouts 14
Accessing hidden files and folders in Windows . 15
Displaying optional toolbars . 15
Temporarily hiding all panels . 15

Organizing visual assets with Bridge . 16
Controlling thumbnails . 17
Adding metadata . 17
Renaming files . 17
Dragging and dropping files . 18

vi

8598FM.qxd 6/27/07 5:24 PM Page vi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating standards-compliant web pages . 18
Enhanced CSS support . 18

Layers are dead . . . Welcome, AP elements . 18
Seeing the impact of CSS changes in real time . 20
Improved style sheet management . 21
Using visual aids to understand your CSS structure 22
Checking for browser bugs . 23
Checking what your page will look like on other media 24

Understanding Dreamweaver’s approach to layout . 25
Drawing absolutely positioned elements . 25
Layout Mode goes into exile. 26

Getting the best out of Code view . 27
Using the Coding toolbar . 27
Setting Code view options . 29
Using code hints and auto completion . 30

Dynamic too . 31

Chapter 2: Building Dynamic Sites with Ajax and PHP 33

Understanding how dynamic pages work . 34
Making pages dynamic with client-side technology . 35
Increasing user interactivity with server-side technology 35

Why choose PHP?. 37
Taking dynamic functionality a stage further with Ajax 38

Understanding the limitations of Ajax . 38
Dynamic terminology 101 . 39

Using Dreamweaver behaviors and Spry effects . 40
Accessing the Behaviors panel . 40
Giving elements a unique identity . 45

Removing an id attribute. 47
Editing behavior and effect settings . 48

Removing behaviors and effects cleanly . 50
Restoring a deleted behavior or effect . 50

Exploring Spry effects. 51
Appear/Fade . 52
Blind . 53
Grow/Shrink . 53
Highlight . 54
Shake . 55
Slide . 55
Squish . 56

Creating a wrapper <div> for the Slide effect . 56
Applying multiple events to a trigger element . 58

Handling dynamic data with Spry and PHP . 59
Comparing how Spry and PHP handle data sets . 59
Building PHP sites with Dreamweaver . 60

CONTENTS

vii

8598FM.qxd 6/27/07 5:24 PM Page vii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Comparing different versions of files . 61
Setting up the File Compare feature . 61
Using File Compare . 62
Comparing two local files in the same site . 63
Comparing two local files in different sites . 63
Comparing local and remote files. 63

Meet Mark of the Web . 64
The next step. 65

Chapter 3: Getting the Work Environment Ready 67

Deciding where to test your pages. 68
Checking that your remote server supports PHP. 69

Creating a local testing server . 70
Choosing which versions to install . 70
Choosing individual installation or an all-in-one package 71
Setting up on Windows . 72

Getting Windows to display file name extensions 72
Choosing the right web server. 73
Downloading the software . 73
Preparing for installation on Windows Vista . 73
Turning off User Account Control temporarily on Vista 74
Before you begin . 74
Checking that port 80 is free . 75
Installing Apache on Windows. 76
Running the Apache Monitor on Vista . 78
Starting and stopping Apache on Windows . 79
Changing startup preferences or disabling Apache 79
Installing PHP on Windows. 80
Testing your PHP installation (Windows XP and Vista) 82
Changing the default Apache port . 83
Changing the default IIS port . 84

Setting up on Mac OS X . 86
Starting and stopping Apache on Mac OS X . 86
Upgrading PHP on Mac OS X . 87

Checking your PHP configuration . 90
Understanding the output of phpinfo() . 90

Checking the location of php.ini . 90
Checking PHP Core settings . 92
Checking installed extensions . 95
Checking supported $_SERVER variables . 96

Editing php.ini . 96
Accessing php.ini on Mac OS X . 96
Configuring PHP to display errors . 98
Enabling PHP extensions on Windows . 98
Enabling file uploads and sessions (Windows installer) 99

CONTENTS

viii

8598FM.qxd 6/27/07 5:24 PM Page viii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Overriding settings on your remote server . 99
Suppressing error messages . 99
Overriding default settings with ini_set(). 99
Using .htaccess to change default settings . 100

Summary . 100

Chapter 4: Setting Up a PHP Site . 103

Deciding where to locate your sites . 104
Understanding document- and root-relative links . 104

Document-relative links . 105
Root-relative links . 105

Keeping everything together in the server root . 106
Working with virtual hosts . 106
Finding the server root . 107
Moving the Apache server root on Windows . 107
Setting a default file for Apache on Windows . 108
Adding a default PHP file to IIS. 109

Creating virtual hosts on Apache . 110
Registering virtual hosts on Windows . 111
Registering virtual hosts on Mac OS X . 113

Registering virtual directories on IIS . 115
Defining a PHP site in Dreamweaver . 115

Opening the Site Definition dialog box . 115
Telling Dreamweaver where to find local files . 117
Telling Dreamweaver how to access your remote server 119
Defining the testing server . 121

Selecting options for local testing . 122
Selecting options for remote testing . 123

Setting up other site options . 125
Setting up for Spry . 125

Saving the site definition . 126
Testing your PHP site . 126

Troubleshooting . 128
Setting options for Preview in Browser . 129

Managing Dreamweaver sites . 131
Now let’s get on with it . 132

Chapter 5: Adding a Touch of Style . 135

Avoiding bad habits . 136
Stay away from the Property inspector for fonts . 137
Creating simple CSS for beginners . 138

Introducing the CSS Styles panel . 140
Opening the CSS Styles panel. 141
Viewing All and Current modes . 141

CONTENTS

ix

8598FM.qxd 6/27/07 5:24 PM Page ix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Exploring the Properties pane of the CSS Styles panel 142
Displaying CSS properties by category . 142
Displaying CSS properties alphabetically . 143
Displaying only CSS properties that have been set. 143
Attaching a new style sheet . 144
Adding, editing, and deleting style rules . 144

Creating new style rules . 145
Defining a selector. 145
Defining the rule’s properties. 146

Moving style rules . 152
Exporting rules to a new style sheet . 152
Moving rules within a style sheet. 154
Moving rules between external style sheets. 155

Setting your CSS preferences . 156
Creating and editing style rules. 157
Setting the default format of style rules. 158

Let’s get creative . 159

Chapter 6: Creating a CSS Site Straight Out of the Box 161

Using a built-in CSS layout . 162
Choosing a layout . 163
Deciding where to locate your style rules . 163

Linking to existing style sheets . 164
Making sure conditional comments are applied 164

Styling a page . 165
Inspecting the cascade in Current mode . 173
Finishing the layout . 175
Removing the CSS comments. 179

How was it for you? . 181

Chapter 7: Building Site Navigation with the Spry Menu Bar 183

Examining the structure of a Spry menu bar . 185
Looking at the XHTML structure . 187
Removing a menu bar . 188
Editing a menu bar . 188
Maintaining accessibility with the Spry menu bar. 189
Customizing the styles. 190

Changing the menu width . 190
Changing colors . 190
Adding borders . 191
Changing the font . 192

Styling a Spry menu bar . 193
To wrap or not to wrap, that is the question . 193
Building the navigation structure. 195
Customizing the design . 198

A mixed blessing . 206

CONTENTS

x

8598FM.qxd 6/27/07 5:24 PM Page x

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 8: Sprucing Up Content with Spry Widgets 209

Features common to all Spry widgets . 210
Building a tabbed interface . 211

Examining the structure of the tabbed panels widget 212
Editing a tabbed panels widget . 214
Selecting harmonious colors . 218
Converting to vertical tabs . 223
Avoiding design problems with tabbed panels . 227

Understanding Spry objects . 228
Using the accordion widget . 229

Examining the structure of an accordion . 230
Editing and styling a Spry Accordion. 232
Using the object initialization to change accordion defaults 236
Opening an accordion panel from a link . 238

Using collapsible panels . 239
Examining the structure of a collapsible panel . 239
Editing and styling collapsible panels . 241
Opening a collapsible panel from a link . 243

Removing a Spry widget . 244
Yet more widgets 245

Chapter 9: Building Online Forms and Validating Input. 247

Building a simple feedback form . 248
Choosing the right page type . 248

Creating a PHP page . 249
Mixing .php and .html pages in a site . 250

Inserting a form in a page. 250
Inserting a form in Code view . 251

Adding text input elements . 252
Setting properties for text input elements . 255
Converting a text field to a text area and vice versa. 257

Styling the basic feedback form . 257
Understanding the difference between GET and POST 259
Passing information through a hidden field . 260

Using multiple-choice form elements . 262
Offering a range of choices with checkboxes . 262
Offering a single choice from a drop-down menu . 267
Creating a multiple-choice scrollable list . 269
Using radio buttons to offer a single choice . 272

Organizing form elements in logical groups . 274
Inserting a fieldset . 274

Validating user input before submission . 275
Doing minimal checks with the Validate Form behavior 275
Using Spry validation widgets for sophisticated checks 277

Understanding the limitations of Spry validation widgets 278
Inserting a Spry validation widget . 279
Removing a validation widget . 279
Validating a text field with Spry . 280

CONTENTS

xi

8598FM.qxd 6/27/07 5:25 PM Page xi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Building your own custom pattern . 285
Validating a text area with Spry . 286
Validating a single checkbox with Spry . 289
Validating a checkbox group with Spry . 289
Validating a drop-down menu with Spry . 292

Next, let’s move to the server side . 292

Chapter 10: Introducing the Basics of PHP . 295

Introducing the basics of PHP . 296
Embedding PHP in a web page . 296
Ending commands with a semicolon . 297
Using variables to represent changing values . 298

Naming variables . 298
Assigning values to variables . 298

Displaying PHP output. 299
Commenting scripts for clarity and debugging . 300
Choosing single or double quotation marks . 301

Using escape sequences in strings . 303
Joining strings together . 304
Adding to an existing string . 304
Using quotes efficiently . 305
Special cases: true, false and null . 305

Working with numbers . 306
Performing calculations. 306
Combining calculations and assignment . 308

Using arrays to store multiple values . 308
Using names to identify array elements . 309
Inspecting the contents of an array with print_r() 310

Making decisions. 311
The truth according to PHP . 312
Using comparisons to make decisions. 313
Testing more than one condition . 314
Using the switch statement for decision chains 316
Using the conditional operator . 316

Using loops for repetitive tasks. 317
Loops using while and do . . . while . 317
The versatile for loop . 318
Looping through arrays with foreach . 319
Breaking out of a loop . 320

Using functions for preset tasks . 320
Understanding PHP error messages . 321

Now put it to work . 322

CONTENTS

xii

8598FM.qxd 6/27/07 5:25 PM Page xii

99b97f3f1bc9631d160a36b01c7e500e

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 11: Using PHP to Process a Form . 325

Activating the form . 327
Getting information from the server with PHP superglobals 327
Sending email . 328

Scripting the feedback form . 329
Using Balance Braces . 336
Testing the feedback form . 337
Troubleshooting mail() . 338
Getting rid of unwanted backslashes . 338
Making sure required fields aren’t blank . 341
Preserving user input when a form is incomplete 345
Filtering out potential attacks . 348
Safely including the user’s address in email headers 350
Handling multiple-choice form elements . 354

Redirecting to another page . 359
Time for a breather . 360

Chapter 12: Working with PHP Includes and Templates 363

Including text and code from other files. 364
Introducing the PHP include commands. 364
Telling PHP where to find the external file . 365
Using site-root-relative links with includes . 368
Lightening your workload with includes . 369

Choosing the right file name extension for include files 369
Displaying XHTML output . 370
Avoiding problems with include files . 373
Applying styles with Design Time Style Sheets . 374
Adding dynamic code to an include. 375
Using includes to recycle frequently used PHP code. 378

Adapting the mail processing script as an include . 380
Analyzing the script . 380
Building the message body with a generic script 382

Avoiding the “headers already sent” error . 388
Using Dreamweaver templates in a PHP site. 389

Creating a template . 390
Adding editable regions to the master template . 391
Creating child pages from a template . 393
Locking code outside the <html> tags. 398

Choosing the right tool . 398

CONTENTS

xiii

8598FM.qxd 6/27/07 5:25 PM Page xiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 13: Setting Up MySQL and phpMyAdmin. 401

Introducing MySQL. 402
Understanding basic MySQL terminology . 403

Installing MySQL . 404
Installing MySQL on Windows . 404

Deciding whether to enable InnoDB support . 404
Changing the default table type on Windows Essentials 410
Starting and stopping MySQL manually on Windows. 411
Using the MySQL monitor on Windows . 411

Setting up MySQL on Mac OS X . 412
Adding MySQL to your PATH . 414
Securing MySQL on Mac OS X . 416

Using the MySQL monitor on Windows and Mac . 418
Using MySQL with phpMyAdmin . 419

Setting up phpMyAdmin on Windows and Mac . 420
Launching phpMyAdmin . 423

Logging out of phpMyAdmin. 424
Backup and data transfer . 424
Looking ahead . 427

Chapter 14: Storing Records in a Database . 429

Setting up a database in MySQL . 430
Creating a local database for testing. 431
Creating user accounts for MySQL . 432

Granting the necessary user privileges . 432
How a database stores information . 436

How primary keys work . 436
Designing a database table . 437

Choosing the table name . 438
Deciding how many columns to create . 438
Choosing the right column type in MySQL . 439
Deciding whether a field can be empty . 441

Storing input from the feedback form . 441
Analyzing the form . 441
Defining a table in phpMyAdmin. 444

Understanding collation . 446
Inserting data from the feedback form . 446

Troubleshooting the connection . 449
Troubleshooting . 451

Using server behaviors with site-root-relative links. 452
Inspecting the server behavior code . 453
Inserting data into SET columns . 454

Displaying database content . 457
Creating a recordset . 457
Displaying individual records . 462

Displaying line breaks in text . 467
Merging form input with mail processing . 469
A great deal achieved . 471

CONTENTS

xiv

8598FM.qxd 6/27/07 5:25 PM Page xiv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 15: Controlling Access to Your Site 473

Creating a user registration system . 474
Defining the database table. 475
Building the registration form . 476
Preserving the integrity of your records . 480

Building custom server behaviors . 486
Completing the user registration form . 489

Updating and deleting user records . 493
Adapting the Sticky Text Field server behavior . 496
Building the update and delete pages. 497

What sessions are and how they work . 507
Creating PHP sessions . 507
Creating and destroying session variables . 508
Destroying a session . 508
Checking that sessions are enabled . 509

Registering and authenticating users . 509
Creating a login system . 509
Restricting access to individual pages . 511
Logging out users . 512
Understanding how Dreamweaver tracks users . 513

Creating your own $_SESSION variables from user details 515
Redirecting to a personal page after login . 515

Encrypting and decrypting passwords . 516
Feeling more secure? . 516

Chapter 16: Working with Multiple Tables . 519

Storing related information in separate tables . 520
Deciding on the best structure . 520
Using foreign keys to link records . 521
Avoiding orphaned records . 523
Defining the database tables . 524

Adding an index to a column . 525
Defining the foreign key relationship in InnoDB 526

Populating the tables . 530
Restoring the content of the tables . 530

Selecting records from more than one table . 530
The four essential SQL commands . 534

SELECT . 535
INSERT . 537
UPDATE . 538
DELETE . 538

Managing content with multiple tables . 538
Inserting new quotations . 539

Using a MySQL function and alias to manipulate data. 543
Inserting new authors . 545

Using variables in a SQL query . 546
Updating authors . 551

CONTENTS

xv

8598FM.qxd 6/27/07 5:25 PM Page xv

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deleting authors . 556
Improving the delete form . 560
Performing a cascading delete with InnoDB tables 560

Updating quotations. 563
Solving the mystery of missing records . 564

Deleting quotations . 567
What you have achieved. 568

Chapter 17: Searching Records and Handling Dates 571

Querying a database and displaying the results . 572
Enhancing the look of search results. 573

Displaying the number of search results . 573
Creating striped table rows. 574

Understanding how Dreamweaver builds a SQL query. 576
Troubleshooting SQL queries. 579

Setting search criteria . 580
Using numerical comparisons . 581
Searching within a numerical range . 583
Searching for text . 586

Making a search case sensitive . 586
Displaying a message when no results are found 587
Searching multiple columns . 588

Searching with a partial match . 589
Using wildcard characters in a search . 589
Using wildcard characters with numbers . 592
Using a FULLTEXT index. 595

Solving common problems . 598
Counting records . 599
Eliminating duplicates from a recordset . 599
Reusing a recordset . 599

Understanding how a repeat region works . 602
Formatting dates and time in MySQL . 603

Using DATE_FORMAT() to output user-friendly dates 604
Working with dates in PHP . 607

Setting the correct time zone . 608
Creating a Unix timestamp . 609
Formatting dates in PHP. 610

Storing dates in MySQL . 612
Validating and formatting dates for database input 612

Continuing the search for perfection. 615

Chapter 18: Using XSLT to Display Live News Feeds and XML 617

A quick guide to XML and XSLT. 618
What an XML document looks like. 618

Using HTML entities in XML . 620
Using XSLT to display XML . 621

Checking your server’s support for XSLT . 621

CONTENTS

xvi

8598FM.qxd 6/27/07 5:25 PM Page xvi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Pulling in an RSS news feed . 622
How Dreamweaver handles server-side XSLT . 623
Using XSLT to access the XML source data . 624
Displaying the news feed in a web page. 632

Being a bit more adventurous with XSLT. 633
Setting up a local XML source . 634
Understanding how XSLT is structured . 636
Accessing nested repeating elements . 637
Creating conditional regions . 639

Testing a single condition. 639
Testing alternative conditions . 640

Sorting elements . 642
Formatting elements . 643
Displaying output selectively . 644

Filtering nodes with XPath . 644
Using XSLT parameters to filter data . 646

More XML to come . 650

Chapter 19: Using Spry to Display XML . 653

How Spry handles XML data . 654
Making sure Spry can find data. 655
Creating a Spry data set . 656
Displaying a data set in a Spry table . 662
Understanding the Spry data code . 668

Validating pages that use Spry . 668
The fly in Spry’s ointment. 669
Displaying a data set as a list . 670

What’s the difference between repeat and repeatchildren? 674
Case study: Building a Spry image gallery . 676

Planning the gallery . 676
Dynamically selecting the gallery data set . 677
Controlling the structure with CSS. 677

Putting everything together. 678
Activating the event handling . 688

Distinguishing between data sets . 688
Creating a data set dynamically . 689

Nearly there . 691

Chapter 20: Getting the Best of Both Worlds with PHP and Spry. . . . 693

Generating XML dynamically . 694
Preparing the database table . 695
Using phpMyAdmin to generate XML . 696
Using the XML Export extension . 697

Updating the includes folder . 702
Building XML manually from a recordset . 703
Using a proxy script to fetch a remote feed . 706

CONTENTS

xvii

8598FM.qxd 6/27/07 5:25 PM Page xvii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating an XML document from a dynamic source 707
Setting permission for PHP to write files . 708
Using PHP to write to a file. 708

Using Spry in pages that work without JavaScript . 711
How to incorporate a Spry data set in an ordinary web page 711
Using XHTML with Spry . 716

Case study: Making the Spry gallery accessible . 717
Creating the gallery with PHP. 717
Generating the XML sources with PHP. 725
Enhancing the accessible gallery with Spry . 727

The end of a long journey 729

Index . 731

CONTENTS

xviii

8598FM.qxd 6/27/07 5:25 PM Page xviii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

FOREWORD

The Macromedia community was unique. There was a synergy among developers, designers,
marketers, and the Macromedia product teams that kept the product line alive and growing
year after year. I say “was,” because Macromedia is now part of Adobe. Since Adobe acquired
Macromedia, the community has gotten larger. Adobe did not previously have a reputation
for fostering a community spirit, however, even though the Adobe umbrella is now over the
entire former-Macromedia product line, the community has flourished and become even
more pervasive. Adobe now feels more like Macromedia than even Macromedia did, because
Adobe has somehow taken the best of Macromedia and made it even better.

With that acquisition, we have one of the largest software rollouts ever—the CS3 release,
which combined all of Macromedia’s biggest product lines with Adobe’s biggest product
lines into one massive release. If it were a normal product release cycle, that would be big
news by itself, but with all the major enhancements in most of the products in the line, it’s
even bigger. Dreamweaver CS3 contains some great new features, most of which are covered
extensively in this book, including the Spry tools, page layouts, and CSS tools. Dreamweaver
CS3 (or Dreamweaver 9, if you’re counting) is the first Adobe version of Dreamweaver, but
aside from the Adobe name and the Photoshop integration, it is instantly recognizable as the
same great program.

One of the things that make the community great is the involvement of the company
(Macromedia, now Adobe) with the designer/developer community. Adobe actively seeks
feedback on products and welcomes give and take; it doesn’t just pay lip service to the con-
cept of a developers’ community. The feedback forms on the website go directly to the
product team, and product engineers contact customers directly. This kind of involvement
brought PHP into Dreamweaver in the first place, and this kind of involvement keeps
Dreamweaver at the top of the heap of all the web development tools available.

To give an example of the Adobe community involvement, Adobe sent a team of represen-
tatives to meet with everyone at the recent TODCon convention, which typically attracts a
small, closely knit group of Dreamweaver designers and developers. They didn’t just send a
couple of marketing people or low-level operatives; they flew in over a dozen of the cream
of the crop, including product managers, development team managers, quality assurance
managers, and others from locations in San Jose, San Diego, Romania, and Germany. On the
first day of the conference, Dreamweaver product manager Kenneth Berger introduced

xix

8598FM.qxd 6/27/07 5:25 PM Page xix

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the team, which looked like a wall of Adobe at the front of the room, and led a session about
what is right and wrong with Dreamweaver, and the attendees of the conference got to give
their input as to what Dreamweaver is doing well and what could be improved. There was
plenty of praise along with plenty of venting that the product team will use directly. That
wasn’t the end of it though. The team was in attendance for the bulk of the conference,
walking around with notebooks, getting valuable feedback that will help shape the next ver-
sion of the product. This is the kind of personal contact that keeps the community and the
product thriving.

Couple the company involvement with the extensibility of Dreamweaver, which keeps the
development community buzzing with creativity by extending the program to do things that
it won’t do out of the box, and you have a program that gets exponentially better with each
release. I say the same thing every time a new version of Dreamweaver comes out: I could
never go back to the previous version. I feel the same way about the latest CS3 release.

I’ve never met David Powers, but know him well through the Adobe Dreamweaver commu-
nity. He is a fellow Adobe Community Expert who freely shares his knowledge of the product
in Adobe support forums, among other places. I know David by reputation as one of the
most thorough yet easy-to-read authors on the scene today and as one of the most passion-
ate and vocal Dreamweaver experts in the world. Among the scores of Dreamweaver books,
David’s are the books that I personally recommend to people as the best. This book is no
exception. Having written a few books in the past myself, I know it’s no easy task. As the
technical reviewer of this book, it was frequently a challenge for me to find things to say
about it—David leaves no stone unturned in his quest to provide the best instructional mate-
rial on the shelves today. That is exactly what you are holding in your hands right now.

Tom Muck
June 2007

FOREWORD

xx

8598FM.qxd 6/27/07 5:25 PM Page xx

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ABOUT THE AUTHOR

David Powers is an Adobe Community Expert for Dreamweaver
and author of a series of highly successful books on PHP, including
PHP Solutions: Dynamic Web Design Made Easy (friends of ED, ISBN-
13: 978-1-59059-731-6) and Foundation PHP for Dreamweaver 8
(friends of ED, ISBN-13: 978-1-59059-569-5). As a professional writer,
he has been involved in electronic media for more than 30 years,
first with BBC radio and television and more recently with the
Internet. His clear writing style is valued not only in the English-
speaking world; several of his books have been translated into
Spanish and Polish.

What started as a mild interest in computing was transformed almost overnight into a
passion, when David was posted to Japan in 1987 as BBC correspondent in Tokyo. With no
corporate IT department just down the hallway, he was forced to learn how to fix everything
himself. When not tinkering with the innards of his computer, he was reporting for BBC TV
and radio on the rise and collapse of the Japanese bubble economy. Since leaving the BBC to
work independently, he has built up an online bilingual database of economic and political
analysis for Japanese clients of an international consultancy.

When not pounding the keyboard writing books or dreaming of new ways of using PHP and
other programming languages, David enjoys nothing better than visiting his favorite sushi
restaurant. He has also translated several plays from Japanese.

xxi

8598FM.qxd 6/27/07 5:25 PM Page xxi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ABOUT THE TECHNICAL REVIEWER

Tom Muck is the coauthor of nine Macromedia-related books. Tom also writes extensions for
Dreamweaver, available at his site www.tom-muck.com. Tom is also the lead PHP and ColdFusion
programmer for Cartweaver, the online shopping cart software package, and a founding
member of Community MX, who has written close to 100 articles on PHP, ColdFusion, SQL,
and related topics.

Tom is an extensibility expert focused on the integration of Adobe/Macromedia products
with ColdFusion, ASP, PHP, and other languages, applications, and technologies. Tom was rec-
ognized for this expertise in 2000 when he received Macromedia's Best UltraDev Extension
Award. He has also written numerous articles for magazines, journals, and websites and
speaks at conferences on this and related subjects.

xxii

8598FM.qxd 6/27/07 5:25 PM Page xxii

http://www.tom-muck.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

ACKNOWLEDGMENTS

For an author, writing a book means long, lonely hours at the keyboard, but the volume
you’re holding in your hands—or reading onscreen if you’ve got the electronic version—is
very much a collaborative effort. The idea of writing an expanded book on the dynamic fea-
tures of Dreamweaver came from my editor, Chris Mills, who was gracious enough not to
complain each time I changed my mind about the final shape of the book. My thanks go to
him and all the production staff at Apress/friends of ED for keeping this mammoth project
on target.

I’m also indebted to the development team at Adobe, who gave me a sneak preview of their
plans for Dreamweaver CS3 very early in the development process and helped me under-
stand how many of the new features work. At times, I’m sure they were exasperated by my
persistent questions and the occasionally hectoring tone of my suggestions for improve-
ments, but they never let it show.

A particular thank you goes to my technical reviewer, Tom Muck. I’m deeply honored that
such a respected expert on Dreamweaver agreed to undertake this role. Tom’s in-depth
knowledge of Dreamweaver, PHP, and SQL saved me from some embarrassing mistakes (any
that remain are my responsibility entirely). He also provided helpful advice when he thought
my explanations were too oblique.

My biggest thanks of all go to you, the reader. Without you, none of this would be worth-
while. If you enjoy this book or find it useful, tell all your friends and get them to buy a copy.
Don’t lend it to them. You might never get it back!

xxiii

8598FM.qxd 6/27/07 5:25 PM Page xxiii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

INTRODUCTION

The Essential Guide to Dreamweaver CS3 with CSS, Ajax, and PHP . . . Wow, the title’s almost
as long as the book! And what’s that “essential” doing in there? “Essential” suggests that it’s
a book you can’t do without. So, who’s it for and why should you be reading it?

Dreamweaver isn’t a difficult program to use, but it’s difficult to use well. It’s packed with
features, and more have been added with each new version. The user interface has barely
changed in the last few versions, so it’s easy to overlook some great productivity boosters if
you don’t know where to find them. I have been using Dreamweaver on a daily basis
for about seven years, pushing it to the limit and finding out its good points—and its bad
ones, too.

So, the idea of this book is to help you get the best out of Dreamweaver CS3, with particular
emphasis on building dynamic web pages using the improved CSS management features,
Spry—the Adobe implementation of Ajax—and the PHP server behaviors. But how can you
get the best out of this book?

Who this book is for
If you’re at home with the basics of (X)HTML and CSS, then this book is for you. If you have
never built a website before and don’t know the difference between an <a> tag and your
Aunt Jemima, you’ll probably find this book a bit of a struggle. You don’t need to know every
tag and attribute by heart, but I frequently dive into Code view and expect you to roll up
your sleeves and get to grips with the code. It’s not coding for coding’s sake; the idea is to
adapt the code generated by Dreamweaver to create websites that really work. I explain
everything as I go along and steer clear of impenetrable jargon. As for CSS, you don’t need
to be a candidate for inclusion in the CSS Zen Garden (www.csszengarden.com), but you
should understand the basic principles behind creating a style sheet.

xxiv

8598FM.qxd 6/27/07 5:25 PM Page xxiv

http://www.csszengarden.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

What about Ajax and PHP? I don’t assume any prior knowledge in these fields. Ajax comes in
many different guises; the flavor used in this book is Spry, the Adobe Ajax framework (code
library) that is integrated into Dreamweaver CS3. Although you do some hand-coding with
Spry, most features are accessed through intuitive dialog boxes.

Dreamweaver also takes care of a lot of the PHP coding, but it can’t do everything, so I show
you how to customize the code it generates. Chapter 10 serves as a crash course in PHP, and
Chapter 11 puts that knowledge to immediate use by showing you how to send an email
from an online form—one of the things that Dreamweaver doesn’t automate. This book
doesn’t attempt to teach you how to become a PHP programmer, but by the time you reach
the final chapter, you should have sufficient confidence to look a script in the eye without
flinching.

Do I need Dreamweaver CS3?
Most definitely, yes. Although the PHP features in Dreamweaver CS3 are identical to
Dreamweaver 8.0.2, you’ll miss out on roughly half the book, because the chapters devoted
to CSS and Spry are based on CS3. In a pinch, you could download the free version of Spry
from http://labs.adobe.com/technologies/spry/ and hand-code everything in an earlier
version of Dreamweaver, but the focus in this book is on using the CS3 interface for Spry. If
you want to use PHP in an earlier version, I suggest you read my Foundation PHP for
Dreamweaver 8 (friends of ED, ISBN-13: 978-1-59059-569-5) instead.

How does this book differ from my previous ones?
I hate it when I buy a book written by an author whom I’ve enjoyed before and find myself
reading familiar page after familiar page. This book is intended to replace Foundation PHP
for Dreamweaver 8, so a lot of material is inherited from that book. There’s also some over-
lap with PHP Solutions: Dynamic Web Design Made Easy (friends of ED, ISBN-13: 978-1-
59059-731-6), but I estimate that at least 60 percent of the material was written exclusively
for this book. Every chapter has been completely revised and rewritten, and the chapters on
CSS and Spry are brand new.

Even where I have recycled material from the two previous books, I have revised and (I hope)
improved the scripts. For example, the mail processing script has increased protection
against email header injection attacks, and I have adapted it so that it can be reused more
easily with different online forms. The script also inserts the form content into a database
after sending the email.

I have added a section on using Dreamweaver templates in a PHP site. There’s a new chapter
on building search queries, and the chapter on multiple database tables tells you how to use
foreign key constraints if your MySQL server supports InnoDB. The final chapter shows you
how to generate XML on the fly from a database and enhance a PHP site by integrating some
features of Spry data management.

INTRODUCTION

xxv

8598FM.qxd 6/27/07 5:25 PM Page xxv

http://labs.adobe.com/technologies/spry
http://lib.ommolketab.ir
http//lib.ommolketab.ir

How this book is organized
My previous books have taken a linear approach, but I have structured this one to make it
easier for you to dip in and out, using the Table of Contents and Index to find subjects that
interest you and going straight to them. So, if you want to learn how to create tabbed panels
with Spry, you can go directly to Chapter 8. Although the example pages use a design that
was created in an earlier chapter, you don’t need to have worked through the other chapter
first. Nevertheless, there is a progressive logic to the order of the chapters.

Chapters 1 and 2 serve as an overview of the whole book, explaining what’s new and what
has changed in Dreamweaver CS3. Chapter 2 also explains in detail how to use Spry effects.
They are simple to apply and don’t require knowledge of CSS or PHP. If you’re new to
Dreamweaver, these chapters help you find your way around essential aspects of the
Dreamweaver interface.

Chapters 3 and 4 show you how to set up your work environment for PHP and Dreamweaver.
If you already have a local testing environment for PHP, you can skip most of the material in
these chapters. However, I urge you to follow the instructions at the end of Chapter 3 to
check your PHP configuration. The section in Chapter 4 about defining your testing server in
Dreamweaver is also essential reading. These two subjects are the most frequent causes of
problems. A few minutes checking that you have set up everything correctly will save a lot of
heartache later.

Chapters 5 and 6 cover in depth how Dreamweaver handles CSS. If you’re relatively new to
CSS, Chapter 5 shows you how not to use Dreamweaver to create style rules. For more
advanced readers, it provides a useful overview of the various CSS management tools,
including the ability to reorder the cascade and move rules to different style sheets without
ever leaving Design view. Chapter 6 uses one of the 32 built-in CSS layouts to create an ele-
gant site, and in the process, unravels the mysteries of the CSS Styles panel.

Chapters 7 and 8 return to Spry, exploring the Spry Menu Bar and the tabbed panels, accor-
dion, and collapsible panel user interface widgets. Because these widgets make extensive use
of CSS, you’ll find these chapters easier to follow if you’re up to speed on the previous two
chapters. Of course, if you’re already a CSS whiz kid, jump right in.

Chapter 9 sees the start of practical PHP coverage, showing you how to construct an online
form. The second half of the chapter completes the roundup of Spry widgets, showing you
how to use Spry to check user input before a form is submitted. This is client-side validation
like you’ve never seen before. If you want to concentrate on PHP, you can skip the second
half of the chapter and come back to it later.

As noted earlier, Chapter 10 is a crash course in PHP. I have put everything together in a
single chapter so that it serves as a useful quick reference later. If you’re new to PHP, just
skim the first paragraph or so of each section to get a feel for the language and come back
to it later to check on specific points.

Chapters 11 and 12 give you hands-on practice with PHP, building the script to process
the form created in Chapter 9. Newcomers to PHP should take these chapters slowly.
Although you don’t need to become a top-level programmer to use PHP in Dreamweaver, an

INTRODUCTION

xxvi

8598FM.qxd 6/27/07 5:25 PM Page xxvi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

understanding of the fundamentals is vital unless you’re happy being limited to very basic
dynamic pages. If you’re in a hurry, you can use the finished mail-processing script from
Chapter 12. It should work with most online forms, but you won’t be able to customize it to
your own needs if you don’t understand how it works. Chapter 12 also looks at using
Dreamweaver templates in a PHP site.

Chapter 13 gets you ready to bring out Dreamweaver’s big guns by guiding you through the
installation of the MySQL database and a graphic interface called phpMyAdmin. This chapter
also covers database backup and transferring a database to another server.

Chapters 14 through 17 show you how to build database-driven web pages using PHP,
MySQL, and Dreamweaver’s PHP server behaviors. You’ll also learn the basics of SQL
(Structured Query Language), the language used to communicate with all major relational
databases. To get the most out of this section, you need to have a good understanding of the
material in the first half of Chapter 9. You’ll learn how to create your own content manage-
ment system, password protect sensitive parts of your site, and build search forms.

The final three chapters (18–20) introduce you to working with XML (Extensible Markup
Language), the platform-neutral way of presenting information in a structured manner. XML
is often used for news feeds, so Chapter 18 sets the ball rolling by showing you how to use
Dreamweaver’s XSL Transformation server behavior to draw news items from a remote site
and incorporate them in a web page.

Chapter 19 explains how to generate a Spry data set from XML and use it to create an online
photo gallery. The attraction of Spry is that it provides a seamless user experience by refresh-
ing only those parts of a page that change, without reloading the whole page. The disadvan-
tage is that, like most Ajax solutions, the underlying code leaves no content for search
engines to index, or for the browser to display if JavaScript is disabled. So, Chapter 20 shows
how to get the best of both worlds by creating the basic functionality with PHP and enhanc-
ing it with Spry. The final chapter also shows you how to generate your own XML documents
from content stored in your database.

What this book isn’t
I like to credit my readers with intelligence, so this book isn’t “Dreamweaver CS3 for the
Clueless” or “Dreamweaver CS3 for Complete Beginners.” You don’t need to be an expert,
but you do need to have an inquiring mind. It doesn’t teach the basics of web design, nor
does it attempt to list every single feature in Dreamweaver CS3. There are plenty of other
books to fill that gap. However, by working through this book, you’ll gain an in-depth knowl-
edge of the most important features of Dreamweaver.

A high proportion of the book is devoted to hands-on exercises. The purpose is to demon-
strate a particular technique or feature of Dreamweaver in a meaningful way. Rather than
racing through the steps to finish them as quickly as possible, read the explanations. If you
understand why you’re doing something, you’re far more likely to remember it and be able
to adapt it to your own needs.

INTRODUCTION

xxvii

8598FM.qxd 6/27/07 5:25 PM Page xxvii

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Windows- and Mac-friendly
Everything in this book has been tested on Windows XP SP2, Windows Vista, and Mac OS X
10.4—the minimum required versions for Dreamweaver CS3. The overwhelming majority of
screenshots were taken on Windows Vista, but I have included separate screenshots from
Windows XP and Mac OS X where appropriate.

Chapters 3 and 13 have separate sections for Windows and Mac to guide you through the
setup of PHP and MySQL, so Mac users aren’t left trying to adapt instructions written for a
completely different operating system.

Keyboard shortcuts are given in the order Windows/Mac, and I point out when a particular
shortcut is exclusive to Windows (some Dreamweaver shortcuts conflict with Exposé and
Spotlight in the Mac version). The only place where I haven’t given the Mac equivalent is with
regard to right-clicking. Since the advent of Mighty Mouse, right-clicking is now native to the
Mac, but if you’re an old-fashioned kind of guy or gal and still use a one-button mouse, Ctrl-
click whenever I tell you to right-click (I’m sure you knew that anyway).

Some Mac keyboard shortcuts use the Option (Opt) key. If you’re new to a Mac and can’t
find an Opt key on your keyboard, in some countries it’s labeled Alt. The Command (Cmd)
key has an apple and/or a cloverleaf symbol.

A note about versions used
Computer software is constantly evolving, and—much though I would like it to do so—it
doesn’t stand still simply because I have written a 700-odd page book. A book represents a
snapshot in time, and time never stands still.

Everything related to Dreamweaver in this book is based on build 3481 of Dreamweaver CS3.
This is the version that was released in April 2007. The build number is displayed on the
splash screen when you launch Dreamweaver. You can also check the build number by going
to Help ➤ About Dreamweaver (Dreamweaver ➤ About Dreamweaver on a Mac) and clicking
the credits screen. This build of Dreamweaver shipped with Spry version 1.4. About one
month later, Adobe released Spry version 1.5.

At the time this book was ready to go to the printers, the information I had received indi-
cated that, because Spry is still evolving, Dreamweaver won’t automatically be updated for
each new release of Spry. Any changes that affect this book will be posted on my website at
http://foundationphp.com/egdwcs3/updates.php.

You should also check my website for any updates concerning PHP, MySQL, and phpMyAdmin.
The instructions in this book are based on the following versions:

PHP 5.2.1

MySQL 5.0.37

phpMyAdmin 2.10.1

INTRODUCTION

xxviii

8598FM.qxd 6/27/07 5:25 PM Page xxviii

http://foundationphp.com/egdwcs3/updates.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the download files
All the necessary files for in this book can be downloaded from www.friendsofed.com/
downloads.html. The files are arranged in five top-level folders, as follows:

examples: This contains the .html and .php files for all the examples and exercises,
arranged by chapter. Use the File Compare feature in Dreamweaver (see Chapter 2)
to check your own code against these files. Some exercises provide partially com-
pleted files for you to work with. Where indicated, copy the necessary files from this
folder to the workfiles folder so you always have a backup if things go wrong.

images: This contains all the images used in the exercises and online gallery.

SpryAssets: This contains the finished versions of Spry-related style sheets. With one
exception, it does not contain the external JavaScript files needed to display Spry
effects, widgets, or data sets. Dreamweaver should copy the JavaScript files and
unedited style sheets to this folder automatically when you do the exercises as
described in this book.

tools: This contains a Dreamweaver extension that loads a suite of useful PHP code
fragments into the Snippets panel, as well as a saved query for the Find and Replace
panel, and SQL files to load data for the exercises into your database.

workfiles: This is an empty folder, where you should build the pages used in the
exercises.

Copy these folders to the top level of the site that you create for working with this book (see
Chapter 4).

Support for this book
Every effort has been made to ensure accuracy, but mistakes do slip through. If you find what
you think is an error—and it’s not listed on the book’s corrections page at www.
friendsofed.com—please submit an error report to www.friendsofed.com/
errataSubmission.html. When ED has finished with the thumbscrews and got me to admit
I’m wrong, we’ll post the details for everyone’s benefit on the friends of ED site. I also plan to
post details on my own website at http://foundationphp.com/egdwcs3/updates.php of
changes to Dreamweaver or other software that affect instructions in the book.

I want you to get the best out of this book and will try to help you if you run into difficulty.
Before calling for assistance, though, start with a little self-help. Throughout the book, I have
added “Troubleshooting” sections based heavily on frequently asked questions, together
with my own experience of things that are likely to go wrong. Make use of the File Compare
feature in Dreamweaver to check your code against the download files. If you’re using a soft-
ware firewall, try turning it off temporarily to see whether the problem goes away.

INTRODUCTION

xxix

8598FM.qxd 6/27/07 5:25 PM Page xxix

http://www.friendsofed.com
http://www.friendsofed.com%E2%80%94please
http://www.friendsofed.com%E2%80%94please
http://www.friendsofed.com
http://foundationphp.com/egdwcs3/updates.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If none of these approaches solves your problem, scan the chapter subheadings in the Table
of Contents, and try looking up a few related expressions in the Index. Also try a quick search
on the Internet: Google and the other large search engines are your friends. My apologies if
all this sounds obvious, but an amazing number of people spend more time waiting for an
answer in an online forum than it would take to go through these simple steps.

If you’re still stuck, visit www.friendsofed.com/forums/. Use the following guidelines to help
others help you:

Always check the book’s updates and corrections pages. The answer may already be
there.

Search the forum to see if your question has already been answered.

Give your message a meaningful subject line. It’s likely to get a swifter response and
may help others with a similar problem.

Say which book you’re using, and give a page reference to the point that’s giving you
difficulty.

Give precise details of the problem. “It doesn’t work” gives no clue as to the cause.
“When I do so and so, x happens” is a lot more informative.

If you get an error message, say what it contains.

Be brief and to the point. Don’t ask half a dozen questions at once.

It’s often helpful to know your operating system, and if it’s a question about PHP,
which version of PHP and which web server you’re using.

Don’t post the same question simultaneously in several different forums. If you find
the answer elsewhere, have the courtesy to close the forum thread and post a link
to the answer.

The help I give in the friends of ED and Adobe forums is not limited to problems arising from
my books, but please be realistic in your expectations when asking for help in a free online
forum. Although the Internet never sleeps, the volunteers who answer questions certainly
do. They’re also busy people, who might not always be available. Don’t post hundreds of
lines of code and expect someone else to scour it for mistakes. And if you do get the help
that you need, keep the community spirit alive by answering questions that you know the
answer to.

INTRODUCTION

xxx

8598FM.qxd 6/27/07 5:25 PM Page xxx

http://www.friendsofed.com/forums
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Layout conventions
To keep this book as clear and easy to follow as possible, the following text conventions are
used throughout.

Important words or concepts are normally highlighted on the first appearance in bold type.

Code is presented in fixed-width font.

New or changed code is normally presented in bold fixed-width font.

Pseudo-code and variable input are written in italic fixed-width font.

Menu commands are written in the form Menu ➤ Submenu ➤ Submenu.

Where I want to draw your attention to something, I’ve highlighted it like this:

Sometimes code won’t fit on a single line in a book. Where this happens, I use an arrow like
this: ➥.

This is a very, very long section of code that should be written all ➥

on the same line without a break.

Ahem, don’t say I didn’t warn you.

INTRODUCTION

xxxi

8598FM.qxd 6/27/07 5:25 PM Page xxxi

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 DREAMWEAVER CS3—YOUR
CREATIVE PARTNER

8598CH01.qxd 6/27/07 3:30 PM Page 1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

After 8, comes . . . not 9, but CS3. In the confusing world of marketing, Dreamweaver ver-
sions have gone from straightforward numbers to a couple of meaningless letters (MX), to
MX 2004 (which didn’t reflect the year of release accurately), and back to numbers again.
So why CS3? And does it make any sense?

In one respect, the change symbolizes the fact that Dreamweaver is under new ownership.
Macromedia, the company that turned Dreamweaver, Flash, and Fireworks into must-have
tools for web developers, was acquired by Adobe at the end of 2005. And Dreamweaver
(together with former Macromedia stable mates Fireworks and Flash) is now part of
Creative Suite, Adobe’s family of web and print design tools that includes Photoshop,
Illustrator, and InDesign. Creative Suite is now in its third iteration; hence CS3. Although
each program has a long history, the idea of Creative Suite is to promote greater integra-
tion to make it easier to switch to the best tool for a particular job, such as Photoshop for
photo manipulation and retouching, and import the results into another program. And
that’s what’s happened to Dreamweaver: although it’s available as a stand-alone program,
it’s now closely integrated with its new Adobe brothers and sisters as part of Adobe Web
Suite CS3 and Design Suite CS3.

Even the stand-alone version of Dreamweaver CS3 comes bundled with three other
programs:

Extension Manager CS3: An updated version of the program that lets you install
third-party add-ons to extend the functionality of Dreamweaver, Flash, and Fireworks.

Adobe Bridge CS3: As the name suggests, this is intended to facilitate communica-
tion between the various parts of Creative Suite, but it also works with the stand-
alone version of Dreamweaver. At one level, it’s like a super-charged version of
Windows Explorer or Finder on the Mac, but it shines in the handling of visual
assets. It allows you to see inside a wide variety of formats, making it easy to find
an image by what it looks like.

Adobe Device Central CS3: This is a brand new program that allows you to visualize
what your websites will look like in a wide range of mobile devices, not only
from the layout point of view but also simulating mobile backlight and sunlight
reflections.

The integration goes further through the ability to copy and paste directly from a
Photoshop PSD file into Dreamweaver. When you do so, Dreamweaver optimizes the file
for the Web. So, yes, the “CS3” does make sense. It’s not just change for the sake of
change.

Once installed, Extension Manager, Bridge, and Device Central are separate programs and
can be launched independently, but you have no choice whether to install them. The
installer simply lists them as “Shared Components.” As a result, this version of Dreamweaver
occupies roughly four times more disk space than previous versions. Personally, I like
Bridge and think that Device Central is likely to become increasingly useful as mobile Web
access grows in popularity. Others may disagree.

If you’re a long-term Dreamweaver user, though, the program that you know and love
hasn’t changed beyond recognition. As Figures 1-4 and 1-5 show, the workspace layout is
identical to Dreamweaver 8. The development team moved with Dreamweaver to Adobe,
and the improvements to the program are a logical progression. Adobe accompanied
its decision to include Dreamweaver in Creative Suite 3 with the bold step of dropping its

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

2

8598CH01.qxd 6/27/07 3:30 PM Page 2

http://lib.ommolketab.ir
http//lib.ommolketab.ir

own web design program, GoLive. Although GoLive has been updated, it’s not in any of the
CS3 packages. What’s more, Adobe has created an online tutorial to help GoLive users
migrate to Dreamweaver (www.adobe.com/go/learn_dw_golive). This sends a clear mes-
sage that Adobe now regards Dreamweaver as its prime tool for developing standards-
compliant websites.

In this chapter, we’ll take a look at the most important features and changes in
Dreamweaver CS3, with particular emphasis on cascading style sheets (CSS) and creating
standards-compliant Extensible HyperText Markup Language (XHTML), both of which are
essential for building any modern website. Then, in the following chapter, we’ll take a look
at the tools Dreamweaver offers for building dynamic websites: Spry—Adobe’s implemen-
tation of Asynchronous JavaScript + XML (Ajax)—and PHP.

What this chapter covers

Finding out what’s new in Dreamweaver CS3

Exploring and organizing the Dreamweaver workspace

Using Bridge to manage visual assets

Taking a first look at Dreamweaver’s support for cascading style sheets

Getting the best out of Code view

Getting your bearings in Dreamweaver
As the title of this book says, this is an essential guide to Dreamweaver CS3. So I don’t
intend to bore you to death with descriptions of every menu and submenu. However, all
readers may not be familiar with Dreamweaver, so I’ll start with a few signposts to guide
you around the Dreamweaver interface and help set basic program preferences. Most of
this will be familiar to experienced users of Dreamweaver, but there are some important
changes. To identify these changes, look for the New and Changed graphics in the margin.

Starting up
When you launch Dreamweaver CS3, the first thing you see after the program has finished
loading is the welcome screen shown in Figure 1-1. The three columns in the top section
provide quick access to a recently opened document (this list is empty the first time you
launch Dreamweaver), create a new document or Dreamweaver site (site definition is
covered in Chapter 4), or select from a predefined layout. The Dreamweaver Exchange
option at the foot of the right column takes you directly to the Adobe Dreamweaver
Exchange (www.adobe.com/cfusion/exchange/index.cfm?view=sn120), where you can
obtain extensions to add extra functionality to Dreamweaver (many are free; others are
sold on a commercial basis). The bottom section of the welcome screen takes you to var-
ious parts of the Adobe website and displays what Adobe considers useful information, for
example, available updates to the program.

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

3

1

8598CH01.qxd 6/27/07 3:30 PM Page 3

http://www.adobe.com/go/learn_dw_golive
http://www.adobe.com/cfusion/exchange/index.cfm?view=sn120
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-1. The welcome screen offers access to recent documents and a quick way to
create new ones.

The Dreamweaver welcome screen reappears whenever you close all documents in the
workspace and connects to Adobe to see if there are any new announcements. In previous
versions, leaving the welcome screen enabled was a resource hog, so many developers
chose the Don’t show again option at the bottom left. This means what it says: once you
select it, the welcome screen disappears forever. If you want it back, go to Edit ➤

Preferences (Dreamweaver ➤ Preferences on a Mac), choose the General category, and
select Show welcome screen.

Although the welcome screen no longer appears to be a resource hog, you may prefer to
switch it off because you get a much better range of options from the New Document dia-
log box. You can also configure Dreamweaver to reopen on startup any documents that
are still open when you close the program. Just select Reopen documents on startup in the
General category of the Preferences panel.

Creating a new document
To create a new document, select File ➤ New or press Ctrl+N/Cmd+N. This opens the New
Document dialog box, which has been considerably revamped, as shown in Figure 1-2.

The biggest change is that, in addition to a completely blank page, you can now select one
of 32 CSS layouts. There are also options to change the page’s document type definition
(DTD)—by default, Dreamweaver CS3 uses XHTML 1.0 Transitional—and to attach an
external style sheet to the page at the time of creation. We’ll look at the CSS layouts and
style sheet options in Chapters 5 and 6.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

4

8598CH01.qxd 6/27/07 3:30 PM Page 4

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-2. The New Document dialog box offers a massive range of options and preset layouts.

By selecting the appropriate option from the menu on the left side of the New Document
dialog box, you can also create new templates from scratch or a page from an existing
template (templates are covered in Chapter 12). The Page from Sample option offers a
wide range of preset layouts, but I don’t recommend using them, as many of them use old-
style presentational elements and deprecated attributes. The final option, labeled Other,
contains a variety of pages for programming languages such as ActionScript, C#, and
VBScript, none of which are used in this book.

Setting new document preferences
Click the Preferences button at the bottom left of the New Document dialog box.
Alternatively, choose Preferences from the Edit menu (Dreamweaver menu on a Mac), and
select the New Document category. Either presents you with the New Document Preferences
dialog box shown in Figure 1-3.

The dialog box lets you set the following global preferences:

Default document lets you choose the type of document that will be created when
you use the keyboard shortcut for a new document (Ctrl+N/Cmd+N). For this to
work, you must deselect the option at the bottom labeled Show New Document dia-
log box on Control+N/Cmd+N. Otherwise, the dialog box shown in Figure 1-2 will
appear.

Default extension affects only (X)HTML files. Change the value only if you want to
use .htm to maintain unity with the naming convention of older sites.

Default Document Type (DTD) sets the default DOCTYPE declaration for all new web
pages. You cannot set one value for, say, .html and another for .php pages.

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

5

1

8598CH01.qxd 6/27/07 3:30 PM Page 5

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-3. The New Document category of the Preferences panel

Default encoding lets you choose the character set to be used in all web pages. The
Dreamweaver CS3 default is Unicode (UTF-8). (In the Mac version, this is listed as
Unicode 4.0 UTF-8.) This is different from previous versions. The checkbox below
this option tells Dreamweaver to use the same character set to display existing
pages that don’t specify a particular encoding. It doesn’t insert any extra coding in
such pages.

Unicode Normalization Form is required only when using UTF-8 for encoding. It
should normally be set to C (Canonical Decomposition, followed by Canonical
Composition), and the Include Unicode Signature (BOM) checkbox should be dese-
lected. If you use any other encoding, set Unicode Normalization Form to None.

Choosing the default document type Many people misunderstand the purpose of the DTD
(the DOCTYPE declaration before the opening <html> tag). It simply tells the browser how
you have coded your page and is intended to speed up the correct rendering of your
design. It’s not a badge of honor or magic spell that somehow renders your web pages
future-proof. The default setting in Dreamweaver CS3 is XHTML 1.0 Transitional, and this is
the appropriate choice for most people when creating a new web page as long as you
understand the stricter rules imposed by XHTML.

Visit www.w3.org/TR/xhtml1/#diffs to learn about the differences
between HTML and XHTML. Also read the frequently asked questions
at www.w3.org/MarkUp/2004/xhtml-faq.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

6

8598CH01.qxd 6/27/07 3:30 PM Page 6

http://www.w3.org/TR/xhtml1/#diffs
http://www.w3.org/MarkUp/2004/xhtml-faq
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The full range of options is as follows:

None: Don’t use—all pages should have a DOCTYPE declaration.

HTML 4.01 Transitional: Choose this if you don’t want to use XHTML.

HTML 4.01 Strict: This excludes deprecated elements (those destined for eventual
elimination)—use this only if you have a good knowledge of HTML and have made
a conscious decision not to use XHTML.

XHTML 1.0 Transitional: This offers the same flexibility as HTML 4.01 Transitional by
permitting the use of deprecated elements but applies the stricter rules of XML.

XHTML 1.0 Strict: This excludes all deprecated elements—use this only if you are
competent with XHTML.

XHTML 1.1: Don’t use—this DTD should not be used on pages delivered using the
text/html MIME type, the current standard for web servers.

XHTML Mobile 1.0: This is a subset of XHTML Basic for mobile devices—you can find
the full specification at www.openmobilealliance.org/tech/affiliates/wap/
wap-277-xhtmlmp-20011029-a.pdf.

If you choose an HTML document type, Dreamweaver automatically creates code accord-
ing to the HTML specification. Similarly, if you choose XHTML, your code automatically
follows the stricter rules, using lowercase for tag names and event handlers and inserting
a closing slash in empty tags such as . You need to be careful when copying and past-
ing code from other sources. If you’re not sure about the quality of the code, run
Commands ➤ Clean Up XHTML, which should correct most, if not all, problems.

If you select a Strict DTD, it’s important to realize that Dreamweaver does not prevent you
from using deprecated elements or attributes. Dreamweaver expects you to understand
the difference yourself.

Choosing the default encoding The decision to switch the default encoding in
Dreamweaver CS3 to Unicode (UTF-8) makes a lot of sense. Unicode supports nearly every
known writing system, so—as long as you have the right fonts on your computer—you can
combine Spanish, Russian, Chinese, and English all on the same web page. All modern
browsers support UTF-8, so there is no reason you shouldn’t use it. But—and it’s a big
but—this book concentrates heavily on using PHP and the MySQL database. Versions of
MySQL prior to the 4.1 series do not support UTF-8. If your hosting company uses MySQL
3.23 or 4.0, you might need to change the default encoding for your web pages. See
“Understanding collation” in Chapter 13.

Exploring the workspace
Figure 1-4 shows the default Windows workspace with a web page under construction and
all the main areas labeled. The main part of the workspace is occupied by the Document
window, which includes everything from the Document toolbar to the Tag selector.

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

7

1

8598CH01.qxd 6/27/07 3:30 PM Page 7

http://www.openmobilealliance.org/tech/affiliates/wap
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-4. The Dreamweaver workspace remains basically unchanged.

As you can see from Figure 1-5, the Mac workspace is virtually the same. In harmony with
other Mac programs, the Close, Minimize, and Zoom buttons are at the top left of the
Document window. The Document window’s tabbed interface is displayed only when more
than one document is open. If you want the Mac version to display tabs all the time, open
Preferences from the Dreamweaver menu, select the General category, and check the
option labeled Always show tabs. Alternatively, if you don’t want the tabbed interface, de-
select the Open documents in tabs option.

Two other points to note about the Mac workspace: you can close a tab by clicking the ✕
in a circle to the left of the file name; and the Property inspector overlaps the Files panel
on a 1024✕768 resolution monitor (the minimum display required for Dreamweaver CS3).
As a result, on a small monitor the Property inspector flops in front of or behind the Files
panel, depending on whether it has focus. This results in some icons being hidden, but you
can bring them back into view by clicking in any blank space in the Property inspector.
Alternatively, resize the Files panel to make room.

The main menus run across the top just below the title bar. The menus provide access to
all features, but I prefer to work directly in the workspace with Dreamweaver’s visual tools,
each of which I’ll describe briefly.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

8

8598CH01.qxd 6/27/07 3:30 PM Page 8

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-5. Apart from a few minor differences, the Mac workspace is identical to Windows.

Insert bar
The Insert bar is really a collection of toolbars used to perform the most frequently used
operations in building web pages. It’s organized as a tabbed interface. Figure 1-6 shows the
Common tab. When you first launch Dreamweaver, there are six other tabs (or categories).
Additional, context-sensitive tabs are displayed only when the features can be used in a
particular page, such as when using PHP or the XSL Transformation server behavior. The
tabs organize program features in logical groups, so some commonly used features, such
as tables and <div> tags, are duplicated on more than one tab to save time switching back
and forth.

Figure 1-6. The Common tab of the Insert bar houses some of the most frequently used operations.

If space is at a premium, you can save a few pixels of vertical space by switching to the
menu style shown in Figure 1-7. Click the name at the left end to reveal a menu of avail-
able categories. However, it takes two clicks to change categories, so you’ll probably find
the tabbed interface more convenient. Alternatively, you can put frequently used items in
the Favorites category as described shortly.

Figure 1-7. The Insert bar has an alternative menu style that saves a little space.

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

9

1

8598CH01.qxd 6/27/07 3:30 PM Page 9

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To use the menu style, click the panel Options menu button (shown alongside) at the top
right of the Insert bar, and select Show as Menu. To restore the tabbed interface, click the
category name at the left end of the Insert bar, and select Show as Tabs from the bottom
of the menu.

Table 1-1 describes briefly what each category contains. Although the Insert bar will look
familiar to users of previous versions of Dreamweaver, it has been revamped with many
new items and the removal of some old ones. For the benefit of readers upgrading from
Dreamweaver 8, I have indicated the main changes.

Table 1-1. The main features of Insert bar tabs (categories)

Tab/category Description Changes from Dreamweaver 8

Common Inserts the most commonly used Now contains all tags related
objects, such as tables, images, with <head> and <script>
and <div> tags. from the old HTML category.

Layout Offers various tools for layout, Layout Mode was removed
including table modification, but remains accessible
frames, and Spry widgets, such through View ➤ Table Mode ➤
as menu bar (see Chapter 7), Layout Mode.
and tabbed and collapsible
panels (see Chapter 8).

Forms Creates forms and inserts all form No change, apart from the
elements, including Spry validation addition of Spry validation
widgets (forms and Spry validation widgets.
are covered in Chapter 9).

Data Offers access to most dynamic Previously the Application
features, including Spry data sets category. Import Tabular Data
(see Chapter 19) and PHP server (for CSV files) has been
behaviors (see Chapter 14 onward). relocated here from the
Also imports data from comma- Layout category. Addition of
separated value (CSV) files into Spry data features.
a static web page.

Spry All Spry features gathered in a New.
single category.

Text Provides an alternative to the Font Tag Editor was removed.
Property inspector for common
formatting options. Also, home
to definition list and HTML entities.

Favorites Left blank for you to customize. For backward compatibility,
gives access to the HTML and
Flash elements categories,
which have been removed
from the main Insert bar.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

10

8598CH01.qxd 6/27/07 3:30 PM Page 10

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Selecting options from the Insert bar To see what each button is
for, hold your mouse pointer over it, and a tooltip appears. Some
buttons have a little down arrow alongside them to the right. The
first time you click one of these buttons, Dreamweaver displays a
menu showing all options, as shown in the screenshot alongside.
Dreamweaver remembers your selection and always displays the
most recently used option. If you want to use the same option
again, click the button itself. To select a different option, click the
arrow to the right to reveal the menu again.

Customizing the Favorites category If switching among categories becomes too time-
consuming, you can populate the Favorites category with your most frequently used items.
Select the Favorites tab, right-click, and select Customize Favorites from the context menu.
The drop-down menu at the top left of the Customize Favorite Objects dialog box (shown
in Figure 1-8) lets you choose either from a master list or from individual categories. In the
left panel, select one item at a time, and click the button with the double chevron to add
it to the Favorite objects panel on the right. To remove an item, select it in the right panel,
and click the trash can button at the top right. The up and down arrows can be used to
change the position of the selected item, and the Add separator button inserts a separator
after the current item.

Figure 1-8. You can customize the Favorites category of the Insert bar for quick
access to frequently used options.

The Customize Favorite Objects dialog box gives access to all Insert bar categories, includ-
ing context-sensitive ones, such as PHP, as well as to items that have been removed since
Dreamweaver 8.

To copy your Favorites to a different computer, follow the instructions at the end of the
next section.

Document window
By default, Dreamweaver displays each web page in a tabbed interface. Tabs are created
left to right in the same order as the pages are opened, but you can drag and drop them

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

11

1

8598CH01.qxd 6/27/07 3:30 PM Page 11

http://lib.ommolketab.ir
http//lib.ommolketab.ir

into any order. You can also tidy up the workspace by right-clicking any tab to reveal a
context menu that, among other things, lets you close the individual tab, close all tabs, or
close them all except the current one.

Document toolbar Running across the top of the Document window is the Document tool-
bar, shown in Figure 1-9. The three buttons on the left are the most important, as they let
you switch quickly between Code view, Design view, and a combination of both called Split
view, as shown in Figures 1-4 and 1-5. The Live Data view button is displayed only in
dynamic pages, such as a PHP page. It processes server-side code to show you a good
approximation of what the page will look like when parsed by a web server. Before you can
use Live Data view, you need to define a testing server as described in Chapter 4.

Figure 1-9. The Document toolbar mainly controls how your main work environment looks.

The following list briefly describes the other options on the Document toolbar:

Title: This is where you enter the document title that is displayed in the browser
title bar.

File management: This offers a quick way of uploading and downloading the current
file to and from your remote server. Setting the connection details is covered in
Chapter 4.

Preview in browser: This displays the current page in a browser or Device Central
(see “Checking what your page will look like in other media” later in this chapter).

Refresh: This refreshes Design view. It’s used only when you’re working in the
underlying code in Split view. Otherwise, Design view refreshes automatically.

View options: This turns rulers and guides on and off.

Visual aids: This controls the CSS visual aids described in “Using visual aids to under-
stand your CSS structure” later in this chapter.

Validate: This option checks your document, selected files, or the entire site against
World Wide Web Consortium (W3C) standards. Dreamweaver’s validator misses
some errors, particularly when checking pages against a Strict Document Type
Definition (DTD). Double-check against the official W3C Markup Validation Service
at http://validator.w3.org.

Check page: This runs checks for browser compatibility (see “Checking for browser
bugs” later in the chapter) and accessibility.

Code view This is where you work directly with all the XHTML, PHP, and other code that
controls your web page. Even if you rarely touch the code yourself, it’s important to
understand what’s happening in Code view. PHP code inserted in the wrong place will
bring your page down like a house of cards.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

12

8598CH01.qxd 6/27/07 3:30 PM Page 12

http://validator.w3.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Design view This renders your page as it should look in a standards-compliant browser.
The CSS rendering in Dreamweaver CS3 is generally very accurate, but don’t fall into the
trap of regarding Dreamweaver as a WYSIWYG (what you see is what you get) web page
builder. It’s an excellent visual design tool, but you need a solid understanding of XHTML
and CSS to use it to its best advantage.

Tag selector The status bar at the bottom of the Document window displays a hierarchical
view of the document indicating where the insertion point is at any given moment. As
Figure 1-10 shows, clicking one of the tags in the Tag selector highlights the element in
both Design view and Code view. This is extremely useful for editing an element or apply-
ing a dynamic behavior to it. Right-clicking a tag in the Tag selector brings up a context
menu with a useful selection of editing options, including the ability to add an ID or a class
to the element. The Tag selector fulfils a similar role to the GoLive Markup Tree bar.

Figure 1-10. Clicking a tag in the Tag selector highlights the
element in Design view, as well as the underlying code.

Property inspector This context-sensitive panel gives direct access to all the main attrib-
utes of the currently selected element. It’s equivalent to the Inspector palette in GoLive.

Panel groups The panel groups, which are displayed by default on the right of the screen,
give you access to more detailed or specialized features. Clicking a panel group’s title bar
toggles it open and closed. The most important one is the Files panel, which not only dis-
plays the file hierarchy of your site but also ensures that all internal links are updated and
controls uploading and downloading to and from your remote server.

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

13

1

8598CH01.qxd 6/27/07 3:30 PM Page 13

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Organizing your workspace
The Windows version of Dreamweaver CS3 comes with three workspace layouts: Designer,
Coder, and Dual Screen. Designer is the default layout shown in Figure 1-4. Coder puts the
panel groups on the left of the screen with the Property inspector collapsed. Dual Screen
detaches the panel groups and Property inspector and opens a separate Code Inspector,
ready for you to arrange as you like. The Mac version has two preset options: the Default
layout shown in Figure 1-5 and the Dual Screen option.

To select a layout, go to Window ➤ Workspace Layout, and choose the layout you want
to use.

Rearranging panels
The preset layouts are just a start. You can undock any
panel group by hovering your mouse pointer over the
left side of a panel’s title bar until it turns into a four-
headed arrow, as shown alongside (or a hand on the
Mac version). Hold down your mouse button, and drag
the panel to wherever you want.

Saving and sharing customized workspace layouts
In addition to undocking panel groups, you can reorganize the panels into different groups
to suit your own preferences or to reflect different priorities for various projects. To move
a panel, open its parent panel group, and select the panel you want to move. Then right-
click the icon on the right of the panel group’s title bar to display the Options menu, as
shown in the following screenshot. You can choose to move the panel to an existing group
or to create a new panel group. The menu also offers other options, including renaming
the panel group. (The same options are available from a much larger menu if you use your
main mouse button.)

Once everything is the way you want it, save the new layout by choosing Window ➤

Workspace Layout ➤ Save Current. The name of your customized workspace appears at the
top of the Workspace Layout submenu. There is no limit to the number of preset layouts
that you can create, and you can switch freely between layouts without restarting the pro-
gram. To rename or remove customized layouts, use the Manage option at the bottom of
the Workspace Layout submenu.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

14

8598CH01.qxd 6/27/07 3:30 PM Page 14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can transfer customized layouts to another computer by copying the XML files that
store the details. In Windows XP, the files are in C:\Documents and Settings\<username>\
Application Data\Adobe\Dreamweaver 9\Configuration\Workspace, where <username>
is the Windows account to which you are currently logged in. In Vista, they’re in C:\Users\
<username>\AppData\Roaming\Adobe\Dreamweaver 9\Configuration\Workspace. If you
can’t see the Application Data or AppData folder, see the next section, “Accessing hidden
files and folders in Windows.”

On a Mac, they are in Macintosh HD:Users:<username>:Library:Application Support:
Adobe:Dreamweaver 9:Configuration:Workspace.

The files have the same name that you used to save the layout. Simply copy them to the
other computer, and restart Dreamweaver. Since they’re XML, you can share them among
Windows and Mac users.

Accessing hidden files and folders in Windows
Most Dreamweaver configuration files are hidden by default in Windows XP and Vista. To
edit or copy them, you need to enable the option to view hidden files and folders. Once
you turn on this option, hidden folders are displayed as dimmed icons to remind you to
treat them with care.

In Windows XP, go to Start ➤ My Computer ➤ Tools ➤ Folder Options ➤ View. In Advanced
settings, select Show hidden files and folders. In Vista, go to Start ➤ Computer ➤ Organize ➤
Folder and Search Options ➤ View. In Advanced settings, select Show hidden files and folders.

Displaying optional toolbars
Bizarre though it may seem, the Standard toolbar (see following screenshot) is not dis-
played by default. To display it, go to View ➤ Toolbars, and select Standard. Alternatively,
right-click any toolbar, and select Standard from the context menu.

Dreamweaver automatically locates the Standard toolbar—which contains common file
functions such as New Document, Open, Save, Print, Cut, Copy, and Paste—immediately
below the Document toolbar. This isn’t really very helpful, because it means the toolbar
disappears as soon as all documents are closed.

However, on Windows you can move the Standard toolbar by positioning your mouse
pointer over the double row of dots at the left edge, holding down the main mouse but-
ton, and dragging and dropping the toolbar to a new location. If you have a wide monitor,
you can place it alongside the Insert bar. Alternatively, dock it directly underneath the
Insert bar. It then remains available at all times.

On a Mac, there appears to be no way of undocking the Standard toolbar from the
Document toolbar.

Temporarily hiding all panels
When you want to clear the onscreen clutter to see your design in all its glory, just press
F4, and all the panels disappear, leaving the Document window on its own. In Windows,

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

15

1

8598CH01.qxd 6/27/07 3:30 PM Page 15

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the Document window expands to fill the entire workspace. On a Mac, panels disappear,
but the Document window doesn’t change size. Press F4 again: the panels return, and on
Windows, the Document window shrinks back to fit inside the workspace.

Organizing visual assets with Bridge
If you have used Adobe Creative Suite 2, you’ll already be familiar with Bridge, although it
has undergone a considerable transformation in CS3. It’s a powerful file organizer with
features designed to appeal to photographers and designers, and it now comes bundled
with Dreamweaver CS3. To do Bridge justice would require several chapters, so I’ll concen-
trate on the main points that apply to Dreamweaver.

You can launch Bridge CS3 either from the Start menu in Windows and Applications in Mac
OS X or from inside Dreamweaver or any other CS3 program. To launch Bridge from inside
Dreamweaver, go to File ➤ Browse in Bridge, or click the Browse in Bridge button on the
Standard toolbar (shown alongside).

Bridge is a large program, so it doesn’t appear instantly. The advantage of launching Bridge
from inside Dreamweaver is that it automatically displays the root folder of the current
site in the Content tab. Figure 1-11 shows the default layout of Bridge after navigating to a
site’s main images folder.

Figure 1-11. Bridge CS3 makes it easy to view and organize a website’s visual assets.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

16

8598CH01.qxd 6/27/07 3:30 PM Page 16

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Content tab in the center displays the contents of the selected folder. At first glance, it
may not look very different from Windows Explorer or Mac Finder, but the first thing you’ll
notice is that if you have Flash movies (SWF files) or video (FLV), Fireworks PNG files,
Photoshop PSD files, or Adobe Illustrator AI files, you can see a thumbnail of the contents,
rather than an icon. You can also play Flash video and see the contents of most PDF files.
You can even flip through the pages of a PDF in the Preview panel at the top right.

Two features that will appeal to digital photographers are the abilities to use Bridge to
import photos directly from your camera (File ➤ Get Photos from Camera) and to preview
photos stored in Camera Raw, the generic name given to the native format of most
middle-range and professional-level digital cameras.

Controlling thumbnails
The thumbnails in the Content tab are scalable. Just drag the pointer at the right end of the
Bridge status bar to make them bigger or smaller. If the thumbnails look blurred, switch
the default to High Quality Thumbnails by opening the Preferences panel (Edit ➤ Preferences
or Bridge ➤ Preferences on a Mac) and selecting the Thumbnails category. The Thumbnails
category in Preferences also lets you choose other information to be displayed under the
thumbnail in addition to the file name.

Once a thumbnail has been generated, Bridge caches it in a central folder to speed up the
program’s performance. By default, the cache is created in your own user folders, but you
can change the location through the Advanced category of Preferences. It’s a good idea to
purge the cache from time to time to avoid clogging up your hard disk with thumbnails of
files no longer in use. You can clear the entire cache by clicking the Purge Cache button in
the Advanced category of Preferences. To clear the cached thumbnails for a single folder,
go to Tools ➤ Cache, and select Purge Cache for Folder “foldername”.

As well as the default view shown in Figure 1-11, there are two other layouts: Filmstrip
Focus and Metadata Focus (which displays metadata alongside the thumbnail). You can
quickly switch between views by clicking one of the numbers at the bottom right of the
Bridge status bar.

If you want to display your images in their full glory, Bridge can create a full-screen
slideshow (View ➤ Slideshow or Slideshow Options). Press Esc to exit the slideshow.

Adding metadata
To get the most out of Bridge’s powerful search capabilities, you need to input information
about your images, such as keywords, designer/photographer, ranking (you can give
images star ratings), and so on. You fill in these details in the Metadata and Keywords tabs
at the bottom right of the default view.

Renaming files
One of the most useful features of Bridge is its ability to rename large numbers of files.
Let’s say you have just received a batch of photos from a client and they have meaningless
names such as DSC_0417.jpg. You can rename them all in seconds by selecting them in

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

17

1

8598CH01.qxd 6/27/07 3:30 PM Page 17

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Bridge and going to Tools ➤ Batch Rename. The options allow you to build up complex yet
meaningful names. You can rename the existing files in the same folder or make renamed
copies in a different folder.

Although you can use the batch rename feature to change the file name extension of all
files in a website from .html to .php, the integration with Dreamweaver is not smart
enough to update all internal links inside the files. This would be a useful addition to a
future version.

Dragging and dropping files
You can drag and drop any file directly from Bridge into Dreamweaver or another CS3 pro-
gram. If you drag an image into Dreamweaver, it’s inserted into the page wherever you
drop it, automatically creating the necessary XHTML. If you drag an image into Fireworks,
it’s immediately ready for editing.

Creating standards-compliant web pages
No sooner was Dreamweaver 8 out of the door than a team of Dreamweaver engineers
were recruited for a secret mission known as Project Hoover, a reference to the well-
known brand of vacuum cleaners. The team’s task has been to sweep up relics of the past,
removing obsolete tags and markup from the code that Dreamweaver creates when laying
out a web page. Web standardistas will be quick to point out that the job isn’t complete,
but the team has trodden a delicate path between striving for full standards compliance
and maintaining backward compatibility with existing sites. I understand that the team
members haven’t packed away their coveralls; they plan to keep on vacuuming as they
work on the next release. They’re not ready to flip the Hoover off switch just yet.

Enhanced CSS support
In spite of some failings, particularly in regard to ensuring full compliance with a Strict
DTD—which is still left up to the user—I think it’s fair to say that Dreamweaver CS3 is the
most standards-compliant version of the program yet. It comes with an impressive array of
standard layouts, styled with fully-commented CSS. The handling of CSS style rules and the
visual rendering of pages in Design view are much improved. Dreamweaver CS3 is
browser-neutral: unlike the previous version, it doesn’t attempt to emulate Internet
Explorer 6. Instead, it attempts to render styles according to the CSS 2.1 recommendation
laid down by W3C—and mostly succeeds.

As part of Project Hoover, Dreamweaver dropped proprietary terminology in favor of
more descriptive terms.

Layers are dead . . . Welcome, AP elements
One important change for existing Dreamweaver users and those migrating from GoLive is
that layers are dead. Since a layer is really a <div> that has been absolutely positioned with
CSS, Dreamweaver CS3 now calls them AP elements. While this may seem a cosmetic

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

18

8598CH01.qxd 6/27/07 3:30 PM Page 18

http://lib.ommolketab.ir
http//lib.ommolketab.ir

change, the idea is to clarify how they fit into a web page. What’s more, any tag can be
used to create an AP element, not just a <div>.

Figure 1-12 shows how Dreamweaver CS3 renders the following code (it’s in examples/
ch01/classof58.html in the download files):

<div id="wrapper">
<img id="header" src="images/header.jpg" alt="Class of 58" ➥

width="720" height="175" />
<ul id="nav">
Home
2006 Reunion
Memory Lane
Roll call
<a href="#"
Contact

</div>

The wrapper <div> is relatively positioned to center the whole page in the browser and
contains two absolutely positioned elements: an image with the ID header and an
unordered list with the ID nav. As you can see, the AP Elements panel on the right of the
figure lists both absolutely positioned elements but not the relatively positioned one. In
previous versions of Dreamweaver, the Layers panel ignored absolutely positioned ele-
ments unless they used a <div> tag.

Figure 1-12. Dreamweaver CS3 lists all absolutely positioned elements in the new AP Elements panel.

For backward compatibility, “layers” still live on in the name of the JavaScript function
associated with one of the Dreamweaver behaviors. Although the Show/Hide Layers
behavior has been renamed Show/Hide Elements, the function is still called
MM_showHideLayers. However, the behavior now handles any element that has an ID.
Behaviors are covered in the next chapter.

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

19

1

8598CH01.qxd 6/27/07 3:30 PM Page 19

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This new arrangement gives you much greater flexibility and control over your CSS.
There’s no longer any need to litter your code with unnecessary <div> tags, and the AP
Elements panel provides an instant snapshot of the absolutely positioned elements on your
page. You can drag and drop elements within the panel to change their z-index property,
and the eye icon on the left of the panel changes the visibility property. AP elements
nested inside another AP element are indented, and if you realize that the nesting is caus-
ing an element to be displayed in the wrong place, you can separate them by dragging the
nested element to the left of the panel. Changes made in the AP Elements panel automat-
ically update the element’s style rules, even if they are in a separate style sheet.

Seeing the impact of CSS changes in real time
Grouped together with the AP Elements panel is the CSS Styles panel, which lets you
inspect and edit style rules without leaving Design view. As a result, you can see immedi-
ately how your changes affect the layout of the page and tweak them until you get the
desired result. Like many features in Dreamweaver, the CSS Styles panel is context sensi-
tive. Figure 1-13 shows the styles for the nav unordered list in classof58.html. The prop-
erties for the #nav ID selector are shown in the lower section of the panel, while the upper
sections show all the rules that affect the element currently selected in Design view. This
helps you understand how the rules are cascaded down to a particular element, making it
easier to troubleshoot styles that don’t work the way you expect. Chapters 5 and 6 show
you how to make effective use of the CSS Styles panel.

Figure 1-13.
The CSS Styles panel shows which styles in the
cascade affect the selected element.

The style rules for classof58.html are in classof58.css in the styles folder.
This example has been deliberately designed to demonstrate a new feature of
Dreamweaver CS3. I don’t necessarily recommend the use of AP elements to
achieve this particular layout.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

20

8598CH01.qxd 6/27/07 3:30 PM Page 20

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Improved style sheet management
A major innovation in Dreamweaver CS3 is the ability to drag and drop selectors in the
CSS Styles panel to reorder style blocks in your style sheet. You can also move styles out
of the <head> of a document into a new or an existing style sheet with just a couple of
mouse clicks. The target style sheet doesn’t even need to exist or to be open; everything
happens automatically.

If you have old-style layers with inline styles, you can clean up your pages easily by using
the Convert Inline CSS to Rule feature to move the rules into the <head> of the document
or an external style sheet. It doesn’t matter whether you’re in Code view or Design view; as
long as your cursor is anywhere inside a layer, just right-click and select CSS Styles ➤
Convert Inline CSS to Rule from the context menu. Dreamweaver presents you with the dia-
log box shown in Figure 1-14.

Figure 1-14. As long as your cursor is inside a layer, Dreamweaver can move the
inline styles to an external style sheet or the head of the document.

Dreamweaver automatically chooses the ID as the name of the selector for the new rule.
Although you can change the name in the dialog box, this affects only the new style rule.
It doesn’t change the ID of the <div>. You can convert only one layer at a time, but it’s a
much quicker and more accurate way of tidying up legacy pages than attempting to cut
and paste everything manually. The Convert to drop-down menu at the top left of the
Convert Inline CSS dialog box has two other options: to create a class based on the inline
styles or to apply the styles to all <div> elements. They are there for completeness and
should be used rarely, if ever. You can test this feature using layers.html in
examples/ch01.

Another small improvement to CSS management in Dreamweaver CS3 is the option to
clean up the formatting of style rules by selecting Apply Source Formatting from the
Commands menu. The available formatting options are shown in Figure 1-15. They’re very
basic in comparison with a dedicated CSS editor like TopStyle Pro but are nevertheless a
welcome addition. To access the CSS Source Format Options dialog box, go to Preferences
on the Edit menu (Dreamweaver menu on a Mac), select the Code Format category, and
click the Advanced Formatting CSS button.

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

21

1

8598CH01.qxd 6/27/07 3:30 PM Page 21

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 1-15. You can tell Dreamweaver CS3 how you prefer
style sheets to be laid out.

Using visual aids to understand your CSS structure
Dreamweaver’s visual aids are a powerful feature that helps you visualize the underlying
structure of your page by highlighting individual block elements and their associated
padding and margins in Design view. Most visual aids are turned on by default but remain
in the background until you select a particular block element, such as a <div> or <table>.
Figure 1-16 shows one of the preset layouts with the container <div> selected in the Tag
selector (the file is also in examples/ch01/visualaids.html).

Figure 1-16. Dreamweaver lets you see the underlying structure of your page with powerful
visual aids.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

22

8598CH01.qxd 6/27/07 3:30 PM Page 22

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you hover your mouse pointer over different sections of the page, Dreamweaver
displays a box containing information about the currently applied style rules. As you can
see in Figure 1-16, the width of the container <div> is declared as 80%. The 581px dis-
played in parentheses is the calculated width that would be displayed in a browser opened
to the same size as the current Document window (the size—744✕399—is displayed at the
right end of the status bar). The selected element has a solid border, and child <div>
elements are indicated by a dotted border. Padding and margins are indicated by cross-
hatching.

Most of the time, you will find these visual aids a help rather than a hindrance, but if you
want to turn them off, open the Visual Aids menu on the Document toolbar (see Figure 1-9
and the screenshot alongside). A check mark alongside an option
indicates that it’s active. Clicking an option toggles it on and off.
The same options are also available from the Visual Aids submenu
of the View menu. A quick way to toggle all currently selected
visual aids on and off is to use the keyboard shortcut
Ctrl+Shift+I/Shift+Cmd+I.

The CSS Layout Backgrounds option is turned off by default. It
identifies all box elements on a page by highlighting each one in
a different color. It’s useful for analyzing a page that you might
have inherited from another developer but should normally be
disabled. If your page suddenly looks like a five-year-old child’s
coloring book, make sure CSS Layout Backgrounds hasn’t been
turned on by mistake.

Checking for browser bugs
Another invaluable aid in CSS troubleshooting is the Check Browser Compatibility feature.
This offers much more detailed support than the Check Browser Support option in
Dreamweaver 8, which it replaces. Figure 1-17 shows the results of running Check Browser
Compatibility on classof58.html.

Figure 1-17. Dreamweaver CS3 identifies potential CSS bugs in your pages and links to an online
knowledge base.

As you can see, Dreamweaver lists two potential bugs together with the line on which the
affected elements are located in the XHTML code. The field on the right of the Results
panel gives a brief description of the CSS bug, and at the bottom of the panel, there’s a
link to an online resource called CSS Advisor, where you can find further information. The
site is moderated by Adobe to ensure that the information comes from reliable sources.
Clicking the bottom icon in the left margin of the Results panel launches your default
browser and presents you with the full report as a single page.

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

23

1

8598CH01.qxd 6/27/07 3:30 PM Page 23

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Checking what your page will look like on other media
Adobe Device Central CS3 is a major addition to Dreamweaver. In addition to launching a
variety of browsers from within Dreamweaver to preview your website, you can now see
how it will look in a mobile phone. Figure 1-18 shows classof58.html in a generic device,
but you can choose skins from all the main mobile phone manufacturers, and more will be
made available on a regular basis as a free upgrade service.

Figure 1-18. Device Central lets you see what your site will look like in a wide range of mobile
devices.

Device Central works both with static web pages and, as long as you install a PHP develop-
ment environment as described in Chapter 4, dynamic PHP pages, too. You access Device
Central by selecting File ➤ Preview in Browser ➤ Device Central. The keyboard shortcut
(Ctrl+Alt+F12/Ctrl+Opt+F12) is easy to remember because it’s so similar to the shortcut
for previewing in your default browser (F12/Opt+F12). The display in Device Central is
interactive, so you can use the mobile keypad and click links to navigate to other pages.
Although Device Central is intended to be used as an emulator in a development environ-
ment, you can also view live pages on the Internet. Just type the website address into the
URL field in the right panel and press Enter/Return.

Using the Style Rendering toolbar Many people think of style sheets in terms of “one size
fits all”—in other words, they create one set of style rules and hope that the site will look
just as good in every medium. However, you can specify different style sheets for a variety
of media, those with the best support being for ordinary browsers (screen), print, and
handheld devices. One of Dreamweaver 8’s best-kept secrets—because it wasn’t enabled
by default—was the Style Rendering toolbar (see Figure 1-19). You still have to enable it

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

24

8598CH01.qxd 6/27/07 3:30 PM Page 24

http://lib.ommolketab.ir
http//lib.ommolketab.ir

yourself in Dreamweaver CS3, but it’s well worth doing so if you work with multiple style
sheets.

The Style Rendering toolbar lets you see the effect of each media style sheet in Design
view. It also allows you to disable CSS entirely, so that you can see the logical flow of your
web page in the same way that it would be presented to a visually disabled person using a
screen reader.

A new addition to the Style Rendering toolbar in Dreamweaver CS3 is the Design Time Style
Sheets icon. This gives direct access to the Design Time Style Sheets dialog box, which lets
you control which style sheets are applied or hidden while working in Design view. The
advantage of this is that it allows you to view two or more style sheets in combination,
whereas the Style Rendering toolbar selects only one at a time. Design Time Style Sheets
are covered in Chapter 12.

To enable the Style Rendering toolbar, go to View ➤ Toolbars, and select Style Rendering.
Dreamweaver parks the toolbar at the top of the Document window, but in Windows, you
can detach it and move it to a new location by dragging the double row of dots to the left
of the Screen icon.

If you prefer working with menus, you can access the Style Rendering submenu from the
View menu. To access Design Time Style Sheets, use Text ➤ CSS Styles ➤ Design-time.

Understanding Dreamweaver’s approach to layout
Although many people treat Dreamweaver as a WYSIWYG tool, you’ll get the best out of
the program if you have a good understanding of the principles of XHTML and CSS, and
use Design view to keep track of how your structure is likely to be rendered in standards-
compliant browsers. However, Dreamweaver does have some legacy features that are
designed to assist with purely visual layout. Most of them are best avoided, but it’s useful
to know they exist and the problems they can cause.

Drawing absolutely positioned elements
The Draw AP Div button (see alongside) in the Layout tab of the Insert bar lets you “draw”
an absolutely positioned <div> in Design view. It’s simple to use. The cursor turns to a
crosshair pointer. Position the intersection of the crosshair wherever you want to locate a
corner of the <div>, hold down the main mouse button, and drag in any direction. When
the <div> is how you want it, release the mouse button.

Figure 1-19.
The Style Rendering toolbar lets you see the
effect of different style sheets without leaving
Design view.

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

25

1

8598CH01.qxd 6/27/07 3:30 PM Page 25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you need to make any adjustments, click the box-shaped handle at the top left of the
<div>. When the cursor turns into a four-headed arrow as shown in the following screen-
shot (on a Mac, it turns into a hand), hold down the main mouse button to drag and drop
the <div> into a new position. You can visually change the dimensions of the <div> by
using any of the resize handles at the corners and the center of each side.

This is a very convenient way of creating an absolutely positioned <div>. Dreamweaver
automatically assigns the ID apDiv1 to the first one on a page and numbers any subse-
quent ones sequentially. The style rules for each <div> created this way are automatically
inserted into a style block in the <head> of the document. You can also insert an absolutely
positioned <div> by choosing Insert ➤ Layout Objects ➤ AP Div, and move and visually
resize it the same way.

The problem with creating an absolutely positioned <div> by either of these methods is
that you need to keep an eye on what is happening to your underlying code. It doesn’t
matter where your cursor is when you use the Draw AP Div button on the Insert bar.
Dreamweaver always inserts the first new <div> immediately after the opening <body> tag,
and any subsequent ones are also inserted ahead of your static (non-absolutely posi-
tioned) content. However, if you use the Insert menu to insert an absolutely positioned
<div>, the code is inserted wherever your cursor happens to be at the time. Everything
may look fine in Design view, but the underlying code can descend into chaos if you’re not
careful.

Layout Mode goes into exile
A change that will shock some visual designers is the removal of Layout Mode from the
Layout category of the Insert bar. The concept behind Layout Mode was well intentioned:
it attempts to treat web page layout like desktop publishing. After drawing a layout table
as the page framework, you draw individual layout cells to hold your content, while
Dreamweaver looks after building the underlying structure.

Unfortunately, the Web is a fluid medium totally unlike print, and the way Layout Mode
achieves a rigid framework is by creating a rat’s nest of code glued together by invisible
spacer images. The result can look very satisfying. The problems arise when you decide to
reposition anything or add extra content. The code begins to tie itself in impossible knots,
and pleas for help in online forums invariably bring forth hoots of derision followed by the
only practical advice: start again, preferably avoiding Layout Mode.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

26

8598CH01.qxd 6/27/07 3:30 PM Page 26

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I don’t propose to say anything more about Layout Mode other than to advise you to stay
well clear. Layout Mode can still be accessed by selecting View ➤ Table Mode ➤ Layout
Mode (Alt+F6/Opt+F6), but the complex code that it creates will have you tearing your
hair out if you attempt to combine it with dynamic technologies, such as Spry and PHP.
You should also avoid all other options on the Table Mode submenu.

Getting the best out of Code view
Many web designers are terrified of working with the code that lies under Dreamweaver’s
Design view. There’s nothing to be worried about. Most of the time you can remain in
Design view and leave Dreamweaver to create efficient, standards-compliant code on your
behalf. But when you start mixing Spry or PHP dynamic elements with your web pages, you
need to understand what is going on in Code view. That doesn’t mean you need to learn
every single tag and attribute, but you do need to know when something is in the wrong
place and where to locate your cursor for Dreamweaver to insert dynamic code. Code
view has a number of features to make your life easier.

Using the Coding toolbar
The Coding toolbar is displayed by default on the
left side of Code view. It’s also available in the Code
Inspector (F10/Opt+F10), which allows you to view
the underlying code of a page in a separate window.
The Coding toolbar can’t be undocked, but you can
hide it in Code view by deselecting it from the View
➤ Toolbars menu (or from the context menu of any
toolbar). In the Code Inspector, it’s controlled inde-
pendently by the View Options menu at the top of
the inspector.

Figure 1-20 shows what each button is for, and the
same information is displayed as a tooltip whenever
you hover your mouse pointer over one of them. A
really cool aspect of the Coding toolbar is what hap-
pens when there’s not enough room to display all
the buttons. A double chevron appears after the last
button that can fit into the available space. If you
click it, the rest of the toolbar sits neatly at the bot-
tom of Code view.

Figure 1-20. The Coding toolbar

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

27

1

8598CH01.qxd 6/27/07 3:30 PM Page 27

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s take a quick look at what each button does:

Open documents: This displays a list of currently open documents together with
the full pathname of each file. This is very useful if you have several pages open, all
with the same name (such as index.php from different folders or sites). Click the
name of a file, and it comes to the front—no more guessing whether you have the
correct file open.

Collapse full tag: This selects the code block in which your cursor is currently
located and collapses everything inside including the opening and closing tags.
Unfortunately, it works only with XHTML tags; it cannot be used to select a PHP
code block. To collapse everything outside a full tag, hold down the Alt/Opt key
while clicking the Collapse Full Tag button. This is useful for isolating a block of
code and hiding the rest of the page.

Collapse selection: This collapses the currently selected code. To collapse all code
outside the selection, hold down Alt/Opt while clicking the Collapse Selection
button.

Expand All: Click this to expand all collapsed sections.

Select parent tag: This selects the parent tag of the current selection or wherever
the insertion point is currently located. For example, if your cursor is inside a para-
graph, it selects the entire paragraph and the enclosing <p> tags. Clicking again
moves up the document hierarchy, always selecting the parent element of the cur-
rent selection.

Balance braces: This selects all code between matching curly braces, brackets, or
parentheses. This button will help maintain your sanity when working with PHP code.

Line numbers: This toggles on and off the display of line numbers in Code view.

Highlight invalid code: Dreamweaver highlights incorrectly nested tags in yellow.
This can be distracting in Code view, particularly when working with PHP, where
conditional structures might result in code that Dreamweaver incorrectly interprets
as invalid. This button toggles the yellow highlighting on and off in Code view. The
default is off.

Apply comment tags: This lets you apply different types of comment tags to the
current line or selection. PHP comments are covered in Chapter 10.

Remove comment tags: This removes comment tags from the current line or
selection.

Wrap tag: This provides a quick way to wrap the current selection in an XHTML tag.
Dreamweaver lets you select any tag, even if it’s inappropriate in the current con-
text. This is based on the principle that, if you’re working in Code view, you should
know what you’re doing. When mixed with PHP conditional logic, apparently invalid
code is often perfectly OK, so Dreamweaver makes no attempt to intervene.

Recent snippets: This displays a list of the most recently used items from the
Snippets panel, providing quick access to frequently used code snippets.

Move or convert CSS: This provides a quick way to move style rules, as described in
“Improved style sheet management” earlier in the chapter.

Indent code: This moves the opening tag of the current selection to the right.
If nothing is selected, Dreamweaver automatically selects the parent tag and
moves it.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

28

8598CH01.qxd 6/27/07 3:30 PM Page 28

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Outdent code: This moves the opening tag to the left.

Format source code: This reveals a menu that lets you apply default formatting to
the entire page or the current selection. It also provides quick access to the Code
Format category of the Preferences panel and to the Tag Library Editor. The Tag
Library Editor gives you control over how every single XHTML tag is formatted in
your underlying code. It’s mainly of interest to advanced users, but the interface is
intuitive and easy to use.

In addition to using the Coding toolbar to collapse sections of code, you can use the key-
board shortcuts in Table 1-2. When you collapse a section of code, it affects only what you
see in Code view; the contents remain fully expanded in Design view. Dreamweaver
remembers which sections of code are collapsed when a page is saved, so the same layout
is visible in Code view the next time you open a document.

Table 1-2. Keyboard shortcuts for collapsing code

Action Windows shortcut Mac shortcut

Collapse full tag Ctrl+Shift+J Shift+Cmd+J

Collapse outside tag Ctrl+Alt+J Opt+Cmd+J

Collapse selection Ctri+Shift+C Shift+Cmd+C

Collapse outside selection Ctrl+Alt+C Opt+Cmd+C

Expand all Ctrl+Alt+E Opt+Cmd+E

To inspect a collapsed section, highlight it and use the plus button in the left margin (it’s a
triangle in the Mac version) to expand it, or hover your mouse pointer over it and view the
content as a tooltip.

To select sections of code in Code view, use the Select Parent Tag or Balance Braces but-
tons. Alternatively, use your mouse or keyboard in the same way as with any text editor.
Double-clicking selects the current word. Triple-clicking selects the parent tag. The GoLive
selection shortcuts do not work in Dreamweaver.

Setting Code view options
Code view has a number of options that you can set by access-
ing View ➤ Code View Options or from the View options menu
on the Document toolbar (see Figure 1-9 and the screenshot
alongside). You toggle the options on and off by clicking them.
A check mark alongside an option indicates that it’s active.

Controlling word wrapping in Code view The way Dreamweaver
wraps text in Code view confuses many people. There are two
options: soft and hard wrapping. Soft wrapping is on by default
and works like a word processor. When code would normally
extend beyond the right edge of Code view, Dreamweaver automatically wraps it to the
next line. If you resize the Code view window, the code reorganizes itself to fit the

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

29

1

8598CH01.qxd 6/27/07 3:30 PM Page 29

http://lib.ommolketab.ir
http//lib.ommolketab.ir

viewport. No new line characters are inserted into the code until you press Enter/Return.
If you prefer your code to be in a single line and don’t mind scrolling horizontally, deselect
Word Wrap.

Hard wrapping is off by default. When turned on, it automatically inserts a new line char-
acter a preset distance from the left margin. Although this makes code look tidy, it causes
serious problems with JavaScript and is not recommended. It’s controlled by the Automatic
wrapping option in the Code Format category of the Preferences panel (Edit ➤ Preferences
or Dreamweaver ➤ Preferences). If you have turned this option on, I strongly recommend
that you turn it off and rely on soft wrapping instead.

Displaying line numbers Dreamweaver displays line numbers in the left margin of Code
view. They are generated automatically and don’t become part of your code. The line
numbers are particularly useful for locating problems with PHP code. You can also toggle
them on and off from the Coding toolbar.

Displaying hidden characters This option reveals characters that aren’t normally visible in
your code. It should normally be turned off but can be useful for debugging problems
caused by unwanted new line characters in PHP or JavaScript.

Highlighting invalid code This menu option does the same as the button on the Coding
toolbar described in the preceding section.

Syntax coloring Dreamweaver highlights XHTML, PHP, and other code in preset colors
according to the role it fulfils, making it easy to identify key sections of code quickly.
Forgetting to close a pair of quotes results in the subsequent code being displayed in the
wrong color, alerting you to the mistake. In normal circumstances, this option should
always be on. You can adjust the colors to your liking by going to Edit ➤ Preferences
(Dreamweaver ➤ Preferences on a Mac) and selecting Code Coloring. Choose the appropri-
ate Document type, and click Edit Coloring Scheme.

Automatically indenting code With the Auto Indent option selected, Dreamweaver auto-
matically indents your code according to the settings in the Code Format category of the
Preferences panel and the Tag Library Editor, as described in the preceding section.

Using code hints and auto completion
By default, Dreamweaver displays context-sensitive code hints
in Code view. For example, if you type an opening angle
bracket after the <body> tag of an XHTML page, a context
menu pops up displaying all valid XHTML tags, as shown in the
screenshot alongside. You can either scroll down to find the
tag you want and double-click to insert it or continue typing.
As soon as you type di, the context menu highlights <>div.
Press Enter/Return, and Dreamweaver completes the tag
name.

When you press the spacebar, another context
menu springs up, this time showing you all the
valid attributes for the tag. Again, scroll down to
select the one you want or continue typing. If you
type i and press Enter/Return, Dreamweaver
enters id="", as shown alongside, and positions

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

30

8598CH01.qxd 6/27/07 3:30 PM Page 30

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the insertion point between the quotes ready for you to insert the ID value. Even better, if
your page already has a style sheet attached to it, Dreamweaver populates a list of defined
IDs. Use your keyboard arrow keys and Enter/Return to insert your choice. Alternatively,
select it with your mouse pointer and double-click.

These context menus continue to appear until you type the closing angle bracket of the
tag. If you lose the context menu, just press Ctrl+Space anywhere between the opening
and closing brackets of a tag.

Automatic completion of closing tags Dreamweaver is smart enough to keep track of
which tags are open. As soon as you type </ in Code view, it automatically inserts the cor-
rect closing tag. For example, let’s say you have the following code in a page:

<p>This text is bold and italicized

If you type </ three times, Dreamweaver automatically completes the open tags in the cor-
rect order like this:

<p>This text is bold and italicized</p>

Fine-tuning code hints Most people find code hints invaluable, but if they annoy you or
get in your way, you can delay their appearance by up to five seconds or turn them off
altogether. However, Dreamweaver is much more responsive if you leave the delay at its
default setting of zero. To change the default settings, go to Edit ➤ Preferences
(Dreamweaver ➤ Preferences on a Mac), and select the Code Hints category. The Menus
option lets you turn off code hints for individual categories. For example, you may decide
that you want code hints only for XHTML tags and CSS properties. All categories are
enabled by default.

For compatibility with Dreamweaver MX 2004, you can get Dreamweaver to insert the
matching closing tag as soon as you type the closing angle bracket of an opening tag. So,
if you enter <p>, Dreamweaver inserts </p> and places the insertion point between the
opening and closing tags. This setting can be useful when working with PHP because
Dreamweaver sometimes gets confused as to which tag should be completed if dynamic
code lies in between. You can also tell Dreamweaver never to complete tags.

Dynamic too . . .
So far, I’ve covered the basic things you need to know about Dreamweaver in order to
start building static web pages using XHTML and CSS, but Dreamweaver is capable of much
more. A major new feature in Dreamweaver CS3 is the integration of the Spry Ajax frame-
work. Dreamweaver also has support for creating dynamic websites using server-side tech-
nology. The one I have chosen to concentrate on in this book is PHP in combination with
the MySQL database, both widely available and highly popular open source technologies.
The next chapter explains how they fit into the bigger picture of web development and
how Dreamweaver makes them easy to use.

The keyboard shortcut for code hints on the Mac version is the same as Windows
(Ctrl+Space) to avoid a conflict with Spotlight, which uses Cmd+Space.

DREAMWEAVER CS3—YOUR CREATIVE PARTNER

31

1

8598CH01.qxd 6/27/07 3:30 PM Page 31

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 BUILDING DYNAMIC SITES WITH
AJAX AND PHP

8598CH02.qxd 6/28/07 3:01 PM Page 33

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the last chapter, I discussed many of the new and improved features in Dreamweaver
CS3, but the one with the real “wow factor” is Spry, Adobe’s implementation of Ajax.
Although Ajax started out as an acronym for Asynchronous JavaScript + XML, it’s taken on
a broader meaning. In simple terms, it’s a combination of existing technologies that allow
you to change the content of a web page without the need to reload it in a browser, and
rival implementations have mushroomed at a breathtaking pace. Ajax is not without prob-
lems, particularly with regard to accessibility and search engine optimization, so in this
chapter, I’ll explain what Ajax is, what its pluses and minuses are, and how Dreamweaver
has implemented the Adobe version called Spry. I’ll also be discussing PHP, the most pop-
ular server-side language, which—among other things—activates online forms to send
email, communicate with a database, and make websites searchable.

What this chapter covers

Exploring different ways of adding dynamic features to a website

Understanding the strengths and weaknesses of Ajax and PHP

Using Dreamweaver’s built-in JavaScript behaviors

Applying Spry effects to different page elements

Wrapping a selection in a <div>

Removing a tag cleanly without losing its contents

Taking a look at Dreamweaver server behaviors

Comparing files with a third-party utility

Understanding how dynamic pages work
Back in the early 1990s, web pages consisted of nothing but text. Things didn’t stand still
for long, and it soon became possible to add images and scrolling text. But even if some
things moved around the page in an irritating way, everything on the Web was static in the
sense that the content was fixed at the time the page was created. Genuinely dynamic fea-
tures began to be added around 1995 with the help of two distinct types of technology:
client-side and server-side. The primary distinction between the two is concerned not with
how dynamic features are generated but with where.

At its most basic level, the Internet involves a simple request and response between the
user’s computer (the client) and the remote website (the server), as illustrated in Figure 2-1.
Client-side technology works entirely on the client computer. When used in conjunction
with a website, server-side technology dynamically generates content on the server and
usually sends the result to the client. (Server-side technology encompasses a much
broader range, but I’m concerned here with the way it integrates with the Web.)

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

34

8598CH02.qxd 6/28/07 3:01 PM Page 34

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2-1. The basic relationship on the Internet is between client
and server.

Making pages dynamic with client-side technology
In December 1995, Netscape incorporated into its browser the ability to handle JavaScript.
Microsoft followed shortly afterward, and before long, web pages were using features
such as image rollovers, pop-up windows, and interactive forms for calculations. These
types of dynamic features rely on a script being downloaded from the server at the same
time as the web page. The script runs exclusively on the client computer without any fur-
ther contact with the server, hence the name client-side technology.

Unfortunately, Netscape and Microsoft implemented incompatible versions of the
Document Object Model (DOM), which—among other things—allows a browser to inter-
act with a web page. This forced developers to write convoluted scripts to get dynamic
effects to work consistently in all browsers. Programs like Dreamweaver came to the res-
cue with cross-browser JavaScript behaviors, but they’re limited to simple dynamic effects.
JavaScript looked as though it would never fulfill its original promise.

JavaScript isn’t the only client-side technology. In Flash, the animation and interactive code
are embedded into a SWF file and downloaded to the client. However, Flash also has the
ability to communicate with the server, something that was rarely done with JavaScript
until the technique was popularized by Ajax.

Increasing user interactivity with server-side technology
With a static web page, everything is fixed at the time of design. All text, links, images, and
client-side scripts are hard-coded into the underlying markup. Dynamic web pages built
with a server-side language like PHP work in a very different way. Instead of all content
being embedded in the underlying code, much of it is automatically generated by the
server-side language or drawn from a database. Figure 2-2 illustrates this extra stage in the
process.

Despite the similarity of names, JavaScript is totally unrelated to Java. It was originally
going to be called LiveScript, but the name was changed at the last moment in an
apparent attempt to cash in on the popularity of Java. The decision has caused confu-
sion ever since.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

35

2

8598CH02.qxd 6/28/07 3:02 PM Page 35

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2-2. Server-side technology involves processing on the server before the web page is sent
back to the client.

Generating content dynamically on the server makes it possible to offer the user a much
richer variety of content. Perhaps the best known example is www.amazon.com. Even
though the Amazon catalog contains many thousands of items, you can search its website
for your favorite author (well, mine anyway), and seconds later it presents you with some-
thing like Figure 2-3.

Figure 2-3. Database-driven websites tailor information to the user’s requirements through server-
side techology.

Amazon and international news providers, such as the BBC (www.bbc.com/news) or CNN
(www.cnn.com), constantly update their pages in response to sales figures or breaking news
stories. It would be impossible for them to create and store a separate web page for every
item. Instead, most of the content is stored in a database, and the web server extracts the
relevant information. Although this involves extra processing, it’s normally very quick, and
the whole sequence appears seamless to the user.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

36

8598CH02.qxd 6/28/07 3:02 PM Page 36

http://www.amazon.com
http://www.bbc.com/news
http://www.cnn.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver CS3 supports the following server-side technologies:

Active Server Pages (ASP): Now often referred to as Classic ASP, this is a Microsoft
technology that’s no longer under development. Although still in widespread use,
its limited future makes it a poor choice for anyone starting to develop dynamic
websites.

ASP.NET: This is Microsoft’s replacement for ASP. Although Dreamweaver CS3 sup-
ports ASP.NET with C# and Visual Basic (VB), it doesn’t support ASP.NET 2.0.

ColdFusion: This is Adobe’s own server-side technology. It’s powerful and easy to
learn, but not as widely available as most other server-side solutions.

JavaServer Pages (JSP): This has a steep learning curve, and tends to be used mainly
by large organizations.

PHP: PHP is powerful, very widely used, easy to learn—and the choice for this book.

Why choose PHP?
Arguments of an almost religious nature often break out when discussing which server-
side technology is the best. All the languages supported by Dreamweaver are fine, but it’s
a good idea to pick one and get to know it well. Once you have become proficient at one
server-side language, you’ll find the transition to another a lot easier, because they share
many elements in common.

So, why choose PHP in preference to the others? PHP is the Web’s most widely available
server-side language. Although it fell back from a peak of more than 22 million domains in
mid-2005 (www.php.net/usage.php), it remains the most popular module on Apache, the
software that runs 60 percent of web servers in the world today (http://news.
netcraft.com/archives/web_server_survey.html). Dreamweaver supports PHP in con-
junction with MySQL, the most popular open source database (www.mysql.com). Apache,
PHP, and MySQL run on just about every operating system, including Windows, Mac OS X,
and Linux. This flexibility is one of the great advantages of developing with PHP/MySQL.
Let’s quickly look at the others:

Cost: They’re free. Don’t be fooled into thinking this means they’re just for hobby-
ists. MySQL is used by many leading organizations, including NASA, the U.S. Census
Bureau, Yahoo!, and the New York Stock Exchange.

Open source: Apache, PHP, and MySQL all benefit from a rapid upgrade policy
based on need rather than commercial pressures. If a bug or security risk is identi-
fied, the input of many volunteers helps the core development teams solve prob-
lems rapidly.

Cross-platform capability: You can develop on your personal computer and deploy
the same code on the production server, even if it’s running on a different operat-
ing system. While the goal is 100 percent cross-platform compatibility, some hosts
run PHP on Windows servers in CGI mode, which lacks some features. I point out
such differences whenever they affect the code in this book and offer alternative
solutions.

One thing missing from that list is “ease of learning.” That’s not because they’re difficult—
far from it. All are relatively easy to pick up, but they do require a bit of effort on your
part. If you have experience with other programming languages, your progress is likely to

BUILDING DYNAMIC SITES WITH AJAX AND PHP

37

2

8598CH02.qxd 6/28/07 3:02 PM Page 37

http://www.php.net/usage.php
http://news.netcraft.com/archives/web_server_survey.html
http://news.netcraft.com/archives/web_server_survey.html
http://www.mysql.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

be much faster than if you are a complete beginner. This book is designed to ease your
progress, whatever your level of expertise.

Taking dynamic functionality a stage further with Ajax
Ajax is a fusion of client-side and server-side technology that has been made possible
thanks, in part, to the end of the browser wars, and to the efforts of developers of exten-
sive code libraries that make remaining differences invisible to the user. You can read the
original article that launched the term Ajax at www.adaptivepath.com/publications/
essays/archives/000385.php.

The client-side and server-side technologies that I have described so far are synchronous.
All interaction between client and server happens at the same time. The client sends a
request and the server responds; that’s the end of the communication. Ajax, on the other
hand, is capable of asynchronous communication with the server. It can send requests to
the server in the background, and when it receives the response, just the affected part of
the page is redrawn, usually providing a much more seamless user experience. Ajax fre-
quently employs sophisticated effects, such as color transitions, glides, and fades.

This type of functionality requires complex scripting, so most developers rely on a
JavaScript framework or code library—a collection of tried and tested code. Spry is one
such framework, first released by Adobe in mid-2006. Anyone can download it from
http://labs.adobe.com/technologies/spry, but the free version requires everything to
be coded by hand. Dreamweaver CS3 automates the entire process, putting Ajax features
at your fingertips without the need to touch a line of code. However, before rushing to use
Spry on every web page, you need to be aware of the limitations of Ajax, some of them
serious.

Understanding the limitations of Ajax
All mainstream modern browsers as far back as Internet Explorer 5.0 (Windows only),
Mozilla/Firefox 1.0, Netscape 7, Safari 1.2, and Opera 7.6 support the level of DOM manip-
ulation required by Ajax but with one important condition: JavaScript must be enabled.
This may not seem to be a major obstacle, but published statistics seem to indicate that
the proportion of people browsing with JavaScript disabled has consistently remained in
the region of 10 percent for several years (www.w3schools.com/browsers/browsers_
stats.asp). Many developers dispute these figures, contending that the figures are almost
certainly distorted by search engine spiders, which don’t use JavaScript.

Hopefully, the last point rang alarm bells in your head. Since search engine spiders don’t
use JavaScript, they can’t index any content or links on your site that rely on Ajax—or,
indeed, any other client-side script. You should implement Ajax with care and ensure that
your site remains navigable and meaningful even with JavaScript turned off. Fortunately,
many aspects of Spry do leave your content accessible, but Spry data sets are more of a
problem, as I’ll demonstrate later in the chapter.

Although Apache is the recommended web server for PHP, you can also use Microsoft
IIS on some Windows systems. Instructions for setting up both are in Chapter 3.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

38

8598CH02.qxd 6/28/07 3:02 PM Page 38

http://www.adaptivepath.com/publications
http://labs.adobe.com/technologies/spry
http://www.w3schools.com/browsers/browsers_stats.asp
http://www.w3schools.com/browsers/browsers_stats.asp
http://lib.ommolketab.ir
http//lib.ommolketab.ir

See http://en.wikipedia.org/wiki/Ajax_%28programming%29#Pros_and_cons for a good
summary of the pros and cons of Ajax.

Other considerations you should take into account when deciding whether to use Spry are
as follows:

The Spry code libraries are much bigger than the scripts used by Dreamweaver
behaviors. The code that controls a Spry data set runs to nearly 6,000 lines, adding
approximately 160KB to the size of your page download. Adding a Spry effect, such
as fading an image, increases the download by more than 60KB. The libraries
remain in the browser’s memory, so you don’t need to worry about this being
added to every page, but you should consider carefully whether a single effect is
worth the extra burden or at least consider avoiding heavy use of Spry on the site’s
opening page.

Changes made to the content of a page by Spry cannot be bookmarked, nor do
they become part of the browser’s history, so the back button may not work as
expected.

With server-side technology, all processing is done on the server, so you can be
sure that your intended content is delivered to everyone. If you can achieve the
same results with server-side code, you should consider using it instead of Spry.

Use Spry to enhance your website and not just because Ajax sounds cool. Ajax is cool.
What’s not cool is making your website less user friendly because you don’t know how to
use the right tools for the job.

Dynamic terminology 101
Dreamweaver greatly speeds up the development of dynamic pages by generating most of
the code for you, but you’ll find life a lot simpler if you have at least a basic understand-
ing of what’s happening in Code view, as it makes troubleshooting much easier. Also if you
rely on Dreamweaver to do everything for you with PHP, you’ll be restricted to very basic
features.

This section explains some basic concepts. There’s a more detailed explanation of PHP in
Chapter 10.

Variable A variable acts as a placeholder for an unknown or changeable value, which may
come from user input, a database, the result of a calculation, and so on. Although this
sounds abstract, we use variables all the time in everyday life. My name is David, and my
editor’s name is Chris. In this case, “name” plays the same role as a variable—the word
“name” always remains the same, but the value assigned to it can change.

Function Functions can be regarded as the verbs of programming languages; they do
things. Many functions are built into the language, but you can also build your own func-
tions by combining a series of commands. In both JavaScript and PHP, function names are
always followed by a pair of parentheses. Often, the parentheses contain variables, known
as parameters or arguments. Passing a variable as an argument tells the function to do
something with it, such as perform a calculation or format text.

Event handler JavaScript is triggered by events, such as when the page has finished load-
ing or the user clicks a link. You tell the browser to run a function by assigning it (plus any

BUILDING DYNAMIC SITES WITH AJAX AND PHP

39

2

8598CH02.qxd 6/28/07 3:02 PM Page 39

http://en.wikipedia.org/wiki/Ajax_%28programming%29#Pros_and_cons
http://lib.ommolketab.ir
http//lib.ommolketab.ir

arguments, if necessary) to an event handler such as onclick, onmouseover, or
onmouseout. To give a trivial example, the following code pops up an annoying message
when the link is clicked:

Click me quick

String This is the name that programming languages give to text. A string is always
enclosed in quotes.

Number Normally, numbers should not be enclosed in quotes. When they are, both
JavaScript and PHP treat them as strings, sometimes with surprising results.

Array An array is a variable that can hold multiple values, rather like a shopping list.

Object An object is like a super variable, which can have variables (called properties) and
functions (called methods) of its own. New instances of an object are created using a con-
structor function, which looks and works very much like any other function.

Using Dreamweaver behaviors and Spry effects
Behaviors are ready-made JavaScript functions that you can add to your web pages. Most
behaviors in Dreamweaver CS3 are showing signs of advanced age and should be pen-
sioned off, but have been retained for backward compatibility. However, the Spry team has
contributed seven new behaviors—called Spry effects—breathing new life into the
Behaviors panel.

Third-party developers are also an important source of up-to-date client-side (and server-
side) functionality through Dreamweaver extensions. To install a Dreamweaver extension,
double-click the MXP file you get from the developer, and follow the instructions
onscreen. You can also install and manage extensions with the Extension Manager (Help ➤
Manage Extensions). The following is a short—and by no means exhaustive—list of some of
the most respected third-party developers (some extensions are free; others are sold on a
commercial basis):

Community MX (http://communitymx.com/)

DMXzone (http://dmxzone.com/)

Kaosweaver (http://kaosweaver.com/)

Project Seven (www.projectseven.com)

Tom Muck (http://tom-muck.com/)

You can visit their sites to see what they have to offer, but first let’s take a look at how you
use behaviors by using some of the built-in ones.

Accessing the Behaviors panel
Although the coding methods behind the Spry effects are very different from all the other
built-in behaviors (they’re based on Ajax), they are applied in exactly the same way as any
other behavior. So let’s use one of the new Spry effects to see how to work with behaviors.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

40

8598CH02.qxd 6/28/07 3:02 PM Page 40

http://communitymx.com
http://dmxzone.com
http://kaosweaver.com
http://www.projectseven.com
http://tom-muck.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you open effects_start.html in examples/ch02 in the default Dreamweaver work-
space, it should look like Figure 2-4. The page contains an <h1> heading, a series of dummy
links in an unordered list, a paragraph containing a photo of the Golden Pavilion in Kyoto,
and a paragraph of dummy text.

Figure 2-4. The test page for Spry-based effects

Because behaviors need to be triggered by an event, you need to select the tag you want
to use as the trigger. I’m going to use the Appear/Fade link in effects_start.html, so I’ve
placed the cursor inside that link, as shown in Figure 2-4. You apply behaviors through the

Shortly before Dreamweaver CS3 began shipping, Adobe decided to make a funda-
mental change in the main code library for Spry effects, using JavaScript objects
instead of functions. This will make it easier to combine effects. However, the new
code library (Spry 1.5) was not completed in time, and Dreamweaver CS3 shipped with
version 1.4. To ensure that effects applied through the Dreamweaver Behaviors panel
continue to work when Spry 1.5 becomes available (expected in mid-2007),
Dreamweaver uses wrapper functions to create the JavaScript objects. This means you
can apply Spry effects without worrying about the changes.

Spry is still evolving. To keep up with developments, visit http://blogs.adobe.com/
spryteam/. Adobe says updates to Spry will be incorporated into Dreamweaver,
although at the time of this writing no decision had been made whether this would be
through the automatic updater or the release of extensions. Check my website at
http://foundationphp.com/egdwcs3/updates.php for details of changes that affect
the instructions in this book.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

41

2

8598CH02.qxd 6/28/07 3:02 PM Page 41

http://blogs.adobe.com
http://foundationphp.com/egdwcs3/updates.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Behaviors panel, which is inside the Tag Inspector panel group (it’s the third from the top
on the right side of Figure 2-4).

Press Shift+F4 to open the Behaviors panel. Alternatively, click the title bar of the Tag
Inspector panel group to open it, and select the Behaviors tab. Note how the text in the
panel group title bar changes to reflect the name of the parent tag of the cursor’s current
location, as shown in Figure 2-5. If a whole tag is selected, the Tag Inspector indicates the
currently selected tag, rather than its parent.

Click the plus (+) button at the top of the Behaviors panel to reveal the menu. As Figure 2-6
shows, some items are grayed out. Only those behaviors that can be applied to the current
tag are accessible.

The ~Deprecated category at the bottom of the menu includes the notorious
Dreamweaver pop-up menus, which produce the most complex, search-engine-unfriendly
code imaginable. If you have never used Dreamweaver pop-up menus before, don’t even

Figure 2-6.
Behaviors that cannot be applied to the
current tag are grayed out.

Figure 2-5.
The Tag Inspector title bar changes to
indicate the current tag.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

42

8598CH02.qxd 6/28/07 3:02 PM Page 42

http://lib.ommolketab.ir
http//lib.ommolketab.ir

think about it. They have been replaced by the standards-compliant Spry Menu Bar, which
is much lighter and produces fully accessible links (see Chapter 7). Use behaviors in the
~Deprecated category only to maintain code on existing sites.

This exercise assumes that you have downloaded the accompanying files for this book
from www.friendsofed.com/download.html?isbn=1590598598 and stored them in a
Dreamweaver site.

1. Open effects_start.html in examples/ch02. Select File ➤ Save As, and save it as
effects.html. You’ll need the same start file as the basis for later exercises.

2. Click inside the first item in the unordered list: Appear/Fade. It’s not necessary to
select the whole link; it’s sufficient for your cursor to be inside the <a> tags. It’s also
unimportant whether you’re in Design view or Code view; either will do.

3. If the Behaviors panel is not already open, press Shift+F4 or open it through the Tag
Inspector panel group.

4. Click the plus (+) button in the Behaviors panel, move down to Effects, and select
Appear/Fade from the submenu. As Figure 2-7 shows, the submenu may appear on
the left, even though the arrow points to the right. Submenus appear on either side
of the main menu depending on available screen space.

Figure 2-7. Apply behaviors by clicking the plus (+) button
in the Behaviors panel and selecting them from the menu.

If you’re new to Dreamweaver, site definition is covered in detail in Chapter
4. At this stage, you need to define only the Local Info and Spry categories in
the Site Definition dialog box.

Applying a Dreamweaver behavior

BUILDING DYNAMIC SITES WITH AJAX AND PHP

43

2

8598CH02.qxd 6/28/07 3:02 PM Page 43

http://www.friendsofed.com/download.html?isbn=1590598598
http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. This opens the following dialog box:

Each behavior has its own dedicated dialog box, where you set the available
options. For the time being, just put a check mark in the Toggle effect checkbox,
and click OK.

6. Save effects.html. The Spry-based effects require an external file called
SpryEffects.js, which contains the Spry effects library. The first time that you
apply a Spry effect in a site, Dreamweaver presents you with the following dia-
log box:

Click OK. Dreamweaver saves SpryEffects.js to the folder you designated for all
Spry scripts in the site definition (see “Setting up for Spry” in Chapter 4).

In Spry 1.5, Appear/Fade and Grow/Shrink will be renamed Fade and Grow
respectively. It’s not known whether the Dreamweaver interface will be
updated to reflect this change.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

44

8598CH02.qxd 6/28/07 3:02 PM Page 44

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. Press F12/Opt+F12 to preview the page in a browser. When the page loads, click
the Appear/Fade link. The link should gradually fade and disappear. Click the space
where the link should be, and it should fade back into view. Impressive, but hardly
useful—it would be much better if the image faded instead.

Behaviors frequently need a way of identifying the target element. This is done by adding
an id attribute to the target element’s tag. Unfortunately, this is one area where
Dreamweaver is inconsistent and can be confusing for the newcomer. So, before showing
you how to amend an existing behavior, a little diversion into the mysteries of setting id
attributes is necessary.

Giving elements a unique identity
An id attribute is like an ID in real life: to provide a positive method of identification, an
id attribute must be unique in the same way as a Social Security number. Once you have
assigned an id, you must not reuse it within the same page. You can reuse it elsewhere in
the same site, but only once in each page.

Many web designers blithely ignore this rule, because CSS usually works perfectly well
even if the same id is used several times on a page. Moreover, in spite of its commitment
to generating standards-compliant code, Dreamweaver won’t actually stop you from
reusing an ID. Behaviors, Spry, and any JavaScript that relies on manipulating the DOM are
different: they need to identify the target element accurately. Even if duplicate use of an
id attribute works in one browser, you cannot guarantee it will work in others.

The reason for Dreamweaver’s inconsistent approach lies in the fact that the id attribute
has acquired significance only in recent years through widespread use in JavaScript and
CSS. The most logical place to assign the id attribute is the Property inspector, but it’s
already crammed so full of other attributes, there’s not always room to fit a text field for
it. However, when there is room, Dreamweaver consistently places the id field at the top
left of the Property inspector. You can assign an id through the Property inspector for
, <div>, <table>, <form>, and most <input> elements (see Chapter 9 for details
about how Dreamweaver treats name and id attributes in forms).

When building PHP pages later in the book, you need to remain alert to the problems
caused by duplicate IDs. If you put an ID in a loop (Dreamweaver calls it a repeat
region), you end up with multiple instances of the same ID and—most likely—
JavaScript that no longer works.

Although Spry effects use an external code library, most other Dreamweaver behav-
iors embed the JavaScript in the document <head>. If you want to move the code for
other behaviors to an external file, you need to do it manually.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

45

2

8598CH02.qxd 6/28/07 3:02 PM Page 45

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following instructions show you how to assign an id attribute to the image in
effects.html from the previous exercise.

1. Select the image of the Golden Pavilion by clicking it in Design view. The Property
inspector should look like Figure 2-8. As the figure shows, the field where you set
the id attribute is not labeled.

Figure 2-8. The field for an element’s id attribute is not always labeled in the Property inspector.

2. Type pavilion into the field indicated, and press Tab or Enter/Return. The tag
in the Tag selector changes to <img#pavilion> to show that the id attribute of the
selected image has now been set.

If you can’t find the field to enter an id in the Property inspector, the simplest way is to
use the Quick Tag Editor (this works for all tags). Let’s use the page’s <h1> element to see
how it’s done.

1. Continue working with effects.html from the preceding exercise, and position
your cursor anywhere inside the <h1> heading that reads Testing Dreamweaver
Effects.

2. Right-click the <h1> tag in the Tag selector to open the context menu as shown in
the following image:

Using the Quick Tag Editor to set an id attribute

Assigning an id attribute through the Property inspector

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

46

8598CH02.qxd 6/28/07 3:02 PM Page 46

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Contrary to what you might expect, do not select Set ID (I’ll explain what it does
shortly). Click Quick Tag Editor. This opens the <h1> tag in a small Edit tag window,
with the cursor immediately to the left of the closing angle bracket, as shown here:

4. Press the spacebar, and Dreamweaver opens a code hint menu with all valid attrib-
utes for the tag. As soon as you type i, the menu selects id. Press Enter/Return, and
Dreamweaver automatically completes the attribute followed by an equal sign and
a pair of quotes, with the cursor between the quotes ready for you to type the
attribute’s value: pageTitle.

5. Press Enter/Return to close the Edit tag window. The id attribute is now set.

6. Select <h1#pageTitle> in the Tag selector, right-click to access the context menu,
and select Set ID. As the following screenshot shows, only two options are shown:
None and the current id value, which has a check mark alongside it but is
grayed out.

Why is this? After all, you have set three id attributes: pavilion, container, and
pageTitle. It’s because Set ID (and Set Class on the same context menu) are part
of Dreamweaver’s CSS features. The submenu is intended to work only with ID (or
class) selectors that have already been defined in your style rules. We’ll take an in-
depth look at CSS management in Dreamweaver in Chapter 5.

Removing an id attribute
As you have probably guessed from the preceding exercise, the way to remove an id from
an element is to right-click the element’s tag in the Tag selector, and select Set ID ➤ None.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

47

2

8598CH02.qxd 6/28/07 3:02 PM Page 47

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Editing behavior and effect settings
Now that you know how to set the id attribute for individual elements, let’s apply the
Appear/Fade effect to a specific element.

This exercise continues working with effects.html and the Spry Appear/Fade effect, but
the same technique applies to editing any Dreamweaver behavior after it has been applied
to a web page.

1. Position your cursor inside the Appear/Fade link
in effects.html, and open the Behaviors panel
(Shift+F4) if it’s not already open. The panel lists
all behaviors applied to the current tag. At the
moment there’s only one, as shown here:

2. The left side of the panel shows the JavaScript
event that triggers the behavior. Click the name
of the event (onClick) or just to the right of it to
reveal a drop-down menu of available events.
Select onMouseOver, as shown in the following
screenshot:

Amending an existing behavior

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

48

The drop-down menu displays only those events that can be applied to the current
tag. If the event you’re looking for isn’t listed, click the plus (+) button in the Behaviors
panel, and select Show Events For at the bottom of the menu (see Figure 2-6). Make
sure there’s a check mark alongside HTML 4.01. If there’s a check mark against any
other setting, select HTML 4.01 to reset it. Otherwise, click anywhere outside the
menu to leave it unchanged. The other settings are for the benefit of developers who
need to work with obsolete browsers.

The drop-down menu spells the event names in camel case (mixed lowercase and
uppercase) for ease of reading. If you have selected an XHTML Document Type
Definition (DTD) for your page, Dreamweaver automatically uses the correct lower-
case version in the underlying code.

When you select an image, the drop-down menu contains a duplicate set of events
preceded by <A>, for example, <A> onClick. This option inserts the event handler in a
pair of <a> tags wrapped around the image. This is necessary for some older browsers
that don’t recognize event handlers attached directly to an image.

8598CH02.qxd 6/28/07 3:02 PM Page 48

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Save events.html, and press F12/Opt+F12 to view the page in a browser again.
Move your mouse pointer over the Appear/Fade link. It should gradually fade. Move
the mouse away and back again, and the link should fade back into view. Again,
not the most useful of effects, but it demonstrates how to change the trigger event.

4. Return to Dreamweaver, and change the event back to onClick.

5. Now let’s take a look at editing the other settings for a behavior. Reopen the
behavior’s dialog box by using any of the following methods:

Double-click the name of the behavior in the right side of the Behaviors panel.

Highlight the behavior in the Behaviors panel list, and press Enter/Return.

Right-click the behavior in the Behaviors panel list, and select Edit Behavior from
the context menu, as shown in the following screenshot.

Highlight the behavior in the Behaviors panel list, and click the panel group
Options menu icon (see following screenshot) with the main mouse button.
Select Edit Behavior.

6. With the behavior’s dialog box open, you can apply any changes you want to the
settings. For the purposes of this exercise, activate the Target Element drop-down
menu, and select img "pavilion" as shown in the following screenshot.

The context menu and the panel group Options menu both have an option labeled
Add New List Item, which serves no practical purpose. This is an “undocumented fea-
ture” of Dreamweaver—in other words, a bug. Just ignore it.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

49

2

8598CH02.qxd 6/28/07 3:02 PM Page 49

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Click OK to save the change and close the behavior dialog box.

7. Save effects.html, and test it in a browser again. This time, when you click the
Appear/Fade link, the image of the Golden Pavilion in Kyoto should fade to nothing.
Click the link again, and it should fade back into view. Notice that the paragraph of
text below the image remains in its original position throughout.

Dreamweaver automatically detects which elements a behavior can affect. If the dialog
box doesn’t list the element you want, it usually indicates that you have forgotten to give
it an ID or that you have applied the behavior to an inappropriate element in the first
place. Each behavior has different options. To find out how a behavior works, click the
Help button in the behavior’s dialog box. This launches the Adobe Help Viewer, and opens
the relevant page in Dreamweaver Help.

Removing behaviors and effects cleanly
A common question in online forums is “Why does my browser report errors on the
page?” Almost invariably the answer is that a behavior has been removed, but the event
handler that triggers it has been left behind. Another cause is the removal of a page ele-
ment, such as an image or a <div>, that a behavior is attempting to find. If you treat
Dreamweaver purely as a WYSIWYG tool, you’re likely to end up with similar problems. If
you remove an element that either triggers a behavior or is the target of one, you must
first remove the behavior in the correct manner.

Removing a behavior involves three simple steps, as follows:

1. Select the page element that the behavior is applied to.

2. Select the behavior in the Behaviors panel.

3. Click the minus (–) button as shown in the following screenshot:

Instead of clicking the minus button, you can right-click and select Delete Behavior. You can
even just press Delete (but make sure the behavior is selected in the Behaviors panel first).

Everything is removed cleanly, preventing errors from popping up later in your page.
However, SpryEffects.js is not deleted from the SpryAssets folder, in case it’s needed
by other pages. The link to the external JavaScript file is also preserved if it’s required by
other effects in the page.

Restoring a deleted behavior or effect
If you delete a behavior by mistake, you can restore it by pressing Ctrl+Z/Cmd+Z or by
selecting Edit ➤ Undo Remove Behavior (Edit ➤ Undo on a Mac). This always undoes the last
action, so it won’t work if you edit the page in any other way before you use it.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

50

8598CH02.qxd 6/28/07 3:02 PM Page 50

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Exploring Spry effects
Let’s take a quick look at each of the Spry effects. Use effects.html from the previous
section to experiment or just inspect the finished code and effects in examples/ch02/
effects_done.html.

Table 2-1 summarizes what each Spry effect does and which target elements it can be used
with. Appear/Fade and Highlight can be used with almost any tag, but the others are more
restricted. The complete list of supported target elements is reproduced mainly for refer-
ence. Most effects can be applied only to a block element, such as a heading, paragraph,
or <div>. Appear/Fade, Highlight, and Shake can be applied directly to an tag. If in
doubt, wrap the target element in a <div>, and assign it an ID.

Table 2-1. Spry effects and supported target elements

Effect Action Supported targets Not supported

Appear/Fade Fades an element Most tags applet, body,
in or out iframe, object,

tbody, th, tr

Blind Reveals or conceals address, applet, Any other tag
an element, like center, dir, dd,
pulling a window div, dl, dt, form,
blind up or down h1–6, li, menu, p,

pre, ol, ul

Grow/Shrink Grows or shrinks an address, applet, Any other tag
element to either the center, dd, dir,
center or top left div, dl, dt, form,

img, menu, p, pre,
ol, ul

Highlight Applies a color Most tags applet, body,
transition to the frame, frameset,
element’s noframes
background

Continued

To undo several steps, use the History panel. The History panel is not displayed by
default but is automatically added to the bottom of the panel groups the first time
you open it (Window ➤ History). The keyboard shortcut (Shift+F10) is available on
Windows only. To learn more about the History panel, open Help (F1), and select
History Panel from the Index.

Another useful way of retracing your steps is the Revert command on the File menu.
This undoes all changes in a document and restores it to the last saved state.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

51

2

8598CH02.qxd 6/28/07 3:02 PM Page 51

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 2-1. Spry effects and supported target elements (continued)

Effect Action Supported targets Not supported

Shake Shakes an element address, applet, Any other tag
horizontally for blockquote, dd,
half a second dir, div, dl, dt,

fieldset, form,
h1–6, hr, iframe,
img, li, menu,
object, p, pre, ol,
table, ul

Slide Slides an element up blockquote, center, Any other tag
or down to conceal dd, div, form, img
or reveal it

Squish Collapses or expands address, applet, All other tags
an element to or center, dd, dir,
from its upper left div, dl, dt, form,
corner img, menu, p, pre,

ol, ul

All Spry effects are accessed by selecting the trigger element, clicking the plus button in
the Behaviors panel, and then selecting the effect from the Effects submenu.

The dialog box for each effect is very similar, and the options are very intuitive, so there’s
no need to go through each effect in detail. Here are the common settings:

Target Element: Dreamweaver automatically identifies every element on the page
that the effect can be applied to. Select the element from the drop-down list.
Unless the effect is being applied to the trigger element, the target must have an
ID. In the case of the Shake and Squish effects, this is the only setting.

Effect duration: This is the length of the effect, measured in milliseconds. The
default setting is 1000—in other words, one second.

Effect: The available options depend on the effect but normally specify the direc-
tion in which the target element will move.

Toggle effect: Selecting this option reverses the effect the next time the event is
triggered.

The best way to learn how to use Spry effects is to experiment with them. However, the
hints in the following sections should help you.

Appear/Fade
This effect can be applied to just about any element on a page, and it affects everything
inside the target element. As you saw earlier in the chapter, making an element fade to
nothing does not alter the layout of the page. An empty space remains where the element
originally was.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

52

8598CH02.qxd 6/28/07 3:02 PM Page 52

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The <body> tag cannot be used as the target element of this effect. To get the whole page
to fade in after it finishes loading, wrap the entire contents of the page in a <div>. Use the
<body> tag as the trigger, set the <div> as the target element, and set the event to onLoad.
You can see this in effects_bodyfade.html in examples/ch02. A <div> called wrapper has
been selected as the target element, the effect duration set to 3000 (3 seconds), and the
effect set to Appear.

Blind
This is very similar to Slide, except that Blind acts like a mask scrolling up or down in front
of the target element, whereas Slide moves the whole target element. Blind up results in
the target element disappearing from the bottom; with Blind down, the target element is
normally hidden, and the mask moves down to reveal it. Content below the target element
moves up and down in time with the effect.

Images need to be wrapped in a block element such as a paragraph or <div> to use Blind.

Grow/Shrink
This effect works with a wide range of block elements and images, but it can have unex-
pected results (see Figure 2-9), so you need to test your pages and CSS carefully when
using it.

There are two options for the direction of movement: to and from the center of the target
element (see Figures 2-9A and 2-9B), or to and from its top-left corner (see Figures 2-9C
and 2-9D). Grow/Shrink can be applied directly to an image or its containing element. Each
screenshot shows what happens when the target element is shrunk to 25 percent of its
original size but in a variety of circumstances. (You can test the results in shrinkA.html,
shrinkB.html, shrinkC.html, and shrinkD.html in examples/ch02.)

Figure 2-9A shows what happens when the image itself is selected as the target ele-
ment and shrunk to its center. Any content below the target element moves up,
but the image moves down, resulting in an overlap. The same happens if the effect
is applied to a surrounding element with the same width and height as the image.

Figure 2-9B shows what happens if the effect is applied to a surrounding block ele-
ment with no fixed width or height and is shrunk to its center: the parent element
and its contents shrink together but move to the center of the page.

Figure 2-9C shows what happens if the effect is set to move to the top left and is
applied to the surrounding <div>, regardless of whether the <div> has fixed
dimensions. The same happens if the image is selected as the target but only if the
surrounding <div> has no height.

Figure 2-9D shows the gap created by applying the effect directly to the image and
shrinking it to its top-left corner when the surrounding <div> has a fixed height.
The text remains in its original position, much further down the page.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

53

2

8598CH02.qxd 6/28/07 3:02 PM Page 53

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2-9. The Grow/Shrink Spry effect can produce unexpected changes to your layout (see text
for details).

Test your layout carefully if you use this effect.

Highlight
Highlight changes the background color of the target element. As the following screenshot
shows, the Highlight dialog box has three color settings: Start Color, End Color, and Color
After Effect. You can set these either by typing the hexadecimal color value in the text field
(preceded by #) or by clicking the color picker to the left of the text field.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

54

8598CH02.qxd 6/28/07 3:02 PM Page 54

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The meanings of Start Color and End Color are what you would expect. Effect duration sets
the time taken (in milliseconds) to transition from one color to the other—2000 (or 2 sec-
onds) seems to be the optimal choice—and the transition follows a visually pleasing curve.
Color After Effect is the color to which the background is set after the transition, and it cuts
in immediately. You need to choose this color carefully. I find it’s best to set this value
either to the same as Start Color or End Color. Otherwise, the transition appears unnaturally
abrupt.

When Highlight is applied directly to an image, there must be padding around the image
for the background color to be visible. Adding only margins to the image has no effect,
because background color does not affect the margin of an element. See highlight_
padding.html and highlight_margin.html in examples/ch02.

Shake
This is my least favorite effect. It has only one option: the target element, which it shakes
horizontally for half a second. It might be appropriate in advanced Ajax contexts to indi-
cate that an element has been updated asynchronously, but it would be more useful if you
could set the speed and duration of the movement. The danger is that it will become the
modern equivalent of the <blink> tag—mercilessly abused because it looks “cool.” Use
with care. Depending on your layout, this effect sometimes spawns a horizontal scrollbar
in the browser.

Slide
Slide is similar to Blind, but rather than a mask moving over the target element, the ele-
ment itself moves. As Table 2-1 shows, this effect can be applied to only a small range of
block elements or images. You need to wrap a <div> around the element you want to
apply the effect to and select the wrapper <div> as the target element. If you don’t do
this, you get the following warning:

I’ll show you how to create a wrapper <div> after briefly describing the final effect.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

55

2

8598CH02.qxd 6/28/07 3:02 PM Page 55

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Squish
This collapses the target element from the bottom-right corner toward the top left until it
disappears completely and is very easy to apply. The Squish dialog box has only one set-
ting: the target element. Any content below the target element moves up to fill the gap. If
you select the Toggle effect option, the target element reappears and expands back to its
original size, moving down any content below it.

Creating a wrapper <div> for the Slide effect
The Slide effect is unusual in that you cannot apply it directly to the element you want to
slide in and out of view. Instead, the target element must be a <div> wrapped around it.
Although that’s straightforward, what makes matters slightly complicated is that the Slide
effect is very picky about the elements it accepts immediately inside the wrapper. The
child element of the wrapper <div> must be one of the following: <blockquote>, the dep-
recated <center> element, <dd>, <form>, , or another <div>.

The image of the Golden Pavilion in effects.html is wrapped in a paragraph. Even though
this is a block element, it’s not in the list accepted by Slide. This leaves you with two
options, namely:

Wrap the paragraph in two <div> tags, and use the outer one as the target ele-
ment.

Replace the paragraph with a <div>. The immediate child element then becomes
an tag, allowing you to use the <div> as the target element.

Since the second option requires less code, let’s use that approach. It also gives me the
opportunity to show you two important techniques: how to wrap a selection in a <div>
and how to remove a tag without losing its contents.

This exercise uses effects.html from the previous exercises. Alternatively, use
effects_start.html in examples/ch02. The final code is in effects_done.html.

1. Begin by selecting the image in Design view. You can then see the <p> tag immedi-
ately to the left of <img#pavilion> in the Tag selector. Click the <p> tag to select
both the image and its enclosing paragraph.

2. Click the Insert Div Tag button in the Common tab
of the Insert bar, as shown in the screenshot
shown alongside (it’s also available in the Layout
tab, or you can use the menu option Insert ➤

Layout Objects ➤ Div Tag).

3. Because you have selected part of the layout, the Insert Div Tag dialog box auto-
matically selects Wrap around selection as the value for the Insert drop-down menu
(we’ll examine the other options in later chapters). Type container in the ID field, as
shown in the following screenshot, and click OK.

Applying the Slide effect

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

56

8598CH02.qxd 6/28/07 3:02 PM Page 56

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. If you switch to Code view, you’ll see that Dreamweaver has wrapped the para-
graph and image in a new container <div>, as shown in the following screenshot
(the line numbers may be different in your version, depending on whether you
have applied any other effects to the page):

If you try to apply the Slide effect to the container <div> at this stage, you’ll get
the lengthy warning message shown in the preceding section. You need to get rid
of the <p> tags surrounding the image. It’s easy enough to do it manually in Code
view, but I want to show you another, cleaner way to remove a tag without losing
its contents.

5. Repeat step 1 to select the <p> tag in the Tag selector again, right-click, and select
Remove Tag from the context menu, as shown here.

The paragraph disappears, but the image remains intact. It’s now the direct child of
the container <div>, so you can apply the Slide effect to its parent element.

6. Place your cursor inside the Slide link; click the plus button in the Behaviors panel;
and select Effects ➤ Slide from the menu. Set the options in the Slide dialog box as
shown in the following screenshot, and click OK.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

57

2

8598CH02.qxd 6/28/07 3:02 PM Page 57

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. Save effects.html, and press F12/Opt+F12 to test the page in a browser. Slide away!

Applying multiple events to a trigger element
You’re not limited to applying a single event to the trigger element for a behavior or Spry
effect. For example, in events_done.html, I have applied the onmouseover and onmouse-
out events to the image. The first event applies the Highlight effect to the pageTitle <h1>
tag, giving it a blue background when you mouse over the image. The second event
applies the same effect but turns the background back to white. To apply multiple events
to the same trigger, just apply the behavior or effect again, and select a different event
from the drop-down menu in the Behaviors panel, as shown in Figure 2-10.

If you choose different event handlers, the order that behaviors or effects are listed
doesn’t matter. However, you may need to change the order when you use the same event

Figure 2-10.
You can apply more than one behavior
or effect to the same tag by choosing a
different event handler.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

58

8598CH02.qxd 6/28/07 3:02 PM Page 58

http://lib.ommolketab.ir
http//lib.ommolketab.ir

handler for more than one behavior. This sometimes happens when adding several behav-
iors to the <body> tag to be executed when the page first loads. You do this by selecting an
event in the Behaviors panel and moving it up or down the list with the up and down
arrows at the top of the panel.

There’s a lot more to Spry than these six effects. In Chapters 7 and 8, we’ll come back to
explore the Spry user interface widgets: the Spry Menu Bar, accordion, tabbed panels, and
collapsible panels. The widgets make it easy to display a lot of information on your pages
in a compact space. And in Chapter 9, we’ll put Spry to work validating user input in an
online form.

Handling dynamic data with Spry and PHP
Working with dynamic data drawn from an XML file or a database is the subject of the sec-
ond half of this book. Treat this section as just a taster of things to come.

Comparing how Spry and PHP handle data sets
In one respect, Spry data sets are the crowning glory of the Spry framework. They enable
you to draw information stored in XML files to generate photo galleries, product catalogs,
news feeds, and so on with just a few clicks inside Dreamweaver. The screenshot on the
left of Figure 2-11 shows a photo gallery Adobe created to demonstrate what Spry is capa-
ble of doing (http://labs.adobe.com/technologies/spry/demos/gallery/index.html).

BUILDING DYNAMIC SITES WITH AJAX AND PHP

59

2

Figure 2-11. This Spry gallery uses just a few lines of code to draw the photo details from an XML file, but fails
completely if JavaScript is not supported.

It’s a stunning display of what Spry can do. However, you get a very different result if you
visit the site with JavaScript disabled, as you can see in the screenshot on the right.

Even if you choose not to serve the tiny minority of users who disable JavaScript in their
browsers, you cannot afford to ignore the fact that the information in the screenshot on
the right of Figure 2-11 is just about all that a search engine would see when visiting a
page created with a Spry data set. This may not be very important for a photo gallery, but
it would be a disaster if your main page or a product catalog depended on this technology.

8598CH02.qxd 6/28/07 3:02 PM Page 59

http://labs.adobe.com/technologies/spry/demos/gallery/index.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Web Content Accessibility Guidelines (WCAG) are another important consideration.
Checkpoint 6.3 of WCAG 1.0 says: “Ensure that pages are usable when scripts, applets, or
other programmatic objects are turned off or not supported. If this is not possible, provide
equivalent information on an alternative accessible page” (www.w3.org/TR/WCAG10/#gl-
new-technologies). This is classified as Priority 1—in other words, a checkpoint that a web
developer must satisfy.

Adobe is aware of this, and Spry is not alone in suffering from accessibility problems. It’s a
subject of intense debate regarding Ajax. Using Spry to manipulate data sets may be
appropriate in a closed environment, such as an intranet, where you know that JavaScript
is enabled and search engines are not a consideration. However, manipulating data sets
with server-side technology avoids all the problems inherent in Ajax, because the server
generates all the necessary XHTML to display your website’s content. Everyone receives a
complete page, regardless of whether JavaScript is enabled, making your site accessible.

In the second half of this book, I’ll show you how to use both Spry and PHP to work with
data sets, enabling you to make your own informed choice as to which technology suits
the job in hand.

Building PHP sites with Dreamweaver
PHP code is very different from standard XHTML markup. It consists of a series of instruc-
tions that tell the PHP engine what to output to the browser. Most of the time, you’ll use
it in combination with XHTML, but sometimes you use it on its own, such as to send an
email. Dreamweaver speeds up working with PHP by automatically generating the code for
a wide range of common tasks, such as connecting to a MySQL database, inserting, updat-
ing, and deleting records, user authentication, and building navigation systems to page
through a long set of database results.

Once you have defined a PHP site in Dreamweaver (see Chapter 4), the starting point of
working with most server behaviors is creating a MySQL connection (covered in Chapter 14).
This tells Dreamweaver (and your web pages) where to find MySQL, the correct username
and password, and the name of the database that you want to use. Once you have con-
nected to a database, you can insert, update, and delete records (see Chapters 14 and 15).
Dreamweaver gives you the choice of automating the whole process with a wizard that
builds the necessary online forms and associated PHP code. Alternatively, you can design
your own forms and get Dreamweaver to generate the PHP needed to activate them.

Once you have entered some records in your database, you can get Dreamweaver to cre-
ate a recordset, which queries the database and stores the results ready for display in your
web page (see Chapter 14). The following server behaviors and data objects simplify that
process:

Repeat Region: When displaying a list of database records, you just create a single
row, and the Repeat Region server behavior loops through all the results and cre-
ates the code automatically. You can choose whether to display all results or limit
the page to just a specific number (see Chapter 14).

Show Region: Sometimes, your recordset may not contain any relevant results. The
Show Region server behavior creates the “smart” code that decides whether to dis-
play certain parts of the page when that happens (see Chapter 17).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

60

8598CH02.qxd 6/28/07 3:02 PM Page 60

http://www.w3.org/TR/WCAG10/#gl-new-technologies
http://www.w3.org/TR/WCAG10/#gl-new-technologies
http://www.w3.org/TR/WCAG10/#gl-new-technologies
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Recordset Paging: This automates the construction of a navigation system that lets
users move backward and forward through a long set of database results by
spreading them over several pages (see Chapter 16).

Display Record Count: This is normally used in conjunction with Recordset Paging
to display information such as Showing items 21 to 30 of 48 (see Chapter 17).

Dynamic Form Elements: Dreamweaver makes it easy to populate online forms with
the results of a database query, automatically setting drop-down menus, radio but-
tons, and checkboxes to the correct value. This is particularly useful for updating
database records.

User Authentication: The User Authentication suite of server behaviors makes light
work of password-protecting sections of your site, such as a members-only area or
the administrative back-end of a database. It also lets you set different access lev-
els for groups of users (see Chapter 15).

XSL Transformation: This uses Extensible Stylesheet Language Transformations
(XSLT) to display XML data in a web page. It differs from Spry in that the output
doesn’t rely on JavaScript being enabled in the browser. Although the code created
by Dreamweaver is compatible with both PHP 4 and PHP 5, you will need PHP 5 to
make full use of this feature, as XSLT support is not enabled by default in PHP 4
(see Chapter 18).

No computer program, however sophisticated, can completely automate everything for
you. So, before diving into working with server behaviors, I’ll show you how to process and
email the input from an online form in Chapter 11. As well as showing you how to imple-
ment one of the most useful features of PHP, this will arm you with the basic knowledge
necessary to dive into the code generated by Dreamweaver and adapt it to your own
requirements.

Comparing different versions of files
Working with dynamic code is not particularly difficult once you have learned the basic
principles, but spotting mistakes can be a major headache. A missing comma, quote, or
curly brace can bring your page crashing down. When you run into a problem in this book,
the first thing you should do is compare your code with the download files. But the
prospect of checking hundreds of lines of code is enough to make grown men cry—unless,
of course, they already know the secret of file comparison utilities.

Dreamweaver CS3 lets you specify a third-party application, which can be used to compare
two local files, two remote files, or the local and remote versions of a file—all from within
the Dreamweaver interface. Take a few minutes to set up File Compare. It will save you
hours of agony.

Setting up the File Compare feature
If you already have a file comparison utility installed on your computer, all that’s necessary
is to register the program inside the Dreamweaver Preferences panel. If you don’t yet have
one, here are some suggestions:

BUILDING DYNAMIC SITES WITH AJAX AND PHP

61

2

8598CH02.qxd 6/28/07 3:02 PM Page 61

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Windows

WinMerge: A good utility, free from http://winmerge.sourceforge.net/.

Beyond Compare: An excellent tool from www.scootersoftware.com. It’s mod-
erately priced, but you can try it free for 30 days.

Mac OS X

TextWrangler: Not just a file comparison utility, it’s an excellent script editor,
and it’s free from www.barebones.com.

BBEdit: BBEdit (also from www.barebones.com) is expensive if you only need it
for file comparison but is widely recognized as the Rolls Royce of Mac script
editors.

Once you have installed a file comparison utility, open Edit ➤ Preferences (Dreamweaver ➤
Preferences on a Mac), and select File Compare. Click the Browse button, and navigate to
the executable file for the program. Windows users should have little difficulty recognizing
the correct file to select; it will normally be in a subfolder of Program Files.

On a Mac, the location is somewhere you may never even have known existed:

TextWrangler: Macintosh HD:usr:bin:twdiff

BBEdit: Macintosh HD:usr:bin:bbdiff (this is the BBEdit file comparison utility—
make sure you choose bbdiff and not bbedit, which is listed just below it)

Even though the usr:bin directory is normally hidden on a Mac, the Dreamweaver Select
External Editor dialog box will display it by default. All you need to do is select the correct
file name and click Open. If you can’t find twdiff or bbdiff, open Preferences from the
TextWrangler or BBEdit menu, select Tools, and click the Install Command Line Tools button.

Using File Compare
File Compare allows you to compare the contents of two files. Individual utilities offer dif-
ferent features, but the way you launch them from Dreamweaver is the same for all of
them. Figure 2-12 shows how Beyond Compare handles two versions of a file that’s nearly
600 lines long.

Figure 2-12. Using the Dreamweaver File Compare feature with a third-party utility like Beyond
Compare makes light work of identifying differences between two files.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

62

8598CH02.qxd 6/28/07 3:02 PM Page 62

http://winmerge.sourceforge.net
http://www.scootersoftware.com
http://www.barebones.com
http://www.barebones.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can hide all matching lines and concentrate solely on the differences, which are high-
lighted in a way that’s easy to comprehend. No more searching in vain for a missing
comma or closing quote. You don’t even have to do any typing to resolve the differences
between files. All file comparison programs allow you to synchronize the content of two
files, line by line, section by section, or in their entirety.

Comparing two local files in the same site
To compare two files in the same site, highlight both in the Files panel, right-click, and
select Compare Local Files. This can be useful if you operate a simple form of version con-
trol, such as saving each version of a file with an incremental number. By comparing the
two, you can see any differences, and use the comparison utility’s merge function to
update one file from another.

Comparing two local files in different sites
Although Dreamweaver allows you to open files in the workspace from as many sites as
you want, the Files panel can display only one site at a time. However, as long as both files
are on the same disk in your local file system, you can
still compare them without leaving Dreamweaver.

Open the drop-down menu at the top of the Files panel,
as shown in the screenshot alongside, and select the
disk on your local file system where both files are
located. You can then select files from different sites. In
fact, you can select files that aren’t even in Dreamweaver
sites. Once both target files have been selected, right-
click and select Compare Local Files.

Comparing local and remote files
If you select just one file in the Files panel and right-click, the context menu will display
either Compare with Remote or Compare with Local, depending on the location of the
selected file. If the file you want to compare is already open in the Document window, it’s
even faster to right-click the document tab and select Compare with Remote (or Compare
with Testing, if you don’t have a remote server defined).

For this type of comparison, Dreamweaver will only select a file of the same name and in
the same location on the other computer. So you can compare the local or remote equiv-
alent of myfile.php in myfolder in the same Dreamweaver site but not myotherfile.php
or the same file in a different folder or different site. The reason for this restriction is that
Dreamweaver uses the details in the Remote Info section of your site definition to locate
the remote file (Dreamweaver site definition is covered in Chapter 4).

Beyond Compare produces a false negative when comparing the remote and local versions
of a file. This is easily remedied by opening the main Beyond Compare window, and select-
ing Tools ➤ Options ➤ Startup. Set Show dialog with quick comparison results to Rules-based
quick compare.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

63

2

8598CH02.qxd 6/28/07 3:02 PM Page 63

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Failure of BBEdit to display results If BBEdit isn’t running, Dreamweaver launches it and
displays a blank page when both pages are identical. If BBEdit is already running, nothing
happens at all—the focus doesn’t even switch to the file comparison program. This is
BBEdit’s way of saying there is nothing to compare.

TextWrangler keeps focus on first use You may see the Dreamweaver icon bouncing furi-
ously in the Dock while a blank TextWrangler page hogs the screen. This happens only if
both files are identical and TextWrangler wasn’t running when you compared them. Switch
back to Dreamweaver, and you should see a Dreamweaver alert box reporting No differ-
ences found between these files.

Meet Mark of the Web
There’s an item at the bottom of the Commands menu that may have you scratching your
head: Insert Mark of the Web. Click it, and it inserts the following code immediately after the
DOCTYPE declaration:

<!-- saved from url=(0014)about:internet -->

This cryptic piece of code prevents Internet Explorer on the latest versions of Windows
from popping up that annoying message that blocks JavaScript and other active content
from running when you preview a web page locally—simple, effective, and useful. You can
find out more at the following site: http://msdn.microsoft.com/library/default.
asp?url=/workshop/author/dhtml/overview/motw.asp.

Once Mark of the Web has been inserted into a page, the menu option changes to Remove
Mark of the Web. Although it won’t do any harm if you leave it in, it doesn’t look very pro-
fessional, so use this command to remove Mark of the Web after local testing and before
uploading the page to a live server.

Even though this is a Windows issue, Commands ➤ Insert Mark of the Web is also on the
Mac version of Dreamweaver. After all, Mac developers still need to test their pages on
what’s currently still the world’s most popular browser.

You cannot use the merge or copy feature of your file comparison program to make
changes to a remote file, because Dreamweaver works with a temporary copy of the
remote file rather than the original. Local files can be changed, because you always
work with the original.

On Windows, you can merge local and remote versions of a file by launching Beyond
Compare outside Dreamweaver. Select New from the Beyond Compare Session menu,
and choose Synchronize with FTP site.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

64

8598CH02.qxd 6/28/07 3:02 PM Page 64

http://msdn.microsoft.com/library/default
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The next step
Now that you have a good idea of the features Dreamweaver CS3 provides for dynamic
website development, it’s time to get your computer ready to work with PHP. Although it’s
not absolutely essential to install PHP and a web server on your local computer, it speeds
up the development process considerably. The next chapter describes in detail how to do
this, both for Windows and Mac OS X. The setup process is not difficult, but it’s important
to get it right. Follow the steps carefully, and you should be up and running in no time at
all. If you already have a fully operational PHP setup on your computer, you can skip to
Chapter 4 to see how to define a PHP site in Dreamweaver.

BUILDING DYNAMIC SITES WITH AJAX AND PHP

65

2

8598CH02.qxd 6/28/07 3:02 PM Page 65

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3 GETTING THE WORK ENVIRONMENT
READY

8598CH03.qxd 6/28/07 2:56 PM Page 67

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although Dreamweaver lets you use a remote server—such as a hosting company—to test
PHP pages, it’s usually more efficient to set up a testing environment on your local com-
puter. All the necessary software can be downloaded free of charge from the Internet, and
it’s not difficult to set up. Don’t worry about the length of this chapter. It contains separate
instructions for Windows and Mac OS X, and the Windows section covers both XP and
Vista, as well as Apache and IIS. There are also troubleshooting hints in the unfortunate
event that anything goes wrong.

Read only the sections relevant to your setup. However, do read them carefully and check
the book’s companion website at http://foundationphp.com/egdwcs3/updates.php for
any updates. Setting up your development environment correctly is essential to working
with dynamic websites in Dreamweaver.

If you already have a functional web server configured to run PHP, there is probably no
need to reinstall, but you should take a look at the section titled “Checking your PHP con-
figuration” toward the end of the chapter and make sure that your setup meets the
minimum requirements.

What this chapter covers

Deciding whether to build a local testing server

Installing the Apache web server and PHP on Windows

Configuring PHP to work with Apache or IIS on Windows

Setting up Apache and PHP on Mac OS X

Learning to read the PHP configuration page

Deciding where to test your pages
Building PHP pages involves a lot of testing—much more than you might normally do with
a static website. It’s not only a question of what your pages look like; you also have to
check that the dynamic code is working as expected. Dreamweaver doesn’t mind where
your testing server is, as long as it knows where to find it, there’s an available connection,
and, of course, the server is capable of handling PHP pages. This means that you can test
on your local machine, another computer on a local network, or a remote host.

These are the advantages of creating a local test environment:

Safety: If an error in your code causes the server to slow down or even crash, the
only person affected is you. Keep your mistakes to yourself; don’t inflict them on
others.

Speed: There’s no waiting. Even with a broadband connection, the response is
usually slower from a remote server.

Convenience: You can continue work even if there is a disruption to your Internet
service.

Knowledge: By setting up your own testing environment, you get a better under-
standing of how a web server and PHP work.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

68

8598CH03.qxd 6/28/07 2:56 PM Page 68

http://foundationphp.com/egdwcs3/updates.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

There are also disadvantages to creating a local test environment:

Setup time: Each piece of software requires a multimegabyte download, which then
has to be set up and configured.

Complexity: Some people find configuring the software daunting. This chapter is
designed to eliminate any such fears.

Wherever you decide to test your PHP pages, you also need to confirm that your remote
server supports PHP, so that you’re ready to deploy your handiwork once it’s ready.

Checking that your remote server supports PHP
In Dreamweaver, select File ➤ New ➤ Blank Page. Choose PHP as the Page Type and
<none> as the Layout. Switch to Code view, delete all existing code, and replace it with the
following:

<?php phpinfo(); ?>

Save the file as test.php, upload it to your website, and view it in a browser. If you see a
page similar to Figure 3-1, you’re in business. If all you see is the raw code, you need to
move to a server that supports PHP. If you see a blank screen or an error message, try
using the version of test.php in examples/ch03.

Figure 3-1. The phpinfo() command confirms that PHP is enabled and provides a wealth of
information about supported features.

The screenshot in Figure 3-1 was taken in a local testing environment on a Windows com-
puter, so the Configure Command section may look very different on a remote Linux server.
This is perfectly normal. As the name suggests, phpinfo() provides information about the
PHP setup on your server, so the contents of the resulting page differ from machine to
machine.

GETTING THE WORK ENVIRONMENT READY

69

3

8598CH03.qxd 6/28/07 2:56 PM Page 69

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Check that the version number at the top left of the screen is a minimum of 4.3.1. This is
the absolute minimum supported by Dreamweaver. Important security fixes were made to
PHP in February 2007, so you should ideally be using PHP 5.2.1 or higher. If your hosting
company still uses PHP 4, the same security fixes were added to PHP 4.4.5. All the code
generated by Dreamweaver CS3 is backward compatible with PHP 4.3.1 and MySQL
3.23.31, so PHP 5 isn’t essential. However, PHP 5 has been a stable release since July 2004,
and the features required by the XSL Transformation server behavior in Chapter 18 are not
enabled by default in PHP 4. So, if your hosting company hasn’t upgraded yet, pressure it
to do so.

For security reasons, it’s a good idea to delete test.php from your remote server after
checking the details, or to store it in a password-protected folder. Don’t delete it from
your local computer, as you’ll need it to check your testing environment.

Creating a local testing server
To create a local test environment, you need three things:

PHP

A web server—Apache or IIS

MySQL

This chapter deals with the first two. MySQL is covered in Chapter 13.

Choosing which versions to install
There are two schools of thought about the software versions you should use for local
testing. Some say that you should match the setup on your remote server. Others, myself
included, believe it’s better to install the latest versions available for the following reasons:

It’s easier: You don’t need to scramble around in archives to find older versions.

It’s forward compatible: Using the most recent versions on your testing computer
gives you confidence that your code will still work when your remote server is
upgraded. You can also experiment with new features and put pressure on your
host to upgrade.

Of course, using the latest versions for your testing environment isn’t without danger: you
might fall into the trap of using features that aren’t supported on your remote server.
Nevertheless, I believe that the advantages of testing for forward compatibility outweigh

If you don’t want to create a local testing environment, skip ahead to “Checking
your PHP configuration” later in the chapter to make sure that your remote
server has the necessary features.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

70

8598CH03.qxd 6/28/07 2:56 PM Page 70

http://lib.ommolketab.ir
http//lib.ommolketab.ir

this danger. To give a couple of examples, changes in PHP 5 and MySQL 5 affect the way
that data is handled from forms and how database tables are joined. Code written in the
old style breaks in newer versions, but the newer style is backward compatible with the
minimum versions required by Dreamweaver CS3.

Choosing individual installation or an all-in-one package
Setting up a local PHP testing environment has undeservedly gained a reputation for being
fiendishly complicated, particularly on Windows. Installation is quite simple, but it does
need to be done correctly. It’s no different from a battery: it works when you put it in the
right way; put it in the other way around, it doesn’t. The problem is that, once you install
PHP the wrong way, it can be difficult to put right. It’s not as simple as turning around a
battery; you may have made changes to your computer’s configuration that need to be
reversed before everything works.

As a result, many people prefer to use an all-in-one package that automates the installa-
tion of Apache, PHP, MySQL, and the phpMyAdmin interface to MySQL. However, the PHP
website at www.php.net/manual/en/install.windows.php carries the following warning:

Although this warning applies mainly to live Internet servers, rather than a local testing
environment, I still prefer to install each program separately, as I feel it gives you more
control. What’s more, installation on Windows has been streamlined with the release of a
new Windows installer for PHP in November 2006. Mac OS X comes with the Apache web
server preinstalled, and Mac packages are available for both PHP and MySQL. If you follow
the instructions in this chapter, you should be up and running in next to no time.

If you decide against individual installation, an all-in-one package that has a very good rep-
utation for Windows is XAMPP (www.apachefriends.org/en). MAMP (www.mamp.info/en/
index.php) has a similar reputation for Mac OS X. If you would like to use either of these
packages, follow the instructions on the relevant website. If you run into difficulties, seek
help in the XAMPP or MAMP support forum.

There are separate instructions for Windows and Mac OS X. Mac users should skip ahead
to the section titled “Setting up on Mac OS X.”

All code in this book that requires a higher version than PHP 4.3.1 or
MySQL 3.23.31 is clearly marked as such.

GETTING THE WORK ENVIRONMENT READY

71

3

8598CH03.qxd 6/28/07 2:56 PM Page 71

http://www.php.net/manual/en/install.windows.php
http://www.apachefriends.org/en
http://www.mamp.info/en/index.php
http://www.mamp.info/en/index.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting up on Windows
The minimum requirement for Dreamweaver CS3 is Windows XP with Service Pack 2 or
higher. It also runs on Windows Vista Home Premium, Business, Enterprise, and Ultimate.
Vista Home Basic and Vista Starter are not supported. Although Dreamweaver may run on
64-bit systems, support is not guaranteed. These instructions assume that you are running
one of the supported versions of Windows.

Getting Windows to display file name extensions
By default, Windows hides the three- or four-letter file name extension, such as .doc
or .html, so all you see in dialog boxes and Explorer is thisfile, instead of thisfile.doc or
thisfile.html. The ability to see these file name extensions is essential for working with PHP.

To change the default setting, you need to open the Folder Options dialog box. In
Windows XP, go to Start ➤ My Computer ➤ Tools ➤ Folder Options. In Vista, go to Start ➤
Computer ➤ Organize ➤ Folder and Search Options.

Select the View tab, and uncheck the box marked Hide extensions for known file types, as
shown in Figure 3-2. Click OK. (The Folder Options dialog box looks slightly different in
Windows XP, but this option and the View tab are common to both XP and Vista.)

Figure 3-2. Setting Windows so that it automatically
displays the extension on all file names

Make sure you’re logged into Windows as an Administrator before starting.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

72

8598CH03.qxd 6/28/07 2:56 PM Page 72

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I recommend you leave your computer permanently at this setting, as it is more secure—
you can tell if a virus writer has attached an EXE or SCR executable file to an innocent-
looking document.

Choosing the right web server
Before installing PHP, you need to have a web server running on your computer. There are
no two ways about it: Apache is the web server of choice for PHP. If you don’t have a web
server installed on your computer, install Apache. It’s simple and reliable.

However, a lot of developers want to work with ASP or ASP.NET, which requires IIS. The
good news is that you can install PHP on top of IIS. The bad news is that IIS doesn’t sup-
port all features of PHP. So, if your remote server runs on Apache, you may want to con-
sider the possibility of running Apache and IIS in parallel. If you want to run both web
servers in parallel, you must make sure that they don’t both try to use the same port on
your computer (see “Checking that port 80 is free”).

Downloading the software
Windows installer packages are available for both Apache and PHP from the following
locations:

Apache: Go to http://httpd.apache.org/download.cgi. Scroll down to the sec-
tion for Apache 2.2.x, and select the file marked Win32 Binary (MSI Installer). The x in
the number represents the most recent version of the 2.2 series. If a later series is
available, please check http://foundationphp.com/egdwcs3/updates.php to see
whether it’s compatible with the current version of PHP.

PHP: Go to www.php.net/downloads.php, and select the PHP 5.x.x Installer from the
Windows Binaries section, where x.x represents the latest version.

Do not use a Windows PHP installer earlier than version 5.2.0. Older versions run
PHP in a very restricted way and are totally unsuitable for use with this book. If, for
any reason, you need to use an older version of PHP, follow the instructions
for installing the ZIP package by visiting http://foundationphp.com/egdwcs3/.

Basic installation is the same on Windows XP and Vista, but the security system and soft-
ware compatibility issues in Windows Vista involve a few extra steps. If you’re running XP,
skip ahead to “Before you begin.”

Preparing for installation on Windows Vista
Whenever you attempt to install software or change protected files, User Account Control
(UAC) asks you to confirm that you want to go ahead. UAC is designed to help prevent
unauthorized changes to your computer, but an unfortunate side effect is that some pro-
grams not yet optimized for Vista are installed in a nonstandard location. At the time of
this writing, this applies to Apache and PHP. To get around this, you need to turn off UAC
temporarily while installing and configuring Apache and PHP. I also suggest you do the
same for MySQL, so you might want to install it at the same time (MySQL installation
instructions are in Chapter 13).

GETTING THE WORK ENVIRONMENT READY

73

3

8598CH03.qxd 6/28/07 2:56 PM Page 73

http://httpd.apache.org/download.cgi
http://foundationphp.com/egdwcs3/updates.php
http://www.php.net/downloads.php
http://foundationphp.com/egdwcs3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once installation is complete, you can turn UAC back on, and your testing environment
should run smoothly. Some people find UAC so intrusive that they turn it off permanently.
It’s not a good idea, as it exposes you to viruses or malware making changes to your sys-
tem without your knowledge.

Turning off User Account Control temporarily on Vista
Turning off UAC exposes your computer to greater risk, so I suggest that you download
the software first and then disconnect from the Internet.

1. Log into Vista as an Administrator. Close any programs that are running.

2. Go to Start ➤ Control Panel, and select Classic View. Double-click the
User Accounts icon shown alongside.

3. In the screen that opens, click Turn User Account Control on or off at the
bottom of the menu titled Make changes to your user account. Click
Continue when prompted.

4. Deselect the Use User Account Control (UAC) checkbox, and click OK.

5. Vista prompts you to restart your computer for the changes to take effect. Click
Restart Now. If you click Restart Later, you need to reboot your computer before
proceeding with the installation of Apache and PHP.

Once you have finished installation and configuration, turn UAC back on by repeating
steps 1–5, but put a check mark in the Use User Account Control (UAC) checkbox in step 4.

Before you begin . . .
For the vast majority of people, installation goes without a hitch. Things normally go
wrong when a conflict arises with existing programs or if you have previously installed PHP
on your computer. Until mid-2004, the recommended way to install PHP involved copying
files to your Windows system folders. If you have an old installation like this, you need to
remove a file called php.ini from the C:\WINDOWS folder and all files beginning php_ from
C:\WINDOWS\system32. Also remove the main PHP folder.

If you installed PHP using the instructions in my previous books—Foundation PHP 5 for
Flash, Blog Design Solutions, Foundation PHP for Dreamweaver 8, or PHP Solutions—there
is no need to reinstall. If you want to upgrade, I suggest you follow the same installation
method as recommended in those books. It’s still perfectly valid. However, if you do want
to remove such an installation, follow these steps:

1. Delete the PHP folder and all its contents.

2. Uninstall Apache using Control Panel ➤ Add or Remove Programs.

3. Delete C:\Program Files\Apache Group\Apache, C:\Program Files\Apache Group\
Apache2, or C:\Program Files\Apache Software Foundation\Apache2.2, depend-
ing on the version you installed. (Adjust the path if you installed Apache on a
different drive.)

If you followed my instructions, all your web pages will be outside the Apache
folder, but if you left the Apache DocumentRoot at its default setting, move your
pages to a safe location before deleting the folder.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

74

8598CH03.qxd 6/28/07 2:56 PM Page 74

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Remove the PHP folder from the Windows path, and delete the PHPRC setting from
the computer’s system variables. You do this by double-clicking System in the
Windows Control Panel. Select the Advanced tab, and click Environment Variables at
the bottom of the panel. In the System variables pane at the bottom of the dialog
box that opens, select Path, and click Edit. Remove the pathname of your PHP
folder (C:\php5 or C:\php), and click OK. Then select PHPRC, and click Delete.
Click OK to save the changes.

5. Use the Windows Search feature to find all instances of php.ini and remove them.

Checking that port 80 is free
By default, web servers listen for requests on port 80. It’s important to make sure that
nothing else is using port 80. The most common culprit is Skype. Check its configuration.
If it is running on port 80, select a different port number to free up 80 for the web server.

If IIS is installed, it will already be using port 80. Although the Apache installation setup has
an option to select port 8080, I recommend stopping IIS temporarily and installing Apache
on port 80 instead. This installs Apache as a Windows service, making it easier to control.
After you have installed Apache, you can switch either Apache or IIS to port 8080 and run
them in parallel. Alternatively, you can switch both to manual startup and run only one of
them at any given time.

To prevent conflicts during installation, open the Windows Services panel (Start ➤ Control
Panel ➤ Administrative Tools ➤ Services) to stop IIS and switch it to manual operation.

Inside the Services panel, highlight IIS Admin in Windows XP, or World Wide Web Publishing
Service in Vista, right-click, and select Properties. Click the Stop button to stop the web
server, and when it has stopped, select Manual from the Startup type drop-down menu, as
shown in Figure 3-3.

Figure 3-3.
If you want to install Apache in parallel
with IIS, temporarily disable IIS by
stopping the service and setting Startup
type to Manual.

GETTING THE WORK ENVIRONMENT READY

75

3

8598CH03.qxd 6/28/07 2:56 PM Page 75

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Installing Apache on Windows
The Apache web server is installed like any ordinary Windows program. There’s just one
dialog box for you to fill in. The rest of the process is fully automated. The following
instructions show you how to install Apache as a Windows service, which starts automati-
cally whenever you switch on your computer. You can change this later to a manual
startup, but installing it initially as a Windows service also installs the Apache Service
Monitor, a useful utility that lets you control Apache from the Windows taskbar.

1. Close all open programs, and temporarily disable virus-scanning software. Double-
click the Apache installer package icon. On Vista, you will see a warning that the
publisher could not be verified. You can ignore this if you downloaded Apache
from the Apache site or an official mirror site. Click Run.

2. Click Next to start the installation wizard. The first thing to appear is the Apache
License agreement. Select the Accept terms radio button, and click Next.

3. The following dialog box contains information about Apache. Click Next to
continue.

4. The Server Information dialog box, as shown in Figure 3-4, follows. This is where you
enter the default settings for your web server. In the Network Domain and Server
Name fields, enter localhost, and in the last field, enter an email address. The
localhost address tells Apache you will be using it on your own computer.
The email address does not need to be a genuine one. It has no bearing on the way
the program runs.

Select the option labeled for All Users, on Port 80, as a Service, and click Next.

Figure 3-4. Selecting port 80 in the installation dialog box makes it
easier to control Apache, but you need to resolve any conflicts.

Before restarting IIS, you must either close down Apache or switch one of them to
port 8080 (instructions are given later in the chapter). You can then reset Startup type
to Automatic in IIS Admin (Windows XP) or World Wide Web Publishing Service (Vista).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

76

8598CH03.qxd 6/28/07 2:56 PM Page 76

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. In the next dialog box, select the option for a Typical setup, and click Next to
continue.

6. You are given an opportunity to change where Apache will be installed. The default
location, C:\Program Files\Apache Software Foundation, is fine. Click Next.
Finally, click Install to finish the Apache installation.

7. The process is quite quick, but don’t be alarmed if you see
a Command Prompt window open and close several times
while the program is being installed. This is perfectly nor-
mal. If a software firewall, such as Norton Internet Security
or ZoneAlarm, displays any warnings, you must select the
option to allow connections to Apache.

On Vista, you will see the Error alert shown alongside. It’s
nothing to worry about, just click OK, and follow the
instructions in “Running the Apache Monitor on Vista.”

8. If Windows attempts to block Apache, choose the Unblock option.

9. After the installation has finished, open a browser, and type http://localhost/
into the address bar. If all has gone well, you should see the test page shown in
Figure3-5.

Figure 3-5. A simple, reassuring message that Apache 2.2 is running

Troubleshooting If you get an error message, it probably means that the Apache server is
not running. Start up the server as described in the next section, and try again. Other
causes of failure include the following:

A software firewall is blocking Apache. Launch your firewall management panel,
and allow communication to and from Apache.

Another program is using port 80. Download a free utility called Fport from www.
foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=/
resources/proddesc/fport.htm. Save fport.exe to the top level of your C drive,
open a Windows Command Prompt, and type the following commands, each fol-
lowed by Enter:

cd C:\
fport

This displays a list of ports being used by various programs. Identify which program
is using port 80. If possible, change the other program’s configuration to move it to
a different port. If you can’t move the other program, reconfigure Apache to use
port 8080, as described in “Changing the default Apache port” later in the chapter.

GETTING THE WORK ENVIRONMENT READY

77

3

8598CH03.qxd 6/28/07 2:56 PM Page 77

http://localhost
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=
http://www.foundstone.com/index.htm?subnav=resources/navigation.htm&subcontent=
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Running the Apache Monitor on Vista
This section applies to Windows Vista only. If you are running Windows XP, skip to the next
section.

At the time of this writing, the Apache Monitor hasn’t been optimized for running on Vista,
so you need to run it in compatibility mode. The following instructions show you how:

1. Go to Start ➤ All Programs. You need to locate the Apache Monitor. It may be listed
separately as Apache HTTP Server Monitor, or you might find it listed as Monitor
Apache Servers inside Apache HTTP Server 2.2.x ➤ Control Apache Server.

2. Right-click Apache HTTP Server Monitor (Monitor Apache Servers), and select
Properties.

3. Select the Compatibility tab, and check the option to run the program in compati-
bility mode for Windows XP (Service Pack 2), as shown in the following screenshot:

4. Click OK and restart your computer.

5. When you log back into Vista, the task tray should display a message saying that it
has blocked some startup programs. Click the message, and select Run blocked pro-
gram ➤ Apache HTTP Server Monitor, as shown here.

Vista should register it as a permitted program. If you see the Error alert shown in
step 7 of “Installing Apache on Windows,” check that compatibility mode hasn’t
been deselected by accident. After resetting compatibility mode, you should be
able to start the Apache Monitor by selecting it from Start ➤ All Programs.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

78

8598CH03.qxd 6/28/07 2:56 PM Page 78

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Starting and stopping Apache on Windows
Apache 2.2 places a tiny icon like a red feather with a white circle in
the tray at the right end of the Windows taskbar. This is the Apache
Monitor, which shows you at a glance whether Apache is running. If
it’s running, there is a green, right-facing arrow in the white circle.
When Apache has stopped, the arrow turns to a red dot (see the screenshots immediately
above). Click the icon once with the left mouse button to reveal a context menu to start,
stop, and restart Apache.

Changing startup preferences or disabling Apache
If you stop developing PHP sites for a while or decide you want to experiment with IIS, you
can switch Apache to manual operation or disable it like this:

1. Open the Windows Services panel by right-clicking the Apache Service Monitor
icon, and selecting Open Services from the context menu.

2. Highlight Apache2.2 in the Services panel, right-click, and select Properties.

3. From the Startup type drop-down menu, select Automatic, Manual, or Disabled, as
shown in Figure 3-6. If you want to start or stop Apache at the same time, click the
appropriate Service status button before clicking OK.

Figure 3-6. If you decide you don’t need Apache for a while,
you can switch off automatic startup.

GETTING THE WORK ENVIRONMENT READY

79

3

8598CH03.qxd 6/28/07 2:56 PM Page 79

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Installing PHP on Windows
Now that you have a web server running, you can install PHP. These instructions work with
Apache on Windows XP and Vista and with IIS on Windows XP.

1. Make sure all programs are closed, and double-click the php-5.x.x-win32-installer.
msi icon to launch the installation wizard. Click Next to start the installation.

2. Accept the PHP License Agreement, and click the Next button.

3. The next dialog box allows you to choose where PHP should be installed. The
default is C:\Program Files\PHP\. Accept the default or specify another location,
and click Next.

4. You now get the chance to select the web server that you want to use in conjunc-
tion with PHP. As you can see from the next screenshot, there's a wide selection.

If you plan to use Apache with PHP, select Apache 2.2.x Module.

Although there are two options for IIS, only IIS CGI is supported at the moment.
(Check http://foundationphp.com/egdwcs3/updates.php for the current
situation.)

Make your selection, and click Next.

5. If you chose IIS in the preceding step, skip to step 6.

In my testing, the PHP 5.2.1 installer failed with IIS7 on Vista. I expect a future version
will rectify the problem. Check my website at http://foundationphp.com/egdwcs3/
updates.php for the current situation. The site gives details of a workaround I used to
get PHP working successfully on IIS7.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

80

8598CH03.qxd 6/28/07 2:56 PM Page 80

http://foundationphp.com/egdwcs3
http://foundationphp.com/egdwcs3/updates.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you chose Apache, specify the location of the Apache configuration file by
browsing to C:\Program Files\Apache Software Foundation\Apache2.2\conf\
(adjust the path if you installed Apache in a different location). Click OK, and then
click Next.

6. The next dialog box lets you select which PHP extensions will be enabled. PHP
offers a huge range of noncore extensions, so it's best to choose only those that
you know you'll need. Click inside the dialog box to expand the Extensions tree
menu. You need to enable the following extensions:

GD2: This enables PHP’s image manipulation functions.

Multi-Byte String: This allows you to handle Unicode (UTF-8) and is needed for
communication with MySQL.

MySQL: This allows you to interact with the MySQL database.

MySQLi: This offers enhanced MySQL features.

XSL: This is required for the Dreamweaver XSL Transformation server behavior.

To enable an extension, click the down arrow next to the extension name, and
select Will be installed on local hard drive, as shown in the following screenshot. The
red ✕ is replaced by a hard drive icon, indicating that the extension will be enabled.

Click Next when you have made your choices.

7. The wizard is now ready to install PHP. If you selected Apache, it asks whether you
want it to configure Apache. (On Vista, this alert may be hidden behind the main
dialog box; select it from the Windows task bar when it flashes.) Click Yes.

After the installation, you should see two alert boxes telling you that the Apache
configuration and mime.types files were successfully updated. Click OK and then
click Finish to close the wizard.

GETTING THE WORK ENVIRONMENT READY

81

3

8598CH03.qxd 6/28/07 2:56 PM Page 81

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you selected IIS, there are no further dialog boxes. Just click Finish when the
installation is complete. If you selected IIS on Vista and see the following warning,
click OK and visit http://foundationphp.com/egdwcs3/updates.php for details of
a workaround.

Testing your PHP installation (Windows XP and Vista)
Before you can test your PHP installation, you must reboot your computer.

Use test.php from the beginning of the chapter or from examples/ch03 in the download
files to make sure that the installation succeeded. Because PHP is a server-side language,
you need to locate all files within what’s known as the server root or the server’s docu-
ment root. This is simply a top-level folder where Apache or IIS automatically looks for
files. The default location for Apache 2.2 is

C:\Program Files\Apache Software Foundation\Apache2.2\htdocs

For IIS, it’s

C:\Inetpub\wwwroot

Copy test.php to the appropriate folder for your web server, launch a browser, and type
the following URL in the browser address bar:

http://localhost/test.php

If everything went well, you should see the page of PHP configuration data shown in Figure
3-1 at the beginning of the chapter. Congratulations, you’re nearly finished. Unless you
need to run Apache on a different port from the default 80, or you want to run Apache
and IIS in parallel, skip ahead to the section “Checking your PHP configuration.”

Troubleshooting Unfortunately, sometimes things go wrong. If you fail to see the PHP con-
figuration page, the first thing to check is that your web server is running. Copy an ordi-
nary .html web page to the server root, and view it by typing http://localhost/ followed by
the file name in the browser address bar. If it displays correctly, the problem is with the
PHP installation. If it doesn’t display, the problem is with your web server.

Keep the .msi file after you have finished, as you will need it again if you
want to add new features to PHP. The installer copies only those files needed
for the features you selected.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

82

8598CH03.qxd 6/28/07 2:56 PM Page 82

http://foundationphp.com/egdwcs3/updates.php
http://localhost/test.php
http://localhost
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you are using IIS, uninstall PHP through the Windows Control Panel like any other
Windows program, and remove C:\Program Files\PHP, if it isn’t removed auto-
matically. Check IIS and make sure it is working properly before reinstalling PHP.

If you are using Apache, open the main Apache configuration file (C:\Program Files\
Apache Software Foundation\Apache2.2\conf\httpd.conf) in Notepad, and
scroll down to the bottom of the file. You should see a section that starts with
#BEGIN PHP INSTALLER EDITS, as shown in Figure 3-7.

GETTING THE WORK ENVIRONMENT READY

83

3

Figure 3-7. The Windows PHP installer places all edits in one convenient block at the end of the
Apache configuration file.

If your file doesn’t look like that, replace the PHP installer edits with the code
shown in Figure 3-7.

Apache is case sensitive; the commands in the second and third lines must contain
the correct combination of uppercase and lowercase letters. The pathnames must
be in quotes, and there should be no spaces in PHPIniDir and LoadModule.

Also open C:\Program Files\Apache Software Foundation\Apache2.2\conf\
mime.types in Notepad. The PHP installer should have added the following two
lines at the bottom:

application/x-httpd-php php
application/x-httpd-php-source phps

If they’re missing, add them on separate lines as shown here. After making any
changes to httpd.conf and mime.types, save both files, and restart Apache.

If PHP still fails in Apache, remove the four lines of code from httpd.conf and the two
lines from mime.types. Uninstall PHP through the Windows Control Panel like any Windows
program, delete the C:\Program Files\PHP folder if it’s still there, and restart Apache.
Make sure Apache is running properly before attempting to reinstall.

Changing the default Apache port
By default, web servers like Apache and IIS listen for requests on port 80, but they cannot
share the same port. So, if you plan to run Apache and IIS in parallel, you must switch one
of them to listen on a different port. Equally, if another program is already using port 80
and cannot be moved, you need to switch your web server to a different port. This is how
you change the default setting for Apache.

8598CH03.qxd 6/28/07 2:56 PM Page 83

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Open C:\Program Files\Apache Software Foundation\Apache2.2\conf\httpd.
conf in Notepad, and locate the line indicated by the arrow in the following
screenshot:

2. Change it to this:

Listen 8080

3. Save httpd.conf, and restart Apache. After making this change, you should always
use http://localhost:8080/ in place of http://localhost/.

Changing the default IIS port
The following instructions show you how to change the default port for IIS. The setup is
slightly different for Windows XP and Vista. Use the appropriate set of instructions.

1. Open the Internet Information Services panel (Start ➤ Control Panel ➤ Administrative
Tools ➤ Internet Information Services), expand the tree menu on the left to highlight
Default Web Site, and click the Stop Item icon, as shown here:

2. Right-click Default Web Site, and choose Properties from the context menu.

3. Select the Web Site tab, and change TCP Port to 8080, as shown in the next screen-
shot.

Changing the IIS port on Windows XP

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

84

8598CH03.qxd 6/28/07 2:56 PM Page 84

http://localhost:8080
http://localhost
http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Click OK to save the change, and restart IIS by clicking the Start Item icon (the right-
facing arrow immediately to the left of the Stop Item icon).

1. Open the Internet Information Services (IIS) Manager by going to Start ➤ Control Panel
➤ Administrative Tools ➤ Internet Information Services(IIS) Manager (see Figure 3-8).
Expand the tree menu on the left to highlight Default Web Site.

Figure 3-8. The Internet Information Services (IIS) Manager in Vista

2. In the Actions panel on the right, click Stop under Manage Web Site. Then click
Bindings under Edit Site. This opens the Web Site Bindings dialog box.

Changing the IIS port on Vista

GETTING THE WORK ENVIRONMENT READY

85

3

8598CH03.qxd 6/28/07 2:56 PM Page 85

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Select the existing entry in the Web Site Bindings dialog box, and click Edit. In the
Edit Web Site Binding dialog box, change the value of Port to 8080, as shown in
the next screenshot, and click OK.

4. Confirm that Port displays 8080 in the Web Site Bindings dialog box, and click Close.

5. Restart IIS by clicking Start under Manage Web Site in the Actions panel.

Setting up on Mac OS X
The good news about Mac OS X is that Apache and PHP are already installed. The not quite
so good news is that the preinstalled version of PHP is very restricted and not suitable for
working with this book. Fortunately, an excellent Mac PKG file is available for free down-
load, and it will provide you with a full-featured, up-to-date version of PHP 5.

Starting and stopping Apache on Mac OS X
Make sure you are logged into Mac OS X with Administrative privileges.

1. Open System Preferences, and click Sharing in Internet & Network.

2. In the dialog box that opens, click the lock in the bottom left corner, if necessary,
to allow you to make changes, and enter your password when prompted. Highlight
Personal Web Sharing on the Services tab, as shown in Figure 3-9, and then click the
Start button on the right. A message will appear informing you that personal web

These instructions have been tested on Mac OS X 10.4 (Tiger), the minimum
requirement for Dreamweaver CS3. They do not cover Mac OS X Server.

After making this change, you should always use http://localhost:8080/ in
place of http://localhost/. If you switched IIS to manual startup before
installing Apache, you can now reinstate automatic startup, as long as Apache
and IIS are listening on different ports. Reopen the dialog box shown in Figure
3-3, and reset Startup type to Automatic.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

86

8598CH03.qxd 6/28/07 2:56 PM Page 86

http://localhost:8080
http://localhost
http://lib.ommolketab.ir
http//lib.ommolketab.ir

sharing is starting up. Once it’s running, the label on the button changes to Stop.
Use this button to stop and restart Apache whenever you install a new version of
PHP or make any changes to the configuration files. Click the lock again, if you
want to prevent accidental changes.

Figure 3-9. The Apache web server on a Mac is switched on and off in the
Sharing section of System Preferences.

3. Open your favorite browser, and type http://localhost/ into the address bar. You
should see a page like the one shown in Figure 3-10, confirming that Apache is
running.

Figure 3-10. Confirmation that Apache is running successfully on Mac OS X

Upgrading PHP on Mac OS X
The engine underlying Mac OS X is Unix, a very stable multitasking operating system that’s
been around for more than 30 years. While that’s a good thing, it means that installing PHP

GETTING THE WORK ENVIRONMENT READY

87

3

8598CH03.qxd 6/28/07 2:56 PM Page 87

http://localhost
http://lib.ommolketab.ir
http//lib.ommolketab.ir

the traditional way involves compiling it from source code. Without a solid understanding
of Unix, this can turn into a nightmare if anything unexpected happens.

Thankfully, it’s a route you don’t have to take. A software engineer named Marc Liyanage
is highly respected in the Mac PHP community for the packages he creates for all major
upgrades of PHP. Marc’s packages are not only easy to install, he takes the trouble to con-
figure them to support a wide range of extra features. The only drawback is that they
involve a large download (nearly 50MB). Even if you have a slow Internet connection, the
large download is worth it. You get a full-featured version of PHP that works straight “out
of the box.” If you run into problems, there’s a searchable support forum on Marc’s web-
site, where answers tend to be fast and accurate. It should be your first port of call in case
of installation problems.

1. There are different packages for Apache 1.3 and Apache 2. The default installation
in Mac OS X at the time of this writing is Apache 1.3, but it’s important to check
whether it’s the same in your case. In Finder, open the Utilities folder within the
Applications folder, and launch Terminal.

2. A window like the one shown here will open:

It doesn’t look very impressive, but if you’ve ever worked on a Windows or DOS
computer, it should be as familiar as the Command Prompt, and it performs the
same function. All instructions to the computer are inserted as written commands
at the shell prompt. This is the final line in the preceding screenshot, and it looks
something like this:

Vigor19:~ davidpowers$

The first part (before the colon) is the name of your Macintosh hard disk. The tilde
(~) is the Unix shorthand for your home directory (or folder). This should be fol-
lowed by your username and a dollar sign. As you navigate around the hard disk,
your location is indicated in place of ~. All commands in Terminal are followed by
Return.

3. To find out which version of Apache is running on your Mac, type the following
command:

httpd -v

PHP relies heavily on the availability of external code libraries. It is essential that you
have installed all the latest Apple system software updates before proceeding. Marc
Liyanage has a policy of supporting only the most recent version of Mac OS X. At the
time of this writing, his package is a Universal Binary (suitable for both PowerPC and
Mac Intel processors) that works on Mac OS X 10.4, the minimum required for
Dreamweaver CS3.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

88

8598CH03.qxd 6/28/07 2:56 PM Page 88

http://lib.ommolketab.ir
http//lib.ommolketab.ir

After pressing Return, you should see something like this:

This tells you the version of Apache and when it was built. Check the first two num-
bers of the version—in this case, 1.3—to ensure that you download the correct
PHP package.

4. Go to www.entropy.ch/software/macosx/php/, scroll about halfway down the
page to the section labeled PHP 5 for Mac OS X, PPC and Intel, and select the link
for the same version of Apache as you have on your computer. Read any installa-
tion instructions on the site, as they’ll contain the most up-to-date information
about special requirements or restrictions.

5. The Universal Binary is in a compressed file called entropy-php-5.x.x-x.tar.gz,
where x represents the version number. Double-click the compressed file’s icon.
This extracts two icons to your Desktop: entropy-php-5.x.x-x.tar and entropy-
php.mpkg. Double-click entropy-php.mpkg, and follow the instructions onscreen.

6. Copy the test.php from the beginning of the chapter or the download files to
Macintosh HD:Library:WebServer:Documents. Launch a browser, and type http://
localhost/test.php in the address bar. You should see a screen similar to Figure 3-11
confirming that PHP has been installed successfully. If it fails to appear, stop
Apache, and restart it as described in the preceding section.

Figure 3-11. Confirmation that a full-featured version of PHP has been installed on Mac OS X

GETTING THE WORK ENVIRONMENT READY

89

3

8598CH03.qxd 6/28/07 2:56 PM Page 89

http://www.entropy.ch/software/macosx/php
http://localhost/test.php
http://localhost/test.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Checking your PHP configuration
Whichever method you used to install PHP, you need to make sure not only that it’s run-
ning but also that it’s configured correctly for working with Dreamweaver CS3. This
involves the following two steps:

1. Checking the output of phpinfo()

2. Making any necessary changes to the PHP configuration file, php.ini

Understanding the output of phpinfo()
The screen full of information produced by phpinfo(), as shown in Figures 3-1 and 3-11,
may appear overwhelming at first sight, but it’s a very user-friendly way of checking the
features available in your PHP setup. Everything is grouped together logically and usually in
alphabetical order. The top section contains mainly technical details. Windows users
will notice that the section labeled Configure Command is far shorter than that shown in
Figure 3-11 for Mac OS X or on a remote Linux server. This simply reflects the different
way Windows handles PHP extensions. Most of the important information is further down
the page.

The first item you should check is right at the top. It’s the PHP version number. It must be
a minimum of 4.3.1, and preferably 5.2.1 or higher. If it’s below the minimum, you have no
option but to reinstall PHP.

Checking the location of php.ini
Although phpinfo() displays the details of your configuration, what actually controls your
PHP setup is a file called php.ini, so it’s important to know where it is and ensure that
your operating system is reading the correct file. This information is displayed in the sixth
item from the top, labeled Configuration File (php.ini) Path. In PHP 5.2.3 or later, check the
seventh item, labeled Loaded Configuration File.

If you accepted the default installation location on Windows, it should display this:

C:\Program Files\PHP\php.ini

On Mac OS X, you should see this:

/usr/local/php5/lib/php.ini

If you installed XAMPP or MAMP, or chose a different installation location on Windows,
make a note of where php.ini is located, as you will need to make a few minor adjust-
ments to it shortly. If php.ini is where you expect it to be, skip ahead to “Checking PHP
Core settings.” If php.ini is in an unexpected location, or if the pathname doesn’t end
with php.ini, read on.

Both problems arise almost exclusively with Windows, and are usually caused by a previous
installation of PHP (or all-in-one package) that hasn’t been completely removed.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

90

8598CH03.qxd 6/28/07 2:56 PM Page 90

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If php.ini is in the wrong place Until mid-2004, the recommended location for php.ini was
in the main Windows folder. If you still have a copy of php.ini in C:\WINDOWS or in some
other, unexpected location, remove it, and restart Apache or IIS. Reload test.php in your
browser, and check whether it now shows the correct location or if you now have the next
problem.

If the pathname doesn’t end with php.ini This means that the operating system isn’t read-
ing the configuration file. This results in PHP applying a restricted set of default values,
which are unsuitable for working with Dreamweaver CS3 or MySQL. You must fix this
before attempting to go any further.

On Mac OS X, this normally occurs only if you have enabled the preinstalled version of
PHP. The problem should disappear if you install the PHP Mac package as described earlier
in the chapter.

On Windows, it usually means there is a problem with the Windows path, which tells the
operating system where to find programs. Open a Windows Command Prompt (Start ➤
Accessories ➤ Command Prompt), type path, and press Enter. You should see a list of folder
names separated by semicolons.

Inspect the list of folders to see if it includes the location of a previous PHP installation,
such as C:\php5. If it does, you need to edit the path to remove the old location and add
the new one, if necessary.

To edit the Windows path in Windows XP, double-click System in the Windows Control
Panel. Select the Advanced tab, and click Environment Variables. In the System variables
pane at the bottom of the dialog box that opens, select Path, and click Edit. Make any
edits, and click OK to save them.

To edit the Windows path in Vista, double-click System in the Windows Control Panel in
Classic View. Then click Change settings under Computer name, domain, and workgroup set-
tings. In the System Properties panel, select the Advanced tab, and click Environment
Variables. In the System variables pane at the bottom of the dialog box that opens, select
Path, and click Edit. Make any edits, and click OK to save them.

After editing the path, you need to restart your computer. If you have entered the correct
path to the PHP folder, and the folder contains php.ini, the correct pathname should be
displayed by test.php.

If you still don’t see the correct path, copy php.ini from the PHP folder to C:\WINDOWS,
and restart your computer. This is a last resort but should always work.

Be careful when editing the Windows path. If you make a mistake, it could
prevent other programs from functioning correctly. Each entry must be
separated by a semicolon.

GETTING THE WORK ENVIRONMENT READY

91

3

8598CH03.qxd 6/28/07 2:56 PM Page 91

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Checking PHP Core settings
With test.php still displayed in your browser, scroll down to the section labeled PHP Core,
as shown in Figure 3-12. This section tells you the value of each basic configuration setting
on your server. It contains details of more than 80 configuration directives, most of which
you need never worry about. However, you need to check the following three, indicated
by arrows in Figure 3-12:

display_errors: This needs to be On.

error_reporting: For PHP 5.2.0 and higher, this should be 6143. For earlier ver-
sions of PHP, it should be at least 2047.

log_errors: This needs to be Off.

Figure 3-12. The PHP Core section shows all the basic PHP settings on your server.

If you used the PHP Windows installer or the Mac package created by Marc Liyanage, you
need to change display_errors and log_errors. If you used an all-in-one package,
you may need to change all three. Instructions are given in “Editing php.ini” later in the
chapter.

Although you don’t need to worry about the PHP Core directives now, Table 3-1 describes
the most important ones. Refer to this table if you get unexpected results when deploying
PHP pages on your remote server. Hosting companies frequently restrict what you’re
allowed to do by altering the default configuration.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

92

8598CH03.qxd 6/28/07 2:56 PM Page 92

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 3-1. The main PHP Core directives

Default
Directive value Remarks

allow_url_fopen On This allows your scripts to read files, such as
news feeds, on other sites. Prior to PHP 5.2.0,
it also allowed you to include the contents of
remote files directly within scripts. This is
potentially dangerous, so many hosting
companies turn this setting off.

allow_url_include Off This was introduced in PHP 5.2.0 to overcome
the security problem with allow_url_fopen
(see preceding entry). It’s hoped that hosting
companies will turn allow_url_fopen back on
once they upgrade to PHP 5.2.0 or higher.

display_errors Off This setting should be on when developing but
off on a live production server, as error messages
can provide useful information to malicious
users. However, many hosting companies turn
this setting on to prevent filling up their error
logs. Always test scripts thoroughly to eliminate
errors before deployment on a live server.

error_reporting 6143 This is the equivalent of E_ALL in php.ini. It
displays all error messages, except E_STRICT, a
category mainly of interest to advanced users.
Prior to PHP 5.2.0, E_ALL is displayed as 2047.

file_uploads On This allows you to upload files to the remote
server, a subject not covered in this book. For a
detailed explanation of PHP file uploads, see my
book PHP Solutions: Dynamic Web Design Made
Easy (friends of ED, ISBN-13: 978-1-59059-731-6).

log_errors On This setting should normally be the opposite of
display_errors, so that errors are either
displayed onscreen or written to a log file, but
not both. For a local development environment,
display_errors should be on, and log_errors
should be off, to prevent filling up your hard disk
with unnecessary files.

magic_quotes_gpc Off When turned on, this setting automatically
inserts backslashes in front of single and double
quotes in data submitted from a form. Code
generated by Dreamweaver CS3 automatically
detects whether this setting is on and handles
the data appropriately. This subject is discussed
in Chapter 11.

Continued

GETTING THE WORK ENVIRONMENT READY

93

3

8598CH03.qxd 6/28/07 2:56 PM Page 93

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 3-1. The main PHP Core directives (continued)

Default
Directive value Remarks

max_execution_time 30 The maximum time, in seconds, that a script will
attempt to run. If your scripts take longer than
30 seconds, it’s normally a sign there’s something
wrong with them.

open_basedir For security reasons, some hosting companies
restrict files that can be opened by PHP to a
specific directory (folder) and its subfolders. If a
value is displayed here, your scripts will not have
access to files in other folders.

post_max_size 8M The maximum size of data sent using the post
method, including upload files. K indicates
kilobytes; M indicates megabytes. If no suffix is
given, the size is measured in bytes.

register_globals Off The default setting has been off since 2002,
but some hosting companies switch it back on
because many poorly written scripts break
without it. Do not be tempted to change this
setting, as scripts that rely on register_globals
are extremely insecure. Moreover,
register_globals will be permanently disabled
in PHP 6, so you need to future-proof your
scripts.

safe_mode Off As a security measure, some hosting companies
enable safe mode, which disables many PHP
features. For details, see www.php.net/manual/
en/features.safe-mode.php.

short_open_tag Off Some scripts use <? instead of <?php, and <?=
instead of <?php echo. This causes confusion
with XML, so the shorter form is now
discouraged. Dreamweaver CS3 and this book
always use the longer, recommended form.

upload_max_filesize 2M This is the maximum size of an individual
upload file.

upload_tmp_dir This is where upload files are stored temporarily
until moved to their final location. See my book,
PHP Solutions, for more details.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

94

8598CH03.qxd 6/28/07 2:56 PM Page 94

http://www.php.net/manual
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Checking installed extensions
The rest of the configuration page shows you which PHP extensions are enabled. They’re
listed alphabetically and provide considerable information about the features installed on
your server. Figure 3-13 shows part of the details listed for a server that supports the orig-
inal MySQL extension and MySQL Improved (mysqli). Although Dreamweaver CS3 doesn’t
offer support for MySQL Improved, if you install PHP 5 as recommended here, you need to
make sure that test.php lists both mysql and mysqli, as shown in Figure 3-13. The value of
Client API Version determines the maximum version of MySQL you will be able to install in
Chapter 13. It should be at least 5.0.x. PHP 4 does not support mysqli, and the Client API
Version will be lower, restricting you to running an older version of MySQL.

Figure 3-13. It’s important to check that you have correctly installed support for the
MySQL database in PHP.

Scroll down the rest of test.php, and check that the following extensions are also
enabled:

gd

mbstring

pcre

session

xsl

GETTING THE WORK ENVIRONMENT READY

95

3

8598CH03.qxd 6/28/07 2:56 PM Page 95

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Checking supported $_SERVER variables
The final section output by phpinfo() is titled PHP Variables. You don’t need to worry
about this section when first working with PHP, but it comes in very handy later.

Most, if not all, entries begin with _SERVER. These are preset PHP variables that contain
valuable information about the web server. Unfortunately, not all servers support the full
range. For example, a Windows server running in CGI mode does not normally support
$_SERVER['DOCUMENT_ROOT'], which contains the pathname of the server root, and
$_SERVER['SCRIPT_FILENAME'], which contains the file name of the current script. If a
PHP script uses $_SERVER variables, it’s important to check this section to make sure that
your remote server supports the particular variables you need.

Editing php.ini
The configuration file, php.ini, controls all the settings on your server. Although you can
edit php.ini in your own testing environment, you normally have no control over most
settings on a remote server, unless it’s your own dedicated server. Editing php.ini is easy,
because it’s a text file, albeit a very long one (more than 1,200 lines). Most lines begin with
a semicolon, which indicates a comment. Directives that your computer reads when the
web server starts up are always on separate lines that don’t begin with a semicolon.

Windows users can open php.ini and edit it in Notepad, although you may find it helpful
to use a script editor—such as TextPad (www.textpad.com) or EditPlus (www.editplus.com)—
that displays line numbers. Things are slightly more complicated on Mac OS X.

Accessing php.ini on Mac OS X
On a Mac, php.ini is a hidden file, so it’s best to use a script editor capable of handling
hidden files, such as BBEdit (www.barebones.com). If you don’t have a suitable editor, I sug-
gest that you download TextWrangler (also from www.barebones.com), a free, cut-down
version of BBEdit that’s ideal for editing php.ini.

Your computer reads the PHP configuration file only when the web server first starts
up, so any changes to php.ini always require Apache or IIS to be restarted for them
to take effect.

If any of these entries are missing, fix your installation before attempting to go any
further. On a Mac, this means a complete reinstallation, because PHP extensions must
be compiled into the program at the time of installation. Windows users should refer
to “Enabling PHP extensions in Windows” later in the chapter, as the method depends
on how you originally installed PHP.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

96

8598CH03.qxd 6/28/07 2:56 PM Page 96

http://www.textpad.com
http://www.editplus.com)%E2%80%94
http://www.barebones.com
http://www.barebones.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Open BBEdit or TextWrangler. To make it easier to identify the correct place in the
files you edit, choose Preferences from the BBEdit or TextWrangler menu, and select
Text Status Display. Make sure the Show Line Numbers checkbox is selected. Close
the Preferences panel.

2. From the File menu, choose Open Hidden, and navigate to Macintosh HD:usr:
local:php5:lib:php.ini. Because php.ini is a protected file, you need to select
All Files from the Enable drop-down menu at the top of the Open dialog box, as
shown in the following screenshot. Click Open.

3. At the top left of the toolbar, a pencil with a line through it indicates that php.ini
is a read-only file. To edit it, click the pencil icon. You will see the following prompt:

4. Click Yes. You can then edit php.ini normally.

5. When you save the file, you will be prompted for your Mac administrator password.
This is because the file belongs to your computer’s super administrator known as
“root.”

GETTING THE WORK ENVIRONMENT READY

97

3

8598CH03.qxd 6/28/07 2:56 PM Page 97

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Configuring PHP to display errors
If phpinfo() shows that display_errors is turned off in your local testing environment,
you need to make a couple of simple text edits to php.ini. Locate the section in php.ini
shown in the following screenshot, and edit the directives shown on lines 349, 356, and
366 so they are the same as in the image.

Enabling PHP extensions on Windows
PHP offers a large number of extensions to its core functionality. Many extensions are built
into the Windows version of PHP. Others rely on dynamic link libraries (.dll files). If the
extension you want to use isn’t listed when you run phpinfo(), you need to enable it. How
you do so depends on how you installed PHP.

If you used the Windows installer for PHP 5.2.0 or higher The changes need to be made by
running the installer again.

1. To launch the installer, go to Start ➤ Control Panel.

2. In Windows XP, double-click Add or Remove Programs, and select PHP. Click the
Change button, and follow the instructions onscreen.

In Vista, select Programs and Features in Classic View. Highlight PHP, click Change at
the top of the panel, and follow the instructions onscreen.

3. Select any new extensions in the same way as when you originally installed PHP.

The .msi file that you used to install PHP must still be available. If it’s no longer in the orig-
inal location, Windows prompts you to browse for it. If the file is missing, the update
procedure will terminate without making any changes.

The line numbers should be taken only as a guide to identifying the correct
section of php.ini. They may be different in your version of PHP.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

98

8598CH03.qxd 6/28/07 2:56 PM Page 98

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you have previous experience of PHP, it’s important to realize that you cannot simply
uncomment the appropriate extension in php.ini, because the Windows installer needs to
install the corresponding .dll file(s) as well. Unlike the ZIP version of PHP, the extension
folder contains only those .dll files actually required.

If you installed PHP any other way You should be able to enable extensions by uncom-
menting the appropriate directive in php.ini. Open php.ini, and remove the semicolon
from the beginning of the line that lists the appropriate .dll file in the section labeled
Windows Extensions (around line 625). See www.php.net/manual/en/install.windows.
extensions.php for details of extensions that are dependent on others.

Enabling file uploads and sessions (Windows installer)
The Windows installer designates two folders in your user area as the values for upload_
tmp_dir and session.save_path. However, file uploads and sessions won't work unless
you create the folders yourself. (Sessions are covered in Chapter 15.)

In Windows XP, go to C:\Documents and Settings\<username>\Local Settings\Temp. In
Vista, go to C:\Users\<username>\AppData\Local\Temp.

Create a new folder called php, and inside that folder, create two subfolders called upload
and session.

Alternatively, edit php.ini to set the values of upload_tmp_dir and session.save_path to
point to folders of your choosing. If the folder pathname includes any spaces, enclose the
entire pathname in quotes. Make sure you edit the correct versions of these directives in
php.ini. You can identify them because they don’t have a semicolon at the beginning of
the line.

Overriding settings on your remote server
Although I said earlier that you normally have no control over settings on your remote
server unless it’s your own dedicated server, it is possible to override some of them. This is
not something that you need to worry about at this stage, but this information may be
useful later.

Suppressing error messages
If your remote server has display_errors turned on, you can suppress all error messages
by adding the following line of code to the top of your pages:

<?php error_reporting(0); ?>

Overriding default settings with ini_set()
Some PHP directives can also be overridden by using a function called ini_set() in your
scripts (if you’re new to PHP, functions and other basic structures are covered in Chapter
10). There’s a full list of php.ini directives at www.php.net/manual/en/ini.php. Those
marked PHP_INI_ALL can be used with ini_set(). The function takes two arguments: the
directive and the new value, both in quotes. So this is how you increase the maximum time
a script is allowed to run from the default 30 to 45 seconds:

ini_set('max_execution_time', '45');

GETTING THE WORK ENVIRONMENT READY

99

3

8598CH03.qxd 6/28/07 2:56 PM Page 99

http://www.php.net/manual/en/install.windows
http://www.php.net/manual/en/ini.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using .htaccess to change default settings
If your remote server runs on Apache and the server is configured to allow you to change
settings, you can override many more by creating .htaccess files. Unlike ini_set(), which
must be included in every script, this has the advantage that the new settings are applied
automatically to all files in the affected directory (folder). Directives marked PHP_INI_ALL
or PHP_INI_PERDIR in the list at www.php.net/manual/en/ini.php can be overridden in
this way. For directives that have an on/off value, use php_flag followed by the directive
name and the new value. To turn off magic quotes, use the following command in an
.htaccess file:

php_flag magic_quotes_gpc off

Directives that have a value other than on/off use a different command: php_value
followed by the directive and the new value. So, changing max_execution_time to 45 sec-
onds through .htaccess would look like this:

php_value max_execution_time 45

For more details, see www.php.net/manual/en/configuration.changes.php.

Summary
By now, you should have a testing environment compatible with Dreamweaver CS3. At the
risk of sounding repetitive, you must check that display_errors is turned on and that
phpinfo() lists mysql among the enabled extensions. Nobody likes seeing error messages,
but they’re indispensable when developing with PHP. Also, many people are confused by
the fact that, although support for MySQL is automatically built into PHP 4, you need to
enable it explicitly in PHP 5.

Before you can build web pages with PHP, you need to define your server root and tell
Dreamweaver where to find your local files, testing server, and remote server. That’s the
subject of the next chapter.

If you’re using Windows Vista, you may want to install MySQL (see Chapter 13) at this
stage. You should also read the section in the next chapter about creating virtual hosts.
Once you have finished configuring your testing environment, you should turn User
Account Control back on.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

100

8598CH03.qxd 6/28/07 2:56 PM Page 100

http://www.php.net/manual/en/ini.php
http://www.php.net/manual/en/configuration.changes.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 SETTING UP A PHP SITE

8598CH04.qxd 6/11/07 5:02 PM Page 103

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you’re a regular Dreamweaver user, I don’t need to tell you the importance of site defi-
nition; it’s how Dreamweaver organizes your web files and makes sure that links point to
the right place. If you’re in a hurry, and working with static web files, Dreamweaver will let
you create a quick page without saving it within a defined site. That won’t work with PHP
pages. Dreamweaver uses the site definition to determine which tools to make available to
you. Unless you choose the correct server model, all the PHP server behaviors will be inac-
cessible, and you won’t be able to test your files.

This is because web pages that use a server-side language like PHP need to be processed—
parsed, to use the correct technical expression—by the PHP engine on the web server
before they can be sent to the browser. As a result, the web server has to know not only
where to find your PHP pages, but also the correct URL to send them to after they have
been processed. Defining a PHP site in Dreamweaver is simple, but a lot of people seem to
get it wrong. This chapter guides you through the various options for storing PHP pages,
and then shows you how to define your site correctly in Dreamweaver CS3.

What this chapter covers

Choosing the best location for your files

Understanding the difference between document- and root-relative links

Moving the Apache server root on Windows

Creating virtual hosts on Windows and Mac OS X

Registering virtual directories on IIS

Setting up Dreamweaver to communicate with your remote server

Defining the PHP testing server in Dreamweaver

Testing your site definition

Backing up your Dreamweaver site definitions

Deciding where to locate your sites
There are two ways you can organize web files—in a centralized location known as the
server root, or in separate locations using virtual hosts or virtual directories. Both have
merits, and your choice is likely to be dictated by your work habits. Another consideration
is the type of links in your pages.

Understanding document- and root-relative links
When you insert a link or an image in a web page the <a> or tag needs to point to
the correct resource. Let’s say you have a simple website structure like that shown in
Figure 4-1.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

104

8598CH04.qxd 6/11/07 5:02 PM Page 104

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Document-relative links
The most common way to indicate the path to a resource on the same site is with links that
are relative to the document. For example, if index.php, contains a link to journey1.php,
the code looks like this:

Read more

And a link back to index.php inside journey1.php looks like this:

Back to main page

Similarly, if index.php contains the image called fountains.jpg, the tag looks like
this (I have omitted all attributes other than src, because that’s the only one we’re inter-
ested in at the moment):

A reference to the same image in journey1.php, however, looks like this:

The ../ before index.php and the images folder name tells the web server that it needs
to look one level higher in the website hierarchy to find the correct folder. If you change
the structure of the website using the Files panel, Dreamweaver automatically updates all
links, adding or removing the requisite number of ../ to ensure that everything works as
intended.

Root-relative links
An alternative way of indicating the path to a resource on the same site is to make the
links relative to the site root, rather than the document. With root-relative links, the two
links look like this:

Read more
Back to main page

The tag in both index.php and journey1.php looks like this:

Figure 4-1.
A simple website structure displayed in
the Dreamweaver Files panel

SETTING UP A PHP SITE

105

4

8598CH04.qxd 6/11/07 5:02 PM Page 105

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The difference is that the pathname always begins with a leading forward slash, which indi-
cates the top level of the site—in other words, the site root.

Why does this matter? After all, both achieve the same thing. When building static sites
with .html pages, it doesn’t make any difference which you choose. However, root-relative
links can be extremely useful with PHP. The advantage is that the link to the image is iden-
tical in index.php and journey1.php, even though the pages are at different levels of the
site hierarchy. This means that you can put some of your code, such as a navigation menu,
in an external file and the links will always work. As you’ll see in Chapter 12, the menu can
be included in multiple pages using a simple PHP command, and changes to the external
file are automatically propagated to all of them—a great time saver.

Because root-relative links are so useful, you may think that they’re the best choice for a
PHP site. Unfortunately, life is not quite so simple. Although root-relative links are essen-
tial inside external files, PHP expects the include command to use a document-relative
link. Moreover, Dreamweaver uses code that fails on IIS if you select root-relative links as
the default for your site. I’ll show you how to get around these problems at the appropri-
ate points later in the book.

First, let’s look at the alternative ways of organizing your files.

Keeping everything together in the server root
The server root is a directory or folder where the web server expects to find all public files.
The simplest way of organizing a test environment is to create a subfolder for each site
inside the server root. You can then test the site in a browser by adding the subfolder’s
name after http://localhost/. So, a site in a subfolder called egdwcs3 is accessed by the
address http://localhost/egdwcs3/.

Putting everything in the server root has the advantage that the web server automatically
recognizes any new subfolders inside the server root, eliminating the need for any further
setup.

There are, however, two significant disadvantages:

All files need to be in the same parent folder, so if your web files are in different
parts of your system, you need to move them before working with PHP.

Because each site is in a subfolder of the server root, you cannot test pages locally
if they use root-relative links.

One way round this is to create your site in the server root, but this restricts you to only
one site. A better solution—although only if you’re using Apache as your local testing
server—is to use virtual hosts.

Working with virtual hosts
Without getting into technical details, the web server treats a site in a virtual host as
though it’s in a dedicated server root of its own, even though everything is outside the
main server root. You can emulate this setup on your development computer so that
instead of http://localhost/egdwcs3/, the address becomes simply http://egdwcs3/.
This has two main advantages:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

106

8598CH04.qxd 6/11/07 5:02 PM Page 106

http://localhost
http://localhost/egdwcs3
http://localhost/egdwcs3
http://egdwcs3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

It doesn’t matter whether your web files are scattered in different parts of your sys-
tem—as long as each individual site is inside a single parent folder.

Because a virtual host is treated as a dedicated server root, there is no problem
with testing links relative to the site root.

There are no prizes for spotting that the advantages of virtual hosts overcome the disad-
vantages of keeping everything in the server root. So why don’t I just tell you to create
virtual hosts? Three reasons:

Virtual hosts are slightly more complicated to set up. Each new one needs to be
added to the web server’s main configuration.

To support virtual hosts with IIS, you must be running a server version of Windows.
The version of IIS that runs on Windows XP or Vista supports only virtual directo-
ries, which are not the same as virtual hosts.

Even if you never put anything in the server root, you still need one.

Don’t worry if you’re not sure which to choose. Using the server root is simpler, faster, and
adequate for most local development.

Finding the server root
On Windows, Apache 2.2 creates the server root at the following location:

C:\Program Files\Apache Software Foundation\Apache2.2\htdocs

I don’t think it’s a good idea to store your web files in among all your program files, so I
suggest that you move the Apache server root on Windows to a different location, as
described in the next section.

The IIS server root is located at

C:\Inetpub\wwwroot

On Mac OS X, you have two choices of server root. The main one is located at

Macintosh HD:Library:WebServer:Documents

Every user account on a Mac also has its own dedicated server root at

Macintosh HD:Users:username:Sites

Any site within this folder can be viewed in a browser using the address http://
localhost/~username/ followed by the name of the site’s subfolder, where username is
the name of your home folder. The address for the main server root is simply http://
localhost/, so it is probably the most convenient to use unless you share the computer
with others and want to keep things separate.

Moving the Apache server root on Windows
To avoid clogging up C:\Program Files with unrelated files, it’s a good idea to move the
Apache server root on Windows. All it involves is creating a new folder and a couple of
simple edits to the main Apache configuration file, httpd.conf. I normally create a folder

SETTING UP A PHP SITE

107

4

8598CH04.qxd 6/11/07 5:02 PM Page 107

http://localhost/~username
http://localhost/~username
http://localhost
http://localhost
http://lib.ommolketab.ir
http//lib.ommolketab.ir

called htdocs at the top level of my C drive, but if you have another hard disk, it’s a good
idea to use a drive other than C, as—among other things—it makes it easier to recover
your files in case of a hard drive failure. The name of the folder is unimportant. I use
htdocs because that’s the traditional name for an Apache server root.

After you have created the new folder, open C:\Program Files\Apache Software
Foundation\Apache2.2\conf\httpd.conf in Notepad or a text editor and locate the fol-
lowing section:

Change the pathname shown on line 149 of the preceding screenshot to the same as your
new folder (use the line numbers simply as a guide. They are not part of the file and may
be different in a later version of Apache). In my case, I change it to this:

DocumentRoot "C:/htdocs"

Scroll down about 30 lines until you find this section:

The instruction shown on line 175 is pretty straightforward: change the pathname to
match the previous change. In my case, I end up with this:

<Directory "C:/htdocs">

That’s all you need to do. While you have httpd.conf open, though, it’s a good idea to add
a default PHP page to your Apache configuration.

Setting a default file for Apache on Windows
With httpd.conf still open, scroll down to the following section:

Make sure that you use forward slashes in the pathname, instead of using
the Windows convention of backward slashes.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

108

8598CH04.qxd 6/11/07 5:02 PM Page 108

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This setting tells web servers what to display by default if a URL doesn’t end with a file name
but contains only a folder name or the domain name (for instance, www.friendsofed.
com). Apache will choose the first available page from a space-separated list. Add a space
followed by index.php at the end of the command shown on line 212 of the preceding
screenshot like this:

DirectoryIndex index.html index.php

If you want to create one or more virtual hosts, leave httpd.conf open, and skip to
“Creating virtual hosts on Apache.” Otherwise, save httpd.conf, and restart Apache for
the changes to take effect.

Adding a default PHP file to IIS
Since you’ll be working with PHP, it’s useful to add index.php to the list of default docu-
ments that IIS serves up whenever you enter a URL in the browser address bar that doesn’t
include a file name (such as www.friendsofed.com). The following instructions explain
how to do it.

1. Open the Internet Information Services panel (Start ➤ Control Panel ➤ Administrative
Tools ➤ Internet Information Services), and expand the tree menu in the left pane.
Select Default Web Site.

2. In Windows XP, right-click, and choose Properties from the context menu. Then
select the Documents tab of the Default Web Site Properties dialog box, and click
Add. In the dialog box that opens, type index.php in the Default Document Name
field, and click OK. Use the up and down arrows to move index.php to the position
you want in the list, as shown in the following screenshot. If there are any default
documents listed that you never intend to use, highlight them, and click Remove.
Make sure that Enable Default Document is checked, and click OK.

SETTING UP A PHP SITE

109

4

8598CH04.qxd 6/11/07 5:02 PM Page 109

http://www.friendsofed
http://www.friendsofed.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

In Windows Vista, double-click Default Document in the IIS section of Default Web
Site Home, as shown in the following screenshot:

Add index.php to the comma-separated list in the File name(s) field. Remove any
document types that you have no intention of using, and click Apply in the Actions
panel at the top right of the Internet Information Services (IIS) Manager.

3. Before your changes can take effect, you need to restart the web server. In
Windows XP, with Default Web Server still highlighted in the Internet Information
Services panel, click the Stop Item button (a black square) in the toolbar. After the
web server stops, click the Start Item button (a right-facing arrow). In Windows
Vista, return to the Default Web Site Home screen, and click Restart under Manage
Web Site in the Actions panel (at the top right of the preceding screenshot).

Creating virtual hosts on Apache
This section is entirely optional. If you don’t want to set up virtual hosts, skip ahead to the
section “Defining a PHP site in Dreamweaver.” You can come back and set up virtual hosts
at any time.

Apache allows you to create as many virtual hosts as you want. It’s a two-stage process.
First, you tell the operating system the names of the virtual hosts, and then you tell
Apache where the files will be located. There are separate instructions for Windows and
Mac OS X.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

110

8598CH04.qxd 6/11/07 5:02 PM Page 110

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Registering virtual hosts on Windows
Although you can locate your virtual hosts anywhere on your hard drive system, it’s a good
idea to keep them in a single top-level folder, as this makes it easier to set the correct per-
missions in Apache. The following instructions assume that all your virtual hosts are kept
in a folder called C:\vhosts and show you how to create a virtual host called egdwcs3
within that folder.

1. Create a folder called C:\vhosts and a subfolder inside it called egdwcs3.

2. Open C:\WINDOWS\system32\drivers\etc\hosts in Notepad or a script editor. It’s
normally a very short file. Look for the following line at the bottom:

127.0.0.1 localhost

127.0.0.1 is the IP address that every computer uses to refer to itself.

3. On a separate line, enter 127.0.0.1, followed by some space and the name of the
virtual host. For instance, to set up a virtual host for this book, enter the following:

127.0.0.1 egdwcs3

4. If you want to register any further virtual hosts, add each one on a separate line,
and point to the same IP address. Save the hosts file, and close it.

The remaining steps involve editing two Apache configuration files. On Windows XP, you
don’t need to take any special steps. Just edit them in Notepad or a text editor.

If you are using Vista and User Access Control (UAC) is still turned off from the previous
chapter, you can edit these files in the normal way. If you want to add additional virtual
hosts after turning UAC back on, run Notepad as administrator as described in step 2.

5. Open C:\Program Files\Apache Software Foundation\Apache2.2\conf\httpd.
conf in a text editor, scroll down to the Supplemental configuration section at the
end, and locate the following section:

6. Apache uses the hash or pound sign (#) to indicate comments in its configuration
files. Uncomment the command shown on line 463 in the preceding screenshot by
removing the #, like this:

Include conf/extra/httpd-vhosts.conf

This tells Apache to include the virtual host configuration file, which you must now
edit. Save httpd.conf, and close it.

In Vista, you need to open Notepad using the Run as administrator option.
Otherwise, you won’t be able to save the file. From the Windows Start menu,
right-click Notepad (it’s in the Accessories folder), and select Run as adminis-
trator from the context menu. Click Continue when prompted. In Notepad,
choose File ➤ Open, and set the drop-down menu alongside File name to All Files
(*.*). Navigate to the hosts file and click Open.

SETTING UP A PHP SITE

111

4

8598CH04.qxd 6/11/07 5:02 PM Page 111

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. Open C:\Program Files\Apache Software Foundation\Apache2.2\conf\extra\
httpd-vhosts.conf in Notepad or a text editor. The main part of the file looks like
this:

8. Position your cursor in the blank space shown on line 15 in the preceding screen-
shot, and insert the following four lines of code:

<Directory C:/vhosts>
Order Deny,Allow
Allow from all

</Directory>

This sets the correct permissions for the folder that contains the sites you want to
treat as virtual hosts. If you chose a location other than C:\vhosts as the top-level
folder, replace the pathname in the first line. Remember to use forward slashes in
place of backward slashes. Also surround the pathname in quotes if it contains any
spaces.

9. Lines 27–42 in the preceding screenshot are examples of virtual host definitions.
They show all the commands that can be used, but only DocumentRoot and
ServerName are required. When you enable virtual hosting, Apache disables the
main server root, so the first definition needs to reproduce the original server root.
You then add each new virtual host within a pair of <VirtualHost> tags, using the
location of the site’s web files as the value for DocumentRoot and the name of the
virtual host for ServerName. If the path contains any spaces, enclose the whole path
in quotes. If your server root is located, like mine, at C:\htdocs, and you are
adding egdwcs3 as a virtual host in C:\vhosts, change the code shown on lines
27–42 so they look like this:

<VirtualHost *:80>
DocumentRoot c:/htdocs
ServerName localhost

</VirtualHost>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

112

8598CH04.qxd 6/11/07 5:02 PM Page 112

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<VirtualHost *:80>
DocumentRoot c:/vhosts/egdwcs3
ServerName egdwcs3

</VirtualHost>

10. Save httpd-vhosts.conf, and restart Apache. All sites in the server root will con-
tinue to be accessible through http://localhost/sitename/. Anything in a virtual
host will be accessible through a direct address, such as http://egdwcs3/.

Registering virtual hosts on Mac OS X
This is a two-stage process. First, you register the names of any new hosts in NetInfo Manager,
and then you add the details of where to find them to the Apache configuration file.

1. Create a new folder on your hard disk to house your virtual hosts. I created a folder
called vhosts in my home folder.

2. Open NetInfo Manager, which is in the Utilities subfolder of Applications.

3. Click the lock at the bottom left of the dialog box that opens, and enter your
administrator’s password when prompted.

4. Select machines, then localhost, and click the Duplicate icon. When prompted, con-
firm that you want to make a copy.

5. Highlight the copy, and double-click the name in the lower pane, as shown in the
following screenshot.

SETTING UP A PHP SITE

113

4

8598CH04.qxd 6/11/07 5:02 PM Page 113

http://localhost/sitename
http://egdwcs3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Change localhost copy to whatever you want to call the virtual host. For example, to
create a virtual host for this book, enter egdwcs3.

7. Click any of the other entries in the left column of the top pane. The operating sys-
tem will ask you twice if you really want to make the changes. You do. This registers
the name of the virtual host with your computer. The next stage is to tell Apache
where to find the web files.

8. Repeat steps 4–7 for any other virtual hosts you want to create. When you have fin-
ished, click the lock icon in the bottom-left corner of the NetInfo Manager, and
close it.

9. Open BBEdit or TextWrangler, and select File ➤ Open Hidden. In the Open dialog
box, select All Files from the Enable drop-down menu, and open Macintosh
HD:etc:httpd:httpd.conf.

10. Scroll almost to the bottom of httpd.conf, and locate the following section:

11. Click the pencil icon at the top left of the editor window, and confirm that you
want to unlock the document, entering your administrator password when
prompted. Uncomment the command shown on line 1076 in the screenshot by
removing the hash sign (#). This enables virtual hosting but disables the main server
root, so the first virtual host needs to reproduce the Mac’s server root. The exam-
ple (on lines 1084–90) is there to show you how to define a virtual host. The only
required commands are DocumentRoot and ServerName. After uncommenting the
NameVirtualHost command, your first definition should look like this:

NameVirtualHost *:80

<VirtualHost *:80>
DocumentRoot /Library/WebServer/Documents
ServerName localhost

</VirtualHost>

12. Add any further definitions for virtual hosts. To create one for this book, I used this:

<VirtualHost *:80>
DocumentRoot /Users/davidpowers/vhosts/egdwcs3
ServerName egdwcs3

</VirtualHost>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

114

8598CH04.qxd 6/11/07 5:02 PM Page 114

http://lib.ommolketab.ir
http//lib.ommolketab.ir

13. Save httpd.conf, and restart Apache. All sites in Macintosh HD:Library:
WebServer:Documents can still be accessed using http://localhost/ and those in
your Sites folder using http://localhost/~username/sitename/, but named vir-
tual hosts can be accessed directly, such as http://egdwcs3/. Of course, a site must
exist in the location you defined before you can actually use a virtual host.

Registering virtual directories on IIS
The version of IIS that runs in Windows workstations (the vast majority of personal com-
puters) does not support virtual hosts. Instead, it allows you to set up virtual directories.
However, localhost always remains the basic address of the web server, so you cannot use
root-relative links with virtual directories. The main advantage of using virtual directories
is that they avoid the need to locate all web files in the default IIS server root at
C:\Inetput\wwwroot. This means you can leave your sites wherever they are on your hard
disk but still get IIS to parse your PHP scripts when viewed through a browser. A virtual
directory can be anywhere, but don’t use spaces or special characters in the virtual direc-
tory name. Also, putting virtual directories on your desktop is likely to lead to permission
problems.

To set up a virtual directory in IIS, open the Internet Information Services panel (Start ➤
Control Panel ➤ Administrative Tools ➤ Internet Information Services), highlight Default Web
Server, right-click, and select New ➤ Virtual Directory (XP) or Add Virtual Directory (Vista). On
XP, a wizard will appear and walk you through the process. In Vista, type the name of the
virtual directory in the Alias field, and click the button alongside the Physical path field to
browse to the folder where the files are kept. If you create a virtual directory called
egdwcs3, the URL becomes http://localhost/egdwcs3/.

Defining a PHP site in Dreamweaver
Site definition is fundamental to working successfully with Dreamweaver. It allows you to
create an exact copy of your website on your development computer, update existing files
and create new ones locally, test them, and then upload them to the remote server on the
Internet. For the benefit of Dreamweaver newcomers, I will go through the whole process
step by step. Old hands should take particular notice of the sections titled “Defining the
testing server” and “Setting up for Spry.”

By this stage, you should have decided where you are going to store your local files. The
setup process is basically the same whether you test your PHP files locally or on your
remote server.

Opening the Site Definition dialog box
There are several ways to open the Site Definition dialog box. If the Dreamweaver Welcome
screen is open, you can choose Dreamweaver Site from the bottom of the Create New col-
umn. It’s probably more convenient, though, to choose New Site from the Site menu,
because the menu is always available, even if you have web pages open in the Document

SETTING UP A PHP SITE

115

4

8598CH04.qxd 6/11/07 5:02 PM Page 115

http://localhost
http://localhost/~username/sitename
http://egdwcs3
http://localhost/egdwcs3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

window. Another convenient way is to select Manage Sites from the bottom of the site list
at the top left of the Files panel.

Dreamweaver has been designed with both beginners and more advanced users in mind,
so you may see either the basic dialog box shown on the left of Figure 4-2 or the advanced
one on the right.

Figure 4-2. The Site Definition dialog box has two interfaces: Basic (left) and Advanced (right).

If you see the screen on the left of Figure 4-2, click the Advanced tab at the top left (it’s in
the center of the Mac version). Dreamweaver is good at remembering your previous
choices, so, if you use the Site menu to open the Site Definition dialog box, it will automat-
ically display the advanced version after the first time. Opening it from the Dreamweaver
Welcome screen always displays the basic version.

If you select Site ➤ Manage Sites by mistake, you will be presented with the dialog box
shown in Figure 4-3. This presents you with a list of sites that you have already defined in
Dreamweaver. The buttons on the right let you perform a variety of management func-
tions that are described in “Managing Dreamweaver sites” later in the chapter. To create a
new site, click the New button at the top right, and select Site from the mini menu that
appears.

Figure 4-3.
The Manage Sites dialog box lets you
create a new site or edit an existing one.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

116

8598CH04.qxd 6/11/07 5:02 PM Page 116

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Telling Dreamweaver where to find local files
The first stage of site definition involves defining the basic details of the site. Open the Site
Definition dialog box, and make sure the Advanced tab is selected. If necessary, select Local
Info from the Category column on the left. You should see the same screen as shown on
the right of Figure 4-2.

Let’s take a look at what each option means, with particular reference to defining a PHP
site for use with this book. If you plan to use a virtual host in your local development envi-
ronment, I assume that you have set up a virtual host called egdwcs3 in C:\vhosts\
egdwcs3 on Windows or in a folder called vhosts inside your home folder on a Mac.

Site name This identifies the site within Dreamweaver. The name appears in the drop-
down menu at the top of the Files panel (Figure 4-1) and in the Manage Sites dialog box
(Figure 4-3), so it needs to be reasonably short. It’s used only within Dreamweaver, so
spaces are OK. I used Essential Guide.

Local root folder This is the top-level folder of the site. Everything should be stored in this
folder in exactly the same hierarchy as you want to appear on the live website. When test-
ing a PHP site locally, this folder should either be inside your server root, a virtual host, or
a virtual directory (IIS only). Click the folder icon to the right of the Local root folder field
and navigate to the appropriate location on your hard disk. If the folder doesn’t exist, nav-
igate to your server root or virtual host’s top-level folder, and click Create New Folder in
the Choose local root folder dialog box. Depending on your setup, your local root folder for
this book should be one of the following:

Server root on Windows: C:\htdocs\egdwcs3\

Virtual host on Windows: C:\vhosts\egdwcs3\

Main server root on Mac OS X: Macintosh HD:Library:WebServer:Documents:
egdwcs3:

Server root inside your home folder on Mac OS X: Macintosh HD:Users:username:
Sites:egdwcs3:

Virtual host on Mac OS X: Macintosh HD:Users:username:vhosts:egdwcs3:

If you plan to use a remote server or an IIS virtual directory to test your files, the local root
folder can be anywhere on your local computer.

Default images folder This field is optional but is very useful if you plan to use images that
are on other parts of your file system or even in other Dreamweaver sites. Whenever you
insert an image in a web page, Dreamweaver automatically copies it to this folder and cre-
ates the correct link in the tag’s src attribute. To set this option, click the folder icon
to the right of the Default images folder field, navigate to the local root folder that you
selected for the previous option, and select the images folder. If the folder doesn’t exist,
click the Create New Folder button to create it.

With large sites, it’s sometimes convenient to create a site definition in Dreamweaver
for just part of the site. If the local root folder is already in another defined site,
Dreamweaver warns you that some functions, such as site synchronization, won’t
work. However, it won’t prevent you from creating the subsite.

SETTING UP A PHP SITE

117

4

8598CH04.qxd 6/11/07 5:02 PM Page 117

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Links relative to This option lets you select the default style of links used in the site (see
“Understanding document- and root-relative links” earlier in the chapter). Unless your
testing server and remote server both run on Apache, I strongly advise you to accept the
default Document. When you select root-relative links as the site default, Dreamweaver
attempts to connect to your database using code that works only on Apache. Although
you can amend the code manually, it’s easier to use document-relative links throughout
the site, and switch to root-relative ones only when necessary.

HTTP address This field should contain the URL of the final site on the Internet. If you are
using the site only for local testing, you can leave this field empty. If you have selected
root-relative links, Dreamweaver will display the following warning:

You can safely ignore this warning for local testing, and click OK. However, it is important
to get the URL correct for remote testing or a site that you plan to deploy on the Internet.

Case-sensitive links I recommend that you select this option since the vast majority of PHP
websites are hosted on Linux servers, which treat products.php and Products.php as
completely different file names. Even if your remote server runs on Windows, selecting
this option maintains internal integrity of your file structure.

Cache As the Site Definition dialog box explains, this speeds up various aspects of site man-
agement in Dreamweaver. Very large sites (with several hundred pages) tend to slow down
dramatically if the site cache is enabled. However, with a PHP site, you should draw con-
tent from a database into a dynamically generated page, rather than create a new page
every time. I suggest that you leave this option selected, and disable it only if you run into
performance problems.

After you have completed the Local Info category, select Remote Info from the Category list
on the left of the Site Definition dialog box.

If in doubt, select Document. You can always change this option later or override the
site default for individual links. If you change the site default later, it affects only links
created afterward. Dreamweaver gives you the freedom to mix different types of links
in the same site and will not override existing code. The implications of this choice
with relation to PHP includes and connection to MySQL are discussed in Chapters 12
and 14, respectively.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

118

8598CH04.qxd 6/11/07 5:02 PM Page 118

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Telling Dreamweaver how to access your remote server
When you first open the Remote Info category, you’re presented with a single drop-down
menu labeled Access. It has six options, as shown in the following screenshot (the final
option—Microsoft Visual SourceSafe—is not available in the Mac version).

First, let’s take a look at the Access options:

None: Choose this if you don’t plan to deploy the site on the Internet, or if you
don’t want to set up your remote server immediately. If you choose this option,
you can skip ahead to the “Defining the testing server” section.

FTP: This is the most common choice. It sets up Dreamweaver’s built-in FTP (File
Transfer Protocol) program to communicate with your remote server.

Local/Network: This allows you to deploy your live website to another folder on
your local computer or network. This is normally done only by organizations that
run their own live web servers.

WebDAV: This uses the WebDAV (Web-based Distributed Authoring and Versioning)
protocol to communicate with the remote server. It requires a remote server that
supports the WebDAV protocol.

RDS: This uses Remote Development Services, which is supported only by ColdFusion
servers. You cannot use it with a PHP site.

Microsoft Visual SourceSafe: This requires access to a Microsoft Visual SourceSafe
database and is not appropriate for the Dreamweaver PHP MySQL server model.

Since FTP is the most common method of connecting to a remote server, that’s the only
one I’ll describe. Click the Help button at the bottom of the Remote Info category of the
Site Definition dialog box for detailed descriptions of the options for the other methods.

When you select the FTP option from the Access drop-down menu, the Remote Info cate-
gory of the Site Definition dialog box presents you with the options shown in Figure 4-4.
Most of them are very straightforward, but I’ll describe each one briefly.

SETTING UP A PHP SITE

119

4

8598CH04.qxd 6/11/07 5:02 PM Page 119

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 4-4. The FTP options for the Remote Info category of the Site Definition
dialog box

FTP host Enter your remote server’s FTP address in this field. You should normally get this
from your hosting company. It usually takes either of the following forms: ftp.example.
com or www.example.com.

Host directory This is the pathname of the top level of your website. The important thing
to realize is that the directory (folder) that you enter in this field should contain only those
files that will be accessible to the public through your site’s URL. Often it will be named
htdocs, public_html, or www. If in doubt, ask your hosting company or server administrator.

Login This is the username given to you by your hosting company or server administrator.

Password Enter your remote server password in this field. Dreamweaver displays your
password as a series of dots. It also automatically saves your password, so deselect the
Save checkbox if you want to be prompted for the password each time you connect to the
remote server. Click the Test button to make sure that Dreamweaver can connect success-
fully.

If the test fails, make sure Caps Lock isn’t turned on, as passwords are normally case
sensitive. Other reasons for failure include being behind a firewall, so check the remaining
options before trying again.

Use passive FTP Try this option if a software firewall prevents you from connecting to the
remote server. For more details, see www.adobe.com/go/15220.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

120

8598CH04.qxd 6/11/07 5:02 PM Page 120

http://www.example.com
http://www.If
http://www.adobe.com/go/15220
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Use IPv6 transfer mode This option is designed to prepare Dreamweaver for the future.
Select this option only if you have been told that your remote FTP server uses Internet
Protocol version 6 (IPv6).

Use firewall Select this option if you are behind a firewall. Then click the Firewall Settings
button to open the Site Preferences dialog box. Enter the firewall host and firewall port (if
it’s different from 21) in the appropriate fields, and click OK to return to the Site Definition
dialog box.

Use Secure FTP (SFTP) Select this option if your remote server supports Secure FTP, which
gives you a more secure connection but is not supported by all servers. Selecting this
option automatically disables these other options: Use passive FTP, Use IPv6 transfer mode,
Use firewall, Firewall Settings, and Server Compatibility.

Server Compatibility Click this button if you are still having problems connecting through
FTP. The two options in the dialog box that opens are self-explanatory.

Maintain synchronization information This is selected by default and enables you to syn-
chronize your remote and local files through the Files panel.

Automatically upload files to server on save This is self-explanatory. I don’t recommend its
use, because you should always test files locally before uploading them to your remote
server. Otherwise, all your mistakes will go public. It overwrites your original files, so you
can no longer use them as backup.

Enable file check in and check out Select this option only if you are working in a team and
want to use Dreamweaver’s Check In/Check Out system. For more information, launch
Dreamweaver Help (F1) and select Check In/Check Out from the Index, or go to
www.adobe.com/go/15447. All team members must have this option enabled for it to work.
Failure to do so results in chaos.

After you have completed the Remote Info category, select Testing Server from the Category
list on the left of the Site Definition dialog box.

Defining the testing server
This is probably the most important dialog box when building dynamic sites in Dreamweaver.
It’s quite easy to fill in, but if you get the details wrong, Dreamweaver cannot communi-
cate with any of your databases. When you first open the Testing Server category, it looks
similar to the Remote Info category in its initial state, but with two drop-down menus
instead of one, as shown in the following screenshot.

SETTING UP A PHP SITE

121

4

8598CH04.qxd 6/11/07 5:02 PM Page 121

http://www.adobe.com/go/15447
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Activate the Server model drop-down menu, and select PHP MySQL. What you choose for
Access depends on whether you want to test your PHP pages locally or by using your
remote server. The options are different, so I’ll cover them separately—first, local testing.

Selecting options for local testing
The Access drop-down menu determines how you communicate with the testing server. If
you have a local test environment on your computer or another computer on a LAN,
choose Local/Network. This reveals two options that Dreamweaver attempts to fill in auto-
matically. Figure 4-5 shows what happened when I had defined the local root folder in the
Local Info category as a virtual host on Windows.

Figure 4-5. Dreamweaver attempts to fill in the Testing Server details automatically.

Dreamweaver usually gets the value for Testing server folder correct but invariably gets URL
prefix wrong. Getting both right is crucial, so let’s take a look at what they represent.

Testing server folder This should normally be the same folder that you selected as the
Local root folder in the Local Info category. The only exception is if you want to use a test-
ing server elsewhere on your local network. In this case, click the folder icon to the right
of the field to browse to the correct location.

URL prefix This needs to reflect the structure that you have chosen for your testing envi-
ronment. If your testing server folder is in the server root or a virtual directory, it will be
http://localhost/sitename/. If you are using a virtual host, it will simply be http://
sitename/. If the testing server is on another computer on a local network, substitute
localhost with the correct IP address.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

122

8598CH04.qxd 6/11/07 5:02 PM Page 122

http://localhost/sitename
http://sitename
http://sitename
http://lib.ommolketab.ir
http//lib.ommolketab.ir

It’s critical that URL prefix is set correctly, as it controls all dynamic aspects of
Dreamweaver. Because so many people seem to get this wrong, here are the values for
Testing server folder and URL prefix for the various scenarios described earlier:

If the site is in a subfolder of the server root of the same machine on Windows:

Testing server folder: C:\htdocs\egdwcs3\

URL prefix: http://localhost/egdwcs3/

If the site is in a virtual host called egdwcs3 on Windows:

Testing server folder: C:\vhosts\egdwcs3\

URL prefix: http://egdwcs3/

If the site is in a subfolder of the main server root of the same machine on a Mac:

Testing server folder: Macintosh HD:Library:WebServer:Documents:egdwcs3:

URL prefix: http://localhost/egdwcs3/

If the site is in a subfolder of your Sites folder of the same machine on a Mac:

Testing server folder: Macintosh HD:Users:username:Sites:egdwcs3:

URL prefix: http://localhost/~username/egdwcs3/

If the site is in a virtual host called egdwcs3 on a Mac:

Testing server folder: Macintosh HD:Users:username:vhosts:egdwcs3:

URL prefix: http://egdwcs3/

If the site is in an IIS virtual directory:

Testing server folder: Can be anywhere

URL prefix: http://localhost/egdwcs3/

In simple terms, Testing server folder and URL prefix must both point to the site’s root
folder. Testing server folder is the physical address, while URL prefix is the address you enter
in a browser.

Selecting options for remote testing
The Access drop-down menu in the Testing Server category offers fewer options than the
Remote Info category, because RDS and Microsoft SourceSafe are not appropriate for
working with the Dreamweaver PHP MySQL server model. If you decide you want to use a
remote server to test your files, the most common choice is FTP. Dreamweaver is intelli-
gent enough to copy across the main details from the Remote Info category and presents
you with the dialog box shown in Figure 4-6. Although most details should be correct, the
URL prefix is almost certain to need editing.

SETTING UP A PHP SITE

123

4

8598CH04.qxd 6/11/07 5:02 PM Page 123

http://localhost/egdwcs3
http://egdwcs3
http://localhost/egdwcs3
http://localhost/~username/egdwcs3
http://egdwcs3
http://localhost/egdwcs3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 4-6. When you select a remote server for testing, Dreamweaver copies details from the
Remote Info category, but you normally need to change at least the URL prefix.

As you can see from Figure 4-6, Dreamweaver combines the values in the FTP host and
Home directory fields. This produces the following value for URL prefix:

http://ftp.example.com/home/egdwcs3/html_public/

It’s vital that the URL prefix and Host directory fields point to the same place. However, this
does not mean that the values should be the same. The distinction is explained in the fol-
lowing sections.

Host directory This is the pathname that the FTP program uses for the top level of your
site.

URL prefix This is the address that anyone surfing the Internet uses to reach the top level
of your site. In other words, it’s normally http:// followed by the domain name and a
trailing slash.

So, if /home/egdwcs3/html_public/index.php is your home page, and users access it by
typing http://www.example.com/index.php in their browser address bar, the correct
value for URL prefix should look like this:

http://www.example.com/

One thing to note about Figure 4-6 is that, even though the Use Secure FTP (SFTP) check-
box is selected, the three checkboxes above and the Server Compatibility button are not
grayed out as in the Remote Info category. This is a known bug in Dreamweaver CS3. Make
sure you don’t accidentally select them if you’re using SFTP. The settings should be the
same as in the Remote Info category.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

124

8598CH04.qxd 6/11/07 5:02 PM Page 124

http://ftp.example.com/home/egdwcs3/html_public
http://followed
http://www.example.com/index.php
http://www.example.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Points to watch when using a remote server for testing Dreamweaver tries to make every-
thing seamless, regardless of whether you use a local or a remote web server for testing.
However, there are several important differences that you should be aware of with a
remote testing server.

Some software firewalls prevent FTP access when running Dreamweaver as a stan-
dard user on Windows Vista. You may need to log in as administrator or turn off
UAC to use your remote server for testing.

You miss the main benefit of Live Data view, which allows you to view dynamic out-
put inside the Dreamweaver Document window without the need to load your
page into a browser. This is because Dreamweaver still needs to transfer the script
across the Internet to your remote server, rather than just handle it locally.

Live Data view uses temporary files that are removed automatically when you
switch to another site in Dreamweaver or close the program. If you test a file that’s
in a new folder, Dreamweaver creates a folder with the same name on the remote
server but not the file itself.

When you preview a page in a browser, it may not display correctly if the browser
can’t find dependent files, such as images and style sheets (see “Setting options for
Preview in Browser” later in this chapter).

If you’re on dial-up and have chosen to use your remote server for testing, be
aware that Dreamweaver automatically connects to the Internet every time you use
Live Data view, and it doesn’t automatically disconnect when you toggle Live Data
view off. Unless you are careful, you could end up with very large communications
charges.

Setting up other site options
There are seven more categories in the Site Definition dialog box. Most of the time, you
should leave them at their default values. To find out what each one is for, select it in the
Category list on the left, and click the Help button at the bottom of the dialog box to
launch context-sensitive help. Perhaps the most useful category is Cloaking, which lets you
specify folders of file types that you don’t want to be uploaded to your remote server.
Since a large part of this book deals with Spry, which is new to Dreamweaver CS3, the Spry
category needs a brief description.

Setting up for Spry

Adobe’s Ajax framework, Spry, relies on code libraries that need to be uploaded to your
remote server. By default, Dreamweaver inserts these files in a folder called SpryAssets at
the top level of your site root. For most people, this is ideal. However, if you want to locate
the code libraries elsewhere, you need to specify the folder name in the Spry category of
the Site Definition dialog box. This is so that Dreamweaver can update or remove the files
when you make changes to elements that use Spry.

As you can see from Figure 4-7, there’s just one field in the Spry category. If you want to
use a different folder, click the folder icon to the right of the field labeled Spry assets
folder, and navigate to the new location or create a new folder within your site root.

SETTING UP A PHP SITE

125

4

8598CH04.qxd 6/11/07 5:02 PM Page 125

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 4-7. Change the setting for the Spry assets folder if you don’t want to use
the default location.

Saving the site definition
After entering all the necessary details, click OK at the foot of the Site Definition dialog box.
This returns you to the Manage Sites dialog box (see Figure 4-3). Click Done at the bottom
left (it’s on the right in the Mac version, as shown in Figure 4-10). Dreamweaver creates
the site cache (unless you deselected that option in Local Info) and opens the site in the
Files panel ready for you to start work. If there were any files in the root folder, they will
be listed as a tree menu in the Files panel.

You can change your site definition at any time by reopening the Manage Sites dialog box
(see “Managing Dreamweaver sites” later in this chapter).

Testing your PHP site
If you have followed the instructions carefully, you should now have a PHP site within
Dreamweaver that will give you access to all the PHP server behaviors and other PHP fea-
tures. Before moving on, it’s wise to do a quick test to make sure everything’s working as
expected.

There are two ways of testing dynamic code: using Live Data view, which displays the
dynamic output inside the Dreamweaver Document window, and by previewing the page
in a browser. These instructions cover both methods.

1. In Dreamweaver, select File ➤ New, and in the New Document dialog box (see
Figure 1-2 in Chapter 1), select Blank Page from the options on the left side. In the
Page Type column, choose PHP (it’s the final item). For Layout, choose <none> (at
the top of the column), and then click Create.

2. Save the page as datetest.php in the Essential Guide site you have just created.

If you didn’t enter a value for HTTP address in the Local Info category, you might see a
warning that the URL prefix for the testing server doesn’t match the URL prefix for the
site’s HTTP address. You can safely ignore this by clicking OK.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

126

8598CH04.qxd 6/11/07 5:02 PM Page 126

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Open Split view, and type the following code between the <body> tags:

<?php
echo date('l, F jS, Y');
?>

Sure, it looks pretty cryptic, but I have never understood why so many books and
tutorials feel obliged to start by showing you how to display “Hello, world” or “Hi,
Mom!” onscreen. I want to show you the real power of PHP by demonstrating
something really useful. Make sure you copy the code exactly (the first character
after the opening quote is a lowercase “L”), or use datetest.php in examples/ch04.

The first thing you should notice is that Dreamweaver displays the opening and
closing PHP tags in a bold red font, while echo and date are pale blue. This is
Dreamweaver Syntax Coloring at work. If this doesn’t happen, check that your file
name ends with .php. Also select View ➤ Code View Options, and make sure that
there’s a check mark next to Syntax Coloring. If there isn’t, click Syntax Coloring to
toggle the setting on.

4. Click inside Design view, and a gold shield labeled PHP should appear, as shown in
the next screenshot. This marks the location of your PHP script.

5. Click the Live Data button, as shown in Figure 4-8 (if you’re a keyboard shortcut
fetishist, press Ctrl+Shift+R/Shift+Cmd+R). As long as your web server is running,
you should see today’s date displayed in Design view. It will be highlighted in a dif-
ferent color (the default is pale yellow) to indicate that it’s dynamically generated
output. You’ll learn about the first part of the script—echo—in Chapter 10; it’s one
of the most basic commands that displays PHP output onscreen. The rather cryptic
aspects of the rest of the script will be covered in Chapter 17 when we delve into
the mysteries of working with dates in PHP.

As soon as you click the Live Data button again (or use the keyboard shortcut), the
date will disappear and be replaced by the PHP gold shield.

SETTING UP A PHP SITE

127

4

8598CH04.qxd 6/11/07 5:02 PM Page 127

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Now press F12 (Opt+F12 on a Mac). Depending on your settings in Preferences, you
may see the following alert (see “Setting options for Preview in Browser” below).

This warns you that Dreamweaver is about to overwrite the file on your testing
server. Since it’s only a test file, click Yes. You will then probably see this dialog box:

Click No. The significance of these two alerts is explained in “Setting options for
Preview in Browser” shortly.

Your default browser should launch and display datetest.php. The result will be
similar to that shown in Figure 4-8, except that the output won’t be highlighted in
a different color. More importantly, if you view the page’s source code in the
browser, you’ll see only XHTML. PHP is a server-side language: only the output of
the PHP code is sent to the browser; the code itself remains on the server.

Troubleshooting
This is the part of the chapter that I hope nobody ever needs to read. As I said earlier, PHP
site definition in Dreamweaver is not difficult, but a lot of people do seem to get it wrong.
Troubleshooting is basically a process of elimination: find out what is working, and it
frequently helps identify where the problem lies. If you’re banging your head on the key-
board at this point, try the following suggestions:

Figure 4-8.
If Live Data view displays the current
date, you’re ready to start working with
PHP in Dreamweaver.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

128

8598CH04.qxd 6/11/07 5:02 PM Page 128

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first thing to check is whether your web server is running. Try an ordinary
.html page first. If it doesn’t display, Apache or IIS needs to be restarted.

Then check that PHP is properly configured. Use test.php as described in the pre-
vious chapter. If the page of PHP configuration information doesn’t display, go back
to Chapter 3, and fix your PHP setup.

If the web server and PHP are OK, do you get any error messages? If you got a
blank screen, check your PHP configuration as described in the previous chapter,
and make sure that display_errors is turned on.

If an error message says something like Parse error or Fatal error, the mistake is in
the PHP code. Use the version of datetest.php from the download files instead.

If you get an error message about the URL prefix not mapping correctly, the prob-
lem lies in the details you entered in the Testing Server category of the site definition.

If the web server and PHP are OK, but you see nothing in Live Data view, check that
a software firewall, such as Norton Internet Security or ZoneAlarm, isn’t blocking
communication between Dreamweaver and the web server.

Setting options for Preview in Browser
Pressing F12/Opt+F12 or using the menu option File ➤ Preview in Browser automatically
launches your default browser and displays the page currently open in the Document win-
dow. Dreamweaver normally detects your default browser the first time that you use this
option, but you can also designate other browsers by opening Preferences from the Edit
menu (Dreamweaver menu in a Mac) and selecting the Preview in Browser category (see
Figure 4-9). If Dreamweaver has detected other browsers on your system, they are listed in
the Browsers field. You can designate one of them as your secondary browser, which can
be launched using Ctrl+F12/Cmd+F12 as a shortcut.

Figure 4-9. When previewing pages, Dreamweaver gives you the option to use a
temporary file.

SETTING UP A PHP SITE

129

4

8598CH04.qxd 6/11/07 5:02 PM Page 129

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Add other browsers by clicking the plus (+) button. Type the browser’s name in the Name
field, click the Browse button to locate its executable file, and then click OK to register it.
The Edit button lets you change the details of the selected browser. Click the minus (–)
button to remove the selected browser from the list. Although default keyboard shortcuts
exist for only two browsers, you can launch the current page in one of the other browsers
by using File ➤ Preview in Browser or clicking the Preview/Debug in browser icon on the
Document toolbar, as shown in the following screenshot.

The most important setting is the checkbox highlighted in Figure 4-9. It determines
whether Dreamweaver creates a temporary file for the preview. This often causes confu-
sion among PHP beginners, because if they make a mistake in their code, they might see
an error message like this:

The file TMP2erxjfculq.php isn’t some mysterious, hidden aspect of the PHP engine, but a
random file name created by Dreamweaver for previewing the page. It’s automatically
deleted as soon as you preview another file or close Dreamweaver.

The advantage of using a temporary file for preview is that Dreamweaver doesn’t over-
write the existing file on your testing server. You can also see the effects of your changes
without needing to save the file. However, you cannot test server behaviors that insert,
update, or delete database records this way.

If you leave this option deselected, you must always save your file before using Preview in
Browser. You will also see the alerts shown in step 6 of “Testing your PHP site.” If you have
set up a local testing environment and use your local root folder as the testing server
folder, you can safely ignore these alerts and check the option not to show them again.
Your local files and testing ones are actually the same files, so you’re not overwriting any-
thing. However, if your testing server is in a different location, such as on a remote server,
you need to be aware of the following consequences:

When you preview a file in a browser, if you haven’t selected the option to use
temporary files, Dreamweaver uploads it to the remote server even if you haven’t
entered any details in the Remote Info category of the Site Definition dialog box. This
permanently overwrites the existing file on the remote server.

Unless you use temporary files, dependent files, such as images, style sheets, and
external JavaScript files, must also be uploaded to the remote server when using
Preview in Browser.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

130

8598CH04.qxd 6/11/07 5:02 PM Page 130

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Managing Dreamweaver sites
To change any settings in your site definition, select Manage Sites from the Site menu to
open the Manage Sites dialog box (Figures 4-3 and 4-10 show the Windows and Mac ver-
sions, respectively). Select the name of the site that you want to change, and click Edit. This
reopens the Site Definition dialog box ready for you to update the settings. If you’re feeling
really impatient, though, the quickest way of opening the Site Definition dialog box is to
double-click the site’s name in the drop-down menu at the top left of the Files panel.

The other buttons on the right side of the Manage Sites dialog box are fairly self-explana-
tory. However, the following is a quick guide to each one:

New: This offers two options: Site and FTP & RDS Server. The first opens the Site
Definition dialog box. The second option is rarely used, but lets you create a direct
FTP connection to a remote site (RDS is for ColdFusion only). You might want to
use this to upload a single file without defining a local site in Dreamweaver.

Duplicate: This creates an exact copy of the site definition for whichever site is high-
lighted in the left panel. You might find this useful if a new site shares common set-
tings with an existing one. It’s important to understand that creating a new site
definition doesn’t make a mirror version of the common files and folders. Editing or
deleting a shared file in one site affects both sites, as there is only one set of files.

Remove: This removes only the site definition from Dreamweaver. The actual files
and folders remain untouched.

Export: This exports your site definition as an XML file (Dreamweaver gives it an
.ste file name extension). You can export multiple site definitions by using Shift-
click or Ctrl/Cmd-click to select several sites in the left panel.

If any of the site definitions contain login details for a remote server, Dreamweaver
presents you with the following dialog box:

Figure 4-10.
The position of the Help and Done buttons
is reversed in the Mac version.

SETTING UP A PHP SITE

131

4

8598CH04.qxd 6/11/07 5:02 PM Page 131

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This dialog box is shown only for the first site that contains login details, and the
export option you choose applies to all sites being exported at the same time.
Dreamweaver then asks you where to save the file. Just browse to the folder where
you want to store the .ste files and accept the default value for File name.
Definitions for all selected sites are exported in a single operation.

Import: This imports site definitions from .ste files. If the .ste files are in the same
folder, you can import multiple sites simultaneously. If a site of the same name
already exists, Dreamweaver creates a duplicate site definition with a number after
the name, rather than overwriting the existing definition.

It’s a good idea to back up your site definitions from time to time, just like any other valu-
able data. The vastly improved Export and Import options in this version of Dreamweaver
make it a lot easier.

Now let’s get on with it . . .
The last two chapters have been full of some pretty heavy but essential stuff. Getting your
work environment set up doesn’t offer the same excitement as developing websites, but if
you have ever repainted your house, you’ll know the value of preparation. Skimp on the
preparation, and the paint starts peeling off in next to no time. If everything is set up prop-
erly now, you’re less likely to find yourself coming suddenly unstuck later in this book.

Keeping in mind the importance of laying a solid foundation, I don’t plan to start working
with PHP until Chapter 9. Dynamic websites that use Ajax and server-side languages like
PHP demand a much more disciplined approach to web standards than static websites
built solely with HTML. So the next two chapters provide your essential guide to creating
standards-compliant websites using cascading style sheets (CSS).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

132

8598CH04.qxd 6/11/07 5:02 PM Page 132

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5 ADDING A TOUCH OF STYLE

8598CH05.qxd 5/21/07 12:43 PM Page 135

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Judging by the runaway success of books such as CSS Mastery by Andy Budd with Simon
Collison, and Cameron Moll (friends of ED, ISBN-13: 978-1-59059-614-2), web designers
have finally got the message that Cascading Style Sheets (CSS) are the way to design a
website. Getting the message is the easy part, but many designers rapidly find their initial
enthusiasm takes a severe dent when they run into the reality of creating a CSS-driven site.
Creating a style rule is simple enough, and most CSS properties have intuitive names. The
difficulty lies in the infinite number of ways in which style rules can be combined. And
that’s what makes it so powerful and worthwhile. You need only visit the CSS Zen Garden
at www.csszengarden.com to see why—the underlying XHTML of every page is identical;
what makes each one so different is the CSS.

Whether you’re capable of designing a masterpiece worthy of the CSS Zen Garden or just
a beginner, the improved handling of CSS in Dreamweaver CS3 should make your life
easier by showing you the impact of your style rules without needing to load the page in a
browser every few minutes. Another welcome new feature is the addition of 32 ready-
made CSS layouts that you can use as the basis for designing your own pages. In the next
chapter, I’ll take one of these basic layouts and show you how to transform it into a good-
looking, standards-compliant page, but before you can do that, you need to understand
the nuts and bolts of how Dreamweaver handles CSS. So that’s what this chapter is all
about. In particular, it examines the CSS Styles panel—an extremely powerful tool that
takes a little getting used to, but once you know how it works, it speeds up the design
process immensely.

What this chapter covers

Understanding the limitations of styles created by the Property inspector

Creating basic style rules for a page

Using the CSS Styles panel in All mode

Exporting style rules from the <head> of a document

Using drag and drop to move style rules

Setting Dreamweaver preferences for CSS

To start off, though, I want to show you how not to use Dreamweaver to create style rules.

Avoiding bad habits
A well established program like Dreamweaver needs to add new features but risks the
wrath of existing users if old features are taken away or the program is changed radically.
In the bad old days, when everybody used tags and other presentational markup,
the Property inspector was where all the action was. It remains one of the most important
tools in Dreamweaver, but its handling of text is a compromise between the old and the
new—a brave compromise but one that doesn’t really work.

For the past couple of versions of Dreamweaver, the Property inspector has generated CSS
instead of tags. But don’t be fooled into using it to build your style rules. Instead of
littering your pages with tags, it litters them with meaningless classes that make
sites a nightmare to maintain.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

136

8598CH05.qxd 5/21/07 12:43 PM Page 136

http://www.csszengarden.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Stay away from the Property inspector for fonts
Let’s say that you have an <h1> heading that you
want displayed in 24-pixel Verdana. Select the text
of the heading in Design view or the <h1> tag in
the Tag selector, set Font in the Property inspector
to Verdana, Arial, Helvetica, sans-serif, and choose
24 pixels as Size. As the screenshot alongside shows, Dreamweaver automatically generates
a style name and displays it in the Style field.

The style is applied to the heading as a class like this:

<h1 class="style1">How not to use CSS</h1>

The following class definition is placed in a <style> block and embedded in the <head> of
the document:

.style1 {
font-family: Verdana, Arial, Helvetica, sans-serif;
font-size: 24px;

}

As far as it goes, it’s not bad. The class definition is perfectly valid, and you can easily move
it to an external style sheet later. The problem is that you don’t need a class to style <h1>
tags. It’s much more efficient to create an h1 selector in your style sheet and apply the
style automatically to all <h1> tags. Moreover, when using the Property inspector to format
text, you need to select the entire text before you can apply the style. If you accidentally
miss part of the heading, Dreamweaver takes your
instructions literally and applies the style as a
 only to the selected characters like this:

Figure 5-1 shows a simple page styled using the Property inspector (badCSS.html in
examples/ch05). The design isn’t particularly inspiring, not because I deliberately wanted
to show an example of poor design, but because I didn’t want to waste a lot of effort. If
you examine the page in Code view, you’ll see classes everywhere and four style rules in
the <head>.

Figure 5-1. The design is basic, but using the Property inspector involved a lot of effort and
created bad CSS.

ADDING A TOUCH OF STYLE

137

5

8598CH05.qxd 5/21/07 12:43 PM Page 137

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Classes are the first thing most beginners learn about CSS. They draw beginners unwit-
tingly into a love affair—just like George Segal and Glenda Jackson in the movie A Touch
of Class. In the end, it all becomes too much and ends in failure but is nowhere near as
funny as the movie. Classes play only a minor role in well-designed CSS, but Dreamweaver’s
automatically generated CSS relies on them exclusively. Because it has no way of knowing
the purpose of the styles it’s creating, it gives them only generic names: style1, style2,
etc. With just three or four, you might be able to remember what each one is for, but how
on earth are you going to remember what style32 is for?

The Property inspector is great for a lot of things. It’s the quickest way to apply XHTML
format tags, such as <h1>, <h2>, <p>, , , and <blockquote>. And as you’ll see
in the rest of the book, it’s where you set the values of many XHTML attributes. But the
Property inspector falls down when it comes to styles. The CSS it creates is both crude and
inefficient. Don’t use it.

Creating simple CSS for beginners
If you’re new to CSS, Dreamweaver offers a simple dialog-based interface to create basic
styles that are automatically applied to the entire page without the need for meaningless
classes. It’s not capable of anything sophisticated, but provides a gentle starting point. If
you’re already up to speed with CSS, I suggest that you skip forward to the next section,
“Introducing the CSS Styles panel.”

This exercise shows you how to create a basic set of style rules for a page. I’ve removed all
style markup from badCSS.html (see Figure 5-1) and saved it as betterCSS_start.html.
Copy the file from examples/ch05 to workfiles/ch05, and save it as betterCSS.html.

1. Open betterCSS.html in the Document window, and click the Page Properties
button in the Property inspector as shown in the following screenshot. If you can’t
see the button, click the expander triangle at the bottom right of the Property
inspector.

Using Page Properties to create basic style rules

Although this section shows you how to get started on the right footing with CSS in
Dreamweaver, it’s not intended to teach you CSS. For that, you need a book like
Beginning CSS Web Development: From Novice to Professional by Simon Collison
(Apress, ISBN-13: 978-1-59059-689-0). Also, any book by Eric Meyer will give you a
solid grounding in CSS.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

138

8598CH05.qxd 5/21/07 12:43 PM Page 138

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If the Property inspector is closed, use Window ➤ Properties or Ctrl+F3/Cmd+F3 to
open it. Alternatively, select Modify ➤ Page Properties (Ctrl+J/Cmd+J).

2. This opens the Appearance category of the Page Properties dialog box, as shown in
Figure 5-2. This is a multiple category dialog box that sets a wide range of options.

Figure 5-2. The Page Properties dialog box offers a simple way of setting
basic style rules for a page.

It’s a good idea to set a default font for the page, which you can override in special
cases, such as headings or pull quotes. Setting the font size to 100 percent uses the
browser’s default for all text elements, which you can again override later. You
should also always set default colors for the text and page background. Use the set-
tings shown in Figure 5-2, and then select the Links category from the column on
the left.

3. The Links category lets you set the font and colors for hyperlinks. The color options
are the equivalent of the following CSS pseudo-classes:

Link color: a:link

Visited links: a:visited

Rollover links: a:hover

Active links: a:active

The Underline style option lets you choose whether your links are always under-
lined, never underlined, show an underline on hover, or hide the underline on
hover. If you decide not to underline links, it’s a good idea to choose a distinctive
color and select the Bold icon alongside Link font. Use the settings shown in the fol-
lowing screenshot, and select the Headings category from the column on the left:

ADDING A TOUCH OF STYLE

139

5

8598CH05.qxd 5/21/07 12:43 PM Page 139

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. The Headings category lets you choose a different font for headings (the same
choice applies to all six levels). You can also set the size and color separately for
each level. Using percentage sizes gives visitors more freedom to adjust your page
to their visual needs and preferences, so is better from the accessibility point of
view, but you can use pixels if you prefer. I used the following settings:

5. When you have finished, click OK to close the Page Properties dialog box. Your
styles are immediately applied to the page in Design view. What’s more, they’re
automatic. Position your cursor anywhere inside the first paragraph, and select
Heading 2 from the Format menu in the Property inspector; the paragraph is trans-
formed into a large, brown Verdana. Select Paragraph again from the Format menu,
and it switches back to normal black Arial. This is because the Format menu
changes the surrounding tags from <p> to <h2> and back again. Everything is con-
trolled by CSS type selectors that Dreamweaver has embedded into the <head> of
the page (type selectors change the default style of HTML tags).

6. Select some text in one of the paragraphs, and type # in the Link field of the
Property inspector to create a dummy link. The text is automatically styled as a link.
If you have been used to the old-school way of selecting everything and applying
colors and fonts, this should be an exciting revelation that convinces you of the
power of CSS.

7. Save betterCSS.html. You’ll improve it later in the chapter.

Unfortunately, the Page Properties dialog box creates only the most basic rules. To change
the size of the paragraph font and wrap the text around the image, you need to create a
couple of style rules yourself. For that, you need the CSS Styles panel.

Introducing the CSS Styles panel
To get the most out of the CSS Styles panel, you need a solid understanding of CSS.
Although that statement is likely to provoke sighs of despair—or even anger—from
readers expecting Dreamweaver to do everything for them, it’s true of any tool or piece of
software. The greater your understanding of the tools you’re working with, the easier the
job becomes. Also, with a little persistence, using the CSS Styles panel should help begin-
ners improve their skills, because it shows you exactly which rules affect a particular part
of the page. And even if the theory behind CSS taxes your brain, the almost perfect rendi-
tion in Design view shows you how your page will look 99 percent of the time.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

140

8598CH05.qxd 5/21/07 12:43 PM Page 140

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Opening the CSS Styles panel
To open the CSS Styles panel, click the title bar of the CSS panel group (in the default
workspace layout, it’s at the top right of the screen), and select the CSS Styles tab.
Alternatively, select Window ➤ CSS Styles. On Windows, there’s also the keyboard shortcut
Shift+F11. Mac keyboard shortcut enthusiasts are out of luck, because the same combina-
tion runs Exposé in slow motion on OS X.

The CSS Styles panel is so useful you can also open it by clicking the CSS button in the
center of the Property inspector whenever your cursor is in a position to enter text. If you
have a <div> selected, the button is labeled Edit CSS.

Viewing All and Current modes
The CSS Styles panel has two modes, All and Current, which are toggled by clicking the but-
ton at the top of the panel. Figure 5-3 shows both modes with an explanation of the icons
at the bottom of the panel and in the middle pane of Current mode. Current mode (on the
right of Figure 5-3) is more powerful, but it’s also more complex, so beginners should try
to get used to working in All mode first.

Figure 5-3. The CSS Styles panel crams a lot of tools and information into a small space.

A good way of regarding All mode is as a window into all CSS rules available to the page,
regardless of whether they are embedded in the <head> of the document or in multiple
external style sheets. The top pane (labeled All Rules) displays the hierarchy of style rules
as a tree menu. If the rules are embedded in the <head> of the document, the root of the
tree (at the top) is displayed as a <style> tag, as in Figure 5-3. If they’re in an external style
sheet, the file name appears at the root. The tree menus are collapsible to make it easier
to work when multiple style sheets are attached to the page. The only style rules that you
cannot inspect or edit in All mode are inline styles, although you can see them in Current
mode.

ADDING A TOUCH OF STYLE

141

5

8598CH05.qxd 5/21/07 12:44 PM Page 141

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Properties pane at the bottom of the CSS Styles panel is common to both modes. It
displays details of the currently selected style rule and lets you edit or delete properties
and add new ones.

Use All mode when you need to do any of the following:

View the overall structure of the styles attached to a page

Change the order of rules

Inspect or edit the contents of a style rule identified by its selector

Add a new style rule (you can do this in both modes)

Attach a style sheet to the current page (this is one of several places you can
do this)

I’ll describe the features of Current mode in the next chapter. For the moment, let’s take a
look at the seven icons at the bottom of the CSS Styles panel, as they apply to both
modes.

Exploring the Properties pane of the CSS Styles panel
The default setting of the Properties pane is to display only those CSS properties that have
been set in a particular style rule, as shown in Figure 5-3. However, the two leftmost icons
let you display properties grouped by category or alphabetically.

Displaying CSS properties by category
If you select the leftmost icon (see alongside) at the bottom of the CSS Styles panel, the
Properties pane lists all available CSS properties grouped together in easily identifiable cat-
egories, as shown in Figure 5-4. Click the plus (+) and minus (–) symbols (triangles in the
Mac version) to expand or close each category, and click in the right column alongside
the property name to edit it. If a fixed range of options is available, a drop-down menu
appears. Similarly, a folder icon or color picker appears if the property requires a path-
name or color. To remove a property, highlight it and click the trash can icon at the far
right. Unlike the default display, the property remains listed, but the value is deleted. If
you’re new to CSS and find it difficult to remember the names of the various properties, I
recommend that you use this display until you gain sufficient confidence to use the less
cluttered default view.

Don’t confuse the Properties pane of the CSS Styles panel with the Property
inspector, which is normally docked at the bottom of the Document window. If
you’re not familiar with Dreamweaver, the names are easy to mix up, because
the title bar of the Property inspector says “Properties.” When working with
CSS, any reference to the Properties pane means the pane at the bottom of the
CSS Styles panel as shown in Figure 5-3.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

142

8598CH05.qxd 5/21/07 12:44 PM Page 142

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Displaying CSS properties alphabetically
Clicking the middle icon (shown alongside) at the bottom left of the CSS Styles panel lists
virtually all available CSS properties in alphabetical order, as shown in Figure 5-5.
Properties that have already been set move to the top of the list, but to set a new one, you
need to scroll down to find it, making this view the least user-friendly.

This alphabetical list omits a small number of poorly supported CSS properties, such as
counter-increment and counter-reset, but as you can see from Figure 5-5, nonstandard
properties beginning with -moz are also listed. These are supported mainly by Firefox and
Mozilla, but are expected to become part of CSS 3. Dreamweaver also lists some
Microsoft-only properties, such as layout-grid, and properties that were dropped from
the CSS 2.1 specification, such as font-stretch. This wide choice is useful if you are a CSS
expert, but could lead you astray if you’re a novice. Use the alphabetical display with care.

Displaying only CSS properties that have been set
To restore the Properties pane to its default display of only those properties that have been
set (see Figure 5-3), click the third icon from the left at the bottom of the CSS Styles panel
(shown alongside).

Figure 5-5.
You can also display all available CSS
properties in alphabetical order.

Figure 5-4.
Displaying all available CSS properties organized
by category makes life easier for beginners.

ADDING A TOUCH OF STYLE

143

5

8598CH05.qxd 5/21/07 12:44 PM Page 143

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Attaching a new style sheet
The chain icon at the bottom right of the CSS Styles panel opens the Attach External Style
Sheet dialog box (see Figure 5-6). This lets you attach the file using either <link> or
@import and set the media type.

The File/URL field lists recently used style sheets as a drop-down menu. Click the Browse
button to navigate to a new style sheet. Select a media type from the drop-down menu in
the Media field or enter a comma-separated list of valid types (all, aural, braille, hand-
held, print, projection, screen, tty, tv). Choose screen for visual browsers, or all to
apply your styles to all types of media. If you leave the Media field empty, browsers apply
your styles to all media.

Figure 5-6. You can attach an external style sheet using <link> or
@import.

If you choose a media type other than screen or all, use the Style Rendering toolbar,
which was described in “Checking what your page will look like on other media” in
Chapter 1, to see the effect of your styles in Design view.

If you type the file name of a nonexistent style sheet in the File/URL field, Dreamweaver
displays a warning, and asks if you want to create the link/import statement anyway. If you
click Yes, you can create the necessary style sheet afterward, and it becomes immediately
available inside your page.

Adding, editing, and deleting style rules
The final three icons at the bottom right of the CSS Styles panel let you add new rules,
edit existing rules, and delete existing rules and properties. Most editing and deletion is
done directly in the CSS Styles panel, and I’ll show you how to do that in the next chapter,
but the creation of new rules involves the use of two dialog boxes. Let’s take a look at how
you define a new style rule.

There are several other ways of attaching external style sheets. As you’ll see in the
next chapter, you can attach style sheets in the New Document dialog box when first
creating a page. There is also an option to attach a new style sheet at the bottom of
the Style drop-down menu in the main Property inspector and in the New CSS Style
dialog box (see Figure 5-7).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

144

8598CH05.qxd 5/21/07 12:44 PM Page 144

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating new style rules
Creating a style rule involves two steps: first define the selector, and then add property/
value pairs to the style block. The selector determines which parts of the page the rule
applies to.

The main types of CSS selectors are as follows:

Type: A type selector uses the name of the HTML tag that you want to style. For
instance, using h1 as the selector for a style rule applies the rule to all <h1> tags.
Dreamweaver calls this a Tag selector.

Class: A class can be applied to many different elements in a page. The selector
name always begins with a period, for example, .warning.

ID: An ID selector applies the rule to an element identified by its id attribute. If the
element, such as a list, has child elements, the rule also applies to the children. The
name of an ID selector always begins with the hash or pound sign, for example,
#mainContent.

Pseudo-classes and pseudo-elements: These selectors style elements according to
their positions or roles in a document, such as a link when the mouse passes over
it or the first line of a paragraph. They consist of a type selector followed by a
colon and the name of the pseudo-class or pseudo-element, for example, a:hover
or p:first-line.

Descendant: A descendant selector combines two or more of the previous types to
target elements more precisely. For instance, you may want to apply a different style
to links inside a <div> with the id attribute footer. Descendant selectors are sepa-
rated by a space between the individual parts of the selector, like this: #footer a.

Group: When you want to apply the same set of rules to several selectors, you can
group them together as a comma-separated list, for example, h1,h2,h3,h4,h5,h6.

Dreamweaver refers to anything that isn’t a Class or Tag (Type) selector as an Advanced
selector.

Defining a selector
To create a new style rule, click the New CSS Rule icon (shown alongside) or right-click
inside the CSS Styles panel, and select New from the context menu. This opens the New
CSS Rule dialog box shown in Figure 5-7. Depending on where the insertion point is in the
current web page, Dreamweaver may suggest an appropriate name for the selector, or it
may present you with an empty dialog box.

Figure 5-7.
When creating a new style rule, you
must specify its type, selector name,
and location.

ADDING A TOUCH OF STYLE

145

5

8598CH05.qxd 5/21/07 12:44 PM Page 145

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Choose the Selector Type from the three radio buttons at the top of the dialog box.
Depending on your choice, Dreamweaver renames the field labeled Name in Figure 5-7.
Regardless of what the field is called, this is where you enter the name of the selector. If
you choose Tag as the Selector Type, the field turns into a drop-down menu listing all the
HTML tags that you can use. Alternatively, just type in the name of the tag without the sur-
rounding angle brackets (p not <p>).

The Define in option lets you choose where to put the new rule. The drop-down menu lists
all style sheets currently attached to the page and contains an option to create a new
external file. If you choose This document only, the style rule is embedded within <style>
tags in the <head> of the document. When you click OK in the New CSS Rule dialog box,
Dreamweaver opens the CSS Rule Definition dialog box (see Figure 5-8), unless you decide
to create the rule in a new style sheet. In that case, you’re first asked to specify the name
of the new file and where it is to be located. Using this method to attach a new style sheet
uses <link>; there is no option to use @import instead.

Defining the rule’s properties
As you can see in Figure 5-8, the CSS Rule Definition dialog box groups properties in the
same way as the category view of the CSS Style panel Properties pane. Table 5-1 describes
what each category contains. Most are obvious; others less so.

Figure 5-8. The CSS Rule Definition dialog box provides access to CSS 1
properties.

Dreamweaver gives you flexibility in allowing you to attach new style sheets at differ-
ent stages of your workflow. However, if you want the option to use @import, you
must always use the chain icon or select Attach Style Sheet from the Style menu in the
main Property inspector.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

146

8598CH05.qxd 5/21/07 12:44 PM Page 146

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 5-1. Properties that can be set in the CSS Rule Definition dialog box

Category Properties covered

Type All font-related properties, plus color, line-height, and
text-decoration

Background All background properties, including background-color and
background-image

Block word-spacing, letter-spacing, vertical-align, text-align,
text-indent, white-space, and display

Box width, height, float, clear, padding, and margin

Border All border properties

List list-style-type, list-style-image, and list-style-position

Positioning CSS positioning, including visibility, z-index, overflow, and clip

Extensions page-break-before, page-break-after, cursor, and nonstandard
filters

The CSS Rule Definition dialog box is intended to make life easier for beginners, but the
need to hunt around in the different categories can be very frustrating and time consum-
ing. It also lists only CSS 1 properties, so you may end up looking for something that’s not
there. Unfortunately, Dreamweaver won’t create the new style rule unless you set at least
one property. I often select anything and click OK to create the new style rule. Once the
rule has been created, you can delete the dummy property in the Properties pane and add
the ones you want. Although Dreamweaver won’t let you create an empty rule to start
with, it doesn’t object to all properties being deleted from an existing rule.

If you’re new to CSS, you can now add some extra style rules to betterCSS.html from ear-
lier in the chapter. Experienced users of CSS can skip to the next section.

1. With betterCSS.html from earlier in the chapter open in the Document window,
position your cursor inside one of the paragraphs, and click the CSS button in the
middle of the Property inspector to open the CSS Styles panel.

Dreamweaver should detect that you are in a paragraph and automatically load the
following settings into the New CSS Rule dialog box:

Improving the basic page layout

ADDING A TOUCH OF STYLE

147

5

8598CH05.qxd 5/21/07 12:44 PM Page 147

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Check the settings and amend them if necessary. For the purpose of this exercise,
make sure that Define in is set to This document only. Then click OK.

2. In the CSS Rule Definition dialog box, select the Type category. You don’t need to set
a value for Font because that is inherited from the body rule set in the previous
exercise. Set Size to 85. Once you type a value in the Size field, the drop-down
menu alongside is activated. Dreamweaver automatically selects pixels. That’s far
too big, so open the drop-down and select % from the bottom of the list.
Alternatively, you can just type the percent sign after the number (but without any
space in between).

3. Set Line height to 1.4, and select multiple from the drop-down menu alongside. This
adds vertical space between the lines of the paragraph to make the text easier to
read. You can use pixels or percent to set the line-height property, but I find that
choosing multiple gives the most reliable results.

4. Select the Box category from the column on the left of the CSS Rule Definition dia-
log box. This category lets you define such properties as width, padding, and
margin. It’s better to set a width for the whole page by wrapping everything in a
<div>, so let’s just tidy up the margins around each paragraph.

Both Padding and Margin have a checkbox labeled Same for all, which is selected by
default. This applies to all sides whatever value you enter in the Top field. That’s not
suitable for a paragraph, so deselect the checkbox for Margin, and enter the values
shown in the following screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

148

8598CH05.qxd 5/21/07 12:44 PM Page 148

http://lib.ommolketab.ir
http//lib.ommolketab.ir

By setting the top margin to 0 and the bottom one to 8 pixels, you’ll get good spac-
ing between paragraphs. Setting the left margin to 20 pixels indents the text nicely
in comparison with the headings.

Click OK to save the new style rule for paragraphs.

5. To wrap text around images, you need to float the image either left or right and
add a margin on the opposite side to leave some breathing space between them.
Although there’s only one image in betterCSS.html, you might want to do the
same with several images on a page, so this is the ideal situation for a class.

Click the New CSS Rule icon at the bottom of the CSS Styles panel. In the New CSS
Rule dialog box, select the Class radio button and type .floatright in the Name field.
Make sure that Define in is set to This document only, and click OK.

6. In the CSS Rule Definition dialog box, select the Box category, and set Float to right.
Deselect the Same for all checkbox for Margin, and set Left to 10 pixels. Leave all
other settings blank. This aligns any element that uses the floatright class to the
right of its parent element and puts a 10-pixel margin on the left side. This is much
more flexible than using the HTML hspace attribute, which puts the same amount
of space on both sides. The advantage of CSS is that you can put a different margin
on each side. Click OK to save the new class rule.

7. Select the image in Design view, and open the Class drop-down menu on the right
of the Property inspector. This lists all classes defined in your styles. Select either
floatleft or floatright, and the text is wrapped around the image with a margin sepa-
rating them, as shown in Figure 5-9.

To align images to the left, create another class called .floatleft, set the value
of Float to left, and set the right margin to 10 pixels.

When typing the name of a class in the New CSS Rule dialog box, you must
include the leading period. Although class names don’t begin with a period
when used with the class attribute inside an HTML tag, you mustn’t omit it
when creating the style rule.

ADDING A TOUCH OF STYLE

149

5

8598CH05.qxd 5/21/07 12:44 PM Page 149

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 5-9. With just a handful of style rules, the page is beginning to look quite respectable.

8. There’s too much space beneath the headings. If
you look at the CSS Styles panel (shown along-
side), you’ll see there’s a group selector that
affects all six heading levels, which was created
by the Page Properties dialog box earlier in the
chapter. Highlight it as shown in the screenshot,
and click the Edit Style icon at the bottom of the
CSS Styles panel (it’s the second from the right
and looks like a pencil).

9. This reopens the CSS Rule Definition dialog box
ready to edit the existing rule. Select the Box cat-
egory from the column on the left, and deselect
the Same for all checkbox for Margin. Set Top to 0
pixels and Bottom to 8 pixels. Leave Right and Left
blank, and click OK to save the rule.

10. Save betterCSS.html and press F12/Opt+F12 to
preview it in a browser. Although the page is
nicely styled, the text spreads right across the
screen on a large monitor.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

150

8598CH05.qxd 5/21/07 12:44 PM Page 150

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11. Back in Dreamweaver, select the <body> tag in the Tag selector at the bottom of
the Document window. This selects everything on the page ready to wrap it in a
<div>. Click the Insert Div Tag button in the Common category of the Insert bar. This
opens the following dialog box:

Because you have already selected the page in Design view, Dreamweaver auto-
matically sets Insert to Wrap around selection, which is exactly what you want. Type
the name of the new <div> in the ID field as shown in the screenshot above, and
click the New CSS Style button at the bottom of the dialog box.

12. Dreamweaver automatically populates the New CSS Rule dialog box with the cor-
rect details as shown here:

Dreamweaver has added a hash or pound sign (#) at the beginning of wrapper, indi-
cating that this is an ID selector. Click OK to open the CSS Rule Definition dialog
box.

13. Select the Box category, and set Width to 770 pixels. In the Margin section, deselect
the Same for all checkbox, and set Top to 15 pixels. For Right and Left, click the drop-
down menu, and select auto. Because the wrapper <div> has a declared width, this
will center it in the page in all modern browsers. Click OK to close the CSS Rule
Definition dialog box. Then click OK again to close the Insert Div Tag dialog box.

14. Most browsers automatically apply padding or margin to the <body>, so to round
off this exercise, let’s neutralize that.

Select body in the top pane of the CSS Styles panel, and click the Edit Style icon.
Switch to the Box category in the CSS Rule Definition dialog box, leave Same for all
selected for both Padding and Margin, and type 0 in the Top field for both. Click OK.

ADDING A TOUCH OF STYLE

151

5

8598CH05.qxd 5/21/07 12:44 PM Page 151

http://lib.ommolketab.ir
http//lib.ommolketab.ir

15. Save betterCSS.html, and preview it in a browser. There you have it: a page styled
completely with CSS. Admittedly, it’s still very plain. A lot more could be done, but
once you have grasped the basics of CSS, you can start experimenting on your own,
and the next chapter shows a much more sophisticated design. Compare your file,
if necessary, with betterCSS.html in examples/ch05.

If you found hopping around in the CSS Rule Definition dialog box tedious and repetitive,
you’ll be pleased to know that working directly in the Properties pane of the CSS Styles
panel is usually much faster. However, unless you’re comfortable editing style sheets in
Code view, creating a new style rule always involves the dialog box, so you need to know
how it works. With more experience, you’ll find yourself using the Properties pane more
and more. You’ll learn how to do that in the next chapter.

All the rules you have just created are in the <head> of the document, so they apply only
to the current page. The real value of CSS lies in the ability to apply the same styles to an
entire website by storing the rules in one or more external style sheets. That way, any
change to the external style sheet is propagated throughout the site. In Dreamweaver CS3,
moving style rules is a breeze.

Moving style rules
Many developers like to design the basic layout of their sites by embedding style rules in
the <head> of a page and move them to an external style sheet only after they’re happy
with the design. It’s a good way of keeping everything together at the initial stage. In the
past, moving these rules involved several steps: creating a blank style sheet, attaching it to
the page, and cutting and pasting the rules into their new location. Not any more . . .
Dreamweaver CS3 automates the process for you.

Exporting rules to a new style sheet
The best way to show you how this works is with a hands-on exercise. If you have been
doing the exercises for CSS beginners, continue working with the same page. Otherwise,
copy betterCSS.html from examples/ch05 to workfiles/ch05. If Dreamweaver prompts
you to update links, click Update.

1. With betterCSS.html open in the Document window, switch to Code view, and
scroll up to the top of the page. You should see the style rules embedded in the
<head> of the document in a <style> block like this:

Moving embedded styles

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

152

8598CH05.qxd 5/21/07 12:44 PM Page 152

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Position your cursor anywhere inside the first style rule (shown on lines 8–12 in the
preceding screenshot). Right-click and select CSS Styles ➤ Move CSS Rules from
the context menu. This brings up the following dialog box:

3. Select the radio button labeled A new style sheet, and click OK.

4. In the next dialog box, navigate to the styles folder, and save the new style sheet as
betterCSS.css. When you click Save, what happens next depends on the way your
Dreamweaver preferences have been set (more on this later in the chapter).

If your preferences specify opening the style sheet whenever changes are made,
betterCSS.css opens in a new tab, but the focus remains in the web page. If your
preferences don’t specify opening the style sheet, it may look as though nothing
has happened. However, if you look carefully, you’ll see in both cases that the
body,td,th selector is no longer in the <head> of the page. It’s now in the external
style sheet.

5. Now select everything between the <style> tags but not the tags themselves.
Right-click and select CSS Styles ➤ Move CSS Rules from the context menu.

This time, the Move to External Style Sheet dialog box should automatically select
betterCSS.css as the destination for the style rules. Click OK to move them.

ADDING A TOUCH OF STYLE

153

5

8598CH05.qxd 5/21/07 12:44 PM Page 153

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. You’re now left with an empty <style> block followed by a <link> tag to the exter-
nal style sheet as the following screenshot shows:

7. Delete the empty <style> block shown on lines 6–9 in the preceding screenshot,
and switch back to Design view. The page is still styled exactly the same way as
before, but the styles are being drawn from the external style sheet instead of the
<head> of the page. You can confirm this by look-
ing at the CSS Styles panel in All mode: the root
of the tree menu now reads betterCSS.css
instead of <style>, as shown here:

If you want to examine the finished files, they’re
betterCSS_external.html in examples/ch05 and
betterCSS.css in examples/styles.

As the preceding exercise demonstrates, the Move CSS Rules command works with either
a single rule or a selection. When moving a single rule, your cursor can be anywhere inside
the rule you want to move. Dreamweaver treats partial selection of a rule as affecting the
whole rule.

Moving rules within a style sheet
Whenever you add a new style rule through the New CSS Rule and CSS Rule Definition dia-
log boxes, Dreamweaver puts it at the bottom of the style sheet. To take advantage of the
cascade or simply to group your rules in a more logical way, you need to be able to move
them. Nothing could be easier. Simply highlight the rules
you want to move (use the Shift or Ctrl/Cmd key to
select multiple rules), and drag and drop them within
the top pane of the CSS Styles panel in All mode. As the
screenshot alongside shows, the mouse pointer turns
into a document icon while dragging. The thick blue line
indicates where the rule(s) will be located when you
release the mouse button.

The <link> tag is inserted by Dreamweaver during step 4 when the first rule
is exported, but it is immediately before the closing </head> tag, so you may
not notice it until now.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

154

8598CH05.qxd 5/21/07 12:44 PM Page 154

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Moving rules between external style sheets
The ability to drag and drop style rules doesn’t apply only to rules within the same style
sheet or <style> block. If more than one style sheet is attached to a page, you can move
them at will from one to another. The following example demonstrates the power of this
new feature. Not only are the style rules moved, any change in the cascade is immediately
reflected in Design view.

1. Open moveStyles.html in examples/ch05. Open the CSS Styles panel in All mode,
and expand the tree menus for both style sheets. The page should look like this:

In All mode, the CSS Styles panel displays CSS selectors in the same order that they
are applied to the page. As you can see from the preceding screenshot, the first
style sheet contains two rules (for body and h1), and the second one contains only
a rule for h1. If you inspect the properties for h1 in the Properties pane, you will see
that the first style sheet sets the color to maroon, but the second one sets it to
deep blue. Because the second rule is lower in the cascade, it takes precedence.
That’s why the page heading in Design view is deep blue.

2. Drag the h1 selector from the first style sheet to immediately below the h1 selector
in the second style sheet. Dreamweaver detects a conflict and displays the follow-
ing dialog box so that you can compare both versions of the rule:

Changing the look of the page by moving style rules

ADDING A TOUCH OF STYLE

155

5

8598CH05.qxd 5/21/07 12:44 PM Page 155

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When a rule with the same name exists in the target style sheet, the rule being
moved is displayed in the left panel, and the rule in the target style sheet is shown
on the right. If you click Yes, Dreamweaver preserves the rule in the target style
sheet and inserts the rule being moved alongside it.

No instructs Dreamweaver not to move the rule currently displayed but to carry on
with the rest of the operation. Cancel tells Dreamweaver to abandon the operation,
and no rules are moved. If you select the checkbox labeled Use this decision for all
remaining conflicts, the Yes and No buttons are treated as Yes to All and No to All.

3. Click Yes. The page heading should immediately turn maroon in Design view.

The ability to move and edit style rules without ever needing to leave Design view makes
Dreamweaver a very powerful tool for creating websites with CSS.

Setting your CSS preferences
Developers have individual ways of working, and Dreamweaver tries to accommodate
most common preferences. Two sections of the Preferences panel (Edit ➤ Preferences, or
Dreamweaver ➤ Preferences on a Mac) control the way Dreamweaver handles CSS. The
CSS Styles category of the Preferences panel (see Figure 5-10) controls the creation and
editing of style rules.

Figure 5-10. My personal preferences for the way style rules are created and edited

The Code Format category of the Preferences panel also lets you determine how style rules
are laid out. First, let’s take a look at the options in the CSS Styles category.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

156

8598CH05.qxd 5/21/07 12:44 PM Page 156

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating and editing style rules
There are two ways of writing style rules for font, background, margin, padding, border,
and list-style: the long way and shorthand. For example, the following style rules both
have the same meaning:

/* long way of declaring font and margin properties */
p {
font-family: Arial, Helvetica, sans-serif;
font-size: 85%;
line-height: 1.4;
margin-top: 0;
margin-right: 5px;
margin-bottom: 5px;
margin-left: 15px;

}

/* shorthand version of preceding example */
p {
font: 85%/1.4 Arial, Helvetica, sans-serif;
margin: 0 5px 5px 15px;

}

The advantage of the long way of declaring these properties is that the meaning is crystal
clear. The disadvantage is that it makes your style sheets much longer. The shorthand ver-
sion is more compact, but it comes at a price: you need to remember the correct order of
the property values. For margin and padding, it’s easy: they start at the top and go in a
clockwise direction—top, right, bottom, and left. The shorthand for border is also easy:
the width, style, and color properties can go in any order. As shown in Figure 5-10, the
CSS Styles category of the Preferences panel lets you choose the default way of writing
these rules. My preference is to use shorthand for margin, padding, and border only.

The next set of options lets you specify whether to use shorthand when editing existing
style rules. If you’re working as part of a team, the first option (If original used shorthand)
prevents Dreamweaver from messing up the styles used by your colleagues. If you’re on
your own, choose the second option so that Dreamweaver converts style rules to your
own preferred format.

Arguably the most important option is the checkbox labeled Open CSS files when modified.
As you can see from Figure 5-10, I have left it unchecked. This means that Dreamweaver
modifies my style sheets silently in the background. It doesn’t matter how many changes I
make in the CSS Styles panel, the external style sheets remain closed and changes are
automatically saved. This suits my way of working, because every time I use F12/Opt+F12
to preview a page in a browser, I know the CSS is up to date.

Some people, however, prefer the style sheet to be open when any changes are being
made. If you check this option, Dreamweaver opens the style sheet in a separate tab
behind the web page, but leaves the focus in the web page so that you can see the effect
of the changes in Design view. However, you must save the changes to the style sheet
yourself.

ADDING A TOUCH OF STYLE

157

5

8598CH05.qxd 5/21/07 12:44 PM Page 157

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The final section lets you choose what happens when you double-click inside the CSS
Styles panel. The first option, Edit using CSS dialog, opens the CSS Rule Definition dialog
box (see Figure 5-8) described earlier in the chapter. This dialog box can be helpful, but I
don’t recommend its use on a regular basis. The most useful option is the last one, Edit
using code view. This opens the style sheet in the Document window and positions your
cursor inside the selected rule ready to edit it. Most of the time, though, you’ll edit prop-
erties directly in the Properties pane by clicking just once, as you’ll see in the next chapter.

Setting the default format of style rules
A useful new feature in Dreamweaver CS3 lets you control the way your style rules are laid
out. Select the Code Format category in the Preferences panel, and click the CSS button in
the Advanced Formatting section. This opens the CSS Source Format Options dialog box
(see Figure 5-11).

Figure 5-11. Dreamweaver CS3 now lets you control how style rules
are formatted.

The options are self-explanatory, and the Preview panel at the bottom of the dialog box
shows you what your selections will look like. Click OK to close the dialog box, and click
OK to save your new preferences. All new style rules will use the new settings.

To apply your format preferences to existing style sheets, open the style sheet, and select
Apply Source Formatting from the Commands menu. This is an all-or-nothing option: you
can’t apply the formatting to a selection. Dreamweaver is smart enough to apply the CSS
format options to <style> tags in the <head> of a page, but it ignores styles inside condi-
tional comments (covered in the next chapter).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

158

8598CH05.qxd 5/21/07 12:44 PM Page 158

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s get creative . . .
This chapter has concentrated heavily on the mechanics of working with CSS in
Dreamweaver—important knowledge for you to get the best out of the program but
hardly inspiring. The next chapter shows you how to put that knowledge to practical use
by adapting one of the 32 built-in CSS layouts that are new to Dreamweaver CS3. You’ll
also learn about using the CSS Styles panel in Current mode, a powerful tool for analyzing
the effect of the cascade within your style sheets.

ADDING A TOUCH OF STYLE

159

5

8598CH05.qxd 5/21/07 12:44 PM Page 159

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 CREATING A CSS SITE STRAIGHT
OUT OF THE BOX

8598CH06.qxd 5/31/07 11:06 AM Page 161

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Much of the book so far has been devoted to the mechanics of setting up your work envi-
ronment and getting to know the tools that Dreamweaver provides. From this point
onward, the approach will be more “hands on,” showing you how to build standards-
compliant sites with Dreamweaver.

In this chapter, I’ll lead you through the process of creating a page using one of the
32 built-in CSS layouts that are new to Dreamweaver CS3, putting into practice everything
from the preceding chapter, and showing you how to get the most out of the CSS Styles
panel in Current mode. For a sneak preview of where this chapter ends up, load
stroll_final.html from examples/ch06 into a browser or take a look at Figure 6-7 at the
end of the chapter. If you’re new to CSS, you may find some parts of this chapter daunt-
ing, but come along for the ride. Even if you don’t understand how all the style rules fit
together, you’ll pick up some cool techniques that will give your own sites that extra lift.

What this chapter covers

Attaching external style sheets when creating a new page

Making sure conditional comments are applied correctly

Adapting a Dreamweaver CSS layout

Getting the most out of the CSS Styles panel in Current mode

Understanding the impact of the CSS cascade

Using a stored query to remove CSS comments

Using a built-in CSS layout
If you click HTML or PHP in the Create New section of the welcome screen, Dreamweaver
opens a blank page using your default settings (see “Setting new document preferences”
in Chapter 1). You get a much bigger choice with File ➤ New, which opens the New
Document dialog box (see Figure 6-1).

Figure 6-1. Open the New Document dialog box to select one of the built-in CSS layouts.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

162

8598CH06.qxd 5/31/07 11:06 AM Page 162

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In both the Blank Page and Blank Template categories, the Layout column offers you a
choice of 32 CSS layouts when the Page Type is suitable for a complete web page, such as
HTML or PHP. You can also choose just a blank page by selecting <none> from the top of
the Layout column. The dialog box remembers your choices the next time you open it.

Choosing a layout
The layouts cover the most commonly used conventions of web page design: one-, two-,
and three-column pages, with and without a header and footer. They have been tested in
all the main browsers and provide a rock-solid basis for building a site.

You can choose four different types of column widths, identified by simple diagrams, as
follows:

Fixed: The width is defined in pixels.

Elastic: The width is defined in ems.

Liquid: The width is defined as a percentage.

Hybrid: The main column width is defined as a percentage; other
columns are defined in ems.

As you select each layout, a diagram appears on the right of the New Document dialog box
showing the style together with a brief description, as shown in Figure 6-1.

Deciding where to locate your style rules
When you select a layout, the Layout CSS menu at the bottom right of the New Document
dialog box is activated (it’s grayed out when <none> is selected). The menu has three
options, as follows:

Add to Head: This embeds the style rules in the <head> of the document.

Create New File: This puts all the style rules in an external style sheet.

Link to Existing File: This discards all style rules associated with the layout and links
to an existing style sheet.

The CSS layouts work in Firefox 1.0, 1.5, and 2.0 (Windows and Mac), Internet
Explorer 5.5, 6.0, and 7.0 (Windows), Opera 8 and above (Windows and Mac),
and Safari 2.0 (Mac).

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

163

6

8598CH06.qxd 5/31/07 11:06 AM Page 163

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Linking to existing style sheets
The third option is typically for subsequent pages based on the same layout. Before click-
ing Create, you must specify the style sheet by clicking the chain icon alongside Attach CSS
file, as shown here:

This opens the Attach External Style Sheet dialog box, which I described in “Attaching a new
style sheet” in the previous chapter. After selecting the style sheet, Dreamweaver might
warn you that your document should first be saved to create a document-relative path.
This is nothing to worry about. Just click OK, and you will be returned to the New
Document dialog box. You can add as many style sheets as you want. The text area below
the chain icon displays a list of the selected style sheet(s).

When you’re satisfied, click Create to load the new layout page into the Document
window. When you first save the page, Dreamweaver automatically adjusts any document-
relative paths to style sheets.

In many dialog boxes, Dreamweaver remembers your last set of options—and this includes
the list of attached style sheets at the foot of the New Document dialog box. That’s very
helpful if you want to link the same style sheets to your next document but may give you
a nasty surprise if you forget. To remove style sheets from the list, highlight them, and click
the trash can icon alongside the chain icon.

Making sure conditional comments are applied
To make the style sheets easier to edit, as well as to ensure standards compliance, the lay-
outs don’t use any weird and wonderful CSS hacks to overcome bugs in Internet Explorer.
Instead, special rules to correct these bugs are embedded in conditional comments just
before the closing </head> tag of the layout page. Conditional comments are a Microsoft
extension of HTML comments and look like this:

<!--[if IE 5]>
<style type="text/css">
.twoColFixLtHdr #sidebar1 { width: 230px; }
</style>
<![endif]-->

Only the Windows version of Internet Explorer takes any notice of the style rules embedded
in them. All other browsers treat them as ordinary comments and ignore them. It’s a per-
fect, standards-compliant way of tackling Internet Explorer bugs. However, for them to be
effective, they must come after all other style rules. If your style rules are in external style
sheets, the conditional comments must come after the <link> or @import commands that

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

164

8598CH06.qxd 5/31/07 11:06 AM Page 164

http://lib.ommolketab.ir
http//lib.ommolketab.ir

attach them to the page. Although you can put special rules for Internet Explorer in an
external style sheet and use a conditional comment to attach the style sheet, the com-
ments themselves cannot go inside an external style sheet. They must be in your web page.

This has important implications if you attach further style sheets. When you use the Attach
Style Sheet icon at the bottom of the CSS Styles panel, as described in Chapter 5,
Dreamweaver attaches external style sheets immediately above the closing </head> tag—
in other words, after any conditional comments. This means you must always move the
code that attaches your style sheet back above the conditional comments. Even if you’re
sure there’s no conflict of style rules, it’s safer to do so because Dreamweaver ignores the
conditional comments in the same way as a non-Microsoft browser, so you won’t notice
any difference in Design view if you forget to move the link to the new style sheet.
However, it will be immediately apparent to anyone using a version of Internet Explorer
with bugs that the conditional comments are meant to correct.

You must move the link to the external style sheet manually in Code view. Dragging and
dropping the style rules in the CSS Styles panel in All mode has no effect.

Styling a page
The layout I have chosen for this chapter is 2 column fixed, left sidebar, header and footer. It
creates a 780-pixel wide page centered horizontally in the browser. This is designed to fit
in an 800✕600 monitor. You can change the width to suit your own needs, but I’m going
to leave it as it is.

The following exercise shows how to start transforming the basic layout. Of course, I didn’t
just pluck the settings out of thin air; it took some experimentation. But the way I did it
was exactly the same—using the CSS Styles panel to edit each property and watching the
gradual transformation of the page in Design view. These instructions assume that you
have already familiarized yourself with using the CSS Styles panel in All mode, as described
in Chapter 5.

1. Open Dreamweaver, and select File ➤ New. In the New Document dialog box, select
the Blank Page category, and use the following settings:

Page Type: HTML

Layout: 2 column fixed, left sidebar, header and footer

DocType: XHTML 1.0 Transitional

Layout CSS: Create New File

Make sure there are no style sheets listed under Attach CSS file, and click Create.

Preparing the basic layout

Visit http://msdn.microsoft.com/workshop/author/dhtml/overview/
ccomment_ovw.asp to learn more about Microsoft conditional comments.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

165

6

8598CH06.qxd 5/31/07 11:06 AM Page 165

http://msdn.microsoft.com/workshop/author/dhtml/overview
http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Dreamweaver prompts you to save the style sheet. Navigate to the workfiles/
styles folder, and save the style sheet as stroll.css. When you click Save, the
CSS layout loads into the Document window as an unnamed and untitled docu-
ment. Save it in workfiles/ch06 as stroll.html. The style sheet is saved but
remains closed.

Your first reaction may be: Ugh, what an ugly duckling! But this ugly duckling has
the right genes or infrastructure to turn it into a beautiful swan. The first task is to
analyze the structure. Do this with the help of the CSS visual aids (see “Using visual
aids to understand your CSS structure” in Chapter 1), and by clicking in each part
of the document to see the structure revealed in the Tag selector.

To assist you, Figure 6-2 shows how the page is divided. The whole page is wrapped
in a <div> called container, which centers the content in the browser. The rest of
the page is made up of four sections, each within a <div> named header, sidebar1,
mainContent, and footer. The sidebar and main content are both floated left.

Figure 6-2. The main underlying structure of the two-column fixed layout with header and footer

3. Double-click stroll.css in the Files panel to open it in the Document window. As
Figure 6-3 shows, the style sheet begins with an @charset rule. This is not strictly
necessary when working with English, but it tells Dreamweaver and the web server
which encoding you’re using. It must come before any CSS selectors.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

166

8598CH06.qxd 5/31/07 11:06 AM Page 166

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6-3. The style rules are liberally commented to make it easy to understand the role they play
in the layout.

The rules are copiously sprinkled with CSS comments that explain what they’re for.
The styles applied to the body selector control the fonts and give the page a dark
gray background color. The white background is common to all elements in the
container <div>, but the header, sidebar1, and footer override this with various
shades of gray.

Most of the content on the page is dummy text, but the first paragraph in the left
sidebar contains the important information that the background color stretches
only as far as the content. It also advises adding a border to the left side of the
mainContent <div> if it will always contain more content. So let’s start by fixing
that.

4. Open the CSS Styles panel in All mode, and highlight the
.twoColFixLtHdr #mainContent selector, as shown in the screen-
shot alongside. This is the rule for the mainContent <div>.
You could go straight ahead and make the necessary changes
to this rule, but I want to show you how to use Current mode
to identify which style rules affect a particular part of the page
when you don’t know the name of the selector.

The built-in CSS layouts use a technique known as giving the
page a CSS signature. This is a class added to the <body> tag of
the page, identifying the layout. Each style rule uses a descen-
dant selector that begins with the class name. The addition of
the class makes the style rules more specific, so you can com-
bine one of these layouts with an existing site that already
has its own style rules. If you add new rules yourself, remember
that CSS selectors are case sensitive. Use the same camel-case
spelling.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

167

6

8598CH06.qxd 5/31/07 11:06 AM Page 167

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. In Design view, click inside the text beneath the Main
Content headline, select <div#mainContent> in the Tag
selector at the bottom of the Document window, and then
click the Current button at the top of the CSS Styles panel.
The panel should now look similar to the screenshot
alongside.

In Current mode, the CSS Styles panel consists of three
sections, which you may need to resize to see everything
(the width of the columns is also resizable by dragging
horizontally). The top pane (Summary for Selection) shows
the rules that apply to the current selection both through
its own selector and through the rest of the cascade,
whereas the bottom pane (Properties) shows you the style
rules for the currently highlighted selector. By default, the
middle pane tells you where the property selected in
either pane is defined in the style sheet.

Although it looks confusing at first glance, Current mode presents you with a lot of
useful information and is the most productive place to edit CSS. Using it in practice
makes it easier to understand, so just follow along for the time being.

6. Click Add Property at the bottom of the Properties pane. This opens a blank drop-
down menu. You can either click the down arrow on the right of the menu to
reveal all the options, or you can start typing the name of
a CSS property. Type bor, and press the down arrow key
(or click the menu’s down arrow). The border property
should already be highlighted. Scroll down to border-left, as
shown alongside.

Press Tab or click border-left, and Dreamweaver opens the
right side of the pane for you to type in the style rule. If it
doesn’t open automatically, click to the right of border-left.
Type 1px dashed #000000, and press Enter/Return.

Click anywhere inside the mainContent <div> to deselect it, and you should see a
dotted black border on the left side of the text.

7. Now let’s deal with the sidebar background. Click anywhere inside the sidebar. If
you look at the Properties pane of the CSS Styles panel, you’ll see that it refers to
.twoColFixLtHdr #container and not the sidebar. Because
nothing is actually selected, Dreamweaver shows you the
rules for the parent <div> for the whole page. Although
this seems counterintuitive, it’s actually quite useful.

As you can see from the screenshot alongside, background,
border, margin, and width are all struck through with a hor-
izontal line. This indicates that a more specific rule is over-
riding these properties in the sidebar. The useful piece of
information here is that the background property for the container <div> is white
(#FFFFFF). If you remove the background for the sidebar, it will inherit the color of
its parent.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

168

8598CH06.qxd 5/31/07 11:06 AM Page 168

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Click <div#sidebar1> in the Tag selector at the bottom of the
Document window. The Properties pane now shows the rules
for .twoColFixLtHdr #sidebar1. Highlight background, and
press Delete or click the trash can icon at the bottom of the
CSS Styles panel, as shown here.

9. The sidebar should now have the same white background as
the mainContent <div>. Let’s do the same to the footer.
Position your cursor anywhere inside the footer <div>, select
<div#footer> in the Tag selector, and then delete background
from the Properties pane of the CSS Styles panel.

10. Save stroll.css if you have been working with the style sheet open in the
Document window; then switch back to stroll.html, and press F12/Opt+F12 to
view the page in a browser. The gray background should have gone from the side-
bar and footer, and there should be a dashed border down the left side of the main
content.

Check your files, if necessary, against stroll_border.html and stroll_border.css
in examples/ch06.

Getting rid of the background colors doesn’t make a dramatic difference to the look of
the page. The real transformation begins with adding background images. By using the
CSS Styles panel, the changes are reflected immediately in Design view.

Continue working with the same files as in the preceding exercise.

1. Let’s turn attention now to the background for the header. Instead of white or gray,
I’ve chosen a shade of cornflower blue. This is because I’m going to use a back-
ground image but want a similar color to be displayed if the image fails to load.

Click inside the header <div>, select <div#header> in the Tag selector, and delete
background from the Properties pane of the CSS Styles panel. Although you’re
going to use a different color, I’ve suggested deleting the shortcut property
because it’s easier to use the separate background-color and background-image
properties.

2. With the header <div> still selected, click Add Property, and
select background-image using either the arrow keys or drop-
down menu. Dreamweaver not only opens the right side of
the pane for you to type in the name of the image but also
displays two icons that should be familiar from the main
Property inspector, as shown here.

The Point to File icon on the left can be used to point to the image in the Files panel,
or you can click the folder icon to navigate to the file. It’s often easier to close the
Files panel when working in the CSS Styles panel, so the latter tends to be more
useful. Use either method to select images/stroll_header_bg.jpg.

Adding background images

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

169

6

8598CH06.qxd 5/31/07 11:06 AM Page 169

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Click Add Property, select background-repeat, and select repeat-x from the drop-
down menu that appears alongside. This tiles the background image only horizon-
tally.

4. Click Add Property again, and select background-color from the drop-down menu.
This time, Dreamweaver inserts the Color Picker alongside the property, as shown
here:

5. Click the Color Picker, and use the eyedropper tool to get the color of the back-
ground image in the header <div>. It has a slight pattern, so the precise color isn’t
important. I told you that it was a lot easier not using shortcuts for the background
property.

6. Remove all padding from the header <div> by clicking the value alongside padding
and change it from 0 10px 0 20px to 0.

7. Select the word Header, and replace it with Stroll Along the Thames. Then select the
<h1> tag in the Tag selector, and press the right arrow key on your keyboard. If you
open Split view, you’ll see that this positions the cursor between the closing </h1>
tag and the closing </div> tag in the underlying code.

8. Insert the header image by selecting the Insert Image button in the Common cate-
gory of the Insert bar or Insert ➤ Image. Browse to images/stroll_header.jpg. In
the Image Tag Accessibility Attributes dialog box, set Alternate text to Stroll Along the
Thames, and click OK.

9. Change the Document title to Stroll Along the Thames by replacing Untitled
Document in the Document toolbar. The top of the page should now look like this
in Design view:

Sizes in CSS must always be accompanied by a unit of measurement, such as em or px,
with no gap between the number and unit. The only exception is 0, which doesn’t
require a unit of measurement. Although 0px is valid, the px isn’t necessary—and leav-
ing it out saves typing.

There’s a real time saver in dialog boxes that navigate the site’s file system. It’s a but-
ton labeled Site Root. In some dialog boxes it’s at the top; in others it’s at the bottom
left. Just click it, and the dialog box takes you straight to the site root folder. It’s often
a lot quicker than trying to remember the hierarchy of your folders to go back to the
root and navigate from there.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

170

8598CH06.qxd 5/31/07 11:06 AM Page 170

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The text heading in the <h1> tags is for the benefit of search engines and browsers
that can’t cope with CSS, but we need to hide the text for visual browsers. Once it’s
out of the way, we can tuck the header image neatly into the top of the page.

10. Position your cursor inside the text heading, and select the <h1> tag in the Tag
selector. Highlight the padding property in the Properties pane of the CSS Styles
panel, and delete it. Then add two the following two properties and values:

position: absolute

top: –100px

Using absolute positioning removes the heading from the flow of the document,
and giving it a top position of minus 100 pixels moves it conveniently out of
the way.

11. Now let’s add a bit of interest to the bottom of the page. Click anywhere inside
Design view, and select <div#container> in the Tag selector. Highlight background in
the Properties pane of the CSS Styles panel, and delete it. The whole of Design view
will turn a dark gray, but fear not. We’ll restore the light right away by clicking Add
Property, selecting background-color, and setting its value to #FFFFFF.

12. Next add the background-image property, and navigate to images/city_footer.
jpg. It tiles throughout the page, so you need to set the following properties and
values:

background-repeat: no-repeat

background-position: left bottom

When entering a value like –100px, you can either type the unit of measure-
ment immediately after the number or select it from the drop-down menu that
Dreamweaver places alongside. Since you’re already at the keyboard, it’s
quicker to type it yourself.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

171

6

8598CH06.qxd 5/31/07 11:06 AM Page 171

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first of these properties accepts only one value, so Dreamweaver lists valid
options as a drop-down menu. The second accepts combined values, so no drop-
down menu is available. Nevertheless, Dreamweaver still comes to your rescue by
displaying code hints when you hover your mouse pointer over the field where the
values need to be entered.

13. Save stroll.html (and stroll.css if you selected the option to open CSS files
when modified). If you press F12/Opt+F12 to preview the page in a browser, it
should look similar to Figure 6-4. It’s far from perfect yet, but the main thing to
notice is that it should look almost identical to the way it does in Design view. This
is one of the main advances in Dreamweaver CS3’s handling of CSS: Design view
normally offers a very close rendition of what you’ll see in a standards-compliant
browser.

Figure 6-4. The built-in CSS layout looks very different after changing some background settings.

14. The page is beginning to look pretty good, but the margins on either side look
drab. Their color is controlled by the body selector; and after some experimenta-
tion, I decided to make them a light pink to match the winter sunset sky behind
Saint Paul’s Cathedral. The color I chose was #F8F1EB. Select <body.twoColFixLtHdr>
in the Tag selector, and click the value of background in the Properties pane of the
CSS Styles panel. Replace #666666 with #F8F1EB.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

172

8598CH06.qxd 5/31/07 11:06 AM Page 172

http://lib.ommolketab.ir
http//lib.ommolketab.ir

15. The border around the container <div> is now a little too dark, so select
<div#container> in the Tag selector. The Properties pane of the CSS Styles panel
shows that border has been set to 1px solid #000000—in other words a solid, black
border all around. Although I have set my preferences to use shorthand styles for
the border property, you can use shorthand only when all sides have the same
value. I want no border at the top and bottom, but a deep russet on either side.

Highlight the existing border property, and delete it. Then click Add Property to
create two separate rules for border-left and border-right with the value 1px solid
#C99466.

16. Save stroll.html (and stroll.css if necessary) and preview the page in a
browser. It’s now looking quite respectable. If you want to check your progress,
compare your files with stroll_bg.html in examples/ch06 and stroll_bg.css in
examples/styles.

Making these changes to the background has already transformed the basic CSS layout,
but to make further changes, you need to exploit the Current mode of the CSS Styles
panel to its full potential by using it to analyze the way style rules interact with each
other—in other words, the cascade.

Inspecting the cascade in Current mode
Halfway down the right side of the CSS Styles panel in Current mode are two insignificant-
looking icons (shown alongside). By default, the left one is selected, but the right one
holds the key to the cascade of rules affecting the currently selected tag. I recommend
that you select the icon on the right and use this as your default setting (Dreamweaver
always remembers your most recent choice).

Study Figure 6-5 on the next page carefully. The title bar of the Properties pane is identical
in both screenshots, but the Summary for Selection is different, and all the properties are
struck through in the left screenshot. No, it’s not a bug; Dreamweaver isn’t broken. The
left screenshot was taken with the insertion point inside the text of one of the paragraphs
in the mainContent <div>. The properties are struck through because they don’t affect
the paragraph directly. What Dreamweaver is telling you is that you can edit these values,
but they won’t change the look of the current selection in Design view. The screenshot on
the right was taken with the whole of mainContent <div> selected. As a result, the prop-
erties are no longer struck through; they apply directly to the current selection. They’re
also listed in the Summary for Selection.

Cascading style sheets are so called because of the way rules inherit properties from
each other, rather like the increased flow of water cascading down a waterfall. Not
only do rules inherit from one another, a more powerful influence further down
the cascade can override everything that has gone before. Understanding how the
cascade works is the key to successful implementation of CSS.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

173

6

8598CH06.qxd 5/31/07 11:06 AM Page 173

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6-5. In Current mode, the CSS Styles panel shows the different
impact of the cascade on text inside the mainContent <div> (left) and
on the <div> itself.

The Rules pane in the middle shows the full cascade of all style rules that affect the cur-
rent selection. As you hover your mouse pointer over each one, Dreamweaver displays the
rule’s specificity as three comma-separated numbers. Specificity determines which rule
“wins” when there’s a conflict—the higher the numbers, the greater the precedence that’s
given to a particular rule. ID selectors are the most powerful, followed by classes, with type
selectors coming at the bottom of the hierarchy. For more details, see CSS Mastery by
Andy Budd with Simon Collison, and Cameron Moll (friends of ED, ISBN-13: 978-1-59059-
614-2) or visit www.w3.org/TR/REC-CSS2/cascade.html#specificity.

The real power of Current mode comes in the ability to
select any of the properties listed in the Summary for
Selection or any of the selectors in the Rules pane. Doing
so immediately displays the relevant style rule in the
Properties pane. For example, selecting font in the top
pane displays the body style rules ready for editing in the
bottom pane (see Figure 6-6).

It takes a while to get used to working with the CSS Styles
panel in Current mode, but once you do, you’ll wonder
how you ever did without it.

Figure 6-6.
The 100 percent font size in the body selector needs to be
overridden further down the cascade.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

174

8598CH06.qxd 5/31/07 11:06 AM Page 174

http://www.w3.org/TR/REC-CSS2/cascade.html#specificity
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finishing the layout
Let’s get back to stroll.html and stroll.css and smarten it up a little more by adding
some images, changing the font size, and adding a pull quote.

Continue working with stroll.html and stroll.css. Alternatively, copy stroll_bg.html
from examples/ch06 to your workfiles/ch06 folder, and rename it stroll.html. Also
copy stroll_bg.css from examples/styles to workfiles/styles, and rename it
stroll.css. If Dreamweaver asks you if you want to update links, click Update.

1. Position your cursor near the top of the first paragraph in mainContent <div>, say
at the beginning of the third sentence, and insert images/living_statues.jpg.
You can either use the Insert Image button on the Common category of the Insert
bar or drag the file directly from the Files panel into the Document window. Give
the image some alternate text, such as Living statues on the South Bank.

2. The old-school way of wrapping the text around an image is to set the values of
Align and H Space in the Property inspector. However, that uses the deprecated
align and hspace attributes and doesn’t offer the same flexibility of setting differ-
ent margins around the image as CSS.

Select the image in Design view, and click the arrow to the right of the Class drop-
down menu in the Property inspector. This lists all classes defined in the style sheet.
Adobe has anticipated the need to wrap text around images and provided two
classes, .fltlft and .fltrt, which float elements left and right, respectively.
Choose fltlft from the Class drop-down menu to float the image to the left.

3. Insert images/graffiti.jpg into the text beneath the second heading, give it
some alternate text, and select fltrt from the Class menu to float the image to the
right.

4. The size of the text is a bit too large for my liking, so let’s adjust it. Position your
cursor anywhere inside the text in the mainContent <div>, and open the CSS
Styles panel in Current mode. It should look like the left screenshot in Figure 6-5.

Select font in the Summary for Selection pane. This reveals that all the font proper-
ties for the page are defined in the body tag, as shown in Figure 6-6. Although you
could edit the font size here, it would affect fonts throughout the rest of the page,
and using a percentage other than 100 percent on the body selector makes it diffi-
cult to calculate font sizes further down the cascade. So let’s create a new rule.

5. Click the New CSS Rule icon (see alongside) at the bottom of the CSS Styles panel.

Dreamweaver makes an intelligent guess and suggests .twoColFixLtHdr #container
#mainContent p as the name of the new selector. This isn’t what I want, but accept
it just the same, and click OK.

6. This opens the CSS Rule Definition dialog box. As I explained in Chapter 5, I find this
a rather clumsy way of defining a new rule because you need to wade through the
different categories to find what you want. But if you’re new to CSS, it may help fix
the available properties in your mind. Moreover, it’s the only way to create a new
selector without going into Code view and editing the style sheet directly.

Inserting images and adjusting fonts

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

175

6

8598CH06.qxd 5/31/07 11:06 AM Page 175

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Make sure the Type category is selected, enter 85% into the Size field, and click OK.
(You can also type 85 into the Size field, and select % from the drop-down menu
alongside. Choose whichever method suits you.)

7. The text in the mainContent <div> is now the right size, but the sidebar is still too
big. If you’re thinking “new rule” or “class,” stop it. Redefining the <p> tag is all
that’s needed. You could have done that in the first case, but I wanted to show you
how to change the name of a selector in the CSS Styles panel.

Switch to All mode, highlight .twoColFixLtHdr #container #mainContent p, and gently
click the name once. You should now be able to edit the selector name. If you have
difficulty, right-click and choose Edit Selector from the context menu. Change the
selector to p (just the letter on its own). Press Enter/Return. The rule now applies
to all paragraphs in the page.

8. The footer text is obscured by the background image, so let’s adjust that too. Click
anywhere inside the footer <div>, and switch to Current mode in the CSS Styles
panel. The Dreamweaver CSS layout has already defined a selector called
.twoColFixLtHdr #footer p with values for margin and padding.

Click Add Property, and use the following settings:

color: #8A5B31

text-align: right

Moving the text across to the right and giving it a dark brown color makes it stand
out against the lighter part of the background image. Save stroll.html (and
stroll.css if necessary), but keep them open for the next exercise.

Since it’s a page about London, there’s just one final touch that I’d like to add: Samuel
Johnson’s famous assertion that when a man is tired of London, he’s tired of life.

In the bad old days, the <blockquote> tag was misused by all and sundry to indent text.
Well, let’s be honest, it still is, but you know better, don’t you? You’re going to use
<blockquote> for its real purpose—to highlight a quotation—and then style it with CSS to
turn it into a distinctive pull quote.

1. Place your cursor at the end of the first paragraph in the sidebar, and press
Enter/Return to create a new paragraph. Type: No, Sir, when a man is tired of London,
he is tired of life; for there is in London all that life can afford. Press Enter/Return again,
and type the attribution: Samuel Johnson, 1777.

2. Select both paragraphs in Design view, and click the Text Indent button in the
Property inspector as shown here:

This wraps the paragraphs in a pair of <blockquote> tags.

Adding a pull quote

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

176

8598CH06.qxd 5/31/07 11:06 AM Page 176

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Click the New CSS Rule icon at the bottom of the CSS Styles panel. In the New CSS
Rule dialog box, choose Tag as the Selector Type, select blockquote from the Tag
drop-down menu, and click OK.

4. In the CSS Rule Definition dialog box, select the Type
category, and set Font to Georgia, Times New Roman,
Times, serif and Color to #FFFFFF. Next, select the
Background category, and set Background color to
#999999. You need to add a few more properties,
but it’s much easier to do the rest in the CSS Styles
panel, because you can see exactly how they affect
the look of the pull quote in Design view.

Click OK to save the current rules. The pull quote
should now look like the one shown alongside.

5. The default margin around the <blockquote> is too
wide, so position your cursor anywhere inside the
quote, and select <blockquote> in the Tag selector. With the CSS Styles panel in
Current mode, click Add Property to add the following settings:

margin: 10px

padding: 0

6. The text in the pull quote, now needs to be pulled in from the edges. Click the New
CSS Rule icon, and use the following settings in the New CSS Rule dialog box:

Selector Type: Advanced (IDs, pseudo-class selectors)

Selector: blockquote p

Define in: stroll.css

The descendant selector blockquote p restricts the rule to paragraphs inside a
<blockquote>. Click OK, select the Box category in the CSS Rule Definition dialog
box, and use the following settings for Padding and Margin:

The names of the Text Indent button and the one to its left (Text Outdent) still reflect
the old presentational type of markup that you should avoid in a standards-compliant
site. When applied to ordinary text, think of them as “blockquote” and “remove
blockquote” buttons. When used inside an ordered or unordered list, they create or
remove a nested list.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

177

6

8598CH06.qxd 5/31/07 11:06 AM Page 177

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. When you click OK to save the settings for the blockquote p rule, you’ll see that
the bottom line is flush with the gray background. Everything comes right in a
moment.

Select <blockquote> in the Tag selector again, and click Add Property in the
Properties pane of the CSS Styles panel. Select background-image, and navigate to
images/top_quote.gif. The image tiles horrendously, so add two further proper-
ties as follows:

background-repeat: no-repeat

background-position: left top

8. Just a couple more tweaks and you’re there. The beginning of the pull quote over-
laps the quotation marks of the background image, so click inside the first para-
graph of the quote, and add the following property to the blockquote p style rule:

text-indent: 20px

9. CSS doesn’t let you apply two background images in the same rule (you’ll have to
wait for CSS 3 to do that), so you need to create a new rule for the quote attribu-
tion within the <blockquote>. Position your cursor inside the paragraph that reads
Samuel Johnson, 1777, and select the <p> tag in the Tag selector. Right-click and
select Quick Tag Editor from the context menu to assign the paragraph an id attrib-
ute of quote_attrib (see “Using the Quick Tag Editor to set an id attribute” in
Chapter 2).

10. Use the ID selector #quote_attrib to create a new CSS rule (choose Advanced as
the Selector Type and #quote_attrib as Selector). In the CSS Rule Definition dialog box,
select the Background category, and set Background image to images/btm_quote.gif,
Repeat to no-repeat, Horizontal position to right, and Vertical position to bottom.

Then use either the CSS Rule Definition dialog box or the CSS Styles panel to set the
remaining properties:

font-size: 70%

margin-top: 0

padding-bottom: 30px

text-align: right

text-indent: 0

11. Save stroll.html (and stroll.css if necessary), and press F12/Opt+F12 to pre-
view the page in a browser. It should look similar to Figure 6-7 (I’ve changed the
headings to give the page a more authentic look). The ugly duckling in Figure 6-2 is
now an elegant swan. You can compare your files with stroll_final.html and
stroll_final.css in examples/ch06.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

178

8598CH06.qxd 5/31/07 11:06 AM Page 178

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 6-7. With a little imagination and work, the basic CSS layouts can be transformed into
attractive pages.

Removing the CSS comments
The comments in the Dreamweaver CSS layouts are deliberately verbose—they’re there to
help you understand what each rule is for. Although commenting style sheets is a good
idea, you’ll probably want to get rid of the Dreamweaver comments once you’re familiar
with the layouts. It’s very easy to do with Edit ➤ Find and Replace and a regular expression.
Regular expressions describe patterns of text and other characters. They are like wildcard
characters but much more powerful. The regular expression (regex) to describe a CSS
comment looks like this:

/*.+(?=*/)*/

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

179

6

8598CH06.qxd 5/31/07 11:06 AM Page 179

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Because this regex is so useful—and easy to mistype—I have created a stored query to
automate the process. The following instructions show you how to remove the CSS com-
ments from a style sheet:

1. Open the style sheet in the Document window. If the styles are embedded in the
<head> of the document, switch to Code view.

2. Launch Find and Replace from the Edit menu (or press Ctrl+F/Cmd+F).

3. Click the Load Query icon at the top right of the Find and Replace dialog box (see
Figure 6-8).

4. In the Load Query dialog box, browse to the tools folder, select css_comments_
remove.dwr, and click Open. This loads the query into the Find and Replace dialog
box and sets all the necessary options, as shown in Figure 6-8.

Figure 6-8. Regular expressions make complex find and replace operations possible.

5. To remove all the CSS comments in a single operation, click Replace All. You should
be aware that this removes all comments, including any CSS hacks that look like
comments. If you’re in any way uncertain, use the following, more selective
approach.

To remove comments selectively, click Find Next to highlight the first one. Click
Replace to remove it or Find Next to move to the next one.

6. Click Close to return to the Document window. After find and replace operations,
Dreamweaver always opens the Results panel at the bottom of the workspace. To
collapse it, press F7 or right-click the Options menu icon at the top right of the
Results panel title bar and select Close Panel Group from the context menu.

Using a stored query in Find and Replace

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

180

8598CH06.qxd 5/31/07 11:06 AM Page 180

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver always remembers your last find and replace operation, so these settings
will be displayed the next time you open the Find and Replace panel. Delete the regular
expression from the Find field, and deselect the Use regular expression checkbox (unless
you plan to use another regex). This final point is very important. When a find operation
fails for no obvious reason, it’s usually because you have selected the Use regular expres-
sion checkbox by accident.

How was it for you?
Depending on your knowledge of CSS, this chapter is likely to have been relatively easy or
something of a nightmare. If you fall into the latter category, I encourage you to persevere.
It can take a long time for CSS to sink in. If you find it difficult to understand how to build
your own style sheets, download a page from a site that you admire, complete with images
and style sheets. Then use the CSS Styles panel to change or delete individual properties.
Watch the effect of each change. Also select different parts of the page to analyze the
cascade of styles.

Mastering the CSS Styles panel takes time and patience, but in combination with the
greatly improved CSS rendering in Dreamweaver CS3, it will reward you in the end.
Remember that Current mode shows the cascade as it affects the current insertion point or
selection. Use the Tag selector at the bottom of the Document window to highlight spe-
cific elements, and then use the Summary for Selection and Rules panes to drill down to the
CSS rules you want to inspect or edit.

You’ll get some more practice with the CSS Styles panel in the next chapter when you use
Spry widgets to spice up page layout. The widgets come with their own predefined style
sheets, so you need to know how to adapt them to blend in with your own design.

You can save your own queries for reuse in the same way. Just click the Save
Query icon to the left of the Load Query icon, create a suitable folder, and give
the query a name.

CREATING A CSS SITE STRAIGHT OUT OF THE BOX

181

6

8598CH06.qxd 5/31/07 11:06 AM Page 181

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7 BUILDING SITE NAVIGATION WITH
THE SPRY MENU BAR

8598CH07.qxd 6/7/07 4:35 PM Page 183

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Efficient and attractive navigation is an important element in every website. The Spry
menu bar is one of eight Spry widgets new to Dreamweaver CS3 (the others are described
in the next two chapters). Its aim is create a flexible menu with flyout submenus that
remains accessible even if JavaScript is turned off. In essence, it’s an unordered list with
optional nested lists for submenus. Styling is done with CSS, and the submenu flyouts are
controlled by a combination of CSS and JavaScript. It comes in two versions: horizontal
and vertical. Figure 7-1 shows what the horizontal version of the Spry menu bar looks like
when integrated into the page built in the last chapter.

Figure 7-1. The Spry menu bar can be easily integrated into a page by making a few adjustments to
the CSS.

Although you can insert a Spry menu bar in seconds, the downside is that styling it
requires a good understanding of CSS. Knowing which style rules to change—and which to
leave alone—presents more of a challenge. To help you, this chapter

Describes the structure of the Spry menu bar

Shows you how to insert and remove a Spry menu bar

Explains the style rules that control a Spry menu bar

Shows you how to customize a Spry menu bar

By the end of the chapter, you’ll be able to transform the rather bland default design of a
menu bar into something much more elegant like the menu in Figure 7-1. Because the
Spry menu bar is styled with CSS, this chapter assumes you’re familiar with the CSS Styles
panel, which was described in detail in Chapter 5.

The Spry menu bar should finally put to rest the horrendous problems caused by the old
JavaScript pop-up menus created in Fireworks MX 2004 and earlier. If you don’t know
about the old menus, ignorance is bliss. All you need to know about them is that they ren-
dered your site totally inaccessible if JavaScript was disabled. Not only that, they prevented
search engines from indexing anything beyond the first page. If you’re interested in the
sad, inside story of how they were developed, see www.losingfight.com/blog/2006/08/
11/the-sordid-tale-of-mm_menufw_menujs.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

184

8598CH07.qxd 6/7/07 4:35 PM Page 184

http://www.losingfight.com/blog/2006/08
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Examining the structure of a Spry menu bar
Like all Spry widgets, the Spry menu bar relies on external files to control the way it looks
and works, so you must always save your page in a Dreamweaver site (see Chapter 4 for
site definition) before attempting to insert a menu bar. If you forget, Dreamweaver tells
you to save your page, and opens the Save As dialog box.

The best way to understand how a Spry menu bar works is to launch Dreamweaver and
start experimenting. Let’s begin with a horizontal menu bar.

1. Create a blank HTML page in Dreamweaver by selecting File ➤ New. In the New
Document dialog box, select Blank Page, HTML as the Page Type, and <none> for
Layout. Make sure that no style sheets are listed under Attach CSS file before click-
ing Create. Alternatively, just select New ➤ HTML from the welcome screen. Save
the file as horiz.html in workfiles/ch07.

2. Select the Spry tab on the Insert bar, and click the Spry Menu Bar button (it’s the
fourth from the right) as shown in the following screenshot:

3. This opens the Spry Menu Bar dialog box. There are just two options: Horizontal and
Vertical. Select Horizontal, and click OK.

4. Dreamweaver inserts a horizontal Spry menu bar at the top of the page, as shown
in Figure 7-2. Like all Spry widgets, the menu bar is surrounded in Design view by a
turquoise border and a tab at the top-left corner. The tab tells you what type of
widget it is, followed by the widget’s id attribute. Dreamweaver calls the first menu
bar on a page MenuBar1. The next one is MenuBar2, and so on. This means you can
have as many menu bars on a page as you want (don’t go mad—think of usability).

Figure 7-2. The Spry menu bar is given basic styling ready for you to customize.

Inserting a horizontal menu bar

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

185

7

8598CH07.qxd 6/7/07 4:35 PM Page 185

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Save horiz.html. If this is the first time you have inserted a Spry menu bar in the
current site, Dreamweaver prompts you to save the dependent files. It locates the
files in the Spry assets folder. By default, this is called SpryAssets, but you can
specify a different location in your site definition (see “Setting up for Spry” in
Chapter 4).

The dependent files are the external JavaScript file, SpryMenuBar.js, the external
style sheet, SpryMenuBarHorizontal.css, and four arrow images that indicate the
presence of submenus. Once the files have been copied to the Spry assets folder,
they are shared with further instances of the menu bar in the same site.

6. Click OK to save the dependent files, and press F12/Opt+F12 to preview
horiz.html in a browser. As you can see in Figure 7-3, you already have a fully
working menu bar ready for you to customize. You can freely add or remove items
and submenus and change the default colors. I’ll show you how to do that shortly,
but first let’s take a look at the vertical menu bar.

Figure 7-3. The structure and styling of the default menu bar are fully
customizable.

1. Create another blank page, and save it as vertical.html in workfiles/ch07.

2. Select the Spry Menu Bar button on the Spry tab of the Insert bar. Alternatively,
choose Insert ➤ Spry ➤ Spry Menu Bar.

3. Select the Vertical radio button in the Spry Menu Bar dialog box, and click OK.

4. Dreamweaver inserts a vertical menu bar, as shown in the following screenshot:

Inserting a vertical menu bar

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

186

8598CH07.qxd 6/7/07 4:35 PM Page 186

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Save vertical.html. This time, Dreamweaver prompts you to save only one
dependent file: the style sheet, SpryMenuBarVertical.css. All other dependent
files are identical to those used by the horizontal menu bar.

6. Press F12/Opt+F12 to preview the page in a browser. It looks identical to the hori-
zontal menu bar shown in Figure 7-3. The only differences are that the menu items
are stacked vertically and the first-level submenus fly out to the right rather than
beneath the main menu.

Looking at the XHTML structure
The Spry menu bar is a series of nested unordered lists () styled with CSS to look like
a series of buttons. The submenu flyouts are controlled by JavaScript. You can see the
underlying structure of the menu either by switching to Code view or by toggling the Turn
Styles Off/On button in the Property inspector. (If you can’t see the button, click the Spry
Menu Bar tab at the top left of the menu bar.) Figure 7-4 shows the horizontal menu bar in
horiz.html, but the structure is identical in vertical.html. The different look and func-
tionality are controlled entirely by JavaScript and CSS.

Figure 7-4. When styles are turned off, you can see the underlying list structure of the menu bar.

If you switch to Code view, you’ll see that Dreamweaver has added links to the external
JavaScript file and style sheet (see lines 6 and 7 in Figure 7-5, on the next page). To save
space, I have used Code collapse (see “Using the Coding toolbar” in Chapter 1) to hide the
XHTML code for the nested lists on lines 11–33.

Immediately below the nested lists (on lines 34–38), Dreamweaver has inserted a block of
JavaScript. This initializes the widget object. All Spry widgets are JavaScript objects, which
need to be initialized when the page first loads. Dreamweaver locates the initialization
script just before the closing </body> tag. If a widget stops working, you should always

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

187

7

8598CH07.qxd 6/7/07 4:35 PM Page 187

http://lib.ommolketab.ir
http//lib.ommolketab.ir

check that you haven’t deleted this script by mistake. If you have, you need to go back and
reinsert the widget from scratch.

Figure 7-5. Dreamweaver adds three sections of code in addition to the list structure (hidden using
Code collapse).

Removing a menu bar
Removing a menu bar is quite simple: click the Spry Menu Bar tab at the top left of the
menu (see Figure 7-4), and press Delete. That’s it—not only is the XHTML removed but so
too are the links to the external JavaScript file and style sheet, as well as the initialization
script at the bottom of the page.

Try it now with horiz.html. Switch to Code view, and you’ll see just the default code for a
blank page. However, if you look in the Files panel, you’ll see that the six dependent files
in the Spry assets folder have not been removed. This ensures that they remain accessible
to other pages that may rely on them.

The links to the external JavaScript file and style sheet are not removed if another instance
of the same widget exists on the page.

Editing a menu bar
Since the menu bar is just a series of nested unordered lists, you can turn off the styles, as
shown in Figure 7-4, and edit the menu directly in Design view. However, it’s much more
convenient to do it in the Property inspector. Place your cursor anywhere inside the menu
bar, and click the Spry Menu Bar tab at the top left to display the menu bar details in the
Property inspector. The following screenshot shows how you might build a menu bar for
stroll.html from the previous chapter:

It’s important to remove menu bars and other widgets cleanly by selecting the Spry
Menu Bar tab and pressing Delete. Otherwise, the widget initialization script remains in
the underlying code and might trigger errors when the page is loaded into a browser.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

188

8598CH07.qxd 6/7/07 4:35 PM Page 188

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The three columns in the center of the Property inspector show the menu hierarchy, with
the top level on the left. When you select an item in this column, the middle one displays
the contents of the related submenu. The right column displays the next level down from
whatever is selected in the middle one.

To edit a menu item, highlight it, and fill in the fields on the right of the Property inspec-
tor as follows:

Text: This is the label that you want to appear on the menu button.

Link: This is the page you want to link to. Either type the file name directly into the
field or click the folder icon to the right of the field to browse to the target page.

Title: This adds a title attribute to the link. Most browsers display this as a tooltip.
It can also improve accessibility for visually impaired people using a screen reader
by describing the link’s destination more fully.

Target: This adds a target attribute to the link. This should normally be used only
with frames. A value of _blank opens the linked page in a new browser window.
Although there are sometimes legitimate reasons for wanting to do so, the practice
is widely frowned upon, so use with care.

To add an item, click the plus (+) button at the top of the relevant column. To delete an
item, select it and click the minus (–) button. You can also change the order of items by
highlighting them and using the up and down arrows at the top of each column.

As the preceding screenshot shows, the Property inspector lets you work on two levels of
submenus. To create a submenu at a deeper level, insert another nested list either by turn-
ing off styles as shown in Figure 7-4 or editing directly in Code view. Two levels of sub-
menus should be sufficient for most purposes. If your menus require more levels, it’s
probably time to rethink the structure of your site.

After editing a menu bar in an existing page, select one of the items in the left column
before moving to another part of the page. If you forget to do this, the submenus remain
exposed in Design view, preventing you from working on the underlying part of the page.

If this happens, position your cursor inside any part of the menu bar, and select the Spry
Menu Bar tab at the top left. This populates the Property inspector with the menu bar
details again. You can then select an item in the left column to hide the submenus.

Maintaining accessibility with the Spry menu bar
The Spry menu bar is much more accessible than the old JavaScript pop-up menus,
because the underlying structure and links are written in XHTML, rather than being
obscured in JavaScript that search engines can’t follow. However, it’s important to realize

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

189

7

8598CH07.qxd 6/7/07 4:35 PM Page 189

http://lib.ommolketab.ir
http//lib.ommolketab.ir

that JavaScript still controls the submenu flyouts. If someone visits your site with JavaScript
disabled or an ancient browser that can’t understand the Spry code, the only parts of the
menu that remain accessible are the top-level items.

This means that you should always link the top-level items to a real page and not just use
dummy links to act as triggers for the submenus. So, for instance, if anyone clicks
Attractions in the menu shown in Figure 7-1, it should link to an introductory page leading
to that section. Unless you do so, some visitors may never be able to get to the pages
about London Eye and so on.

Customizing the styles
Although the color scheme of the default style sheets isn’t exactly inspiring, the structural
layout has been carefully thought out, so you don’t need to change many properties to
achieve a rapid transformation of the menu bar. Open SpryMenuBarHorizontal.css and
SpryMenuBarVertical.css in the Document window. Both are divided into the following
sections:

Layout information: This controls the structure, such as font size and menu widths.

Design information: This styles the color scheme and borders.

Submenu indication: The rules in this section control the display of the arrows that
indicate the existence of a submenu. Change these only if you need to make
adjustments to the submenu arrows.

Browser hacks: These rules deal with bugs in Internet Explorer. You should leave
them alone.

The first thing to note is that both style sheets contain almost identical rules, although the
names of the CSS selectors reflect the orientation of the menu. The horizontal bar uses
the class MenuBarHorizontal, and the vertical one uses MenuBarVertical. There are a few
other things to note:

All the measurements use relative units (ems and percentages).

The width of the horizontal menu is set to auto, but the vertical menu has a fixed
width of 8em.

The width of the menu items in both versions is fixed at 8em; submenus are 8.2em.

Changing the menu width
The use of ems for the width of the menu and submenu items makes the menu bar very
fluid. For a fixed layout, such as that used in stroll.html in the previous chapter, you
need to change all instances of 8em and 8.2em in the Layout Information section to a fixed
width in pixels.

Changing colors
All colors are defined in the Design Information section of the style sheet. Changing them
is simply a matter of substituting the existing hexadecimal numbers for background-color
and color in the relevant style rules. The default colors are light gray (#EEE) for the

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

190

8598CH07.qxd 6/7/07 4:35 PM Page 190

http://lib.ommolketab.ir
http//lib.ommolketab.ir

background and dark gray (#333) for the text of menu items in their normal state, and
navy blue (#33C) for the background and white (#FFF) for the text of items in a rollover
state.

The menu bar uses JavaScript to assign a class dynamically to the links when the mouse
pointer moves over them. For some reason, Adobe has put the selectors for this dynamic
class in a separate style rule, which duplicates the a:hover and a:focus rules like this:

ul.MenuBarHorizontal a:hover, ul.MenuBarHorizontal a:focus
{
background-color: #33C;
color: #FFF;

}
ul.MenuBarHorizontal a.MenuBarItemHover, ul.MenuBarHorizontal
a.MenuBarItemSubmenuHover, ul.MenuBarHorizontal a.MenuBarSubmenuVisible
{
background-color: #33C;
color: #FFF;

}

This makes it difficult to edit the rules in the CSS Styles panel. Since both rules contain the
same properties and values, it’s simpler to combine the selectors like this:

ul.MenuBarHorizontal a:hover, ul.MenuBarHorizontal a:focus,
ul.MenuBarHorizontal a.MenuBarItemHover, ul.MenuBarHorizontal
a.MenuBarItemSubmenuHover, ul.MenuBarHorizontal a.MenuBarSubmenuVisible
{
background-color: #33C;
color: #FFF;

}

Don’t forget to add a comma after a:focus in the first line of the selector. Otherwise, it
won’t work. The rules for the vertical menu bar are identical, except for the class name
MenuBarVertical.

Adding borders
By default, a light gray border is added to the outer edge of the submenu containers in
both the horizontal and vertical menu bars. In addition, the vertical menu bar has the
same border around the entire menu. Change the following rules to alter the menu and
submenu borders:

The Spry menu bar style sheets use hexadecimal shorthand, which uses just three dig-
its instead of six to denote colors. Hexadecimal colors can be shortened when the six-
digit version consists of three pairs in which both numbers are the same. So #FFFFFF
becomes #FFF and #3333CC becomes #33C, but numbers like #3333C0 cannot be
shortened. Using shorthand is a matter of personal preference. It makes no difference
to the way the styles are rendered.

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

191

7

8598CH07.qxd 6/7/07 4:35 PM Page 191

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ul.MenuBarHorizontal ul
ul.MenuBarVertical
ul.MenuBarVertical ul

Individual menu items don’t have any borders, so the menu looks seamless. If you want to
give your menu a more button-like feel, apply a border to the following rules:

ul.MenuBarHorizontal a
ul.MenuBarVertical a

The links in the menu bar are styled to display as a block and have no fixed width.
Consequently, applying a border to the link style has the advantage of surrounding the
individual menu items without affecting either height or width. You’ll see how this is done
when inserting a menu bar into stroll.html.

Changing the font
The font-size property is set to 100% in two separate rules: ul.MenuBarHorizontal and
ul.MenuBarHorizontal li (ul.MenuBarVertical and ul.MenuBarVertical li). Change
the wrong one and you get the mysterious shrinking text shown in Figure 7-6.

Figure 7-6. The text gets progressively smaller if you change
font-size in the li selector.

The style rules that affect the size of the text in the horizontal menu bar are
ul.MenuBarHorizontal and ul.MenuBarHorizontal li. Both of them set font-size to 100%.
The shrinking text in Figure 7-6 was caused by changing font-size in ul.MenuBarHorizontal
li to 85%.

Although this reduces the text in the main menu items to 85 percent of its original size,
the nesting of the submenus results in the first-level submenu being displayed at 85 per-
cent ✕ 85 percent—in other words, 72.25 percent. The second-level submenu is further
reduced by another 85 percent—resulting in 61.4 percent.

To prevent this happening, leave the ul.MenuBar Horizontal li selector at 100%, and
change only the first one. The following rules produce a consistent text size:

ul.MenuBarHorizontal
{
font-size: 85%;

}
ul.MenuBarHorizontal li
{
font-size: 100%;

}

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

192

8598CH07.qxd 6/7/07 4:35 PM Page 192

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The rules for the vertical menu bar are identical, except for the class name
MenuBarVertical.

If you decide to use pixels instead of percentages, it doesn’t matter which rule you change.
You should be aware, however, that using pixels for fonts can cause accessibility problems
for people with poor eyesight. Many designers mistakenly believe that using pixels for font
sizes “locks” their design. It doesn’t, because all browsers—apart from Internet Explorer
for Windows—permit users to adjust font sizes by default, and Internet Explorer’s accessi-
bility features have an option to ignore font sizes. If a change in font size causes your page
to fall apart, you need to rethink your design criteria—fast.

Styling a Spry menu bar
If you’re completely at home editing style sheets in Code view, the preceding sections tell
you all that you need to know about customizing the CSS for a Spry menu bar. The disad-
vantage of working in Code view is that you can’t see how your changes affect the design
and fit in with the rest of your page until you save the style sheet and switch back to the
web page in Design view. So, I’m going to devote the rest of the chapter to showing you
how to customize a Spry menu bar using the CSS Styles panel. Although it involves more
steps than editing the style sheet directly in Code view, working through the next few
pages should give you a much better understanding of how the CSS Styles panel works.

I’m going to show you how to add a horizontal menu bar to stroll.html, the CSS layout
that you styled in the last chapter. You can see the finished menu in Figure 7-1 at the
beginning of this chapter.

To wrap or not to wrap, that is the question . . .
Two common diseases are prevalent in the CSS community: “classitis” and “divitis.” The
first usually afflicts beginners, who style everything with a class, creating a new form of tag
soup little better than tags. Then they learn that ID selectors are more powerful, so
they start wrapping everything in a <div>, cluttering up the page with lots of meaningless
and unnecessary wrapper elements.

I’ve suffered from both diseases in my time, so my first instinct was to use the horizontal
Spry menu bar without a <div>. After all, it’s an unordered list, which is a block element,
and it has its own ID, so it should be possible to drop one into a page without the need for
a wrapper. After much experimentation, though, I discovered that the only reliable way to
insert a horizontal menu bar in a fixed-width design like stroll.html is to wrap it in a
<div> and give the <div> both a width and a height. The height is needed because all the
menu items are floated. Without the fixed size <div>, the design behaves unpredictably in
some browsers. Figure 7-8 later in the chapter shows the sort of problem avoided.

Continue working with your files from the last chapter. Alternatively, copy stroll_horiz_
start.html from examples/ch07 to workfiles/ch07 and stroll_horiz_start.css from

Inserting a <div> for the horizontal menu bar

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

193

7

8598CH07.qxd 6/7/07 4:35 PM Page 193

http://lib.ommolketab.ir
http//lib.ommolketab.ir

examples/styles to your styles folder. Rename the files stroll_horiz.html and
stroll_horiz.css, and update any links when prompted.

1. With stroll_horiz.html open in the Document window, select the Layout tab of
the Insert bar, and click the Insert Div Tag button, as shown here:

2. The Insert Div Tag dialog box lets you specify where the <div> is to be located. It
offers the following options:

At the current insertion point

Before a specific tag

After the start of a tag—in other words, nested inside

Before the end of a tag—again, nested inside just before the closing tag

After a specific tag

Wrapped around the current selection (available only when a section of code is
selected in the Document window)

You need to insert the menu after the header <div>, so select After tag from the
Insert drop-down menu. Dreamweaver automatically populates the drop-down
menu alongside with all elements that have an ID. Select <div id="header"> as
shown here:

Frequently used features are duplicated in several places in Dreamweaver.
Although the Insert Div Tag button is on the Common tab of the Insert bar, the
reason I’m using the Layout tab this time is because it offers access to both
Insert Div Tag and Spry Menu Bar (two buttons further to the right). It’s useful to
get to know the alternative locations of features you use the most.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

194

8598CH07.qxd 6/7/07 4:35 PM Page 194

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Let’s call the new <div> nav. Type nav in the ID field, and click the New CSS Style
button at the bottom of the Insert Div Tag dialog box.

4. Dreamweaver CS3 now populates the New CSS Rule dialog box automatically with
the correct details, selecting the Advanced radio button, naming the selector #nav,
and suggesting defining the rule in the existing style sheet. Click OK to accept.

If more than one style sheet is attached, you can select another from the drop-
down menu. Alternatively, you can create a new style sheet or opt to define the
rule in the <head> of the page.

5. In the CSS Rule Definition dialog box, select the Box category, and set Width to
780px and Height to 2.2em. Click OK to save the rule. This returns you to the Insert
Div Tag dialog box. Click OK again to close it. You should now have a <div> with
some placeholder text inside it just beneath the header, as shown here:

I calculated the height for the nav <div> by adding together the top and bottom padding
(0.5em each) for the links in the menu bar. The font-size is set to 100%, which is the same
as 1em. The extra .2em was needed to make sure everything fits. By using a fixed pixel
width, the menu bar remains snugly inside the container <div>, even if the user increases
the font size. Equally, using relative units for the height ensures that the nav <div>
expands vertically to accommodate enlarged text.

Building the navigation structure
Now that you have created space for it, the next step is to insert the menu bar and create
the links.

When using a vertical menu bar, you can simply drop it into a sidebar, which provides
the necessary wrapper. Unless the sidebar is particularly wide, there is no need for a
separate <div> for the menu itself.

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

195

7

8598CH07.qxd 6/7/07 4:35 PM Page 195

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. You need to get rid of the placeholder text for the nav <div>. Normally, pressing
Delete when the text is highlighted is sufficient. However, it’s a good idea to open
Split view to make sure that it’s only the text between the <div> tags that is
selected, as shown in the following screenshot:

If necessary, go into Code view to adjust the selection and press Delete. Make sure
that your cursor is between the empty <div> tags.

2. Click the Spry Menu Bar button on the Layout tab of the Insert bar, and insert a hor-
izontal menu bar.

3. Save stroll_horiz.html. If you did the other exercises earlier in this chapter,
Dreamweaver won’t prompt you to save dependent files this time, as they have
already been copied to the Spry assets folder. Figures 7-7 and 7-8 show why it was
necessary to give a height to the nav <div>.

Figure 7-7. With a height, the nav <div> maintains the integrity of the page layout.

Inserting and editing the menu bar

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

196

8598CH07.qxd 6/7/07 4:35 PM Page 196

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Giving the nav <div> both a width and a height keeps the structure of the page
intact (see Figure 7-7). If you give it just a width, the nav <div> collapses vertically
and the sidebar attempts to move up into the empty space, as shown in Figure 7-8.

Figure 7-8. The nav <div> needs a height to prevent the sidebar from attempting to float into any
empty space.

4. Select the Spry Menu Bar tab, and edit the menu items as described in “Editing a
menu bar” earlier in the chapter. If you want to follow my structure, here it is:

Home
Food & Drink

Restaurants
Bars

Attractions
London Eye
Aquarium
South Bank

Royal Festival Hall
Hayward Gallery
Tate Modern

Bridges
History

St Paul's Cathedral
Tower of London
Houses of Parliament

In a live website, you need to create links to real pages, but for the purposes of the
example page, I have left the value of each link as # so the menu bar displays cor-
rectly, even though it doesn’t link to other pages.

5. Save stroll_horiz.html, and press F12/Opt+F12 to view the page in a browser. If
you have used the same menu structure as me, you’ll see that a long item, such as
Food & Drink, wraps onto a second line. In Internet Explorer, the sidebar still displays
in its correct position, but in more standards-compliant browsers, such as Firefox
and Opera, the sidebar is pushed across to the right, as shown in Figure 7-9 on the
next page.

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

197

7

8598CH07.qxd 6/7/07 4:35 PM Page 197

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 7-9. Long menu items prevent subsequent floated elements from moving to the left of the
viewport.

6. To rectify this, you need to add a clear: left rule to the sidebar’s style block.
Open the CSS Styles panel in All mode, and expand the stroll_horiz.css tree menu if
necessary. Select .twoColFixLtHdr #sidebar1 in the All Rules pane, and click Add prop-
erty in the Properties pane. Select clear, and then select left as its value. Save the
external style sheet, if necessary, and preview the page in a browser again. This
time the sidebar should be back in its proper place.

Customizing the design
The final stage is to customize the design features of the menu bar to fit the rest of the
page.

1. All style rules exclusive to the menu bar are in SpryMenuBarHorizontal.css in the
Spry assets folder. Since this is common to all horizontal menu bars, it’s a good idea
to give it a different name. Select SpryMenuBarHorizontal.css in the Files panel,
and gently click the file name once to open its name for editing (alternatively, press
F2 or right-click and select Edit ➤ Rename from the context menu). Change the
style sheet’s name to SpryMenuBarHorizontal_stroll.css, and press Enter/Return.

Accept the option to update links when prompted. This updates the link to the
external style sheet in both horiz.html and stroll_horiz.html. Since horiz.html
was only a test page, it doesn’t matter on this occasion, but in a working project,
you need to check which links are being updated.

2. Open stroll_horiz.html in Code view. As explained in the last chapter,
Dreamweaver adds new style sheets immediately before the closing </head> tag.
This puts the styles in SpryMenuBarHorizontal_stroll.css lower in the cascade
than the style rules in the conditional comments. Although nothing is likely to
clash, it’s good practice to cut and paste the link above the conditional comments.
Place it immediately after the link to stroll_horiz.css.

Editing the default selectors

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

198

8598CH07.qxd 6/7/07 4:35 PM Page 198

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Double-click SpryMenuBarHorizontal_stroll.css in the Files panel (it should be
in the Spry assets folder, the default name is SpryAssets) to open it in Code view,
and locate the following section:

4. Insert a comma after a:focus at the end of line 99 in the preceding screenshot,
and delete lines 100–104 (use the line numbers in the screenshot only as a guide;
it’s the code that matters). You should end up with this:

This change makes it possible to edit the rollover colors of the menu bar in the
CSS Styles panel, as explained earlier. Save SpryMenuBarHorizontal_stroll.css,
and close it. I’ll come back to customizing the colors in the next section, but first
let’s sort out the width of the menu and submenus.

The remaining changes to the styles will be made through the CSS Styles panel. With
stroll_horiz.html open in the Document window, click anywhere inside the menu bar,
and open the CSS Styles panel in Current mode. Make sure that the Show cascade of rules
for selected tag icon is selected, as recommended in “Inspecting the cascade in Current
mode” in the last chapter (see Figure 6-5). The menu bar has a lot of style rules, so you
may find it best to collapse all other panels and expand the CSS Styles panel so that you
can see everything without the need to scroll.

The default width of the menu items is 8em, but this is a fixed width design, so you need to
adjust the menu bar to fit. There are five top-level items, and the width of the container
<div> is 780 pixels. A quick calculation reveals that dividing 780 by 5 equals 156. So that’s
the width each item needs to be.

Customizing the menu bar: setting widths

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

199

7

8598CH07.qxd 6/7/07 4:35 PM Page 199

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. The menu bar is a styled unordered list, so the width of each item is controlled by
the element. With your cursor inside the menu bar, select in the Tag
selector at the bottom of the Document window. This highlights the current
element and displays the relevant style rule in the Properties pane of the CSS Styles
panel.

The width property for ul.MenuBarHorizontal li is set to 8em. Click inside the
value field for width. It should change into two drop-down menus like this:

Type 156px into the left drop-down, and press Enter/Return to save the new value.

The menu should now fit neatly across the page, as shown in Figure 7-10. Press F4
to hide the panel groups if you can’t see the full width of the design. To bring the
panel groups back, press F4 again.

Figure 7-10. Giving the elements a fixed pixel width matches the width of the container <div>.

2. The width of the submenus is controlled independently. The default is 8.2em, just a
little wider than the top-level items. Some of my submenu items are long, so I
decided to set the submenu width to 175px. Since the submenus aren’t normally
displayed in Design view, you need to coax one of them out of hiding to work on
the style rules.

The Property inspector at the bottom of the workspace might still display the width as
8em. This is unimportant, as it’s sometimes slow to refresh values changed in an exter-
nal style sheet. The values that matter are those displayed in the CSS Styles panel. If
you toggle F4, the value in the Property inspector will be refreshed.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

200

8598CH07.qxd 6/7/07 4:35 PM Page 200

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following diagram shows how you do it:

3. Now position your cursor inside one of the submenu items in Design view. The
details of the menu bar will disappear from the Property inspector, but that doesn’t
matter. Your interest now lies in selecting the submenu element to edit its
style rule in the CSS Styles panel. The Tag selector at the bottom of the Document
window displays the hierarchy of tags leading to the current selection. As you can
see in Figure 7-11, with the cursor inside one of the submenu items, the hierarchy
of the menu bar runs like this:

<ul.MenuBarHorizontal#MenuBar1> <a>

To access the style rule for the submenu, select the second in the Tag selector.
This reveals the width property as 8.2em, as shown in Figure 7-11. Change this
value to 175px.

Figure 7-11. Accessing the style rule for submenu items

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

201

7

8598CH07.qxd 6/7/07 4:35 PM Page 201

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. The default menu bar adds a light gray border to the submenus, but I’m going to
add a border to each menu item instead, so let’s get rid of the default border.
Select the tag immediately to the left of the currently highlighted tag in the
Tag selector. This selects the whole submenu. As you can see from Figure 7-12, the
Rules pane lists several rules beginning with ul.MenuBarHorizontal. Drag the left col-
umn wider to make it easier to find ul.MenuBarHorizontal ul. This is a descendant
selector that affects all unordered lists nested inside the menu bar—in other
words, all submenus.

There are two rules for ul.MenuBarHorizontal ul. The second one contains the
border property. Select it, select border in the Properties pane, and press Delete or
click the trash can icon at the bottom right of the CSS Styles panel. This leaves an
empty style rule, but that doesn’t matter. You can leave it in case you want to add
different properties later. Of course, you could add a different style border to the
submenus here, if you prefer.

Figure 7-12. Current mode reveals precisely which
rules affect the current selection.

5. Now, this is where a solid understanding of CSS and of how the CSS Styles panel
works in Current mode comes in handy. Take a close look at the Summary for
Selection pane at the top of the panel. It says the width property is 8.2em (see
Figure 7-12). But surely you changed that in step 3! What’s going on?

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

202

8598CH07.qxd 6/7/07 4:35 PM Page 202

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The answer is that the width property for the submenus is set in two places: the
rule for nested list items and the rule for nested lists. The 8.2em you can see now is
the second of these two rules. You need to change it, too.

6. Select the width property highlighted in Figure 7-12. This populates the Properties
pane at the bottom of the CSS Styles panel with the rules for the first of the two
selectors for ul.MenuBarHorizontal ul, as shown here.

Why are there two selectors for ul.MenuBarHorizontal ul? Cast your mind back
to “Customizing the styles” earlier in the chapter. The style sheet for the Spry menu
bar is divided into sections. The rule that you edited in step 4 belongs to the Design
Information section. This rule belongs to the Layout Information section.

Change the width property to 175px.

Keep stroll_horiz.html open, as I’ll show you how to adjust the colors next.

The main colors of the Spry menu bar are controlled in style rules applied to the links.
These instructions assume that you have edited the menu bar style sheet as described in
“Editing the default selectors.”

1. Position your cursor anywhere inside any menu item that doesn’t lead to a sub-
menu. In stroll_horiz.html, this means Home, Bridges, or any ordinary link in a
submenu. The title bar of the Properties pane should read Properties for
"ul.MenuBarHorizontal a:hover... This displays the rollover colors for the menu items.

Change background-color from #33C to #7A85AD (dark mauve) and color from
#FFF to #333 (very dark gray). Don’t forget the hash or pound sign (#) at the begin-
ning of the number. Because these are rollover colors, you won’t see any change in
Design view.

2. In the Rules pane, highlight ul.MenuBarHorizontal a immediately above the currently
selected rule. This displays the rules that apply to all links in the menu bar. Change
background-color from #EEE to #A3AAC6 (a slightly lighter mauve) and color
from #333 to #FFF (white). This time the colors are immediately reflected in Design
view.

Customizing the menu bar: changing colors and fonts

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

203

7

8598CH07.qxd 6/7/07 4:35 PM Page 203

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. To make the links look like buttons, you need to put a border around them. Adding
a lighter color for the top and left borders and a darker one for the right and bot-
tom borders creates the effect of a raised button. A neat way of finding the right
colors is to create a rectangle in a graphics program like Fireworks, give the rec-
tangle the same color as your buttons, and then apply an inner bevel effect. The
following illustration shows how it’s done in Fireworks CS3.

Use an eyedropper tool to find the appropriate colors for the lighter and darker
borders, and make a note of the hexadecimal number.

4. Now add the border to each side of the links by
clicking Add Property and adding the following
properties and values:

border-left: #C4C9DB 1px solid

border-top: #C4C9DB 1px solid

border-right: #565968 1px solid

border-bottom: #565968 1px solid

The values in the CSS Styles panel should now
look like this:

In this case, it’s probably easier to use the eyedropper tool in your graphics program,
but there’s a useful trick if you want to copy the color of an object outside
Dreamweaver. Adjust the size of the Dreamweaver workspace so that you can see the
object, click the Color Picker, and hold down the mouse button. You can then drag
the eyedropper outside Dreamweaver. The Color Picker inside Dreamweaver con-
stantly updates to show the color currently being sampled by the eyedropper. Release
the mouse button when you find the color that you want.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

204

8598CH07.qxd 6/7/07 4:35 PM Page 204

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. There’s just one final change: the font would look better if it were bold and slightly
smaller. As I explained in “Customizing the styles” earlier in the chapter, the place
to change font properties is in the ul.MenuBarHorizontal rule. As you can see
from the preceding screenshot, the ul.MenuBarHorizontal selector is listed in the
Rules pane. Yet if you select it, the font-size property is struck through. This can
be one of the most frustrating aspects of working with the CSS Styles panel in
Current mode, but it’s also one of its most powerful features.

To understand why font-size is struck through, hover your mouse pointer over
the property name. A tooltip should appear, as shown in Figure 7-13, explaining the
effect of the CSS cascade.

Figure 7-13. The CSS Styles panel in Current mode displays
tooltips that explain where a rule is overridden.

Dreamweaver tells you that the property is overridden elsewhere, because Current
mode always reflects the cascade as it affects the current selection in the Document
window. Since your cursor is inside a menu item, the Properties pane doesn’t simply
show you the ul.MenuBarHorizontal rules; it also explains how they are applied to
a menu item. Once you appreciate the subtle ways of how the position of your
cursor affects the display in Current mode, your ability to edit complex style rules
takes a giant leap forward.

6. As Figure 7-6 showed earlier in the chapter,
changing font-size in the wrong rule results
in mysteriously shrinking text. So, to make
sure you edit the correct rule, click
<ul.MenuBarHorizontal#MenuBar1> in the Tag
selector at the bottom of the Document win-
dow. Change the value of font-size to 90%,
click Add Property to add the font-weight
property, and set it to bold, as shown here:

BUILDING SITE NAVIGATION WITH THE SPRY MENU BAR

205

7

8598CH07.qxd 6/7/07 4:35 PM Page 205

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. Test the page in a browser. If you have been using the settings that I recommended
in “Setting your CSS preferences” in Chapter 5, there’s no need to save the style
sheet unless you had it open in the Document window. Otherwise, save it before
viewing the page. You should now have an attractive menu bar as shown in
Figure 7-1 at the beginning of this chapter.

You can check your files against stroll_horiz.html in examples/ch07 and
SpryMenuBarHorizontal_stroll.css in the SpryAssets folder.

Even if the text size is enlarged, the page structure is preserved, and the dark gray rollover
text ensures that spillover text remains reasonably legible. Enlarging the text does disrupt
the original design of the page, but certain trade-offs are inevitable in web design. The
purpose here has been to show you how to customize a Spry menu bar, rather than seek a
definitive answer to accessibility issues.

These instructions have concentrated on customizing a horizontal menu bar, but the
process is exactly the same for a vertical one. The main difference is that you don’t need
to wrap a vertical menu bar in a <div> of its own. However, if you do decide to use a sep-
arate <div>, it shouldn’t have a fixed height. Otherwise, you may run into display problems
if the user enlarges the text in the browser.

A mixed blessing
There’s no doubt that the Spry menu bar is much more accessible and search engine-
friendly than the old Fireworks pop-up menus. However, I’m sure that many noncoders will
find customizing the CSS an uphill struggle. Instead of creating the menu buttons in a
graphic environment and letting the software take care of the coding, much more is left
up to the designer’s individual skill. It’s possible that a third-party developer will create an
extension to simplify the process of changing the colors in a more intuitive way. Alternatively,
it’s an enhancement that the Dreamweaver engineers should certainly consider.

In spite of the extra work involved, the Spry menu bar is an improvement on the old pop-
up menus, which deserve to be consigned to cyber oblivion. Moreover, the CSS skills
required to customize a menu bar are essential for building modern standards-compliant
sites. In my own experience, CSS is not something you can pick up overnight, but once the
various pieces begin to fall together, progress becomes much more rapid. So, if you’re
struggling, keep at it, and it will all come together in the end.

The menu bar is just one of eight Spry widgets new to Dreamweaver CS3. In the next chap-
ter, we’ll look at three more: tabbed panels, the accordion, and collapsible panels.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

206

8598CH07.qxd 6/7/07 4:35 PM Page 206

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 SPRUCING UP CONTENT WITH
SPRY WIDGETS

8598CH08.qxd 6/11/07 5:05 PM Page 209

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A common dilemma with website design is too little space to display all the content that
needs to be on a particular page. Spry widgets to the rescue . . . In common with other
Ajax frameworks, Spry makes it easy to build components—such as accordions and tabbed
and collapsible panels—that slot into a web page and give it a much more dynamic feel.
The Spry Tabbed Panels (see Figure 8-1) and Spry Accordion (see Figure 8-18) are a series
of interlinked panels, in which just one panel is open at a time. Spry Collapsible Panels
work independently, so they can be opened and closed in any combination.

From the user’s point of view, all three are intuitive metaphors that shouldn’t need any
explanation. Equally important, from the developer’s point of view, they are easy to insert
and customize. Dreamweaver CS3 does all the Spry coding for you. All you have to do is
supply the content and skin the components with CSS. If you struggled with the Spry menu
bar in the last chapter, you’ll be pleased to know that the style sheets of these Spry
widgets are a lot simpler to edit.

What this chapter covers

Saving space with tabbed panels, accordions, and collapsible panels

Preserving text formatting with Paste Special

Selecting harmonious colors

Styling user interface widgets

Understanding Spry objects, methods, and properties

Opening and closing panels from hyperlinks

Removing widgets cleanly from a page

In this chapter, I’ll show you how to insert a set of tabbed panels, an accordion, and a
series of collapsible panels in stroll.html, the page that you’ve been using for the past
two chapters (there’s a copy in the download files if you haven’t built it yourself). I’ll also
show you how you can change the way the widgets work by making some simple changes
to the JavaScript inserted by Dreamweaver.

Features common to all Spry widgets
Several features are common to working with all Spry widgets. If you worked through the
last chapter, they should be familiar to you, but it’s worth repeating them here:

Always save your page in a Dreamweaver site before inserting a Spry widget.

After inserting a widget, save the page to link the external JavaScript file and style
sheet, and copy them to the site’s Spry assets folder (see “Setting up for Spry” in
Chapter 4). All instances of a widget in a site share the same files, so they are
copied only when inserting the first instance.

Dreamweaver attaches the widget’s style sheet immediately above the closing
</head> tag. If your page has style rules embedded in conditional comments, move
the link to the style sheet above the conditional comments.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

210

8598CH08.qxd 6/11/07 5:05 PM Page 210

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver inserts a block of JavaScript at the bottom of the page to initialize
the widget when the page loads.

To see the widget’s details in the Property inspector, hover your mouse pointer
over the widget in Design view, and click the tab at the top left of the surrounding
border.

Although tabbed panels, accordions, and collapsible panels are great space savers, the
contents of hidden panels are loaded at the same time as the rest of the page. Don’t put
lots of heavy graphics in these widgets or overuse them on any individual page. The exter-
nal JavaScript file and style sheet for each widget add about 20KB to a page but are stored
in the browser’s cache after loading the first time.

Spry widgets all have methods and properties, which are covered in “Understanding Spry
objects” later in this chapter. The method of removing a Spry widget cleanly is covered at
the end of the chapter.

Building a tabbed interface
Tabbed panels use the common metaphor of tabs at the top of folders in a filing cabinet.
Click the tab, and the associated content is displayed in the panel beneath. It’s a clean, intu-
itive way of storing a lot of content in a relatively small space. The example in Figure 8-1 has
four tabs, so the total space required to display the information is one-fourth of what it
would normally be.

Figure 8-1. Tabbed panels are a familiar website interface that users find easy to use.

SPRUCING UP CONTENT WITH SPRY WIDGETS

211

8

8598CH08.qxd 6/11/07 5:05 PM Page 211

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Spry Tabbed Panels widget has two advantages over older methods of creating tabbed
panels: it takes only the click of a button to insert, and it degrades gracefully in browsers
that have JavaScript turned off or don’t understand the document object model recom-
mended by the World Wide Web Consortium (W3C DOM). If a user with an old browser,
such as Netscape 4, visits your site, the panels expand to display their contents, as illus-
trated in Figure 8-2. Although the second and subsequent tabs are no longer directly
associated with the panels, everything remains visible. The accordion and collapsible
panels expand in a similar way, making all three user interface widgets accessible.

Let’s take a look at the anatomy of a tabbed panels widget.

Examining the structure of the tabbed panels widget
There are three ways to insert a Spry tabbed panels widget: from the Spry tab of the Insert
bar (as shown in the following screenshot), from the Layout tab of the Insert bar, or by
choosing Insert ➤ Spry ➤ Spry Tabbed Panels.

As soon as you choose one of these methods, Dreamweaver inserts a default two-tab
widget (see Figure 8-3) at the current insertion point in the page. Save the page again to
copy the dependent files (SpryTabbedPanels.js and SpryTabbedPanels.css) to the site’s
Spry assets folder.

Figure 8-3. The default tabbed panels widget contains two tabs styled with a neutral gray interface.

Figure 8-2.
The Spry Tabbed Panels widget expands all panels if
the browser cannot interpret the JavaScript.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

212

8598CH08.qxd 6/11/07 5:05 PM Page 212

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The underlying XHTML looks like this:

<div id="TabbedPanels1" class="TabbedPanels">
<ul class="TabbedPanelsTabGroup">
<li class="TabbedPanelsTab" tabindex="0">Tab 1
<li class="TabbedPanelsTab" tabindex="0">Tab 2

<div class="TabbedPanelsContentGroup">
<div class="TabbedPanelsContent">Content 1</div>
<div class="TabbedPanelsContent">Content 2</div>

</div>
</div>

The whole widget is wrapped in a <div>; the tabs are an unordered list, and the panels are
in a nested <div>. Each individual panel is also a <div>, nested one level further down.
The only element that has an ID is the overall wrapper <div>. Dreamweaver automatically
calls the first tabbed panels widget on a page TabbedPanels1, and numbers subsequent
instances TabbedPanels2, and so on. Everything else is controlled by classes. Although
each element has a class assigned to it explicitly in the underlying code, other classes are
generated dynamically by the external JavaScript file. Table 8-1 explains what each class is
for. In common with all user interface widgets, the class names are long, but descriptive.

Table 8-1. The classes used to style the tabbed panels widget

Class Type Purpose

TabbedPanels Explicit Eliminates margin and padding
surrounding the widget and clears
any preceding floats. This class must
always have an explicit width. The
default value is 100% to fill all available
space.

TabbedPanelsTabGroup Explicit Removes margin and padding from
the tabs as a group.

TabbedPanelsTab Explicit Styles the individual tabs. Uses relative
positioning to shift the tabs 1 pixel
down and gives the bottom border
the same color as the top border of
TabbedPanelsContentGroup. This
creates the illusion that the tabs are
being drawn behind the content
panel. Two nonstandard properties
(-moz-user-select and -khtml-user-
select) are set to none to prevent
users from selecting the text in
Firefox, Mozilla, and Konqueror.

Continued

SPRUCING UP CONTENT WITH SPRY WIDGETS

213

8

8598CH08.qxd 6/11/07 5:05 PM Page 213

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 8-1. The classes used to style the tabbed panels widget (continued)

Class Type Purpose

TabbedPanelsTabHover Dynamic Controls the rollover look of the tabs.

TabbedPanelsTabSelected Dynamic Sets the background color and
bottom border of the currently
selected tab to the same as the
TabbedPanelsContentGroup to
create the illusion that the tab is
part of the panel.

TabbedPanelsContentGroup Explicit Ensures that the panels sit beneath
the tabs. Sets the background and
border colors for the panels.

TabbedPanelsContent Explicit Styles the content of an individual
panel. By default, only adds 4px
padding.

TabbedPanelsContentVisible Dynamic Empty style rule that can be used to
give a different style to the currently
visible panel.

Editing a tabbed panels widget
Unlike the Spry menu bar, there’s no option to turn off the styling in Design view. The
Property inspector has only three settings for the tabbed panels widget (see Figure 8-4):
ID, number and order of panels, and the default panel. The Customize this widget link
opens Dreamweaver help at the page listing the style settings.

Figure 8-4. The Property inspector for the tabbed panels widget is very simple.

Sharp-eyed readers will have noticed that the tags contain the tabindex attrib-
ute, which makes the code invalid according to the W3C specifications. Although Spry
generates classes dynamically, Internet Explorer doesn’t support setting tabindex
through JavaScript, so this was the compromise adopted to make it possible to navi-
gate the panels with the Tab key. If W3C validation is vital to you, remove the
tabindex attributes. However, this will make your page less accessible to assistive
technology for the disabled and keyboard users. Occasionally bending the rules like
this makes sense and has no adverse effect in any browser.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

214

8598CH08.qxd 6/11/07 5:05 PM Page 214

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Use the plus (+) and minus (–) buttons to add or remove panels, and the up and down
arrows to reorder them. The name of each panel changes when you edit the tabs in Design
view. The Default panel drop-down menu on the right determines which panel is open
when the page first loads.

There are two ways to open a tab or panel for editing, as follows:

Bring up the details of the widget in the Property inspector, and select the panel
name in the Panels list.

Position your mouse pointer over the right side of the tab until an eye symbol
appears, as shown in Figure 8-5, and click.

The panel is a <div>, so you can insert anything you like: text, images, etc.

Right, roll up your sleeves and insert a tabbed panels widget into stroll.html. To make it
easier to dip into individual chapters, the download files use the version of stroll.html
from Chapter 6 without the Spry menu bar, as it involves fewer dependent files.

1. Copy stroll.html from examples/ch08 to workfiles/ch08 and stroll_final.css
from examples/styles to workfiles/styles. Update links if prompted by
Dreamweaver. Save a copy of stroll.html as stroll_tabbed.html.

2. Scroll down to the end of the first block of text in the mainContent <div> (just
above the Artists at Work heading). Press Enter/Return to insert a new paragraph.
Type Getting There, and convert it to a heading by selecting Heading 2 from the
Format drop-down menu on the left of the Property inspector.

3. With your cursor at the end of the new heading, click the Spry Tabbed Panels
button on the Spry tab of the Insert bar (or use the Layout tab or Insert menu as
described earlier). You should now have a tabbed panels widget in the middle of
the page, as shown in Figure 8-6.

As long as your cursor is at the beginning or end of an existing element when you
insert a widget, Dreamweaver correctly places the widget outside the existing ele-
ment. If your cursor is anywhere else, Dreamweaver splits the existing element by
creating closing and opening tags and inserting the widget between them.

Inserting and editing a tabbed panels widget

Figure 8-5.
Click the eye symbol at the right side of a tab
to reveal its associated panel for editing.

SPRUCING UP CONTENT WITH SPRY WIDGETS

215

8

8598CH08.qxd 6/11/07 5:05 PM Page 215

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8-6. By default, the tabbed panels widget fills the available horizontal space.

4. Save stroll_tabbed.html, and click OK when prompted to copy the dependent
files.

5. Rename SpryTabbedPanel.css in the Spry assets folder as SpryTabbedPanel_
stroll.css, and update the links when prompted. Move the link to
SpryTabbelPanel_stroll.css above the conditional comments in the <head> of
the page. There won’t be any conflicts of style rules, but this is a good habit to
get into.

6. Place your cursor inside the first tab, delete Tab 1, and type Tube.

7. Open getting_there.doc in examples/ch08, and copy the paragraphs labeled Tube
to your clipboard. If you can’t open a Word document, the text is in
getting_there.txt, but Dreamweaver won’t do the automatic formatting in the
next step.

8. Highlight Content 1 in the tabbed panels widget, and press Ctrl+Shift+V/
Shift+Cmd+V or go to Edit ➤ Paste Special. This brings up the dialog box in
Figure 8-7.

Figure 8-7. Paste Special preserves a lot of formatting when
importing text from word processor documents.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

216

8598CH08.qxd 6/11/07 5:05 PM Page 216

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This lets you preserve the original formatting of a word-processed document. It
also has an option to remove extra spacing between paragraphs in Microsoft Word.
Use the settings shown in Figure 8-7 and click OK. The imported text should
replace the placeholder text and be nicely formatted in paragraphs.

If you used the plain text in getting_there.txt, you need to format it manually
as paragraphs with the Format drop-down menu in the Property inspector.
Dreamweaver places a
 tag between the paragraphs, so you need to split
them by pressing Enter/Return and then remove the extra line created by the

 tag.

9. Position your cursor inside the second tab, and rename it Bus.

10. Open the second panel for editing by selecting it in the Property inspector (click
the turquoise tab at the top left of the widget, if necessary) or clicking the eye icon
as shown earlier in Figure 8-5. Copy the Bus paragraphs from getting_there.doc,
and use Paste Special to replace the placeholder text in the second panel.

11. Click the turquoise Spry Tabbed Panels tab at the top left of the widget to bring up
its details in the Property inspector, and click the plus button in the Property
inspector to add two more panels. Rename them Water bus and Oyster Card, and
repeat steps 7 and 8 to replace the placeholder text with copy from
getting_there.doc.

12. With the Oyster Card panel open, insert oystercard.jpg at or near the beginning
of the second paragraph. (You can drag and drop it from the Files panel, use the
Insert Image button on the Common tab of the Insert bar, or go to Insert ➤ Image.)
Enter Oyster Card as the Alternate text when prompted.

13. To make the text wrap around the image, with the image still highlighted, select fltlft
from the Class drop-down menu in the Property inspector.

14. Open the first panel (Tube) for editing, and insert underground.jpg at the begin-
ning of the first paragraph. Set Alternate text to Underground station sign and Class
to fltrt.

15. Save stroll_tabbed.html, and press F12/Opt+F12 to view the page in a browser.
The bottom half of the page should look like Figure 8-8. Click the various tabs to
display the other panels. You’ll see that the height of the panels expands and con-
tracts depending on the amount of content. All content below the tabbed panels is
repositioned according to the height of the selected panel, so you need to be care-
ful when incorporating this widget in a design where the layout needs to be pixel
perfect.

Check your code if necessary with stroll_tabbed.html in examples/ch08. The ver-
sion in the download files contains a link that will be added later, but is otherwise
identical.

SPRUCING UP CONTENT WITH SPRY WIDGETS

217

8

8598CH08.qxd 6/11/07 5:05 PM Page 217

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8-8. Even without customizing the styles, Spry Tabbed Panels look at home in most pages.

The neutral gray styling fits in easily with many designs, so you could leave it as it is.
However, I don’t imagine that you’ll let me get away with that, so let’s restyle the panels.
The bottom of the panels is too close to the following headline, so that needs fixing, too.

Selecting harmonious colors
A good way to find colors to fit your website is to select a dominant image and use the
eyedropper tool of a graphics program, such as Fireworks, to select colors. You can then
use a color wheel to generate color schemes. There’s a free one online at http://labs.
adobe.com/technologies/kuler/.

There’s also a useful little tool inside Dreamweaver that I used to find colors for the
tabbed panels. I decided to use as base colors the pink (#F8F1EB) from the page back-
ground and the russet (#C99466) border down both sides of the container <div>. In a
blank page, I entered the base color in the Text Color field of the Property inspector and
launched the System Color Picker as described in Figure 8-9. By moving the luminosity
slider on the right of the Color panel you can select brighter or darker shades.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

218

8598CH08.qxd 6/11/07 5:05 PM Page 218

http://labs
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8-9. The Dreamweaver System Color Picker can be useful in picking different shades of a
base color.

The Color panel shows color values only in terms of hue, saturation, and luminosity, or red,
green, and blue, but as soon as you click OK, you can copy the hexadecimal equivalent
from the Text Color field of the Property inspector. Table 8-2 lists the colors that I finally
decided on.

Table 8-2. Conversion chart for Dreamweaver defaults and substituted colors

Default color Replacement Applies to

Light gray (#EEE) Light pink (#FAF3ED) Panel background color and
selected tab

Medium gray (#DDD) Darker pink (#F2E1D2) Nonselected tabs

Darker gray (#CCC) Dusky pink (#ECD3BD) Tabs on rollover

Darker gray (#CCC) Light brown (#DFBD9F) Lighter borders

Dark gray (#999) Russet (#C99466) Darker borders

To simplify customization of a Spry widget, make a similar chart of the default colors and
your chosen replacements. You can then go through the style rules quite quickly to make
the substitutions. Dreamweaver uses the same shade of gray for the tabs on rollover and
the lighter borders. I wanted a darker border, so you need to take care when replacing
#CCC. Otherwise, each color is a straight swap.

SPRUCING UP CONTENT WITH SPRY WIDGETS

219

8

8598CH08.qxd 6/11/07 5:05 PM Page 219

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s style the tabbed panels using the color scheme outlined in Table 8-2. Continue work-
ing with stroll_tabbed.html from the previous exercise.

1. As Table 8-1 indicates, several important classes
are generated dynamically, so they don’t show
up in the CSS Styles panel in Current mode.
Open the panel in All mode instead, expand the
SpryTabbedPanels_stroll.css tree menu,
if necessary, and select the first selector
(.TabbedPanels), as shown in Figure 8-10.

Figure 8-10.
The easiest way to restyle a tabbed panels widget

is to go through each selector in turn.

This class controls the horizontal and vertical space around the tabbed panels, as
well as their overall width. As Figure 8-8 shows, there’s no gap between the bottom
of the panel and the following heading. So you need to adjust the margin property.
Click the margin value field, and change 0px to 0px 0px 15px 0px. This adds a 15-
pixel margin on the bottom but leaves the other sides with a 0-pixel margin.

If you want to constrain the width of the panels, this is where you should edit the
width property. Do not delete the width property, as it’s required for the widget to
display correctly in Internet Explorer.

In Chapter 6, I said that it wasn’t necessary to add the unit of measurement after 0. So,
why am I being inconsistent and using it here? During testing, I discovered what must
qualify as one of the most bizarre bugs ever. Using 0 consistently caused Dreamweaver
to crash, and Dreamweaver could not be relaunched until the style sheet was deleted.
This bug is triggered by a style sheet being exactly 8,192 bytes or a multiple thereof. It
affects only Windows, and only if you make the changes in the CSS Styles panel.
Adobe has isolated the problem, and it will be fixed in an updater, so it may have been
resolved by the time you read this. However, since 0px is valid, I suggest that you use
it here, rather than risk a crash.

Styling a tabbed panels widget

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

220

8598CH08.qxd 6/11/07 5:05 PM Page 220

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Move to the next selector (.TabbedPanelsTabGroup). It doesn’t affect background
colors or borders, so move to the next one without making any changes.

3. The third selector (.TabbedPanelsTab) is the most complex. The default settings
are shown in the left screenshot of Figure 8-11.

As Table 8-1 shows, this selector sets the styles for the individual tabs. There’s a
special style for the currently selected tab, so set the background-color property
to darker pink (#F2E1D2).

The color of the border-left property is lighter than the other three borders, so
use light brown (#DFBD9F), and set the others to russet (#C99466).

The default setting for font uses the shorthand version like this:

font: bold 0.7em sans-serif

Since this uses only the generic sans-serif for font-family, it’s a good idea to
change it, but editing shorthand can be tricky. So delete it, and use Add Property
to create separate properties for font-weight, font-size, and font-family.

By the time you have made all the changes, the Properties pane should look like the
right screenshot in Figure 8-11.

Figure 8-11. The default styles for the tabs (left) and styles after
editing (right)

4. Move to the fourth selector (.TabbedPanelsTabHover). This class name is self
explanatory. I want the tabs to be dusky pink on rollover, so change background-
color to #ECD3BD.

Newly added properties are initially displayed at the bottom of the Properties
pane, but when the pane is refreshed, Dreamweaver shows them in alpha-
betical order for ease of editing.

SPRUCING UP CONTENT WITH SPRY WIDGETS

221

8

8598CH08.qxd 6/11/07 5:05 PM Page 221

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. The next selector (.TabbedPanelsTabSelected) is the dynamic class that styles the
currently selected tab. Both background-color and the color of border-bottom
need to be the same as the panel—in other words, light pink (#FAF3ED).

6. The sixth selector (.TabbedPanelsTab a) doesn’t actively affect the widget in its
default state. If you put a dummy link around the text in a tab, this style rule limits
the focus lines around the text, rather than around the entire tab. You can leave it
unchanged and move on to the next selector.

7. The seventh selector (.TabbedPanelsContentGroup) is
the last one that you need to edit. It controls the
background-color property of the panel and the sur-
rounding border. Change the values like this:

8. Press F12/Opt+F12 to preview stroll_tabbed.html in a browser (save the style
sheet if you have been working with it open in the Document window). You now
have a nicely styled set of tabbed panels that blend in better with the design.

9. There’s one further improvement you could make by reducing the size of the text
and adding some horizontal padding to the paragraphs. Position your cursor any-
where inside one of the paragraphs in the tabbed panels widget, and click the New
CSS Rule icon (see alongside) at the bottom right of the CSS Styles panel.

The New CSS Rule dialog box suggests this horrendous dependent selector:

.twoColFixLtHdr #container #mainContent #TabbedPanels1 ➥

.TabbedPanelsContentGroup .TabbedPanelsContent ➥

TabbedPanelsContentVisible p

Apart from the complexity of this selector, TabbedPanelsContentVisible is not
preceded by a period, presumably because it’s dynamically generated. The lack of
the period renders the selector invalid. However, all you need is the following:

.TabbedPanelsContent p

Edit the Selector field in the New CSS Rule dialog box to use this simplified version;
make sure that Define in is set to SpryTabbedPanels_stroll.css, and click OK.

10. In the Type category of the CSS Rule Definition dialog box, set Size to 75%. Then
select the Box category, deselect Same for all in the Padding section, set Right and
Left to 10 pixels, and click OK.

11. Refresh the page in a browser. The contents of the tabbed panels should now look
more compact but with more breathing space on either side. If necessary, compare
your style sheet with SpryTabbedPanels_stroll_horiz.css in the SpryAssets
folder.

As well as opening a panel by clicking its tab, you can open one remotely, as this exercise
shows. Continue working with stroll_tabbed.html from the previous exercise.

Opening a tabbed panel from a link

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

222

8598CH08.qxd 6/11/07 5:05 PM Page 222

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. In Design view, select the tab named Bus in the Property inspector, or click its eye
icon to reveal the panel content.

2. Select the words Oyster Card in the final sentence, and type javascript:; in the Link
field of the Property inspector to create a dummy link.

3. With the words Oyster Card still highlighted, open Split view to reveal the under-
lying code, and position your cursor just before the closing angle bracket of the
<a> tag.

4. Press the spacebar. Code hints should pop up. Type onc, and press Enter/Return
when onclick is highlighted. The link surrounding Oyster Card should now look like
this (with the cursor between the quotes following onclick):

Oyster Card

5. To call one of the Spry methods (functions) on a widget, type the ID of the widget
followed by a period and the name of the method. The ID of this widget is
TabbedPanels1. As soon as you type the period after the ID, Dreamweaver pops up
code hints for the selected widget, showing the available methods (see Figure 8-12).

Figure 8-12. Code hints in Dreamweaver CS3 recognize Spry widgets and
display available functions.

Use your mouse or keyboard arrow keys to select showPanel(elementOrIndex) and
double-click or press Enter/Return. This inserts showPanel followed by an opening
parenthesis. Type 3 followed by a closing parenthesis.

Following JavaScript convention, Spry counts the panels from 0, so 3 represents the
fourth panel (Oyster Card). The Oyster Card link code should now look like this:

Oyster ➥

Card

6. Save stroll_tabbed.html, and reload it in a browser. Select the Bus tab, and click
the Oyster Card link within the displayed panel. The fourth panel should open.

The link to open another panel doesn’t need to be inside the widget; it can be anywhere
in the page. The use of Spry methods is explained further in “Understanding Spry objects”
later in the chapter.

Converting to vertical tabs
If you look at the CSS Styles panel in All mode with stroll_tabbed.html open, you’ll see
four descendant selectors all beginning with .VTabbedPanels at the bottom of the tree
menu for SpryTabbedPanels_stroll.css (see Figure 8-10 earlier). These are a default set

SPRUCING UP CONTENT WITH SPRY WIDGETS

223

8

8598CH08.qxd 6/11/07 5:05 PM Page 223

http://lib.ommolketab.ir
http//lib.ommolketab.ir

of rules that let you change the orientation of a tabbed panels widget. Instead of tabs run-
ning across the top, you can have them running down the left side of the panel. Table 8-3
describes the purpose of each selector.

Table 8-3. Style rules for vertical tabs

Selector Type Notes

.VTabbedPanels Explicit Vertical tabs are displayed in a column.

.TabbedPanelsTabGroup This selector sets the background color,
border, height, and width of the column.
The height (default 20em) needs to be
the same as in .VTabbedPanels
.TabbedPanelsTabGroup. Don’t use a
pixel height unless the panels contain
elements of fixed dimensions, such as
images.

.VTabbedPanels Explicit Works in combination with

.TabbedPanelsTab .TabbedPanelsTab. Overrides top, left,
and right borders, float, and margin. All
other rules, such as background color
and font, are preserved from the
.TabbedPanelsTab class.

.VTabbedPanels Dynamic Overrides the background and bottom

.TabbedPanelsTabSelected border colors of the selected tab. With
horizontal tabs, the bottom border is set
to the same color as the panel to create
the illusion that the tab is part of the
panel, but with vertical tabs, a solid
bottom border is needed.

.VTabbedPanels Explicit Sets the height and width of the

.TabbedPanelsTabGroup panels but inherits the background
color and borders from the
.TabbedPanelsTabGroup class.

These descendant selectors work in conjunction with the classes listed in Table 8-1.
Because basic colors are set in the main classes, this makes it slightly trickier to style verti-
cal tabbed panels if you haven’t already styled the default horizontal widget.

Another problem with vertical tabs is the need to set a height, which must be sufficient to
accommodate the content of the biggest panel. It should be specified in ems so that the
panels can expand if the user increases the size of text in the browser. It is possible to omit
the height to create a flexible layout, but the result doesn’t look as good, as you’ll see
shortly.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

224

8598CH08.qxd 6/11/07 5:05 PM Page 224

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let’s convert the tabbed panels widget in stroll_tabbed.html to use vertical tabs.
Continue working with the same files as in the previous exercise.

1. Click anywhere inside the tabbed panels widget in Design view, and select
<div.TabbedPanels#TabbedPanels1> in the Tag selector at the bottom of the
Document window. This is the main <div> that wraps around the tabbed panels
widget. Right-click and choose Set Class ➤ VTabbedPanels from the context menu,
as shown in Figure 8-13.

Figure 8-13. The first step in converting to vertical tabs is to change the class of the
surrounding <div>.

This changes the class of the <div> from TabbedPanels to VTabbedPanels, and the
widget immediately inherits the default rules for vertical tabs. Because the default
widths (10em + 30em) are too great, the design falls apart completely in Design view.

2. Adjust the width by highlighting the first vertical tab selector (.VTabbedPanels
.TabbedPanelsTabGroup) in the CSS Styles panel. Change the width property from
10em to 20%.

3. Next highlight the final selector (.VTabbedPanels .TabbedPanelsContentGroup),
and change the width property from 30em to 78%. The widget springs back into
shape. Choosing figures that add up to less than 100 percent avoids rounding
errors. To display a web page, the browser needs to convert percentages to whole
pixels. If it rounds up, floated content no longer fits and is pushed down the page,
breaking your design.

Switching the orientation of tabbed panels

SPRUCING UP CONTENT WITH SPRY WIDGETS

225

8

8598CH08.qxd 6/11/07 5:05 PM Page 225

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. The vertical tabs have inherited most of the colors from the original classes, but
you still need to make a couple of adjustments. Highlight the first vertical tab selec-
tor (.VTabbedPanels .TabbedPanelsTabGroup), and change #EEE to light pink
(#FAF3ED). Also change the border colors: #CCC to light brown (#DFBD9F) and
#999 to russet (#C99466). This is the same color scheme as in Table 8-2.

5. Change the colors in .VTabbedPanels .TabbedPanelsTabSelected. Change #EEE
to light pink (#FAF3ED) and #999 to russet (#C99466).

6. Save stroll_tabbed.html and the style sheet, if necessary, and press F12/Opt+F12
to reload the page in your browser. You’ll probably notice two things: the fixed
height makes the first panel (Tube) look rather bare, and there’s hardly any gap
between the bottom of the panel and the following headline. Click the fourth tab
(Oyster Card) and, in a standards-compliant browser at least, you’ll see that the
contents of the panel spill out, as shown in Figure 8-14.

Figure 8-14. The danger with a fixed height is that text might spill out
of the panel.

7. Fixing the gap between the tabbed panel widget and the next headline is easy. Add
the margin-bottom property to the .VTabbedPanels .TabbedPanelsContentGroup
selector, and set its value to 15 pixels.

8. Dealing with the text overspill problem is not so easy. One solution is to change
the height property of the .VTabbedPanels .TabbedPanelsTabGroup and
.VTabbedPanels .TabbedPanelsContentGroup selectors to 23.5em. The problem
with this is that the panels with less content begin to look decidedly empty.

9. The alternative is to remove the height property from both selectors. This causes
each panel to expand or contract according to its contents. However, the back-
ground color of the column of tabs stretches down only as far as the last tab, as
shown in Figure 8-15. You can’t give a background color to the surrounding <div>,
because both the tabs and panels are floated inside, so the <div> itself has no
height.

To revert to horizontal tabs, repeat step 1, changing the class back to
TabbedPanels. Compare your style sheet with SpryTabbedPanels_stroll_both.
css in the SpryAssets folder, if you need to check your own code. It contains the
styles for both horizontal and vertical tabs.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

226

8598CH08.qxd 6/11/07 5:05 PM Page 226

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8-15. Removing the height makes the panels flexible but removes the background from the
tab column.

Avoiding design problems with tabbed panels
As the previous exercise demonstrates, content overspill creates problems with the
panels. You also need to take care with the tabs, because on a horizontal layout, they are
floated left. If you make the labels too long, you might end up with the effect shown in
Figure 8-16.

Figure 8-16. Too much content in the tabs breaks the design.

The result can look even more disastrous if you attempt to constrain the width of the tabs
by setting a width property in the .TabbedPanelsTab class, as Figure 8-17 shows.

Figure 8-17. Setting a fixed width on the tabs leads to even more
unpredictable results.

When using Spry Tabbed Panels, always keep the tab labels short. Don’t try to get them to
fit exactly across the top of the panels, because some visitors are likely to increase the text
size, forcing one or more tabs to drop down in the same way as too much content does in

SPRUCING UP CONTENT WITH SPRY WIDGETS

227

8

8598CH08.qxd 6/11/07 5:05 PM Page 227

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8-16. In this sense, Spry Tabbed Panels aren’t 100 percent bulletproof, but the orig-
inal short labels (Tube, Bus, Water bus, and Oyster Card) don’t cause any problem even
when the largest font size is chosen in Internet Explorer. In Firefox, you need to increase
the text size four times before the last tab slips down. Somebody who needs to make the
text so large is unlikely to be concerned by design aesthetics. Still, if you are worried about
overflow, you might consider adding the following properties to the .TabbedPanelsTab
class:

max-width: /* less than total width divided by number of tabs */
white-space: nowrap;
overflow: hidden;

This keeps all the tabs on one line, regardless of how much the text is enlarged. The dis-
advantage is that the end of the label may be hidden if it’s too long. Web pages cannot be
controlled as rigidly as print, so you need to take into account the need for flexible design.
Alternatively, avoid using design elements such as tabbed panels if you need to maintain
pixel-perfect accuracy in your layout.

Understanding Spry objects
To get the most out of Spry Tabbed Panels, Spry Accordion, and Spry Collapsible Panels,
you need to dive into Code view from time to time, as you did when creating the link to
open the fourth panel. So, let’s pause briefly to consider the technology. Spry widgets are
JavaScript objects. The idea of using objects is that all the complex coding remains locked
away in the object definition, so you need concern yourself only with parts exposed
through the object’s methods and properties. Methods are functions that can be used to
get the object to perform particular actions. For example, “Opening a tabbed panel from a
link” used the showPanel() method of a TabbedPanels object to open a panel. Properties
define the state of an object, such as whether a panel is open or whether the panels have
a fixed height.

When you insert a Spry widget, Dreamweaver initializes the JavaScript object at the bottom
of the page just before the closing </body> tag like this:

<script type="text/javascript">
<!--
var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1");
//-->
</script>
</body>

Of course, the object definitions aren’t literally locked away. You can study them by
opening the external JavaScript file. However, you should never attempt to edit the
JavaScript in the external files unless you really know what you’re doing.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

228

8598CH08.qxd 6/11/07 5:05 PM Page 228

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The line of JavaScript highlighted in bold uses the new keyword to construct a new
TabbedPanels object. The Spry.Widget.TabbedPanels() method is passed just one argu-
ment, the ID of the widget’s wrapper <div>. The var TabbedPanels1 at the beginning of
the line means that the new tabbed panels object is being stored in a JavaScript variable
with the same name as the <div>. The ID and the JavaScript variable don’t need to be the
same, but Dreamweaver adopts this convention to make it easy to use Spry properties and
methods.

Dreamweaver normally handles all the coding for you, but if you want to get more adven-
turous with Spry widgets, you need to know how to pass new properties to the JavaScript
object when it’s initialized. If you change the value of the Default panel in the Property
inspector in stroll_tabbed.html to Water bus, Dreamweaver changes the initialization
code like this:

var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1", ➥

{defaultTab:2});

The second argument enclosed in curly braces lists the name of the property you want to
define, followed by a colon and the value you want to give it. If you want to change more
than one property, separate each property/value pair with a comma like this:

var TabbedPanels1 = new Spry.Widget.TabbedPanels("TabbedPanels1", ➥

{property1:value1, property2:value2, property3:value3});

Technically speaking, this type of construction is an object literal. In other words, the argu-
ment is a JavaScript object in its own right. You can put whitespace around the colons and
insert new lines after the commas for ease of reading. Don’t worry if the terminology
sounds intimidating, you’ll see shortly how a little bit of hand coding makes the Spry
Accordion more flexible.

Using the accordion widget
The Spry Accordion is another convenient way of storing a lot of information in a compact
space. Figure 8-18 shows the same set of travel information as in the tabbed panels dis-
played in a Spry Accordion. Instead of a tab, each panel has an individual title bar. When
the user clicks the title bar of a closed panel, it glides open and simultaneously closes the
panel that was previously open. By default, the panels are a fixed height and automatically
display scrollbars if the content is too big. However, it’s quite simple to change this so that
the panels expand and contract in line with the content.

SPRUCING UP CONTENT WITH SPRY WIDGETS

229

8

8598CH08.qxd 6/11/07 5:05 PM Page 229

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8-18. The accordion widget displays a series of interlinked
panels one at a time.

Examining the structure of an accordion
To insert an accordion widget, click the Spry Accordion button on the Spry tab of the
Insert bar, as shown in the following screenshot. Alternatively, use the Layout tab of
the Insert bar or the main menu: Insert ➤ Spry ➤ Spry Accordion.

Dreamweaver inserts a default two-panel accordion. The layout in Design view is very sim-
ilar to the tabbed panels widget, and you access closed panels for editing in exactly the
same way, by moving your mouse pointer over the right edge of the title bar and clicking
the eye icon, as shown in Figure 8-19.

Figure 8-19. The first accordion panel is open for editing; click the eye icon (bottom right)
to edit the next one.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

230

8598CH08.qxd 6/11/07 5:05 PM Page 230

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The underlying XHTML looks like this:

<div id="Accordion1" class="Accordion" tabindex="0">
<div class="AccordionPanel">
<div class="AccordionPanelTab">Label 1</div>
<div class="AccordionPanelContent">Content 1</div>

</div>
<div class="AccordionPanel">
<div class="AccordionPanelTab">Label 2</div>
<div class="AccordionPanelContent">Content 2</div>

</div>
</div>

It’s a simple structure consisting of a wrapper <div>, inside which each panel is a <div>
with two more nested inside: one each for the title bar and the content panel. Like the
tabbed panels widget, the use of tabindex makes the code technically invalid. Remove it
from the opening <div> tag if W3C validation is a requirement, but doing so will disable
keyboard navigation of the accordion.

All the styles are controlled by classes and descendant selectors, which are described in
Table 8-4. As with Spry Tabbed Panels, some classes are declared explicitly in the XHTML;
others are generated dynamically by JavaScript.

Table 8-4. Style rules for the accordion widget

Selector Type Notes

.Accordion Explicit Sets all borders for the accordion, except
for the top border, which is taken from
the first title bar. Also sets overflow to
hidden to prevent the content of hidden
panels from being displayed. Add the
background-color property to this rule
if you want the panels to be shaded.
By default, accordion widgets expand
horizontally to fill all available space. Add
the width property to this selector to
constrain the space it occupies.

.AccordionPanel Explicit Eliminates padding and margin for each
panel so the accordion displays as a
single unit.

Continued

SPRUCING UP CONTENT WITH SPRY WIDGETS

231

8

8598CH08.qxd 6/11/07 5:05 PM Page 231

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 8-4. Style rules for the accordion widget (continued)

Selector Type Notes

.AccordionPanelTab Explicit Sets the default background color and
border of the title bar of each panel. The
top border of the first title bar becomes
the top border of the whole widget.
Change this rule to style the text in the
title bar. The nonstandard properties
-moz-user-select and -khtml-user-
select prevent users from selecting the
title bar label in Mozilla, Firefox, and
Konqueror browsers.

.AccordionPanelContent Explicit Sets the height and overflow properties
of the open panel. Change these
properties if you want a different or
flexible height. Do not change or delete
the padding property, which is set to 0.
Always add padding or margins to
elements inside the accordion panel,
rather than to the <div> itself.

.AccordionPanelOpen Dynamic Sets the background color of the title

.AccordionPanelTab bar for the currently open tab. However,
this is overridden by later dynamic rules
if the accordion has focus.

.AccordionPanelTabHover Dynamic Sets the background color of the title bar
in rollover state.

.AccordionPanelOpen Dynamic Sets the background color of the title

.AccordionPanelTabHover bar of the currently opened panel when
the mouse rolls over the title bar.

.AccordionFocused Dynamic Sets the background color of the title

.AccordionPanelTab bar of all panels when the accordion has
focus.

.AccordionFocused Dynamic Sets the background color of the title

.AccordionPanelOpen bar of the currently open panel when

.AccordionPanelTab the accordion has focus.

Editing and styling a Spry Accordion
Although the structure of the accordion makes it relatively easy to style, the proliferation
of dynamic classes and selectors can be confusing. It’s easier to understand how they work
through hands-on experimentation. So let’s get to work.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

232

8598CH08.qxd 6/11/07 5:05 PM Page 232

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following exercise is based on stroll.html, which you should have copied to your
workfiles/ch08 folder for the Spry Tabbed Panels exercises earlier in the chapter. If you
don’t have the file, copy stroll.html from examples/ch08 to workfiles/ch08 and
stroll_final.css from examples/style to workfiles/style. Update links if prompted
by Dreamweaver.

1. Open stroll.html in the Document window, and save it as stroll_accordion.
html.

2. Create the new level 2 heading Getting There just above the Artists at Work heading.

3. With your cursor at the end of the new heading, click the Spry Accordion button
on the Spry or Layout tab of the Insert bar. The page should look the same as
Figure 8-6, except there’s an empty accordion widget instead of tabbed panels.

As Figure 8-20 shows, the Property inspector for a Spry Accordion has very few
options (hover your mouse pointer over the accordion in Design view, and click the
Spry Accordion tab at the top left, if the Property inspector is showing something
else). Dreamweaver automatically assigns Accordion1 as the ID of the first accor-
dion in a page and numbers subsequent instances Accordion2 and so on. The
Property inspector displays the ID in the field on the left, where you can change it
if you want. The only other options are to add, remove, and reorder panels using
the plus, minus, and arrow buttons. Clicking Customize this widget opens
Dreamweaver help at the page with details of the style rules that control an
accordion.

Figure 8-20. The Property inspector for a Spry Accordion is mainly for changing the number and
order of panels.

4. Save stroll_accordion.html, and click OK to copy the dependent files.

5. Rename SpryAccordion.css in the Spry assets folder as SpryAccordion_
stroll.css, and update the links when prompted. Since the web page contains
style rules embedded in conditional comments, move the link to SpryAccordion_
stroll.css from just before the closing </head> tag to above the conditional
comments.

6. You edit an accordion in the same way as a tabbed panels widget. The only differ-
ence is that instead of Tab 1, etc., the accordion uses Label 1, etc. Follow steps 6
through 11 of “Inserting and editing a tabbed panels widget” to populate the
accordion with four panels labeled Tube, Bus, Water bus, and Oyster Card.

Inserting the accordion and adding content

SPRUCING UP CONTENT WITH SPRY WIDGETS

233

8

8598CH08.qxd 6/11/07 5:05 PM Page 233

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. When you paste the text into the third and fourth panels, the end appears to be
cut off. This is because the default styles set a height of 200 pixels on the panels
and hide the overflow. To display the accordion content for editing when this hap-
pens, double-click inside one of the panels that have an overflow (sometimes you
need to double-click twice). Alternatively, right-click and select Element View ➤ Full
from the context menu. This expands the whole accordion in Design view.

With the accordion fully expanded, insert underground.jpg in the first panel and
oystercard.jpg in the fourth panel, and apply the fltrt and fltlft classes to
them, respectively (see steps 12–14 of “Inserting and editing a tabbed panels
widget”).

8. To collapse the accordion after editing, press F5, or right-click and select Element
View ➤ Hidden from the context menu.

9. Save stroll_accordion.html, and press F12/Opt+F12 to preview the page in a
browser. You should see the accordion in the middle of the page with the first
panel open, as shown in Figure 8-21. The addition of the image to the first panel
causes it to overflow, so a vertical scrollbar automatically appears inside the panel.

Figure 8-21. The accordion panel automatically displays a scrollbar if
the content doesn’t fit.

10. Use the Tab key to shift focus to the accordion. As soon as it has focus, the color of
the title bars changes from neutral grays to rather ghastly shades of blue. This is the
effect of the last two selectors listed in Table 8-4. We’ll sort out the colors next, but
first press the down arrow on your keyboard. As long as you haven’t removed the
tabindex, the next panel should glide open, closing the previous one behind it.
While the accordion has focus, you can navigate through the panels in sequence
with the up and down keyboard arrows. Alternatively, you can click any title bar to
open a particular panel. Click anywhere outside the accordion and the colors revert
to gray.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

234

8598CH08.qxd 6/11/07 5:05 PM Page 234

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following instructions show you how to change the colors of stroll_accordion.html
from the preceding exercise, but they apply equally to any accordion. Just use your own
colors in place of those suggested here. The color scheme I have used is essentially the
same as in Table 8-2.

1. Open the CSS Styles panel in All mode, and expand the SpryAccordion_stroll.
css tree menu if necessary.

2. Highlight the first selector (.Accordion), and change the color for the border-
bottom and border-left properties from gray to #DFBD9F (light brown). Change
the color for the border-right property from black to #C99466 (russet).

Currently, the panels have no background color, so add the background-color
property, and set it to #FAF3ED (light pink).

3. The second selector (.AccordionPanel) needs no changes, so move to the third
selector (.AccordionPanelTab). As the class name suggests, this styles the tab or
title bar of each panel. Change the background-color property from #CCCCCC to
#F2E1D2 (darker pink). Also change the gray and black border colors in the same
way as in step 2.

This is also where you can make changes to the text in the title bars. Add the fol-
lowing properties and values:

font-family: Geneva, Arial, Helvetica, sans-serif

font-size: 90%

font-weight: bold

color: #555555

The text could also do with a bit of horizontal space, so change the value of the
padding property from 2px to 2px 10px. This gives 2 pixels of padding top and bot-
tom, and 10 pixels on either side.

4. The next color change is to the .AccordionPanelOpen .AccordionPanelTab selec-
tor. Change the background-color property to #F2E1D2 (darker pink).

5. The next selector (.AccordionPanelTabHover) controls the rollover state of the
title bars, but only when the accordion doesn’t have focus. Change the color prop-
erty to a slightly darker gray (#333333). Also add the background-color property,
and set it to #ECD3BD (dusky pink). This keeps the rollover color in harmony with
the rest of the accordion when the focus is elsewhere in the page.

6. Give the next selector (.AccordionPanelOpen .AccordionPanelTabHover) the
same values as in step 5. This makes the rollover colors the same, regardless of
whether the accordion has focus or not.

7. In the final two selectors (.AccordionFocused .AccordionPanelTab and
.AccordionFocused .AccordionPanelOpen .AccordionPanelTab), select the
background-color property, and delete it. This leaves both style rules empty. Of
course, you can apply your own styles to these selectors, but it’s not necessary
unless you need to make a distinction in the way the title bars look depending on
whether the accordion has focus.

Changing the default colors of an accordion

SPRUCING UP CONTENT WITH SPRY WIDGETS

235

8

8598CH08.qxd 6/11/07 5:05 PM Page 235

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. One final change: because you cannot add padding to the AccordionPanelTab
class, it’s a good idea to create a new rule for .AccordionPanelContent p. By this
stage, I expect you should have sufficient experience of creating new style rules,
but select Advanced as the Selector Type, and define it in SpryAccordion_stroll.
css. Set the following properties and values:

font-size: 75%

padding-left: 10 pixels

padding-right: 10 pixels

This makes the text slightly smaller than in the rest of the page, and gives 10 pixels
breathing space on either side of the paragraphs inside the accordion. You can
check your code against SpryAccordion_stroll_done.css in the SpryAssets
folder.

Using the object initialization to change accordion defaults
As Figure 8-20 showed earlier, the Property inspector for an accordion lets you change
only the ID and the number and order of panels. Unlike Spry Tabbed Panels, there’s no
option to select a panel to be displayed by default when the page first loads. What’s more,
changing the default behavior of using fixed-height panels isn’t just a question of tweaking
the style sheet. To make both changes, you need to tweak the object initialization (see
“Understanding Spry objects” earlier in the chapter).

The following instructions continue working with stroll_accordion.html, but apply
equally to any accordion widget.

1. To change the default open panel, open the page in Code view, and scroll down to
the bottom. Locate the following line of code, which initializes the accordion
object:

var Accordion1 = new Spry.Widget.Accordion("Accordion1");

2. Insert your cursor just before the closing parenthesis, and type a comma.
Dreamweaver displays the following code hint:

This code hint tells you that Spry expects the constructor function to take two
arguments: element (the ID of the <div> that houses the accordion) and options.
Because options is highlighted in bold, that’s what Dreamweaver now expects you
to enter. The curly braces remind you that options must be a JavaScript object
literal.

Changing the default open panel

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

236

8598CH08.qxd 6/11/07 5:05 PM Page 236

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Type an opening curly brace. This pops up a second code hint, as shown here:

This shows you some of the available options. Double-click defaultPanel, or use the
down arrow key to select it and press Enter/Return. Dreamweaver inserts
the defaultPanel property followed by a colon ready for you to insert the value.
JavaScript numbers the panels from 0, so to open the third panel, type 2 followed
by a closing curly brace. The code should now look like this:

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{defaultPanel:2});

4. Save stroll_accordion.html, and reload it in a browser. The third panel (Water
bus) should open instead of the first one.

Using a fixed height for an accordion is very useful when you need to keep different parts
of a page in alignment, but the scrollbars tend to look unsightly (only Internet Explorer for
Windows supports the nonstandard CSS properties for styling scrollbars).

Converting an accordion to flexible height involves two stages: editing the CSS and adding
a new property to the Accordion object when it’s initialized.

1. With stroll_accordion.html from the preceding exercise open in the Document
window, open the CSS Styles panel in All mode, expand the SpryAccordion_
stroll.css tree menu if necessary, and select .AccordionPanelContent in the All
Rules pane. Select height in the Properties pane, and press Delete or click the trash
can icon at the bottom right of the panel.

2. Change the value of overflow from auto to hidden. If you leave the overflow prop-
erty set to auto, some longer panels still spawn a scrollbar. You need to set it to
hidden so that only the currently open panel is visible. That takes care of the CSS.
Now you need to tell the Accordion object to use flexible height.

3. Switch to Code view in stroll_accordion.html, and scroll right to the bottom of
the page and locate the code that initializes the Accordion object (see step 1 in the
preceding exercise).

4. If you changed the default open panel in the preceding exercise, amend the con-
structor function like this (new code is in bold):

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{defaultPanel:2, useFixedPanelHeights:false});

Converting an accordion to flexible height

SPRUCING UP CONTENT WITH SPRY WIDGETS

237

8

8598CH08.qxd 6/11/07 5:05 PM Page 237

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you just want to remove the fixed panel heights, amend the code like this:

var Accordion1 = new Spry.Widget.Accordion("Accordion1", ➥

{useFixedPanelHeights: false});

Make sure you don’t omit the comma after "Accordion1".

5. Save stroll_accordion.html, and reload it in your browser. You now have a
flexible-height accordion and no ugly scrollbars.

Opening an accordion panel from a link
With Spry Tabbed Panels, it’s easy to open a specific panel from a link using the
showPanel() method. Spry Accordion works slightly differently. There is an openPanel()
method, but it won’t accept the index number of the panel on its own. The following exer-
cise shows you how get around this.

Continue working with stroll_accordion.html from the previous exercises.

1. Repeat steps 1–4 of “Opening a tabbed panel from a link” earlier in the chapter to
create a dummy link in the second panel and add an onclick attribute to the
<a> tag.

2. With your cursor between the quotes of the onclick attribute, type Accordion1 fol-
lowed by a period. As soon as you type the period, Dreamweaver pops up code
hints of the available methods, as shown in the following screenshot.

Note that there are three methods that target specific panels: openFirstPanel(),
openNextPanel(), and openPreviousPanel(). Although it’s not listed, there’s also
openLastPanel(). Since the details about the Oyster Card are in the last panel, you
can use this. Type openLastPanel(). Because these four methods target specific
panels, you don’t need to add anything between the parentheses.

Using a link to open the fourth panel

The useFixedPanelHeights property isn’t listed in the code hints. This is probably
because it was a late addition to the accordion widget properties. I expect it will be
added in a later version or through the Adobe Updater.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

238

8598CH08.qxd 6/11/07 5:05 PM Page 238

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Save stroll_accordion.html, and load the page into a browser. Open the second
panel, and click the Oyster Card link to open the last panel.

It works, but what happens if you decide to add another panel to the end of the
accordion? You can’t use openLastPanel() any more. Nor is openNextPanel() of
any use, because you want to open the fourth panel from the second. The answer
is to use one of the other methods listed in the code hints: getPanels().

4. Change the value of the onclick attribute like this (new code is in bold):

onclick="var p=Accordion1.getPanels(); Accordion1.openPanel(p[3])"

What this does is create a variable called p that stores a list (an array) of the panels.
You can then refer to the fourth panel as p[3] and pass that reference to
openPanel(). Remember, JavaScript always starts counting from 0, so the reference
needs to be p[3], not p[4], which would indicate the fifth panel if it existed.
You can check your code, if necessary, against stroll_accordion.html in
examples/ch08.

It’s a little more complicated than opening a specific panel in the tabbed panels widget,
but still quite easy. The only thing you need to change in your own code is the number
between the square brackets to indicate the panel you want to open.

Using collapsible panels
The last of the user interface widgets is the Spry Collapsible Panel. You can use collapsible
panels on their own, but when several are used in succession, they look like an accordion.
The difference is that each panel is separately controlled, so they can be all open, all
closed, or any combination in between.

Examining the structure of a collapsible panel
To insert a collapsible panel, click the Spry Collapsible Panel button in the Spry tab of the
Insert bar, as shown in the following screenshot. Alternatively, select the same button in
the Layout tab of the Insert bar or use the menu option: Insert ➤ Spry ➤ Spry Collapsible
Panel.

This inserts a default collapsible panel (see Figure 8-22) at the current insertion point of
the page.

JavaScript is case sensitive. You must use the right combination
of uppercase and lowercase.

SPRUCING UP CONTENT WITH SPRY WIDGETS

239

8

8598CH08.qxd 6/11/07 5:05 PM Page 239

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 8-22. A collapsible panel consists of a single tab and content area.

The underlying XHTML is extremely simple: a <div> for the tab, and another for the con-
tent, both nested in a wrapper <div> like this:

<div id="CollapsiblePanel1" class="CollapsiblePanel">
<div class="CollapsiblePanelTab" tabindex="0">Tab</div>
<div class="CollapsiblePanelContent">Content</div>

</div>

This simple structure makes for equally simple CSS styling. Table 8-5 lists the default selec-
tors. As with the tabbed panels and accordion widgets, the use of tabindex is technically
invalid but is a compromise to make the panels accessible through keyboard navigation.

Table 8-5. Style rules for the collapsible panel widget

Selector Type Notes

.CollapsiblePanel Explicit This zeros margin and padding on the
widget and sets a light-colored border
on the left and bottom and a darker-
colored on the right and top. By
default, collapsible panels expand
horizontally to fill the available space,
so set a width here if required. Set a
background color for the panel here.

.CollapsiblePanelTab Explicit This styles the tab. Only the bottom
border is set, as the top, left, and right
border styles come from the preceding
selector. Change this rule to style the
text in the title bar. The nonstandard
properties -moz-user-select and
-khtml-user-select prevent users
from selecting the title bar label in
Mozilla, Firefox, and Konqueror
browsers.

.CollapsiblePanelContent Explicit This zeros padding and margins. Do not
change or delete the padding property.
Always add padding or margins to
elements inside the panel, rather than
to the <div> itself.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

240

8598CH08.qxd 6/11/07 5:05 PM Page 240

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Selector Type Notes

.CollapsiblePanelTab a Explicit This doesn’t actively affect the widget in
its default state. If you put a dummy
link around the text in a tab, this style
rule limits the focus lines around the
text, rather than around the entire tab.

.CollapsiblePanelOpen Dynamic Sets the background color of the tab

.CollapsiblePanelTab when the panel is open.

.CollapsiblePanelTabHover, Dynamic Sets the background color of the tab in

.CollapsiblePanelOpen rollover state.

.CollapsiblePanelTabHover

.CollapsiblePanelFocused Dynamic Sets the background color of the tab

.CollapsiblePanelTab when the panel has focus.

Editing and styling collapsible panels
When you insert a collapsible panel widget, it’s open by default, ready for editing.
However, since you can have collapsible panels open and closed in any combination, the
options in the Property inspector need a little explanation. As you can see in Figure 8-23,
there are two drop-down menus that are set to Open by default. The first one—labeled
Display—controls whether the content of the collapsible panel is visible in Design view.
The second—labeled Default state—controls whether the panel is open or closed when the
web page first loads.

Figure 8-23. Two settings control the state of a collapsible panel—one for Design view, the other for
the web page.

The Display setting is purely for your convenience when editing the page in Dreamweaver.
If you set Default state to Closed, Dreamweaver sets the contentIsOpen property of the
collapsible panel object to false (see “Understanding Spry objects” earlier in the chapter
for an explanation of properties).

SPRUCING UP CONTENT WITH SPRY WIDGETS

241

8

8598CH08.qxd 6/11/07 5:05 PM Page 241

http://lib.ommolketab.ir
http//lib.ommolketab.ir

An alternative way to close a collapsible panel in Design view is to click the closed eye icon
at the right end of the panel tab as shown here:

You can also open a collapsible panel in Design view using the open eye icon, which the
collapsible panel widget shares in common with tabbed panels and the accordion.

The Enable animation option at the bottom of the Property inspector is checked by default.
If you deselect it, the collapsible panel snaps open and closed, rather than gliding.

If you have more than one collapsible panel on a page, Dreamweaver initializes each one
independently, so you need to set the options individually for each panel. There is no way
of setting global options for all panels on a page.

Since collapsible panels are so similar to the other Spry widgets, I won’t give step-by-step
instructions for inserting and editing them. For this exercise, copy stroll_collapsible_
start.html from examples/ch08, and rename it stroll_collapsible.html in workfiles/
ch08. The external JavaScript file, SpryCollapsiblePanel.js, and style sheet,
SpryCollapsiblePanel_stroll.css, are already in the SpryAssets folder.

1. With stroll_collapsible.html open in the Document window, open the CSS
Styles panel in All mode, and expand the SpryCollapsiblePanel_stroll.css tree
menu. Highlight the first selector (.CollapsiblePanel), and change the colors of
the borders. The left border uses the lighter color (#DFBD9F), while the right and
top borders use the darker color (#C99466).

Currently, the panels have no background color, so add the background-color
property, and set it to #FAF3ED (light pink).

2. Highlight the second selector (.CollapsiblePanelTab). Change the background-
color property to light pink (#FAF3ED), and the color of border-bottom to light
brown (#DFBD9F).

The default styles use shorthand for font, which is hard to edit, so delete the font
property, and add the following styles:

color: #555555

font-family: Geneva, Arial, Helvetica, sans-serif

font-size: 90%

font-weight: bold

3. The next two selectors (.CollapsiblePanelContent and .CollapsiblePanelTab a)
require no changes.

Customizing the styles of collapsible panels

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

242

8598CH08.qxd 6/11/07 5:05 PM Page 242

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. In the fifth selector (.CollapsiblePanelOpen .CollapsiblePanelTab), change
background-color to darker pink (#F2E1D2).

5. Make the same change in the next selector (.CollapsiblePanelTabHover,
.CollapsiblePanelOpen .CollapsiblePanelTabHover). Also add the color prop-
erty, and set it to #333333.

6. In the final selector (.CollapsiblePanelFocused .CollapsiblePanelTab), change
background-color to dusky pink (#ECD3BD).

7. One final change: because you cannot add padding to the CollapsiblePanelTab
class, it’s a good idea to create a new rule for .CollapsiblePanelContent p in the
same way as you did for Spry Accordion. Select Advanced as the Selector Type, and
define it in SpryCollapsiblePanel_stroll.css. Set these properties and values:

font-size: 75%

padding: 5px 10px

margin: 0

You need to control the space around the paragraphs with padding, rather than
margins, to get a similar effect cross-browser.

You can check your code against SpryCollapsiblePanel_stroll_done.css in the
SpryAssets folder.

Opening a collapsible panel from a link
Since each panel works independently, opening one from a link is simply a matter of
applying the open() method to the JavaScript variable that identifies the target panel. As
Figure 8-24 shows, Dreamweaver has initialized four CollapsiblePanel objects at the bot-
tom of stroll_collapsible.html, and the variable that identifies the fourth one is, pre-
dictably enough, CollapsiblePanel4.

Figure 8-24. Each collapsible panel is initialized independently.

Continue working with stroll_collapsible.html from the previous exercise.

1. Repeat steps 1–4 of “Opening a tabbed panel from a link” earlier in the chapter to
create a dummy link in the second panel, and add an onclick attribute to the
<a> tag.

2. With your cursor between the quotes of the onclick attribute, type CollapsiblePanel4
followed by a period. As soon as you type the period, Dreamweaver pops up code
hints of the available methods, as shown in the following screenshot:

Using the open() method on a collapsible panel

SPRUCING UP CONTENT WITH SPRY WIDGETS

243

8

8598CH08.qxd 6/11/07 5:05 PM Page 243

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Double-click open() or use the down arrow key to select it, and press Enter/Return.
That’s it. When clicked in a browser, the Oyster Card link opens the fourth panel.

4. Unlike the accordion, the second panel remains open. If you want to close the sec-
ond panel at the same time as opening the first, change the onclick attribute like
this:

onclick="CollapsiblePanel4.open();CollapsiblePanel2.close()"

Adding the semicolon after a JavaScript command lets you chain two or more
together. You can check your code with stroll_collapsible_done.html in
examples/ch08.

Removing a Spry widget
Removing a Spry widget is very easy: just click the turquoise tab at the top left of the
widget, and press Delete. Dreamweaver removes the object initialization script from
the bottom of the page and, if no other instances of the same widget are on the page, the
links to the external JavaScript file and style sheet. However, if you have renamed the style
sheet (as in the exercises in this chapter), the link to the style sheet isn’t removed.
Dreamweaver removes only style sheets that retain the default name.

While this sounds simple and convenient, it comes with a big downside: removing a widget
also removes all its contents. So, think carefully before pressing Delete. Do you need to
display the contents in some other format? If so, make sure you have a copy before blast-
ing everything to cyber oblivion.

The alternative is to select each part of the widget individually in the Tag selector at the
bottom of the Document window, right-click, and select Set Class ➤ None. If you follow
this route, you should also manually remove the object initialization script from the bot-
tom of the page, as well as the links to the JavaScript file and style sheet (assuming they’re
not required by other widgets).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

244

8598CH08.qxd 6/11/07 5:05 PM Page 244

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Yet more widgets . . .
In addition to the user interface widgets, Dreamweaver CS3 has four more, designed to
improve user experience when entering information into online forms. This is where real
interactivity begins, as online forms are essential for interaction with a database. So, in the
next chapter, I’ll show you how to build an online form to gather user feedback or place
an online order. Then we’ll use the Spry validation widgets to check the user information,
and finally bring PHP into the mix in Chapter 11 by using it to send the form’s contents to
your mailbox.

SPRUCING UP CONTENT WITH SPRY WIDGETS

245

8

8598CH08.qxd 6/11/07 5:05 PM Page 245

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9 BUILDING ONLINE FORMS AND
VALIDATING INPUT

8598CH09.qxd 6/28/07 11:44 AM Page 247

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Online forms are the gateway to the server, and lie at the very heart of working with PHP,
the focus of most of the remaining chapters. You use forms for logging into restricted
pages, registering new users, placing orders with online stores, entering and updating
information in a database, and sending feedback by email. But gateways need protection.

You need to filter out incomplete or wrong information: a form isn’t much use if users for-
get to fill in required fields or enter an impossible phone number. It’s also important to
make sure that user input doesn’t corrupt your database or turn your website into a spam
relay. That’s what input validation is all about—checking that user input is safe and meets
your requirements. This is different from validating your XHTML or CSS against W3C stan-
dards, and it’s much more important because it protects your data.

Validating user input is a theme that will run through much of the rest of this book. In this
chapter, we’ll look at client-side validation with the assistance of Spry. Then, in Chapter 11,
I’ll show you how to process the form and validate its content on the server with PHP.
Server-side validation is more important, because it’s possible for users to evade client-
side filters. Even so, client-side validation is useful for catching errors before a form is
submitted, improving user experience.

What this chapter covers

Creating forms to gather user input

Understanding the difference between GET and POST

Passing information through a hidden form field

Making online forms accessible

Using the Tag Inspector

Using Spry widgets to validate input

Displaying and controlling the number of characters in a text area

Building a simple feedback form
All the components for building forms are on the Forms tab of the Insert bar. They’re also
on the Form submenu of the Insert menu, but for the sake of brevity, I’ll refer only to the
Insert bar in this chapter.

Most form elements use the <input> tag, with their function and look controlled by the
type attribute. The exceptions are the multiline text area, which uses the <textarea> tag,
and drop-down menu and scrollable lists, which use the <select> tag. Dreamweaver han-
dles all the coding for you, but you need to dive into Code view frequently when working
with forms and PHP, so if your knowledge of the tags and attributes is a bit rusty, brush it
up with a good reference book, such as Web Designer’s Reference by Craig Grannell
(friends of ED, ISBN-13: 978-1-59059-430-8).

Choosing the right page type
XHTML contains all the necessary tags to construct a form, but it doesn’t provide any
means to process the form when submitted. For that, you need a server-side solution, such

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

248

8598CH09.qxd 6/28/07 11:44 AM Page 248

http://lib.ommolketab.ir
http//lib.ommolketab.ir

as PHP. In the past, you may have used FormMail or a similar script to send the contents of
a form by email. Such scripts normally reside in a directory called cgi-bin and work
with.html pages. The action attribute in the opening <form> tag tells the form where to
send the contents for processing. It usually looks something like this:

<form id="sendcomments" method="post" action="/cgi-bin/formmail.cgi">

You can do the same with PHP: build the form in an .html page and send the contents to
an external PHP script for processing. However, it’s far more efficient to put the form in a
page with a .php file name extension and use the same page to process the form. This
makes it a lot easier to redisplay the contents with error messages if any problems are
found. So, from now on, we’ll start using PHP pages. Before going any further, you should
have specified a PHP testing server, as described in Chapter 4.

Creating a PHP page
There are several ways to create a PHP page in Dreamweaver, namely:

Select Create New ➤ PHP in the Dreamweaver welcome screen.

Select File ➤ New to open the New Document dialog box, and select Blank Page and
PHP as the Page Type. As Figure 9-1 shows, this offers the same choice of CSS lay-
outs as an HTML page. Click Create when you have made your selection.

Right-click in the Files panel, and select New File. If you have defined a PHP testing
server, Dreamweaver creates a default blank page with a .php file name extension.

Change the file name extension of an existing page to .php in the Files panel or
Save As dialog box.

Figure 9-1. You have access to the same wide range of CSS layouts for a PHP page as for an
HTML one.

BUILDING ONLINE FORMS AND VALIDATING INPUT

249

9

8598CH09.qxd 6/28/07 11:44 AM Page 249

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The file name extension is the only difference between a blank PHP page and an HTML
one. If you switch to Code view, you’ll see the same DOCTYPE declaration and XHTML tags.
The .php extension tells the server to send the page to the PHP engine for processing
before sending it to the browser.

Mixing .php and .html pages in a site
It’s perfectly acceptable to mix .html and .php files in the same site. However, when build-
ing a new site, it’s a good idea to create all pages with a .php extension, even if they don’t
contain dynamic code. That way, you can always add dynamic content to a page without
needing to redirect visitors from an .html page. If you are converting an old site, you can
leave the main home page as a static page, and use it to link to your PHP pages.

A lot of people ask if you can treat .html (or any other file name extension) as PHP. The
answer is yes, but it’s not recommended, because it places an unnecessary burden on the
server and makes the site less portable. Also, reconfiguring Dreamweaver to treat .html
files as PHP is messy and inconvenient.

Inserting a form in a page
It’s time to get to work and build a feedback form. To concentrate on how the form is val-
idated and processed, let’s work in a blank page and keep the styling to a minimum.

The final code for this page is in feedback.php in examples/ch09.

1. Create a new PHP page as described in the previous section, and save it in
workfiles/ch09 as feedback.php. If you use the New Document dialog box, set
Layout to <none>, and make sure no style sheets are listed under Attach CSS file.

2. Add a heading, followed by a short paragraph. Make sure that you’re in Design view
or, if Split view is open, that the focus is in Design view. Inserting a form is com-
pletely different when the focus is in Code view, as explained in “Inserting a form in
Code view” later. With the insertion point at the end of the paragraph, select the
Form button on the Forms tab of the Insert bar. It’s the first item, as shown here:

3. This inserts the opening and closing <form> tags in the underlying code. In Design
view, the form is surrounded by a red dashed line, as shown in the next screenshot:

Building the basic form

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

250

8598CH09.qxd 6/28/07 11:44 AM Page 250

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. The Property inspector displays the form’s settings, as shown here:

Dreamweaver gives forms a generic name followed by a number. This is applied to
both the name and id attributes in the underlying code. If you change the name in
the Property inspector, Dreamweaver also updates the id attribute.

The Action field is where you enter the path of the script that processes the form.
Since this will be a self-processing form, leave the field empty.

The Method menu has three options: Default, GET, and POST. This determines how
the form sends data to the processing script. Leave the setting on POST. I’ll explain
the difference between GET and POST shortly. The confusingly named Default
option removes the method attribute from the <form> tag and should not be used.

You can ignore the Target and Enctype options. Target should normally be used only
with frames, and Dreamweaver automatically selects the correct value for Enctype
if required. The only time it needs a value is for uploading files. Dreamweaver
server behaviors don’t handle file uploads. See my book PHP Solutions: Dynamic
Web Design Made Easy (friends of ED, ISBN-13: 978-1-59059-731-6) for details of
how to do it by hand-coding.

Inserting a form in Code view
If you insert a form in Code view or in Split view with the focus in Code view, Dreamweaver
displays the Tag Editor (see Figure 9-2). This offers the same options as the Property inspec-
tor, but you need to fill in all the details yourself. Inserting a form in Design view is much
more user friendly.

If you try to insert a form element outside the dashed red line, Dreamweaver asks you
if you want to insert a form tag. Unless you want to create two separate forms, this is
normally an indication that your insertion point is in the wrong place. Although you
can have as many forms as you like on a page, each one is treated separately. When a
user clicks a form’s submit button, only information in the same form is processed; all
other forms are ignored.

BUILDING ONLINE FORMS AND VALIDATING INPUT

251

9

8598CH09.qxd 6/28/07 11:44 AM Page 251

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 9-2. The Tag Editor is a less user-friendly way to insert a form.

The Tag Editor selects get as the default value for Method. (GET and POST are case-
insensitive in the XHTML method attribute.) If you enter a value in the Name field,
Dreamweaver inserts the name attribute, even if you’re using a strict DTD, and doesn’t
assign the same value to the id attribute. To insert an ID, you need to select Style
Sheet/Accessibility in the left column, and enter the value manually.

Adding text input elements
Most online forms have fields for users to enter text, either in a single line, such as for a
name, password, or telephone number, or a larger area, where the text spreads over many
lines. Let’s insert a couple of single-line text fields and a text area for comments.

Opinions vary on the best way to lay out a form. A simple way to get everything to line up
is to use a table, but this creates problems for adding accessibility features, such as
<label> tags. The method that I’m going to use is to put each element in a paragraph and
use CSS to tidy up the layout.

Continue working with the form from the preceding exercise.

1. With your insertion point inside the red outline of the form, press Enter/Return.
This inserts two empty paragraphs inside the form. Press your up arrow key once to
return to the first paragraph, and click the Text Field button in the Insert bar, as
shown here:

Inserting text fields and a text area

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

252

8598CH09.qxd 6/28/07 11:44 AM Page 252

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. By default, this launches the Input Tag Accessibility Attributes dialog box (see
Figure 9-3), which has been improved since it was first introduced in Dreamweaver
8. You can now enter an ID for the form element, which is also used for its name
attribute.

Figure 9-3. Dreamweaver makes it easy to build forms that
follow accessibility guidelines.

In the Label field, enter the label that you want to appear next to the form element,
including any punctuation, such as a colon, that you want to appear onscreen.

The Style option lets you choose whether to wrap the <label> tag around the form
element like this:

<label>Name:
<input type="text" name="name" id="name" />
</label>

use the for attribute like this:

<label for="name">Name:</label>
<input type="text" name="name" id="name" />

or have no label at all. This option is sticky, so Dreamweaver remembers whichever
you chose the last time.

The Position option, on the other hand, isn’t sticky. It automatically chooses the rec-
ommended position for a form label. In the case of a text field, this is in front of
the item, but with radio buttons and checkboxes, it’s after the item. You can, how-
ever, override the default choice if you want to.

BUILDING ONLINE FORMS AND VALIDATING INPUT

253

9

8598CH09.qxd 6/28/07 11:44 AM Page 253

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The final two options let you specify an access key and a tab index. Finally, if you
don’t want to use these accessibility features, there’s a link that takes you to the
relevant section of Dreamweaver preferences to prevent this dialog box from
appearing. However, since accessibility is such an important issue in modern web
design, I recommend that you use these attributes as a matter of course.

An important improvement in Dreamweaver CS3 is that the value in the ID field is
assigned to both the id and for attributes. You no longer need to dive into Code
view to adjust the for attribute.

Use the settings in Figure 9-3, and click OK to insert a text field and label in the form.

3. Move your insertion point into the empty paragraph below and insert another text
field. Enter email in the ID field, and Email: in the Label field. Leave the other set-
tings the same as in Figure 9-3, and click OK.

4. Position your cursor after the new text field, and press Enter/Return twice to insert
two more blank paragraphs inside the form.

5. Put your cursor in the first blank paragraph, and click the Text Area button on the
Insert bar, as shown in the following screenshot:

In the Input Tag Accessibility Attributes dialog box, set ID to comments and Label to
Comments:, leave the other settings as before, and click OK.

6. Move into the final blank paragraph, and select Button in the Insert bar as shown:

In the Input Tag Accessibility Attributes dialog box, set ID to send, leave the Label
field empty, select No label tag as Style, and click OK. This inserts a submit button.

7. In the Property inspector, change Value from Submit to Send comments. This
changes the label on the button (press Enter/Return or move the focus out of the
Value field for the change to take effect). Leave Action on the default Submit form.
The form should now look like this in Design view:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

254

8598CH09.qxd 6/28/07 11:44 AM Page 254

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you switch to Code view, the underlying XHTML for the form should look like this:

<form action="" method="post" name="form1" id="form1">
<p>
<label for="name">Name:</label>
<input type="text" name="name" id="name" />

</p>
<p>
<label for="email">Email:</label>
<input type="text" name="email" id="email" />

</p>
<p>
<label for="comments">Comments:</label>
<textarea name="comments" id="comments" cols="45" rows="5"> ➥

</textarea>
</p>
<p>
<input type="submit" name="send" id="send" value="Send comments" />

</p>
</form>

The XHTML 1.0 specification (www.w3.org/TR/xhtml1) lists a number of elements,
including <form>, for which the name attribute has been deprecated. If you select a strict
document type declaration (DTD), Dreamweaver omits the name attribute from the <form>
tag. However, it’s important to realize that this applies only to the opening <form> tag and
not to elements within a form, where name plays a vital role.

Setting properties for text input elements
In the preceding exercise, you inserted two text fields and a text area. A text field permits
user input only on a single line, whereas a text area allows multiple lines of input. The
Property inspector offers almost identical options for both types of text input, and even
lets you convert from one to the other. Figure 9-4 shows the Property inspector for the
Name text field. Notice that Type is set to Single line. In one respect, this is Dreamweaver

The name attribute not only remains valid for <input>, <select>, and <textarea>; PHP
and other scripting languages cannot process data without it. Although the id attrib-
ute is optional, you must use the name attribute for each element you want to be
processed. The name attribute should consist only of alphanumeric characters and the
underscore and should contain no spaces.

If you select Reset form in the Property inspector, this creates a reset button that
clears all user input from the form. However, in Chapter 11, you’ll learn how to pre-
serve user input when a form is submitted with errors. This technique relies on setting
the value attribute of each form element, which prevents Reset form from working
after the form has been submitted.

BUILDING ONLINE FORMS AND VALIDATING INPUT

255

9

8598CH09.qxd 6/28/07 11:44 AM Page 255

http://www.w3.org/TR/xhtml1
http://lib.ommolketab.ir
http//lib.ommolketab.ir

trying to be user friendly by adopting descriptive terms, rather than using the official
attribute names. Unfortunately, if you’re familiar with the correct XHTML terminology, the
labels in the Property inspector can be more confusing than enlightening. Single line is
the equivalent of type="text" in an <input> tag.

Figure 9-4. The Property inspector for a text field lets you convert it into a text area and vice versa.

The Char width option specifies the width of the input field. For a text field, this is the
equivalent of the size attribute, which is measured in characters, so it just takes a number.
I normally use CSS to style the width of input fields, so you can leave this blank.

Max chars sets the maximum number of characters that a field accepts. This sets the
maxlength attribute of a text field. If left blank, no limit is imposed.

If you change Type to Password, the browser obscures anything typed into the field by dis-
playing a series of stars or bullets. It doesn’t encrypt the input but prevents anyone from
seeing it in plain text. This is the equivalent of type="password" in an <input> tag.

Init val lets you specify a default value for the field. It sets the value attribute, which is
optional and normally left blank.

Figure 9-5 shows the Property inspector for the Comments text area. As you can see, it
looks almost identical to Figure 9-4, although Type is set to Multi line and the Wrap option
is no longer grayed out. This time, Type has no direct equivalent in the underlying XHTML.
Selecting Multi line changes the tag from <input> to <textarea>.

The other important differences are that Max chars has changed to Num lines and default
values have been set for Char width and Num lines. These determine the width and height
of the text area by inserting the rows and cols attributes in the opening <textarea> tag.
Previous versions of Dreamweaver didn’t do this, but both attributes are required for valid
XHTML and should be left in, even if you plan to use CSS to set the dimensions of the
text area.

Figure 9-5. When you insert a text area, Dreamweaver gives it a default width and height.

All modern browsers automatically wrap user input in a text area, so you should always
leave Wrap set to Default. Selecting any other option inserts the invalid wrap attribute that
doesn’t work in most browsers. Wrap is likely to be removed from the next version of
Dreamweaver.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

256

8598CH09.qxd 6/28/07 11:44 AM Page 256

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Converting a text field to a text area and vice versa
Although text fields and text areas use completely different tags, Dreamweaver lets you
convert from one type to the other by changing the Type option in the Property inspector.
If you change Type from Single line to Multi line, the <input> tag is replaced by a pair of
<textarea> tags and vice versa. Dreamweaver makes the process seamless by changing or
removing attributes. For example, if you convert a text area to a text field, the cols attri-
bute changes to size, and the rows attribute is deleted.

This is convenient if you change your mind about the design of a form, as it saves deleting
one type of text input field and restarting from scratch. However, you need to remember
to set both Char width and Num lines if converting a single-line field to a text area;
Dreamweaver sets the defaults only when inserting a text area from the Insert bar or menu.

The Password option works only with single-line input. It cannot be used with a text area.

Styling the basic feedback form
The form looks a bit unruly, so let’s give it some basic styling.

With the exception of a single class, all the style rules use type selectors (see “Creating new
style rules” in Chapter 5 for a definition). Rather than using the New CSS Style dialog
box to create them, it’s quicker and easier to type them directly into a new style sheet in
Code view.

1. Create a new style sheet by going to File ➤ New. In the New Document dialog box,
select Blank Page and CSS as the Page Type. Insert the following rules, and save the
page as contact.css in the workfiles/styles folder. (If you don’t want to type
everything yourself, there’s a copy in the examples/styles folder. The version in
the download files contains some extra rules that will be added later.)

body {
background-color:#FFFFFF;
color:#252525;
font-family:Arial, Helvetica, sans-serif;
font-size:100%;
}

h1 {
font-family:Verdana, Arial, Helvetica, sans-serif;
font-size:150%;
}

p {
font-size:85%;
margin:0 0 5px 25px;
max-width: 650px;
}

form {
width:600px;

Styling the form

BUILDING ONLINE FORMS AND VALIDATING INPUT

257

9

8598CH09.qxd 6/28/07 11:44 AM Page 257

http://lib.ommolketab.ir
http//lib.ommolketab.ir

margin:15px auto 10px 20px;
}

label {
display:block;
font-weight:bold;
}

textarea {
width:400px;
height:150px;
}

.textInput {
width:250px;
}

The style rules are very straightforward, mainly setting fonts and controlling the
size and margins of elements. By setting the display property for label to block,
each <label> tag is forced onto a line of its own above the element it refers to.

2. Switch to feedback.php in the Document window, click in a blank area of the page,
and open the Style drop-down menu in the Property inspector. Select Attach Style
Sheet. Browse to contact.css, and attach it to feedback.php. The form should
now look a lot neater.

3. Select the Name text field, and set its class to textInput to set its width to 250 pixels.
Do the same with the Email text field.

4. Save feedback.php, and press F12/Opt+F12 to preview it in a browser. It should
look like Figure 9-6.

Figure 9-6. The basic feedback form is ready for business.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

258

8598CH09.qxd 6/28/07 11:44 AM Page 258

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Understanding the difference between GET and POST
Now that you have a form to work with, this is a good time to see how information is
passed from the form and demonstrate the difference between choosing GET and POST as
the method attribute. With feedback.php displayed in a browser, type anything into the
form, and click the Send comments button. Whatever you typed into the text fields should
disappear. It hasn’t been processed because there’s no script to handle it, but the content
of the text fields hasn’t entirely disappeared. Click the browser’s reload button, and you
should see a warning that the data will be resent if you reload the page.

If the action attribute is empty, the default behavior is to submit the data in the form to
the same page. As the warning indicates, the data has been passed to the page, but since
there’s no script to process it, nothing happens. Processing the data is the subject of
Chapter 11, but let’s take a sneak preview to see the different ways POST and GET submit
the data.

In this exercise, you’ll add a simple PHP conditional statement to display the data trans-
mitted by the POST method. You’ll also see what happens when the form is submitted
using the GET method. Use feedback.php from the preceding exercise. If you just want to
test the code, use feedback_post.php in examples/ch09.

1. Save a copy of feedback.php as feedback_post.php in workfiles/ch09. Open it in
Code view, and scroll to the bottom of the page.

2. Add the following code shown in bold between the closing </form> and </body>
tags:

</form>
<pre>
<?php if ($_POST) {print_r($_POST);} ?>
</pre>
</body>

As soon as you type the underscore after the dol-
lar sign, Dreamweaver pops up a PHP code hint,
as shown in the screenshot alongside. Type p
(uppercase or lowercase—it doesn’t matter), and
press Enter/Return. Dreamweaver completes
$_POST and automatically places an opening
square bracket after it. Delete the square bracket.
$_POST is a PHP superglobal array, which is created automatically. As the name sug-
gests, it contains data sent by the POST method. (The role of superglobal arrays is
explained in Chapter 11.)

Don’t worry about the meaning of the PHP code. Just accept it for the moment,
and concentrate on what it does.

3. Save the page, and load it into a browser. Enter some text in the form, and click
Send comments. This time, you should see the value of each field identified by its
name attribute displayed at the bottom of the page as in Figure 9-7.

Examining the data submitted by a form

BUILDING ONLINE FORMS AND VALIDATING INPUT

259

9

8598CH09.qxd 6/28/07 11:44 AM Page 259

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The values gathered by the $_POST array contain not only the information entered
into the text fields but also the label of the submit button.

4. Change the value of method in the opening <form> tag from post to get like this:

<form action="" method="get" name="form1" id="form1">

5. Save the page, and display it again in the browser by clicking inside the address bar
and pressing Enter/Return. Don’t use the reload button, because you don’t want to
resend the POST data.

6. Type anything into the form, and click Send comments. This time, nothing will be
displayed below the form, but the contents of the form fields will be appended to
the URL, as shown in Figure 9-8. Again, each value is identified by its name attribute.

Figure 9-8. Data sent using the GET method is appended to the URL as a series of name/value pairs.

As you have just seen, the GET method sends your data in a very exposed way, making it
vulnerable to alteration. Also, some browsers limit the maximum length of a URL, so it can
be used only for small amounts of data. The POST method is more secure and can be used
for much larger amounts of data. By default, PHP permits up to 8MB of POST data,
although hosting companies may set a smaller limit.

Because of these advantages, you should normally use the POST method with forms. The
GET method is used mainly in conjunction with database searches and has the advantage
that you can bookmark a search result because all the data is in the URL.

Passing information through a hidden field
Frequently, you need to pass information to a script without displaying it in the browser.
For example, a form used to update a database record needs to pass the record’s ID to the
update script. You can store the information in what’s called a hidden field.

Although the POST method is more secure than GET, you shouldn’t assume that it’s 100
percent safe. For secure transmission, you need to use encryption or the Secure
Sockets Layer (SSL).

Figure 9-7.
The PHP $_POST superglobal array contains
the data submitted from the form.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

260

8598CH09.qxd 6/28/07 11:44 AM Page 260

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although you don’t need a hidden field in this feedback form, let’s put one in to see how
it works. Hidden fields play an important role in later chapters. Continue working with
feedback_post.php from the preceding exercise. The finished code is in feedback_
hidden.php.

1. Set the value of method back to post. Do this in Code view or by selecting the form
in Design view and setting Method to POST in the Property inspector.

2. A hidden field isn’t displayed, so it doesn’t matter where you locate it, as long as it’s
inside the form. However, it’s normal practice to put hidden fields at the bottom of
a form. Switch back to Design view, and click to the right of the Send comments
button.

3. Click the Hidden Field button on the Insert bar, as shown here:

4. Dreamweaver inserts a hidden field icon alongside the Send comments button.
Type a name for the hidden field in the left text field in the Property inspector and
the value you want it to contain in the Value field, as shown in Figure 9-9.

Figure 9-9. Select a hidden field’s icon in Design view to edit
its name and value in the Property inspector.

Note that the PHP script at the bottom of the page is indicated by a gold PHP icon.
If you can’t see the hidden field or PHP icons in Design view, select View ➤ Visual
Aids ➤ Invisible Elements.

The option on the View menu controls the display of invisible elements only on the
current page. To change the default, open the Preferences panel from the Edit menu
(Dreamweaver menu in a Mac), and select the Invisible Elements category. Make sure
there’s a check mark alongside Hidden form fields and Visual Server Markup Tags, and
then click OK. The Visual Aids submenu is useful for turning off the display of various
tools when they get in the way of the design of a page. You can toggle currently
selected visual aids on and off with the keyboard shortcut Ctrl+Shift+I/Shift+Cmd+I.

Adding a hidden field

BUILDING ONLINE FORMS AND VALIDATING INPUT

261

9

8598CH09.qxd 6/28/07 11:44 AM Page 261

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Switch to Code view. You’ll see that Dreamweaver has inserted the following code
at the end of the form:

<input name="secret" type="hidden" id="secret" value="Guess what?" />

6. Save feedback_post.php, and press F12/Opt+F12 to load the page in a browser (or
use feedback_hidden.php in examples/ch09). The hidden field should be, well . . .
hidden. Right-click to view the page’s source code. The hidden field and its value
are clearly visible. Test the form by entering some text and clicking Send comments.
The value of secret should be displayed with the rest of the form input.

Just because a hidden field isn’t displayed in a form doesn’t mean that it really is hidden.
Frequently, the value of a hidden field is set dynamically, and the field is simply a device
for passing information from one page to another. Never use a hidden field for informa-
tion that you genuinely want to keep secret.

Using multiple-choice form elements
Useful though text input is, you have no control over what’s entered in the form. People
spell things wrong or enter inappropriate answers. There’s no point in a customer ordering
a yellow T-shirt when the only colors available are white and black. Multiple-choice form
elements leave the user in no doubt what the options are, and you get answers in the for-
mat you want.

Web forms have four multiple-choice elements, as follows:

Radio buttons: These are often used in an either/or situation, such as male or
female and yes or no, but there’s no limit to the number of radio buttons that can
be used in a group. However, only one option can be chosen.

Checkboxes: These let the user select several options or none at all. They’re useful
for indicating the user’s interests, ordering optional accessories, and so on.

Drop-down menus: Like radio buttons, these allow only one choice, but are more
compact and user-friendly when more than three or four options are available.

Multiple-choice lists: Like checkboxes, these permit several options to be chosen,
but present them as a scrolling list. Often, the need to scroll back and forth to see
all the options makes this the least user-friendly way of presenting a multiple
choice.

Let’s add them to the basic feedback form to see how they work.

Offering a range of choices with checkboxes
There are two schools of thought about the best way to use checkboxes. One is to give
each checkbox a different name; the other is to give the same name to all checkboxes in
the same group. My preference is to use the second method, as it makes it easy to identify
selected checkboxes as related to each other. Unfortunately, Dreamweaver uses the same
values for the id and name attributes of form elements. An ID must always be unique, so
you need to adjust the name attribute of each checkbox in Code view after creating the
individual checkboxes.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

262

8598CH09.qxd 6/28/07 11:44 AM Page 262

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Laying out a group of checkboxes in an attractive and accessible manner is quite tricky. I
have decided to organize five checkboxes in two columns using a floated <div> for each
column. Continue working with feedback_post.php from the preceding exercise.
Alternatively, copy feedback_multi_start.php from examples/ch09 to workfiles/ch09.
The finished code for this exercise is in feedback_checkbox.php.

1. Save the page as feedback_checkbox.php in workfiles/ch09.

2. With the page open in Design view, click immediately to the right of the Comments
text area. Press Enter/Return to insert a new paragraph.

3. Each checkbox has its own label, so you need a heading for the checkbox group
that uses the same font size and weight as the <label> tags.

Click the Bold button in the Property inspector (the large B just to the right of the
CSS button). Although the tooltip says Bold, this inserts the tag in accor-
dance with current standards, rather than the presentational tag. Type a head-
ing for the checkbox group. I used What aspects of London most interest you? Click
the Bold tag again to move the cursor outside the closing tag in the
underlying code.

4. Checkboxes usually have short labels, so it’s often a good idea to display them in
columns. You could use a table, but I’m going to use a couple of <div> tags instead.
They’ll be floated left, so you need to create a style rule for them, but you can do
this at the same time as inserting the first <div>. The same rule will be used for
both checkboxes and radio buttons, so I’ve called the class chkRad.

With your insertion point at the end of the paragraph you entered in step 3, click
the Insert Div Tag button on the Common tab of the Insert bar or use Insert ➤ Layout
Objects ➤ Div Tag. In the Insert Div Tag dialog box, set Insert to At insertion point, and
type chkRad (without a leading period) in the Class field.

If you’re using contact.css from the download files, the chkRad class is already
defined in the style sheet, so click OK, and skip to step 6.

If you created your own version of contact.css, click the New CSS Style button in
the Insert Div Tag dialog box.

5. The New CSS Style dialog box should select the correct options, as shown here:

Inserting a group of checkboxes

BUILDING ONLINE FORMS AND VALIDATING INPUT

263

9

8598CH09.qxd 6/28/07 11:44 AM Page 263

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Click OK to open the CSS Rule Definition dialog box, and select the Box category.
Set Float to left. Deselect Same for all under Margin, and set Bottom to 8 pixels and
Left to 30 pixels. Click OK twice to close both dialog boxes.

6. You should now have a new <div> with some placeholder text in it like this:

Don’t worry about the button floating up alongside the <div>. We’ll fix that soon.

Press Delete to remove the placeholder text, followed by Return/Enter twice to
create three empty paragraphs in the <div>. Use the up keyboard arrow to move
into the first one, and click the Checkbox button on the Forms tab of the Insert bar,
as shown here:

7. Use the settings shown alongside in the
Input Tag Accessibility Attributes dialog box.

This inserts the label in the recommended
position after the checkbox.

When you click OK, you’ll see that the
label is on a new line beneath the check-
box. This is because the style rule for labels
in contact.css sets the display property
to block. Before going any further, let’s
sort out the style rules.

8. The form needs three new style rules, so
it’s quicker to open contact.css in the
Document window and add the following rules at the bottom of the page:

.chkRad label {
display:inline;
}

.clearIt {
clear:both;

There’s an inconsistency in the way that Dreamweaver expects you to specify the
name of a class. The New CSS Rule dialog box correctly identifies the class name and
automatically adds a period in front of it only if you omit the period in the Insert Div
Tag dialog box. If you use a period in the Insert Div Tag dialog box, the Name field
remains blank when the New CSS Rule dialog box opens.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

264

8598CH09.qxd 6/28/07 11:44 AM Page 264

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}
select {
margin:5px 0 8px 30px;
}

The first rule resets <label> elements to display inline when a descendant of the
chkRad class. The .clearIt selector uses the clear property, which prevents other
elements from moving up into empty space alongside a floated element. By setting
the value of clear to both, this works with both left-floated and right-floated ele-
ments. The final rule puts a 5px top margin, an 8px bottom margin, and a 30px left
margin on <select> elements, so that they line up with the chkRad class.

9. Save contact.css, and close it. The label should now be alongside the checkbox,
but the Send comments button is still causing a problem. Select the button, and
right-click the <p> tag in the Tag selector at the bottom of the Document window.
Select Set Class ➤ clearIt from the context menu, as shown here:

10. With the layout sorted out, you can finish the first checkbox. It needs a value that
will be sent to the PHP script if a user selects the checkbox. Click the checkbox in
Design view to bring up its details in the Property inspector, and set Checked value
to Classical concerts. Leave Initial state at the default Unchecked, as shown here:

BUILDING ONLINE FORMS AND VALIDATING INPUT

265

9

8598CH09.qxd 6/28/07 11:44 AM Page 265

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11. Insert two more checkboxes in the second and third paragraphs that you created
inside the <div> in step 6. Give them the following settings:

ID: interestsRock

Label: Rock/pop events

Checked value: Rock/pop

ID: interestsDrama

Label: Drama

Checked value: Drama

12. The second column of checkboxes needs to be another <div> immediately after
the existing one. Because the existing <div> uses a class, rather than an ID, you
need to position your cursor manually at the insertion point. Although you could
dive into Code view to do this, it’s easy enough in Design view.

Click anywhere inside the <div> that contains
the checkboxes, and click <div.chkRad> in the
Tag selector at the bottom of the Document
window to select the whole <div>, as shown
alongside. Press your right keyboard arrow
once. The insertion point is now immediately
outside the closing </div> tag ready for you to
insert the new <div>.

You can now insert a new <div> (Insert ➤ Layout Objects ➤ Div Tag or use the
Common tab of the Insert bar). In the Insert Div Tag dialog box, make sure Insert is
set to At insertion point, and set Class to chkRad (you can select it from the Class
drop-down menu because it was defined in the style sheet earlier).

13. When you click OK, Dreamweaver inserts the <div> with placeholder text along-
side the existing checkboxes in the right position for a second column, as shown
here:

Press Delete followed by Enter/Return to remove the placeholder text and create
two empty paragraphs. Insert two more checkboxes in them, using the following
settings:

ID: interestsWalks

Label: Guided walks

Checked value: Guided walks

ID: interestsArt

Label: Art

Checked value: Art

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

266

8598CH09.qxd 6/28/07 11:44 AM Page 266

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14. Just one more thing: adjust the name attributes of the checkboxes so that PHP knows
to treat them as a group. Open Code view. Each checkbox should look like this:

<p>
<input name="interestsClassical" type="checkbox" ➥

id="interestsClassical" value="Classical concerts" />
<label for="interestsClassical">Classical concerts</label>

</p>

Change the name attribute of all five checkboxes like this:

<input name="interests[]" type="checkbox" id="interestsClassical" ➥

value="Classical concerts" />

The empty square brackets tell PHP to treat this group as an array (or a list of related
values). Make sure there is no space between interests and the square brackets.

15. Save the page, and load it into a browser. Select some of the checkboxes, and click
the Send comments button. The checked values should appear at the bottom of
the page. Try it with no boxes checked. This time, interests isn’t listed.

If you think that was rather fiddly, you’re right. Building a checkbox group isn’t as easy as
it might be, since each ID must be unique, but the whole group must share the same
name. You can’t change the name attributes in the Property inspector, because
Dreamweaver automatically links both values together. You’ll be relieved to know that
other multiple-choice form elements are easier to handle.

Offering a single choice from a drop-down menu
Drop-down menus and multiple-choice lists both use the XHMTL <select> tag, with each
individual item in an <option> tag. Apart from two attributes in the opening <select> tag,
their underlying structure is identical, so Dreamweaver uses the same tools to insert and
configure them. First, let’s take a look at a single-choice menu. The following instructions
show you how to add one to the feedback form.

Continue working with the form from the preceding exercise or copy feedback_checkbox.
php from examples/ch09 to workfiles/ch09. The finished code is in feedback_select.php.

1. Save feedback_checkbox.php as feedback_select.php.

2. To insert the drop-down menu after the checkboxes, insert your cursor anywhere
in the second checkbox <div> in Design view, click <div.chkRad> in the Tag selector
at the bottom of the Document window, and press your right keyboard arrow once
to move the insertion point outside the closing </div> tag.

This is the same technique as in step 12 of the preceding section. Selecting an element
in the Tag selector and pressing the right arrow key once is a quick and accurate way
of moving the insertion point to immediately after the closing tag of an element. If
you want to move the insertion point to immediately before the opening tag, press
the left arrow key once instead.

Inserting and configuring a drop-down menu

BUILDING ONLINE FORMS AND VALIDATING INPUT

267

9

8598CH09.qxd 6/28/07 11:44 AM Page 267

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Press Enter/Return to insert a paragraph. The cursor will appear not to move
because the <div> that contains the checkboxes is floated. So right-click the <p>
tag in the Tag selector, and choose Set Class ➤ clearIt from the context menu.

4. The paragraph is now in the right place for you to insert a drop-down menu by
clicking the List/Menu button on the Forms tab of the Insert bar, as shown here:

5. Enter the following settings in the Input Tag Accessibility Attributes dialog box:

ID: visited

Label: How often have you been to London?

Style: Attach label tag using ‘for’ attribute

Position: Before form item (Dreamweaver selects this automatically)

6. When you click OK, Dreamweaver inserts the label and a blank menu element in
Design view. Click the menu element to select it and display its details in the
Property inspector, as shown in the following screenshot:

Type is set by default to Menu, which builds a single-choice drop-down menu. The
List option creates a scrolling list. You’ll see how that works in the next section.

7. To populate the menu, click the List Values button in the Property inspector. This
opens the List Values dialog box, as shown in the following screenshot. Item Label is
what you want to be shown in the menu, and Value is the data you want to be sent
if the item is selected when the form is submitted.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

268

8598CH09.qxd 6/28/07 11:44 AM Page 268

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The easiest way to fill in the dialog box is to tab between the fields. Tabbing from
the Value field creates the next item. You can also click inside an existing field to
edit it. Use the minus (–) button to delete a selected item, and the up and down
arrows to reorder the list. Click OK when you are finished.

8. Dreamweaver normally displays the longest label in Design view. To specify the one
you want to be displayed when the form first loads, select it in the Initially selected
field in the Property inspector. This adds selected="selected" to the <option>
tag.

By default, browsers show the first item in the menu if you don’t set the Initially
selected field. However, it’s often useful to select an item that’s lower down the list.
For example, you may want to display a list of countries in alphabetical order, but
if most of your visitors are from the United States, it’s a courtesy to display that by
default rather than forcing them to scroll all the way down the list to select it.

9. Save feedback_select.php, and load it in a browser. Select a menu item, and click
Send comments. The value should be displayed as visited at the bottom of the
page.

If you did the same as me in step 7 and left the Value field blank for the first item,
the contents of Item Label are displayed when you submit the form with the first
item selected. This is because Dreamweaver omits the value attribute from the
<option> tag. To get around this, always set an explicit value in the List Values dia-
log box, or go into Code view and add value="" in the code like this:

<option value="" selected="selected">-- Select one --</option>

I clicked the List Values button in the Property inspector to edit the first item and
set the Value field to 0. It doesn’t really matter what value you use. The important
thing when designing a form is to know what values to expect when the form is
submitted.

Creating a multiple-choice scrollable list
The way you build a multiple-choice list is almost identical to a drop-down menu. It
involves only a couple more steps to set the size and multiple attributes in the opening
<select> tag. Strictly speaking, the multiple attribute is optional. If it’s omitted, the user
can select only a single item.

You could convert the menu from the preceding section by changing Type from Menu to
List in the Property inspector. However, the way you process data from a multiple-choice
list is different, so let’s add a separate list to the same form.

The value attribute of the <option> tag is optional and needs to be set only if you
want the label and the data to be different (www.w3.org/TR/html4/interact/forms.
html#edef-OPTION).

BUILDING ONLINE FORMS AND VALIDATING INPUT

269

9

8598CH09.qxd 6/28/07 11:44 AM Page 269

http://www.w3.org/TR/html4/interact/forms.html#edef-OPTION
http://www.w3.org/TR/html4/interact/forms.html#edef-OPTION
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Continue working with the form from the preceding exercise, or copy feedback_
select.php from examples/ch09 to workfiles/ch09. The finished code is in feedback_
multiselect.php.

1. Save feedback_select.php as feedback_multiselect.php.

2. In Design view, click immediately to the right of the drop-down menu you inserted
in the previous exercise, and press Enter/Return to insert a new paragraph. Because
the clearIt class was applied to the preceding paragraph, Dreamweaver applies
the same class to the new paragraph. Leaving it does no harm, but you don’t really
need it either, so reset Style to None in the Property inspector.

3. Click the List/Menu button on the Forms tab of the Insert bar.

4. Enter the following settings in the Input Tag Accessibility Attributes dialog box:

ID: views

Label: What image do you have of London?

Style: Attach label tag using ‘for’ attribute

Position: Before form item (Dreamweaver selects this automatically)

5. When you click OK, Dreamweaver inserts a blank drop-down menu into the page in
the same way as in step 6 of the preceding exercise. Select the menu element in
Design view to display its details in the Property inspector.

Change Type to List. This activates the Height and Selections options. These are
more examples of Dreamweaver’s attempt at user-friendly names instead of using
the XHTML attributes. Height sets the size attribute, which determines the number
of items visible in the list; the browser automatically adds a vertical scrollbar.
Change the value to 6, and put a check mark in the Selections checkbox to permit
multiple choices. This adds multiple="multiple" in the <select> tag. The menu is
converted into a tall, narrow rectangle, as shown here:

6. Click the List Values button to enter the labels and data values the same as for a
drop-down menu. Leave Value blank if you want the data sent by the form to be
the same as the label. The following screenshot shows the first five values I used:

Inserting and configuring a scrollable list

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

270

8598CH09.qxd 6/28/07 11:44 AM Page 270

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I set the sixth Item Label to A transport nightmare, and its Value to Transport nightmare.

7. Save the page, and load it into a browser. Select several items in the list (holding
down the Shift or Ctrl/Cmd key while clicking), and click the Send comments
button.

Uh, oh . . . something’s wrong. Only the last selected item appears at the bottom of
the page. To get all items, you need to use an array in the same way as with the
checkbox group by appending a pair of square brackets to the end of the name
attribute. Fortunately, this time, there’s only one name attribute to change.

The problem with the Property inspector is that it uses the same field for the name
and id attributes. If you add the square brackets to views in the Property inspector,
it affects both name and id. You could dive into Code view to fix the problem, but
let me show you another way—using the Tag Inspector.

8. Make sure the list is selected in Design view, and
open the Tag Inspector (F9/Shift+Opt+F9 or
Window ➤ Tag Inspector). If the Behaviors panel is
displayed, click the Attributes tab to reveal the
Attributes panel. This gives you direct access to
the attributes of the element currently selected
in the Document window. It has two views: listing
attributes by category or in alphabetical order.

Expand the General and CSS/Accessibility cate-
gories in category view to reveal the name and id
attributes. Click inside the name field to add a
pair of square brackets after views, as shown in
the following screenshot. (Depending on your
monitor’s resolution, they might appear to merge
into an upright rectangle. This doesn’t matter.)

9. Press Enter/Return to save the change. Save the
page, and test it again in a browser. This time, all selected items from the multiple-
choice list should be displayed as an array at the bottom of the page.

10. Click Send comments without selecting anything in the list. This time, views won’t
be among the items displayed at the bottom of the page. This is the same as with a
checkbox group, and it has important implications for how you process the output
of a form, as you’ll see in Chapter 11.

BUILDING ONLINE FORMS AND VALIDATING INPUT

271

9

8598CH09.qxd 6/28/07 11:44 AM Page 271

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using radio buttons to offer a single choice
The term “radio buttons” is borrowed from the preset buttons common on radios: you
push a button to select a station and the currently selected one pops out; only one can be
selected at any given time. Like a radio, there shouldn’t be too many buttons to choose
from. Otherwise, the user gets confused.

Although radio buttons limit the user to only one choice, Dreamweaver is more generous.
The Forms tab of the Insert bar has two options: Radio Button and Radio Group, as shown
here:

The same options exist on the Form submenu of the Insert menu, although they are not
adjacent to each other as they are on the Insert bar.

The difference is that Radio Button inserts radio buttons one at a time, while Radio Group
inserts them in a single operation. Although doing everything in a single operation sounds
better, there’s no way of relaunching the Radio Group dialog box to edit the radio buttons
or add a new one to the group. Also, I find this method less flexible in the way it lays out
radio buttons and attaches the labels. So, I plan to show you how to insert individual radio
buttons. Once you know how they work, you should have no difficulty experimenting with
the Radio Group option to see if it suits your way of working.

Continue working with the form from the preceding exercise or copy feedback_
multiselect.php from examples/ch09 to workfiles/ch09. The finished code is in
feedback_radio.php.

1. Save feedback_multiselect.php as feedback_radio.php.

2. In Design view, click immediately to the right of the scrollable list you inserted in
the previous exercise, and press Enter/Return to insert a new paragraph. Like
checkboxes, each radio button has its own label, so you need to create a heading
to indicate the question being asked. Click the Bold button in the Property inspec-
tor and type a question. I used Would you like to receive regular details of events in
London?

3. At the end of the line, click the Bold button again to move the insertion point out-
side the closing tag. To keep the radio buttons in line with the other
form elements, you need to put them in a <div> and apply the chkRad class to it.

Select Insert Div Tag from the Common tab of the Insert bar, set Insert to At insertion
point, and select chkRad from the Class drop-down menu.

Creating a radio button group with individual buttons

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

272

8598CH09.qxd 6/28/07 11:44 AM Page 272

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. With the placeholder text in the <div> still highlighted, select Paragraph from the
Format menu in the Property inspector, and then press Delete to remove the place-
holder text. This leaves an empty paragraph to hold the radio buttons.

5. Click Radio Button in the Forms tab of the Insert bar, and enter the following
settings in the Input Tag Accessibility Attributes dialog box:

ID: subscribeYes

Label: Yes

Style: Attach label tag using ‘for’ attribute

Position: After form item (Dreamweaver selects this automatically)

6. When you click OK, Dreamweaver inserts the radio button and its associated label.
Press your right keyboard arrow to move the insertion point to the right of the
label, and press the spacebar to insert a space.

7. Repeat step 5, entering subscribeNo in the ID field and No in the Label field.

8. Click OK to insert the second radio button and its label. Select the second radio
button element to display its details in the Property inspector, which should look
like this:

The field on the left immediately below Radio Button sets the name attribute for
the radio button. Change it to subscribe. Unlike other form elements, the name and
id attributes of radio buttons aren’t automatically linked in the Property inspector
because Dreamweaver CS3 is smart enough to know that all buttons in a radio
group share the same name, but must have unique IDs.

Dreamweaver automatically enters the same value as the ID in Checked value.
While this is OK, you can change the value here without affecting the ID. Just type
the letter n in the Checked value field.

Although you can build a form in which no radio button is checked when the page
first loads, there isn’t a Spry validation widget for radio buttons, so it’s a good pol-
icy to have a default value. Set Initial state to Checked.

9. Select the Yes radio button, change its name from radio to subscribe, and shorten
Checked value to the letter y. Leave Initial state as Unchecked.

10. Save the page, and load it in a browser. Test it to make sure that the value of sub-
scribe is y or n depending on the radio button selected.

BUILDING ONLINE FORMS AND VALIDATING INPUT

273

9

8598CH09.qxd 6/28/07 11:44 AM Page 273

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Organizing form elements in logical groups
An important element in designing a usable form is making sure that everything is laid out
logically so that users can see at a glance what sort of information is required. It can also
help to divide the form into a number of clearly labeled sections. XHTML provides two
tags for this purpose: <fieldset> and <legend>, which most browsers automatically style
with a border (see Figure 9-10).

Figure 9-10. Fieldsets give forms a visual and logical structure that help make them more
accessible to all users.

Inserting a fieldset
You can add fieldsets to your form before inserting the individual form elements or after
you have finished. To insert a fieldset, click the Fieldset button on the Forms tab of the
Insert bar, as shown here:

This opens the Fieldset dialog box. It has just one field: Legend, which is the title that you
want to give to the group of form elements within the fieldset.

When you click OK, Dreamweaver inserts the following code in your form:

<fieldset>
<legend>Your details</legend>
</fieldset>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

274

8598CH09.qxd 6/28/07 11:44 AM Page 274

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you create the fieldset before inserting the individual form elements, press your right
keyboard arrow after clicking OK in the Fieldset dialog box. This positions the insertion
point between the closing </legend> and </fieldset> tags ready for adding the form ele-
ments that belong to the fieldset.

To add a fieldset to existing form elements, select the elements that you want to include
by dragging your mouse across them in Design view. If you have Split view open, you will
see that Dreamweaver doesn’t select the opening and closing tags of your selection.
However, when you insert the fieldset, it’s smart enough to put the <fieldset> and
<legend> tags in the correct place. If the fieldset border and legend appear in the wrong
place, it probably means that you failed to select the form elements correctly. Press
Ctrl+Z/Cmd+Z or Edit ➤ Undo and try again. Alternatively, go into Code view, and
make sure that the target form elements are between the closing </legend> and
</fieldset> tags.

To see the effect of adding fieldsets to the form you have been using throughout this
chapter, and study the code, take a look at feedback_fieldsets.php in examples/ch09.
You can alter the look of fieldsets with CSS by adding fieldset and legend type selectors
to your style sheet.

Now that you’ve covered all the main form input and layout elements, let’s turn attention
to checking user input before submitting the form to the server for processing.

Validating user input before submission
Validation on the client side relies on JavaScript. A visitor simply needs to turn off
JavaScript in the browser and press the submit button; all your client-side filters are ren-
dered useless. Consequently, some developers argue that client-side validation is a waste
of time. Nevertheless, most visitors to your sites aren’t deliberately trying to abuse your
forms and are likely to have JavaScript enabled. So, it’s generally a good idea to detect
errors before a form is submitted. JavaScript validation is conducted locally and is usually
instantaneous.

Nevertheless, the fact that client-side validation can be so easily evaded raises the question
of how thorough it should be. Since the real checks need to be done on the server, there’s
a strong argument for keeping client-side checks to the absolute minimum. Dreamweaver
CS3 offers both approaches.

Doing minimal checks with the Validate Form behavior
The Validate Form behavior has been part of Dreamweaver for many years. It’s quick and
easy to apply and performs only the most rudimentary of checks. The following exercise
shows you how to use it.

BUILDING ONLINE FORMS AND VALIDATING INPUT

275

9

8598CH09.qxd 6/28/07 11:44 AM Page 275

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise uses the completed form from the previous exercises. Copy feedback_
fieldsets.php from examples/ch09 to workfiles/ch09. If you just want to inspect the
code, the finished file is feedback_validate.php in examples/ch09.

1. Save a copy of feedback_fieldsets.php as feedback_validate.php, and open it
in the Document window. Switch to Design view, if necessary.

2. Select the form in feedback_validate.php by clicking the red outline or by posi-
tioning your cursor anywhere inside the form and clicking <form#form1> in the Tag
selector at the bottom of the Document window.

3. Open the Behaviors panel by pressing Shift+F4 or by going to Window ➤ Behaviors.
Alternatively, expand the Tag Inspector panel group, and select the Behaviors tab.
Click the plus (+) button at the top of the Behaviors panel, and select Validate Form
from the menu that appears.

4. This opens the dialog box shown in Figure 9-11.

Figure 9-11. The original Dreamweaver Validate Form behavior performs
a very limited range of checks.

Dreamweaver automatically detects text fields and text areas in the form and dis-
plays their name attributes in the Fields section. But what about the multiple-
choice elements? I told you the Validate Form behavior is rudimentary; it works
only with text input, and as you’ll see shortly, it doesn’t check very much.

5. Highlight each field in turn to set its validation requirements. If you want the field
to be required, click the Value checkbox to insert a check mark.

The Accept radio buttons let you specify whether to accept anything, an email
address, any number, or a number within a specified range.

Make all fields required, and set Accept to Email address for the email field. Set the
other fields to accept anything.

Applying the Validate Form behavior

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

276

8598CH09.qxd 6/28/07 11:44 AM Page 276

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Click OK to apply the Validate Form behavior.
Dreamweaver lists it in the Behaviors panel with
the event handler set to onSubmit, as shown in
the screenshot alongside.

Although the Behaviors panel displays onSubmit
in camel case, Dreamweaver inserts the correct lowercase onsubmit attribute in the
<form> tag if you’re using XHTML. If you want to edit the behavior, select the form
and double-click its name to reopen the Validate Form dialog box. To remove the
behavior, select it in the Behaviors panel, and click the minus (–) button.

7. Save the page, and load it into a browser. Click Send comments without filling in
any of the fields. You should see a simple warning like this:

8. As long as JavaScript is enabled, this simple validation prevents the form from
being submitted unless all required text input fields have a value. But to see just
how crude a test this is, enter a single space in the Name or Comments field, and
click Send comments again. When the Validate Form dialog box says Anything, it
means just that—entering the single space satisfies its criteria. The email check is
equally crude: an @ mark with a space on either side passes validation.

The Validate Form behavior is useful in preventing accidental submission of incomplete
text fields. It does nothing about checkboxes, drop-down menus, or lists. This means it
can’t stop submission of a form without the user checking a box that signifies acceptance
of terms and conditions. The sole advantage of this behavior is that’s it’s ultra-light. The
JavaScript code that it inserts into the <head> of the page is only a dozen or so lines long,
and it adds a mere 1KB to the size of the page.

Using Spry validation widgets for sophisticated checks
The Spry validation widgets, which are new to Dreamweaver CS3, are anything but rudi-
mentary. They’re capable of performing a wide range of checks and use a combination of
JavaScript and CSS to display customized alerts alongside the affected field. There are four
widgets, as follows:

Spry Validation Text Field widget

Spry Validation Text Area widget

Spry Validation Checkbox widget

Spry Validation Select widget (for single-choice menus and lists)

BUILDING ONLINE FORMS AND VALIDATING INPUT

277

9

8598CH09.qxd 6/28/07 11:44 AM Page 277

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The text field widget is particularly impressive, as it lets you test for a wide range of for-
mats, including numbers, currency, IP addresses, Social Security numbers, and credit card
numbers. You can even set up your own custom patterns without the need to master the
complex subject of regular expressions. The text area validation widget also provides one
of the most frequently requested features—the ability to display how many characters the
user has entered or still has left before reaching a predetermined limit. The validation
widgets also display warning messages that you can easily edit and style with CSS.

Sure, they’re impressive, but before you get carried away, let’s take a look at their draw-
backs.

Understanding the limitations of Spry validation widgets
Spry validation widgets are certainly powerful, but they greatly increase page size. If you
add all four widgets to a form, the external JavaScript files and style sheets weigh in at
more than 150KB. The text field widget is responsible for roughly half that amount
because of its extensive pattern-matching features. It’s overkill for a very basic form, but
could be extremely useful in validating user input on a form for a job application or an
insurance policy quote.

Dreamweaver CS3 doesn’t have Spry validation widgets for radio buttons or multiple-
choice <select> elements. A widget for radio buttons has been developed but was too
late for inclusion in the program. I expect it will be made available at some stage through
an update.

Figure 9-12. Spry validation widgets have an
orange sunburst on the same icons as their
related form elements.

If you insert a widget into a blank part of a form, Dreamweaver inserts both the validation
code and the form element. Alternatively, you can apply a widget to an existing form
element. Whichever approach you use, the method of configuration is exactly the same.
In the remaining pages of this chapter, I’m going to show you how to apply validation
widgets to an existing form.

I suggest you study carefully the first section of “Validating a text field with Spry,” because
it contains most of the knowledge you need to work with all validation widgets, particu-
larly with regard to editing and controlling the display of alert messages.

Spry validation widgets can also be accessed through the Spry tab of the Insert bar
(confusingly, though, the positions of the Text Area and Select buttons have been
swapped) or the Spry submenu of the Insert menu.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

278

8598CH09.qxd 6/28/07 11:44 AM Page 278

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Inserting a Spry validation widget
As with all Spry widgets, the page must have been saved at least once before you can apply
a validation widget. Save the page again immediately afterward to attach the external
JavaScript code and style sheet and copy them to the Spry assets folder if necessary.

Don’t mix the Validate Form behavior with Spry validation widgets. If you apply a valida-
tion widget in a form that already triggers JavaScript when submitted, Dreamweaver displays
the following warning:

In spite of the warning, Dreamweaver takes the view that a developer with advanced
knowledge of JavaScript may have good reasons for combining the widget with other
code. So it still goes ahead and inserts the widget. However, if you’re not a JavaScript whiz
kid, just click OK followed immediately by Ctrl+Z/Cmd+Z or Edit ➤ Undo to remove
the widget cleanly. Remove the Validate Form behavior (or other conflicting code), and
reapply the validation widget.

Removing a validation widget
Removing a widget immediately after you have applied it is easy. Unfortunately, the stan-
dard method of removing a widget (selecting its turquoise tab and pressing Delete)
removes the form element with it. The simple way to get around this problem is to select
the form element (and label, if necessary) in Design view, and cut it to your clipboard
(Ctrl+X/Cmd+X). Then select the turquoise tab to delete the widget. If you see the follow-
ing warning that the widget has been damaged, you can safely ignore it.

Once you have removed the widget, paste (Ctrl+V/Cmd+V) the form element back into
the page.

Dreamweaver is context sensitive. If you cut from Design view, always paste
back into Design view; the same with Code view. If you don’t, Dreamweaver is
likely to mess up your page.

BUILDING ONLINE FORMS AND VALIDATING INPUT

279

9

8598CH09.qxd 6/28/07 11:44 AM Page 279

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Validating a text field with Spry
To validate a text field, either select an existing text field or position your cursor inside a
form where you want to insert a new text field, and click the Spry Validation Text Field but-
ton on the Insert bar. If you are inserting a new text field, fill in the ID and Label fields in
the Input Tag Accessibility Attributes dialog box as described earlier in the chapter.

Figure 9-13 shows what happens when you apply a validation widget to the first text field
in the form that you have been working with throughout the chapter. The screenshot was
taken with the Document window open in Split view, so you can see the underlying code
(the section highlighted on lines 21–23).

Figure 9-13. Spry validation widgets surround form elements with tags and control their
display with JavaScript.

The <input> tag has been surrounded by a tag with the ID set to sprytextfield1.
Immediately after the <input> tag is another , which contains the text: A value is
required. As you can see in Figure 9-13, that text isn’t displayed in Design view. This is
because the display of all validation messages in Spry widgets is controlled by JavaScript.

The Preview states drop-down menu on the right of the Property inspector controls the
display of these messages in Design view, allowing you to see what they look like, and edit
them and their associated style rules. The following exercise shows you how to control the
display of validation alerts in a form.

1. Copy feedback_spry_start.php from examples/ch09, and save it in workfiles/
ch09 as feedback_spry.php.

2. Select the Name text input field in Design view, and click the Spry Validation Text
Field button in the Insert bar (or use the Insert menu).

Editing and controlling the display of validation alerts

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

280

8598CH09.qxd 6/28/07 11:44 AM Page 280

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Make sure there’s a check mark in the Required checkbox in the Property inspector
(it should be selected by default), and choose Required from the Preview states
drop-down menu. The text field should now look like this in Design view:

Not only is the text displayed, the background color of the text field has turned an
alarming shade of pink.

4. Both the text field and the validation message are highlighted, so click inside the
message so you can edit it. Shorten the text to Required.

5. With your cursor still inside the validation message, open the CSS Styles panel in
Current mode (the quickest way is to click the CSS button in the center of the
Property inspector). As you can see from the following screenshot, the Properties
pane shows the styles for the current selection as having a 1-pixel crimson border,
crimson text, and the display property set to inline.

6. Click Add Property, and set font-weight to bold. Design view immediately updates.

7. Select the text field in Design view. You can now change background-color to a less
dramatic pink. I chose #FFDFDF.

8. Click the turquoise tab at the top left of the widget. In the Property inspector,
change Preview states to Valid. The background color of the text field changes to
green.

BUILDING ONLINE FORMS AND VALIDATING INPUT

281

9

8598CH09.qxd 6/28/07 11:44 AM Page 281

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Select the text field to display the style rule for the current selection in the CSS
Styles panel, and change background-color to a different shade of green. I chose
#E3FBE1.

10. Save the page (and style sheet if necessary), and load feedback_spry.php into a
browser. Click inside the Name field. Assuming you’re using a modern browser and
JavaScript is enabled, the field should turn yellow, indicating that it has focus.

11. Don’t enter anything in the field, but move the focus to another field. The Name
field reverts to its previous state.

12. Click the Send comments button. The background of the text field turns pink, and
the word Required is displayed alongside in bold crimson text. Also note that noth-
ing is displayed below the Send comments button. The file feedback_spry.php
contains the PHP script used earlier to display the data submitted by the form, so
this is confirmation that the validation widget prevented the form from being
submitted.

13. Type your name in the Name field, and move the focus to another field. Although
the field turns yellow while you’re typing, it turns pink again when the focus moves
to another field, and the Required alert isn’t cleared, as the following screenshot
shows.

This is because the default behavior is to validate form elements only when the
form is submitted, although you can easily change that.

14. Click the Send comments button. If your monitor is large enough for you to still see
the text field, you’ll see the background momentarily turn green indicating that it
passed validation. You’ll also see the form data displayed at the bottom of the
page.

15. Back in Dreamweaver, select the turquoise tab at the top left of the validation
widget to display its details in the Property inspector. Directly beneath the Preview
states drop-down menu are three checkboxes, as shown here:

Selecting the Blur checkbox runs the validation script when the focus moves to
another element on the page. Selecting Change runs the script on every keystroke
in the text field. Often, validating on every keystroke is guaranteed to drive users
insane, so use with care. The Submit checkbox is automatically selected and grayed
out, since there’s no point in validation if you don’t check the form when it is
submitted.

16. Select Validate on Blur, save the page, and repeat steps 10–14 to test it again. This
time, the field turns green, and the Required message disappears in step 13.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

282

8598CH09.qxd 6/28/07 11:44 AM Page 282

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The styles changed in the preceding exercise affect all text field validation widgets in the
same page, and they apply equally to all text field validation alerts. As you’ll see shortly,
selecting other options in the Property inspector creates a range of different validation
alerts.

Although the Preview states menu gives you access to most style rules, two selectors
need to be edited either in the CSS Styles panel in All mode or by opening
SpryValidationTextField.css in Code view. The first is .textfieldFocusState input,
input.textfieldFocusState, which gives the text field a yellow background when it has
focus. The default color is #FFFFCC. The other selector is .textfieldFlashText input,
input.textfieldFlashText. This applies only when you enable character masking, and it
makes the text briefly flash red if an invalid character is inserted.

Now, let’s run through the other options for text field validation.

Hint This displays default text that disappears as soon as the text field has focus or any-
thing is entered into it. It’s useful for indicating the type of input or format expected. The
value is displayed dynamically, so it won’t be submitted as part of the form data if the user
enters nothing in the field.

Min chars This lets you specify the minimum number of characters required for validation.
It adds an alert message in a , and the Preview states menu is updated to include a
Min. # of Chars Not Met option. The alert is displayed if the length of user input falls below
the number of characters specified in this field. Select this option from the Preview states
menu to inspect and edit the alert.

Max chars This works the same way as Min chars, but lets you set a maximum number of
characters. The alert is displayed if the length of user input exceeds the number specified
in this field.

Type This is where the real power of the text field validation widget lies. It lets you check
user input against a wide range of formats, which are summarized in Table 9-1. All options,
except None, insert an Invalid format in the underlying code. Use the Preview states
menu to display this in Design view for editing and/or styling.

Table 9-1. Formats that the text field validation widget can recognize

Type Available formats Notes

None Use this when no other suitable format is
available.

Integer This validates whole numbers only.
Negative numbers are accepted but not
decimal fractions or thousands separators.
Use Real Number/Scientific Notation for
decimals or Currency for whole numbers
with thousands separators.

Email address This performs only a rudimentary check
for an email address, making sure that it
contains a single @ mark followed by at
least one period.

Continued

BUILDING ONLINE FORMS AND VALIDATING INPUT

283

9

8598CH09.qxd 6/28/07 11:44 AM Page 283

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 9-1. Formats that the text field validation widget can recognize (continued)

Type Available formats Notes

Date mm/dd/yy This checks not only the format but also
mm/dd/yyyy the validity of the date, rejecting
dd/mm/yyyy impossible dates, such as September 31.
dd/mm/yy Leap years are recognized, but a bug in
yy/mm/dd version 1.4 of
yyyy/mm/dd SpryValidationTextField.js incorrectly
mm-dd-yy rejects February 29, 2000.
dd-mm-yy
yyyy-mm-dd
mm.dd.yyyy
dd.mm.yyyy

Time HH:mm HH represents the 24-hour clock, hh the
HH:mm:ss 12-hour clock. Hours before 10 must have
hh:mm tt a leading zero. When using the 12-hour
hh:mm:ss tt clock, tt stands for AM or PM; t stands for
hh:mm t A or P. Lowercase is not accepted.
hh:mm:ss t

Credit Card All Matches known patterns for major credit
Visa cards. Numbers must be entered without
MasterCard hyphens or spaces.
American Express
Discover
Diner’s Club

Zip Code US-5 This tests only that the right combination
US-9 of numbers and/or letters is used.
UK It doesn’t check whether the code exists
Canada or matches other parts of an address.
Custom Pattern See “Building your own custom pattern”

for details of how to use the Custom
Pattern format.

Phone Number US/Canada US/Canada must be in the same format as
Custom Pattern (212) 555-0197. For Custom Pattern, see

“Building your own custom pattern.”

Social Security This matches only U.S. Social Security
Number numbers.

Currency 1,000,000.00 In both formats, the thousands separator
1.000.000,00 is optional, as is the decimal fraction. This

makes it possible to validate currencies,
such as yen, which aren’t normally quoted
with a smaller unit.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

284

8598CH09.qxd 6/28/07 11:44 AM Page 284

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Type Available formats Notes

Real Number/ Used for numbers with a decimal fraction,
Scientific Notation which can optionally be expressed in

scientific (exponential) notation, for
example, 3.14159, 1.56234E+29, or
1.56234e29. The letter E can be uppercase
or lowercase, but it must not be preceded
by a space.

IP Address IPv4 only Covers all formats of IP address.
IPv6 only
IPv6 and IPv4

URL This converts the URL to punycode
(http://en.wikipedia.org/wiki/
Punycode) before validation, so it should
also accept international URLs that contain
non-Latin characters.

Custom This allows you to define your own format
as described in “Building your own custom
pattern.”

Building your own custom pattern
Spry makes it easy to build custom patterns using special pattern characters that act as a
mask for the user’s input. Spry custom patterns aren’t as powerful as regular expressions,
but they’re a lot easier to use, so it’s a reasonable trade-off for most people. Table 9-2
describes the special pattern characters.

Table 9-2. Special characters used for building custom patterns in Spry

Character Matches Case sensitivity

0 Any number 0–9

A Any letter A–Z Converted to uppercase

a Any letter a–z Converted to lowercase

B Any letter A–Z Original case preserved

b Any letter A–Z Original case preserved

X Any alphanumeric character Letters converted to uppercase
(A–Z and 0–9)

x Any alphanumeric character Letters converted to lowercase
(A–Z and 0–9)

Continued

BUILDING ONLINE FORMS AND VALIDATING INPUT

285

9

8598CH09.qxd 6/28/07 11:44 AM Page 285

http://en.wikipedia.org/wiki/Punycode
http://en.wikipedia.org/wiki/Punycode
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 9-2. Special characters used for building custom patterns in Spry (continued)

Character Matches Case sensitivity

Y Any alphanumeric character Letters preserve original case
(A–Z and 0–9)

y Any alphanumeric character Letters preserve original case
(A–Z and 0–9)

? Any character

Although there are ten special pattern characters, you need concern yourself with only
eight of them, because uppercase and lowercase B are identical. So are uppercase and
lowercase Y.

Any other character included in a custom pattern is treated as an auto-complete charac-
ter. For example, let’s say you have a stock code that looks like this: BC-901/c. If all stock
codes follow the same pattern of two uppercase letters followed by a hyphen, three digits,
a forward slash, and a lowercase letter, you could use the following custom pattern:

AA-000/a

Immediately after the first two letters are inserted, Spry automatically inserts the hyphen.
Then after the next thee digits, it inserts the forward slash ready for the user to insert the
final letter.

If you want to use any of the special characters listed in Table 9-2, you must precede them
with a backslash (e.g., \A). To insert a backslash as part of an auto-complete sequence, use
a double backslash (\\).

Validating a text area with Spry
Unlike a text field, the <textarea> tag doesn’t have any way to control the acceptable
number of characters, so the text area validation widget optionally displays a counter that
tells the user how many have been entered or can still be entered. This is important when
inserting text in a database, because the text is truncated if the user inputs more than the
maximum accepted by the database column. With Spry, this is no longer a problem, as you
can block further input once the maximum has been reached.

To validate a text area, either select an existing text area or position your cursor inside a
form where you want to insert a new text area, and click the Spry Validation Text Area button
on the Insert bar. If you are inserting a new text area, fill in the ID and Label fields in the
Input Tag Accessibility Attributes dialog box as described earlier in the chapter. Figure 9-14
shows what happens when you apply a validation widget to the Comments text area in the
form that you have been working with throughout the chapter.

When using a custom pattern, you must select the Enforce pattern checkbox at the
bottom right of the Property inspector (see Figure 9-13 earlier in the chapter).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

286

8598CH09.qxd 6/28/07 11:44 AM Page 286

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 9-14. The text area validation widget has options to control and monitor the number of
characters entered.

The layout of options in the Property inspector is slightly different, but Required, Preview
states, Validate on, Min chars, Max chars, and Hint all work exactly the same as for a text
field, so I won’t explain them again (refer to “Validating a text field with Spry” if you need
to refresh your memory).

Let’s take a look at the two new options: Counter and Block extra characters.

Counter There are three settings to choose from, as follows:

None: This is the default. It turns off automatic counting of characters entered.

Chars count: This displays the total number of characters entered. If you combine
this with Validate on Change, it displays a constantly updated total (see Figure 9-15).

Chars remaining: This is grayed out until you enter a value in Max chars. It uses this
value to calculate how many more characters can be accepted. If combined with
Validate on Change, it displays a running total of characters left (see Figure 9-15).

BUILDING ONLINE FORMS AND VALIDATING INPUT

287

9

Figure 9-15. The character counter appears at the bottom right of the text area, but gives no indication of its meaning.

Block extra characters This is self-explanatory. It prevents the user from entering more
characters than the number specified in Max chars. The checkbox remains grayed out if
Max chars is not specified.

8598CH09.qxd 6/28/07 11:44 AM Page 287

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As Figure 9-15 shows, the Spry character counter simply displays a number at the bottom
right of the text area. Although most users will probably guess its meaning, it’s user
friendlier to add a label to the counter. The following instructions show you how to do
this. I have used feedback_spry.php from the previous exercise, but you can use any form
with a text area.

1. In Design view, select the Comments text area, and click the Spry Validation Text Area
button on the Insert bar.

2. In the Property inspector, select Validate on Change, and set Counter to Chars count.

3. Open Split view to inspect the code inserted by Dreamweaver. It should look like
this:

The first shown on line 36 in the preceding screenshot contains a non-
breaking space (). Spry uses this to display the character count. Because the
content of the is generated dynamically, the label needs to go outside.

4. Click inside Code view, position your cursor immediately to the left of the first
 shown on line 36, and insert the following code shown in bold:

 Count:

5. Save the page and test it. You should now see a more user-friendly display like this:

When using the Chars remaining option, change the text inside the new to
Remaining:.

Improving the character counter

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

288

8598CH09.qxd 6/28/07 11:44 AM Page 288

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Validating a single checkbox with Spry
A common requirement on forms is a checkbox to confirm that the user agrees with cer-
tain terms and conditions. Creating this with Dreamweaver couldn’t be simpler. If you
already have the checkbox in your form, select it, and click the Spry Validate Checkbox but-
ton on the Insert bar. Save the page to copy the external JavaScript file and style sheet to
your Spry assets folder.

If you don’t have a checkbox, position your cursor where you want it to go inside the form,
and click the Spry Validate Checkbox button on the Insert bar. Fill in the ID and Label fields
in the Input Tag Accessibility Attributes dialog box, and save the page.

That’s all there is to it.

Validating a checkbox group with Spry
Validating a checkbox group is easy, but the default use of tags makes it difficult to
create a layout that uses valid code and looks halfway decent. However, this is also a good
opportunity to show you that you don’t need to be constrained by Dreamweaver’s way of
doing things. The best way to explain is with a practical example based on the form you
have been using throughout the chapter.

The form has a group of five checkboxes displayed in two columns, each of which is
formed by a <div> floated left. The Dreamweaver documentation tells you to add multiple
checkboxes inside the created by the validation widget, but tags cannot
contain block-level elements like <div>, <table>, or <p>. So the best way to validate a
checkbox group is to apply the widget first to a single checkbox. You can then convert the
Dreamweaver code to wrap the entire group in <div> tags.

Use feedback_spry.php from the preceding exercise, or copy feedback_spry_start.php
from examples/ch09 to workfiles/ch09 and save it as feedback_spry.php.

1. In Design view, select the checkbox labeled Classical concerts, and click the Spry
Validation Checkbox button on the Insert bar.

2. In the Property inspector, select the Enforce range (multiple) radio button, and type
2 in the Min # of selections field. Press Enter/Return or Tab to make sure that
Dreamweaver updates the validation code.

Adapting a checkbox validation widget

By default, Dreamweaver puts all alerts in tags and styles them to display inline
alongside the form element. This can result in the alert splitting across two lines,
which makes the default border look very messy. Either shorten the text or change the
style rules so that they blend in with your design. In fact, there is nothing to stop you
from moving the alerts to a different position. As long as you keep the classes and IDs
assigned by Dreamweaver, you can change the tags to other XHTML elements,
as demonstrated in the next exercise.

BUILDING ONLINE FORMS AND VALIDATING INPUT

289

9

8598CH09.qxd 6/28/07 11:44 AM Page 289

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Open Split view to inspect the code inserted by Dreamweaver. It should look like
this:

As you can see on line 41 in the preceding screenshot, Dreamweaver creates an
opening tag with the ID sprycheckbox1 to wrap the checkbox (the closing
 tag is at the end of line 43). Another at the beginning of line 43 is
assigned the class checkboxMinSelectionsMsg and contains the alert message.

With Preview states set to Min No. of Selections Not Met, you can see that the alert is
displayed between the checkbox and its label. It looks a mess, but not for long . . .

4. Switch to Code view, and amend the code as shown in the following screenshot by
moving the highlighted sections and deleting the closing tag:

Change the tags to <div> tags so that it looks like this:

<p>What aspects of London most interest you?</p>
<div id="sprycheckbox1">
<div class="chkRad">

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

290

8598CH09.qxd 6/28/07 11:44 AM Page 290

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<div class="checkboxMinSelectionsMsg">Minimum number of ➥

selections not met.</div>
<p>
<input type="checkbox" name="interestsClassical" ➥

id="interestsClassical" value="Classical concerts" />
<label for="interestsClassical">Classical concerts</label>

5. You now need to replace the closing tag that you deleted at the end of
line 43. It needs to go right at the end of the checkbox group, and because you’re
using <div> tags for the validation widget, it needs to be a closing </div> tag.

This is where a good understanding of XHTML and your page structure comes in.
Although it’s just a case of moving a closing tag, you must get it in the correct posi-
tion after the closing tag of the second chkRad class <div> (it should now be on
line 65). The following code shows the new tag in bold in its surrounding context:

<label for="interestsArt">Art</label>
</p>

</div>
</div>

<p class="clearIt">
<label for="visited">How often have you been to London?</label>

6. Switch back to Design view, and click the turquoise tab at the top left of the check-
box validation widget. The checkbox group should now look like this:

You can still display and hide the alert message using the Preview states menu in the
Property inspector. The heavy blue outline around the validation widget doesn’t
enclose the checkboxes because they’re floated. If you put the checkbox group in
a nonfloated element, such as a table, the outline would enclose the whole group.

7. Select Validate on Change in the Property inspector, save the page, and test it in a
browser. Select one checkbox, and the alert message should appear above the
checkbox group. Select a second checkbox, and the alert disappears.

You might want to add a 40px left margin to the checkboxMinSelectionMsg class in the
CSS Styles panel, and make some other changes to the CSS, but this shows you how you
can adapt the basic code created by Dreamweaver. This is something that you will appre-
ciate even more during the second half of this book when working with PHP. Dreamweaver
provides a solid basis, but the rest is up to you.

BUILDING ONLINE FORMS AND VALIDATING INPUT

291

9

8598CH09.qxd 6/28/07 11:44 AM Page 291

http://lib.ommolketab.ir
http//lib.ommolketab.ir

So, what have you done? Just two things, namely:

Each validation widget is enclosed in an overall . Because tags can
only be used for inline elements, you have converted the overall into a
<div> and moved the checkbox group inside.

Each alert message is also contained in a , which is displayed inline wherever
it happens to be. By converting the to a <div>, you have turned it into an
independent element that can be relocated wherever it best suits your layout.

This exercise just lifts the lid on the possibilities. I’ll leave you to experiment with other
variations.

Validating a drop-down menu with Spry
Applying a select validation widget is very simple. Highlight the menu object in Design
view, and click the Spry Validation Select button in the Insert bar. The following instructions
use the same form as throughout the rest of the chapter.

Use feedback_spry.php from the preceding exercise, or copy feedback_spry_start.php
from examples/ch09 to workfiles/ch09 and save it as feedback_spry.php.

1. In Design view, select the existing drop-down menu, and then click the List Values
button in the Property inspector. The first item (– Select one –) is an invalid choice,
so you need to take a note of its Value (0). Close the List Values dialog box.

2. With the menu still selected, click the Spry Validation Select button in the Insert bar.

3. In the Property inspector, select the Invalid value checkbox, and replace the default
-1 with 0 in the field alongside. This is the invalid value you confirmed in step 1.
Also select Validate on Change.

4. Save the page, and test it in a browser. An alert message should be displayed if you
select nothing or an invalid value.

As with the checkbox group, you can convert tags to <div> tags. Spry isn’t con-
cerned with the type of element used, but with the class and id attributes.

Styling the alert messages follows the same principles as for a text field in the various val-
idation widgets. Study the style sheets in the Spry assets folder, or click the Customize this
widget link in the Property inspector to display Dreamweaver help, which explains which
style rules to change.

Next, let’s move to the server side . . .
This has been a long chapter, crammed with detail, but it’s an important one. You’ll use
forms time and again when building dynamic sites, and making sure that user input is in
the right format saves endless headaches later on. Spry does a lot to help with validation
and is fairly easy to use, but the Dreamweaver interface could still do with some improve-
ment. However, it’s important to remember that client-side validation is only half the story.

Applying a validation widget to an existing drop-down menu

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

292

8598CH09.qxd 6/28/07 11:44 AM Page 292

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Because JavaScript can be turned off in the browser, you also need to check user input on
the server side with PHP.

Moreover, forms are useless without a script capable of processing the data. The next
chapter serves as a crash course in PHP basics for readers new to PHP. Then in Chapter 11,
we get down to the nitty-gritty of server-side programming, using PHP to validate user
input and then send it to your mail inbox.

BUILDING ONLINE FORMS AND VALIDATING INPUT

293

9

8598CH09.qxd 6/28/07 11:44 AM Page 293

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10 INTRODUCING THE BASICS OF PHP

8598CH10.qxd 6/11/07 5:14 PM Page 295

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This chapter is a cross between a crash course in PHP and a handy reference. It’s aimed at
readers who are completely new to PHP or who may have dabbled without really getting
to grips with the language. The intention is not to teach you all there is to know but to arm
you with sufficient knowledge to dig into Code view to customize Dreamweaver code with
confidence. Dreamweaver’s automatic code generation does a lot of the hard work for
you, but you need to tweak the code to get the best out of it, and when it comes to send-
ing an email from an online form, you have to do everything yourself.

By the end of this chapter, you’ll learn about

Writing and understanding PHP scripts

Using variables to represent changing values

Understanding the difference between single and double quotes

Organizing related information with arrays

Creating pages that make decisions for themselves

Using loops and functions for repetitive work

If you’re already comfortable with PHP, just glance at the section headings to see what’s
covered, as you might find it useful to refer to this chapter if you need to refresh your
memory about a particular subject. Then move straight to the next chapter and start
coding.

If you’re new to PHP, don’t try to learn everything at one sitting, or your brain is likely to
explode from information overload. On the first reading, look at the headings and maybe
the first paragraph or two under each one to get a general overview. Also read the section
“Understanding PHP error messages.”

Introducing the basics of PHP
PHP is a server-side language. This means that the web server processes your PHP code and
sends only the results—usually as XHTML—to the browser. Because all the action is on the
server, you need to tell it that your pages contain PHP code. This involves two simple steps,
namely:

Give every page a PHP file name extension—the default is .php. Do not use any-
thing other than .php unless you are told to specifically by your hosting company.

Enclose all PHP code within PHP tags.

The opening tag is <?php and the closing tag is ?>. You may come across <? as a short ver-
sion of the opening tag. However, <? doesn’t work on all servers. Stick with <?php, which is
guaranteed to work.

Embedding PHP in a web page
When somebody visits your site and requests a PHP page, the server sends it to the PHP
engine, which reads the page from top to bottom looking for PHP tags. XHTML passes

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

296

8598CH10.qxd 6/11/07 5:14 PM Page 296

http://lib.ommolketab.ir
http//lib.ommolketab.ir

through untouched, but whenever the PHP engine encounters a <?php tag, it starts
processing your code and continues until it reaches the closing ?> tag. If the PHP code
produces any output, it’s inserted at that point. Then, any remaining XHTML passes
through until another <?php tag is encountered.

PHP doesn’t always produce direct output for the browser. It may, for instance, check the
contents of form input before sending an email message or inserting information into a
database. So some code blocks are placed above or below the main XHTML code. Code
that produces direct output, however, always goes where you want the output to be
displayed.

A typical PHP page uses some or all of the following elements:

Variables to act as placeholders for unknown or changing values

Arrays to hold multiple values

Conditional statements to make decisions

Loops to perform repetitive tasks

Functions to perform preset tasks

Ending commands with a semicolon
PHP is written as a series of commands or statements. Each statement normally tells the
PHP engine to perform a particular action, and it must always be followed by a semicolon,
like this:

<?php
do this;
now do something else;
finally, do that;
?>

PHP is not like JavaScript or ActionScript. It won’t automatically assume there should be a
semicolon at the end of a line if you leave it out. This has a nice side effect: you can spread
long statements over several lines and lay out your code for ease of reading. PHP, like
XHTML, ignores whitespace in code. Instead, it relies on semicolons to indicate where one
command ends and the next one begins.

To save space, I won’t always surround code samples with PHP tags.

You can have as many PHP code blocks as you like on a page, but they
cannot be nested inside each other.

INTRODUCING THE BASICS OF PHP

297

10

8598CH10.qxd 6/11/07 5:14 PM Page 297

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using variables to represent changing values
A variable is simply a name that you give to something that may change or that you don’t
know in advance. The name that you give to a variable remains constant, but the value
stored in the variable can be changed at any time.

Although this concept sounds abstract, we use variables all the time in everyday life. When
you meet somebody for the first time, one of the first things you ask is, “What’s your
name?” It doesn’t matter whether the person you’ve just met is Tom, Dick, or Harry, the
word “name” remains constant, but the value we store in it varies for different people.
Similarly, with your bank account, money goes in and out all of the time (mostly out, it
seems), but it doesn’t matter whether you’re scraping the bottom of the barrel or as rich
as Croesus, the amount of money in your account is always referred to as the balance.

Naming variables
You can choose just about anything you like as the name for a variable, as long as you keep
the following rules in mind:

Variables always begin with $ (a dollar sign).

The first character after the dollar sign cannot be a number.

No spaces or punctuation are allowed, except for the underscore (_).

Variable names are case sensitive: $name and $Name are not the same.

A variable’s name should give some indication of what it represents: $name, $email, and
$totalPrice are good examples. Because you can’t use spaces in variable names, it’s a
good idea to capitalize the first letter of the second or subsequent words when combining
them (sometimes called camel case). Alternatively, you can use an underscore (e.g.,
$total_price).

Don’t try to save time by using really short variables. Using $n, $e, and $tp instead of
descriptive ones makes code harder to understand. More important, it makes errors more
difficult to spot.

Assigning values to variables
Variables get their values from a variety of sources, including the following:

User input through online forms

A database

An external source, such as a news feed or XML file

The result of a calculation

Direct inclusion in the PHP code

Although you have considerable freedom in the choice of variable names, you
can’t use $this, because it has a special meaning in PHP object-oriented pro-
gramming. It’s also advisable to avoid using any of the keywords listed at
www.php.net/manual/en/reserved.php.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

298

8598CH10.qxd 6/11/07 5:14 PM Page 298

http://www.php.net/manual/en/reserved.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Wherever the value comes from, it’s always assigned in the same way with an equal sign
(=), like this:

$variable = value;

Because it assigns a value, the equal sign is called the assignment operator. Although it’s an
equal sign, get into the habit of thinking of it as meaning “is set to” rather than “equals.”
This is because PHP uses two equal signs (==) to mean “equals”—something that catches
out a lot of beginners (experienced PHP programmers are not immune to the occasional
lapse, either).

Use the following rules when assigning a value to a variable:

Strings must be enclosed in single or double quotes (the distinction between the
different types of quotes is explained later in the chapter).

Numbers should not be in quotes—enclosing a number in quotes turns it into a
string.

You can also use a variable to assign a value to another variable, for example:

$name = 'David Powers';
$author = $name; // both $author and $name are now 'David Powers'

If the value of $name changes subsequently, it doesn’t affect the value of $author. As this
example shows, you don’t use quotes around a variable when assigning its value to
another. However, as long as you use double quotes, you can embed a variable in a string
like this:

$blurb = "$author has written several best-selling books on PHP.";

The value of $blurb is now “David Powers has written several best-selling books on PHP.”
There’s a more detailed description on the use of variables with double quotes in
“Choosing single or double quotation marks” later in the chapter.

Displaying PHP output
The most common ways of displaying dynamic output in the browser are to use echo or
print. The differences between the two are so subtle you can regard them as identical. I
prefer echo, because it’s one fewer letter to type. It’s also the style used by Dreamweaver.

Put echo (or print) in front of a variable, number, or string like this to output it to the
browser:

$name = 'David';
echo $name; // displays David
echo 5; // displays 5
echo 'David'; // displays David

You may see scripts that use parentheses with echo and print, like this:

echo('David'); // displays David
print('David'); // displays David

INTRODUCING THE BASICS OF PHP

299

10

8598CH10.qxd 6/11/07 5:14 PM Page 299

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The parentheses make no difference. Unless you enjoy typing purely for the sake of it,
leave them out.

Commenting scripts for clarity and debugging
Even if you’re an expert programmer, code is not always as immediately understandable as
something written in your own human language. That’s where comments can be a life-
saver. You may understand what the code does five minutes after creating it, but when you
come back to maintain it in six months’ time—or if you have to maintain someone else’s
code—you’ll be grateful for well-commented code.

In PHP, there are three ways to add comments. The first will be familiar to you if you write
JavaScript. Anything on a line following a double slash is regarded as a comment and will
not be processed.

// Display the name
echo $name;

You can also use the hash sign (#) in place of the double slash.

Display the name
echo $name;

Either type of comment can go to the side of the code, as long as it doesn’t go onto the
next line.

echo $name; // This is a comment
echo $name; # This is another comment

The third style allows you to stretch comments over several lines by sandwiching them
between /* and */ (just like CSS comments).

/* You might want to use this sort of comment to explain
the whole purpose of a script. Alternatively, it's a
convenient way to disable part of a script temporarily.
*/

As the previous example explains, comments serve a dual purpose: they not only allow you
to sprinkle your scripts with helpful reminders of what each section of code is for; they can
also be used to disable a part of a script temporarily. This is extremely useful when you are
trying to trace the cause of an error.

The important thing to remember about echo and print is that they work only with
variables that contain a single value. You cannot use them to display more complex
structures that are capable of storing multiple values.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

300

8598CH10.qxd 6/11/07 5:14 PM Page 300

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Choosing single or double quotation marks
As I mentioned earlier, strings must always be enclosed in single or double quotes. If all
you’re concerned about is what ends up on the screen, most of the time it doesn’t matter
which quotes you use, but behind the scenes, PHP uses single and double quotes in very
different ways.

Anything between single quotation marks is treated as plain text.

Anything between double quotation marks is processed.

Quotation marks need to be in matching pairs. If a string begins with a single quote, PHP
looks for the next single quote and regards that as the end of the string. Since an apostro-
phe uses the same character as a single quote, this presents a problem. A similar problem
arises when a string in double quotes contains double quotes. The best way to explain this
is with a practical example.

This simple exercise demonstrates the difference between single and double quotes and
what happens when a conflict arises with an apostrophe or double quotes inside a string.

1. Create a new PHP page called quotes.php in workfiles/ch10. If you just want to
look at the finished code, use quotes.php in examples/ch10.

2. Switch to Code view, and type the following code between the <body> tags:

<?php
$name = 'David Powers';
echo 'Single quotes: The author is $name
';
echo "Double quotes: The author is $name";
?>

3. Save the page, and load it into a browser. As you can see from the following
screenshot, $name is treated as plain text in the first line, but is processed and
replaced with its value in the second line, which uses double quotes.

To display the output on separate lines, you have to include XHTML tags, such as

, because echo outputs only the values passed to it—nothing more.

Experimenting with quotes

INTRODUCING THE BASICS OF PHP

301

10

8598CH10.qxd 6/11/07 5:14 PM Page 301

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Change the text slightly in lines 3 and 4 of the code, as follows:

echo 'Single quotes: The author's name is $name
';
echo "Double quotes: The author's name is $name";

As you type, the change in Dreamweaver syntax coloring should alert you to a
problem, but save the page nevertheless, and view it in a browser (it’s quotes2.php
in examples/ch10). You should see something like this:

As far as PHP is concerned, an apostrophe and a single quote are the same thing,
and quotes must always be in matching pairs. What’s happened is that the apostro-
phe in author's has been regarded as the closing quote for the first line; what was
intended as the closing quote of the first line becomes a second opening quote;
and the apostrophe in the second line becomes the second closing quote. All quite
different from what was intended—and if you’re confused, is it any wonder that
PHP is unable to work out what’s meant to be going on?

5. To solve the problem, insert a backslash in front of the apostrophe in the first sen-
tence, like this (see quotes3.php in examples/ch10):

echo 'Single quotes: The author\'s name is $name
';

You should now see the syntax coloring revert to normal. If you view the result in a
browser, it should display correctly like this:

The meaning of parse error and other error messages is explained in “Understanding
PHP error messages” at the end of the chapter.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

302

8598CH10.qxd 6/11/07 5:14 PM Page 302

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using escape sequences in strings
Using a backslash like this is called an escape sequence. It tells PHP to treat a character in
a special way. Double quotes within a double-quoted string? You guessed it—escape them
with a backslash.

echo "Swift's \"Gulliver's Travels\""; // displays the double quotes

The next line of code achieves exactly the same thing, but by using a different combina-
tion of quotes:

echo 'Swift\'s "Gulliver\'s Travels"';

So what happens when you want to include a literal backslash? You escape it with a back-
slash (\\).

The backslash (\\) and the single quote (\') are the only escape sequences that work in a
single-quoted string. Because double quotes are a signal to PHP to process any variables
contained within a string, there are many more escape sequences for double-quoted
strings. Most of them are to avoid conflicts with characters that are used with variables,
but three of them have special meanings: \n inserts a new line character, \r inserts a car-
riage return (needed mainly for Windows), and \t inserts a tab. Table 10-1 lists the main
escape sequences supported by PHP.

Table 10-1. The main PHP escape sequences

Escape sequence Character represented in double-quoted string

\" Double quote

\n New line

\r Carriage return

\t Tab

\\ Backslash

\$ Dollar sign

\{ Opening curly brace

\} Closing curly brace

\[Opening square bracket

\] Closing square bracket

When creating strings, the outside pair of quotes must match—any quotes of the
same style inside the string must be escaped with a backslash. However, putting a
backslash in front of the opposite style of quote will result in the backslash being dis-
played. To see the effect, put a backslash in front of the apostrophe in the doubled-
quoted string in the previous exercise.

INTRODUCING THE BASICS OF PHP

303

10

8598CH10.qxd 6/11/07 5:14 PM Page 303

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Double quotes are obviously very useful, so why not use them all the time? Many people
do, but the official recommendation is to use the quoting method that uses the least pro-
cessing power—and that’s usually single quotes. When PHP sees an opening double quote,
it tries to process any variables first. If it finds none, it goes back and treats the string as
plain text. On short scripts, such as in this book, the difference in processing time is negli-
gible, but it can make a difference on long, complex scripts.

Joining strings together
PHP has a rather unusual way of joining strings. Although many other computer languages
use the plus sign (+), PHP uses a period, dot, or full stop (.) like this:

$firstName = 'David';
$lastName = 'Powers';
echo $firstName.$lastName; // displays DavidPowers

As the comment in the final line of code indicates, when two strings are joined like this,
PHP leaves no gap between them. Don’t be fooled into thinking that adding a space after
the period will do the trick. It won’t. You can put as much space on either side of the
period as you like; the result will always be the same, because PHP ignores whitespace in
code. You must either include a space in one of the strings or insert the space as a string
in its own right, like this:

echo $firstName.' '.$lastName; // displays David Powers

Adding to an existing string
Very often, you need to add more text at the end of an existing string. One way to do it is
like this:

$author = 'David';
$author = $author.' Powers'; // $author is now 'David Powers'

Basically, this concatenates Powers (with a leading space) on the end of $author, and then
assigns everything back to the original variable.

Adding something to an existing variable is such a common operation, PHP offers a short-
hand way of doing it—with the combined concatenation operator. Don’t worry about the
highfalutin name, it’s just a period followed by an equal sign. It works like this:

The period—or concatenation operator, to give it its correct name—can be difficult
to spot among a lot of other code. Make sure the font size in your script editor is large
enough to read without straining to see the difference between periods and commas.

The escape sequences listed in Table 10-1, with the exception of \\, work only in dou-
ble-quoted strings. If you use them in a single-quoted string, they are treated as a lit-
eral backslash followed by the second character.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

304

8598CH10.qxd 6/11/07 5:14 PM Page 304

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$author = 'David';
$author .= ' Powers'; // $author is now 'David Powers'

There should be no space between the period and equal sign. You’ll find this shorthand
very useful when building the string to form the body of an email message in the next
chapter.

Using quotes efficiently
Award yourself a bonus point if you spotted a better way of adding the space between
$firstName and $lastName in the last example. Yes, that’s right . . . Use double quotes,
like this:

echo "$firstName $lastName"; // displays David Powers

Choosing the most efficient combination of quotation marks isn’t easy when you first start
working with PHP, but it can make your code a lot easier to use. Many beginners stick
rigidly to double quotes for everything, and end up peppering their scripts with back-
slashes to escape double quotes in the middle of strings. It not only makes scripts difficult
to read, but usually results in PHP errors or broken XHTML.

Special cases: true, false and null
Although text should be enclosed in quotes, three special cases—true, false, and null—
should never be enclosed in quotes unless you want to treat them as genuine text (or
strings). The first two mean what you would expect; the last one, null, means “nothing” or
“no value.”

PHP makes decisions on the basis of whether something evaluates to true or false.
Putting quotes around false has surprising consequences. The following code:

$OK = 'false';

does exactly the opposite of what you might expect: it makes $OK true! Why? Because the
quotes around false turn it into a string, and PHP treats strings as true. The other thing
to note about true, false, and null is that they are case insensitive. The following exam-
ples are all valid:

$OK = TRUE;
$OK = tRuE;
$OK = true;

How long can a string be? As far as PHP is concerned, there’s no limit. In practice, you
are likely to be constrained by other factors, such as server memory; but in theory,
you could store the whole of War and Peace in a string variable.

INTRODUCING THE BASICS OF PHP

305

10

8598CH10.qxd 6/11/07 5:14 PM Page 305

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Working with numbers
PHP can do a lot with numbers—from simple addition to complex math. Numbers can
contain a decimal point or use scientific notation, but they must contain no other punctu-
ation. Never use a comma as a thousands separator. The following examples show the
right and wrong ways to assign a large number to a variable:

$million = 1000000; // this is correct
$million = 1,000,000; // this generates an error
$million = 1e6; // this is correct
$million = 1e 6; // this generates an error

When using scientific notation, the letter “e” can be uppercase or lowercase and optionally
followed by a plus or minus sign. No spaces are permitted.

Performing calculations
The standard arithmetic operators all work the way you would expect, although some of
them look slightly different from those you learned at school. For instance, an asterisk (*)
is used as the multiplication sign, and a forward slash (/) is used to indicate division.

Table 10-2 shows examples of how the standard arithmetic operators work. To demon-
strate their effect, the following variables have been set:

$x = 20;
$y = 10;
$z = 3;

Table 10-2. Arithmetic operators in PHP

Operation Operator Example Result

Addition + $x + $y 30

Subtraction - $x - $y 10

Multiplication * $x * $y 200

Division / $x / $y 2

Modulo division % $x % $z 2

Increment (add 1) ++ $x++ 21

Decrement (subtract 1) -- $y-- 9

You may not be familiar with the modulo operator. This returns the remainder of a divi-
sion, as follows:

26 % 5 // result is 1
26 % 27 // result is 26
10 % 2 // result is 0

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

306

8598CH10.qxd 6/11/07 5:14 PM Page 306

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A quirk with the modulo operator in PHP is that it converts both numbers to integers
before performing the calculation. Consequently, if $z is 4.5 in Table 10-2, it gets rounded
up to 5, making the result 0, not 2, as you might expect. (Yes, it was a mistake in my previ-
ous books.)

A practical use of the modulo operator is to work out whether a number is odd or even.
$number % 2 will always produce 0 or 1.

The increment (++) and decrement (--) operators can come either before or after the
variable. When they come before the variable, 1 is added to or subtracted from the value
before any further calculation is carried out. When they come after the variable, the main
calculation is carried out first, and then 1 is either added or subtracted. Since the dollar
sign is an integral part of the variable name, the increment and decrement operators go
before the dollar sign when used in front:

++$x
--$y

You can set your own values for $x, $y, and $z in calculation.php in examples/ch10 to
test the arithmetic operators in action. The page also demonstrates the difference
between putting the increment and decrement operators before and after the variable.

As noted earlier, numbers should not normally be enclosed in quotes, although PHP will
usually convert to its numeric equivalent a string that contains only a number or that
begins with a number.

Calculations in PHP follow exactly the same rules as standard arithmetic. Table 10-3 sum-
marizes the precedence of arithmetic operators.

Table 10-3. Precedence of arithmetic operators

Precedence Group Operators Rule

Highest Parentheses () Operations contained within
parentheses are evaluated first. If
these expressions are nested, the
innermost is evaluated foremost.

Next Multiplication * / % These operators are evaluated
and division next. If an expression contains

two or more operators, they are
evaluated from left to right.

Lowest Addition and + - These are the final operators to
subtraction be evaluated in an expression.

If an expression contains two
or more operators, they are
evaluated from left to right.

If in doubt, use parentheses all the time to group the parts of a calculation that you want
to make sure are performed as a single unit.

INTRODUCING THE BASICS OF PHP

307

10

8598CH10.qxd 6/11/07 5:14 PM Page 307

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Combining calculations and assignment
You will often want to perform a calculation on a variable and assign the result back to the
same variable. PHP offers the same convenient shorthand for arithmetic calculations as for
strings. Table 10-4 shows the main combined assignment operators and their use.

Table 10-4. Combined arithmetic assignment operators used in PHP

Operator Example Equivalent to

+= $a += $b $a = $a + $b

-= $a -= $b $a = $a - $b

*= $a *= $b $a = $a * $b

/= $a /= $b $a = $a / $b

%= $a %= $b $a = $a % $b

Don’t forget that the plus sign is used in PHP only as an arithmetic operator.

Addition: Use += as the combined assignment operator

Strings: Use .= as the combined assignment operator

Using arrays to store multiple values
Arrays are an important—and useful—part of PHP. You met one of PHP’s built-in arrays,
$_POST, in the last chapter, and you’ll work with it a lot more through the rest of this book.
Arrays are also used extensively with a database, as you fetch the results of a search in a
series of arrays.

An array is a special type of variable that stores multiple values rather like a shopping list.
Although each item might be different, you can refer to them collectively by a single
name. Figure 10-1 demonstrates this concept: the variable $shoppingList refers collec-
tively to all five items—wine, fish, bread, grapes, and cheese.

Individual items—or array elements—are identified by means of a number in square
brackets immediately following the variable name. PHP assigns the number automatically,
but it’s important to note that the numbering always begins at 0. So the first item in the
array, wine, is referred to as $shoppingList[0], not $shoppingList[1]. And although
there are five items, the last one (cheese) is $shoppingList[4]. The number is referred to
as the array key or index, and this type of array is called an indexed array.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

308

8598CH10.qxd 6/11/07 5:14 PM Page 308

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 10-1. Arrays are variables that store multiple items, just like a shopping list.

Instead of declaring each array element individually, you can declare the variable name
once, and assign all the elements by passing them as a comma-separated list to array(),
like this:

$shoppingList = array('wine', 'fish', 'bread', 'grapes', 'cheese');

PHP numbers each array element automatically, so this creates the same array as in
Figure 10-1. To add a new element to the end of the array, use a pair of empty square
brackets like this:

$shoppingList[] = 'coffee';

PHP uses the next number available, so this becomes $shoppingList[5].

Using names to identify array elements
Numbers are fine, but it’s often more convenient to give array elements meaningful
names. For instance, an array containing details of this book might look like this:

$book['title'] = 'Essential Guide to Dreamweaver CS3';
$book['author'] = 'David Powers';
$book['publisher'] = 'friends of ED';
$book['ISBN13'] = '978-1-59059-859-7';

The comma must go outside the quotes, unlike American typographic practice.
For ease of reading, I have inserted a space following each comma, but it’s not
necessary to do so.

INTRODUCING THE BASICS OF PHP

309

10

8598CH10.qxd 6/11/07 5:14 PM Page 309

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This type of array is called an associative array. Note that the array key is enclosed in
quotes (single or double, it doesn’t matter). It mustn’t contain any spaces or punctuation,
except for the underscore.

The shorthand way of creating an associative array uses the => operator (an equal sign fol-
lowed by a greater-than sign) to assign a value to each array key. The basic structure looks
like this:

$arrayName = array('key1' => 'element1', 'key2' => 'element2');

So, this is the shorthand way to build the $book array:

$book = array('title' => 'Essential Guide to Dreamweaver CS3',
'author' => 'David Powers',
'publisher' => 'friends of ED',
'ISBN13' => '978-1-59059-859-7');

It’s not essential to align the => operators like this, but it makes code easier to read and
maintain.

Inspecting the contents of an array with print_r()
As you saw in the previous chapter, you can inspect the contents of an array using
print_r(). This is the code that you inserted at the bottom of feedback.php:

<pre>
<?php if ($_POST) {print_r($_POST);} ?>
</pre>

It displays the contents of the array like this:

The <pre> tags are simply to make the output more readable. What really matters here is
that print_r() displays the contents of an array. As explained earlier, echo and print
work only with variables that contain a single value. However, the only real value of
print_r() is to inspect the contents of an array for testing purposes. It’s no good in a live
web page. To display the contents of an array in normal circumstances, you need to use a

Technically speaking, all arrays in PHP are associative. This means that you can
use both numbers and strings as array keys in the same array. Don’t do it,
though, as it can produce unexpected results. It’s safer to treat indexed and
associative arrays as different types.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

310

8598CH10.qxd 6/11/07 5:14 PM Page 310

http://lib.ommolketab.ir
http//lib.ommolketab.ir

loop. This gives you access to each array element one at a time. Once you get to an ele-
ment that contains a single value, you can use echo or print to display its contents. Loops
are covered a little later.

Making decisions
Decisions, decisions, decisions . . . Life is full of decisions. So is PHP. They give it the ability
to display different output according to circumstances. Decision making in PHP uses con-
ditional statements. The most common of these uses if and closely follows the structure
of normal language. In real life, you may be faced with the following decision (admittedly
not very often if you live in Britain):

If the weather's hot, I'll go to the beach.

In PHP pseudo-code, the same decision looks like this:

if (the weather's hot) {
I'll go to the beach;
}

The condition being tested goes inside parentheses, and the resulting action goes between
curly braces. This is the basic decision-making pattern:

if (condition is true) {
// code to be executed if condition is true
}

The code inside the curly braces is executed only if the condition is true. If it’s false, PHP
ignores everything between the braces and moves on to the next section of code. How
PHP determines whether a condition is true or false is described in the following section.

Sometimes, the if statement is all you need, but you often want a default action to be
invoked. To do this, use else, like this:

if (condition is true) {
// code to be executed if condition is true
}

else {
// default code to run if condition is false
}

Confusion alert: I mentioned earlier that statements must always be followed by a
semicolon. This applies only to the statements (or commands) inside the curly braces.
Although called a conditional statement, this decision-making pattern is one of PHP’s
control structures, and it shouldn’t be followed by a semicolon. Think of the semi-
colon as a command that means “do it.” The curly braces surround the command
statements and keep them together as a group.

INTRODUCING THE BASICS OF PHP

311

10

8598CH10.qxd 6/11/07 5:14 PM Page 311

http://lib.ommolketab.ir
http//lib.ommolketab.ir

What if you want more alternatives? One way is to add more if statements. PHP will test
them, and as long as you finish with else, at least one block of code will run. However, it’s
important to realize that all if statements will be tested, and the code will be run in every
single one where the condition equates to true. If you want only one code block to be
executed, use elseif like this:

if (condition is true) {
// code to be executed if first condition is true
}

elseif (second condition is true) {
// code to be executed if first condition fails
// but second condition is true

else {
// default code to run if both conditions are false
}

You can use as many elseif clauses in a conditional statement as you like. It’s important
to note that only the first one that equates to true will be executed; all others will be
ignored, even if they’re also true. This means you need to build conditional statements in
the order of priority that you want them to be evaluated. It’s strictly a first-come, first-
served hierarchy.

The truth according to PHP
Decision making in PHP conditional statements is based on the mutually exclusive Boolean
values, true and false (the name comes from a nineteenth century mathematician,
George Boole, who devised a system of logical operations that subsequently became the
basis of much modern-day computing). If the condition equates to true, the code within
the conditional block is executed. If false, it’s ignored. Whether a condition is true or
false is determined in one of the following ways:

A variable set explicitly to true or false

A value PHP interprets implicitly as true or false

The comparison of two values

Explicit true or false values This is straightforward. If a variable is assigned the value true
or false and then used in a conditional statement, the decision is based on that value. As
explained earlier, true and false are case insensitive and must not be enclosed in quotes.

Implicit true or false values PHP regards the following as false:

The case-insensitive keywords false and null

Zero as an integer (0), a floating-point number (0.0), or a string ('0' or "0")

An empty string (single or double quotes with no space between them)

An empty array

Although elseif is normally written as one word, you can use else if
as separate words.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

312

8598CH10.qxd 6/11/07 5:14 PM Page 312

http://lib.ommolketab.ir
http//lib.ommolketab.ir

An object with no values or functions (PHP 4 only)

A SimpleXML object created from empty tags

All other values equate to true.

How comparisons equate to true or false is described in the next section.

Using comparisons to make decisions
Conditional statements often depend on the comparison of two values. Is this bigger than
that? Are they both the same? If the comparison is true, the conditional statement is exe-
cuted. If not, it’s ignored.

To test for equality, PHP uses two equal signs (==) like this:
if ($status == 'administrator') {
// send to admin page
}

else {
// refuse entry to admin area
}

Size comparisons are performed using the mathematical symbols for less than (<) and
greater than (>). Let’s say you’re checking the size of a file before allowing it to be
uploaded to your server. You could set a maximum size of 50KB like this:

if ($bytes > 51200) {
// display error message and abandon upload
}

else {
// continue upload
}

Comparison operators These compare two values (known as operands because they
appear on either side of an operator). If both values pass the test, the result is true (or to
use the technical expression, it returns true). Otherwise, it returns false. Table 10-5 lists
the comparison operators used in PHP.

Don’t use a single equal sign in the first line like this:

if ($status = 'administrator') {

Doing so will open the admin area of your website to everyone. Why? Because
this automatically sets the value of $status to administrator; it doesn’t com-
pare the two values. To compare values, you must use two equal signs. It’s an
easy mistake to make, but one with potentially disastrous consequences.

This definition explains why "false" (in quotes) is interpreted by PHP as
true. The value –1 is also treated as true in PHP.

INTRODUCING THE BASICS OF PHP

313

10

8598CH10.qxd 6/11/07 5:14 PM Page 313

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 10-5. PHP comparison operators used for decision making

Symbol Name Use

== Equality Returns true if both operands have the
same value; otherwise, returns false.

!= Inequality Returns true if both operands have
different values; otherwise, returns false.

<> Inequality This has the same meaning as !=. It’s rarely
used in PHP but has been included here for
the sake of completeness.

=== Identical Determines whether both operands are
identical. To be considered identical, they
must not only have the same value but also
be of the same datatype (for example, both
floating-point numbers).

!== Not identical Determines whether both operands are not
identical (according to the same criteria as
the previous operator).

> Greater than Determines whether the operand on the left
is greater in value than the one on the right.

>= Greater than or equal to Determines whether the operand on the left
is greater in value than or equal to the one
on the right.

< Less than Determines whether the operand on the left
is less in value than the one on the right.

<= Less than or equal to Determines whether the operand on the left
is less in value than or equal to the one on
the right.

Testing more than one condition
Frequently, comparing two values is not enough. PHP allows you to set a series of condi-
tions using logical operators to specify whether all, or just some, need to be fulfilled.

All the logical operators in PHP are listed in Table 10-6. Negation—testing that the oppo-
site of something is true—is also considered a logical operator, although it applies to
individual conditions rather than a series.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

314

8598CH10.qxd 6/11/07 5:14 PM Page 314

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 10-6. Logical operators used for decision making in PHP

Symbol Name Use

&& Logical AND Evaluates to true if both operands are true. If the left-
hand operand evaluates to false, the right-hand
operand is never tested.

and Logical AND Exactly the same as &&, but it takes lower precedence.

|| Logical OR Evaluates to true if either operand is true; otherwise,
returns false. If the left-hand operand returns true,
the right-hand operand is never tested.

or Logical OR Exactly the same as ||, but it takes lower precedence.

xor Exclusive OR Evaluates to true if only one of the two operands
returns true. If both are true or both are false, it
evaluates to false.

! Negation Tests whether something is not true.

Technically speaking, there is no limit to the number of conditions that can be tested. Each
condition is considered in turn from left to right, and as soon as a defining point is
reached, no further testing is carried out. When using && or and, every condition must be
fulfilled, so testing stops as soon as one turns out to be false. Similarly, when using || or
or, only one condition needs to be fulfilled, so testing stops as soon as one turns out to
be true.

$a = 10;
$b = 25;
if ($a > 5 && $b > 20) // returns true
if ($a > 5 || $b > 30) // returns true, $b never tested

The implication of this is that when you need all conditions to be met, you should design
your tests with the condition most likely to return false as the first to be evaluated. When
you need just one condition to be fulfilled, place the one most likely to return true first.
If you want a particular set of conditions considered as a group, enclose them in paren-
theses.

if (($a > 5 && $a < 8) || ($b > 20 && $b < 40))

Operator precedence is a tricky subject. Stick with && and ||, rather than and and or, and
use parentheses to group expressions to which you want to give priority. The xor operator
is rarely used.

INTRODUCING THE BASICS OF PHP

315

10

8598CH10.qxd 6/11/07 5:14 PM Page 315

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using the switch statement for decision chains
The switch statement offers an alternative to if . . . else for decision making. The
basic structure looks like this:

switch(variable being tested) {
case value1:
statements to be executed
break;

case value2:
statements to be executed
break;

default:
statements to be executed

}

The case keyword indicates possible matching values for the variable passed to switch().
When a match is made, every subsequent line of code is executed until the break keyword
is encountered, at which point the switch statement comes to an end.

Dreamweaver uses a switch statement in the GetSQLValueString() function, which it
inserts into pages that insert or update records in a database.

The main points to note about switch are as follows:

The expression following the case keyword must be a number or a string.

You can’t use comparison operators with case. So case > 100: isn’t allowed.

Each block of statements should normally end with break, unless you specifically
want to continue executing code within the switch statement.

You can group several instances of the case keyword together to apply the same
block of code to them.

If no match is made, any statements following the default keyword will be exe-
cuted. If no default has been set, the switch statement will exit silently and con-
tinue with the next block of code.

Using the conditional operator
The conditional operator (?:) is a shorthand method of representing a simple conditional
statement. The basic syntax looks like this:

condition ? value if true : value if false;

What this means is that, if the condition to the left of the question mark is true, the value
immediately to the right of the question mark is used. However, if the condition evaluates
to false, the value to the right of the colon is used instead. Here is an example of it in use:

$age = 17;
$fareType = $age > 16 ? 'adult' : 'child';

The conditional operator can be quite confusing when you first encounter it, so let’s break
down this example section by section.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

316

8598CH10.qxd 6/11/07 5:14 PM Page 316

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first line sets the value of $age to 17.

The second line sets the value of $fareType using the conditional operator. The condition
is between the equal sign and the question mark—in other words, $age > 16.

If $age is greater than 16, the condition evaluates to true, so $fareType is set to the value
between the question mark and the colon—in other words, 'adult'. Otherwise $fareType
is set to the value to the right of the colon—or 'child'. You can rewrite the second line
using if . . . else like this:

if ($age > 16) {
$fareType = 'adult';
}

else {
$fareType = 'child';
}

The if . . . else version is much easier to read, but the conditional operator is more
compact, and it’s used frequently by Dreamweaver. Most beginners hate this shorthand,
but you need to understand how it works if you want to customize Dreamweaver code.
Because the conditional operator uses three operands, it’s sometimes called the ternary
operator.

Using loops for repetitive tasks
Loops are huge time-savers, because they perform the same task over and over again, yet
involve very little code. They’re frequently used with arrays and database results. You can
step through each item one at a time looking for matches or performing a specific task.
Loops frequently contain conditional statements, so although they’re very simple in struc-
ture, they can be used to create code that processes data in often sophisticated ways.

Loops using while and do . . . while
The simplest type of loop is called a while loop. Its basic structure looks like this:

while (condition is true) {
do something
}

The following code displays every number from 1 through 100 in a browser (you can see it
in action in while.php in examples/ch10). It begins by setting a variable ($i) to 1, and then
using the variable as a counter to control the loop, as well as display the current number
onscreen.

$i = 1; // set counter
while ($i <= 100) {
echo "$i
";
$i++; // increase counter by 1
}

INTRODUCING THE BASICS OF PHP

317

10

8598CH10.qxd 6/11/07 5:14 PM Page 317

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A variation of the while loop uses the keyword do and follows this basic pattern:

do {
code to be executed
} while (condition to be tested);

The only difference between a do . . . while loop and a while loop is that the code
within the do block is executed at least once, even if the condition is never true. The fol-
lowing code (in dowhile.php in examples/ch10) displays the value of $i once, even
though it’s greater than the maximum expected.

$i = 1000;
do {
echo "$i
";
$i++; // increase counter by 1
} while ($i <= 100);

Dreamweaver uses a do . . . while loop in its Repeat Region server behavior to loop
through the results of a database query (what Dreamweaver calls a recordset) and display
them on your page.

The danger with creating while and do . . . while loops yourself is forgetting to set a
condition that brings the loop to an end or setting an impossible condition. When this
happens, you create an infinite loop that either freezes your computer or causes the
browser to crash.

The versatile for loop
The for loop is less prone to generating an infinite loop, because you specify in the first
line how you want the loop to work. The for loop uses the following basic pattern:

for (initialize counter; test; increase or decrease the counter) {
code to be executed
}

The three expressions inside the parentheses control the action of the loop (note that they
are separated by semicolons, not commas):

The first expression initializes the counter variable at the start of the loop. You can
use any variable you like, but the convention is to use $i. When more than one
counter is needed, $j and $k are frequently used.

The second expression is a test that determines whether the loop should continue
to run. This can be a fixed number, a variable, or an expression that calculates a
value.

The third expression shows the method of stepping through the loop. Most of the
time, you will want to go through a loop one step at a time, so using the increment
(++) or decrement (--) operator is convenient.

The following code does exactly the same as the previous while loop, displaying every
number from 1 to 100 (see forloop.php in examples/ch10):

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

318

8598CH10.qxd 6/11/07 5:14 PM Page 318

http://lib.ommolketab.ir
http//lib.ommolketab.ir

for ($i = 1; $i <= 100; $i++) {
echo "$i
";
}

There is nothing stopping you from using bigger steps. For instance, replacing $i++ with
$i+=10 in this example would display 1, 11, 21, 31, and so on.

Looping through arrays with foreach
The final type of loop in PHP is used exclusively with arrays. It takes two forms, both of
which use temporary variables to handle each array element. If you only need to do some-
thing with the value of each array element, the foreach loop takes the following form:

foreach (array_name as temporary_variable) {
do something with temporary_variable
}

The following example loops through the $shoppingList array and displays the name of
each item (see shopping_list.php in examples/ch10):

$shoppingList = array('wine', 'fish', 'bread', 'grapes', 'cheese');
foreach ($shoppingList as $item) {
echo $item.'
';
}

The preceding example accesses only the value of each array element. An alternative form
of the foreach loop gives access to both the key and value of each element. It takes this
slightly different form:

foreach (array_name as key_variable => value_variable) {
do something with key_variable and value_variable
}

This next example uses the $book array from “Using names to identify array elements” ear-
lier in the chapter and incorporates the key and value of each element into a simple string,
as shown in the screenshot (see book.php in examples/ch10):

foreach ($book as $key => $value) {
echo "The value of $key is $value
";
}

INTRODUCING THE BASICS OF PHP

319

10

8598CH10.qxd 6/11/07 5:14 PM Page 319

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Breaking out of a loop
To bring a loop prematurely to an end when a certain condition is met, insert the break
keyword inside a conditional statement. As soon as the script encounters break, it exits
the loop.

To skip an iteration of the loop when a certain condition is met, use the continue key-
word. Instead of exiting, it returns to the top of the loop and executes the next iteration.

Using functions for preset tasks
Functions do things . . . lots of things, mind-bogglingly so in PHP. The last time I counted,
PHP had nearly 3,000 built-in functions, and more have been added since. Don’t worry:
you’ll only ever need to use a handful, but it’s reassuring to know that PHP is a full-
featured language capable of industrial-strength applications.

The functions you’ll be using in this book do really useful things, such as send email, query
a database, format dates, and much, much more. You can identify functions in PHP code,
because they’re always followed by a pair of parentheses. Sometimes the parentheses are
empty, as in the case of phpinfo(), which you used in test.php when setting up your test-
ing environment in Chapter 3. Often, though, the parentheses contain variables, numbers,
or strings, like this:

$thisYear = date('Y');

This calculates the current year and stores it in the variable $thisYear. It works by feeding
the string 'Y' to the built-in PHP function date(). Placing a value between the parenthe-
ses like this is known as passing an argument to a function. The function takes the value in
the argument and processes it to produce (or return) the result. For instance, if you pass
the string 'M' as an argument to date() instead of 'Y', it will return the current month as
a three-letter abbreviation (e.g., Mar, Apr, May). The date() function is covered in detail in
Chapter 17.

Some functions take more than one argument. When this happens, separate the argu-
ments with commas inside the parentheses, like this:

$mailSent = mail($to, $subject, $message);

It doesn’t take a genius to work out that this sends an email to the address stored in the
first argument, with the subject line stored in the second argument, and the message
stored in the third one. You’ll see how this function works in the next chapter.

You’ll often come across the term “parameter” in place of “argument.” There is
a technical difference between the two words, but for all practical purposes,
they are interchangeable.

The foreach keyword is one word. Inserting a space between for and
each doesn’t work.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

320

8598CH10.qxd 6/11/07 5:14 PM Page 320

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As if the 3,000-odd built-in functions weren’t enough, PHP lets you build your own custom
functions. Even if you don’t relish the idea of creating your own, throughout this book
you’ll use some that I have made. You use them in exactly the same way.

Understanding PHP error messages
There’s one final thing you need to know about before savoring the delights of PHP: error
messages. They’re an unfortunate fact of life, but it helps a great deal if you understand
what they’re trying to tell you. The following illustration shows the structure of a typical
error message.

The first thing to realize about PHP error messages is that they report the line where PHP
discovered a problem. Most newcomers—quite naturally—assume that’s where they’ve
got to look for their mistake. Wrong . . .

What PHP is telling you most of the time is that something unexpected has happened. In
other words, the mistake frequently lies before that point. The preceding error message
means that PHP discovered a foreach command where there shouldn’t have been one.
(Error messages always prefix PHP elements with T_, which stands for token. Just ignore it.)

Instead of worrying what might be wrong with the foreach command (probably nothing),
start working backward, looking for anything that might be missing. Usually, it’s a semi-
colon or closing quote. In this example, the error was caused by omitting the semicolon at
the end of line 28 in book.php.

There are four main categories of error, presented here in descending order of impor-
tance:

Fatal error: Any XHTML output preceding the error will be displayed, but once the
error is encountered—as the name suggests—everything else is killed stone dead.
A fatal error is normally caused by referring to a nonexistent file or function.

Parse error: This means there’s a mistake in your code, such as mismatched quotes,
or a missing semicolon or closing brace. Like a fatal error, it stops the script in its
tracks and doesn’t even allow any XHTML output to be displayed.

Warning: This alerts you to a serious problem, such as a missing include file.
(Include files are covered in Chapter 12.) However, the error is not serious enough
to prevent the rest of the script from being executed.

Notice: This advises you about relatively minor issues, such as the use of a nonde-
clared variable. Although you can turn off the display of notices, you should always
try to eliminate the cause, rather than sweep the issue under the carpet. Any error
is a threat to your output.

INTRODUCING THE BASICS OF PHP

321

10

8598CH10.qxd 6/11/07 5:14 PM Page 321

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Hosting companies have different policies about the level of error checking. If error check-
ing is set to a high level and the display of errors is turned off, any mistakes in your code
will result in a blank screen. Even if your hosting company has a more relaxed policy, you
still don’t want mistakes to be displayed for all to see. Test your code thoroughly, and elim-
inate all errors before deploying it on a live website.

Another type of error, strict, was introduced in PHP 5.0.0, mainly for the benefit of
advanced developers. As of this writing, strict error messages are not displayed by default,
but there are plans to change this and introduce a new deprecated category as a prelude
to removing outdated parts of the language. If you see a strict or deprecated error mes-
sage, ignore it at your peril.

Now put it to work . . .
After that crash course, I hope you’re feeling not like a crash victim but invigorated and
raring to go. Although you have been bombarded with a mass of information, you’ll dis-
cover that it’s easy to make rapid progress with PHP. In the next chapter, you’ll use most of
the techniques from this chapter to send user input from an online form to your email
inbox. To begin with, you’ll probably feel that you’re copying code without much compre-
hension, but I’ll explain all the important things along the way, and you should soon find
things falling into place.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

322

8598CH10.qxd 6/11/07 5:14 PM Page 322

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11 USING PHP TO PROCESS A FORM

8598CH11.qxd 6/4/07 11:23 AM Page 325

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In Chapter 9, I showed you how to build a feedback form and validate the input on the
client side with Spry validation widgets. In this chapter, we’ll take the process to its next
stage by validating the data on the server side with PHP. If the data is OK, we’ll send the
contents by email and display an acknowledgement message. If there’s a problem with any
of the data, we’ll redisplay it in the form with messages prompting the user to correct any
errors or omissions. Figure 11-1 shows the flow of events.

Figure 11-1. The flow of events in processing the feedback form

Sending an email from an online form is just the sort of task that Dreamweaver should
automate, but unfortunately it doesn’t. Commercial extensions are available to automate
the process for you, but not everyone will have—or want to buy—a commercial extension
in addition to Dreamweaver CS3, so I think it’s important to show you how to hand-code
this vital feature. At the same time, it gives you practical experience working with PHP
code, which is essential unless you are willing to be limited to very basic tasks. The
Dreamweaver server behaviors and data objects that you will use in later chapters take a
lot of the hard work out of creating dynamic applications, but like the CSS layout that you
used in Chapter 6, they lay a solid foundation for you to build on, rather than do
absolutely everything for you.

This chapter shows you how to

Gather user input and send it by email

Use PHP conditional logic to check required fields

Display errors without losing user input

Filter out suspect material

Avoid email header injection attacks

Process multiple-choice form elements

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

326

8598CH11.qxd 6/4/07 11:23 AM Page 326

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The flow of events shown in Figure 11-1 is controlled by a series of conditional statements
(see “Making decisions” in the previous chapter). The PHP script will be in the same page
as the form, so the first thing that it needs to know is if the form has been submitted. If it
has, the contents of the $_POST array will be checked. If it’s OK, the email will be sent and
an acknowledgement displayed, else a series of error messages will be displayed. In other
words, everything is controlled by if . . . else statements.

Activating the form
As you saw in Chapter 9, data entered into the form can be retrieved by using
print_r($_POST); to inspect the contents of the $_POST array. This is one of PHP’s so-
called superglobal arrays. They’re such an important part of PHP, it’s worth pausing for a
moment to take a look at what they do.

Getting information from the server with PHP superglobals
Superglobal arrays are built-in associative arrays that are automatically populated with
really useful information. They all begin with a dollar sign followed by an underscore. The
most important superglobal arrays are as follows:

$_POST: This contains values sent through the post method.

$_GET: This contains values sent through the get method or a URL query string.

$_SERVER: This contains information stored by the web server, such as file name,
pathname, hostname, etc.

$_SESSION: This stores information that you want to preserve so that it’s available
to other pages. Sessions are covered in Chapter 15.

$_FILES: This contains details of file uploads. File uploads are not covered in this
book. See www.php.net/manual/en/features.file-upload.php or my book PHP
Solutions: Dynamic Web Design Made Easy (friends of ED, ISBN-13: 978-1-59059-
731-6) for details.

The keys of $_POST and $_GET are automatically derived from the names of form elements.
Let’s say you have a text input field called address in a form; PHP automatically creates
an array element called $_POST['address'] when the form is submitted by the post
method or $_GET['address'] if you use the get method. As Figure 11-2 shows,
$_POST['address'] contains whatever value a visitor enters in the text field, enabling you
to display it onscreen, insert it in a database, send it to your email inbox, or do whatever
you want with it.

Figure 11-2. The $_POST array automatically creates variables with the same name
and value as each form field.

USING PHP TO PROCESS A FORM

327

11

8598CH11.qxd 6/4/07 11:23 AM Page 327

http://www.php.net/manual/en/features.file-upload.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

It’s important to realize that variables like $_POST['address'] or $_GET['address'] don’t
exist until the form has been submitted. So, before using $_POST or $_GET variables in a
script, you should always test for their existence with isset() or wrap the entire section
of script in a conditional statement that checks whether the form has been submitted.
You’ll see both of these techniques in action in this chapter and the rest of this book.

You may come across old scripts or tutorials that tell you PHP automatically creates vari-
ables with the same name as form fields. In this example, it would be $address. This relies
on a setting called register_globals being on. The default for register_globals has
been off since 2002, but some hosting companies still switch it back on. You should never
rely on register_globals, as it leaves your site wide open to malicious attacks. Moreover,
register_globals has been removed from PHP 6, so scripts that rely on this setting will
break in the future.

Some scripts also recommend the use of $_REQUEST, which is another PHP superglobal. It’s
much less secure. Always use $_POST for data submitted using the post method and $_GET
for the get method or when values are passed through a query string at the end of a URL.

Dreamweaver code hints make it easy to type the names of superglobals. As soon as you
type the underscore after the dollar sign, it displays a list of the array names; and for arrays
such as $_SERVER with predefined elements, a second menu with the predefined elements
is also displayed, as you’ll see when you start scripting the form.

Sending email
To send an email with PHP, you use the mail() function, which takes up to five arguments,
all of them strings, as follows:

The address(es) of the recipient(s)

The subject line

The message body

A list of other email headers

Additional parameters

The first three arguments are required. Email addresses in the first argument can be in
either of the following formats:

'user@example.com'
'Some Guy <user2@example.com>'

To send to more than one address, use a comma-separated string like this:

'user@example.com, another@example.com, Some Guy <user2@example.com>'

Don’t forget that PHP is case sensitive. All superglobal array names are written in
uppercase. $_Post or $_Get, for example, won’t work.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

328

8598CH11.qxd 6/4/07 11:23 AM Page 328

mailto:user@example.com
mailto:user2@example.com
mailto:user@example.com
mailto:another@example.com
mailto:user2@example.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The second argument is a string containing the subject line. The third argument is the mes-
sage body, which must be a single string, regardless of how long it is. I’ll come back to the
final two arguments later.

It’s important to understand that mail() isn’t an email program. It passes data to the web
server’s mail transport agent (MTA). PHP’s responsibility ends there. It has no way of know-
ing if the email is delivered to its destination. It doesn’t handle attachments or HTML
email. Still, it’s efficient and easy to use.

These days, most Internet service providers (ISPs) enforce simple mail transfer protocol
(SMTP) authentication before accepting email for relay from another machine. However,
since mail() communicates directly with the MTA on the same machine, no authentica-
tion is required. More important, since mail() doesn’t normally need to authenticate
itself, it’s not capable of doing so when you attempt to use it in your local test environ-
ment. What happens is that mail() tries to hand the message to your local MTA. If it finds
one, and your ISP accepts the message, you’re in luck. More often than not, it can’t find
one or the ISP rejects the mail without authentication. On Windows, you can edit php.ini
(see Chapter 3) and change the SMTP command from localhost to the address of your
ISP’s outgoing mail server (it’s usually something like smtp.example.com). On a Mac, PHP
uses the MTA built into OS X, so there is no need to edit php.ini.

Scripting the feedback form
To make things simple, I’m going to break up the PHP script into several sections. To start
off, I’ll concentrate on the text input fields and sending their content by email. Then I’ll
move onto validation and the display of error messages before showing you how to han-
dle checkboxes, radio buttons, menus, and multiple-choice lists.

Most readers should be able to send a simple email after the following exercise, but even
if you are successful, you should implement the server-side validation described later in
the chapter. This is because, without some simple security precautions, you risk turning
your online forms into a spam relay. Your hosting company might suspend your site or
close down your account altogether. In fact, many hosting companies implement security
measures that prevent the first version of the mail script from working. However, you
should have a fully working form by the end of this chapter.

This involves a lot of hand-coding—much more than you’ll encounter in later chapters.
Even if you don’t want to do a lot of PHP programming, it’s important to get a feel for the
flow of a script, as this will help you customize the Dreamweaver code once you start
working with a database. The script uses a lot of PHP’s built-in functions. I explain the
important ones but don’t always go into the finer points of how they work. The idea is to
give you a working solution, rather than overwhelm you with detail. The finished code for
each section is in examples/ch11; and in the next chapter, I’ll show you how to put the
main part of the script in an external file so that you can reuse it with other forms without
the need to hand-code everything from scratch every time.

Local testing with mail() is very much hit and miss. The most reliable approach is to
test mail-processing scripts on your remote server. The instructions in this chapter
explain which parts of the script can be tested locally.

USING PHP TO PROCESS A FORM

329

11

8598CH11.qxd 6/4/07 11:23 AM Page 329

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The starting point is in feedback_01.php in examples/ch11. It’s the same as feedback_
fieldsets.php from Chapter 9 but with the small block of PHP code removed from the
bottom of the page. If you want to use your own form, I suggest that you remove any
client-side validation from it, as the client-side validation makes it difficult to check
whether the more important server-side validation with PHP is working correctly. You can
add the client-side validation back at the final stage.

1. Copy feedback_01.php from examples/ch11 to workfiles/ch11, and save it as
feedback.php. Also make sure you have a copy of contact.css in your styles
folder.

2. Open contact.css, and add the following style rule (it already exists in the version
in the examples/styles folder):

.warning {
font-weight:bold;
color:#FF0000;

}

This adds a class called warning, which displays text in bold red. Close
contact.css.

3. Open feedback.php in Split view, click anywhere inside the form, and use the Tag
selector to select the entire form. This should bring the opening tag of the form
into view in the Code view section of the Document window. Click inside Code view
so that your cursor is between the quotes of the action attribute. Although you
can set the action for the form through the Property inspector, doing so in Code
view greatly reduces the possibility of making a mistake.

4. Select the PHP tab on the Insert bar, and click the Echo button (the menu option is
Insert ➤ PHP Objects ➤ Echo). This will insert a pair of PHP tags followed by echo
between the quotes of the action attribute, and Dreamweaver positions your cur-
sor in the correct place to start typing, as shown in the following screenshot:

Processing and acknowledging the message

This is a long script. Give yourself plenty of time to absorb the details. You can
check your progress at each stage with the files in examples/ch11. The final
code is in feedback_12.php.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

330

8598CH11.qxd 6/4/07 11:23 AM Page 330

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. To set the action attribute of the form to process itself, you need to use a variable
from the $_SERVER superglobal array. As noted before, superglobals always begin
with $_, so type just that at the current position. Dreamweaver automatically pres-
ents you with a pop-up menu containing all the superglobals, as shown here:

You can navigate this pop-up menu in several ways: continue typing “server” in
either uppercase or lowercase until SERVER is highlighted or use your mouse or
the arrow keys to highlight it. Then double-click or press Enter/Return.
Dreamweaver will present you with another pop-up menu. Locate PHP_SELF as
shown, and either double-click or press Enter/Return:

6. Although it’s not strictly necessary for a single command, get into the habit of end-
ing all statements with a semicolon, and type one after the closing square bracket
(]) of the superglobal variable that’s just been entered. The code in the opening
<form> tag should look like this (new code is highlighted in bold type):

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post" ➥

name="form1" id="form1">

The predefined variable $_SERVER['PHP_SELF'] always contains the name of the
current page, so using echo between the quotes of the action attribute automati-
cally sets it to the current page, making this a self-processing form. As you saw
in Chapter 9, leaving out the value of action also results in the form attempting
to process itself. So, technically speaking, this isn’t 100 percent necessary, but
it’s common practice in PHP scripts, and it’s useful to know what
$_SERVER['PHP_SELF'] does.

7. You now need to add the mail-processing script at the top of the page. As you saw
in Chapter 9, the $_POST array contains not only the data entered into the form but
also the name and value of the submit button. You can use this information to
determine whether the submit button has been clicked. From this point onward, it
will be easier to work in Code view. Switch to Code view, and insert the following
block of PHP code immediately above the DOCTYPE declaration:

USING PHP TO PROCESS A FORM

331

11

8598CH11.qxd 6/4/07 11:23 AM Page 331

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<?php
if (array_key_exists('send', $_POST)) {
// mail processing script
echo 'You clicked the submit button';
}

?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

This uses the PHP function array_key_exists() to check whether the $_POST array
contains a key called send, the name attribute of the form submit button. If you
don’t want to type out the function name yourself, you can press Ctrl+Space to
bring up an alphabetical list of all PHP functions. Type just the first few letters, and
then use your arrow keys to select the right one. When you press Tab or
Enter/Return, Dreamweaver finishes the rest of the typing and pops up a code hint.
Alternatively, just type the function name directly, and the code hint appears as
soon as you enter the opening parenthesis after array_key_exists, as shown here:

The mixed datatype refers to the fact that array keys can be either numbers or
strings. In this case, you are using a string, so enclose send in quotes, and then after
a comma, type $_POST. Because it’s a superglobal, you are presented with the
same pop-up menu as in step 5. If you select POST, Dreamweaver assumes that you
want to add the name of an array key and will automatically add an opening square
bracket after the T. On this occasion, you want to check the whole $_POST array,
not just a single element, so remove the bracket by pressing Backspace. Make sure
that you use two closing parentheses—the first belongs to the function
array_key_exists(), and the second encloses the condition being tested for by
the if statement.

If the send array key exists, the submit button must have been clicked, so any script
between the curly braces is executed. Otherwise, it’s ignored. Don’t worry that echo
will display text above the DOCTYPE declaration. It’s being used for test purposes
only and will be removed eventually.

8. Save feedback.php, and test it in a browser. It should look no different from
before.

Remember, an if statement doesn’t always need to be followed by else or
elseif. When the condition of a solitary if statement isn’t met, PHP simply
skips to the next block of code.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

332

8598CH11.qxd 6/4/07 11:23 AM Page 332

http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Click the Send comments button. A message should appear at the top of the page
saying “You clicked the submit button.”

10. Reload the page without using the browser’s Reload button. Click inside the
address bar, and press Enter/Return. The message should disappear. This confirms
that any code inside the curly braces runs only if the submit button has been
clicked.

11. Change the block of code that you entered in step 7 so that it looks like this:

<?php
if (array_key_exists('send', $_POST)) {
//mail processing script
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from Essential Guide';

// process the $_POST variables
$name = $_POST['name'];
$email = $_POST['email'];
$comments = $_POST['comments'];

// build the message
$message = "Name: $name\n\n";
$message .= "Email: $email\n\n";
$message .= "Comments: $comments";

// limit line length to 70 characters
$message = wordwrap($message, 70);

// send it
$mailSent = mail($to, $subject, $message);
}

?>

The code that does the processing consists of five stages. The first two lines assign
your email address to $to and the subject line of the email to $subject.

Next, $_POST['name'], $_POST['email'], and $_POST['comments'] are reassigned
to ordinary variables to make them easier to handle.

The shorter variables are then used to build the body of the email message, which
must consist of a single string. As you can see, I have used the combined concate-
nation operator (.=) to build the message and escape sequences to add new line
characters between each section (see “Adding to an existing string” and “Using
escape sequences in strings” in Chapter 10).

Once the message body is complete, it’s passed to the wordwrap() function, which
takes two arguments: a string and an integer that sets the maximum length of each
line. Although most mail systems will accept longer lines, it’s recommended to limit
each line to 70 characters.

USING PHP TO PROCESS A FORM

333

11

8598CH11.qxd 6/4/07 11:23 AM Page 333

mailto:me@example.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

After the message has been built and formatted, the recipient’s address, subject
line, and body of the message are passed to the mail() function. There is nothing
magical about the variable names $to, $subject, and $message. I chose them to
describe what each one contains, making much of the script self-commenting.

The mail() function returns a Boolean value (true or false) indicating whether it
succeeded. By capturing this value as $mailSent, you can use it to redirect the user
to another page or change the contents of the current one.

12. For the time being, let’s keep everything in the same page, because the rest of the
chapter will add further refinements to the basic script. Scroll down, and insert the
following code just after the page’s main heading (new code is highlighted in bold):

<h1>Contact us</h1>
<?php
if ($_POST && !$mailSent) {
?>
<p class="warning">Sorry, there was a problem sending your message.

Please try later.</p>
<?php
}

elseif ($_POST && $mailSent) {
?>
<p>Your message has been sent. Thank you for your feedback.

</p>
<?php } ?>
<p>We welcome feedback from visitors . . .</p>

Many beginners mistakenly think that you need to use echo or print to display
XHTML inside a PHP block. However, except for very short pieces of code, it’s more
efficient to switch back to XHTML, as I’ve done here. Doing so avoids the need to
worry about escaping quotes. Also, Dreamweaver code hints and automatic tag
completion speed things up for you. As soon as you type a space after <p in the
first paragraph, Dreamweaver pops up a code hint menu like this:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

334

8598CH11.qxd 6/4/07 11:23 AM Page 334

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Select class. As soon as you do so, Dreamweaver checks the available classes in the
attached style sheet and pops up another code hint menu, as shown in the next
screenshot, so you can choose warning.

This makes coding much quicker and more accurate. Dreamweaver’s context sensi-
tivity means you get the full range of XHTML code hints only when you’re in a sec-
tion of XHTML code. When you’re inside a block of PHP code, you get a list of
XHTML tags when you type an opening angle bracket, but there are no attribute
hints or auto-completion. So it makes more sense to use PHP for the conditional
logic but keep the XHTML separate. The only thing you need to watch carefully is
that you balance the opening and closing curly braces correctly. I’ll show you how
to do that in “Using balance braces” a little later in the chapter.

So what does this code do? It may look odd if you’re not used to seeing scripts that
mix XHTML with PHP logic, but it can be summarized like this:

<h1>Contact us</h1>
<?php
if ($_POST && !$mailSent) {
// display a failure message
}

elseif ($_POST && $mailSent) {
// display an acknowledgment
}
?>
<p>We welcome feedback from visitors . . .</p>

Both parts of the conditional statement check the Boolean values of $_POST and
$mailSent. Although the $_POST array is always set, it doesn’t contain any values
unless the form has been submitted. Since PHP treats an empty array as false (see
“The truth according to PHP” in Chapter 10), you can use $_POST on its own to test
whether a form has been submitted. So the code in both parts of this conditional
statement is ignored when the page first loads.

However, if the form has been submitted, $_POST equates to true, so the next
condition is tested. The exclamation mark in front of $mailSent is the negative
operator, making it the equivalent of not $mailSent. So, if the email hasn’t been
sent, both parts of the test are true, and the XHTML containing the error message
is displayed. However, if $mailSent is true, the XHTML containing the acknowledg-
ment is displayed instead.

USING PHP TO PROCESS A FORM

335

11

8598CH11.qxd 6/4/07 11:23 AM Page 335

http://lib.ommolketab.ir
http//lib.ommolketab.ir

13. Save feedback.php, and switch to Design view. The top of the page should now
look like this:

There are three gold shields indicating the presence of PHP code, and both the
error and acknowledgement messages are displayed. You need to get used to this
sort of thing when designing dynamic pages.

If you don’t see the gold shields, refer to “Passing information through a hidden
field” in Chapter 9 for details of how to control invisible elements in Design view.

14. To see what the page looks like when the PHP is processed, click the Live Data view
button (see alongside) to the right of the Design view button on the Document
toolbar.

If you have coded everything correctly, the error message and acknowledgement
should disappear. Click the Live Data view button to toggle it off again.

If you got a PHP error message, read “Using balance braces,” and then check your
code against feedback_02.php.

Using Balance Braces
Even if you didn’t encounter a problem in the preceding exercise, Balance Braces is a tool
that you definitely need to know about. Like quotes, curly braces must always be in match-
ing pairs, but sometimes the opening and closing braces can be dozens, even hundreds, of
lines apart. If one of a pair is missing, your script will collapse like a house of cards. Balance
Braces matches pairs in a highly visual way, making troubleshooting a breeze.

Let’s take a look at the code in step 12 that I suspect will trip many people up. I deliber-
ately removed an opening curly brace at the end of line 41 in the following screenshot.
That triggered a parse error, which reported an unexpected closing curly brace on line 45.
Now, that could mean either of the following:

The script in step 11 is theoretically all you need to send email from an online form.
Don’t be tempted to leave it at that. Without the security checks described in the rest
of the chapter, you run the risk of turning your website into a spam relay.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

336

8598CH11.qxd 6/4/07 11:23 AM Page 336

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There’s a missing opening brace to match the closing one.

There’s an extra closing brace that shouldn’t be there.

The way to resolve the problem is to place your cursor anywhere between a pair of curly
braces, and click the Balance Braces button in the Coding toolbar. This highlights the code
between the matching braces. I started by placing my cursor on line 37. As you can see, it
highlighted all the code between the braces on lines 35 and 40.

Next, I positioned my cursor on line 43. When I clicked the Balance Braces button again,
nothing was highlighted, and my computer just beeped. So there was the culprit. All I
needed to work out was where the opening brace should go. My first test showed that I
had a logical block on lines 35–40, so it was just a process of elimination tracking down the
missing brace. If the problem had been an extra curly brace that shouldn’t have been
there, the code would have been highlighted, giving me a clear indication of where the
block ended.

Although it can’t tell you whether your code logic is right or where a missing brace should
go, you’ll find this tool a great timesaver. It works not only with braces, but also with
square brackets and parentheses. Just position your cursor inside any curly brace, square
bracket, or parenthesis, and click the Balance Braces button to find the other one of the
pair. You may need to test several blocks to find the cause of a problem, but it’s an excel-
lent way of visualizing code blocks and the branching logic of your scripts.

You can also access Balance Braces through the Edit menu, and if you’re a keyboard short-
cut fan, the combination is Ctrl+’/Cmd+’ (single quote).

Testing the feedback form
Assuming that you now have a page that displays correctly in Live Data view, it’s time to
test it. As mentioned earlier, testing mail() in a local PHP testing environment is unreli-
able, so I suggest that you upload feedback.php to a remote server for the next stage of
testing. Once you have established that the mail() function is working, you can continue
testing locally.

Upload feedback.php and contact.css to your remote server. Enter some text in the
Name, Email, and Comments fields. Make sure that your input includes at least an apostro-
phe or quotation mark, and click Send comments. The form should clear, and you should
see a confirmation message, as in Figure 11-3.

USING PHP TO PROCESS A FORM

337

11

8598CH11.qxd 6/4/07 11:24 AM Page 337

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 11-3. Confirmation that the mail() function has passed the message to the server’s mail
transport agent

Shortly afterward, you should receive the message in your inbox. Most of the time, it
should work, but there are several things that might go wrong. The next section should
help you resolve the problem.

Troubleshooting mail()
If you don’t receive anything, the first thing to check is your spam trap, because the email
may appear to come from an unknown or a suspicious source. For example, it may appear
to come from Apache or a mysterious nobody (the name often used for web servers).
Don’t worry about the odd name; that will be fixed soon. The main thing is to check that
the mail is being sent correctly.

If you see an error message saying that the From header wasn’t set or that sendmail_from
isn’t defined in php.ini, again that’s nothing to worry about and will be fixed shortly. Keep
building the script as described in each section, and I’ll tell you when you can test your
page on the remote server again.

Some hosting companies now make it a requirement to use the fifth argument to mail()
to ensure that it comes from an entrusted user. If you don’t receive mail or see a PHP error
message, check your hosting company’s instructions and find out the exact format
required for the fifth parameter. It normally consists of -f followed (without a space) by
your own email address, all enclosed in quotes. You’ll see later how to add it to your code.
Again, keep building the script as described in each section.

Some mail servers object to new line characters that are not accompanied by carriage
returns. If you receive a warning that includes SMTP server response: 451, change the
escape sequences in the section that builds the message like this:

$message = "Name: $name\r\n\r\n";
$message .= "Email: $email\r\n\r\n";
$message .= "Comments: $comments";

Getting rid of unwanted backslashes
Some day back in the mists of time, the PHP development team had the “brilliant” idea of
creating a feature known as magic quotes . . . only it wasn’t so brilliant after all. When
inserting data into a database, it’s essential to escape single and double quotes. So the idea
of magic quotes was to make life simpler for beginners by doing this automatically for all

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

338

8598CH11.qxd 6/4/07 11:24 AM Page 338

http://lib.ommolketab.ir
http//lib.ommolketab.ir

data passed through the $_POST and $_GET arrays, and cookies. While this seemed like a
good idea at the time, it has caused endless problems. To cut a long story short, magic
quotes are being officially phased out of PHP (they’ll be gone in PHP 6), but they’re still
enabled on a lot of shared servers. You will know if your server uses them if your test email
has backslashes in front of any apostrophes or quotes, as shown in Figure 11-4.

Figure 11-4. PHP magic quotes insert unwanted
backslashes in the email.

Dreamweaver’s server behaviors automatically handle magic quotes by stripping the back-
slashes, if necessary, and preparing data for database input. However, when you’re hand-
coding like this, you need to deal with the backslashes yourself.

I have created a Dreamweaver snippet, so that you can drop a ready-made script into any
page that needs to get rid of unwanted backslashes. It automatically detects whether
magic quotes are enabled, so you can use it safely on any server. If magic quotes are on, it
removes the backslashes. If magic quotes are off, it leaves your data untouched. It’s part of
a collection of snippets that I’ve created for this book and packaged as a Dreamweaver
extension so they can be installed in a single operation.

1. If Dreamweaver is open, you will need to close and restart the program after
installing the snippets, so save any files that are open. Access the Extension
Manager by choosing Manage Extensions from either the Commands or Help menu.

If Dreamweaver is closed, launch Adobe Extension Manager CS3 from Start ➤ All
Programs (Windows) or Finder ➤ Applications (Mac).

2. Select Dreamweaver CS3 in the drop-down menu on the Extension Manager tool-
bar, and choose File ➤ Install Extension, or click the Install button. Alternatively,
press Ctrl+O/Cmd+O (capital “o,” not zero).

3. In the dialog box that opens, navigate to egdwcs3_snippets.mxp in the tools
folder of the download files, and click Install.

4. After the extension has been installed, close Dreamweaver if it’s open. The snippets
will be in the PHP-DWCS3 folder of the Snippets panel when you next open the
program.

Installing the PHP snippets collection

USING PHP TO PROCESS A FORM

339

11

8598CH11.qxd 6/4/07 11:24 AM Page 339

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Open feedback.php in Code view. Position your
cursor on line 4, just under the mail processing
script comment, and insert a couple of blank
lines.

Move your cursor onto one of the blank lines,
and open the Snippets panel by clicking the
Snippets tab in the Files panel group or selecting
Window ➤ Snippets. On Windows, you can also
use the keyboard shortcut Shift+F9, but this
doesn’t work on the Mac version.

Highlight the new POST stripslashes snippet in
the PHP-DWCS3 folder, as shown alongside, and
double-click it, or click the Insert button at the
bottom of the panel.

2. This inserts the following block of code into your page:

// remove escape characters from $_POST array
if (get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);
return $value;
}

$_POST = array_map('stripslashes_deep', $_POST);
}

Lying at the heart of this code is the PHP function stripslashes(), which removes
the escape backslashes from quotes and apostrophes. Normally, you just pass the
string that you want to clean up as the argument to stripslashes().
Unfortunately, that won’t work with an array. This block of code checks whether
magic quotes have been turned on; and if they have, it goes through the $_POST
array and any nested arrays, cleaning up your text for display either in an email or
in a web page.

3. Save feedback.php, and send another test email that includes apostrophes and
quotes in the message. The email that you receive should be nicely cleaned up. This
won’t work yet if you weren’t able to send the first test email.

If you have any problems, check your page against feedback_03.php.

Using the POST stripslashes snippet

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

340

8598CH11.qxd 6/4/07 11:24 AM Page 340

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making sure required fields aren’t blank
When required fields are left blank, you don’t get the information you need, and the user
may never get a reply, particularly if contact details have been omitted. The following
instructions make use of arrays and the foreach loop, both of which are described in
Chapter 10. So, if you’re new to PHP, you might find it useful to refer to the relevant sec-
tions in the previous chapter before continuing.

In this part of the script, you create three arrays to hold details of variables you expect to
receive from the form, those that are required, and those that are missing. This not only
helps identify any required items that haven’t been filled in; it also adds an important
security check before passing the user input to a loop that converts the names of $_POST
variables to shorter ones that are easier to handle.

1. Start by creating two arrays: one listing the name attribute of each field in the form
and the other listing all required fields. Also, initialize an empty array to store the
names of required fields that have not been completed. For the sake of this
demonstration, make the email field optional, so that only the name and comments
fields are required. Add the following code just before the section that processes
the $_POST variables:

$subject = 'Feedback from Essential Guide';

// list expected fields
$expected = array('name', 'email', 'comments');
// set required fields
$required = array('name', 'comments');
// create empty array for any missing fields
$missing = array();

// process the $_POST variables

2. At the moment, the $_POST variables are assigned manually to variables that use
the same name as the $_POST array key. With three fields, manual assignment is
fine, but it becomes a major chore with more fields. Let’s kill two birds with one
stone by checking required fields and automating the naming of the variables at
the same time. Replace the three lines of code beneath the $_POST variables com-
ment as follows:

// process the $_POST variables
foreach ($_POST as $key => $value) {
// assign to temporary variable and strip whitespace if not an array
$temp = is_array($value) ? $value : trim($value);
// if empty and required, add to $missing array
if (empty($temp) && in_array($key, $required)) {
array_push($missing, $key);
}

// otherwise, assign to a variable of the same name as $key
elseif (in_array($key, $expected)) {

Checking required fields

USING PHP TO PROCESS A FORM

341

11

8598CH11.qxd 6/4/07 11:24 AM Page 341

http://lib.ommolketab.ir
http//lib.ommolketab.ir

${$key} = $temp;
}

}

// build the message

If studying PHP code makes your brain hurt, you don’t need to worry about how
this works. As long as you create the $expected, $required, and $missing arrays in
the previous step, you can just copy and paste the code for use in any form.

So what does it do? In simple terms, this foreach loop goes through the $_POST
array, strips out any whitespace from user input, and assigns its contents to a vari-
able with the same name (so $_POST['email'] becomes $email, and so on). If a
required field is left blank, its name attribute is added to the $missing array.

The code uses several built-in PHP functions, all of which have intuitive names:

is_array() tests whether a variable is an array.

trim() trims whitespace from both ends of a string.

empty() tests whether a variable contains nothing or equates to false.

in_array() checks whether the first argument is part of the array specified in
the second argument.

array_push() adds a new element to the end of an array.

At this stage, you don’t need to understand how each function works, but you
can find details in the PHP online documentation at www.php.net/manual/en/
index.php. Type the name of the function in the search for field at the top right of
the page (see Figure 11-5), and click the right-facing arrow alongside function list.
The PHP documentation has many practical examples showing how functions and
other features are used.

Figure 11-5. Refer often to the excellent PHP online documentation, and your skills will increase
rapidly.

Why is the $expected array necessary? It’s to prevent an attacker from injecting
other variables in the $_POST array in an attempt to overwrite your default
values. By processing only those variables that you expect, your form is much
more secure. Any spurious values are ignored.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

342

8598CH11.qxd 6/4/07 11:24 AM Page 342

http://www.php.net/manual/en
http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. You want to build the body of the email message and send it only if all required
fields have been filled in. Since $missing starts off as an empty array, nothing is
added to it if all required fields are completed, so empty($missing) is true. Wrap
the rest of the script in the opening PHP code block like this:

// go ahead only if all required fields OK
if (empty($missing)) {

// build the message
$message = "Name: $name\n\n";
$message .= "Email: $email\n\n";
$message .= "Comments: $comments";

// limit line length to 70 characters
$message = wordwrap($message, 70);

// send it
$mailSent = mail($to, $subject, $message);
if ($mailSent) {
// $missing is no longer needed if the email is sent, so unset it
unset($missing);
}

}
}

This ensures that the mail is sent only if nothing has been added to $missing.
However, $missing will be used to control the display of error messages in the
main body of the page, so you need to get rid of it if the mail is successfully sent.
This is done by using unset(), which destroys a variable and any value it contains.

4. Let’s turn now to the main body of the page. You need to display a warning if any-
thing is missing. Amend the conditional statement at the top of the page content
like this:

<h1>Contact us</h1>
<?php
if ($_POST && isset($missing) && !empty($missing)) {
?>
<p class="warning">Please complete the missing item(s) indicated.</p>

<?php
}

elseif ($_POST && !$mailSent) {
?>
<p class="warning">Sorry, there was a problem sending your message.

Please try later.</p>

This adds a new condition. The isset() function checks whether a variable exists. If
$missing doesn’t exist, that means that all required fields were filled in and the
email was sent successfully, so the condition fails, and the script moves on to con-
sider the elseif condition. However, if all required fields were filled in, but there
was a problem sending the email, $missing still exists, so you need to make sure it’s
empty. An exclamation mark is the negative operator, so !empty means “not empty.”

USING PHP TO PROCESS A FORM

343

11

8598CH11.qxd 6/4/07 11:24 AM Page 343

http://lib.ommolketab.ir
http//lib.ommolketab.ir

On the other hand, if $missing exists and isn’t empty, you know that at least one
required field was omitted, so the warning message is displayed.

I’ve placed this new condition first. The $mailSent variable won’t even be set if any
required fields have been omitted, so you must test for $missing first.

5. To make sure it works so far, save feedback.php, and load it in a browser. You don’t
need to upload it to your remote server, because you want to test the message
about missing items. Don’t fill in any fields. Just click Send comments. The top of
the page should look like this (check your code against feedback_04.php if
necessary):

6. To display a suitable message alongside each missing required field, add a PHP code
block to display a warning as a inside the <label> tag like this:

<label for="name">Name: <?php
if (isset($missing) && in_array('name', $missing)) { ?>
Please enter your name<?php } ?>
</label>

Since the $missing array is created only after the form has been submitted, you
need to check first with isset() that it exists. If it doesn’t exist—such as when the
page first loads or if the email has been sent successfully—the is never dis-
played. If $missing does exist, the second condition checks if the $missing array
contains the value name. If it does, the is displayed as shown in Figure 11-6.

7. Insert a similar warning for the comments field like this:

<label for="comments">Comments: <?php
if (isset($missing) && in_array('comments', $missing)) { ?>
Please enter your comments<?php } ?>
</label>

The PHP code is the same except for the value you are looking for in the $missing
array. It’s the same as the name attribute for the form element.

8. Save feedback.php, and test the page again locally by entering nothing into any
of the fields. The page should look like Figure 11-6. Check your code against
feedback_05.php if you encounter any problems.

9. Try one more test. Open Code view, and amend the line that sends the email like
this:

$mailSent = false; // mail($to, $subject, $message);

This temporarily sets the value of $mailSent to false and comments out the code
that actually sends the email.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

344

8598CH11.qxd 6/4/07 11:24 AM Page 344

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 11-6. The PHP script displays alerts if required information is missing, even when
JavaScript is disabled.

10. Reload feedback.php into your browser, and type something in the Name and
Comments fields before clicking Send comments. This time you should see the mes-
sage telling you there was a problem and asking you to try later.

11. Reverse the change you made in step 9 so that the code is ready to send the email.

Preserving user input when a form is incomplete
Imagine you have just spent ten minutes filling in a form. You click the submit button, and
back comes the response that a required field is missing. It’s infuriating if you have to fill
in every field all over again. Since the content of each field is in the $_POST array, it’s easy
to redisplay it when an error occurs.

When the page first loads or the email is successfully sent, you don’t want anything to
appear in the input fields. But you do want to redisplay the content if a required field is
missing. So that’s the key: if the $missing variable exists, you want the content of each
field to be redisplayed. You can set default text for a text input field by setting the value
attribute of the <input> tag.

At the moment, the <input> tag for name looks like this:

<input name="name" type="text" class="textInput" id="name" />

To add the value attribute, all you need is a conditional statement that checks whether
$missing exists. If it does, you can use echo to display value="" and put the value held in
$_POST['name'] between the quotes. It sounds simple enough, but this is one of those sit-
uations where getting the right combination of quotes can drive you mad. It’s made even
worse by the fact that the user input in the text field might also contain quotes. Figure 11-7
shows what happens if you don’t give quotes in user input special treatment. The browser
finds the first matching quote and throws the rest of the input away.

USING PHP TO PROCESS A FORM

345

11

8598CH11.qxd 6/4/07 11:24 AM Page 345

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 11-7. Quotes within user input need special treatment before form fields can be
redisplayed.

You might be thinking that this is a case where magic quotes would be useful.
Unfortunately, they won’t work either. If you don’t use the POST stripslashes snippet, this
is what you get instead:

Magic quotes work only with input into a database (and not very well, either, which is why
they are being phased out). The browser still sees the first matching quote as the end of
the value attribute. The solution is simple: convert the quotes to the HTML entity equiva-
lent ("), and PHP has a function called—appropriately—htmlentities(). Passing the
$_POST array element to this function converts all characters (except space and single
quote) that have an HTML entity equivalent to that entity. As a result, the content is no
longer truncated. What’s cool is that the HTML entity " is converted back to double
quotes when the form is resubmitted, so there’s no need for any further conversion.

That’s the theory—now let’s put it into practice.

1. Amend the <input> tag for the Name text field like this:

<input name="name" type="text" class="textInput" id="name"
<?php if (isset($missing)) {
echo 'value="'.htmlentities($_POST['name']).'"';
} ?>

/>

Creating sticky form fields

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

346

8598CH11.qxd 6/4/07 11:24 AM Page 346

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This code is quite short, but the line inside the curly braces contains a tricky com-
bination of quotes and periods. The first thing to realize is that there’s only one
semicolon—right at the end—so the echo command applies to the whole line. You
can break down the rest of the line into three sections, as follows:

'value="'.

htmlentities($_POST['name'])

.'"'

The first section outputs value=" as text and uses the concatenation operator (a
period—see “Joining strings together” in Chapter 10) to join it to the next section,
which passes $_POST['name'] to the htmlentities() function. The final section
uses the concatenation operator again to join the next string, which consists solely
of a double quote. So, if $missing has been set, and $_POST['name'] contains Joe,
you’ll end up with this inside the <input> tag:

<input name="name" type="text" class="textInput" id="name" ➥

value="Joe" />

2. Amend the email input field in the same way, using $_POST['email'].

3. The comments text area needs to be handled slightly differently, because
<textarea> tags don’t have a value attribute. You place the PHP block between
the opening and closing tags of the text area like this (new code is shown in bold):

<textarea name="comments" id="comments" cols="45" rows="5"><?php
if (isset($missing)) {
echo htmlentities($_POST['comments']);
} ?></textarea>

It’s important to position the opening and closing PHP tags right up against the
<textarea> tags. If you don’t, you’ll get unwanted whitespace inside the text area.

4. Save feedback.php, and test the page. If the first test message earlier in the chap-
ter was successful, you can upload it to your remote server. If any required fields
are omitted, the form displays the original content along with any error messages.
However, if the form is correctly filled in, the email is sent, an acknowledgment is
displayed, and the input fields are cleared.

If your remote server test didn’t succeed earlier in the chapter, just test locally.
You’ll probably get a PHP error message if all required fields are filled in, but that’s
nothing to worry about. We’re almost at the stage to get your remote server
working.

You can check your code with feedback_06.php.

By default, htmlentities() leaves single quotes untouched. Since I chose to wrap the
value attribute in double quotes, this doesn’t matter. To convert a single quote to an
HTML entity as well, pass ENT_QUOTES (all uppercase) as a second argument to
htmlentities() like this: htmlentities($_POST['name'], ENT_QUOTES).

USING PHP TO PROCESS A FORM

347

11

8598CH11.qxd 6/4/07 11:24 AM Page 347

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Filtering out potential attacks
A particularly nasty exploit known as email header injection emerged in mid-2005. It seeks
to turn online forms into spam relays. A simple way of preventing this is to look for the
strings “Content-Type:”, “Cc:”, and “Bcc:”, as these are email headers that the attacker
injects into your script in an attempt to trick it into sending HTML email with copies to
many people. If you detect any of these strings in user input, it’s a pretty safe bet that
you’re the target of an attack, so you should block the message. An innocent message may
also be blocked, but the advantages of stopping an attack outweigh that small risk.

In this section, we’ll create a pattern to check for suspect phrases, and pass the form input
to a custom-built function that checks for any matches. The function is one of the snippets
that you installed earlier in the chapter, so the most complex part of the coding is already
done for you. If a match is found, a conditional statement prevents the email from being
sent.

1. PHP conditional statements rely on a true/false test to determine whether to exe-
cute a section of code. So the way to filter out suspect phrases is to create a
Boolean variable that is switched to true as soon as one of those phrases is
detected. The detection is done using a search pattern or regular expression. Insert
the code for both of these just above the section that processes the $_POST
variables:

// create empty array for any missing fields
$missing = array();

// assume that there is nothing suspect
$suspect = false;
// create a pattern to locate suspect phrases
$pattern = '/Content-Type:|Bcc:|Cc:/i';

// process the $_POST variables

The string assigned to $pattern will be used to perform a case-insensitive search
for any of the following: “Content-Type:”, “Bcc:”, or “Cc:”. It’s written in a format
called Perl-compatible regular expression (PCRE). The search pattern is enclosed in
a pair of forward slashes, and the i after the final slash makes the pattern case
insensitive.

2. You can now use $pattern to filter out any suspect user input from the $_POST
array. At the moment, each element of the $_POST array contains only a string.
However, multiple-choice form elements, such as checkboxes, return an array of
results. So you need to tunnel down any subarrays and check the content of each
element separately. In the snippets collection that you installed earlier in the chap-
ter, you’ll find a custom-built function to do precisely that.

Insert two blank lines immediately after the $pattern variable from step 1. Then
open the Snippets panel, and double-click Suspect pattern filter in the PHP-DWCS3
folder to insert the code shown here in bold:

Blocking emails that contain specific phrases

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

348

8598CH11.qxd 6/4/07 11:24 AM Page 348

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// create a pattern to locate suspect phrases
$pattern = '/Content-Type:|Bcc:|Cc:/i';

// function to check for suspect phrases
function isSuspect($val, $pattern, &$suspect) {
// if the variable is an array, loop through each element
// and pass it recursively back to the same function
if (is_array($val)) {
foreach ($val as $item) {
isSuspect($item, $pattern, $suspect);
}

}
else {
// if one of the suspect phrases is found, set Boolean to true
if (preg_match($pattern, $val)) {
$suspect = true;
}

}
}

3. I won’t go into detail about how this code works. All you need to know is that call-
ing the isSuspect() function is very easy. You just pass it three values: the $_POST
array, the pattern, and the $suspect Boolean variable. Insert the following code
immediately after the code in the previous step:

// check the $_POST array and any subarrays for suspect content
isSuspect($_POST, $pattern, $suspect);

4. If any suspect phrases are detected, the value of $suspect changes to true, so you
need to set $mailSent to false and delete the $missing array to prevent the email
from being sent and to display an appropriate message in the form. There’s also no
point in processing the $_POST array any further. Wrap the code that processes the
$_POST variables in the second half of an if . . . else statement like this:

if ($suspect) {
$mailSent = false;
unset($missing);
}

else {
// process the $_POST variables
foreach ($_POST as $key => $value) {
// assign to temporary variable and strip whitespace if not an array
$temp = is_array($value) ? $value : trim($value);
// if empty and required, add to $missing array
if (empty($temp) && in_array($key, $required)) {
array_push($missing, $key);
}

// otherwise, assign to a variable of the same name as $key
elseif (in_array($key, $expected)) {
${$key} = $temp;

USING PHP TO PROCESS A FORM

349

11

8598CH11.qxd 6/4/07 11:24 AM Page 349

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}
}

}

Don’t forget the extra curly brace to close the else statement.

5. If suspect content is detected, you don’t want the code that builds and sends the
email to run, so amend the condition in the opening if statement like this:

// go ahead only if not suspect and all required fields OK
if (!$suspect && empty($missing)) {
// build the message

6. Save feedback.php, and check your code against feedback_07.php.

Because the if statement in step 4 sets $mailSent to false and unsets $missing if it
detects any suspect pattern, the code in the main body of the page displays the same mes-
sage that’s displayed if there’s a genuine problem with the server. A neutral message
reveals nothing that might assist an attacker. It also avoids offending anyone who may
have innocently used a suspect phrase.

You can use isSuspect() with any array or pattern, but it always requires the following
three arguments:

An array that you want to filter. If the array contains other arrays, the function bur-
rows down until it finds a simple value against which it can match the pattern.

A regular expression containing the pattern(s) you want to search for. There are
two types of regular expression, Perl-compatible (PCRE), and Portable Operating
System Interface (POSIX). You must use a PCRE. This function won’t work with a
POSIX regular expression. A good online source is http://regexlib.com.

A Boolean variable set to false. If the pattern is found, the value is switched to
true.

Safely including the user’s address in email headers
Up to now, I’ve avoided using one of the most useful features of the PHP mail() function:
the ability to add extra email headers with the optional fourth argument. A popular use of
extra headers is to incorporate the user’s email address into a Reply-To header, which
enables you to reply directly to incoming messages by clicking the Reply button in your
email program. It’s convenient, but it provides a wide open door for an attacker to supply
a spurious set of headers. With the isSuspect() function in place, you can block attacks
and safely use the fourth argument with the mail() function.

The most important header that you should add is From. Email sent by mail() is often
identified as coming from nobody@servername. Adding the From header not only identifies
your mail in a more user-friendly way, but it also solves the problem you might have
encountered on the first test of there being no setting for sendmail_from in php.ini.

You can find a full list of email headers at www.faqs.org/rfcs/rfc2076, but some of the
most well-known and useful ones enable you to send copies of an email to other
addresses (Cc and Bcc) or to change the encoding (often essential for languages other
than Western European ones).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

350

8598CH11.qxd 6/4/07 11:24 AM Page 350

http://regexlib.com
http://www.faqs.org/rfcs/rfc2076
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Like the body of the email message, headers must be passed to the mail() function as a
single string. Each new header, except the final one, must be on a separate line terminated
by a carriage return and new line character. This means using the \r and \n escape
sequences in double-quoted strings.

Let’s say you want to send copies of messages to other departments, plus a copy to
another address that you don’t want the others to see. This is how you pass those addi-
tional email headers to mail():

$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= "Cc: sales@example.com, finance@example.com\r\n";
$headers .= 'Bcc: secretplanning@example.com';

$mailSent = mail($to, $subject, $message, $headers);

The default encoding for email is iso-8859-1 (English and Western European). If you want
to use a different encoding, set the Content-Type header. For Unicode (UTF-8), set it
like this:

$headers = "Content-Type: text/plain; charset=utf-8\r\n";

The web page that the form is embedded in must use the same encoding (usually set in a
<meta> tag).

Hard-coded additional headers present no security risk, but anything that comes from user
input must be filtered before it’s used.

This section incorporates the user’s email address into a Reply-To header. Although
isSuspect() should sanitize user input, it’s worth subjecting the email field to a more rig-
orous check to make sure that it doesn’t contain illegal characters or more than one
address.

1. At the moment, the $required array doesn’t include email, and you may be happy
to leave it that way. So, to keep the validation routine flexible, it makes more sense
to handle the email address outside the main loop that processes the $_POST array.

If email is required but has been left blank, the loop will have already added
email to the $missing array, so the message won’t get sent anyway.

If it’s not a required field, you need to check $email only if it contains some-
thing. So you need to wrap the validation code in an if statement that uses
!empty().

Insert the code shown in bold after the loop that processes the $_POST array.

// otherwise, assign to a variable of the same name as $key
elseif (in_array($key, $expected)) {
${$key} = $temp;
}

}
}

Adding email headers and automating the reply address

USING PHP TO PROCESS A FORM

351

11

8598CH11.qxd 6/4/07 11:24 AM Page 351

mailto:sales@example.com
mailto:secretplanning@example.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

// validate the email address
if (!empty($email)) {

}

// go ahead only if not suspect and all required fields OK
if (!$suspect && empty($missing)) {

2. Position your cursor on the blank line between the curly braces of the conditional
statement you have just inserted. Open the Snippets panel, and double-click Check
email PCRE in the PHP-DWCS3 folder. This inserts the following regular expression:

$checkEmail = '/^[^@]+@[^\s\r\n\'";,@%]+$/';

Designing a regular expression to recognize a valid-looking email address is notori-
ously difficult. So, instead of striving for perfection, $checkEmail, takes a negative
approach by rejecting characters that are illegal in an email address. However, to
make sure that the input resembles an email address in some way, it checks for an
@ mark surrounded by at least one character on either side.

3. Now add the code shown in bold to check $email against the regular expression:

// validate the email address
if (!empty($email)) {
// regex to ensure no illegal characters in email address
$checkEmail = '/^[^@]+@[^\s\r\n\'";,@%]+$/';
// reject the email address if it doesn't match
if (!preg_match($checkEmail, $email)) {
$suspect = true;
$mailSent = false;
unset($missing);
}

}

The conditional statement uses the preg_match(), which takes two arguments: a
PCRE and the string that you want to check. If a match is found, the function
returns true. Since it’s preceded by the negative operator, the condition is true if
the contents of $email don’t match the PCRE.

If there’s no match, $suspect is set to true, $mailSent is set to false, and
$missing is unset. This results in the neutral alert saying that the message can’t be
sent and clears the form. This runs the risk that someone who has accidentally
mistyped the email address will be forced to enter everything again. If you don’t
want that to happen, you can omit unset($missing);. However, the PCRE detects
illegal characters that are unlikely to be used by accident, so I have left it in.

Many popular PHP scripts use pattern-matching functions that begin with ereg.
These work only with POSIX regular expressions. I recommend that you always
use the PCRE functions that begin with preg_. Not only is PCRE more efficient,
there’s a strong likelihood that support for the ereg family of functions will be
removed from a future version of PHP.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

352

8598CH11.qxd 6/4/07 11:24 AM Page 352

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Now add the additional headers to the email. Place them immediately above the
call to the mail() function, and add $headers as the fourth argument like this:

// limit line length to 70 characters
$message = wordwrap($message, 70);

// create additional headers
$headers = 'From: Essential Guide<feedback@example.com>';
if (!empty($email)) {
$headers .= "\r\nReply-To: $email";
}

// send it
$mailSent = mail($to, $subject, $message, $headers);

If you don’t want email to be a required field, there’s no point in using a nonexist-
ent value in the Reply-To header, so I have wrapped it in a conditional statement.
Since you have no way of telling whether the Reply-To header will be created, it
makes sense to put the carriage return and new line characters at the beginning of
the second header. It doesn’t matter whether you put them at the end of one
header or the start of the next one, as long as a carriage return and new line sepa-
rates each header. For instance, if you wanted to add a Cc header, you could do it
like this:

$headers = "From: Essential Guide<feedback@example.com>\r\n";
$headers .= 'Cc: admin@example.com';
if (!empty($email)) {
$headers .= "\r\nReply-To: $email";
}

Or like this:

$headers = 'From: Essential Guide<feedback@example.com>';
$headers .= "\r\nCc: admin@example.com";
if (!empty($email)) {
$headers .= "\r\nReply-To: $email";
}

If your hosting company requires you to supply the fifth argument to mail() for
security reasons, you should add it after the headers. Normally, it takes the form of
-f followed by your email address like this:

$mailSent = mail($to,$subject,$message,$headers,'-fdavid@example.com');

Use this fifth argument only if instructed to do so by your hosting company.

5. Save feedback.php, upload it to your remote server, and test the form. When you
receive the email, click the Reply button in your email program, and you should see
the address that you entered in the form automatically entered in the recipient’s
address field. You can check your code against feedback_08.php.

USING PHP TO PROCESS A FORM

353

11

8598CH11.qxd 6/4/07 11:24 AM Page 353

mailto:feedback@example.com
mailto:admin@example.com
mailto:feedback@example.com
mailto:admin@example.com
mailto:fdavid@example.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Handling multiple-choice form elements
You now have the basic knowledge to process text input from an online form and email it
to your inbox. The principle behind handling multiple-choice elements is exactly the same:
the name attribute is used as the key in the $_POST array. However, as you saw in Chapter
9, checkboxes and multiple-choice lists don’t appear in the $_POST array if nothing has
been selected, so they require different treatment.

The following exercises show you how to handle each type of multiple-choice element. If
you’re feeling punch drunk at this stage, come back later to study how to handle multiple-
choice elements when you need to incorporate them into a script of your own.

In Chapter 9, I showed you how to create a checkbox group, which stores all checked
values in a subarray of the $_POST array. However, the subarray isn’t even created if all
boxes are left unchecked. So you need to use isset() to check the existence of the sub-
array before attempting to process it.

1. Add the name of the checkbox group to the $expected array like this:

$expected = array('name', 'email', 'comments', 'interests');

In the form, interests is followed by square brackets like this:

<input type="checkbox" name="interests[]" . . .

The square brackets in the form tell the $_POST array to store all checked values in
a subarray called $_POST['interests']. However, don’t add square brackets to
interests in the $expected array. Doing so would bury the checked values in a
subarray one level deeper than you want. See “Using arrays to store multiple
values” in Chapter 10 for a reminder of how arrays are created.

2. If you want the checkboxes to be required, add the name of the checkbox group to
the $required array in the same way.

3. Because the checkbox array might never be created, you need to set a default
value before attempting to build the body of the email. The following code in bold
goes in the section that prepares the message prior to sending it:

// go ahead only if not suspect and all required fields OK
if (!$suspect && empty($missing)) {
// set default values for variables that might not exist
$interests = isset($interests) ? $interests : array('None selected');

Getting data from checkboxes

When building your own forms, don’t forget to add the name of each text field to the
$expected array. Also add the name of required fields to the $required array, and add
a suitable alert as described in “Checking required fields.”

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

354

8598CH11.qxd 6/4/07 11:24 AM Page 354

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This uses the conditional operator (see “Using the conditional operator” in
Chapter 10) to check whether $interests has been set. If it has, the existing array
of checked values is reassigned to $interests. Otherwise, a single-element array
containing the string None selected is created and assigned to $interests. It
needs to be an array, even though it contains only one element, because the next
step expects an array.

4. To extract the values of the checkbox array, you can use the oddly named
implode() function, which joins array elements. It takes two arguments: a string to
be used as a separator and the array. So, implode(', ', $interests) joins the ele-
ments of $interests as a comma-separated string. Add the following code shown
in bold to the script that builds the body of the email:

$message .= "Comments: $comments\n\n";
$message .= 'Interests: '.implode(', ', $interests);

Note that I added two new line characters at the end of the line that adds the
user’s comments to the email. On the following line, I put Interests: in single
quotes because there are no variables to be processed, and I used the concatena-
tion operator to join the result of implode(', ', $interests) to the end of the
email message. You cannot include a function inside a string.

5. The next listing shows the code for the first two checkboxes in the body of the
page. The code in bold preserves the user’s selections if a required field is missing.

<p>
<input name="interests[]" type="checkbox" id="interests-classical" ➥

value="Classical concerts"
<?php
$OK = isset($_POST['interests']) ? true : false;
if ($OK && isset($missing) && in_array('Classical concerts', ➥

$_POST['interests'])) {
echo 'checked="checked"';
} ?>

/>
<label for="interests-classical">Classical concerts</label>

</p>
<p>
<input name="interests[]" type="checkbox" id="interests-rock" ➥

value="Rock/pop"
<?php
if ($OK && isset($missing) && in_array('Rock/pop', ➥

$_POST['interests'])) {
echo 'checked="checked"';
} ?>

/>
<label for="interests-rock">Rock/pop events</label>

</p>

USING PHP TO PROCESS A FORM

355

11

8598CH11.qxd 6/4/07 11:24 AM Page 355

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The code in the first checkbox contains the following line:

$OK = isset($_POST['interests']) ? true : false;

This checks whether $_POST['interests'] exists (it won’t if the user didn’t select
any checkboxes). If it does, $OK is set to true.

The PHP code for each checkbox tests three conditions: the value of $OK, whether
the $missing variable exists, and whether the value of the checkbox is in the
$_POST['interests'] subarray. If all are true, echo inserts checked="checked"
into the <input> tag. (If you’re using HTML instead of XHTML, use just checked.)
Although it looks like a lot of hand-coding, you can copy and paste the code after
creating the first one. Just change the first argument of in_array() to the value of
the checkbox. The complete code is in feedback_09.php.

If you want to make the checkbox group required, add an alert in the same way as
described in “Checking required fields” earlier in the chapter.

Drop-down menus created with the <select> tag normally allow the user to pick only one
option from several. One item is always selected, even if it’s only the first one inviting the
user to select one of the others. Setting the value of this first <option> to 0 has the advan-
tage that the empty() function, which is used to check required fields, returns true when
0 is passed to it either as a number or string.

1. Add the name of the drop-down menu to the $expected array. Also add it to the
$required array if you want a choice to be compulsory.

2. Add the value of the drop-down menu to the email message like this:

$message .= 'Interests: '.implode(', ', $interests)."\n\n";
$message .= "Visited: $visited";

One option will always be selected, so this doesn’t need special treatment.
However, change the value of the first <option> tag in the menu to No response if
it isn’t a required field. Leave it as 0 if you want the user to make a selection.

3. The following code shows the first two items of the drop-down menu in
feedback.php. The PHP code highlighted in bold assumes that the menu has been
made a required field and resets the selected option if an incomplete form is sub-
mitted. When the page first loads, the $_POST array contains no elements, so you
can select the first <option> by testing for !$_POST. Once the form is submitted,
the $_POST array always contains an element from a drop-down menu, so you don’t
need to test for it.

<label for="visited">How often have you been to London? <?php
if (isset($missing) && in_array('visited', $missing)) { ?>
Please select a value<?php } ?></label>
<select name="visited" id="visited">
<option value="0"
<?php
if (!$_POST || $_POST['visited'] == '0') {

Getting data from a drop-down menu

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

356

8598CH11.qxd 6/4/07 11:24 AM Page 356

http://lib.ommolketab.ir
http//lib.ommolketab.ir

echo 'selected="selected"';
} ?>

>-- Select one --</option>
<option value="Never"
<?php
if (isset($missing) && $_POST['visited'] == 'Never') {
echo 'selected="selected"';
} ?>

>Never been</option>
. . .
</select>

When setting the second condition for each <option>, it’s vital that you use the
same spelling and mixture of uppercase and lowercase as contained in the value
attribute. PHP is case sensitive and won’t match the two values if there are any
differences.

The finished code is in feedback_10.php.

Multiple-choice lists are similar to checkboxes: they allow the user to choose zero or more
items, so the result is stored in an array. If no items are selected, the $_POST array contains
no reference to the list, so you need to take that into consideration both in the form and
when processing the message.

1. Add the name of the multiple-choice list to the $expected array. Also add it to the
$required array if you want a choice to be compulsory.

2. In the code that processes the message, set a default value for a multiple-choice list
in the same way as for an array of checkboxes.

$interests = isset($interests) ? $interests : array('None selected');
$views = isset($views) ? $views : array('None selected');

3. When building the body of the message, use implode() to create a comma-sepa-
rated string, and add it to the message like this:

$message .= "Visited: $visited\n\n";
$message .= 'Impressions of London: '.implode(', ', $views);

4. The following code shows the first two items from the multiple-choice list in
feedback.php. The code works in an identical way to the checkboxes, except that
you echo 'selected="selected"' instead of 'checked="checked"'. You can reuse
$OK here, because its value is reset by the code in the first <option> tag.

<select name="views[]" size="6" multiple="multiple" id="views">
<option value="Vibrant/exciting"
<?php
$OK = isset($_POST['views']) ? true : false;
if ($OK && isset($missing) && in_array('Vibrant/exciting', ➥

$_POST['views'])) {

Getting data from a multiple-choice list

USING PHP TO PROCESS A FORM

357

11

8598CH11.qxd 6/4/07 11:24 AM Page 357

http://lib.ommolketab.ir
http//lib.ommolketab.ir

echo 'selected="selected"';
} ?>

>A vibrant, exciting city</option>
<option value="Good food"
<?php
if ($OK && isset($missing) && in_array('Good food', ➥

$_POST['views'])) {
echo 'selected="selected"';
} ?>

>A great place to eat</option>
. . .

</select>

The completed code is in feedback_11.php.

If you want to make the multiple-choice list required, add an alert in the same way as
described in “Checking required fields” earlier in the chapter.

Radio button groups allow you to pick only one value. This makes it easy to retrieve the
selected one. All buttons in the same group must share the same name attribute, so the
$_POST array contains the value attribute of whichever radio button is selected. However,
if you don’t set a default button in your form, the radio button group’s $_POST array ele-
ment remains unset.

1. Add the name of the radio button group to the $expected array.

2. If you haven’t set a default button and you want a choice to be compulsory, also
add it to the $required array. This isn’t necessary if a default choice is set in the
form.

3. If you haven’t set a default button, you need to set a default value before building
the body of the email message. You do this in a similar way to a checkbox group or
multiple-choice list, but since a radio button group can have only one value, you
set the default as a string, not an array, as shown in this example:

$radio = isset($radio) ? $radio : 'Not selected';

4. Add the value of the radio button group to the body of the message like this:

$message .= 'Impressions of London: '.implode(', ', $views)."\n\n";
$message .= "Subscribe: $subscribe";

5. Assuming a default button has been defined, amend the radio button group like
this:

<input type="radio" name="subscribe" id="subscribe-yes" value="y"
<?php
if (isset($missing) && $_POST['subscribe'] == 'y') {
echo 'checked="checked"';

Getting data from radio button groups

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

358

8598CH11.qxd 6/4/07 11:24 AM Page 358

http://lib.ommolketab.ir
http//lib.ommolketab.ir

} ?>
/>
<label for="subscribe-yes">Yes</label>
<input name="subscribe" type="radio" id="subscribe-no" value="n"
<?php
if (!$_POST || isset($missing) && $_POST['subscribe'] == 'n') {
echo 'checked="checked"';
} ?>

/>
<label for="subscribe-no">No</label>

The conditional statement for the default radio button begins with !$_POST ||,
which means “if the $_POST array is empty or . . .” So, if the form hasn’t been sub-
mitted, or if the user has selected No and the form is incomplete, this button will
be checked.

The completed script is in feedback_12.php.

If no default button has been defined, add the same $OK check as for a checkbox group or
multiple-choice list in the first <input> tag, as well as in the conditional statement for each
radio button. You need to add a required alert only if no default has been defined in the
original form.

Redirecting to another page
Everything has been kept within the same page, even if the message is sent successfully. To
redirect the visitor to a different page, change the code at the end of the message-
processing section like this:

// send it
$mailSent = mail($to, $subject, $message, $headers);
if ($mailSent) {
// redirect the page with a fully qualified URL
header('Location: http://www.example.com/thanks.php');
exit;
}

}
}

The HTTP/1.1 protocol stipulates a fully qualified URL for a redirect command, although
most browsers will perform the redirect correctly with a relative pathname.

When using the header() function, you must be careful that no output is sent to the
browser before PHP attempts to call it. If, when testing your page, you see an error mes-
sage warning you that headers have already been sent, check there are no characters,
including new lines, spaces, or tabs ahead of the opening PHP tag.

USING PHP TO PROCESS A FORM

359

11

8598CH11.qxd 6/4/07 11:24 AM Page 359

http://www.example.com/thanks.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Time for a breather . . .
If that was your first encounter with PHP, your head will probably be reeling. This has been
a tough chapter. In the next chapter, you’ll adapt this script so that it can be reused as an
external file with most forms. The external file never changes, and the hand-coding is cut
down to about a dozen lines. I could, of course, have given you the external file without
explanation, but if you don’t understand the code, you can’t adapt it to your own require-
ments. Even if you never write an original PHP script of your own, you should know what
the code in your page is doing. If you don’t, you’re storing up trouble for the future.

What makes PHP pages dynamic—and so powerful—is the fact that your code makes deci-
sions, even though you have no way of knowing in advance what is going to be input into
the form. The Dreamweaver code that you’ll encounter in subsequent chapters tries to
anticipate a lot of these unknown factors, but its beauty lies in the fact that it’s config-
urable. If you know how to hand-code, you can get Dreamweaver to do a lot of the hard
work for you, and then take it beyond the basics.

However, it’s no fun spending all your time churning out code. Life becomes simpler if you
can reuse code. So that’s what the next chapter is about—saving time with includes and
Dreamweaver templates.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

360

8598CH11.qxd 6/4/07 11:24 AM Page 360

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12 WORKING WITH PHP INCLUDES
AND TEMPLATES

8598CH12.qxd 6/28/07 11:59 AM Page 363

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To give a unified look to a website, most pages have common elements, such as a header,
navigation menu, and footer. Nobody likes repeating work just for the sake of it, so the
ability to build page templates has long been one of Dreamweaver’s most popular fea-
tures. All common features can be defined and locked, but Dreamweaver propagates to all
child pages any changes that you make to the master template. The great disadvantage is
that every time you make a change all the affected pages must be uploaded again to your
remote server. On a large site, this can be a major undertaking.

Wouldn’t it be wonderful if you could make changes to just a single page and have them
reflected through the site in the same way as CSS? Well, with PHP includes, you can. As the
name suggests, the contents of an include file are included and treated as an integral part
of the page. They can contain anything that you would normally find in a PHP page: plain
text, XHTML, and PHP code. The file name extension doesn’t even need to be .php,
although for security it’s common practice to use it.

Dreamweaver makes working with includes easy thanks to its ability to display the con-
tents of an include in Design view (or Live Data view for dynamic content). Many people
find includes so useful that they stop using templates. Nevertheless, templates can be use-
ful, particularly for small sites, so this chapter covers both approaches.

In this chapter, you’ll learn how to

Use PHP includes for common page elements

Store frequently used code in the Snippets panel

Apply CSS to page fragments with Design Time Style Sheets

Export a navigation menu to an external file

Adapt the mail processing script to work with other forms

Avoid the “headers already sent” error with includes

Use Dreamweaver templates in a PHP site

To start with, let’s take a quick look at how you create a PHP include.

Including text and code from other files
The ability to include code from other files is a core part of PHP. All that’s necessary is to
use one of PHP’s include commands and tell the server where to find the file.

Introducing the PHP include commands
PHP has four separate commands for creating an include: include(), include_once(),
require(), and require_once(). Why so many? And what’s the difference?

They all do the same thing, but “require” is used in the sense of “mandatory”; everything
comes to a grinding halt if the external file is missing or can’t be opened. The “include”
pair of commands, on the other hand, soldier bravely on. The purpose of _once is to pre-
vent variables being accidentally overwritten. The PHP engine uses the first instance it
encounters and ignores any duplicates. If in doubt about which to use, choose
include_once() or require_once(). Using them does no harm and could avoid problems.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

364

8598CH12.qxd 6/28/07 11:59 AM Page 364

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Telling PHP where to find the external file
The include commands take a single argument: a string containing the path of the external
file. While this sounds simple enough, it confuses many Dreamweaver users. PHP looks for
the external file in what’s known as the include_path. By default, this always includes the
current directory (folder), and PHP expects either a relative or an absolute path. It won’t
work with a path relative to the site root.

If Links relative to is set to Document in the Local Info category of your site definition (see
Figure 12-1), Dreamweaver automatically uses the correct path for include files. However,
if you have selected Site root as your default style for links, includes won’t work unless you
override the default setting to change the path to a document-relative one or take alter-
native measures to set the include_path.

Figure 12-1. Dreamweaver’s site definition dialog box lets you specify the default
format of internal links.

A practical exercise should clarify the situation.

In this exercise, you’ll see what happens if you use the wrong type of path for an include
file. You’ll also learn how to override the default setting, so that you can use includes suc-
cessfully even if your site definition specifies using links relative to the site root.

1. Create a new subfolder called includes in your workfiles folder, and copy
include.txt from examples/includes to the new folder.

2. Go to File ➤ New. Select Blank Page and PHP as the Page Type. Choose any of the
predefined layouts. The one I chose was 2 column fixed, left sidebar. This is only
going to be a test page, so you can leave Layout CSS on Add to Head. Click Create
and save the file as include_test.php in workfiles/ch12.

3. Position your cursor at the beginning of the first paragraph under the Main Content
headline. Press Enter/Return to insert a new paragraph, and then press your up
keyboard arrow to move the insertion point into the empty paragraph.

4. Select the PHP tab on the Insert bar, and click the Include button as shown in the
following screenshot (alternatively use the menu option Insert ➤ PHP Objects ➤
Include). Dreamweaver opens Split view, inserts a PHP code block complete with an
include() command, and positions the insertion point between the parentheses,
ready for you to enter the path of the external file.

Including a text file

WORKING WITH PHP INCLUDES AND TEMPLATES

365

12

8598CH12.qxd 6/28/07 11:59 AM Page 365

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. The path needs to be a string, so enter a quotation mark (I prefer a single quote,
but it doesn’t matter, as long as the closing quote matches). Dreamweaver’s syntax
coloring turns all the subsequent code red, but this reverts to normal once you
have finished. Position your mouse pointer over the insertion point, and right-click
to bring up a context menu. Select Code Hint Tools ➤ URL Browser, as shown here:

6. This places a tiny Browse icon at the insertion point like this:

7. Click the Browse icon to open the Select File dialog box. Navigate to the
workfiles/includes folder, and select include.txt. Before clicking OK, check the
setting of Relative to at the bottom of the dialog box. It displays Document or Site
Root, depending on the default in your site definition (see Chapter 4 and Figure 12-1).
If necessary, change it to Site Root, as shown here, and click OK:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

366

8598CH12.qxd 6/28/07 11:59 AM Page 366

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Type a closing quote after the path that has just been entered into the include()
command. Syntax coloring turns the rest of the code back to its normal color—a
useful reminder of the importance of matching quotes. Move your cursor further
along the line to remove the just before the closing </p> tag.

9. Click inside Design view. The gold PHP shield should disappear and be replaced by
the content of the external text file. Magic . . . well, not quite.

10. Save include_test.php, and press F12/Opt+F12 to view it in a browser. You should
see something like Figure 12-2.

Figure 12-2. If PHP can’t find the include file, it displays ugly warning messages.

The first warning says there was no such file or directory, but of course, there is.
The second warning gives a cryptic clue as to why PHP can’t open the file. The
include_path is where PHP looks for include files. The default value on most web
servers is . (a period), which is shorthand for the current working directory, and
either the main PHP folder or pear (PEAR—the PHP Extension and Application
Repository—is a library of extensions to PHP). PHP doesn’t understand a leading
forward slash as meaning the site root, so it starts from the current folder and ends
up in a nonexistent part of the site.

11. Go back to the Dreamweaver Document window, and remove the current path;
right-click between the quotes, and use the URL Browser to navigate to
include.txt again, but this time make sure that Relative to is set to Document. Save
include_test.php, and reload it in a browser. The content of the include file
should now be correctly displayed, as shown in Figure 12-3.

WORKING WITH PHP INCLUDES AND TEMPLATES

367

12

8598CH12.qxd 6/28/07 11:59 AM Page 367

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 12-3. The include file is displayed correctly when a relative path is used.

12. Go back to Dreamweaver, and change the command from include to require like
this:

<?php require('../includes/include/txt'); ?>

13. Save the page, and load it into a browser. It should look identical to Figure 12-3.

14. Change the path to point to a nonexistent file, such as includ.txt. When you save
the page and view it in a browser, it should look similar to Figure 12-2, but instead
of the second warning, you should see Fatal error. The other difference is that
there’s no text after the error message. As explained in “Understanding PHP error
messages” in Chapter 10, any output preceding a fatal error is displayed, but once
the error is encountered, everything else is killed stone dead.

Using site-root-relative links with includes
As you have just seen, PHP cannot find include files referenced by a site-root-relative link.
My recommendation is that, if you have selected links relative to the site root as your
default, you simply select Relative to Document in the Select File dialog box (as described in
step 10 of the preceding exercise) when creating an include.

Nevertheless, there are a couple of alternatives if you have a pressing reason for wanting
to use links relative to the site root. The problem is that they don’t work on all servers.

The virtual() function accepts both document-relative and site-root-relative paths and
can be used as a direct replacement for include() and require(). It works only when PHP
is run as an Apache module.

$_SERVER['DOCUMENT_ROOT'] is a predefined PHP variable that contains the path of the
server’s root folder, so adding it to the beginning of a site-root-relative link has the effect
of turning it into an absolute path. The following works on most servers:

<?php include($_SERVER['DOCUMENT_ROOT'].'/workfiles/includes/ ➥

include/txt'); ?>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

368

8598CH12.qxd 6/28/07 11:59 AM Page 368

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Unfortunately, $_SERVER['DOCUMENT_ROOT'] isn’t supported by IIS running PHP in CGI
mode.

To check whether your server supports either method, run server_check.php in
examples/ch12. If both are supported, you should see output similar to this.

If neither is supported and you still want to use site-root-relative links, you need to define
a constant containing the path to the site root. A constant is like a variable, except that
once defined in a script, its value cannot be changed. Constants don’t begin with a dollar
sign, and by convention, they are always in uppercase. You define a constant like this:

define('SITE_ROOT', 'C:\inetpub\wwwroot\egdwcs3');

You could then use SITE_ROOT with a site-root-relative link like this:

<?php include(SITE_ROOT.'/workfiles/includes/include/txt'); ?>

The disadvantage with this approach is that you need to include the definition of the con-
stant in every page that uses includes.

Lightening your workload with includes
So far, you have seen only a fairly trivial use of an include to insert a block of text inside a
paragraph. This might be useful in a situation where you want to change the content of
part of a page on a frequent basis without going to the bother of building a database-
driven content management system. A much more practical use of includes is for content
that appears on many pages, for example a navigation menu or footer. Any changes made
to the include file are immediately reflected throughout the site.

Choosing the right file name extension for include files
As I explained at the beginning of the chapter, the external file doesn’t need to have a
.php file name extension. Many developers use .inc as the default file name extension to
make it clear that the file is an include. Although this a common convention, Dreamweaver
doesn’t automatically recognize an .inc file as containing PHP code, so you don’t get code

The restriction on site-root-relative links applies only to the include command. Inside
include files, all links should be site-root-relative. Document-relative links inside an
include file will be broken if the file is included at a different level of the site hierar-
chy. See “Creating and editing a template-based page” later in the chapter.

WORKING WITH PHP INCLUDES AND TEMPLATES

369

12

8598CH12.qxd 6/28/07 11:59 AM Page 369

http://lib.ommolketab.ir
http//lib.ommolketab.ir

hints or syntax coloring. More importantly, browsers don’t understand .inc files. So, if
anybody accesses an .inc file directly through a browser (as opposed to it being included
as part of a PHP page), everything is displayed as plain text.

This is a potential security risk if you put passwords or other sensitive information in exter-
nal files. One way around this problem is to store include files outside the server root
folder. Many hosting companies provide you with a private folder, which cannot be
reached by a browser. As long as the PHP script knows where to find the external file and
has permission to access it, include files can be outside the server root. However, this
creates problems for Dreamweaver site management.

A simpler, widely adopted solution is to use .inc.php as the file name extension. Browsers
and servers treat only the final .php as the file name extension and automatically pass
the file to the PHP engine if requested directly. The .inc is simply a reminder to you as the
developer that this is an include file.

As long as you store passwords and other sensitive information as PHP variables within PHP
code blocks, and use .php as the final file name extension, your data cannot be seen by
anyone accessing the page directly in a browser (of course, it will be revealed if your code
uses echo or print to display that information, but I assume that you have the sense not
to do that).

Displaying XHTML output
When PHP includes an external file, it automatically treats the contents of the external file
as plain text or XHTML. This means that you can cut a section out of an existing page built
in XHTML and convert it into an include file. In order to preserve your sanity, it’s important
to put only complete, logical elements in external files. Putting the opening part of a <div>
in one external file and the closing part in another file is a disaster waiting to happen. It
becomes impossible to keep track of opening and closing tags, and Dreamweaver is likely
to start trying to replace what it regards as missing tags.

Usually, I find the best approach is to build the complete page first, and then convert com-
mon elements into include files.

This exercise shows you how to extract the menu from the “Stroll along the Thames” site
in Chapter 7 and convert it into an include file.

1. Copy stroll_horiz.html from examples/ch07 to workfiles/ch12. Also make
sure you have the dependent files: styles/stroll_horiz.css, SpryAssets/
SpryMenuBar.js, and SpryAssets/SpryMenuBarHorizontal_stroll.css.

2. Save stroll_horiz.html as stroll_horiz.php. You need to change the file name
extension so that the PHP engine knows to process it and include the external files
you are about to create. Test the page in a browser to make sure that it displays
correctly. It should look like Figure 12-4.

Converting a navigation menu into an include

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

370

8598CH12.qxd 6/28/07 11:59 AM Page 370

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 12-4. The menu is the same on every page of the site, so it is a prime candidate for an
include file.

3. Create a new PHP file, and save it in the workfiles/includes folder as
menu.inc.php. You don’t need one of the CSS layouts, as you need a completely
blank page. Switch to Code view in menu.inc.php, and delete everything, including
the DOCTYPE declaration. There should be nothing left in the page.

4. Switch to stroll_horiz.php in the Document window. Click anywhere inside the
navigation menu, and click <div#nav> in the Tag selector to select the entire menu.
Switch to Code view, and then cut the menu to your computer clipboard
(Ctrl+X/Cmd+X or Edit ➤ Cut).

You must be in Code view when cutting the
menu to the clipboard. If you remain in
Design view, Dreamweaver cuts all the Spry-
related code and pastes it into the include file.
You want to move only the XHTML code and
the Spry object initialization, but they’re in
different parts of the page, so it has to be
done in two steps. Click No, if Dreamweaver
displays the warning shown alongside at any
time during the next few steps. Once you
move the initialization script, the warning
message no longer appears.

WORKING WITH PHP INCLUDES AND TEMPLATES

371

12

8598CH12.qxd 6/28/07 11:59 AM Page 371

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Without moving the insertion point, click the Include button on the PHP tab of the
Insert bar (or use the menu alternative). This inserts a PHP code block and positions
your cursor between the parentheses of an include() command.

6. Type a single quote, right-click, and use Code Hint Tools ➤ URL Browser to navigate
to menu.inc.php in the workfiles/includes folder in the same way as in
“Including a text file” earlier in the chapter. In the Select File dialog box, make sure
that Relative to is set to Document. Click OK, and type a closing quote after the path.
Save stroll_horiz.php.

7. Switch to menu.inc.php in the Document window. Make sure you are in Code view,
and paste the menu that you cut from stroll_horiz.php. (If you are in Design
view, you won’t get all the XHTML code. Always cut and paste in the same view in
Dreamweaver—Design view to Design view or Code view to Code view.)

8. Go back to stroll_horiz.php, scroll down to the bottom of the page, and cut to
your clipboard the section of code highlighted on lines 54–58 in the following
screenshot.

This is the initialization script for the Spry menu bar. Make sure that you have the
opening and closing <script> tags.

9. Paste the Spry object initialization script into menu.inc.php after the closing
</div> tag. Save menu.inc.php, and close the file.

10. Switch to Design view in stroll_horiz.php. The menu should be visible as it was
before. If you can’t see the menu, open Preferences from the Edit menu
(Dreamweaver menu on a Mac), select the Invisible Elements category, and make
sure there’s a check mark in Server-Side includes: Show contents of included file.

11. Hover your mouse pointer over the navigation menu, and click the turquoise Spry
Menu Bar tab at the top left corner (see Figure 12-5). The Property inspector rec-
ognizes it as a server-side include (SSI) and displays the name of the file, together
with an Edit button. Clicking the Edit button opens the include file in the Document
window ready for editing.

12. Test stroll_horiz.php in a browser. It should look like Figure 12-4, and the menu
should work as before. You can check your code against stroll_horiz_menu.php
in examples/ch12 and menu.inc.php in examples/includes.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

372

8598CH12.qxd 6/28/07 11:59 AM Page 372

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 12-5. When you select the contents of an include file in Design view, the Property inspector
provides a direct link to edit it.

Putting the Spry object initialization script at the end of menu.inc.php results in it being
called earlier than it was in the original page, but it’s still in the right order and doesn’t
result in invalid code. It also prevents the warning in step 4 from being displayed every
time that you open the parent page.

An added advantage is that you can edit the Spry menu through the Property inspector in
the same way as in Chapter 7. Even though the include file has no direct link to the Spry
menu bar external JavaScript file, Dreamweaver automatically finds it because the
Spry assets folder is specified in the site definition.

However, what you put in an external file doesn’t always have such benign consequences.

Avoiding problems with include files
The server incorporates the content of an include file into the page at the point of the
include command. If you pasted all the Spry-related code into menu.inc.php, rather than
just the constructor, you would end up with the link to the external style sheet within the
<body> of stroll_horiz.php. Although some browsers might render the page correctly,
<style> blocks are invalid outside the <head> of a web page. If it doesn’t break now, it
probably will sooner or later as browsers get increasingly standards-compliant.

The most common mistake with include files is adding duplicate <head> and <body> tags.
Keep your include files free of extraneous code, and make sure that when everything fits
back together that you have a DOCTYPE declaration, a single <head> and <body>, and that
everything is in the right order.

Dreamweaver depends on the DOCTYPE declaration at the top of a page to determine
whether to use XHTML rules. Code added to an include will normally use HTML style, so
when editing an include, you need to keep a close eye on what is happening in Code view.
This is why I recommend extracting code into include files only toward the end of a proj-
ect or if the external file uses mainly dynamic code.

An annoying quirk in the way Dreamweaver handles PHP includes in Design view
is that the include command must be in its own PHP code block. If you put any
other PHP code in the same block—even a comment—Dreamweaver just dis-
plays the gold PHP shield.

WORKING WITH PHP INCLUDES AND TEMPLATES

373

12

8598CH12.qxd 6/28/07 11:59 AM Page 373

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Another common problem is a broken link in an include file. Always use site-root-relative
links inside include files. As explained in Chapter 4, site-root-relative links provide a con-
stant reference to a page or an asset, such as an image. If you use document-relative links
inside an include file, the relationship—and therefore the link—is broken if the file is
included at a different level of the site hierarchy than where it was originally designed.

Applying styles with Design Time Style Sheets
Although Dreamweaver displays the menu normally in stroll_horiz.php, it looks com-
pletely different in menu.inc.php. As Figure 12-6 shows, the menu is completely unstyled;
all you can see is the underlying series of nested unordered lists. Design Time Style Sheets
let you apply the styles in an external style sheet to a page or code fragment without the
need to attach the style sheet directly to the page. As the name suggests, the style sheet is
applied only at design time; in other words, in Design view.

Figure 12-6. The include file is completely unstyled.

To apply Design Time Style Sheets to a page or an include file, select CSS Styles ➤ Design-
time from either the Text menu or from the context menu when right-clicking in Design
view. This opens the Design Time Style Sheets dialog box, as shown in the following
screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

374

8598CH12.qxd 6/28/07 11:59 AM Page 374

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The dialog box has two sections. The first one, Show only at design time, lets you apply a
style sheet without attaching it to the file. The second one, Hide at design time, works with
style sheets that are attached to a file, letting you hide the effect of selected style sheets
while working in Design view. It’s particularly useful when working with style sheets for dif-
ferent media, such as print and screen.

Both sections work the same way: add a style sheet to the list by clicking the plus (+)
button and navigating to the style sheet in the site file system. The rules of the CSS
cascade apply, so add multiple style sheets in the same order as to the original page. To
remove a style sheet, highlight it, and click the minus (–) button. Figure 12-7 shows
menu.inc.php after applying workfiles/styles/stroll_horiz.css and SpryAssets/
SpryMenuBarHorizontal_stroll.css as Design Time Style Sheets. It now looks the same
as in the page it was extracted from.

Figure 12-7. After applying Design Time Style Sheets, the include file looks the same as in the
original page.

With the Design Time Style Sheets applied, you can manipulate the styles of the include
file by changing the class or ID of individual elements. You can also change the style rules
in the external style sheets through the CSS Styles panel. But—and it’s a rather large
one—you should remember that the code fragment that you’re working with is no longer
in the context of its parent page. As a result, the full effect of the CSS cascade may not be
accurately reflected. Also, changes made to the external style sheet may have unexpected
consequences on other parts of your design. Although useful, Design Time Style Sheets
have their limitations.

Another drawback is that Design Time Style Sheets can be applied to only one page at a
time. There is a commercial extension available that lets you apply Design Time Style
Sheets to an entire site. See www.communitymx.com/abstract.cfm?cid=61265 for details.
Dreamweaver stores details of style sheets applied to a page in this way in a subfolder
called _notes. The subfolder is hidden in the Files panel but can be inspected in Windows
Explorer or Finder.

Adding dynamic code to an include
The footer of a page frequently contains details that might change, such as company
address or telephone number, making it an ideal candidate for an include file.

The footer in stroll_horiz.php contains only a copyright notice, which normally changes
only once a year, but with a little PHP magic, you can get it to update automatically at the
stroke of midnight on New Year’s Eve every year. Continue working with the files from the
previous exercise.

Automatically updating a copyright notice

WORKING WITH PHP INCLUDES AND TEMPLATES

375

12

8598CH12.qxd 6/28/07 11:59 AM Page 375

http://www.communitymx.com/abstract.cfm?cid=61265
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Create a PHP page, and save it in workfiles/includes as footer.inc.php. Switch
to Code view and remove all code, so the file is completely blank. Switch to Design
view.

2. Open stroll_horiz.php in Design view, and click anywhere inside the copyright
notice at the bottom of the page. Select the entire footer by clicking <div#footer>
in the Tag selector, and cut it to your clipboard.

3. Without moving the insertion point, click the Include button on the PHP tab of the
Insert bar. Dreamweaver opens Split view with the cursor placed between the
parentheses of an include() block. Type a single quote, use the URL Browser as
before to insert the path to footer.inc.php, and type a closing quote.

4. Switch to footer.inc.php, and paste the contents of your clipboard into Design
view. The footer is unstyled, but if you save footer.inc.php, switch to
stroll_horiz.php, and click in Design view, you’ll see the footer properly styled as
though you had never moved it. Click the copyright notice. The entire text is
selected, and the Property inspector displays the path of the include together with
an Edit button.

5. Click the Edit button to open footer.inc.php, and switch to Code view. It contains
the following XHTML:

<div id="footer">
<p>© Footsore in London</p>
<!-- end #footer -->

</div>

6. A copyright notice should have a year. You could just type it in, but the PHP date()
function generates the current year automatically. Add the following code like this:

<p>©
<?php
ini_set('date.timezone', 'Europe/London');
echo date('Y');
?>
Footsore in London</p>

Chapter 17 explains dates in PHP and MySQL in detail, but let’s take a quick look at
what’s happening here. The core part of the code is this line:

echo date('Y');

This displays the year using four digits. Make sure you use an uppercase Y. If you
use a lowercase y instead, only the final two digits of the year will be displayed.

The reason for the preceding line is because PHP 5.1.0 or higher requires a valid
time-zone setting. This should be set in php.ini, but if your hosting company for-
gets to do this, you may end up with ugly error messages in your page.

What if your hosting company is using an earlier version of PHP? No problem.
Earlier versions simply ignore this line.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

376

8598CH12.qxd 6/28/07 11:59 AM Page 376

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting the time zone like this is not only good insurance against error messages, it
also allows you to override the hosting company setting, if your host is in a differ-
ent time zone from your own. The second argument for ini_set() must be one of
the time zones listed at www.php.net/manual/en/timezones.php.

7. Switch to Design view, and click the Live Data view button. You should see the cur-
rent year displayed alongside the copyright symbol, as shown here.

Click the Live Data view button again to toggle it off.

8. Copyright notices normally cover a range of years, indicating when a site was first
launched. To improve the copyright notice, you need to know two things: the start
year and the current year. Change the PHP code in the paragraph like this:

<p>©
<?php
ini_set('date.timezone', 'Europe/London');
$startYear = 2007;
$thisYear = date('Y');
if ($startYear == $thisYear) {
echo $startYear;
}

else {
echo "{$startYear}-{$thisYear}";
}

?>
Footsore in London</p>

This uses simple conditional logic (if you’re new to PHP, see “Using comparisons to
make decisions” in Chapter 10, and take particular note of the use of two equal
signs in the conditional statement). The static value of $startYear is compared to
the dynamically generated value of $thisYear. If both are the same, only the start
year is displayed; if they’re different, you need to display both with a hyphen
between them.

I’ve used curly braces around the variables in the following line:

echo "{$startYear}-{$thisYear}";

This is because they’re in a double-quoted string that contains no whitespace. The
curly braces enable the PHP engine to identify the beginning and end of the vari-
ables. Since hyphens aren’t permitted in variable names, you could omit the curly
braces on this occasion. However, their presence makes the code easier to read.

WORKING WITH PHP INCLUDES AND TEMPLATES

377

12

8598CH12.qxd 6/28/07 11:59 AM Page 377

http://www.php.net/manual/en/timezones.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Switch back to Design view, and toggle Live Data view on again. Assuming that you
used the current year for $startYear, you’ll see no difference, so experiment by
changing the value of $startYear and alternating between uppercase and lower-
case y in the date() function to see the different output, as shown here:

The values of $startYear, $thisYear, and the name of the copyright owner are the
only things you need to change, and you have a fully automated copyright notice.
You can check your code against footer.inc.php in examples/includes and
stroll_horiz_footer.php in examples/ch12.

Using includes to recycle frequently used PHP code
Up to now, all the examples in this chapter have shown you how to include plain text or
XHTML. The last example makes use of PHP code but is specific to one particular site.
Includes become really useful when you create PHP code that can be used in any site. A
simple example is the POST stripslashes snippet that you used in the last chapter. Instead
of putting the code directly inside your script, you could put it in an external file and use
include() to incorporate it.

Let’s take a look at the code again:

// remove escape characters from POST array
if (get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);
return $value;
}

$_POST = array_map('stripslashes_deep', $_POST);
}

It contains nothing but PHP code, and the code itself consists of a conditional statement
that removes backslashes from the $_POST array if magic quotes are enabled on the server.
To use it successfully as an include, you must do the following two things:

The code in the external file must be surrounded by PHP tags. Although include()
and its related commands are part of PHP, the PHP engine treats everything in an
include file as plain text or XHTML until it encounters an opening PHP tag.
The opening tag must be matched by a closing one at or before the end of the
include file.

The code must be included at the point in the script where you want to run it. In
this respect, it’s the same as the text and XHTML includes earlier in the chapter.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

378

8598CH12.qxd 6/28/07 11:59 AM Page 378

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PHP can be used in two main ways: as a procedural language and as an object-oriented
one. In a procedural language, everything is usually in the same page and the code is
executed from top to bottom. However, to avoid the need to retype frequently used sec-
tions of script, you can package them up as custom-built functions. An object-oriented
language takes the concept of functions much further, and packages most of the code in
libraries called classes.

That’s a vast over-simplification, but in both approaches, unless the contents of an exter-
nal file define functions or classes, the include command must come at the point in the
code where you want to run it. The POST stripslashes snippet does include the definition
of the stripslashes_deep() function, but it’s buried inside a conditional statement. So,
the snippet itself is a chunk of procedural code that must be included at the point of the
script where it’s needed.

However, you can convert the snippet into a new function called nukeMagicQuotes() like
this:

<?php
function nukeMagicQuotes() {
// remove escape characters from POST array
if (get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value): stripslashes($value);
return $value;
}

$_POST = array_map('stripslashes_deep', $_POST);
}

}
?>

If you save this as nukeQuotes.inc.php, you can include the external file at the beginning
of your script and run this function at any stage in your script like this (you can see the
code in feedback_nuke.php in examples/ch12 and nukeQuotes.inc.php in examples/
includes):

nukeMagicQuotes();

The difference of this approach is that the include file initializes the function, but the func-
tion doesn’t actually run until it’s called in the main body of the script. Since this particu-
lar piece of code runs only once, there’s no immediate advantage of doing it this way.
However, let’s say that you find a way of improving this script, the changes need to be
made only in the external file, saving you the effort of hunting through every page where
it might have been used. External files can define more than one function, so you can store
frequently used functions together. In this respect, includes are the PHP equivalent of link-
ing external JavaScript files or style sheets.

When functions or classes are stored in an external file, the include command must
come before you use the functions or classes in your main script.

WORKING WITH PHP INCLUDES AND TEMPLATES

379

12

8598CH12.qxd 6/28/07 11:59 AM Page 379

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although building your own function library is an important use of includes, you shouldn’t
ignore the opportunity to recycle procedural code. The next section shows you how to
adapt the mail processing script from the last chapter and make it generic, so that it can
handle the output of any feedback form.

Adapting the mail processing script as an include
The mail processing script in the last chapter performs a series of tasks, some of them spe-
cific to the feedback form, others more generic in nature.

Analyzing the script
To make the script reusable, you need to identify what’s specific, what’s generic, and
whether any of the specific tasks can be made generic. Once you have identified the
nature of each task, you need to concentrate the generic ones into a single unit that can
be exported to an external file.

Table 12-1 lists the tasks in the order they are currently performed and identifies their
roles. You can study the code in feedback_orig.php in examples/ch12.

Table 12-1. Analysis of the mail processing script

Step Description Type

1 Check if form has been submitted Specific

2 Remove magic quotes Generic

3 Set to address and subject Specific

4 List expected and required fields Specific

5 Initialize missing array Generic

6 Filter suspect content Generic

7 Process $_POST variables and check for missing fields Generic

8 Validate email address Generic

9 Build the message body Specific

10 Create additional headers Specific

11 Send email Generic

As you can see from Table 12-1, most tasks are generic, but they don’t form a single block.
However, step 2 can easily be moved after steps 3 and 4. That leaves just steps 9 and 10
that get in the way.

Step 9 builds the body of the message, which would appear to be something that’s always
specific to each form. Let’s take another look at that part of the script:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

380

8598CH12.qxd 6/28/07 11:59 AM Page 380

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// set default values for variables that might not exist
$interests = isset($interests) ? $interests : array('None selected');
$views = isset($views) ? $views : array('None selected');

// build the message
$message = "Name: $name\n\n";
$message .= "Email: $email\n\n";
$message .= "Comments: $comments\n\n";
$message .= 'Interests: '.implode(', ', $interests)."\n\n";
$message .= "Visited: $visited\n\n";
$message .= 'Impressions of London: '.implode(', ', $views)."\n\n";
$message .= "Subscribe: $subscribe";

It doesn’t take a genius to work out that the message is built using text labels followed by
variables with the same name as the label. Since the variable names come from the name
attributes in the form, all you need is a way of displaying the name attributes as well as the
values of each input field. That’s easily done with PHP. It’s also easy to set default values for
variables that might not exist.

That leaves just step 10, the creation of additional headers. With the exception of the
return email address, it doesn’t matter when you specify the additional headers. They sim-
ply need to be passed to the mail() function in step 11. So you can move the creation of
most headers to the form-specific section at the beginning of the script. Table 12-2 shows
the revised order of tasks.

Table 12-2. The revised mail processing script

Step Description Type

1 Check if form has been submitted Specific

2 Set to address and subject Specific

3 Set form-specific email headers Specific

4 List expected and required fields Specific

5 Remove magic quotes Generic

6 Initialize missing array Generic

7 Filter suspect content Generic

8 Process $_POST variables and check for missing fields Generic

9 Validate email address Generic

10 Build the message body Generic

11 Add return email address to headers Generic

12 Send email Generic

WORKING WITH PHP INCLUDES AND TEMPLATES

381

12

8598CH12.qxd 6/28/07 11:59 AM Page 381

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Building the message body with a generic script
Loops and arrays take a lot of the hard work out of PHP scripts, although they can be dif-
ficult to understand when you’re new to PHP. You may prefer just to use the completed
script, but if you’re interested in the details, take a look at the following code, and I’ll
explain how it works:

// initialize the $message variable
$message = '';
// loop through the $expected array
foreach($expected as $item) {
// assign the value of the current item to $val
if (isset(${$item})) {
$val = ${$item};
}

// if it has no value, assign 'Not selected'
else {
$val = 'Not selected';
}

// if an array, expand as comma-separated string
if (is_array($val)) {
$val = implode(', ', $val);
}

// add label and value to the message body
$message .= ucfirst($item).": $val\n\n";
}

This replaces the code for step 9 that was listed in the preceding section. It begins by
initializing $message as an empty string. Everything else is inside a foreach loop
(see “Looping through arrays with foreach” in Chapter 10), which iterates through
the $expected array. This array consists of the name attributes of each form field (name,
email, etc.).

A foreach loop assigns each element of an array to a temporary variable. In this case, I
have used $item. So, the first time the loop runs, $item is name; the next time it’s email,
and so on. This means that you can use $item as the text label for each form field, but
before you can do that, you need to know whether the field contains any value. The code
that processes the $_POST variables (step 8 in the revised script) assigns the value of each
field to a variable based on its name attribute ($name, $email, etc.). The rather odd-looking
${$item} is what’s known as a variable variable (the repetition is deliberate, not a mis-
print). Since the value of $item is name the first time the loop runs, ${$item} refers to
$name. On the next pass through the loop, it refers to $email, and so on.

In effect, what happens is that on the first iteration the following conditional statement

if (isset(${$item})) {
$val = ${$item};
}

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

382

8598CH12.qxd 6/28/07 11:59 AM Page 382

http://lib.ommolketab.ir
http//lib.ommolketab.ir

becomes this

if (isset($name)) {
$val = $name;
}

If the variable doesn’t exist (which would happen if nothing was selected in a checkbox
group), the else clause assigns $val the string Not selected.

So you now have $item, which contains the label for the field, and $val, which contains
the field’s value.

The next conditional statement uses is_array() to check whether the field value is an
array (as in the case of checkboxes or a multiple-choice list). If it is, the values are con-
verted into a comma-separated string by implode().

Finally, the label and field value are added to $message using the combined concatenation
operator (.=). The label ($item) is passed to the ucfirst() function, which converts the
first character to uppercase. The concatenation operator (.) joins the label to a double-
quoted string, which contains a colon followed by the field value ($val) and two new line
characters.

This code handles all types and any number of form fields. All it needs is for the name
attributes to make suitable labels and to be added to the $expected array.

The following instructions show you how to adapt feedback.php from the previous chap-
ter, so that it can be recycled for use with most forms. If you don’t have a copy of the file
from the previous chapter, copy feedback_orig.php from examples/ch12 to workfiles/
ch12, and save it as feedback.php.

1. Create a new PHP file, and save it as process_mail.inc.php in workfiles/
includes. Switch to Code view, and strip out all existing code.

2. Insert the following code:

<?php
if (isset($_SERVER['SCRIPT_NAME']) && strpos($_SERVER['SCRIPT_NAME'],➥

'.inc.php')) exit;

?>

This uses the predefined variable $_SERVER['SCRIPT_NAME'] and the strpos()
function to check the name of the current script. If it contains .inc.php, that
means somebody is trying to access the include file directly through a browser, so
the exit command brings the script to a halt. When accessed correctly as an
include file, $_SERVER['SCRIPT_NAME'] contains the name of the parent file, so
unless you also give that the .inc.php file name extension, the conditional state-
ment returns false and runs the rest of the script as normal.

Converting feedback.php to use the generic script

WORKING WITH PHP INCLUDES AND TEMPLATES

383

12

8598CH12.qxd 6/28/07 11:59 AM Page 383

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Calling process_mail.inc.php directly shouldn’t have any negative effect, but if
display_errors is enabled on your server, it generates error messages that might
be useful to a malicious attacker. This simple security measure prevents the script
running unless it’s accessed correctly.

3. Cut the POST stripslashes code from the top of feedback.php, and paste it on the
blank line before the closing PHP tag in process_mail.inc.php.

4. Leave $to, $subject, $expected, and $required in feedback.php. Cut the remain-
ing PHP code above the DOCTYPE declaration (DTD), except for the closing curly
brace and PHP tag. The following code should be left above the DTD in
feedback.php:

<?php
if (array_key_exists('send', $_POST)) {
//mail processing script
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from Essential Guide';

// list expected fields
$expected = array('name', 'email', 'comments', 'interests', ➥

'visited', 'views', 'subscribe');
// set required fields
$required = array('name', 'comments', 'visited');
}

?>

5. Paste into process_mail.inc.php just before the closing PHP tag the code you cut
from feedback.php.

6. Cut the line that sets the From header, and paste it in feedback.php after the
$required array. Replace the code that builds the message with the generic ver-
sion. The full listing for process_mail.inc.php follows, with the new code high-
lighted in bold:

<?php
if (isset($_SERVER['SCRIPT_NAME']) && strpos($_SERVER['SCRIPT_NAME'],➥

'.inc.php')) exit;
// remove escape characters from POST array
if (get_magic_quotes_gpc()) {
function stripslashes_deep($value) {
$value = is_array($value) ? array_map('stripslashes_deep', ➥

$value) : stripslashes($value);
return $value;
}

$_POST = array_map('stripslashes_deep', $_POST);
}

// create empty array for any missing fields
$missing = array();

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

384

8598CH12.qxd 6/28/07 11:59 AM Page 384

mailto:me@example.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

// assume that there is nothing suspect
$suspect = false;
// create a pattern to locate suspect phrases
$pattern = '/Content-Type:|Bcc:|Cc:/i';

// function to check for suspect phrases
function isSuspect($val, $pattern, &$suspect) {
// if the variable is an array, loop through each element
// and pass it recursively back to the same function
if (is_array($val)) {
foreach ($val as $item) {
isSuspect($item, $pattern, $suspect);
}

}
else {
// if one of the suspect phrases is found, set Boolean to true
if (preg_match($pattern, $val)) {
$suspect = true;

}
}

}

// check the $_POST array and any subarrays for suspect content
isSuspect($_POST, $pattern, $suspect);

if ($suspect) {
$mailSent = false;
unset($missing);
}

else {
// process the $_POST variables
foreach ($_POST as $key => $value) {
//assign to temporary variable and strip whitespace if not an array
$temp = is_array($value) ? $value : trim($value);
// if empty and required, add to $missing array
if (empty($temp) && in_array($key, $required)) {
array_push($missing, $key);
}

// otherwise, assign to a variable of the same name as $key
elseif (in_array($key, $expected)) {
${$key} = $temp;
}

}
}

// validate the email address
if (!empty($email)) {
// regex to identify illegal characters in email address
$checkEmail = '/^[^@]+@[^\s\r\n\'";,@%]+$/';

WORKING WITH PHP INCLUDES AND TEMPLATES

385

12

8598CH12.qxd 6/28/07 11:59 AM Page 385

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// reject the email address if it deosn't match
if (!preg_match($checkEmail, $email)) {
$suspect = true;
$mailSent = false;
unset($missing);
}

}

// go ahead only if not suspsect and all required fields OK
if (!$suspect && empty($missing)) {
// initialize the $message variable
$message = '';
// loop through the $expected array
foreach($expected as $item) {
// assign the value of the current item to $val
if (isset(${$item})) {
$val = ${$item};
}

// if it has no value, assign 'Not selected'
else {
$val = 'Not selected';
}

// if an array, expand as comma-separated string
if (is_array($val)) {
$val = implode(', ', $val);
}

// add label and value to the message body
$message .= ucfirst($item).": $val\n\n";
}

// limit line length to 70 characters
$message = wordwrap($message, 70);

// create Reply-To header
if (!empty($email)) {
$headers .= "\r\nReply-To: $email";
}

// send it
$mailSent = mail($to, $subject, $message, $headers);
if ($mailSent) {
// $missing is no longer needed if the email is sent, so unset it
unset($missing);
}

}
?>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

386

8598CH12.qxd 6/28/07 11:59 AM Page 386

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. All that remains is to include the mail processing script. Since the form won’t work
without it, it’s a wise precaution to check that the file exists and is readable before
attempting to include it. The following is a complete listing of the amended code
above the DOCTYPE declaration in feedback.php. The new code, including the
$header pasted in the previous step, is highlighted in bold.

<?php
if (array_key_exists('send', $_POST)) {
//mail processing script
$to = 'me@example.com'; // use your own email address
$subject = 'Feedback from Essential Guide';

// list expected fields
$expected = array('name', 'email', 'comments', 'interests', ➥

'visited', 'views', 'subscribe');
// set required fields
$required = array('name', 'comments', 'visited');
$headers = 'From: Essential Guide<feedback@example.com>';
$process = '../includes/process_mail.inc.php';
if (file_exists($process) && is_readable($process)) {
include($process);
}

else {
$mailSent = false;
}

}
?>

The path to process_mail.inc.php is stored in $process. This avoids the need to
type it out three times. The conditional statement uses two functions with self-
explanatory names: file_exists() and is_readable(). If the file is OK, it’s
included. If not, $mailSent is set to false. This displays the warning that there was
a problem sending the message. Because $missing is set inside the processing
script, the user’s input won’t be redisplayed. You could move the initialization of
$missing to feedback.php, but if the script can’t be accessed, your form is broken
anyway.

8. To be super-efficient, send yourself an email alerting you to the problem with the
include file by amending the conditional statement like this:

if (file_exists($process) && is_readable($process)) {
include($process);
}

else {
$mailSent = false;
mail($to, 'Server problem', "$process cannot be read", $headers);
}

You can check the final code in feedback_process.php in examples/ch12 and
process_mail.inc.php in examples/includes.

WORKING WITH PHP INCLUDES AND TEMPLATES

387

12

8598CH12.qxd 6/28/07 11:59 AM Page 387

mailto:me@example.com
mailto:feedback@example.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Because process_mail.inc.php uses generic variables, you can slot this include file into
any page that processes a form and sends the results by email. The only proviso is that you
must use the same variables as in step 7, namely $to, $subject, $expected, $required,
$headers, and $mailSent. You also need to use $missing for the error-checking routine,
as described in the previous chapter.

Programming purists would criticize this use of procedural code, arguing that a more
robust solution should be built with object-oriented code. An object-oriented solution
would probably be better, but it would also be more difficult for a PHP beginner to adapt.
The purpose of this exercise has been to demonstrate how even procedural code can be
recycled with relatively little effort. It also prepares the ground for customizing the
PHP code automatically generated by Dreamweaver. With the exception of the
XSL Transformations server behavior (covered in Chapter 18), Dreamweaver uses proce-
dural code.

Avoiding the “headers already sent” error
A problem that you’re bound to encounter sooner or later is this mysterious error
message:

Warning: Cannot add header information - headers already sent

It happens when you use header() to redirect a page, as described in the previous chap-
ter, or with PHP sessions (covered in Chapter 15). More often than not, the cause of the
problem lies in an include file.

Using header() or starting a PHP session must be done before any output is sent to the
browser. This includes not only XHTML but also any whitespace. As far as PHP is con-
cerned, whitespace means any space, tab, carriage return, or new line character. Why the
error message is so mysterious—and causes so much head banging—is because the white-
space is often at the end of an include file. Use the line numbers in Code view, as shown
in Figure 12-8, to make sure there are no blank lines at the end of an include file. Also
make sure that there is no whitespace after the closing PHP tag on the final line.

Whitespace inside the PHP tags is unimportant, but the PHP code must not generate any
XHTML output before using header() or starting a session. The same applies to the parent
page: there must be no whitespace before the opening PHP tag.

On rare occasions, the error is triggered by an invisible control character at the beginning
of the file. Use View ➤ Code View Options ➤ Hidden Characters to check, and delete the
character.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

388

8598CH12.qxd 6/28/07 11:59 AM Page 388

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 12-8. Eliminate whitespace at the beginning and end of include files to avoid the “headers
already sent” error.

Using Dreamweaver templates in a PHP site
Earlier in the chapter, I showed you how to extract two sections from the “Stroll along the
Thames” site and turn them into includes. You could go further, and convert the header
and fixed parts of the document <head> into includes, so that each page consists of several
includes, with just the sidebar and main content forming the actual content of the page.
As long as you keep each include as a coherent block, it’s relatively easy to manage, and
Design view preserves the unified look of the page.

However, it’s not an approach that everybody feels comfortable with. That’s where
Dreamweaver templates can be a useful alternative. A template locks the fixed elements
of the design, but lets you designate editable regions for the content that you want to
change on each page. Dreamweaver templates allow you to control what can and can’t be
edited with a great degree of precision, right down to the individual attributes of a tag. If
you change anything in a locked region of a master template, Dreamweaver automatically
updates all child pages (as long as you accept the option to do so). Although this is con-
venient, you still need to upload the changed pages manually to the live website.

I don’t intend to go into the finer details of working with templates but simply give a
broad overview of creating a template, designating editable regions, and creating child
pages. I’ll also touch on issues that apply specifically to working with PHP in a
Dreamweaver template.

WORKING WITH PHP INCLUDES AND TEMPLATES

389

12

8598CH12.qxd 6/28/07 11:59 AM Page 389

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a template
The easiest way to create a Dreamweaver template is to design a page in the Document
window in the normal way. It’s then a simple matter of saving the page as a template and
designating the editable regions. Let’s do that with the “Stroll along the Thames” page
from earlier in the chapter.

This exercise combines the benefits of both approaches. The menu and footer are PHP
includes, so can be edited separately, while the rest of the page as a template locks down
the main design elements.

1. Open stroll_horiz_footer.php from examples/ch12 in the Document window.
There is no need to copy or move it, because converting it into a template takes
care of that.

2. Choose Make Template from the Common tab of the Insert bar, as shown in the fol-
lowing screenshot. Alternatively, use the menu option File ➤ Save as Template.

3. This opens the following dialog box:

In theory, you can choose to save the template in a different site, but this is likely
to cause problems with images, so leave Site unchanged. Existing templates displays
a list of templates that you have already defined, if any. Optionally enter a description

Converting stroll_horiz_footer.php into a template

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

390

8598CH12.qxd 6/28/07 11:59 AM Page 390

http://lib.ommolketab.ir
http//lib.ommolketab.ir

of the template in the Description field. The Save as field suggests using the current
file name. You can change this, if you like, but don’t add a file name extension, as
Dreamweaver uses a special extension for templates. Click Save.

4. Dreamweaver asks if you want to update links. You must click Yes, or your template
will have broken links and cause endless trouble.

5. Although it may appear as though nothing happens, the Dreamweaver title bar
changes to display <<Template>> in front of the file name, which now has a
.dwt.php extension, as shown here.

Dreamweaver also saves the new template in the Templates folder in the site root.
If the folder doesn’t exist, Dreamweaver creates it silently.

Adding editable regions to the master template
Everything in a template is locked, except for the <title> tag and an editable region in the
<head> of the document. This is needed so that external JavaScript files and style sheets
can be added to a child page. It’s also where Dreamweaver behaviors insert the JavaScript
functions that they require.

It goes without saying that you must unlock at least one part of the page for the template
to be of any real value. Otherwise, every child page would be identical. Deciding what to
lock and unlock depends entirely on the level of control that you want over a page. For
instance, you could create separate editable regions for each of the headings on the page.

An important exception to this basic principle is that the area above the DTD and
below the closing </html> tag is not locked in templates for server-side languages,
such as PHP. I’ll come back to this issue a little later, as it causes a lot of confusion.

The file with the .dwt.php file name extension is now the master template from which
you create child pages. Any changes to the design of this page will affect all child
pages created from it—as long as you accept the option to update them. You must
not move the template from the Templates folder. This is perhaps the single most
common mistake with templates—moving the master template to another folder will
cause you endless grief. Don’t do it.

WORKING WITH PHP INCLUDES AND TEMPLATES

391

12

8598CH12.qxd 6/28/07 11:59 AM Page 391

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you select the entire heading, including its surrounding tags, the heading can be
replaced by anything: a table, a <div>, an <iframe>, or whatever you like. If you select just
the content of an <h2> tag and convert it into an editable region, only the content can be
changed in a child page. You can’t even change it to an <h1> tag.

Since the remaining chapters of this book are about building dynamic content with PHP,
you don’t want such rigid control. So you could make everything inside the container
<div> one big editable region. However, we’ll take a slightly different approach.

This exercise shows you how to create separate editable regions for the sidebar heading
and content, as well as for the whole main content area.

1. Open stroll_horiz_footer.dwt.php in the Templates folder if it’s not already
open.

2. Open Split view. Click immediately to the left of the heading that reads The pleas-
ures of London. Hold down your mouse button and drag to the end of the heading.
Alternatively, hold down the Shift key while pressing the keyboard right arrow to
select the content of the heading. Make sure you have just the text and not the sur-
rounding <h3> tags, as shown in the following screenshot.

3. There are several ways to make this an editable region. If you’re a fan of the Insert
bar, click the down arrow next to the Make Template button on the Common tab,
and select Editable Region. The Insert bar remembers your last selection, so the
Editable Region button remains displayed, ready for the creation of more editable
regions.

Alternatively, right-click and select Templates ➤ New Editable Region from the con-
text menu, or go to Insert ➤ Template Objects ➤ Editable Region.

4. This opens the New Editable Region dialog box. It has just one field for a name for
the editable region. It can be anything you like, but each region must have a differ-
ent name. Enter sidebarHead, and click OK.

5. This wraps the contents of the <h3> tag in two special HTML comment tags, as
shown in Figure 12-9. These tell Dreamweaver to treat this as an editable region in
child pages. Dreamweaver also displays a turquoise border around the region in
Design view, with a tab at the top left indicating the name of the editable region.

Making the sidebar and main content areas editable

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

392

8598CH12.qxd 6/28/07 11:59 AM Page 392

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 12-9. Editable regions are easily identified in both Code view and Design view.

6. Select the paragraphs and <blockquote> in the sidebar. If you’re still in Split view,
you’ll see that selecting the text in Design view misses the opening tag of the first
paragraph and the closing tag of the final one. This doesn’t matter. Since more than
one paragraph is selected, Dreamweaver is normally clever enough to realize that
you want the surrounding tags and includes them when you create the editable
region.

7. Use one of the previous methods to make this an editable region named
sidebarContent. Switch to Code view to make sure that the opening and closing
<p> tags were included. If they weren’t, move them inside the template comments.

8. Select all the content in the mainContent <div>, but not the surrounding <div>
tags, and create an editable region called mainContent. Check that the template
comments are in the right place in Code view, and save stroll_horiz_footer.
dwt.php.

9. Dreamweaver should display a warning that sidebarHead is inside a block tag, and
that users of the template won’t be able to create new blocks in this region. This is
because the <h3> tags are outside the sidebarHead editable region, which prevents
anything other than a level three heading being created. That’s fine. So click OK.

Creating child pages from a template
Now that you have a template, you can build pages based on it. The editable regions can
be freely changed, but the other areas remain locked and can be changed only by editing
the master template.

Always check the position of the TemplateBeginEditable and TemplateEndEditable
comments in Code view, as you can easily move them or any of the surrounding code
while still in the template. Checking now saves a lot of frustration later, when you dis-
cover that you didn’t select the region accurately in Design view, and your child pages
don’t work the way you expect. These comments are an integral part of the template
control mechanism and are propagated to the child pages, where they remain part of
the XHTML (see Figure 12-13).

WORKING WITH PHP INCLUDES AND TEMPLATES

393

12

8598CH12.qxd 6/28/07 11:59 AM Page 393

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise uses the template from the previous exercise to create a child page and
explores the way editable regions are displayed in both Design view and Code view. It also
demonstrates the importance of using site-root-relative links in PHP includes,

1. Go to File ➤ New. When the New Document dialog box opens, select Page from
Template from the options on the left side. Assuming that you created the template
in the preceding exercises, the dialog box should look similar to Figure 12-10.

Figure 12-10. The New Document dialog box gives you access to all the templates you have created.

If you have created templates in several sites, select the site and the template that
you want to use as the basis for a new page (you can have as many templates as
you like in a site, using different designs for pages that serve different functions).

The New Document dialog box shows a preview of the selected template, together
with the description you entered when it was first created.

The idea of a template is that all changes to common elements are propagated
automatically to child pages when the master template is updated. Unless you want
to create a page that doesn’t automatically update, make sure that there’s a check
mark in Update page when template changes, and click Create.

2. A new page is created in the Document window. At first glance, it looks identical to
the template, but several features tell you that it’s a child page (see Figure 12-11)
and that you can make changes only to the editable regions indicated by the
turquoise borders and tabs. Whenever your mouse is over a locked part of the
page, the pointer turns into a circle with a diagonal bar to warn you that no
changes can be made.

Creating and editing a template-based page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

394

8598CH12.qxd 6/28/07 11:59 AM Page 394

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 12-11. The child page is identical to the master template, but locked areas
can no longer be edited.

3. Save the page as stroll_index.php in workfiles/ch12.

4. Repeat step 1 to create another child page from the template. Save it as stroll_
restaurants.php in a new folder called workfiles/ch12/food.

5. Make some changes to stroll_restaurants.php. Experiment to see what you can
and can’t change. For instance, the sidebarHead cannot be changed to a different
format, but the <h2> at the top of the mainContent <div> can be changed or
deleted altogether. You can also change the Title field in the Document toolbar.
Give the pages different titles by adding Home to stroll_index.php and
Restaurants to stroll_restaurants.php. Make sufficient changes to one of the
pages so that you can tell them apart, and then save both of them.

6. The navigation menu contains only dummy links at the moment, so open
menu.inc.php in workfiles/includes. Update the link for Home so that it points
to stroll_index.php and for Restaurants to point to stroll_restaurants.php.

Because the navigation menu is shared by files in different levels of the site hierar-
chy, you must make the links relative to the site root, even if you have set the site
default to use links relative to the current document. Use the Browse icon (it looks
like a folder) alongside the Link field in the Property inspector to select the target
files, and set the Relative to drop-down menu to Site Root as shown in Figure 12-12.

WORKING WITH PHP INCLUDES AND TEMPLATES

395

12

8598CH12.qxd 6/28/07 11:59 AM Page 395

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 12-12. Links for the navigation menu must be relative to the site root.

7. Save menu.inc.php, and switch back to stroll_index.php in the Document win-
dow. You want to test the navigation menu links, so your Dreamweaver preferences
shouldn’t use temporary files for preview. (If you’re not sure, open Preferences
from the Edit menu or Dreamweaver menu on a Mac; then select Preview in Browser,
and make sure Preview using temporary file is deselected.) Press F12/Opt+F12 to pre-
view stroll_index.php in a browser.

8. Test the Restaurants link. If you have followed the instructions carefully, it won’t
work. Don’t worry; I’ve done something deliberately to demonstrate an important
feature of building pages from templates.

9. Open stroll_index.php in Code view. The first thing you’ll notice is that several
parts of code are colored light gray. All the code in gray is locked. Try editing one
of these areas. Although Dreamweaver puts the insertion point wherever you click,
you cannot type anything. The only exception is between the template comments
shown on line 25 of Figure 12-13. This is where you can add extra style sheets or
JavaScript. It’s also where you should insert any other elements that normally go in
the <head> of a web page, such as keywords and description <meta> tags.

Figure 12-13. Locked areas in a child page cannot be edited (lines 8–22 and 27–35 are hidden
using Code collapse).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

396

8598CH12.qxd 6/28/07 12:00 PM Page 396

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Another thing to note is the codeOutsideHTMLIsLocked attribute shown on line 2
of Figure 12-13. By default, this is set to false. This is to allow you to apply server
behaviors to pages created from a template. When you start working with server
behaviors in Chapter 14, you’ll see that Dreamweaver puts most of the PHP code
outside the <html> tags, so if this were set to true, you wouldn’t be able to apply
server behaviors to your pages. I’ll explain the implications of this shortly.

Finally, look at the include command for menu.inc.php (it’s on line 36 in Figure 12-13).
It’s pointing to the version of the file in examples/includes, but the menu that you
edited in step 6 is in workfiles/includes. Because this code is in a locked area,
you can’t edit it. You need to do that in the master template.

10. Open stroll_horiz_footer.dwt.php in the Templates folder, and click the navi-
gation menu. The Property inspector displays the name of the include file. Click the
folder icon to the right of the Filename field, and browse to the workfiles/
includes folder. Select menu.inc.php, and make sure that Relative to is set to
Document (PHP includes need a relative path).

11. Save stroll_horiz_footer.dwt.php. Dreamweaver will remind you again that
sidebarHead is inside a block tag. Just click OK. The next dialog box asks you if you
want to update all files based on the template, and lists all of the child pages. The
whole point of a template is automatic updating, so click Update.

12. When all the files have been updated, Dreamweaver displays a report like this:

If you don’t see the list of updated files at the bottom of the dialog box, select the
Show log checkbox. If anything goes wrong, Dreamweaver reports which files it
wasn’t able to update. As you can see from the preceding screenshot, the update
process is almost instantaneous with only a couple of child pages, but the time
taken depends on the number of pages and the complexity of the updates. Click
Close.

13. Reload stroll_index.php in your browser, and click the Restaurant link. You
should be taken to stroll_restaurants.php, and the Home link should take
you back to stroll_index.php. You can check your files against the versions in
examples/ch12.

WORKING WITH PHP INCLUDES AND TEMPLATES

397

12

8598CH12.qxd 6/28/07 12:00 PM Page 397

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This is only a trivial example of how a change to the master template is propagated to all
child pages, but it should be sufficient to demonstrate how templates control the look and
shape of a site. However, the real power of this sample layout lies not so much in the tem-
plate, but in the use of an include file for the navigation menu. If you were to leave the
navigation menu in the main template, you would need to update every single child page
each time you edit the menu. With an include, the edits take place in the external file but
are immediately available in all pages that include it.

Locking code outside the <html> tags
Often, questions appear in online forums from people puzzled by the fact that the code
isn’t propagated to child pages when a server behavior is applied to a template. Although
coverage of server behaviors begins in Chapter 14, it makes sense to discuss this issue
here, while still on the subject of templates.

Dreamweaver uses the space above the DTD and below the closing </html> tag to create
the PHP scripts used for server behaviors, such as inserting or updating records in a data-
base. This is the same technique as you used in the last chapter to build the mail process-
ing script. The reason for doing this is quite simple: the PHP engine reads the page from
top to bottom and processes the dynamic code in the order that it encounters it. So, if you
have a page that displays the results of a database search, it stands to reason that
you need to conduct the search before displaying the results as XHTML. Dreamweaver
uses the area after the closing </html> tag to clean up any resources used by the script.

Templates are intended to lock common elements, but dynamic code is almost always
unique to a page. As a result, Dreamweaver doesn’t lock the code outside the <html> tags.
So, even if you apply a server behavior to a master template (or write your own custom
script above the DTD), the code outside the <html> tags will not be propagated to any
child pages.

If, for any reason, you want to create a template that propagates code outside the <html>
tags, add the following code anywhere inside the <head> of the master template:

<!-- TemplateInfo codeOutsideHTMLIsLocked="true" -->

This is an all or nothing option. The PHP code will be propagated to child pages, but you
cannot apply any other server behaviors to such child pages. The circumstances in which
this option is useful are extremely rare, so use with care—if at all.

Choosing the right tool
The considerably large space I have devoted to PHP includes in this chapter should give
you a fair indication of my personal preference for includes. However, some people find
the idea of splitting a page into its various component parts a difficult concept to come to
terms with. So templates do have an important role to play. They also offer a more secure
solution if you work in a team environment. You can generate a child page and hand it to
a less experienced developer in the knowledge that only the editable regions can be
changed. With includes, nothing is locked. But as a site gets larger, so too do the efficiency
savings offered by includes.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

398

8598CH12.qxd 6/28/07 12:00 PM Page 398

http://lib.ommolketab.ir
http//lib.ommolketab.ir

13 SETTING UP MYSQL AND
PHPMYADMIN

8598CH13.qxd 6/4/07 4:14 PM Page 401

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dynamic websites take on a whole new meaning in combination with a database. Drawing
content from a database allows you to present material in ways that would be impractical—
if not impossible—with a static website. Examples that spring to mind are online stores,
such as Amazon.com; news sites, such as the International Herald Tribune (www.iht.com);
and the big search engines, including Google and Yahoo! Database technology allows these
websites to present thousands, sometimes millions, of unique pages with remarkably little
underlying code. Even if your ambitions are nowhere near as grandiose, a database can
increase your website’s richness of content with relatively little effort.

Although PHP is capable of interacting with most popular databases (and some less well-
known ones, too), Dreamweaver has made the choice for you. All the server behaviors are
designed to work with MySQL—a good choice, because it’s widely available, free, very fast,
and offers an excellent range of features.

In this chapter, you will learn how to

Install MySQL on Windows and Mac OS X

Secure access to MySQL

Set up the phpMyAdmin graphical interface

Back up and transfer data to another server

Introducing MySQL
If you have ever worked with Microsoft Access, your first encounter with MySQL might
come as something of a shock. For one thing, it doesn’t have a glossy interface. As
Figure 13-1 shows, it looks like a throwback to the old days of DOS before the friendly
interfaces of Mac and Windows. Its beauty lies, however, in its simplicity. What’s more,
most of the time you’ll never see MySQL in its raw state like this. You’ll either use
Dreamweaver or a graphic front end called phpMyAdmin. Best of all, you’ll be designing
your own personalized interface by creating PHP pages.

Figure 13-1. The unadorned interface of MySQL as seen in the Windows MySQL Command
Line Client

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

402

8598CH13.qxd 6/4/07 4:14 PM Page 402

http://www.iht.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The other thing that comes as a surprise to Access users is that your database is not kept
in a single file that you can upload to your remote server. MySQL keeps all databases in a
central data folder, and each database table normally consists of three separate files. The
way you transfer data from one server to another is by creating a text file that contains all
the necessary commands to build the database and its contents—in other words, a backup
file. All you need to know now is that there isn’t “a database file”—there are lots of them,
and normally, you should never handle them directly.

Understanding basic MySQL terminology
If you’ve not worked with a relational database before, you may find your head spinning
with some of the names that crop up throughout the rest of this book. So here’s a quick
guide:

SQL: Structured Query Language is the international standard behind all major rela-
tional databases. It’s used to insert and otherwise manipulate data and is based on
natural English. For instance, to get the values of first_name and family_name
from a database table called members, where username is equal to dpowers, you
would use the following command (or SQL query):

SELECT first_name, family_name
FROM members
WHERE username = 'dpowers'

As you can see, it’s very human readable, unlike many other computer languages.
Although SQL is a standard, all of the main databases have added enhancements
on top of the basic language. If you have been using Access or Microsoft SQL
Server, be prepared for some slight differences in the use of functions. Some peo-
ple pronounce SQL “sequel,” while others say “Ess-queue-ell.” Both are right.

MySQL: This refers to the entire database system created by MySQL AB of Sweden.
It’s always spelled in uppercase, except for the “y,” and the official pronunciation is
“My-ess-queue-ell.” It’s not just a single program, but also a client/server system
with a number of related programs that perform various administrative tasks. The
two main components are mysql and mysqld, with both terms entirely in lowercase.

mysqld: This is the server (or, to give it its proper technical name, daemon) that
runs in the background listening for requests made to the database. Once it has
been started, you can ignore it.

mysql: This has three distinct meanings. The first is the client program used to feed
requests to the database. mysql is also the name of the main administrative data-
base that controls user accounts, and on Windows, it is the name of the Windows
service that starts and stops the database server. Once you start working with
MySQL, differentiating between the different meanings of “mysql” is not as confus-
ing as it first seems.

SETTING UP MYSQL AND PHPMYADMIN

403

13

8598CH13.qxd 6/4/07 4:14 PM Page 403

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Installing MySQL
So, let’s press ahead and install MySQL. There are separate instructions for Windows and
Mac OS X. If you plan to use a remote server as your testing server, and already have
MySQL and phpMyAdmin set up, you can skip ahead to the next chapter.

You can get MySQL from the downloads page at http://dev.mysql.com/downloads/.
Select the Download link for MySQL Community Server, as shown in the following screen-
shot. This link takes you to the latest stable version of MySQL (currently the 5.0.x series).
If, for any reason, you want to install an older version, don’t click this link, but scroll down
the page to the link to archives of older releases.

MySQL Enterprise is the commercial version, but the technical features in the Community
Server are identical. The main difference is that MySQL Enterprise comes with technical
support. With the Community Server, you’re on your own, but you have this book to guide
you. There is also a large community of MySQL users who are able to offer help online.

The installation instructions for MySQL are different for Windows and Mac OS X, so Mac
users should skip ahead to the relevant section of the chapter.

Installing MySQL on Windows
MySQL comes in a range of versions, but the one you should choose is Windows Essentials.
It contains all the important stuff and certainly everything you need for this book. If you
have a version older than MySQL 4.1.5 already installed on your computer, you must unin-
stall the old version first.

Deciding whether to enable InnoDB support
MySQL is capable of storing database tables in a variety of formats. Most of the time, you
don’t need to worry about this. The default MySQL format, MyISAM, is fast and highly reli-
able. Moreover, if you’re on shared hosting, this is frequently your only choice. However, if
you have your own dedicated server, you will almost certainly also have the option of
InnoDB tables, which offer extra features including foreign key constraints (see Chapter 16
for details). Some hosting companies also offer support for InnoDB, so it’s worth checking

Because new versions are coming out all the time, I recommend that you check my
website at http://foundationphp.com/egdwcs3/updates.php before going ahead.
Any major updates to the instructions will be listed there.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

404

8598CH13.qxd 6/4/07 4:14 PM Page 404

http://dev.mysql.com/downloads
http://foundationphp.com/egdwcs3/updates.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

before installing MySQL on your local computer. The Windows Essentials version of MySQL
automatically enables support for InnoDB, but you can save 60MB of disk space if you
don’t need to use it.

You can either check with your hosting company directly, or you can do a simple test by
running a SQL query on your remote server. Most companies provide phpMyAdmin to you
to administer your database(s). Launch phpMyAdmin, and click the SQL tab. Delete any
existing query in the Run SQL query field, and type the following:

SHOW VARIABLES LIKE 'have_inno%'

Click Go. If you see a result like the one shown in Figure 13-2, it means InnoDB tables are
supported. If your remote server is very old, the Variable_name column may read
have_innobase. This is the same as InnoDB.

Figure 13-2. Confirmation that the MySQL server supports InnoDB tables

If the Value column says NO, InnoDB is not supported. The instructions in later chapters
show you how to emulate foreign key constraints by using PHP conditional logic.

Don’t worry if you can’t find out whether your remote server supports InnoDB. You can
easily add or remove InnoDB from your local setup later.

These instructions are based on the 5.0 series of MySQL, which is installed in
C:\Program Files\MySQL\MySQL Server 5.0. I expect MySQL 5.1 to become the rec-
ommended release shortly after publication of this book. On past experience, the
default location changes for each series of Windows Essentials, so 5.1 is likely to be
installed in C:\Program Files\MySQL\MySQL Server 5.1, and Windows treats different
series as completely separate programs. If you upgrade from one series to another, any
existing databases need to be transferred to the new version as if it were a different
server (see the section titled “Backup and data transfer” near the end of this chapter).

Installing the Windows Essentials version of MySQL

SETTING UP MYSQL AND PHPMYADMIN

405

13

8598CH13.qxd 6/4/07 4:14 PM Page 405

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Go to the MySQL download site, and select the link for MySQL Community Server.

2. In the page that opens, scroll down to find the section marked Windows downloads.
Choose Windows Essentials, and click the download link. (You may be invited to
Pick a mirror instead. This directs you to a mirror site closer to your location and
usually offers a faster download.)

3. Download the MySQL file to your hard disk. It will have a name like mysql-
essential-x.x.x-win32.msi, where x.x.x represents the version number.

4. Exit all other Windows programs; make sure you are logged in as an administrator
(in Windows Vista; turn off User Account Control temporarily—see Chapter 3 for
instructions), and double-click the icon of the file you have just downloaded. This
is a self-extracting Windows Installer package.

5. Windows Installer will begin the installation process and open a welcome dialog
box. If you are upgrading an existing version of the same series of Windows
Essentials to a more recent one, the dialog box will inform you that it has detected
your current installation and will remove it before installing the new one. However,
all your databases will remain intact. Click Next to continue.

6. Dialog boxes will give you the opportunity to change the installation destination
and select the type of setup. Accept the defaults, and click Next.

7. If you’re happy to go ahead with installation, click Install in the next dialog box.

8. Before launching into the actual installation, MySQL invites you to sign up for a free
MySQL.com account. I suggest that you select Skip Sign-Up and click Next. After
you finish setting up everything, visit www.mysql.com/register.php to see if you’re
interested in the benefits offered. The main advantage is that you get automatic
notification of new versions and links to helpful articles about new features of
MySQL.

9. The actual installation now takes place and is normally very quick. When every-
thing’s finished, you’re presented with a final dialog box.

If this is a new installation or if you are upgrading from one series to another,
click Finish to launch the configuration wizard, which is described in the next
section.

If you are upgrading to a later version of the same series (such as from 5.0.10 to
5.0.37), deselect the checkbox labeled Configure the MySQL Server now before
clicking Finish. MySQL should be ready to use but needs to be restarted manu-
ally (see “Starting and stopping MySQL manually on Windows” later in the chap-
ter). If you have a software firewall, you might also be prompted to allow
connections to and from MySQL. You must permit connections in order to work
with the database.

There are a lot of dialog boxes to go through, although all you usually need to do is accept
the default setting. These instructions are based on version 1.0.8 of the Configuration
Wizard.

Configuring MySQL Windows Essentials

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

406

8598CH13.qxd 6/4/07 4:14 PM Page 406

http://www.mysql.com/register.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. The Configuration Wizard opens with a welcome screen. Click Next to proceed.

2. The first dialog box asks whether you want a detailed or standard configuration.
Choose the default Detailed Configuration option, and click Next.

3. The three options on the next screen affect the amount of computer resources
devoted to MySQL. Accept the default Developer Machine, and click Next. If you
choose either of the other options, all other programs will slow down to a crawl.

4. The next dialog box asks you to select from the following three types of database:

Multifunctional Database: Allows you to use both InnoDB and MyISAM tables.

Transactional Database Only: InnoDB tables only. MyISAM is disabled.

Non-Transactional Database Only: MyISAM tables only. InnoDB is disabled.

Your choice depends on whether your remote server supports InnoDB tables (see
“Deciding whether to enable InnoDB support” earlier in the chapter). If it does,
choose Multifunctional Database. Otherwise, choose Non-Transactional Database Only.
Do not choose Transactional Database Only. You should use InnoDB tables only
when you need the extra features they provide, so you need support for MyISAM
tables as well.

If you’re not sure which to choose, and disk space is not a problem, choose
Multifunctional Database. However, you should be aware that this option requires an
extra 60MB of disk space to create the InnoDB tablespace.

5. What you see next may vary. If you chose Non-Transactional Database Only in the
preceding step, you will probably be taken directly to step 6. However, you may see
a dialog box inviting you to select a drive for the InnoDB data file. Unless you chose
Multifunctional Database, just click Next and move on to step 6.

If you plan to use InnoDB, you need to tell MySQL where to store the data.
The InnoDB engine uses a single tablespace that acts as a sort of virtual file system.
InnoDB files, once created, cannot be made smaller. The default location for the
tablespace is C:\Program Files\MySQL\MySQL Server 5.0\data. If you want to
locate the tablespace elsewhere, the drop-down menu offers some suggested
alternatives. When you have made your choice, click Next.

6. Leave the next dialog box at the default Decision Support (DSS)/OLAP, and click
Next.

7. The next dialog box sets the networking options and SQL mode. The important set-
tings are in the top half. Make sure Enable TCP/IP Networking is checked, and leave
Port Number on the default setting of 3306. The lower half of the dialog box lets
you choose whether to run MySQL in strict mode. In an ideal world, you should
accept this default setting, but it may cause problems with some PHP applications
written before strict mode was introduced. Deselect the Strict mode checkbox, and
click Next.

If you choose Multifunctional Database, you need to edit the MySQL configuration file
later, as described in “Changing the default table type on Windows Essentials.”

SETTING UP MYSQL AND PHPMYADMIN

407

13

8598CH13.qxd 6/4/07 4:14 PM Page 407

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. MySQL has impressive support for most of the world’s languages. The next dialog
box invites you to choose a default character set. In spite of what you might think,
this has no bearing on the range of languages supported—all are supported by
default. The character set mainly determines the order in which data is sorted.

Since Dreamweaver CS3 now uses Unicode (UTF-8) as the default encoding for web
pages, choosing the second option, Best Support for Multilingualism, seems the obvi-
ous choice. However, support for Unicode was not introduced to MySQL until
version 4.1. If your hosting company is still running an earlier version of MySQL,
you should stick with the default Standard Character Set. This is also a suitable
choice if you work exclusively in English or use a completely different encoding,
such as Shift_JIS for Japanese. Click Next after you have made your choice.

9. The recommended way of running MySQL is as a Windows service. If you accept
the defaults as shown in the top half of the next dialog box, MySQL will always start
automatically when you boot your computer and run silently in the background. (If
MySQL has already been installed as a Windows service, this section will be grayed
out.) If for any reason you don’t want MySQL to start automatically, uncheck the
Launch the MySQL Server automatically option. You can easily change this option
later (see the section “Starting and stopping MySQL manually on Windows” later in
this chapter).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

408

8598CH13.qxd 6/4/07 4:14 PM Page 408

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The lower half of the dialog box gives you the option to include the bin directory
in your Windows PATH. This option enables you to interact directly with MySQL and
its related utilities at the command line without the need to change directory every
time. You won’t need to do this very often—if at all—but selecting this option
makes life a little more convenient if the occasion ever arises. Click Next.

10. A fresh installation of MySQL has no security settings, so anyone can tamper with
your data. MySQL uses the name root to signify the main database administrator
with unrestricted control over all aspects of the database. Choose a password that
you can remember, and enter it in both boxes.

Unless you access your development server from a different computer over a net-
work, leave the Enable root access from remote machines checkbox unchecked.

Do not check Create An Anonymous Account. It will make your database insecure.

If you are upgrading an existing version of Windows Essentials and want to keep
your current root password, deselect the Modify Security Settings checkbox. If this is
a first-time installation, you might not have this checkbox.

Click Next when you have finished.

If you get a warning message that a Windows service with the name MySQL already
exists, you will be asked if you want to use this name. You must click No and choose a
different name from the drop-down menu in the Service Name field.

SETTING UP MYSQL AND PHPMYADMIN

409

13

8598CH13.qxd 6/4/07 4:14 PM Page 409

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11. At long last, everything is ready. Click Execute. If you have installed a software fire-
wall, it will probably warn you that MySQL is trying to connect to a DNS server. You
must allow the connection; otherwise, MySQL will never work. If your firewall
doesn’t list MySQL specifically, make sure that it permits local connections on port
3306, the MySQL default.

12. Assuming that all was okay, you should see a screen confirming that the configura-
tion process is complete. MySQL should now be running—even if you selected the
option not to start automatically (the option applies only to automatic start on
bootup).

13. If you want to change the configuration at a later date—say, to add or remove sup-
port for InnoDB—launch the Configuration Wizard from the Windows Start menu
by choosing Programs ➤ MySQL ➤ MySQL Server 5.0 ➤ MySQL Server Instance
Config Wizard. The dialog box that opens offers the following two options:

Reconfigure Instance: This takes you through all the dialog boxes again. If you
add support for InnoDB, change the default table type, as described in the next
section. If you remove support for InnoDB, stop the MySQL server after the
wizard has finished, and delete any files with names that begin ibdata and
ib_logfile from C:\Program Files\MySQL\MySQL Server 5.0\data. Then
restart MySQL.

Remove Instance: This does not remove MySQL from your system but removes
the Windows service that automatically starts MySQL when you boot your com-
puter. Unfortunately, it also removes the MySQL configuration file. See “Starting
and stopping MySQL manually on Windows” for a less radical solution.

Changing the default table type on Windows Essentials
The instructions in this section are required only if you selected Multifunctional Database in
step 4 of “Configuring MySQL Windows Essentials.”

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

410

8598CH13.qxd 6/4/07 4:14 PM Page 410

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Windows Configuration Wizard sets InnoDB as the default table storage engine for a
multifunctional database. This is the opposite of the standard MySQL setup, so it makes
sense to switch the default to match the way your remote server works. All it requires is a
simple change to the MySQL configuration file: my.ini.

1. Use Windows Explorer to navigate to the folder in which MySQL was installed. The
default is C:\Program Files\MySQL\MySQL Server 5.0.

2. Locate the file called my.ini, and double-click it. The file will open in Notepad.

3. Approximately 80 lines from the top, you should find a line that reads as follows:

default-storage-engine=INNODB

Change it to the following (the spelling of MyISAM is case insensitive):

default-storage-engine=MyISAM

4. Save the file, and close it. To make the change effective, restart MySQL. MySQL will
now create all new tables in the default MyISAM format. To use the InnoDB format
for a database or an individual table, you can change the table type in phpMyAdmin,
the graphical interface for MySQL that you will install later in the chapter.

Starting and stopping MySQL manually on Windows
Most of the time, MySQL will be configured to start up automatically, and you can forget
about it entirely. There are times, however, when you need to know how to start or stop
MySQL manually—usually for maintenance or to conserve resources.

1. Select Control Panel from the Windows Start menu. Double-click the Administrative
Tools icon, and then double-click the Services icon in the window that opens.

2. In the Services panel, scroll down to find MySQL, and highlight it by clicking once.
You can now use the video recorder–type icons at the top of the panel (or right-
click to bring up the context menu) to stop or start the server.

3. To change the automatic startup option, highlight MySQL in the Services panel,
right-click to reveal a context menu, and choose Properties.

4. In the dialog box that opens, activate the Startup type drop-down menu, and
choose Automatic, Manual, or Disabled. Click OK. That’s all there is to it.

Using the MySQL monitor on Windows
Although most of your interaction with MySQL will be through phpMyAdmin or your own
PHP scripts, it’s useful to know how to access MySQL through the MySQL monitor (or the
Command Line Client, as it’s called in Windows Essentials). It’s also a good way to test that
your installation went without problems.

To start a session From the Windows Start menu, select Programs ➤ MySQL ➤ MySQL
Server 5.0 ➤ MySQL Command Line Client. This will open the Command Line Client, which
will ask you for your password. Type the root password that you chose in step 10 of the
section “Configuring MySQL Windows Essentials,” and press Enter. As long as the server is

SETTING UP MYSQL AND PHPMYADMIN

411

13

8598CH13.qxd 6/4/07 4:14 PM Page 411

http://lib.ommolketab.ir
http//lib.ommolketab.ir

running—and you typed your password correctly—you will see a welcome message simi-
lar to the one shown here (on Windows XP, the title bar says MySQL Command Line Client).

If you get your password wrong, your computer will beep and close the window. If you
find this happening repeatedly, even though you’re sure you typed in your password cor-
rectly, there are two likely explanations. The first is that your Caps Lock key is on—MySQL
passwords are case sensitive. The other is that the MySQL server isn’t running. Refer to the
previous section on how to control MySQL manually before doing too much damage by
banging your forehead on the keyboard.

Ending your session After you finish working with the MySQL monitor, type exit or quit at
the mysql> prompt, followed by Enter. The MySQL Command Line Client window closes
automatically.

Setting up MySQL on Mac OS X
MySQL is available as a Mac PKG file, so everything is taken care of for you, apart from
some minor configuration.

When upgrading an existing installation of MySQL, the Mac installer will not move
your data files. You must first create a backup, as described at the end of this chapter,
and reload them after upgrading. You must also shut down the MySQL server. If you
have never installed MySQL before, you don’t need any special preparations; just fol-
low these instructions.

Being unable to connect to MySQL because the server isn’t running is probably the
most common beginner’s mistake. The MySQL server runs in the background, waiting
for requests. Opening the Command Line Client does not start MySQL; it opens the
MySQL monitor, which is a channel for you to send instructions to the server. Equally,
closing the Command Line Client does not stop MySQL. The server continues running
in the background until the computer is closed down or until you stop it manually.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

412

8598CH13.qxd 6/4/07 4:14 PM Page 412

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Go to www.mysql.com/downloads, and select the link for MySQL Community Server.

2. Select the Mac OS X (package format) downloads section, and choose the Standard
version for your processor and version of OS X—there are separate packages for
PowerPC, 64-bit PowerPC, and Intel Macs. The Intel Mac version is labeled x86. As
you can see from the screenshot in the next step, the PKG file name includes not
only the MySQL version number but also the version of OS X and processor for
which it has been compiled (osx10.4-powerpc).

3. Double-click the DMG icon to mount the disk image on your desktop.

4. Double-click the mysql-standard-x.x.x.pkg icon to start the installation process. The
Mac OS X installer opens. Follow the instructions onscreen.

5. Double-click the MySQLStartupItem.pkg icon, and follow the instructions onscreen.

6. Open a Finder window, and drag the MySQL.prefPane icon onto Applications ➤
System Preferences. This installs a MySQL control panel. A dialog box asks whether
you want it to be available to yourself or all users. Make your choice, and click
Install.

The MySQL preference pane should open. Click Start MySQL Server, and enter your
Mac administrator password when prompted. It may take a few seconds before the
preference pane reports that the server is running, as shown here:

The Mac files are available in two formats. Make sure you don’t select a TAR package
by mistake. These instructions are for the package format, which uses a Mac installer.

Downloading and installing MySQL

SETTING UP MYSQL AND PHPMYADMIN

413

13

8598CH13.qxd 6/4/07 4:14 PM Page 413

http://www.mysql.com/downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

To start or stop the MySQL server in future, open the preference pane by clicking
the MySQL icon in the Other section of System Preferences.

Adding MySQL to your PATH
You normally access MySQL through phpMyAdmin (introduced later in this chapter) or
your own PHP scripts, but sometimes you need to access it directly in Terminal. To avoid
having to type out the full path every time, add it to the PATH in your environmental vari-
ables. By default, Terminal uses what is known as the “bash shell.” Open Terminal (in
Applications ➤ Utilities), and check the title bar. If it says Terminal—bash, as shown in the
following screenshot, use the following instructions. In the unlikely event that it says
Terminal—tcsh, follow the instructions in the section titled “Amending PATH in the tcsh
shell.”

Use this set of instructions if the Terminal title bar says Terminal—bash:

1. Open BBEdit or TextWrangler.

2. From the File menu, choose Open Hidden, and browse to your home folder. If there
is a file called .profile (with a period as the first character), as shown in the
screenshot, highlight it, and click Open.

Amending PATH in the bash shell

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

414

8598CH13.qxd 6/4/07 4:14 PM Page 414

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. The file exists only if you have already made changes to the way Terminal operates.
If .profile doesn’t exist, click Cancel, and open a blank file.

4. If you have opened an existing version of .profile, add the following code on a
separate line at the end. Otherwise, enter it in the blank page.

export PATH="$PATH:/usr/local/mysql/bin"

5. Select File ➤ Save, and save the file as .profile in your own home folder. The
period at the beginning of the file name should provoke the following warning:

6. Select Use “.” and close your text editor.

SETTING UP MYSQL AND PHPMYADMIN

415

13

8598CH13.qxd 6/4/07 4:14 PM Page 415

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Use the following, alternative instructions only if the title bar says Terminal—tcsh:

1. Open Terminal, and enter the following command at the shell prompt:

echo 'setenv PATH /usr/local/mysql/bin:$PATH' >> ~/.tcshrc

Make sure you copy everything exactly, including the quotes and spacing as shown.

2. Press Return, and close Terminal. The next time you open Terminal, the MySQL pro-
gram directory will have been added to your PATH.

Securing MySQL on Mac OS X
Although you have a fully functioning installation of MySQL, by default it has no security.
Even if you’re the only person working on your computer, you need to set up a similar sys-
tem of passwords and user accounts as on your hosting company’s server. There’s one
important account that exists by default on all MySQL servers. It’s called root, and it is the
main database administrator with unlimited powers over database files. When you first
install MySQL, access to the root account isn’t password protected, so you need to block
this security gap. The MySQL root user, by the way, is totally unrelated to the Mac OS X
root user, which is disabled by default. Enabling root for MySQL has no effect on the
OS X root user.

1. Open Terminal, and type the following command:

mysql -u root

The command contains three elements:

mysql: The name of the program

-u: Tells the program that you want to log in as a specified user

root: The name of the user

Setting the MySQL root password

If you have just added MySQL to your PATH, you must close and reopen Terminal
before embarking on this section. Otherwise, Terminal won’t be able to find MySQL.

Amending PATH in the tcsh shell

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

416

8598CH13.qxd 6/4/07 4:14 PM Page 416

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. You should see a welcome message like this:

3. The most common problem is getting an error message like this instead:

It means that mysqld, the MySQL server, is not running. Use the MySQL control
panel in System Preferences to start the server.

Another common problem is for Terminal to report command not found. That
means you have either mistyped the command or that you haven’t added the
MySQL program files directory to your PATH, as described in the previous section.

4. Assuming that you have logged in successfully, as described in step 2, type the fol-
lowing command at the mysql> prompt:

use mysql

This command tells MySQL that you want to use the database called mysql, which
contains all the details of authorized users and the privileges they have to work on
database files. You should see the message Database changed, which means MySQL
is ready for you to work on the files controlling administrative privileges.

5. Now enter the command to set a password for the root user. Substitute
myPassword with the actual password you want to use. Also make sure you use
quotes where indicated and finish the command with a semicolon.

UPDATE user SET password = PASSWORD('myPassword') WHERE user = 'root';

6. Next, remove anonymous access to MySQL:

DELETE FROM user WHERE user = '';

The quotes before the semicolon are two single quotes with no space in between.

SETTING UP MYSQL AND PHPMYADMIN

417

13

8598CH13.qxd 6/4/07 4:14 PM Page 417

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. Tell MySQL to update the privileges table:

FLUSH PRIVILEGES;

The sequence of commands should produce a series of results like this:

8. To exit the MySQL monitor, type exit, followed by Return. This simply ends your ses-
sion with the MySQL monitor. It does not shut down the MySQL server.

9. Now try to log back in by using the same command as in step 2. MySQL won’t let
you in. Anonymous access and password-free access have been removed. To get in
this time, you need to tell MySQL that you want to use a password:

mysql -u root -p

10. When you press Return, you will be prompted for your password. Nothing will
appear onscreen as you type, but as long as you enter the correct password, MySQL
will let you back in. Congratulations, you now have a secure installation of MySQL.

Using the MySQL monitor on Windows and Mac
From this point on, 99.9 percent of everything you do is identical on both Windows and
Mac OS X. If you are used to working exclusively with a GUI like Windows or Mac OS, it can
be unsettling to work at the command line with MySQL. You won’t need to do it very
often, if at all. However, it’s not difficult, and here are a few pointers to make you feel
more at home:

When you work inside the MySQL monitor, most commands need to end with a
semicolon (;). The only exceptions are use databaseName and exit. The MySQL
monitor is quite happy if you use a semicolon after these two commands, so the
simple rule is this: if in doubt, put a semicolon on the end of each command.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

418

8598CH13.qxd 6/4/07 4:14 PM Page 418

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you forget to put a semicolon at the end of a command that needs one, the
MySQL monitor will assume that you want to break your command over more than
one line, and that you haven’t finished typing. It will patiently wait for you to do so,
like this:

This enables you to spread long queries over a number of lines. Not only is this eas-
ier to read onscreen, it’s also useful if you make an error. The MySQL monitor
remembers previous commands line by line, and you can retrieve them by pressing
the up and down arrow keys on your keyboard. Once a previous command has
been redisplayed, you can use your left and right arrow keys to move along the line
and edit it in the normal way. Once you have completed the command, just type a
semicolon and press Enter/Return. The MySQL monitor will then process it.

If you spot a mistake before pressing Enter/Return, use your left and right arrow
keys to edit the current line. If the mistake is on a previous line, there is no way to
go back. Abandon the command by typing \c. The MySQL monitor will ignore
everything you have entered and present you with the mysql> prompt.

Using MySQL with phpMyAdmin
Although you can do everything using MySQL monitor, it’s a lot easier to use a graphic
interface. There are several to choose from, both commercial and free. Among the free
offerings are two from MySQL itself: MySQL Administrator and MySQL Query Browser
(www.mysql.com/products/tools). Two other popular graphical front ends for MySQL are
the commercial product Navicat (www.navicat.com) and SQLyog (www.webyog.com), which
is available in both commercial and free versions.

However, the most popular graphical interface for MySQL is phpMyAdmin (www.phpmyadmin.
net). It’s a PHP-based administrative system for MySQL that has been around since 1998,
and it constantly evolves to keep pace with MySQL developments. It works on Windows,
Mac OS X, and Linux and currently supports all versions of MySQL from 3.23.32 to 5.0.
What’s more, many hosting companies provide it as the standard interface to MySQL.

Because phpMyAdmin has a very intuitive interface, I suggest that you try it first. If you
work with databases on a regular basis, you may want to explore the other graphical inter-
faces later. However, since phpMyAdmin is free, you have nothing to lose—and you may
find it does everything you want.

SETTING UP MYSQL AND PHPMYADMIN

419

13

8598CH13.qxd 6/4/07 4:14 PM Page 419

http://www.mysql.com/products/tools
http://www.navicat.com
http://www.webyog.com
http://www.phpmyadmin.net
http://www.phpmyadmin.net
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting up phpMyAdmin on Windows and Mac
These instructions are based on phpMyAdmin 2.10.1. Like a lot of open source applica-
tions, phpMyAdmin is constantly evolving. Any changes of a substantial nature will be
listed on my website at http://foundationphp.com/egdwcs3/updates.php.

Since phpMyAdmin is PHP-based, all that’s needed to install it is to download the files,
unzip them to a website in your local testing environment, and create a simple configura-
tion file.

1. Go to www.phpmyadmin.net, and download the latest stable version. The files can
be downloaded in three types of compressed file: BZIP2, GZIP, and ZIP. Choose
whichever format you have the decompression software for.

2. Unzip the downloaded file. It will extract the contents to a folder called
phpMyAdmin-x.x.x, where x represents the version number.

3. Highlight the folder icon, and cut it to your clipboard. On Windows, paste it inside
the folder designated as your web server root (C:\htdocs, if you followed my
example). If you’re on a Mac and want phpMyAdmin to be available to all users,
put the folder in Macintosh HD:Library:WebServer:Documents rather than in your
own Sites folder.

4. Rename the folder you have just moved to this: phpMyAdmin.

5. Like Apache and PHP, phpMyAdmin uses a text file to store all the configuration
details. Since version 2.7.0, you no longer edit the phpMyAdmin configuration file
but store your personal details in a new file, which should be named
config.inc.php. There are two ways of doing this: using a built-in script called
setup.php or manually. I prefer the manual method, but instructions for both
methods follow.

Use these instructions if you want to use the built-in configuration script.

1. Create a new subfolder called config within the phpMyAdmin folder. Windows users
skip to step 3. Mac users continue with step 2.

2. On Mac OS X, use Finder to locate the config folder that you have just created.
Ctrl-click and select Get Info. In Ownership & Permissions, expand Details, and click
the lock icon so that you can make changes to the settings. Change the setting for
Others to Read & Write. Close the config Info panel.

3. Open a browser, and type the following into the address bar:

http://localhost/phpmyadmin/scripts/setup.php

If you created the phpMyAdmin folder inside your Sites folder on a Mac, use the
following address, substituting username with your Mac username:

http://localhost/~username/phpmyadmin/scripts/setup.php

Configuring phpMyAdmin with setup.php

Downloading and installing phpMyAdmin

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

420

8598CH13.qxd 6/4/07 4:14 PM Page 420

http://foundationphp.com/egdwcs3/updates.php
http://www.phpmyadmin.net
http://localhost/phpmyadmin/scripts/setup.php
http://localhost/~username/phpmyadmin/scripts/setup.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. You should see the page shown in Figure 13-3.

Figure 13-3. A built-in script automates the configuration of phpMyAdmin.

Ignore any warning about the connection not being secure. This is intended for
server administrators installing phpMyAdmin on a live Internet server. If, on the
other hand, you see the following warning, it means that you have not set up
the config folder correctly and should go back to step 1.

5. Click the Add button in the Servers section. This loads a form with most of the nec-
essary information already filled in. Check the following settings:

Server hostname: localhost

Server port: Leave blank unless your web server is running on a nonstandard
port, such as 8080

Server socket: Leave blank

Connection type: tcp

PHP extension to use: mysqli

SETTING UP MYSQL AND PHPMYADMIN

421

13

8598CH13.qxd 6/4/07 4:14 PM Page 421

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. The default setting for Authentication type is config. If you don’t need to password
protect access to phpMyAdmin, check that User for config auth is set to root, and
enter your MySQL root password in the next field, Password for config auth.

If you want to restrict access to phpMyAdmin by prompting users for a password,
change Authentication type to http, and delete root from the User for config auth field.

7. Scroll down to the Actions field, and click Add. As shown here, there are two Add
buttons close to each other; click the one circled in the screenshot:

8. The next screen will probably warn you that you didn’t set up a phpMyAdmin data-
base, so you won’t be able to use all the phpMyAdmin features. This is not impor-
tant. You can set up one later if you decide to use the advanced features of
phpMyAdmin.

9. Scroll down to the Configuration section near the bottom of the page, and click
Save.

10. Open the config folder in Explorer or Finder. You should see a new file called
config.inc.php. Move it to the main phpMyAdmin folder. The official instructions
tell you to delete the config folder, but this isn’t necessary in a local testing envi-
ronment.

Although setup.php automates the creation of config.inc.php, it duplicates some
default settings. If you strip out the unnecessary commands, you may find it quicker to
create the file manually.

1. If you don’t need to password protect access to phpMyAdmin, type the following
code into a blank document:

<?php
$i = 1;
$cfg['Servers'][$i]['extension'] = 'mysqli';
$cfg['Servers'][$i]['password'] = 'mysqlRootPassword';
?>

Use your own MySQL root password in place of mysqlRootPassword.

Configuring phpMyAdmin manually

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

422

8598CH13.qxd 6/4/07 4:14 PM Page 422

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you need password protection for phpMyAdmin, use the following code instead:

<?php
$i = 1;
$cfg['Servers'][$i]['extension'] = 'mysqli';
$cfg['Servers'][$i]['auth_type'] = 'http';
?>

2. Save the file as config.inc.php in the main phpMyAdmin folder. Erm . . . that’s it.

Launching phpMyAdmin
To use phpMyAdmin, launch a browser, and enter http://localhost/phpMyAdmin/index.php in
the address bar (on a Mac, use http://localhost/~username/phpMyAdmin/index.php if
you put phpMyAdmin in your Sites folder). If you stored your root password in
config.inc.php, phpMyAdmin should load right away, as shown in Figure 13-4. If you
chose to password protect phpMyAdmin, enter root as the username and whatever you
specified as the MySQL root password when prompted.

Figure 13-4. phpMyAdmin is a very user-friendly and stable graphical interface to MySQL.

If you’re used to glossy software design, your initial impression of phpMyAdmin may not
be all that favorable, particularly if you don’t have a large monitor. The interface is sorely
in need of a facelift, but don’t let that fool you; phpMyAdmin is both powerful and easy
to use.

If you get a message saying that the server is not responding or that the socket is not
correctly configured, make sure that the MySQL server is running.

SETTING UP MYSQL AND PHPMYADMIN

423

13

8598CH13.qxd 6/4/07 4:14 PM Page 423

http://localhost/phpMyAdmin/index.php
http://localhost/~username/phpMyAdmin/index.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Logging out of phpMyAdmin
If you opted to password protect phpMyAdmin, the Log out link is at
the bottom left of the front page, just beneath Import (as shown in the
screenshot alongside). When you click the link, you are immediately
prompted for your username and password. Click Cancel, and you will
be presented with a screen informing you that you supplied the wrong
username/password—in other words, you have been logged out. Odd, but that’s the way
it works.

Backup and data transfer
MySQL doesn’t store your database in a single file that you can simply upload to your web-
site. Even if you find the right files (on Windows, they’re located in C:\Program Files\
MySQL\MySQL Server 5.0\data), you’re likely to damage them unless the MySQL server is
turned off. Anyway, most hosting companies won’t permit you to upload the raw files,
because it would also involve shutting down their server, causing a great deal of inconven-
ience for everyone.

Nevertheless, moving a database from one server to another is very easy. All it involves is
creating a backup dump of the data and loading it into the other database with
phpMyAdmin. The dump is a text file that contains all the necessary Structured Query
Language (SQL) commands to populate an individual table or even an entire database
elsewhere. phpMyAdmin can create backups of your entire MySQL server, individual data-
bases, selected tables, or individual tables. To make things simple, the following instruc-
tions show you how to back up only a single database.

These instructions show you how to back up an entire database. You can also back up indi-
vidual tables in the same way by selecting the tables in step 4.

Creating a backup

If you have just installed MySQL for the first time, bookmark this section for
when you need to upload files to your remote server or upgrade MySQL. If
you’re on a Mac, you must always back up your data before upgrading MySQL.
Once the new version has been installed, you can transfer your data to the new
server. Windows users need to follow this procedure only when upgrading from
one series to another, such as 5.0 to 5.1.

You cannot log back in to phpMyAdmin from the wrong username/password screen.
You must enter the original URL into the browser address bar first.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

424

8598CH13.qxd 6/4/07 4:14 PM Page 424

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Launch phpMyAdmin, and select the database that you want to back up from the
drop-down menu in the navigation frame.

2. When the database details have loaded into the main frame, select Export from the
tabs along the top of the screen, as shown here.

3. The rather fearsome-looking screen shown in Figure 13-5 opens. In spite of all the
options, you need to concern yourself with only a few.

Figure 13-5. phpMyAdmin offers a wide range of choices when exporting data from MySQL.

SETTING UP MYSQL AND PHPMYADMIN

425

13

8598CH13.qxd 6/4/07 4:14 PM Page 425

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. The Export section on the left of the screen lists all the tables in your database.
Click Select All, and leave the radio buttons on the default SQL.

5. If the database has never been transferred to the other server before, the only
option that you need to set on the right side of the screen is the drop-down menu
labeled SQL compatibility mode. The setting depends on the version of MySQL on
the other server (only the first two numbers, such as 3.23, 4.0, 4.1, or 5.0, are
important):

If the other server is running the same version of MySQL, choose NONE.

If you are transferring between MySQL 4.1 and MySQL 5.0 (in either direction),
choose NONE.

If the other server is running MySQL 3.23, choose MYSQL323.

If the other server is running MySQL 4.0, choose MYSQL40.

6. If the database has already been transferred on a previous occasion, select Add
DROP TABLE in the Structure section. The existing contents of each table are
dropped and are replaced with the data in the backup file.

7. Put a check mark in the box alongside Save as file at the bottom of the screen. The
default setting in File name template is __DB__, which automatically gives the
backup file the same name as your database. So, in this case, it will become
egdwcs3.sql. If you add anything after the final double underscore, phpMyAdmin
will add this to the name. For instance, you might want to indicate the date of the
backup, so you could add 20070704 for a backup made on July 4, 2007. The file
would then be named egdwcs320070704.sql.

1. If a database of the same name doesn’t already exist on the target server, create
the database, but don’t create any tables.

2. Launch the version of phpMyAdmin that is used by the target server, and select the
database that you plan to transfer the data to. Click the Import tab in the main
frame (on versions of phpMyAdmin earlier than 2.7.0, click the SQL tab instead).

3. Use the Browse button to locate the SQL file on your local computer, and click Go.
That’s it!

Because phpMyAdmin uses PHP to upload the file, the maximum size of any backup is
normally limited to 2MB, which is the default maximum size for any file upload. If you
are transferring a very large database, use the phpMyAdmin export and import tabs to
backup and transfer individual tables. Alternatively, contact your hosting company for
advice on transferring your database.

Loading data from a backup file

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

426

8598CH13.qxd 6/4/07 4:14 PM Page 426

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Looking ahead . . .
Now that you have MySQL and phpMyAdmin installed, we can finally begin to explore
Dreamweaver’s server behaviors. In the next chapter, I’ll show you how to create a data-
base table in MySQL and insert into it user input from the feedback form in Chapter 9.
You’ll also learn how to combine it with the mail processing script from Chapters 11 and
12 and how to retrieve and display information stored in a database.

SETTING UP MYSQL AND PHPMYADMIN

427

13

8598CH13.qxd 6/4/07 4:14 PM Page 427

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 STORING RECORDS
IN A DATABASE

8598CH14.qxd 6/28/07 12:11 PM Page 429

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Unlike Access or FileMaker Pro, MySQL doesn’t come with predesigned forms. Instead, you
build and design everything yourself. While this presents a challenge to the first-time user,
MySQL isn’t difficult to use, and Dreamweaver takes a lot of the hard work out of inte-
grating MySQL with your website.

Let’s say that you decide to start accepting orders for goods and services through your
website. As well as getting the orders by email, you need to store that information in a
database. Rather than input all the data again manually, it makes much more sense to
combine the two operations. So by the end of this chapter, you will be able to input data
directly from the feedback form from Chapters 9, 11, and 12, and then send the details to
your mail inbox. In the process, you’ll learn the basics of database construction, and how
to handle different types of data. Specifically, you’ll learn how to

Create MySQL user accounts

Define a database table

Create a database connection in Dreamweaver

Insert form input into a database

Use a recordset to retrieve data and display database results

Apply a repeat region to display multiple records

Merge the mail processing script with database input

Setting up a database in MySQL
If you set up MySQL and phpMyAdmin in a local testing environment, as described in the
last chapter, launch phpMyAdmin, and open the Database drop-down menu in the left
frame (see Figure 14-1).

MySQL isn’t a single database, but a relational database management system (RDBMS). The
first database listed, information_schema, is a virtual database that contains details of
other databases within the RDBMS. The second one, mysql, contains all the user account
and security information and should never be edited directly unless you’re really sure what
you’re doing. The final database, test, contains nothing. The numbers in parentheses indi-
cate how many tables each database contains.

Figure 14-1.
A new installation of MySQL contains
three default databases.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

430

8598CH14.qxd 6/28/07 12:11 PM Page 430

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you’re using a remote server, and your hosting company provides phpMyAdmin, the list
of databases will be limited to those on your account, or you may be limited to only one
database.

Creating a local database for testing
Assuming that you have set up a local testing environment, you need to create a test data-
base to work with the remaining chapters. I’m going to call the database egdwcs3. To make
life easier for yourself when it comes to testing pages on the Internet, use the name of a
database on your remote server.

Type the name of the database in the field labeled Create new database in the
phpMyAdmin welcome screen, and click Create, as shown in Figure 14-2. Leave Collation in
its default position. However, if you’re working in a language other than English, Swedish,
or Finnish, and your remote server runs MySQL 4.1 or later, skip ahead to the section
“Understanding collation” before going any further.

Figure 14-2. To create a new database, just type its name into
the phpMyAdmin welcome screen, and click Create.

The database should be created instantly, and phpMyAdmin will invite you to create a new
table. Before doing that, you need to create at least one user account for the database.
Leave phpMyAdmin open.

Because phpMyAdmin is a browser-based application, the precise layout of what you
see onscreen depends on the size of your monitor and browser viewport.

STORING RECORDS IN A DATABASE

431

14

8598CH14.qxd 6/28/07 12:11 PM Page 431

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating user accounts for MySQL
At the moment, your installation of MySQL has only one registered user—the superuser
account called “root,” which has complete control over everything. A lot of beginners
think that once they have set up a password for the root user, they can start building data-
bases. This is a big mistake. The root user should never be used for anything other than
administration.

MySQL stores all databases in a common directory. So, on shared hosting, your database—
with all its precious information—rubs shoulders with everyone else’s. Clearly, you need a
way to prevent unauthorized people from seeing or altering your data. The answer is to
create user accounts that have the fewest number of privileges necessary to perform
essential tasks, preferably on a single database.

Granting the necessary user privileges
You normally want visitors to your site to be able to see the information it contains but not
to change it. However, as administrator, you need to be able to insert new records, and
update or delete existing ones. This involves four types of privileges, all named after the
equivalent SQL commands:

SELECT: Retrieves records from database tables

INSERT: Inserts records into a database

UPDATE: Changes existing records

DELETE: Deletes records but not tables or databases (the command for that is DROP)

In an ideal setup, you create two separate user accounts: one for administrators, who
require all four privileges, and another one for visitors, limited to SELECT. If your hosting
company lets you set up user accounts with different privileges, I suggest that you create
two accounts like this. However, if you have no choice, set up one account and use the
same username and password as on your remote server.

These instructions show you how to set up user accounts in a local testing environment.
You can skip this section if you are using your remote server as your testing server.

1. Click the home icon at the top of the left frame in phpMyAdmin to return to the
welcome screen, and then click Privileges, as shown in the following screenshot:

Setting up MySQL user accounts

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

432

8598CH14.qxd 6/28/07 12:11 PM Page 432

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. The User overview screen opens. Click Add a new User halfway down the page.

3. In the page that opens, enter the name of the user account that you want to create
in the User name field. Select Local from the Host drop-down menu. This automat-
ically enters localhost in the field alongside. This option restricts the user to con-
necting to MySQL only from the same computer. Enter a password in the Password
field, and confirm it in the Re-type field. The Login Information table should look
like this:

The Privileges tab at the top of the previous screen displays a list of current user
accounts. To create a new user account, you must use the link in the welcome screen.

STORING RECORDS IN A DATABASE

433

14

8598CH14.qxd 6/28/07 12:11 PM Page 433

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Beneath the Login Information table is one labeled Global privileges. Granting such
extensive privileges is insecure, so scroll past the Global privileges table, and click
the Go button right at the bottom of the page.

5. The next page confirms that the user has been created and displays many options,
beginning with the Global privileges again. Scroll down to the section labeled
Database-specific privileges. Activate the drop-down menu, as shown here, to dis-
play a list of all databases. Select the name for the database you plan to use for
testing.

6. The next screen allows you to set the user’s privileges for just this database. You
want the admin user to have all four privileges listed earlier, so click the check-
boxes next to SELECT, INSERT, UPDATE, and DELETE (if you hover your mouse
pointer over each option, phpMyAdmin displays a tooltip describing what it’s for).
After selecting the four privileges, as shown here, click the top Go button.

Dreamweaver needs these details later to make a connection to the data-
base. If you want to use the download files exactly as they are, use humpty as
the password for egadmin.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

434

8598CH14.qxd 6/28/07 12:11 PM Page 434

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. phpMyAdmin presents you with the following confirmation that the privileges have
been updated for the user account:

8. The page displays the Database-specific privileges table again, in case you need to
change anything. Assuming you got it right, click the Privileges tab at the top right
of the page. You should now see the new user listed in the User overview.

If you ever need to make any changes to a user’s privileges, click the Edit Privileges
icon to the right of the listing, as shown. You can also delete users by selecting the
checkbox to the left of the User column, then clicking Go.

9. If your hosting company permits you to create multiple user accounts, click Add a
new User, and repeat steps 3–8 to create a second user account. If you want to use
the same username and password as in the download files, call the account eguser,
and give it the password dumpty. This user will have restricted privileges, so in
step 6, check only the SELECT option.

Now that you have a database and at least one user account, you can build the table to
store the feedback information. However, first, you need to understand the principles
behind table construction.

phpMyAdmin frequently offers you a variety of options on the same page, each of
which normally has its own Go button. Always click the one at the foot of or alongside
the section that relates to the options you want to set.

STORING RECORDS IN A DATABASE

435

14

8598CH14.qxd 6/28/07 12:11 PM Page 435

http://lib.ommolketab.ir
http//lib.ommolketab.ir

How a database stores information
All data in MySQL is stored in tables, with information organized into rows and columns
very much like a spreadsheet. Figure 14-3 shows a simple database table as seen in
phpMyAdmin.

Figure 14-3. Information in a database table is stored in rows and columns, just like in a
spreadsheet.

Each column has a name (image_id, filename, and caption) indicating what it stores.

The rows aren’t labeled, but the first column (image_id) contains a unique identifier
known as a primary key, which can be used to identify the data associated with a particu-
lar row. Each row contains an individual record of related data. The significance of primary
keys is explained in the next section.

The intersection of a row and a column, where the data is stored, is called a field. So, for
instance, the caption field for the third record in Figure 14-3 contains the value “The
Golden Pavilion in Kyoto” and the primary key for that record is 3.

How primary keys work
Although Figure 14-3 shows image_id as a consecutive sequence from 1 to 8, they’re not
row numbers. Figure 14-4 shows the same table with the captions sorted in alphabetical
order. The field highlighted in Figure 14-3 has moved to the seventh row, but it still has the
same image_id and filename.

The terms “field” and “column” are often used interchangeably. A field holds
one piece of information for a single record, whereas a column contains the
same field for all records.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

436

8598CH14.qxd 6/28/07 12:11 PM Page 436

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-4. Even when the table is sorted in a different order, each record can be identified
by its primary key.

Although the primary key is rarely displayed, it identifies the record and all the data stored
in it. If you know the primary key, you can update a record, delete it, or use it to display
data. Don’t worry about how you find the primary key; it’s easy using Structured Query
Language (SQL), the standard means of communicating with all major databases. The
important thing is to assign a primary key to every record.

A primary key doesn’t need to be a number, but it must be unique.

Social Security, staff ID, or product numbers make good primary keys. They may
consist of a mixture of numbers, letters, and other characters but are always
different.

MySQL will generate a primary key for you automatically.

Once a primary key has been assigned, it should never—repeat, never—be changed.

Because a primary key must be unique, MySQL doesn’t normally reuse the number when a
record is deleted, leaving holes in the sequence. Don’t even think about renumbering. By
changing the numbers to close the gaps, you put the integrity of your database at serious
risk. Some people want to remove gaps to keep track of the number of records, but you
can easily get the same information with SQL.

Although Figures 14-3 and 14-4 show the similarity between a database table and a
spreadsheet, there’s an important difference. With a spreadsheet, you can enter data with-
out the need to specify beforehand what type of data it is or how it’s to be structured. You
can’t do that with a database.

Designing a database table
Before entering data, you need to define the table structure. This involves the following
decisions:

The name of the table

How many columns it will have

The name of each column

What type of data will be stored in each column

Whether the column must always have data in each field

Which column contains the table’s primary key

STORING RECORDS IN A DATABASE

437

14

8598CH14.qxd 6/28/07 12:11 PM Page 437

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Don’t be tempted to choose the first thing that comes into your head. Experienced data-
base developers often say at least half the total development time is spent deciding the
structure of a database. Although the structure of a database can be altered, some deci-
sions tie your hands so badly you need to redesign everything from scratch. That’s not
much fun when the database contains several thousand records. The time spent on these
early decisions can save a lot of agony and frustration later on.

Because each database is different, it’s impossible to prescribe one simple formula, but the
next few pages should help guide you in the right direction. Don’t attempt to commit
everything to memory at the first read-through. Come back later when you need to
refresh your memory or check a particular point.

Choosing the table name
The basic MySQL naming rules for databases, tables, and columns are as follows:

Names can be up to 64 characters long.

Legal characters are numbers, letters, the underscore, and $.

Names can begin with a number but cannot consist exclusively of numbers.

Some hosting companies seem blissfully ignorant of these rules and assign clients data-
bases that contain one or more hyphens (an illegal character) in their name. If a name con-
tains spaces or illegal characters, you must surround it by backticks (`) in SQL queries.
Note that this is not a single quote (') but a separate character. Dreamweaver and
phpMyAdmin normally do this for you automatically.

Choose names that are meaningful. Tables hold groups of records, so it’s a good strategy
to use plural nouns. For example, use products rather than product. Don’t try to save on
typing by using abbreviations, particularly when naming columns. Explicit names make it
much easier to build SQL queries to extract the information you want from a database.
SQL is designed to be as human-readable as possible, so don’t make life difficult for your-
self by using cryptic naming conventions.

When choosing column names, there is a danger that you might accidentally choose
one of MySQL’s many reserved words (http://dev.mysql.com/doc/refman/5.0/en/
reserved-words.html), such as date or time. A good technique is to use compound
words, such as arrival_date, arrival_time, and so on. These names also tell you much
more about the data held in the column.

Case sensitivity of names Windows and Mac OS X treat MySQL names as case insensitive.
However, Linux and Unix servers respect case sensitivity. To avoid problems when transfer-
ring databases and PHP code from your local computer to a remote server, I recommend
that you use only lowercase in database, table, and column names. Using camel case (e.g.,
arrivalDate) is likely to cause your code to fail when transferring a database from your
local computer to a Linux server.

Deciding how many columns to create
How should you store each person’s name? One column? Or one each for the family and
personal names? A commercial contacts management program like Microsoft Outlook
goes even further, splitting the name into five parts. In addition to first and last name, it
stores title (Mr., Mrs., etc.), a middle name, and suffix (I, II, III, Jr., and Sr.). Addresses are

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

438

8598CH14.qxd 6/28/07 12:11 PM Page 438

http://dev.mysql.com/doc/refman/5.0/en/reserved-words.html
http://dev.mysql.com/doc/refman/5.0/en/reserved-words.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

best broken down into street, town, county, state, ZIP code, etc. Think of all the possible
alternatives, and add a column for each one. Things like company name, apartment num-
ber, and extra lines in an address can be made optional, but you need to make provision
for them. This is an important principle of a relational database: break down complex
information into its component parts, and store each part separately.

This makes searching, sorting, and filtering much easier. Breaking information into small
chunks may seem a nuisance, but you can always join them together again. It’s much easier
than trying to separate complex information stored in a single field.

Choosing the right column type in MySQL
MySQL 5.0 has 28 different column types. Rather than confuse you by listing all of them,
I’ll explain just the most commonly used. You can find full details of all column types in the
MySQL documentation at http://dev.mysql.com/doc/refman/5.0/en/data-types.html.

Storing text The difference between the main text column types boils down to the maxi-
mum number of characters that can be stored in an individual field, and whether you can
set a default value.

CHAR: A fixed-length width text column up to a maximum of 255 characters. You
must specify the size when building the table, although this can be altered later.
Shorter strings are OK. MySQL adds trailing space to store them, and automatically
removes it on retrieval. If you attempt to store a string that exceeds the specified
size, excess characters are truncated. You can define a default value.

VARCHAR: A variable-length character string. The maximum number must be speci-
fied when designing the table, but this can be altered later. Prior to MySQL 5.0, the
limit is 255; this has been increased to 65,535 in MySQL 5.0. Another change in
MySQL 5.0 affects the way trailing space is treated. Prior to MySQL 5.0, trailing
space is stripped at the time of storing a record. Since MySQL 5.0, trailing space is
retained for both storage and retrieval. You can define a default value.

TEXT: Stores a maximum of 65,535 characters (slightly shorter than this chapter).
You cannot define a default value.

TEXT is convenient, because you don’t need to specify a maximum size (in fact, you can’t).
Although the maximum length of VARCHAR is the same as TEXT in MySQL 5.0, other factors
such as the number of columns in a table reduce this.

Prior to MySQL 5.0, you cannot use CHAR in a table that also contains VARCHAR, TEXT, or
BLOB. When creating the table, MySQL silently converts any CHAR columns to VARCHAR.

Storing numbers The most frequently used numeric column types are as follows:

TINYINT: Any whole number (integer) between –128 and 127. If the column is
declared as UNSIGNED, the range is from 0 to 255. This is particularly suitable for
storing people’s ages, number of children, and so on.

INT: Any integer between –2,147,483,648 and 2,147,483,647. If the column is
declared as UNSIGNED, the range is from 0 to 4,294,967,295.

Keep it simple: use VARCHAR for short text items and TEXT for longer ones.

STORING RECORDS IN A DATABASE

439

14

8598CH14.qxd 6/28/07 12:11 PM Page 439

http://dev.mysql.com/doc/refman/5.0/en/data-types.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

FLOAT: A floating-point number.

DECIMAL: A floating-point number stored as a string. This column type is best
avoided.

DECIMAL is intended for currencies, but you can’t perform calculations with strings inside a
database, so it’s more practical to use INT. For dollars or euros, store currencies as cents;
for pounds, use pence. Then use PHP to divide the result by 100, and format the currency
as desired.

Storing dates and times MySQL stores dates in the format YYYY-MM-DD. This may come as a
shock, but it’s the ISO (International Organization for Standardization) standard, and
avoids the ambiguity inherent in national conventions. The most important column types
for dates and times are as follows:

DATE: A date stored as YYYY-MM-DD. The supported range is 1000-01-01 to 9999-12-31.

DATETIME: A combined date and time displayed in the format YYYY-MM-DD
HH:MM:SS.

TIMESTAMP: A timestamp (normally generated automatically by the computer).
Legal values range from the beginning of 1970 to partway through 2037.

Storing predefined lists MySQL lets you store two types of predefined list that could be
regarded as the database equivalents of radio button and checkbox states:

ENUM: This column type stores a single choice from a predefined list, such as “yes,
no, don’t know” or “male, female.” The maximum number of items that can be
stored in the predefined list is a mind-boggling 65,535—some radio-button group!

SET: This stores zero or more choices from a predefined list, up to a maximum of
64. Although this violates the principle of storing only one piece of information in
a field, it’s useful when the items form a coherent unit (e.g., optional extras on a car).

The values stored in the ENUM and SET columns are stored as a comma-separated string.
Individual values can include spaces and other characters but not commas.

MySQL timestamps are based on a human-readable date and, since MySQL 4.1,
use the same format as DATETIME. As a result, they are incompatible with Unix
and PHP timestamps, which are based on the number of seconds elapsed since
January 1, 1970. Don’t mix them.

Don’t use commas or spaces as the thousands-separator. Apart from numerals,
the only characters permitted in numbers are the negative operator (-) and the
decimal point (.). Although some countries use a comma as the decimal point,
MySQL accepts only a period.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

440

8598CH14.qxd 6/28/07 12:11 PM Page 440

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Storing binary data Binary data, such as images, bloat your tables and cannot be displayed
directly from a database. However, the following column types are designed for binary
data:

TINYBLOB: Up to 255 bytes

BLOB: Up to 64KB

MEDIUMBLOB: Up to 16MB

LONGBLOB: Up to 4GB

With such whimsical names, it’s a bit of a letdown to discover that BLOB stands for binary
large object.

Deciding whether a field can be empty
When defining a database table, specifying a column as NOT NULL is the equivalent of des-
ignating a required field. Since the phpMyAdmin default is NOT NULL, you need to manu-
ally override this to make a field optional. You can change a column definition from NOT
NULL to NULL and vice versa at any time.

Storing input from the feedback form
It’s time to put the knowledge from the preceding section to practical use by building a
table to store the information from the feedback form from Chapters 9, 11, and 12. The
form is available in the download files, so you can dive straight in. Don’t be put off by the
fact that it’s a feedback form; working with it shows you all the basic techniques you need
for inserting records into a database.

The name for the database table needs to give a clear indication of what it contains, so I’ll
call the table feedback. The next step is to analyze the form and decide how the feedback
table should be structured.

Analyzing the form
There are seven fields in the form (see Figure 14-5), so you need at least seven columns.
You need another column for the primary key. Anything else?

If you set a default value for a NOT NULL column, MySQL automatically uses that
value if nothing is entered in the field. Unfortunately, Dreamweaver doesn’t
support this useful feature.

STORING RECORDS IN A DATABASE

441

14

8598CH14.qxd 6/28/07 12:11 PM Page 441

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-5. The names of the form fields often make good names for database columns.

In a real-world situation the family and given names should be stored separately, but I’m
going to skip that here, because both are text fields, so they are handled in the same way.

The one extra field that I’m going to add will store the date and time that the form was
submitted. So that makes a total of nine columns. As for column names, the name attrib-
utes of the form fields make a good choice, and as you’ll see shortly, using them makes it
a lot easier to use the Dreamweaver server behaviors. For the two extra fields, let’s use
message_id for the primary key, and submitted for the date.

The next step is to decide the column types (refer to “Choosing the right column type in
MySQL”). By convention, the primary key column is normally the first one in a table.
MySQL has a feature called auto_increment, which automatically assigns the next available
number. This is ideal for a primary key, so we’ll make the column an INT type. We don’t
want negative numbers, so we’ll also make it UNSIGNED. This gives a range of nearly 4.3 bil-
lion, which is probably excessive for most tables. However, the danger of choosing a
smaller number type is that you run out of numbers, particularly if records are added and
deleted frequently. It’s much better to err on the side of caution with the primary key
column.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

442

8598CH14.qxd 6/28/07 12:11 PM Page 442

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first two form fields, name and email, contain short, variable amounts of text, so
VARCHAR is appropriate. With VARCHAR you need to specify the maximum number of char-
acters. For name, 50 is sufficient, but you don’t want to risk truncating an email address, so
100 is a safer choice for email.

The comments field is also text. If your remote server is running MySQL 5.0 or higher, you
can use VARCHAR and set a limit of 500 or 1000, but TEXT is appropriate for all versions, so
we’ll use that. To limit the length of comments, use the Spry Textarea Validation Widget as
described in Chapter 9.

The checkbox group interests presents a dilemma. Unless you make this a required field,
users can pick anything from none to five. Storing more than one piece of information in
a field goes against the principles of good database design, but creating five separate
columns isn’t very satisfactory either. What happens if you want to add another category
to the list, or remove one? Since interests are grouped together, and represent a series
of closely related options, this is where SET comes in handy.

The drop-down menu visited allows only one choice. Although this sounds like a good
candidate for ENUM, you may want to change the range of options later, so this is better as
VARCHAR. That way, you can change the value attributes of the <option> tags without
needing to change the table definition.

The views multiple-choice list is similar to the checkbox group, so that will be another SET.

The subscribe radio group is a straight yes/no choice, so it should be an ENUM column
type.

Finally, submitted needs to store the date and time, so we’ll make it a TIMESTAMP column.
Whenever a record is inserted or updated, the current date and time are automatically
inserted into the first TIMESTAMP column in a table. With a DATETIME column, you have to
insert the value explicitly.

Table 14-1 summarizes this analysis. You’ll use this summary to define the feedback table
in phpMyAdmin, so the table headings use the same terminology as phpMyAdmin. The
setting for Length/Values for the two SET columns is described in the instructions in
“Defining the feedback table.” Note that interests and views are specified as the only
fields not required by setting them to null. I’ve done this because the Dreamweaver Insert
Record server behavior can’t handle SET columns automatically. So we’ll come back to
these two later.

STORING RECORDS IN A DATABASE

443

14

Table 14-1. Column settings for the feedback table

Field Type Length/Values Attributes Null Extra Primary key

message_id INT UNSIGNED not null auto_increment Selected

name VARCHAR 50 not null

email VARCHAR 100 not null

comments TEXT not null

interests SET See text null

Continued

8598CH14.qxd 6/28/07 12:11 PM Page 443

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Defining a table in phpMyAdmin
Defining a database table normally requires writing a lengthy SQL query, but phpMyAdmin
makes the process a lot simpler through a form-based interface. The form is quite wide
and, unless you have a large monitor, you might need to scroll horizontally to see all the
fields. You might find the text in some screenshots hard to read, but all important infor-
mation is repeated in the instructions and Table 14-1.

1. Launch phpMyAdmin, and select the egdwcs3 database. In the main frame, type
feedback in the Name field, enter 9 as the Number of fields, and click Go.

2. This opens the form shown in Figure 14-6 with nine blank rows where you enter
the column definitions. Copy the values from Table 14-1. Designate message_id as
the table’s primary key by selecting the radio button as indicated in Figure 14-6.

Figure 14-6. Defining the columns for the feedback table in phpMyAdmin

For the SET and ENUM columns, you need to enter in Length/Values the value attrib-
utes from the related form fields as a series of comma-separated strings. Each
string needs to be enclosed in single quotes. So, for interests, it looks like this:

'Classical concerts', 'Rock/pop', 'Drama', 'Guided walks', 'Art'

Defining the feedback table

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

444

Table 14-1. Column settings for the feedback table (Continued)

Field Type Length/Values Attributes Null Extra Primary key

visited VARCHAR 50 not null

views SET See text null

subscribe ENUM 'y','n' not null

submitted TIMESTAMP not null

8598CH14.qxd 6/28/07 12:11 PM Page 444

http://lib.ommolketab.ir
http//lib.ommolketab.ir

For views, it looks like this:

'Vibrant/exciting', 'Good food', 'Good transport', 'Dull', 'Bad ➥

food', 'Transport nightmare'

For subscribe, it looks like this:

'y', 'n'

It’s essential that the list of values matches exactly those in the form value attrib-
utes. Because the Length/Values field is so narrow, I recommend that you build the
entry into this field in Notepad or TextEdit, and then copy and paste it into
phpMyAdmin. Check the position of the quotes and commas carefully.

When you select the TIMESTAMP column type for submitted, phpMyAdmin adds a
CURRENT_TIMESTAMP checkbox in the Default column. This applies to MySQL 5.0
and higher only. Since it’s the only TIMESTAMP column in the table, all versions of
MySQL assign a current timestamp, so you can leave the checkbox unchecked.

3. When you have finished, click the Save button, as highlighted at the bottom of
Figure 14-6. Do not click the Go button alongside; this adds a new column to the
table.

4. Assuming that everything went OK, phpMyAdmin creates the table and displays
details of its structure, as shown in Figure 14-7. The name of the first field (col-
umn), message_id, should be underlined to indicate that it has been registered as
the table’s primary key. It should also have the value auto_increment in the Extra
column. Check that the Default column for interests and views displays NULL.

STORING RECORDS IN A DATABASE

445

14

Figure 14-7. After you have defined the table, phpMyAdmin displays details of its structure.

If you have made a mistake, phpMyAdmin displays a lengthy error message in red.
Don’t panic. The major part of the message displays the SQL query that
phpMyAdmin used to try to define the feedback table. Read the first part of the
message, as it should contain a hint as to the problem.

The most likely things to go wrong are forgetting the length of a VARCHAR column
in the Length/Values field or a missing comma or quote for the SET or ENUM
columns. Since phpMyAdmin preserves your original values, you can edit them and
click Save again. If you can’t see the problem, click the Drop tab at the top of
the page to delete the table, and start again, paying particular attention to the
Length/Values field.

8598CH14.qxd 6/28/07 12:11 PM Page 445

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Check the structure of your table carefully against the values shown in Figure 14-7. If you
need to amend the definition of a column, click the pencil-like icon in the Action section
on the right. This redisplays a form similar to that in Figure 14-6 but with details of just the
selected column, ready for editing. If you need to edit more than one column, select
the appropriate checkboxes alongside the column names, and click the pencil-like icon
at the bottom of the structure grid.

You’re no doubt curious to know why Collation has been set to latin1_swedish_ci. The
next section explains briefly what collation is all about.

Understanding collation
Collation was added in MySQL 4.1, so it doesn’t affect you if your remote server is running
MySQL 3.23 or MySQL 4.0. You can also ignore it if you work exclusively in English,
Swedish, or Finnish (or any combination of them). However, if you work in other lan-
guages, you need to know about collation.

Collation determines the sort order of records. Different languages have their own sorting
rules, so MySQL 4.1 and above lets you set the default sort order at different levels: for the
entire database, for individual tables, and for individual columns. MySQL is based in
Sweden, which explains why the default sort order is latin1_swedish_ci. English and
Finnish share the same sort order.

If you work in a different language and your remote server is MySQL 4.1 or above, click
Character Sets and Collations on the phpMyAdmin welcome screen to see the full range of
supported sort orders. When defining a new database or table, select the appropriate sort
order from the Collation drop-down menu. You can change the collation by selecting the
database or table in phpMyAdmin, and then selecting the Operations tab. Since collation
can be set at different levels, this sets the default only for new tables or columns. Existing
tables and columns preserve their original collation unless you edit them individually.

Inserting data from the feedback form
Most of the time, you’ll want to insert the form data into a database without sending it by
mail as well. So, although the ultimate goal is to combine the two operations, this section
concentrates on inserting the data into the feedback table using the Dreamweaver Insert
Record server behavior. For this purpose, you need to remove the mail processing script
from the feedback form in Chapter 12. To make this easier for you, the download files
contain feedback_start.php in examples/ch14.

However, if you want to use your own file from Chapter 12, make a copy of feedback.php,
and save it in workfiles/ch14. Remove all the PHP code above the DOCTYPE declaration

If you are working in a language, such as Spanish or French, that uses accented char-
acters, MySQL 3.23 and 4.0 do not support UTF-8 (Unicode). This affects the way
accented characters are stored. If accented characters are garbled when retrieving
records from MySQL, change the default encoding of your web pages from UTF-8 to
the encoding appropriate for your language. Alternatively, store accented characters
as HTML entities (for example, é for é).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

446

8598CH14.qxd 6/28/07 12:11 PM Page 446

http://lib.ommolketab.ir
http//lib.ommolketab.ir

(DTD). Also remove the PHP code and warning messages between the <h1> heading and
the paragraph beginning “We welcome feedback . . .” Finally, remove the PHP code block
in the action attribute of the <form> tag. The top of the page in Code view should look
like this:

The PHP code inside the form does not need to be removed. It controls the validation
error messages, and will be needed when the mail processing script is reintegrated later.

Before you can communicate with your database inside Dreamweaver, you need to create
a MySQL connection. If you defined your site correctly in Chapter 4, it should take no
more than a minute or two.

A MySQL connection is simply a convenient way of storing the details needed to connect
to MySQL: the server address, username, password, and database name. Dreamweaver
stores them in an include file, which it automatically attaches to a web page whenever you
select the connection in a server behavior.

1. Copy feedback_start.php from examples/ch14 to workfiles/ch14, and save it as
feedback.php, or edit your file from Chapter 12 as described in the preceding
section.

2. With feedback.php open in the Document window, open the Databases panel in
the Application panel group. Alternatively, use Window ➤ Databases, or the key-
board shortcut Ctrl+Shift+F10/Shift+Cmd+F10. (Unless a PHP file is open in the
Document window, the Databases panel remains grayed out.)

3. Click the plus (+) button, and select MySQL Connection as shown here.

Creating a MySQL connection

STORING RECORDS IN A DATABASE

447

14

8598CH14.qxd 6/28/07 12:11 PM Page 447

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. The dialog box that opens asks you for the following details:

Connection name: You can choose any name you like, but it must not contain
any spaces or special characters. This connection will be used by the administra-
tor user account, so I have entered connAdmin.

MySQL server: This is the address of the database server. If MySQL is on the
same computer as Dreamweaver, you should enter localhost.

If you are running MySQL on a port other than the default 3306 (this happens
with some of the all-in-one PHP packages, such as MAMP), add the port number
after a colon (e.g., localhost:8889).

If you are using your remote server as a testing server, use the address your
hosting company gave you. In most cases, this is also localhost. Dreamweaver
uploads hidden files to your remote server and creates a local connection there.

Some hosting companies locate the MySQL server on a different computer from
your web files. If you are doing remote testing and have been given a server
name other than localhost, enter that name now. If you are testing locally but
know that your host doesn’t use localhost, you will have to change this field
when you finally upload your site to the remote server.

User name: Enter the name of the MySQL user account that you want to use.
This connection will be used for public pages, so I have entered egadmin.

Password: Enter the password for the user account. I used humpty.

Database: Enter the name of the database that you want to use. You can also use
the Select button to get Dreamweaver to show you a list of databases that the
named user has access to.

Fill in the necessary details. The completed dialog box should look something like
the following screenshot. When you have finished, click the Test button. If all goes
well, Dreamweaver will tell you that the connection was made successfully.

5. If you got the thumbs up from Dreamweaver, click OK to close both dialog boxes.
If you failed to make the connection, cancel the connection setup, and check the
points listed above before trying again. If that fails, see “Troubleshooting the
connection.”

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

448

8598CH14.qxd 6/28/07 12:11 PM Page 448

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. In the Databases panel, you should see a database icon that has
been created for connAdmin. Expand the tree menu by clicking
the tiny plus button (it’s a triangle on the Mac) to the left of
connAdmin. It displays the database features available to the
connection, including a brief description of every column in
the feedback table. The columns are listed in alphabetical
order, not the order they appear in the database. The little key
icon alongside message_id indicates that it’s the table’s primary
key. Both Stored procedures and Views are empty. Although
MySQL 5.0 supports these features, support for them has not
been implemented in Dreamweaver CS3.

If you ever need to change the connection details, double-click
the database icon in the Databases panel to reopen the MySQL
Connection dialog box, make your changes, and click OK.
Alternatively, right-click on the connection name, and choose
Edit Connection from the context menu.

Troubleshooting the connection
Hopefully, everything went OK, but this section should help identify what might have gone
wrong if you get an error message. Normally, you get a message about there being no test-
ing server or saying that the testing server doesn’t map to a particular URL.

All communication between Dreamweaver and MySQL is conducted through two files,
MMHTTPDB.php and mysql.php, located in a hidden folder called _mmServerScripts.
Dreamweaver automatically creates the hidden folder and files in the site root of your
testing server. If you have defined the URL prefix incorrectly in your site definition, the
folder will be in the wrong place. The solution is to use an Explorer window or Finder to
see where the folder has been created. Then adjust the testing server site definition (see
Chapter 4) so that both the testing server folder and URL prefix point to the site root.

If you’re using your remote server as the testing server, Dreamweaver uploads the hidden
folder and files to your remote server. Even if you have defined the URL prefix correctly,
Dreamweaver might not be able to create the _mmServerScripts folder because of per-
mission problems. Create the folder yourself, and make sure that it has read and write
permissions.

You may see a rather unhelpful message about an unidentified error. Things to check when
this happens are that MySQL and your web server are running. Also check your username
and password—both are case sensitive and will fail if you use the wrong case (make sure
Caps Lock isn’t on by accident). A software firewall may also be blocking communication
between Dreamweaver and MySQL. Try turning it off temporarily. If that solves the prob-
lem, adjust the firewall settings.

Dreamweaver stores the MySQL connection details in a file with the same name
as the connection. So connAdmin becomes connAdmin.php, which is stored in a
folder called Connections that Dreamweaver creates in the site root. Don’t for-
get to upload the contents of this folder to your remote server when deploying
a PHP site on the Internet.

STORING RECORDS IN A DATABASE

449

14

8598CH14.qxd 6/28/07 12:11 PM Page 449

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These instructions show you how to apply an Insert Record server behavior to feedback.
php, but they work with any form. Because Dreamweaver doesn’t handle SET columns
automatically, we’ll leave them blank for the time being and come back to them later in
the chapter.

1. With feedback.php open in the Document window, open the Server Behaviors
panel in the Application panel group (Window ➤ Server Behaviors, or Ctrl+F9/
Cmd+F9).

2. Click the plus button, and select Insert Record from the menu that appears. This
opens the Insert Record dialog box. The first drop-down menu (labeled Submit
values from) detects any forms on the page. In this case, there is only one, but if you
have a page with more than one form, you need to select the name of the form
that contains the data you want to insert into the database.

The Connection drop-down menu detects all MySQL connections in the site but
doesn’t select one by default, so you need to select connAdmin manually.

As soon as you select a connection, Dreamweaver detects all the tables in the data-
base and automatically selects the first in alphabetical order. Since there’s only one
table in the egdwcs3 database, it selects feedback. However, if you’re using an exist-
ing database, select the table that you want to insert the records into.

Once the table has been selected, Dreamweaver automatically populates the
Columns area. The Insert Record dialog box should now look like this:

3. Since the name attributes of the form fields are the same as the column names in
the feedback table, Dreamweaver automatically matches them and sets the type of
data they expect. You may be surprised to see that the first entry in the Columns
field says 'message_id' Is an Unused Primary Key. This is correct; MySQL automati-
cally assigns the next available number, so you don’t want to submit a value from
the form.

Applying the Insert Record server behavior

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

450

8598CH14.qxd 6/28/07 12:11 PM Page 450

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you go down the list in the Columns field, you’ll see that three columns are
marked Does Not Get a Value: interests, views, and submitted. In the case of sub-
mitted, this is fine, because it’s a TIMESTAMP column that is automatically popu-
lated with the current date and time. We’ll deal with interests and views later. All
other columns should be listed as getting a value as text from the form field of the
same name.

If any other columns are marked as not getting a value, that means you have prob-
ably given the form field and column name different spellings. Set the correct value
by selecting the column in the Columns field. Then activate the Value drop-down
menu, and select the form field that contains the data you want to insert into that
column.

The Submit as drop-down menu should be set to the same datatype as the column.
The options are Text, Integer (whole number), Double (number with decimal frac-
tion), Date, and three varieties of Checkbox. In this form, everything should be set
to Text.

4. The final field in the Insert Record dialog box lets you specify a page to go to after
the record has been inserted in the database. Since this is a contact form that you
want to remain onscreen, leave this field blank, and click OK.

5. Save feedback.php, and load it into a browser. If your Dreamweaver preferences
use a temporary file for Preview in Browser, type the URL for the page into the
browser address bar. Using a temporary file generates a series of PHP error mes-
sages.

6. Click the Send comments button without entering anything into the form. You
should see a text message telling you that column name cannot be null. This is
MySQL rejecting the record because a required field hasn’t been filled in.

7. Click the browser back button to return to the form, and enter values for each
field, except the interests checkbox group and the views multiple-choice list.
Test the form by clicking Send comments. The page should reload with the form
fields cleared.

8. In phpMyAdmin, select the feedback table, and click the Browse tab. If you get a
red ✕ when you click Browse, select any other tab first to refresh phpMyAdmin.
You should see your form input has been stored in the database like this:

Check your code, if necessary, against feedback_01.php in examples/ch14.

Troubleshooting
If you get a message that a column cannot be null, even though you have entered some-
thing into the relevant form field, check that the name attributes in your form match the
names of the columns in the database. Also make sure that interests and views are
defined as NULL in phpMyAdmin (see Figure 14-8). If there’s a mistake in your column
names, you’ll need to edit the Insert Record server behavior.

STORING RECORDS IN A DATABASE

451

14

8598CH14.qxd 6/28/07 12:11 PM Page 451

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Server behaviors applied to a page are listed in the Server Behaviors panel like this:

Double-click the name of the server behavior to reopen the dialog box for editing, and go
back carefully over the settings for each column.

If you get a string of errors about mysql_real_escape_string() and the ODBC connec-
tion, it means you have used Preview in Browser with a temporary file. Load the actual
page into a browser and try again.

If you get a fatal error about a call to undefined function virtual(), it means that your
site defaults to links relative to the site root, and you’re not using Apache as the web
server. See the next section.

Using server behaviors with site-root-relative links
If you open feedback.php in Code view to see the PHP code that Dreamweaver has added
to the page, and you use document-relative links, the top section will look like this:

The code on line 1 in the screenshot uses require_once() to include the MySQL connec-
tion details. However, if your site definition uses links relative to the site root, this will be
replaced by the following:

<?php virtual('/Connections/connAdmin.php'); ?>

The virtual() function works only on Apache. If your code uses virtual(), make sure it
is supported on both your testing and remote servers before going any further (see “Using
site-root-relative links with includes” in Chapter 12 for details of how to do this).

All Dreamweaver server behaviors need to include the MySQL connection. If your server
doesn’t support virtual(), you have two options, namely:

Change your site definition to use document-relative links, and manually override
the default when creating links that you want to be relative to the site root. You do
this in the Select File dialog box by changing the Relative to drop-down menu to Site
Root, as described in “Including a text file” in Chapter 12.

Manually replace virtual() with require_once() and a document-relative link in
pages that use server behaviors. The require_once() command works on all servers.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

452

8598CH14.qxd 6/28/07 12:11 PM Page 452

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Neither solution is ideal. I believe that Dreamweaver needs a platform-neutral way of con-
necting to MySQL when site-root-relative links are used, or it should use require_once()
regardless of the default link type.

Inspecting the server behavior code
As you have just seen, inserting form input into a database is a breeze with the Insert
Record server behavior. Many web developers are more than happy to let Dreamweaver
take the strain and never venture under the hood into Code view. You don’t need to
understand every line of code, but it is important to know what it looks like and what the
main parts of it are for. Without that knowledge, it becomes impossible to troubleshoot
problems or customize the code to your own requirements. In any case, you’ll need to dive
into Code view to insert the values in the two SET columns, interests and views. Don’t
worry, the code doesn’t bite, and the changes that you need to make are very simple.

As you’ve just seen, the first line of code creates the connection to MySQL. Without this,
nothing works.

The next section of code looks like this:

It defines a Dreamweaver function called GetSQLValueString(), which handles magic
quotes and prepares user input for insertion into the database.

Next follows a short section beginning $editFormAction. This sets the action attribute of
the <form> tag.

STORING RECORDS IN A DATABASE

453

14

8598CH14.qxd 6/28/07 12:11 PM Page 453

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finally comes the code that inserts the form data into the database by building a SQL
query.

Each element of the $_POST array is passed to GetSQLValueString() together with a sec-
ond argument indicating the datatype. This is designed to prevent malicious attacks on
your database.

By recognizing the various sections of code, it becomes easier to see how to merge
Dreamweaver’s code with your own, as you’ll do when integrating the mail processing
script.

Now, let’s sort out the two SET columns.

Inserting data into SET columns
A SET column stores values from a predetermined list. For a value to be legal, it must be
specified in the table definition. The definition for interests looks like this:

'Classical concerts', 'Rock/pop', 'Drama', 'Guided walks', 'Art'

This means that you can store any combination of these (or none) in the interests col-
umn for each record in the database. However, if you change the form to add Sport to the
interests checkbox group, you cannot store Sport in the interests column without first
updating the table definition. Illegal values—and that includes misspellings—are ignored.

The values from a checkbox group or multiple-choice list need to be inserted into a SET
column as a comma-separated string. So you pass the array that contains the form values
to implode() in the same way as in the mail processing form, and then insert the
values into the database as text.

These instructions are based on feedback.php, but the technique applies to any SET
column.

1. With feedback.php open in the Document window, open the Server Behaviors
panel, and double-click the Insert Record server behavior listed there to edit it.

2. When you open the Insert Record dialog box to edit an existing server behavior, the
first drop-down menu labeled Submit values from is grayed out, but you can change
all other values. Select 'interests' Does Not Get a Value in the Columns field, and
activate the Value drop-down menu. As the next screenshot shows, Dreamweaver

Storing multiple values in SET columns

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

454

8598CH14.qxd 6/28/07 12:11 PM Page 454

http://lib.ommolketab.ir
http//lib.ommolketab.ir

has listed the five checkboxes as FORM.interests[]. The square brackets prevent
Dreamweaver from matching the checkbox group to the interests column.

3. Select one of the instances of FORM.interests[]. Dreamweaver automatically selects
Checkbox 1,0 in the Submit as drop-down menu, but you need to change this
to Text.

4. Select 'views' Does Not Get a Value in the Columns field, and then activate the Value
drop-down menu. There’s only one instance of FORM.views[], so select that, and set
Submit as to Text. Then click OK to close the Insert Record dialog box.

5. In Code view, the section that builds the SQL query now looks like this:

6. Remove the square brackets after interests in $_POST['interests[]'] (line 42 in
the preceding screenshot), so that it looks like this:

GetSQLValueString($_POST['interests'], "text"),

7. Remove the square brackets after views on line 44, so that it looks like this:

GetSQLValueString($_POST['views'], "text"),

If you open the dialog box again for any reason, Dreamweaver sets interests and
views back to Does Not Get a Value. However, you’re about to edit the server behavior
in Code view, after which it ceases to be editable through the dialog box. This isn’t the
disaster you might think. Once you feel at home with server behaviors, you’ll discover
that Dreamweaver does all the tedious coding, leaving you to tidy up details, such as
adjusting the code for SET columns.

STORING RECORDS IN A DATABASE

455

14

8598CH14.qxd 6/28/07 12:11 PM Page 455

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. You now need to convert the arrays in $_POST['interests'] and
$_POST['views'] into a comma-separated string. Add the following code block
highlighted in bold to the top of feedback.php:

<?php require_once('../../Connections/connAdmin.php'); ?>
<?php
// if form has been submitted, convert $_POST subarrays to strings
if (array_key_exists('send', $_POST) {
if (isset($_POST['interests'])) {
$_POST['interests'] = implode(',', $_POST['interests']);
}

else {
$_POST['interests'] = '';
}

if (isset($_POST['views'])) {
$_POST['views'] = implode(',', $_POST['views']);
}

else {
$_POST['views'] = '';
}

}
?>
<?php
if (!function_exists("GetSQLValueString")) {

The block is enclosed in a conditional statement that executes the code only if the
form has been submitted. It uses array_key_exists() as in the mail processing
script.

Because checkboxes and multiple-choice lists don’t appear in the $_POST array if
nothing has been selected, the remaining code first checks whether any values
have been selected for interests and views. If they have, they are converted to a
comma-separated string with implode(). Otherwise, an empty string is assigned as
the value. This is needed to prevent the SQL query from throwing an error.

The first argument to the implode() function is the string that you want to act as
separator between array elements. It’s vital to use a comma with no space on either
side. If you add a space after the comma, only the first value is inserted in the SET
column. This is because the space is treated as part of the string.

$_POST['interests'] = implode(',', $_POST['interests']); // this works
$_POST['interests'] = implode(', ', $_POST['interests']); // this fails

9. Save feedback.php, and load it in a browser. Test the form by filling in all fields,
and check the results by clicking the Browse tab in phpMyAdmin. This time, you
should see the selected values inserted in the interests and views columns, as
shown here:

Check your code, if necessary, against feedback_02.php in examples/ch14.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

456

8598CH14.qxd 6/28/07 12:11 PM Page 456

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Putting information in a database is all very fine, but it’s not much use if you can’t see what
it is. Of course, you can use phpMyAdmin, but it’s more useful to incorporate the data in
a web page.

Displaying database content
Displaying content from a database in a web page with Dreamweaver involves a three-
stage process:

1. Create a connection to the database.

2. Query the database, and store the result in a recordset.

3. Insert Dreamweaver data objects (PHP code, sometimes mixed with XHTML) into
your web page to display your database content.

You already have a MySQL connection for the administrator, but if you are allowed to
create more than one user account on your remote database, it’s a good idea to create a
separate, restricted connection for visitors. By using an account limited to SELECT queries
for public pages, there is no way that a malicious user can manipulate your script to alter
or delete your precious data. So, if you created the eguser account earlier in the chapter,
open the Databases panel to make another MySQL connection called connQuery. Enter the
username and password for the restricted user (eguser and dumpty).

Creating a recordset
A recordset is the name that Dreamweaver gives to the set of results that comes from sub-
mitting a SELECT query to a database. As with the Insert Record server behavior, the code
is generated automatically for you, although constructing SELECT queries for detailed
searches of your data involves more work. But we’ll cross that bridge later . . . Let’s start
with a simple query.

This exercise shows you how to query the feedback database to build a recordset contain-
ing the primary key, name, date, and time of each record. The recordset will later be used
to display those details in a web page.

1. Create a new PHP page, and save it as feedback_list.php in workfiles/ch14.

2. Open the Server Behaviors panel; click the plus button, and select Recordset from
the menu that appears. This opens the Recordset dialog box, which has two inter-
faces: Simple and Advanced. The Simple interface is smaller and has fewer options.
The Advanced one is bigger and has more options. Switch between the two by
clicking the Advanced or Simple button, and Dreamweaver remembers your most
recent choice.

Make sure you’re in the Simple interface. By default, Dreamweaver enters a generic
value such as Recordset1, Recordset2, and so on, in the Name field. However, the
name is used to create several PHP variables, so it’s better to choose something

Creating a list of all records

STORING RECORDS IN A DATABASE

457

14

8598CH14.qxd 6/28/07 12:11 PM Page 457

http://lib.ommolketab.ir
http//lib.ommolketab.ir

that tells you what the recordset is for. Use only letters, numbers, and the under-
score. Don’t use any spaces. Some people follow the convention of beginning
recordset names with rs, but it’s not necessary. The name I have chosen is
getFeedback.

In the Connection field, select the restricted connection connQuery. The Define
button lets you define a new connection if you forgot to create one for the current
site.

Next, select the table that you want to retrieve the records from. There’s only one
at the moment, feedback.

The Columns field lists all columns in the table. By default, the All radio button is
selected, and the columns are grayed out. Use this setting to retrieve the details
from every column. On this occasion, though, let’s select just a few. Click the
Selected radio button, and hold down Ctrl/Cmd to select message_id, name, and
submitted.

I’ll explain the use of Filter later. You don’t need it for this recordset.

To sort the records in reverse date order (most recent first), set Sort to submitted
and the drop-down menu alongside to Descending.

When you have finished, the Recordset dialog box settings should look like this:

A lot of beginners select All every time, even if they need only one or two
columns. It’s easy, because it’s the default, and it makes the SQL query easier to
read (we’ll study SQL syntax in Chapter 16). However, it’s a very bad habit, as it
slows down the query. You might not notice the difference in the early stages,
but it can have a major impact once your database begins to grow. Always select
only those columns you actually need.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

458

8598CH14.qxd 6/28/07 12:11 PM Page 458

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Click the Test button to preview the recordset. You should see a display similar to
this:

4. Click OK to close the Test SQL Statement dialog box, and OK again to close the
Recordset dialog box.

5. Switch to Code view, and take a quick look at the code inserted by Dreamweaver.
The first two items are the MySQL connection and GetSQLValueString() function
that you saw earlier. The code that creates the recordset is only five lines long. As
you can see from Figure 14-8, the name of the recordset has been incorporated
into four PHP variables. These variables will be reused in the body of the page
when you display the results of the recordset, so choosing a meaningful name
helps identify the right code, particularly when using more than one recordset on
a page.

Figure 14-8. The code for the Recordset server behavior is quite short.

6. Save feedback_list.php. In Design view it’s still a blank page, but we’ll fix that
next.

Now that you have a recordset, you can display its contents in feedback_list.php. The
recordset is actually an array, in which each element contains the value of a single record.
To display them, you need to build a table with just two rows. The first row contains col-
umn headings, and the second row contains the data objects that display the contents of
a single record. By applying a repeat region to the second row, you can loop through the
recordset to display all the records.

1. Continue working with feedback_list.php from the preceding section.

2. Give the page a heading, and insert a table (use the Table button on the Common
tab of the Insert bar or Insert ➤ Table). In the Table dialog box, set Rows and
Columns to 2, and Table width to 400 pixels. Delete Border thickness, and set Header
to Top. Give the first row the headings Date and time, and Name, as shown here.

Displaying the results of a recordset in a repeat region

STORING RECORDS IN A DATABASE

459

14

8598CH14.qxd 6/28/07 12:11 PM Page 459

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Open the Bindings panel in the Application panel
group (Window ➤ Bindings or Ctrl+F10/Cmd+F10),
and expand the Recordset (getFeedback) tree menu
as shown in the next screenshot. As you can see, it
contains each of the columns selected in the
Recordset dialog box in the previous section.

This gives you direct access to the data contained in
the recordset.

4. In Design view, click inside the first cell of the second table row. Then select
submitted in the Bindings panel, and click the Insert button at the bottom right of
the panel. This places a dynamic text object in the table, as shown here:

Again, the value of choosing a meaningful name for the recordset becomes clear.
The dynamic text object uses the recordset and column names to identify the data
that will be inserted into the web page.

5. You can also drag and drop dynamic text objects from the Bindings panel. Highlight
name, and drag it into the second cell of the second table row.

6. Test the page by clicking the Live Data view button in the Document toolbar. The
first result from the recordset should be displayed as shown here:

Click the Live Data view button again to toggle off the dynamic display.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

460

8598CH14.qxd 6/28/07 12:11 PM Page 460

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. To display multiple results from the recordset, you need to apply a Repeat Region
server behavior. Click inside the second table row, and then select the whole row
by clicking the <tr> tag in the Tag selector at the bottom of the Document window.

Open the Server Behaviors panel; click the plus button, and select Repeat Region
from the menu that appears. Alternatively, click the Repeat Region button on the
Data tab of the Insert bar, or choose Insert ➤ Data Objects ➤ Repeat Region.

This opens the Repeat Region dialog box shown here:

Since there’s only one recordset on the current page, getFeedback is selected
automatically in the Recordset drop-down menu, but if you have several record-
sets, make sure the correct one is chosen. The Show radio button lets you choose
whether to show a limited number of records (the default is 10, but you can enter
a different number in the field), or all of them. I’ll show you in Chapter 16 how to
create a navigation system to page through a long recordset. For the moment, just
use the default settings as shown in the preceding screenshot, and click OK.

8. The second table row should now be surrounded by a thin gray border with a gray
tab at the top left, as shown in the following screenshot, indicating that it’s a repeat
region.

Use Live Data view again to see the effect. This time you should see up to ten rows
displayed, with the latest at the top of the list. Preview the page in a browser, too.
Check your code, if necessary, against feedback_list_01.php in examples/ch14.

If your page looks like a dog’s dinner, you have probably made the most common mistake
with a repeat region: failing to select the region accurately before applying the server
behavior. When using a table row as the repeat region, you must select the surrounding
<tr> tags. A lot of people drag their mouse across a table row and end up selecting only
the table cells. The most accurate way of selecting the table row is to use the Tag selector,
as suggested in step 7.

If you have made a mistake, highlight Repeat Region (getFeedback) in the Server Behaviors
panel, and click the minus button to remove the code cleanly. Then repeat steps 7 and 8.

STORING RECORDS IN A DATABASE

461

14

8598CH14.qxd 6/28/07 12:11 PM Page 461

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although I’ve used a repeat region on a table row, you can use it with any element that
you want repeated. It works just as well with items in a list or with <div> tags. You can
also apply it to <td> tags to repeat table cells across a single row.

At this point, you’re probably thinking that displaying a list of names and dates is a nice
party trick but doesn’t really serve much purpose. You’re right. Let’s take a step further
and link the names to a page that displays the contents of the record.

Displaying individual records
When a new record is inserted into the database table, MySQL automatically assigns the
next available number to the message_id primary key. The getFeedback recordset that
you created in the last section contains the message_id for each record, so you can pass
the primary key to another page in a query string at the end of the URL like this:

http://egdwcs3/workfiles/ch14/feedback_display.php?message_id=2

The target page then uses the primary key to display the appropriate content. Passing vari-
ables in a query string is commonly used in search results. Dreamweaver makes it easy to
build the query string.

These instructions continue from the previous section and assume you created
feedback_list.php. They show you how to append a query string to a URL with dynamic
text generated from a recordset.

Adding a record’s primary key to a query string

Unfortunately, the built-in repeat region is unidirectional. It can repeat elements
down a page or across, but not across and then down. To do that, you need either the
Adobe Dreamweaver Developer Toolbox (www.adobe.com/products/dreamweaver/
addt/) or an extension from Tom Muck, this book’s technical reviewer. Tom has cre-
ated a free extension and a reasonably priced commercial one (www.tom-muck.com/
extensions/).

If you make a mistake with a server behavior or decide that you no longer want it on
the page, always select it in the Server Behaviors panel, and use the minus button to
remove it. Just deleting dynamic elements in Design view leaves a tangled mess of
unworkable code. I can’t emphasize enough the importance of understanding the
underlying XHTML, knowing where your insertion point is, or what’s currently
selected. Dreamweaver is a tool that, used correctly, speeds up dynamic website
development. Used incorrectly, it’s a rapid road to hell.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

462

8598CH14.qxd 6/28/07 12:11 PM Page 462

http://www.adobe.com/products/dreamweaver/addt
http://www.adobe.com/products/dreamweaver/addt
http://www.tom-muck.com/extensions
http://www.tom-muck.com/extensions
http://egdwcs3/workfiles/ch14/feedback_display.php?message_id=2
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Create a new PHP page, and save it as feedback_display.php in workfiles/ch14.

2. In feedback_list.php, select the {getFeedback.name} dynamic text object in the
second cell of the second table row. You’re going to create a hyperlink to
feedback_display.php, but you need to do this through the Select File dialog box.
So click the Browse for File icon (the one that looks like a folder) to the right of the
Link field in the Property inspector.

3. In the Select File dialog box, choose feedback_display.php, and then click the
Parameters button to the right of the URL field.

4. In the Parameters dialog box that opens, type message_id into the Name field. To
open the field for editing, you can either click the plus button at the top of the dia-
log box or just click inside the field. Then click alongside, under the Value heading.
Instead of typing anything in this field, click the lightning bolt icon, as shown in
Figure 14-10.

5. This opens the Dynamic Data dialog box. Expand the Recordset (getFeedback) tree
menu if necessary, and select message_id, as shown in Figure 14-9. Click OK in the
Dynamic Data, Parameters, and Select File dialog boxes to close each one in turn.

Figure 14-9. The Parameters and Dynamic Data dialog boxes build the dynamic query string.

6. Save feedback_list.php, and load it into a browser. Hover your mouse pointer
over the links in the Name column, and look at the URL displayed in the browser
status bar. It should point to feedback_display.php and have a query string con-
taining message_id and the message’s primary key, as shown in Figure 14-10.

STORING RECORDS IN A DATABASE

463

14

8598CH14.qxd 6/28/07 12:11 PM Page 463

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-10. The query string has been added to the URL.

If you can’t see the URL in the status bar, click the link to make sure that the query
string is attached correctly to the end of the URL. Nothing will display yet in
feedback_display.php, but you need to get the construction of the query string
correct before moving any further. Check your code, if necessary, against
feedback_list_02.php in examples/ch14.

This is a point where many people seem to go wrong. There is nothing magic or difficult
about it. You just need to get steps 3–5 right. Step 3 simply surrounds the dynamic text
with the XHMTL code for a hyperlink. The Parameters dialog box builds the query string
and gets the value for message_id from the Dynamic Data dialog box. The most common
mistake is not selecting the dynamic value correctly. The following illustration explains
how the code generated by Dreamweaver builds the link and query string. The PHP code
is shaded; the rest of the code is plain XHTML.

After you have passed the primary key to the details page, it’s simply a question of creat-
ing a recordset that retrieves a single record, and then using dynamic data objects to
display the contents of each field. These instructions continue from the previous section.

Displaying the contents of the record in the details page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

464

8598CH14.qxd 6/28/07 12:11 PM Page 464

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. With feedback_display.php open in the Document window, open the Server
Behaviors panel; click the plus button, and select Recordset.

2. This time, you want to retrieve all columns, but you need to filter the results of the
SQL query using the primary key passed in the query string. The Filter drop-down
menu contains the names of all columns in the table. Select message_id.
Dreamweaver normally fills in the remaining Filter fields with the correct details.
You want the value of the message_id column to be equal to the value of
message_id passed through the URL query string. So reading Filter across and down,
it looks like this: message_id = URL Parameter message_id (if the variable in the
query string is different from the column name, you can edit the final Filter field
manually).

Since there will be only one result, you don’t need to set Sort.

The settings in the Recordset dialog box should look like this:

3. Click the Test button. You will be prompted to provide a test value for message_id.
Enter the number of a primary key that you know exists in your feedback table,
and click OK. You should see the results displayed in the Test SQL Statement panel.
Click OK to close it, and then click OK in the Recordset dialog box to create the
recordset.

4. All that remains now is to use the Bindings panel in the same way as before to dis-
play the contents of the recordset in feedback_display.php. How you lay it out is
entirely up to you. Dreamweaver stores the data in the recordset, and you can be
as imaginative or pedestrian as you like in how you integrate the dynamic text with
your XHTML. Figure 14-11 shows a simple layout that I created. As you can see, the
dynamic text objects don’t need to be in the same order as they are in the record-
set, and you can use them more than once (I have reused {getDetails.name}).

STORING RECORDS IN A DATABASE

465

14

8598CH14.qxd 6/28/07 12:11 PM Page 465

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-11. The dynamic text objects act as placeholders within your XHTML.

5. When you have designed your page, save feedback_display.php. If you attempt to
load it directly into a browser, you’ll see only the XHTML output. To view the page
properly, load feedback_list.php into a browser, and click one of the links. You
should then see output similar to Figure 14-12.

Figure 14-12. When viewed in a browser, the dynamic text objects are populated from the
database.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

466

8598CH14.qxd 6/28/07 12:11 PM Page 466

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you’re worried about the readability of that great block of text, the solution is in
the next section.

Check your code, if necessary, with feedback_display_01.php in examples/ch14.

Displaying line breaks in text

That huge chunk of text in Figure 14-12 not only looks awful, it’s difficult to read without
any line breaks. The breaks are there, but new lines entered in a form text area are stored
in the database as new line characters. Browsers ignore whitespace in XHTML, so every-
thing looks bunched up. However, PHP has a nifty function called nl2br() that converts
new line characters to
 tags. In previous versions of Dreamweaver, you needed to
add nl2br() manually to dynamic text objects. Not any more . . .

The Format option in the Dynamic Text dialog box makes it easy to apply a number of com-
mon string functions to data drawn from a recordset. These instructions show you how to
apply nl2br() without the need to dive into Code view. The screenshot in step 3 shows
the full range of available formats.

1. With feedback_display.php open in the Document window, open the Server
Behaviors panel. It lists not only the recordset but also all the dynamic text objects
inserted in the page, as shown here:

2. Double-click Dynamic Text (getDetails.comments) to open the Dynamic Text dialog
box for the column that you want to format.

Formatting dynamic text with line breaks

STORING RECORDS IN A DATABASE

467

14

8598CH14.qxd 6/28/07 12:11 PM Page 467

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. In the Dynamic Text dialog box, select Convert – New Lines to BRs from the Format
menu, as shown here.

This wraps the dynamic text object in the PHP function nl2br(), which converts
new line characters to
 tags. This ensures that any line breaks inserted into a
section of text are preserved when displayed in the browser. It doesn’t create gen-
uine paragraphs, but it makes the output easier to read. As you can see from the
preceding screenshot, this is just one of about a dozen formats that you can apply
to dynamic text. Most are self-explanatory; the Trim formats remove whitespace
from the left, right, or both ends of the dynamic text. Unfortunately, Edit Format
List doesn’t work.

4. Save feedback_display.php, and test it again with a long piece of text in the
comments column. As Figure 14-13 shows, the line breaks in the long text are now
displayed.

Check your code, if necessary with feedback_display_02.php in examples/ch14.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

468

8598CH14.qxd 6/28/07 12:11 PM Page 468

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 14-13. The text is now easier to read after formatting with nl2br().

Merging form input with mail processing
The final section of this chapter shows you how to combine the Insert Record server
behavior with the mail processing script from Chapter 12. It’s a bonus exercise that I have
added in response to frequent requests in online forums. If it’s not of direct relevance to
your current requirements, feel free to skip it.

The mail processing script in Chapter 12 and the Insert Record server behavior are both
contained in conditional statements that ensure they are executed only if the form has
been submitted. In theory, therefore, you could just copy the mail processing script and
paste it above the Insert Record server behavior, and they would both run when a user
submits the form. The drawback is that they would both run independently. Even if
required fields are missing, the Insert Record server behavior would still be executed, leav-
ing an unfriendly single-line error message onscreen. However, the mail processing script
is designed to validate the input and redisplay the form with user-friendly error messages.
So it makes more sense to run the Insert Record server behavior only if the mail is suc-
cessfully sent.

This requires the feedback table to be created on your remote server. The email
is sent to your inbox, and the data is stored as a record in the database on your
remote server. The script will not insert the data in the database in your local
testing environment.

STORING RECORDS IN A DATABASE

469

14

8598CH14.qxd 6/28/07 12:11 PM Page 469

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Since the variable $mailSent detects whether the mail has been sent, you simply add a
conditional statement at the end of the mail processing script and move the Insert Record
server behavior inside the curly braces. In effect, the code outline looks like this:

// if the form has been submitted, process its contents
if (array_key_exists('sent', $_POST) {
// process the mail
// if the mail is sent successfully
if ($mailSent) {
// Insert Record server behavior goes here
}

}

These instructions assume that you have created the mail processing script in Chapter 12,
as well as feedback.php in this chapter. The finished code is in feedback_merged.php in
examples/ch14.

1. Save a copy of feedback.php in workfiles/ch14 as feedback_merged.php. If you
want to move it to the site root or a different folder ready for uploading to your
remote server, do so, and update the links if prompted by Dreamweaver.

2. Locate the following section of code, and cut it to your clipboard:

This is what the Insert Record server behavior uses to set the action attribute of
the <form> tag, so it needs to be moved to the top of the page to prevent it from
being trapped inside the conditional statement.

3. Place your cursor immediately to the right of the opening PHP tag at the top of the
page, and press Enter/Return to insert a couple of blank lines. Paste the code you
cut in step 2 into the empty space. The top of the page should now look like this:

<?php
$editFormAction = $_SERVER['PHP_SELF'];
if (isset($_SERVER['QUERY_STRING'])) {
$editFormAction .= "?" . htmlentities($_SERVER['QUERY_STRING']);

}

require_once('../../Connections/connAdmin.php'); ?>

4. Open the version of feedback.php from Chapter 12 (or use feedback_process.php
in examples/ch12). Select all the mail processing code apart from the closing curly
brace, as highlighted in the following screenshot, and copy it to your clipboard:

Merging the two scripts

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

470

8598CH14.qxd 6/28/07 12:11 PM Page 470

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Paste the code you have just copied onto the blank line above the require_once()
command in step 3. Immediately after the code you have just pasted, insert the
conditional statement to control the Insert Record server behavior like this:

mail($to, 'Server problem', "$process cannot be read", $headers);
}

if ($mailSent) {
require_once('../../Connections/connAdmin.php');?>

6. Scroll to the end of the Insert Record server behavior code, and insert two closing
curly braces. The first one matches the opening curly brace at the beginning of the
conditional statement in step 5. The second one replaces the curly brace that you
didn’t copy from the mail processing script.

7. Add the warning messages from the mail processing script between the <h1> head-
ing and opening paragraph. When uploading the completed page to your remote
server, don’t forget to upload the Connections folder and process_mail.inc.php.

You can check your code against feedback_merged.php in examples/ch14. The code is
fully commented to help you understand how the two scripts have been merged.

A great deal achieved
This chapter has concentrated heavily on the nuts and bolts of designing a database table,
inserting data, and some basic retrieval and display techniques. There’s a long way still to
go: the date and time need formatting, and you need to know how to update and delete
records. Nevertheless, I hope it’s given you an insight into the power of integrating a data-
base into a website.

In the next chapter, we continue our journey into PHP and databases by building a login
system

STORING RECORDS IN A DATABASE

471

14

8598CH14.qxd 6/28/07 12:11 PM Page 471

http://lib.ommolketab.ir
http//lib.ommolketab.ir

15 CONTROLLING ACCESS TO
YOUR SITE

8598CH15.qxd 6/28/07 12:20 PM Page 473

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the last chapter, you learned how to insert information into a database and retrieve it.
Once you have created a database record, you need a way to update it or delete it when
it’s no longer required. The principles behind updating and deleting are very similar to
retrieving and displaying records. To update a record, you need to display its existing
details in a form ready for editing, and to delete a record, you display sufficient informa-
tion to confirm that you want to consign it to cyber oblivion.

Updating and deleting database records is something that should be entrusted only to
authorized people, so I’m going to kill two birds with one stone in this chapter by showing
you how to create a user registration system. This will demonstrate the basic insert,
update, and deletion techniques. Once you have registered at least one user in the regis-
tration system, you can then create a login system to control access to different parts of
your site.

This chapter shows you how to

Insert, update, and delete records

Prevent the creation of duplicate usernames

Build your own custom server behaviors

Preserve information related to an individual visitor with sessions

Restrict access to your pages

Dreamweaver’s Insert Record, Update Record, and Delete Record server behaviors are easy
to use; and they protect you against a type of malicious attack known as SQL injection. An
injection attack can be used to reveal sensitive information or even delete all your data by
passing spurious values through form fields or URL query strings. The Dreamweaver code
protects you by verifying the datatype and escaping characters in all variables passed to a
SQL query.

The fundamental weakness of the server behaviors is that they do nothing to ensure that
user input meets your criteria for suitable data. So you could end up with someone just
pressing the space bar a couple of times, rather than typing a username or a password.
This chapter shows you how to integrate your own checks into the Dreamweaver code.

Creating a user registration system
To register users for your site, you need the following elements:

A database table to store user details, such as username and password

A registration form

A page to display a list of registered users

A form to update user details

A form to delete users

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

474

8598CH15.qxd 6/28/07 12:20 PM Page 474

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Defining the database table
Let’s start with creating the necessary table to store user details in the database. I plan to
use the same table for both site administrators and ordinary visitors. So it will also have
columns to store an email address and the level of user privileges.

These instructions show you how to define the users table in phpMyAdmin. If you’re new
to working with MySQL, I suggest that you work through this section step by step to famil-
iarize yourself with table definition. More experienced users might prefer to use the
phpMyAdmin Import tab to build the table structure with ch15_users.sql in the tools
folder of the download files (ch15_users40.sql and ch15_users323.sql are for MySQL 4.0
and MySQL 3.23 respectively).

1. Launch phpMyAdmin, and select the egdwcs3 database. Create a new table called
users. It requires seven columns, so enter 7 in Number of fields, and click Go.

2. Define the seven columns using the settings shown in the screenshot.

The table’s primary key is user_id, so Type should be set to INT, Attributes to
UNSIGNED, and Extra to auto_increment.

The next five columns—username, pwd, first_name, family_name, and email—all
have Type set to VARCHAR. I have set the length of username to 15, and pwd to 40.
The password column must be 40 characters, because the function used to encrypt
the passwords always produces a hexadecimal string exactly 40 characters long.

I’ve used 30 characters for both first_name and family_name, and a generous 100
characters for the email address. It’s better to be over-generous than to end up
with truncated data.

The final column, admin_priv, uses the ENUM column type. As I explained in the last
chapter, this is typically used for “choose one of the following” situations. In this
case, it’s whether a user has administrative privileges. Type the permitted values in
the Length/Values field as comma-separated strings like this:

'n', 'y'

In the Default column for admin_priv, enter n without any quotes.

Note that all columns have been set to not null. This is because I want all of them to
be required fields. Click Save.

Creating the users table

CONTROLLING ACCESS TO YOUR SITE

475

15

8598CH15.qxd 6/28/07 12:21 PM Page 475

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Check that the table structure displayed in phpMyAdmin looks like this:

Building the registration form
In the last chapter, we used a custom-built form to insert the records in the database, but
Dreamweaver also has a Record Insertion Form Wizard that helps design the form for you.
Personally, I don’t like the insert and update wizards, because they create ugly forms with
a lot of presentational code. Nevertheless, they can be useful if you want a quick way to
build a form to interact with a database.

1. Create a new PHP page called register_user.php in workfiles/ch15.

2. Give the page a title, such as Register user. Select Heading 1 from the Format menu
in the Property inspector, and type the same heading at the top of the page. Then
select the <h1> tag in the Tag inspector at the bottom of the Document window,
and press your right keyboard arrow to move the insertion point out of the
heading. If you forget to do this, Dreamweaver embeds the entire form inside the
<h1> tags.

3. Open the Data tab of the Insert bar, and select Record Insertion Form Wizard. As the
following screenshot shows, this is on a submenu, which automatically opens
the first time you access it. On subsequent occasions, it remembers the option you
used most recently, so you can just click the button. To reopen the submenu, click
the small down arrow alongside the icon. If you prefer working with the main menu
system, use Insert ➤ Data Objects ➤ Insert Record ➤ Record Insertion Form Wizard.

4. This opens the Record Insertion Form dialog box (see Figure 15-1). When it first
loads, you need to select one of your MySQL connections. If you created two user
accounts for MySQL, use the administrator connection (connAdmin). This populates
the Table drop-down menu with a list of tables in the database. They are listed in
alphabetical order, so you need to select users. The dialog box then presents you
with its suggested values for the record insertion form, as shown in Figure 15-1.

Using a wizard to build the registration form

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

476

8598CH15.qxd 6/28/07 12:21 PM Page 476

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 15-1. The Record Insertion Form Wizard helps build the insertion form automatically.

5. Dreamweaver uses the table column names to suggest labels and appropriate types
of input fields for the form. The columns are listed in the same order as they
appear in the database, but you can use the up and down arrow buttons at the top
right of the Form fields area to rearrange the order they will be displayed in the
record insertion form. If you don’t want to display a particular field, remove it by
clicking the minus button. To restore a deleted item, click the plus button, and
select it from the list.

You can also specify where you want to go to after the record has been inserted. If
you leave the option blank, the same page will be redisplayed ready for another
record. That’s fine for this form, but you need to edit the form fields.

6. The primary key is generated automatically, so you don’t want a field for it in the
form. Select user_id in the Form fields area, and click the minus button to delete it.

7. The suggested labels for the pwd, first_name, family_name, and admin_priv
columns all need amending. Select each one in turn, and edit the value in the Label
field (see Figure 15-1). Expand Pwd: to Password:, and change the value of Display
as to Password field; remove the underscore from First_name: and Family_name:,
and change admin_priv to Administrator:.

8. The admin_priv column uses the ENUM column type, so you want to use a radio
button group. With admin_priv selected in Form fields, change Display as to Radio
group, and then click the Radio Group Properties button that appears. This opens
the Radio Group Properties dialog box as shown in the screenshot at the top of the
next page. Use the plus button to create two Radio items: Yes with a value of y, and
No with a value of n. These match the values defined in the ENUM column in the
database table. To make No the default value, enter n in the field labeled Select
value equal to, and click OK.

CONTROLLING ACCESS TO YOUR SITE

477

15

8598CH15.qxd 6/28/07 12:21 PM Page 477

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Before finishing the form definition, reorder the items with the up and down
arrows at the top right of the Form fields area so that they look like this (the last
item is the admin_priv radio button group, which is partially obscured in the
screenshot):

10. Click OK to create the form. In Design view, the page should now look like
Figure 15-2. The form’s light blue coloring indicates that it contains dynamic code.

Once you click OK in the Record Insertion Form dialog box, you cannot reopen it to
make any changes. All further changes need to be made in the Document window and
by double-clicking the Insert Record listing in the Server Behaviors panel. If you want to
start afresh, use the minus button in the Server Behaviors panel to remove the Insert
Record code before deleting the form. Otherwise, you’ll end up with a tangle of
impossible code.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

478

8598CH15.qxd 6/28/07 12:21 PM Page 478

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 15-2. The Record Insertion Form Wizard creates the form and the necessary PHP code in a
single operation.

11. Open Code view, and you’ll see that the Insert Record server behavior has been
added above the DOCTYPE declaration (DTD).

You’ll also see that the table used to lay out the form makes extensive use of dep-
recated attributes, such as align. This means you need to strip them out manually
if you want to redesign the form with CSS. That’s why I prefer using my own forms
and the Insert Record server behavior, as I showed you in the last chapter.

More importantly, scroll down to the bottom of the table, and check the code for
the radio buttons. The next screenshot shows the Yes radio button:

If you are using XHTML and the PHP section of code contains echo "CHECKED";, as
shown in the screenshot, you need to change it to this:

echo 'checked="checked"';

Using CHECKED on its own is invalid in XHTML. Adobe is aware of this mistake, so it
may have been corrected by an updater by the time you read this. Adobe coding
style normally uses double quotes, so it may be changed to echo
"checked=\"checked\"";. Either style is acceptable. You need to make the same
change in the No button. The rest of the PHP code block is OK; it’s just the echo
part that needs changing.

12. Save register_user.php, and load it into a browser (don’t use Preview in Browser
with a temporary file). Enter some details in each field, and click Insert Record.

13. Launch phpMyAdmin, select the egdwcs3 database, and then select the users table.
When you click the Browse tab, you should see the details listed like this:

CONTROLLING ACCESS TO YOUR SITE

479

15

8598CH15.qxd 6/28/07 12:21 PM Page 479

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Record Insertion Form Wizard certainly makes it easy to build a form to insert records
into a database, but before you start celebrating too soon, click Insert Record again.
Assuming all fields were empty, you should see a message saying that the first_name col-
umn cannot be null. Click the browser’s back button, and enter a single space in each field.
Refresh the display in phpMyAdmin by pressing the Browse tab again. You’ll see that the
record has been accepted. This form is functional, but a lot of work still needs to be done
on it. You can check your code so far against register_user_01.php in examples/ch15.

Preserving the integrity of your records
Dreamweaver provides you with the basic functionality of inserting records in a database,
but it’s up to you to make sure that the data entered by a user meets the criteria you
envisaged when designing the database structure. When designing database forms, you
must remember the GIGO principle—garbage in, garbage out. Unless you control carefully
what you allow to go into a database, a lot of your results will be useless garbage. If your
form is going to be in a controlled environment, such as an intranet, you can use the Spry
validation widgets (see Chapter 9) to filter user input before it’s submitted to the database.
However, there’s one thing that Spry cannot do, and that’s check whether a username has
already been registered by someone else. And on a public site, it can’t stop the user from
disabling JavaScript. The bottom line is that the only way to make sure data meets your cri-
teria is to validate it with PHP before allowing it to be inserted into the database.

The first step is to make sure that the same username cannot be registered twice.
Dreamweaver has a server behavior to do that. It’s not very well designed but is easily
adapted and saves you a lot of effort.

The Check New User server behavior queries your database to find out whether a user-
name is already in use. Unfortunately, its default behavior results in the loss of user input
if the username is already taken. These instructions show you how to adapt the code to
generate an error message that can be displayed in the same page. Once you make these
changes to the code generated by the server behavior, it can no longer be edited in the
server behavior dialog box, but as you work through the following pages, you’ll learn how
to build a much more user-friendly registration system.

1. Continue working with the same file as in the preceding section. In the Server
Behaviors panel, click the plus button, and select User Authentication ➤ Check New
Username.

2. The Check New Username dialog box consists of two fields. The first one, Username
field, is a drop-down menu listing all text columns in the table. Select username.

The second field asks where to redirect the page if the username already exists.
Nothing could be more guaranteed to annoy a user than to be taken to a different
page if registration fails, but this server behavior won’t let you leave the field blank.
So enter register_user.php in the field labeled If already exists, go to, and click OK.

3. Open Code view, and locate the server behavior code (lines 32–51 in Figure 15-3).

Preventing a username from being used twice

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

480

8598CH15.qxd 6/28/07 12:21 PM Page 480

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 15-3. The code for the Check New User server behavior

As you can see, it consists of two blocks. The first checks whether the username is
in use, while the second handles the redirect. The second block (lines 42–50)
begins with a conditional statement that executes the code inside the curly braces
only if a duplicate is found. You can use this to make the page much more user-
friendly.

4. Delete the code shown on lines 44–49 of the screenshot, and replace it with the
code shown here in bold type:

if($loginFoundUser) {
$error['username'] = "$loginUsername is already in use. Please➥

choose a different username.";
}

}

This stores an error message in $error['username'], which you can display in the
form to alert the user to the problem. It uses $loginUsername, a variable created
by the server behavior in line 36, to store the username submitted from the regis-
tration form. I have used double quotes so that the value of $loginUsername will
be displayed.

You can check your code against register_user_02.php in examples/ch15.

That’s a good start, but you need to carry out a lot more checks. All fields are required, so
you need to make sure that they’re filled in.

It’s a good idea to set a minimum length for the password; and since the password won’t
appear onscreen, you should get the user to type it in twice to confirm the spelling. To
keep the password secure, it should be encrypted before it’s stored in the database.
Finally, you need to check the email address for illegal characters. Quite a few checks, but
not difficult to code. Continue working with the same file as in the preceding section.

Validating other fields

CONTROLLING ACCESS TO YOUR SITE

481

15

8598CH15.qxd 6/28/07 12:21 PM Page 481

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. You need to add a new field for the user to confirm the password. This means
adding a new row to the table that contains the registration form. There are several
ways to do this. Start by switching back to Design view, and clicking inside the table
cell that contains the Administrator label. If you have a good memory for keyboard
shortcuts, the quickest and easiest way to add a new table row is to press
Ctrl+M/Cmd+M. This always inserts a new row above the current one.

Alternative ways of adding a new row are to use the menu system. Modify ➤ Table
➤ Insert Row does the same as the keyboard shortcut: the new row goes above the
current one. Modify ➤ Table ➤ Insert Rows or Columns opens a dialog box that lets
you specify the number of rows or columns to be inserted and which side of the
current selection to put them. Finally, the Layout tab of the Insert bar offers a visual
way of doing it, as you can see in the following screenshot:

Use whichever method you prefer to create a new row between Password and
Administrator. Then type Confirm password as the label in the left cell, and insert a
text field in the right cell. Name the text field conf_pwd, and set Type to Password
in the Property inspector (form creation was covered in Chapter 9).

2. Switch to Code view, and amend the code shown on lines 33–36 of Figure 15-3 like
this (new code is shown in bold):

$error = array();
// Validate form input
$MM_flag="MM_insert";
if (isset($_POST[$MM_flag])) {
// Check name
if (empty($_POST['first_name']) || empty($_POST['family_name'])) {
$error['name'] = 'Please enter both first name and family name';
}

// remaining checks go here
// check username
$_POST['username'] = trim($_POST['username']);
$loginUsername = $_POST['username'];

This initializes $error as an empty array. PHP treats an array with zero elements as
false (see “The truth according to PHP” in Chapter 10), so this can be used later to
test whether any errors have been found.

Line 35 in Figure 15-3 has been removed, because you no longer need to redirect
the script to another page. It has been replaced by the first of a series of checks. It
makes sure that neither the first name nor the family name has been left empty.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

482

8598CH15.qxd 6/28/07 12:21 PM Page 482

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There follows a comment to indicate where all the remaining checks will go.

Finally, I have applied trim() to $_POST['username'] to remove any whitespace at
either end of the string, and reassigned the value back to $_POST['username']. I’ve
done this because the Insert Record server behavior, which remains intact further
down the page, requires the original $_POST variables, so you can’t reassign them
to shorter variables, as with the mail-processing script in Chapter 11.

3. The next check makes sure that the password contains at least six characters, and
that both versions are the same. If everything is OK, the password is encrypted
ready for insertion in the database. Insert the following code at the point indicated
by the “remaining checks go here” comment in the code from the previous step:

// set a flag that assumes the password is OK
$pwdOK = true;
// trim leading and trailing white space
$_POST['pwd'] = trim($_POST['pwd']);
// if less than 6 characters, create alert and set flag to false
if (strlen($_POST['pwd']) < 6) {
$error['pwd_length'] = 'Your password must be at least 6 characters';
$pwdOK = false;
}

// if no match, create alert and set flag to false
if ($_POST['pwd'] != trim($_POST['conf_pwd'])) {
$error['pwd'] = 'Your passwords don\'t match';
$pwdOK = false;
}

// if password OK, encrypt it
if ($pwdOK) {
$_POST['pwd'] = sha1($_POST['pwd']);
}

The code starts by setting a variable that assumes the password is OK. After trim-
ming any whitespace, the password is then subjected to two tests. The first test
uses the PHP function strlen(), which determines the number of characters in any
string passed to it, and checks that the trimmed password contains at least six char-
acters. The second test checks whether the passwords match.

If either test fails (or both of them do), a suitable message is added to the $error
array, and $pwdOK is set to false. However, if $pwdOK is still true, the password is
passed to the sha1() function, which converts any string passed to it into a
40-character hexadecimal number—in effect, encrypting the string.

You might think I’m contradicting myself, because the next line assigns
$_POST['username'] to $loginUsername. Actually, it’s part of the original Check
New Username server behavior. I’ve left it in to avoid the need for other
changes to the existing code.

CONTROLLING ACCESS TO YOUR SITE

483

15

8598CH15.qxd 6/28/07 12:21 PM Page 483

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Create a new line immediately below the code you inserted in the previous step,
open the Snippets panel, and double-click the Check email PCRE snippet in the
PHP-DWCS3 folder that you installed in Chapter 11. The snippet inserts the regular
expression that checks for illegal characters in an email address. Then use the reg-
ular expression to check the email, and add a message to the $error array if there’s
a problem like this:

if ($pwdOK) {
$_POST['pwd'] = sha1($_POST['pwd']);
}

// regex to identify illegal characters in email address
$checkEmail = '/^[^@]+@[^\s\r\n\'";,@%]+$/';
if (!preg_match($checkEmail, trim($_POST['email']))) {
$error['email'] = 'Please enter a valid email address';
}

5. The final check uses strlen() again to make sure that the username consists of a
minimum number of characters. I have chosen 6, but you can use whatever num-
ber you like. This code should go after the final line of code in step 2. I have
included the existing lines above and below the new code so you can see exactly
where it goes.

$loginUsername = $_POST['username'];
if (strlen($loginUsername) < 6) {
$error['length'] = 'Please select a username that contains at least➥

6 characters';
}

$LoginRS__query = "SELECT username FROM users WHERE username=%s", ➥

GetSQLValueString($loginUsername, "text"));

6. Now that the checks are complete, you need to build the logic that determines
whether the Insert Record server behavior is executed. All it requires is to wrap the
server behavior in a conditional statement. Scroll down until you find the following
block of code—it should be immediately above the DOCTYPE declaration:

7. Wrap the entire block of code in the following if statement:

if (!$error) {
// existing code on lines 85 through 96 in screenshot

}

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

484

8598CH15.qxd 6/28/07 12:21 PM Page 484

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If no errors have been found, the $error array will contain zero elements, which, as
you know, PHP treats as false. By placing the negation operator (an exclamation
mark) in front of it, you get the reverse meaning. So, if $error contains no ele-
ments, this test equates to true, and the Insert Record server behavior will be
executed. If errors are found, the test will equate to false, and the server behavior
will be ignored.

8. The final change is within the main body of the document. Scroll down to the page
heading (around line 107) just below the <body> tag, and insert the following code
block between the heading and the opening <form> tag:

<h1>Register user </h1>
<?php
if ($error) {
echo '';
foreach ($error as $alert) {
echo "<li class='warning'>$alert\n";
}

echo '';
}

?>
<form action="<?php echo $editFormAction; ?>" method="post" ➥

name="form1" id="newUser">

This uses the opposite test to the one in step 7. If the $error array contains any
elements, a foreach loop iterates through the array and assigns each element to
the temporary variable $alert, which is used to display the error messages as a
bulleted list. (See Chapter 10 if you need to refresh your memory about foreach
loops.)

Because $error is an empty array when the page first loads, the PHP script ignores
this block of code unless the form has been submitted and contains errors.

9. Save register_user.php, and load it into a browser. Click the Insert record button
without filling in any fields. The page should reload and display the following
warnings:

If you have any problems, check your code against register_user_03.php in
examples/ch15. The page contains no style rules, but if you add a warning class,
you could make the error messages stand out in bold, red text.

10. Now, fill in several fields, but leave one blank and submit the form again. You
should see the appropriate error message, but all the fields are empty.

CONTROLLING ACCESS TO YOUR SITE

485

15

8598CH15.qxd 6/28/07 12:21 PM Page 485

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Imagine the frustration of being forced to fill in all the details again because of a mistake
in just one field. What you really need is a server behavior to provide the same solution
you used in the contact form in Chapter 11. There isn’t one, but you can make it yourself.

Building custom server behaviors
One reason for the great success of Dreamweaver is that, in addition to its massive range
of features, it’s also extensible. You can build your own server behaviors to take the
tedium out of repetitive tasks.

To redisplay the contents of a text field after a form has been submitted, all you need to
do is insert a PHP conditional statement between the quotes of the <input> element’s
value attribute like this:

value="<?php if (isset($_POST['field'])) {echo htmlentities(➥

$_POST['field']);} ?>"

This checks whether the $_POST array element exists. If it does, it’s passed to htmlentities()
to avoid any problems with quotes, and the resulting output is inserted into the value
attribute using echo. Apart from field, the code never changes. This consistency makes it
ideal for creating a new server behavior, which involves the following steps:

1. Create a unique name for each block of code that the server behavior will insert
into your page. The Server Behavior Builder generates this automatically for you.

2. Type the code into the Server Behavior Builder, replacing any changeable values
with Dreamweaver parameters. The parameters act as placeholders until you insert
the actual value through a dialog box when the server behavior is applied.

3. Tell Dreamweaver where to insert the code.

4. Design the server behavior dialog box.

These instructions show you how to create your own server behavior to insert a condi-
tional statement in the value attribute of a text field to preserve user input in any page.
You must have a PHP page open in the Document window before you start.

1. In the Server Behaviors panel, click the plus button, and select New Server Behavior.
In the dialog box that opens, make sure that Document type is set to PHP MySQL.
Type Sticky Text Field in the Name field, and click OK.

2. This opens the Server Behavior Builder dialog box. Click the plus button next to
Code blocks to insert. Dreamweaver suggests a name for the new code block based
on the name of the new server behavior. Click OK to accept it. Dreamweaver fills in
the remaining fields of the Server Behavior Builder like this:

Creating a Sticky Text Field server behavior

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

486

8598CH15.qxd 6/28/07 12:21 PM Page 486

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. The Code block area in the center is where you insert the PHP code that you want
to appear on the page. The value of field will change every time, so you need to
replace it with a parameter. Parameter names must not contain any spaces, but
they are used to label the server behavior dialog box, so it’s a good idea to choose
a descriptive name, such as FieldName. To insert a parameter, click the Insert
Parameter in Code Block button at the appropriate point in the code, type the name
in the dialog box, and click OK. Dreamweaver places it in the code with two @ char-
acters on either side. You can also type the parameters in the code block directly
yourself. Whichever method you use, replace the dummy text in the Code block
area with this:

<?php if (isset($_POST['@@FieldName@@'])) {
echo htmlentities($_POST['@@FieldName@@']);} ?>

4. As soon as you add any parameters in the Code block area, the label on the OK but-
ton changes to Next, but first you need to tell Dreamweaver where you want the
code to appear in the page. It needs to be applied to the value attribute of
<input> tags, so select Relative to a Specific Tag from the Insert code drop-down
menu.

5. This reveals two more drop-down menus. Select input/text for Tag, and As the Value
of an Attribute for Relative position.

6. This triggers the appearance of another drop-down menu labeled Attribute. Select
value. The bottom section of the Server Behavior Builder should now look like this:

CONTROLLING ACCESS TO YOUR SITE

487

15

8598CH15.qxd 6/28/07 12:21 PM Page 487

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This specifies that the code you entered in step 3 should be applied as the value
attribute of a text field. Click Next at the top right of the Server Behavior Builder
dialog.

7. To be able to use your new server behavior, you need to create a dialog box where
you can enter the values that will be substituted for the parameters. Dreamweaver
does most of the work for you, and on this occasion, the suggestions in the
Generate Behavior Dialog Box dialog box are fine, so just click OK.

The server behavior that you have just built works only with text fields, so it’s worth build-
ing another to handle text areas. Unlike text fields, text areas don’t have a value attribute.

1. Repeat steps 1 and 2 of the previous section, only this time, call the new server
behavior Sticky Text Area.

2. In step 3 of the previous section, enter the following code in the Code block area:

<?php if (isset($_POST['@@TextArea@@'])) {echo ➥

$_POST['@@TextArea@@'];} ?>

I have split the code over two lines because of printing constraints, but you should
enter the code all on a single line to avoid adding any whitespace between the
<textarea> tags when this code is executed. You don’t need htmlentities(),
because the value is inserted directly between the tags as plain text.

3. Fill in the bottom section of the Server Behavior Builder as shown in the following
screenshot. This places the content of the $_POST variable between the opening
and closing <textarea> tags.

4. Click Next, and accept the defaults suggested for the server behavior dialog box.

Creating a server behavior for Sticky Text Areas

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

488

8598CH15.qxd 6/28/07 12:21 PM Page 488

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Both server behaviors will be available in all PHP sites from the menu in the Server
Behaviors panel.

Completing the user registration form
Now that you have built your own server behaviors, you can complete
register_user.php.

Applying the Sticky Text Field server behavior to each text field ensures that data already
inserted won’t be lost through the failure of any validation test. Continue working with
register_user.php from earlier in the chapter.

1. In Design view, select the first_name text field. Click the plus button in the Server
Behaviors panel. The new server behaviors are now listed. Select Sticky Text Field.

2. The Sticky Text Field dialog box appears. If you have selected the first_name text
field correctly, the input/text tag field should automatically select first_name. If it’s
not selected, activate the drop-down menu to select it. Type the field’s name in
FieldName, as shown here, and click OK:

3. Dreamweaver inserts a dynamic content placeholder inside the text field in Design
view. Open Split view, and as the next screenshot shows, the conditional statement
you created in the Code block area of the Server Behavior Builder has been inserted,
but @@FieldName@@ has been replaced by the actual name of the field:

4. Apply the Sticky Text Field server behavior to the family_name, email, and
username fields. Dreamweaver doesn’t include password fields in the drop-down
menu, so you can’t apply the server behavior to them.

Applying the Sticky Text Field server behavior

CONTROLLING ACCESS TO YOUR SITE

489

15

8598CH15.qxd 6/28/07 12:21 PM Page 489

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. All instances of Sticky Text Field are now listed in the Server Behaviors panel. If you
ever need to edit one, highlight it and double-click, or use the minus (–) button to
remove it cleanly from your code.

6. Save register_user.php, and load it into a browser. Test it by entering an incom-
plete set of details. This time, the content of text fields is preserved. Check your
code, if necessary, against register_user_04.php in examples/ch15.

The Administrator radio buttons still don’t respond to the changes. We’ll fix that next.
Continue working with register_user.php from the previous section.

1. When any errors are detected, you need
checked="checked" to be inserted in the tag of
the radio button that the user selected. Since the
radio group is called admin_priv, the value you
want is contained in $_POST['admin_priv'].
Although you can type this directly into the
Dynamic Radio Group dialog box, Dreamweaver
lets you define $_POST, $_GET, and other super-
global variables in the Bindings panel.

In the Bindings panel, click the plus button to
display the menu shown alongside.

Dreamweaver uses generic names, because the
same menu applies to other server-side lan-
guages. Form Variable refers to the $_POST array, and URL Variable to the $_GET
array. It’s a $_POST variable that you want to define, so click Form Variable.

2. Type admin_priv in the Name field of the Form Variable dialog box, and click OK. The
new dynamic variable is now listed in the Bindings panel like this:

3. Select one of the radio buttons in Design view, and click the Dynamic button in the
Property inspector.

4. The admin_priv radio group will be automatically selected in the Dynamic Radio
Group dialog box. Click the lightning bolt icon to the right of the Select value equal
to field. Then choose admin_priv from the Dynamic Data panel, as shown at the top
of the next page.

Applying a dynamic value to a radio group

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

490

8598CH15.qxd 6/28/07 12:21 PM Page 490

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Save register_user.php, and load the page into a browser. If you set PHP error
reporting to the level I recommended in Chapter 3, you’ll see this unsightly mess:

This is because the new code should be executed only after the form has been sub-
mitted. $_POST['admin_priv'] hasn’t been defined when the page first loads,
hence the reference to an “undefined index.” Not only does this look bad, it prevents
the browser from displaying the radio buttons and turns them into text fields instead.

6. In Design view, highlight one of the radio buttons so that you can easily locate the
relevant code, and switch to Code view. The radio button code looks like this:

Many hosting companies turn off the display of error notices, so the radio buttons would
display correctly on many sites. However, it’s important to eliminate all errors, because
you never know when they may trip you up or leave you open to security exploits.

CONTROLLING ACCESS TO YOUR SITE

491

15

8598CH15.qxd 6/28/07 12:21 PM Page 491

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you applied the dynamic value to the radio group in steps 3 and 4,
Dreamweaver failed to replace the existing code, so to avoid conflicts, you need to
delete it, as indicated in the preceding screenshot.

Dreamweaver uses a rather unusual PHP function called strcmp() to check
whether $_POST['admin_priv'] is y or n. The function takes two arguments and
returns 0 if they’re exactly the same. Since 0 equates to false, the negation opera-
tor (!) converts it to true. If you find the logic difficult to follow, just take my word
for it—it works.

7. You need to check whether the form has been submitted. Although the $_POST
array is always set, it will be empty if the form hasn’t been submitted. And as you
should know by now, an empty array equates to false. Amend the beginning of
both sections of radio button code (shown on lines 151 and 155 in the preceding
screenshot) like this:

<input <?php if ($_POST && !(strcmp($_POST['admin_priv'],

8. Save the page, and load it into your browser. The radio buttons should now be
back to normal. The only problem is that you don’t have a default checked value
when the page first loads. In one respect, it shouldn’t be a problem, because you
set a default value when defining the users table earlier. Unfortunately,
Dreamweaver server behaviors treat unset values as NULL, causing your form to fail
because admin_priv was defined as “not null.” You can’t even get round this by
changing the column definition, because you would then end up with NULL as the
default.

9. Change the code for the No radio button shown on line 155 in the preceding
screenshot like this (the change made in step 7 is also shown in bold type):

<input <?php if (($_POST && !(strcmp($_POST['admin_priv'],"n"))) ➥

|| !$_POST) {echo "checked=\"checked\"";} ?> name="admin_priv" ➥

type="radio" value="n" />

I have enclosed the original test (as adapted in step 7) in an extra pair of parenthe-
ses to ensure that it’s treated as a single unit. Then I added a second test:

|| !$_POST

This tests whether the $_POST array is empty. The result is this (in pseudocode):

if ((the form has been sent AND admin_priv is "n")
OR the form has not been sent) {mark the button "checked"}

10. Save register_user.php. You now have a user registration form that performs all
the necessary checks before entering a new record into your database. Try it out. If
all goes well, you should get no errors, but all the input fields will still be populated
with the data you just input. Fortunately, that’s easy to correct.

Note that the PHP code inserted by the Dynamic Radio Group dialog box generates
valid XHTML (checked="checked"), unlike the Record Insertion Form Wizard.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

492

8598CH15.qxd 6/28/07 12:21 PM Page 492

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11. Scroll up to the last section of PHP code just above the DTD, which looks like this:

Lines 96–97 in the screenshot are the last two lines of the Insert Record server
behavior, followed (on line 98) by the closing brace that you inserted in step 7 of
the section titled “Validating other fields.”

12. Insert a new line between the braces shown on lines 97 and 98, and add this code:

// if the record has been inserted, clear the $_POST array
$_POST = array();

After the record has been inserted, you no longer need the contents of the $_POST
array, so this simply turns it into an empty array.

13. If your PHP configuration has magic quotes turned on (and many hosting compa-
nies seem to use this setting), your sticky text fields will end up with backslashes
escaping apostrophes in users’ names. So, scroll down to the section of code that
displays the error messages, and insert a new line just before the closing curly
brace. Open the Snippets panel, and insert the POST stripslashes snippet that you
installed in the PHP-DWCS3 folder in Chapter 11.

14. Save register_user.php, and check your code against register_user_05.php in
site_check/ch10. Register a new user, and check the users table in phpMyAdmin.
This time, the pwd column should contain a 40-character encrypted password.

Building an apparently simple user registration form has taken a lot of effort. You could
have used it almost right away, after applying the Check New User server behavior, but
before long, you would have ended up with a lot of unusable data in your database, not to
mention the frustration of users when an input error results in all their data being wiped
from the screen. The more time you spend refining the forms that interact with your data-
base, the more time you will save in the long run.

Updating and deleting user records
The way you update or delete a database record is very similar to the process you used in
the last chapter to display the contents of a record. First, you select the record from a list
of all records and create a recordset that retrieves only the details of the selected record.
In an update page, the recordset is used to populate a form identical to the one used to
insert the record. After the user has made the desired changes, the form is submitted
using an Update Record server behavior. In a delete page, it’s not necessary to display all
the details, but you should display sufficient information to identify the record and ask for
confirmation. The page is then submitted to a Delete Record server behavior.

Keeping track of the selected record throughout the whole process is its primary key. It’s
first passed through a query string and stored in a hidden field in the update or delete
page, so that when the form is submitted, MySQL knows which record to update or delete.
Figure 15-4 summarizes the process.

CONTROLLING ACCESS TO YOUR SITE

493

15

8598CH15.qxd 6/28/07 12:21 PM Page 493

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 15-4. The primary key keeps track of the selected record in the update and delete process.

Let’s start by creating the page to list all users currently registered in the database.

Since the main techniques were covered in the last chapter, I have kept these instructions
relatively brief.

1. Create three PHP pages, list_users.php, update_user.php, and delete_user.php,
and save them in workfiles/ch15.

2. Give list_users.php a title and heading. Insert a table with two rows and five
columns below the heading. Type Name, Username, and Admin in the first three
cells of the first row, and EDIT and DELETE in the last two cells of the second row
like this:

Listing registered users

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

494

8598CH15.qxd 6/28/07 12:21 PM Page 494

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Open the Recordset dialog box by clicking the plus button in the Server Behaviors
panel and selecting Recordset. You can also use the Recordset button on the Data
tab of the Insert bar or Insert ➤ Data Objects ➤ Recordset.

4. Name the recordset listUsers, and select the connAdmin connection. This recordset
only performs a SELECT operation, but you’ll be editing the records later, so it’s
more consistent to use the same connection for all the pages.

With the Recordset dialog box in Simple mode, select the users table. Although
you don’t need all the columns, you do need most of them, so leave Columns set to
All. Set Sort to family_name and Ascending. Click OK to create the recordset.

5. Drag first_name from the Bindings panel into the first cell of the second row of the
table, and insert a space. Then drag family_name, and place it alongside. Drag
username into the second cell of the second row, and admin_priv into the third cell.
The table should now look like this:

6. Select the text in the fourth cell (EDIT), and turn it into a link to the update page in
the same way as in “Adding a record’s primary key to a query string” in Chapter 14.
The necessary steps follow, but refer to the previous chapter for more details.

7. Click the Browse for File button to the right of the Link field in the Property inspec-
tor. In the Select File dialog box that opens, select update_user.php. Then click the
Parameters button alongside the URL field.

8. In the Parameters dialog box, type user_id in the Name field. Then click the light-
ning bolt icon on the right of the Value field.

9. In the Dynamic Data dialog box, highlight user_id, and click OK. Click OK to close
the Parameters dialog box. Then click OK (Choose on the Mac) to close the Select
File dialog box.

10. Repeat steps 6–9 with the text in the fifth cell (DELETE). In step 7, select
delete_user.php.

11. Now apply a repeat region to the second table row in the same way as in
“Displaying the results of a recordset in a repeat region” in the last chapter. With
your cursor inside the second row, select the entire row by clicking the <tr> tag in
the Tag selector at the bottom of the Document window. Apply a Repeat Region
server behavior.

12. Save list_users.php, and preview it in a browser. Mouse over the EDIT and
DELETE links. The status bar of your browser should display something like this:

http://egdwcs3/workfiles/ch15/update_user.php?user_id=2

If necessary, check your code against list_users.php in examples/ch15.

In Simple mode, you can sort by only one column. In Chapter 16, I’ll show you how to
use Advanced mode to sort by multiple columns.

CONTROLLING ACCESS TO YOUR SITE

495

15

8598CH15.qxd 6/28/07 12:21 PM Page 495

http://egdwcs3/workfiles/ch15/update_user.php?user_id=2
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dreamweaver has a Record Update Form Wizard that creates the update form for you
in the same way as the Record Insertion Form Wizard. The problem is that it doesn’t vali-
date the input. There’s no point taking the trouble to validate data when it’s first input into
a database but neglecting to do so when updating it. Consequently, it makes more sense
to adapt register_user.php.

The value attributes of each text field currently have the Sticky Text Field server behavior
applied to them. This makes it impossible to bind the values from the record that you want
to update unless you remove the Sticky Text Field server behavior. You could trust that no
errors will occur when the update form is submitted. But that’s trusting a great deal to
fate. A better idea is to create a new server behavior that can then be reused on any
update page.

Adapting the Sticky Text Field server behavior
As you have already seen, it’s only when the form has been submitted—and errors
detected—that the Sticky Text Field code executes. So if the $_POST variables haven’t been
set, you know the form hasn’t been submitted, and that you need to display the values
stored in the database instead.

Dreamweaver always uses the following naming convention to refer to the results of a
recordset: $row_RecordsetName['FieldName']. So, all that’s needed is to add an else
clause to the existing code:

<?php if (isset($_POST['field'])) {
echo htmlentities($_POST['field']);
} else {
echo htmlentities($row_RecordsetName['FieldName']); } ?>

Most of the settings are identical to the Sticky Text Field server behavior that you built
earlier, so you can use the existing server behavior to create the new one.

1. Make sure that you have a PHP page open, and click the plus button in the Server
Behaviors panel. Select New Server Behavior.

2. Name the new server behavior Sticky Edit Field, and place a check mark in the box
labeled Copy existing server behavior. This will populate a drop-down menu with the
names of server behaviors you have already built (unfortunately, you can’t base a
new server behavior on one of Dreamweaver’s). Select Sticky Text Field, and
click OK.

3. Edit the contents of the Code block area like this:

<?php if (isset($_POST['@@FieldName@@'])) {
echo htmlentities($_POST['@@FieldName@@']);
} else {
echo htmlentities($row_@@RecordsetName@@['@@FieldName@@']);} ?>

Dreamweaver will use the new parameter—@@RecordsetName@@—in combination
with @@FieldName@@ to build a variable like $row_getUser['family_name'].

Creating the Sticky Edit Field server behavior

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

496

8598CH15.qxd 6/28/07 12:21 PM Page 496

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Click Next. Dreamweaver warns you that the server behavior’s HTML file already
exists and asks if you want to overwrite it. The HTML file controls the server behav-
ior’s dialog box, which needs to be redesigned, so the answer is Yes.

5. In the Generate Behavior Dialog Box dialog box, reset Display as for RecordsetName
by clicking to the right of the existing value and selecting Recordset Menu. Set
FieldName to Recordset Field Menu, and reorder the items as shown here. Click OK.

To create a similar server behavior for text areas, name it Sticky Edit Area, and select Sticky
Text Area in step 2. The code block in step 3 should look like this:

<?php if (isset($_POST['@@FieldName@@'])) {
echo $_POST['@@FieldName@@'];
} else {
echo $row_@@RecordsetName@@['@@FieldName@@'];} ?>

Building the update and delete pages
Creating an update page involves the following steps:

1. Create a form to display each field of the record.

2. Create a recordset to retrieve the record’s existing values. This uses the primary key
passed through the URL query string as a filter to retrieve only the selected record.

3. Add a hidden field to the form to store the primary key.

4. Bind the values to each form field so that they’re displayed ready for editing.

5. Apply an Update Record server behavior to implement the changes when the form
is submitted.

Since you already have the form in register_user.php, step 1 simply involves making a
copy of the existing page and cleaning it up in preparation for the remaining steps. There
are two other issues that you need to take into consideration, as follows:

Sometimes Dreamweaver prevents you from using the same parameter
name in more than one server behavior. If that happens, change both
instances of @@FieldName@@ to @@Field@@.

CONTROLLING ACCESS TO YOUR SITE

497

15

8598CH15.qxd 6/28/07 12:21 PM Page 497

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The pwd and conf_pwd fields use the password type, so you can’t display the value
retrieved from the database. Even if you could, the password is now encrypted and
cannot be decrypted. (I’ll discuss encryption later in the chapter.)

The current validation code will prevent you from updating a user’s details because
the same username already exists in the database—and belongs to none other than
the user you’re trying to update!

Although these instructions are based on using register_user.php, only steps 1–3 are
specific to this page. The remaining steps apply to all pages.

1. Open register_user.php, and press Ctrl+Shift+S/Shift+Cmd+S (File ➤ Save As) to
save the page as update_user.php. In the Save As dialog box, select update_
user.php in workfiles/ch15, and click Save. Dreamweaver will warn you that the
page already exists, but the existing version is only a blank page, so click Yes.

2. Adjust the page’s title and heading to reflect that it’s for updating user details.
Select the submit button, and change Value in the Property inspector to Update
record.

3. In the Server Behaviors panel, highlight the Insert Record and the four Sticky Text
Field server behaviors. Click the minus button to remove them from the page. The
Check New Username server behavior shouldn’t be listed, because you edited it in
register_user.php. You still need it, but it must be adapted, as you’ll see shortly.

The page still contains all the validation code that you added earlier but is now
ready for conversion. If you want to make sure that you have cleaned up the page
correctly, check your file against update_user_01.php in examples/ch15.

4. Create a recordset called getUser to get the details of the record to be updated in
the users table. The record’s primary key, user_id, will be passed through a query
string from list_users.php, so use that to filter the results, as shown here:

Applying the Update Record server behavior

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

498

8598CH15.qxd 6/28/07 12:21 PM Page 498

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Add a hidden field to the form to store the primary key (see “Passing information
through a hidden field” in Chapter 9 if you’re not sure what a hidden field is). In the
Property inspector, give the hidden field the same name as the primary key by
entering user_id in the field on the left. It needs to get its value from the recordset,
so click the lightning bolt icon alongside the Value field, as shown here:

6. In the Dynamic Data dialog box, expand Recordset (getUser), and select user_id. Click
OK. This binds the value of user_id from the recordset to the hidden field, which
is also called user_id. This ensures that the primary key is passed to the Update
Record server behavior and updates the correct record.

7. In the Server Behaviors panel, click the plus button, and select Update Record.
Alternatively, use the Update Record button on the Data tab of the Insert bar, or
Insert ➤ Data Objects ➤ Update Record ➤ Update Record. If you use either of these
methods, make sure you don’t select Record Update Form Wizard by mistake.

8. Filling in the Update Record dialog box is simple. To update a record, you need a
MySQL user account with administrative privileges, so select connAdmin as
Connection. Then select the name of the table you want to update from the Update
table drop-down menu. Dreamweaver should populate the Columns area with all
the correct details. In the same way as with an Insert Record server behavior, it lists
each column and specifies where it gets its value from and what type of data it con-
tains. The most important one is the first, which identifies the record’s primary key,
as shown in the following screenshot. It gets this value from the hidden field you
created in steps 5 and 6.

CONTROLLING ACCESS TO YOUR SITE

499

15

8598CH15.qxd 6/28/07 12:21 PM Page 499

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The final field, labeled After updating, go to, lets you specify where to redirect the
user after the record has been updated. It’s a good idea to go back to the list of
records, so enter list_users.php. Check that all the details are right, and click OK.

You can check your code against update_user_02.php in examples/ch15.

That’s basically all there is to applying an Update Record server behavior, apart from bind-
ing the results of the recordset to each form field. However, update_user.php has all the
validation code inherited from register_user.php, so you need to merge the new code
with the existing code.

Dreamweaver doesn’t give you any choice where to locate server behavior code that goes
above the DOCTYPE declaration. It follows an internal set of rules designed to ensure that
each block of code exists in harmony with its neighbors. However, as long as you keep a
server behavior intact, you can move it to fit in with your own conditional logic. So you
need to move the Update Record server behavior code, and tweak the password and
duplicate username checks.

1. Open Code view. Just above the DOCTYPE declaration, you will find an empty condi-
tional statement, which was left behind when you removed the Insert Record
server behavior in step 3 of the preceding section. You now need to move the
Update Record server behavior code (shown on lines 37–56 of the following
screenshot) to inside the braces shown on lines 116 and 120. I have used
Dreamweaver’s Code Collapse feature to hide the recordset code and all the vali-
dation checks, so take careful note of the actual code (as always, the line numbers
are only a guide).

Merging the Update Record server behavior with the validation code

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

500

8598CH15.qxd 6/28/07 12:21 PM Page 500

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Although it won’t do any harm, the line of code that clears the POST array (on line
119 of the preceding screenshot) is no longer necessary. You can remove it and its
accompanying comment, but don’t remove the closing brace shown on line 120.

3. If you used Code Collapse while moving the Update Record server behavior in the
previous step, expand the collapsed section and scroll up to the following line of
code (it should now be around line 51):

$MM_flag = "MM_insert";

Change it to

$MM_flag = "MM_update";

This is the name of a hidden field that Dreamweaver uses to check whether to exe-
cute the Update Record server behavior code. It will now ensure that the form
validation checks are run before updating the database.

4. About half a dozen lines further down is the code that checks the password. When
a user’s record is being updated, you either want to preserve the same password or
to set a new one. There are several ways to handle this, but the simplest is to
decide that if pwd is left blank, the existing password will be maintained. Otherwise,
the password needs to be checked and encrypted as before.

Amend the password validation code as follows (new code shown in bold type):

$_POST['pwd'] = trim($_POST['pwd']);
// if password field is empty, use existing password
if (empty($_POST['pwd'])) {
$_POST['pwd'] = $row_getUser['pwd'];
}

// otherwise, conduct normal checks
else {
// if less than 6 characters, create alert and set flag to false
if (strlen($_POST['pwd']) < 6) {
$error['pwd_length'] = 'Your password must be at least 6➥

characters';
$pwdOK = false;
}

// if no match, create alert and set flag to false
if ($_POST['pwd'] != trim($_POST['conf_pwd'])) {
$error['pwd'] = 'Your passwords don\'t match';
$pwdOK = false;
}

// if new password OK, encrypt it
if ($pwdOK) {
$_POST['pwd'] = sha1($_POST['pwd']);
}

}

This checks whether $_POST['pwd'] is empty. If it is, the value of the existing pass-
word as retrieved by the getUser recordset is assigned to $_POST['pwd']. Because
the existing password is already encrypted, there is no need to pass it to sha1(). If
$_POST['pwd'] isn’t empty, the else clause executes the checks inherited from
register_user.php.

CONTROLLING ACCESS TO YOUR SITE

501

15

8598CH15.qxd 6/28/07 12:21 PM Page 501

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. The final validation check that needs to be amended is the one that tests whether
the username is already in use in the database. Because you’re updating an existing
user, it should be obvious that—unless you change the username—this test will
always return true: the username already belongs to the record that you’re
updating.

What’s needed this time is to check that nobody other than the current user has
the same username. This allows the current username to be retained or a new one
to be created. The Check New Username server behavior is no longer editable
through the Server Behaviors panel. What’s more, it doesn’t have the option that
you need. So there’s nothing else for it but to edit the SQL query manually. Scroll
down until you find the following line of code:

6. Insert your cursor between %s and the double quote, add a space, and type AND
user_id !=. Move your cursor to the right of the double quote, so that it’s just
before the comma, and type a period followed by $_POST['user_id']. When you
have finished, the code should look like this (new code is in bold):

$LoginRS__query = sprintf("SELECT username FROM users WHERE ➥

username=%s AND user_id !=" . $_POST['user_id'], GetSQLValueString(➥

$loginUsername, "text"));

This amends the SQL query so that it excludes the current record (identified by the
user_id primary key) from its results. The user_id is stored in the form’s hidden
field, so it can be retrieved from the $_POST array. In SQL != means “is not”—the
same as in PHP—so this simply looks for records where the user_id is not the same
as the current one. Save the page, and check your code against update_user_03.
php in examples/ch15.

Although SQL is an internationally recognized standard for communicating with
databases, like English, it has a lot of dialects. The official standard uses <> as the
“not equal” operator. However, most leading database systems, including MySQL,
PostgreSQL, Oracle, and Microsoft SQL Server, also support !=, which is my preferred
style. MySQL supports both <> and !=, so feel free to use whichever suits you better.
We’ll look at how SQL is written in the next chapter, because a basic knowledge of SQL
is essential to working with server behaviors.

If you discover that your password fields are blank after updating, make sure
that the getUser recordset code is above the validation check. You can recog-
nize it easily. It is ten lines long, and nearly every line includes getUser. If in
doubt, check the download files.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

502

8598CH15.qxd 6/28/07 12:21 PM Page 502

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The final stage of building the update form involves binding the results of the getUser
recordset to the form fields so that the existing values are ready for editing. The text fields
are quite easy, but the radio button group needs special handling.

1. Switch to Design view, and select the first_name field in the form. In the Server
Behaviors panel, click the plus button, and select Sticky Edit Field.

Since getUser is the only recordset on this page, it’s selected automatically in the
Sticky Edit Field dialog box, but make sure you choose the right one if you use this
server behavior on a page that has two or more recordsets. Select the field’s name
from the FieldName drop-down menu, as shown here:

2. Apply the Sticky Edit Field server behavior in the same
way to the family_name, email, and username fields. In
Design view, the form should end up looking like the
screenshot alongside, with dynamic text placeholders in
the first four fields.

3. The radio buttons present an interesting challenge. When the page first loads, you
want the value stored in the database for admin_priv to be selected; but if the
form is submitted with errors, and you have changed the value of admin_priv, you
want the new value to be shown.

If you’re not using a validation script and don’t need the
edit fields to be sticky, select each form field in turn and
insert its value from the recordset in the Bindings panel.
To apply the PHP htmlentities() function after the
dynamic text has been inserted, double-click the dynamic
text listing in the Server Behaviors panel, and select
Encode – HTML Encode from the Format menu in the
Dynamic Text dialog box.

Binding the field values to the update form

CONTROLLING ACCESS TO YOUR SITE

503

15

8598CH15.qxd 6/28/07 12:21 PM Page 503

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Select one of the radio buttons in Design view, and click the Dynamic button in the
Property inspector. In the Dynamic Radio Group dialog box, click the lightning bolt
icon, and select admin_priv from the getUser recordset. Click OK in both dialog
boxes. (This is the same as step 4 in “Applying a dynamic value to a radio group.”)

4. Switch to Code view. The code for the radio group should now look like this:

If the sight of all this code strikes terror into your heart, don’t worry; the changes
you need to make are very simple. The extra code that Dreamweaver has inserted
consists of the first block of PHP on lines 194 and 198. Basically, all that you need
do is ensure that this new section of code runs when the page is first loaded, and
that the original code runs only after the form has been submitted.

Let’s first map out the logic in terms of pseudocode. What needs to happen inside
the Yes radio button’s <input> tag is this:

if (the form has NOT been submitted AND the value of admin_priv
in the database is "y") {mark the button "checked"}

elseif (the form has been submitted AND the form value of admin_priv
is "y") {mark the button "checked"}

You know that when the page first loads, the form hasn’t been submitted, so the
$_POST array will have zero elements (and therefore equate to false). This means
that the necessary check can be performed by inserting !$_POST into the condi-
tional statements of the new code. The original code from the insert form now
deals with the alternative scenario, so you need to change the if in the original
code to elseif. To make the changes easier to follow, you may find it helpful to
indent the code as I have done here. The changes are shown in bold type.

<td><input
<?php
if (!$_POST && !(strcmp($row_getUser['admin_priv'],"y"))) {
echo "checked=\"checked\"";
}

elseif ($_POST && !(strcmp($_POST['admin_priv'],"y"))) {
echo "checked=\"checked\"";
}

?>
type="radio" name="admin_priv" value="y" />
Yes</td>

</tr>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

504

8598CH15.qxd 6/28/07 12:21 PM Page 504

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<tr>
<td><input
<?php
if (!$_POST && !(strcmp($row_getUser['admin_priv'],"n"))) {
echo "checked=\"checked\"";
}

elseif ($_POST && !(strcmp($_POST['admin_priv'],"n"))) {
echo "checked=\"checked\"";
}

?>
type="radio" name="admin_priv" value="n" />
No</td>

There are two other important points to note about the preceding code. First, I
have removed the closing and opening PHP tags (?> <?php) immediately preceding
elseif. Dreamweaver’s automatic code generation normally surrounds each new
block of PHP code with opening and closing tags, even when there is no XHTML
code in between. In the vast majority of cases, this makes no difference. However,
in this particular case, leaving the redundant tags in the code causes a syntax error.
The second point to note is that some code has been removed from the final
elseif clause, as shown here:

elseif (($_POST && !(strcmp($_POST['admin_priv'],"n"))) || !$_POST)

The code is no longer appropriate, because the !$_POST situation is now covered
by the if part of the conditional statement.

5. Switch back to Design view, and add some text to the Password label, indicating
that the field should be left blank if the same password is being kept. Compare
your code with update_user_04.php in examples/ch15 if you have any problems.

You’ll be pleased to know that deleting a record is simpler. It’s similar to an update page.
However, it’s an irreversible action, so it’s essential to get confirmation not only that the
deletion should go ahead but also that the correct record is being deleted. Since you need
the same recordset as in the update page, you can save time by copying it.

1. Open delete_user.php in the Document window.

2. Open update_user.php, or switch to it if it’s still open.

3. In the Server Behaviors panel, highlight Recordset (getUser), right-click, and select
Copy from the context menu.

4. Switch back to delete_user.php, right-click inside the Server Behaviors panel, and
select Paste. Bingo, one quick, easy recordset—something I thought you’d appreci-
ate after all that digging around inside Code view.

Creating the delete user page

CONTROLLING ACCESS TO YOUR SITE

505

15

8598CH15.qxd 6/28/07 12:21 PM Page 505

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Give the page a heading and title, and insert a form. Use the Bindings panel to
insert some details that will identify the user (this is the same as displaying details
of the feedback record in the last chapter), and add a submit button named delete
with a suitable label. The screenshot shows a suggested layout:

6. Insert a hidden field into the form. Name it user_id, and click the lightning bolt icon
in the Property inspector to set the field’s Value to user_id from the getUser record-
set. The Delete Record server behavior needs this to know which record to delete.

7. Apply a Delete Record server behavior (use the plus button in the Server Behaviors
panel, the Data tab of the Insert bar, or Insert ➤ Data Objects ➤ Delete Record). Fill
in the Delete Record dialog box as shown in the next screenshot. Make sure that
you choose the connection that has administrative privileges.

When you select the table from which the record is to be deleted, Dreamweaver
should automatically select the correct value for the Primary key column. However,
the server behavior uses the hidden field to identify the correct record to delete,
so make sure you select Form Variable as the Primary key value, and that the primary
key’s name (user_id) is entered in the text field alongside. After the record has
been deleted, it’s a good idea to load the complete list, so enter list_users.php in
the final field labeled After deleting, go to. Click OK to insert the server behavior.

8. That’s all there is to it. You can check your code against delete_user.php in
examples/ch15.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

506

8598CH15.qxd 6/28/07 12:21 PM Page 506

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that you have completed the user registration system, test it thoroughly, and use the
DELETE links to get rid of any records that contain unencrypted passwords. When you
have finished, make sure that you have at least two records in the users table: one with
administrator privileges and one without.

Before showing you how to create a login system and control access to your pages, let’s
take a short break to look at PHP sessions, which are not only the technology behind user
authentication, but also a powerful way of keeping track of information and passing it
from page to page.

What sessions are and how they work
The Web is a brilliant illusion. When you visit a well-designed website, you get a great feel-
ing of continuity, as though flipping through the pages of a book or a magazine. Everything
fits together as a coherent entity. The reality is quite different. Each part of an individual
page is stored and handled separately by the web server. Apart from needing to know
where to send the relevant files, the server has no interest in who you are, nor is it inter-
ested in the PHP script it has just executed. PHP garbage collection (yes, that’s what it’s
actually called) destroys variables and other resources used by a script as soon as they’re
no longer required. But it’s not like garbage collection at your home, where it’s taken
away, say, once a week. With PHP, it’s instant: the server memory is freed up for the next
task. Even variables in the $_POST and $_GET arrays persist only while being passed from
one page to the next. Unless the information is stored in some other way, such as a hidden
form field, it’s lost.

To get around these problems, PHP (in common with other server-side languages) uses
sessions. A session ensures continuity by storing a random identifier on the web server and
on the visitor’s computer (as a cookie). Because the identifier is unique to each visitor, all
the information stored in session variables is directly related to that visitor and cannot be
seen by anyone else.

Creating PHP sessions
Creating a session is easy. Just put this command in every PHP page that you want to use in
a session:

session_start();

The security offered by sessions is adequate for most user authentication, but it is not
100 percent foolproof. For credit card and other financial transactions, you should use
an SSL connection verified by a digital certificate. To learn more about this and other
aspects of building security into your PHP sites, Pro PHP Security by Chris Snyder and
Michael Southwell (Apress, ISBN-13: 978-1-59059-508-4) is essential reading. Although
aimed at readers with an intermediate to advanced knowledge of PHP, it contains a lot
of practical advice of value to all skill levels.

CONTROLLING ACCESS TO YOUR SITE

507

15

8598CH15.qxd 6/28/07 12:21 PM Page 507

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This command should be called only once in each page, and it must be called before
the PHP script generates any output, so the ideal position is immediately after the opening
PHP tag. If any output is generated before the call to session_start(), the command
fails, and the session won’t be activated for that page. This is exactly the same issue that
affects the header() function, if any output is generated before you call the function. The
solution is the same and was described in “Avoiding the ‘Headers already sent’ error” in
Chapter 12.

Creating and destroying session variables
You create a session variable by adding it to the $_SESSION superglobal array in the same
way you would assign an ordinary variable. Say you want to store a visitor’s name and dis-
play a greeting. If the name is submitted in a login form as $_POST['name'], you assign it
like this:

$_SESSION['name'] = $_POST['name'];

$_SESSION['name'] can now be used in any page that begins with session_start().
Because session variables are stored on the server, you should get rid of them as soon as
they are no longer required by your script or application. Unset a session variable like this:

unset($_SESSION['name']);

To unset all session variables—for instance, when you’re logging someone out—set the
$_SESSION superglobal array to an empty array, like this:

$_SESSION = array();

Destroying a session
By itself, unsetting all the session variables effectively prevents any of the information
from being reused, but you should also destroy the session with the following command:

session_destroy();

By destroying a session like this, there is no risk of an unauthorized person gaining access
either to a restricted part of the site or to any information exchanged during the session.
However, a visitor may forget to log out, so it’s not always possible to guarantee that the
session_destroy() command will be triggered, which is why it’s so important not to store
sensitive information in a session variable.

Do not be tempted to try unset($_SESSION). It not only clears the current session but
also prevents any further sessions from being stored.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

508

8598CH15.qxd 6/28/07 12:21 PM Page 508

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Checking that sessions are enabled
Sessions should be enabled by default in PHP. A quick way to check is to load session1.
php in examples/ch15 into a browser. Type your name in the text field, and click the
Submit button. When session2.php loads, you should see your name and a link to the
next page. Click the link. If session3.php displays your name and a confirmation that ses-
sions are working, your setup is fine. Click the link to page 2 to destroy the session.

If you don’t see the confirmation on the third page, go back to Chapter 3 to check your
PHP configuration. Make sure that session.save_path points to a valid folder that the
web server can write to. Also make sure that a software firewall or other security system is
not blocking access to the folder specified in session.save_path.

Registering and authenticating users
As you have just seen, session variables enable you to keep track of a visitor. If you can
identify visitors, you can also determine whether they have the right to view certain pages.
There are four User Authentication server behaviors, as follows:

Log In User: This queries a database to check whether a user is registered and has
provided the correct password. You can also check whether a user belongs to a
particular group to distinguish between, say, administrators and ordinary users.

Restrict Access to Page: This prevents visitors from viewing a page unless they have
logged in and (optionally) have the correct group privileges. Anyone not logged in
is sent to the login page but can be automatically redirected to the originally
selected page after login.

Log Out User: This brings the current session to an end and prevents the user from
returning to any restricted page without first logging back in again.

Check New Username: This checks whether a particular username is already in use.
You adapted it earlier in the chapter, when creating the user registration form

These server behaviors are identical to those in Dreamweaver 8.0.2.

Creating a login system
Now that you have a way of registering users, you need to create a way for them to log in
to restricted areas of your site. Building the login system is a lot simpler than building the
registration system.

You may find the deprecated functions session_register() and
session_unregister() in old scripts. Use $_SESSION['variable_name'] and
unset($_SESSION['variable_name']) instead.

CONTROLLING ACCESS TO YOUR SITE

509

15

8598CH15.qxd 6/28/07 12:21 PM Page 509

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Create a PHP page called login.php in workfiles/ch15. Lay out the page with a
form, two text fields, and a submit button, as shown here. Since you’ll be applying
a server behavior, there is no need to set the action or method attributes of the
form.

2. The Log In User server behavior expects you to designate two pages: one that the
user will be taken to if the login is successful and another if it fails. Create one page
called success.php, and enter some content to indicate that the login was success-
ful. Call the other page loginfail.php, and insert a message telling the user that
the login failed, together with a link back to login.php.

3. Make sure login.php is the active page in the Dreamweaver workspace. Click the
plus button in the Server Behaviors panel, and select User Authentication ➤ Log In
User. (You can also apply the server behavior from the Data tab of the Insert bar or
from the Data Objects submenu of the Insert menu.)

4. The Log In User dialog box has a lot
of options, but their meaning should
be obvious, at least for the first two
sections. Select the connAdmin con-
nection, the users table, and the
username and password columns,
using the settings shown alongside.

The third section asks you to specify
which pages to send the user to,
depending on whether the login
succeeds or fails. Between the text
fields for the filenames is a check
box labeled Go to previous URL (if it
exists). This works in conjunction
with the Restrict Access to Page
server behavior that you will use
shortly. If someone tries to access a
restricted page without first logging
in, the user is redirected to the login
page. If you select this option, after a successful login, the user will be taken
directly to the page that originally refused access. Unless you always want users to
view a specific page when first logging in, this is quite a user-friendly option.

Creating the login page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

510

8598CH15.qxd 6/28/07 12:21 PM Page 510

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The final section of the dialog box allows you to specify whether access should be
restricted on the basis of username and password (the default), or whether you
also want to specify an access level. The access level must be stored in one of your
database columns. For this login page, set Get level from to admin_priv. Click OK to
apply the server behavior.

5. A drawback with the Dreamweaver Log In User server behavior is that it has no
option for handling encrypted passwords, so you need to make a minor adjustment
by hand. Open Code view, and place your cursor immediately to the right of the
opening PHP tag on line 2. Press Enter/Return to insert a new line, and type the fol-
lowing code:

if (isset($_POST['pwd'])) { $_POST['pwd'] = sha1($_POST['pwd']); }

This checks whether the form has been submitted, and it uses sha1() to encrypt
the password. I have reassigned the value back to $_POST['pwd'] so that
Dreamweaver continues to recognize the server behavior; this way, you can still
edit it through the Server Behaviors panel. Although Dreamweaver doesn’t object
to you placing the line of code here, it will automatically remove it if you ever
decide to remove the server behavior.

6. Save login.php. You can check your code against login.php in examples/ch15.

Restricting access to individual pages
Now that you have a means of logging in registered users, you can protect sensitive pages
in your site. When working with PHP sessions, there is no way of protecting an entire
folder. Sessions work on a page-by-page basis, so you need to protect each page individu-
ally. The Adobe Dreamweaver Developer Toolbox (formerly Kollection, developed by
InterAKT, which was acquired by Adobe in 2006) does let you restrict access to a folder,
but it achieves this by applying the same code to every page in the folder.

These instructions show you how to restrict access to one page. You need to do the same
on every page that you want to protect with a password.

1. Open success.php. Click the plus button in the Server Behaviors panel, and select
User Authentication ➤ Restrict Access to Page.

2. In the Restrict Access to Page dialog box, select the radio button to restrict access
based on Username, password, and access level. Then click the Define button.

Applying the Restrict Access to Page server behavior

It’s important to realize that you’re not decrypting the version of the password
stored in the database. You can’t—the sha1() function performs one-way
encryption. You verify the user’s password by encrypting it again and comparing
the two encrypted versions.

CONTROLLING ACCESS TO YOUR SITE

511

15

8598CH15.qxd 6/28/07 12:21 PM Page 511

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. The Define Access Levels dialog box lets you specify acceptable values. What may
come as a bit of a surprise is that it’s not the column name that Dreamweaver is
interested in but the value retrieved from the column. Consequently, it’s not
admin_priv that you enter here but y or n.

As you might have noticed, although Dreamweaver gives you the option to specify
different access levels, the Log In User server behavior sends all successful logins to
the same page. If you have different login pages for each type of user, this is fine;
you select the appropriate value. So, for an administrator’s login page, just enter y
in the Name field, and click the plus button to register it in the Access levels area.

However, if you want to use the same login form for everyone, you need to regis-
ter all access levels for the first page, and then use PHP conditional logic to distin-
guish between different types of users. So, for success.php, also enter n in the
Name field, and click the plus button to register it. Then click OK.

4. After defining the access levels, hold down the Shift key, and select them all in the
Select level(s) field. Then, either browse to login.php, or type the filename directly
in the field labeled If access denied, go to. The dialog box should look like this:

5. Click OK to apply the server behavior, and save success.php.

6. Try to view the page in a browser. Instead of success.php, you should see
login.php. You have been denied access and taken to the login page instead.

7. Enter a username and password that you registered earlier, and click Log in. You
should be taken to success.php. You can check your code against success_01.php
in examples/ch15.

When developing pages that will be part of a restricted area, I find it best to leave the
application of this server behavior to the very last. Testing pages becomes an exercise in
frustration if you need to be constantly logging in and out.

I’ll come back to the question of how to deal with different access levels, but first, let’s
look at logging out.

Logging out users
The Dreamweaver Log Out User server behavior is quick and easy to apply.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

512

8598CH15.qxd 6/28/07 12:21 PM Page 512

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Log Out User server behavior will automatically insert a logout link in your page, so
you need to position your cursor at the point you want the link to be created.

1. Press Enter/Return to create a new paragraph in success.php.

2. Click the plus button in the Server Behaviors panel, and select User Authentication ➤
Log Out User.

3. The Log Out User dialog box gives you the option to log out when a link is clicked
or when the page loads. In this case, you want the default option, which is to log
out when a link is clicked, and to create a new logout link. Browse to login.php, or
type the filename directly into the field labeled When done, go to. Click OK.

4. Save success.php, and load the page into a browser. Click the Log out link, and you
will be taken back to the login page. Type the URL of success.php in the browser
address bar, and you will be taken back to the login page until you log in again. You
can check your code against success_02.php in examples/ch15.

Understanding how Dreamweaver tracks users
As I mentioned earlier, PHP sessions are the technology that lies behind the User
Authentication server behaviors. The Log In User server behavior creates the following two
session variables that control access to restricted pages:

$_SESSION['MM_Username']: This stores the user’s username.

$_SESSION['MM_UserGroup']: This stores the user’s access level.

You can use these in a variety of ways. The simplest, and perhaps most important, use is to
present different content on the first page after logging in. The following exercises are
based on success.php but can be used with any page that begins with session_start()
after a user has logged in.

The following instructions assume that you have created at least one administrator and an
ordinary user in the users table.

1. In success.php, insert two paragraphs: one indicating that it’s for administrators, the
other indicating that it’s for nonadministrators. The actual content is unimportant.

2. Switch to Code view, and add the PHP code highlighted in bold around the two
paragraphs like this:

<?php if ($_SESSION['MM_UserGroup'] == 'y') { ?>
<p>Content and links for administators</p>
<?php } else { ?>
<p>Content and links for non-administrators</p>
<?php } ?>

Displaying different content depending on access levels

Applying the Log Out User server behavior

CONTROLLING ACCESS TO YOUR SITE

513

15

8598CH15.qxd 6/28/07 12:21 PM Page 513

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This is simple PHP conditional logic. If the value of $_SESSION['MM_UserGroup'] is
y, display the XHTML inside the first set of curly braces. If it’s not, show the other
material. There’s only one paragraph in each conditional block, but you can put as
much as you want.

3. Save the page, and log in as an administrator. You’ll see only the first paragraph.
Log out and log back in as an ordinary user. This time you’ll see the second para-
graph. You can compare your code with success_03.php in examples/ch15.

Any content that you want to be seen by both groups should go outside this PHP condi-
tional statement. (In success_03.php, you’ll see that the page heading and the log out link
are common to both groups.) By using this sort of branching logic in the first page, you
can restrict access to subsequent pages according to the specific access level. So, the links
in the first section would point to pages that only administrators are permitted to see.

Since the user’s username is stored in $_SESSION['MM_Username'], you could use that to
display a greeting, but it’s much friendlier to use the person’s real name. All that’s needed
is a simple recordset.

1. In success.php, create a recordset using the following settings in Simple mode:

By setting Filter to username = Session Variable MM_Username, the recordset
retrieves the values of the first_name and family_name columns for the currently
logged in user.

2. Open the Bindings panel, and drag the first_name and family_name dynamic text
placeholders into the page like this:

When the page loads, the dynamic text placeholders will be replaced by the values
drawn from the recordset. You can check your code against success_04.php.

Greeting users by name

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

514

8598CH15.qxd 6/28/07 12:21 PM Page 514

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Of course, if you want other details about the user, such as user_id, amend the settings in
the Recordset dialog box to retrieve all the columns you need.

Creating your own $_SESSION variables from user details
To avoid the need to create a recordset on every page where you want to use these details,
store them as $_SESSION variables. The code needs to be inserted after the recordset
code, which Dreamweaver places immediately above the DTD. The pattern Dreamweaver
uses for recordset results looks like this:

$row_recordsetName['fieldName']

So, to create $_SESSION variables from first_name and family_name in session.php, you
would add the following code immediately before the closing PHP tag above the DTD:

$_SESSION['first_name'] = $row_getName['first_name'];
$_SESSION['family_name'] = $row_getName['family_name'];

You’re not restricted to using the same element names for the variables. You could do this
instead:

$_SESSION['full_name'] = $row_getName['first_name'].' '. ➥

$row_getName['family_name'];

You can see this code in action in session_05.php in examples/ch15.

Redirecting to a personal page after login
You might want to provide users with their own personal page or folder after logging in.
This is very easy to do, particularly if you base the name of the personal page or folder on
the username.

If the name of the personal page is in the form username.php, enter the following in the
Log In User dialog box in the field labeled If login succeeds, go to (see step 4 of “Creating
the login page”):

$_SESSION[MM_Username].php

If the personal page is in a folder named after the username, use the following:

$_SESSION[MM_Username]/index.php

This assumes that the folder is a subfolder of the folder where the login page is located. If
the username is dpowers, these values would redirect the user to dpowers.php and
dpowers/index.php respectively.

Because of the way that PHP handles array elements in double-quoted
strings, MM_Username must not be enclosed in quotes when you use it
in the If login succeeds, go to field.

CONTROLLING ACCESS TO YOUR SITE

515

15

8598CH15.qxd 6/28/07 12:21 PM Page 515

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Encrypting and decrypting passwords
Common questions are: What happens when a user forgets his or her password? How can
I send a reminder? If you encrypt passwords using sha1(), as described in this chapter, you
can’t. The sha1() algorithm is one-way; you can’t decrypt it. Although this sounds like a
disadvantage, it actually ensures a considerable level of security. Since the password can-
not be decrypted, even a corrupt system administrator has no way of discovering another
person’s password. The downside is that you can’t send out password reminders.

If a password is forgotten, you need to verify the user’s identity and issue a new password.
You can also create a form for users to change their own passwords after logging in. It’s
simply a question of using $_SESSION['MM_Username'] as the filter for the Update Record
server behavior. Don’t worry if you feel that’s currently beyond your capability. In the next
chapter, you’ll learn about the four basic SQL commands that are the key to database
management.

However, it is possible to store passwords using two-way encryption. The simplest way is to
use a MySQL function. If your remote server uses MySQL 3.23, you need to use the
ENCODE() function. For MySQL 4.0 or higher, use AES_ENCRYPT(). Both functions work in
the same way. What makes them secure is that they use a secret key to encrypt any values
passed to them. The secret key is nothing more mysterious than a random string of your
own choosing. When used in combination with the DECODE() and AES_DECRYPT() func-
tions, this unlocks the encryption.

The reason I haven’t covered two-way encryption in this chapter is because it involves
using MySQL functions, which we haven’t covered yet. You also need to edit the code in
the Insert Record, Update Record, and Log In User server behaviors in such a way that they
cease to be editable through the Dreamweaver dialog boxes. For more information about
ENCODE() and AES_ENCRYPT(), see my book PHP Solutions: Dynamic Web Design Made
Easy (friends of ED, ISBN-13: 978-1-59059-731-6) and the MySQL documentation at
http://dev.mysql.com/doc/refman/5.0/en/encryption-functions.html.

Feeling more secure?
Hopefully, the answer is yes. But if you’re beginning to wobble because of the constant
need to dive into Code view, take heart. This has been another tough chapter. The danger
with Dreamweaver server behaviors is they make it very easy to create record insertion
and update forms, giving you a false sense of achievement. If you’re just creating a
dynamic website as a hobby, you might be happy with minimum checks on what’s inserted
into your database. But even if it’s a hobby, do you really want to waste your time on a
database that gets filled with unusable data? And if you’re doing it professionally, you sim-
ply can’t afford to.

PHP is like the electricity or kitchen knives in your home: handled properly, it’s very safe;
handled irresponsibly, it can do a lot of damage. Get to know what the code you’re putting
into your pages is doing. The more hands on experience you get, the easier it becomes. A
lot of PHP coding is simple logic: if this, do one thing, else do something different.

Take a well earned rest. In the next chapter, we’ll delve into the mysteries of SQL, the language
used to communicate with most databases, and joining records from two or more tables.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

516

8598CH15.qxd 6/28/07 12:21 PM Page 516

http://dev.mysql.com/doc/refman/5.0/en/encryption-functions.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 WORKING WITH MULTIPLE TABLES

8598CH16.qxd 6/13/07 12:18 PM Page 519

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In Chapter 14, I explained that an important principle of working with a relational database
was the need to break larger units, such as addresses or names, into their component ele-
ments and store them in separate columns. Another equally important principle is to get
rid of columns that contain repetitive data and move them to a separate table. As long as
each record has a primary key to identify it, records in separate tables can be linked
by storing the primary key from one table as a reference in the other. This is known as
creating a foreign key.

The advantage of doing this is that it eliminates inconsistency. Let’s say you’re creating a
product catalog, you might spell a company name in different ways. For instance, friends
of ED might sometimes be entered as foED, freinds of ED, or—heaven forbid—fiends of
ED. Run a search for friends of ED, and anything spelled a different way will not turn up in
the results. Consequently, vital data could be lost forever.

Even if you never make a spelling mistake, it’s inefficient. If you store frequently repeated
information in a separate table, you change it only once instead of updating every instance
in the database. What’s more, primary and foreign keys are normally numbers, which are
much faster to search than text.

The disadvantage of using multiple tables is that it’s conceptually more difficult than a
single table. Also, you need to make sure that deleting a record doesn’t leave references
to its primary key in dependent tables. This chapter shows you how to overcome these dif-
ficulties. You’ll learn how to

Apply the rules of normalization to decide what to store in a table

Link related information in different tables with a foreign key

Build SQL queries with SELECT, INSERT, UPDATE, and DELETE

Use MySQL functions and aliases

Create a navigation bar to page through database results

Preserve foreign key relationships

Storing related information in separate tables
The example used in this chapter uses two tables to store a selection of famous—and not
so famous—quotations. The same principles apply to most multiple-table databases, so
once you have mastered this chapter, you’ll be equipped to create a wide variety of prac-
tical applications, such as a product catalog, contacts list, or content management system.

Deciding on the best structure
Each database is different, so there is no single “right” way to design one. However, a
process known as normalization lays down the principles of good design. The main rules
can be summarized as follows:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

520

8598CH16.qxd 6/13/07 12:18 PM Page 520

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Give each data record a primary key as a unique means of identification (we
covered this in Chapter 14).

Put each group of associated data in a table of its own.

Cross-reference related information by using the primary key from one table as a
foreign key in other tables.

Store only one item of information in each field.

These principles are sometimes summed up as “Stay DRY”—don’t repeat yourself.

You can find more detailed advice in Beginning MySQL Database Design and Optimization:
From Novice to Professional by Jon Stephens and Chad Russell (Apress, ISBN-13: 978-1-
59059-332-5).

Using foreign keys to link records
Figure 16-1 shows how most beginners would construct a database table to store their
favorite quotations. Everything is held in one table, resulting in the need to enter the
author’s first name and family name for each individual record. It’s not only tedious to
retype the names every time; it has resulted in inconsistency. The five quotations from
Shakespeare list him in three different ways. In records 25 and 34, he’s William Shakespeare;
in record 33, he’s W Shakespeare; and in records 31 and 32, he’s just plain Shakespeare.

Figure 16-1. Storing repetitive information in a single table leads to redundancy
and inconsistency.

It’s more logical to create a separate table for names—I’ve called it authors—and store
each name just once. So, instead of storing the name with each quotation, you can
store the appropriate primary key from the authors table (on the right of Figure 16-2) as
a foreign key in the quotations table (on the left).

WORKING WITH MULTIPLE TABLES

521

16

8598CH16.qxd 6/13/07 12:18 PM Page 521

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 16-2. Shakespeare’s primary key in the authors table (right) identifies him in the quotations
table (left).

The primary key of the authors table is author_id. Because primary keys must be
unique, each number is used only once.

The author_id for William Shakespeare is 32.

All quotations attributed to William Shakespeare are identified in the quotations
table by the same author_id (32). Because author_id is being used as a foreign key
in this table, there can be multiple references to the same number.

I’ve drawn arrows in Figure 16-2 linking only Shakespeare with his quotations, but you can
see that quote_id 26 comes from the poet Shelley (author_id 33) and that quote_id 27
comes from Tennyson (author_id 34). Before any sense of panic sets in about how you
are going to remember all these numbers, relax. When you communicate with the data-
base, you tell it to find the appropriate number for you. In other words, if you want to
conduct a search for all quotations by Shakespeare, you issue a command that tells the
database to do something like this (in pseudo-code):

SELECT all records in the quotation column FROM quotations
WHERE the author_id in quotations is the same as
the author_id in authors for "William Shakespeare"

This type of structure creates what’s known as a one-to-many relationship: one record in
one table refers to one or more records in another. In this example, it allows you to asso-
ciate one author with many quotations. However, it’s not suitable for a database of books,
where an author is likely to be associated with multiple books and each book might have
several authors. This is known as a many-to-many relationship and needs to be resolved
through the creation of a lookup table (sometimes called a linking table). In the case of a

As long as author_id remains unique in the authors table—where it’s the primary
key—you know that it always refers to the same person.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

522

8598CH16.qxd 6/13/07 12:18 PM Page 522

http://lib.ommolketab.ir
http//lib.ommolketab.ir

book database, each record in the lookup table stores a single pair of foreign keys linking
an individual author with a particular book. To learn more about lookup tables, see my
book PHP Solutions: Dynamic Web Design Made Easy (friends of ED, ISBN-13: 978-1-
59059-731-6).

Avoiding orphaned records
The relationship between the two tables in Figure 16-2 isn’t an equal one. If William
Shakespeare is deleted from the authors table, author_id 32 will no longer have a value
attached to it, orphaning the five Shakespeare quotations in the quotations table.
However, even if you delete all five quotations from the quotations table, the authors
table is unaffected. Sure, there won’t be any quotations by Shakespeare (at least not in the
section shown in Figure 16-2), but nothing in the authors table actually depends on the
quotations table. The primary key author_id 32 continues to identify Shakespeare and
can be reused if you decide to add new quotations attributed to him.

Because the foreign keys in the quotations table depend on the authors table, authors is
considered to be the parent table, and quotations is the child table. Although deleting
records from a child table doesn’t affect the parent, the opposite is not true. Before delet-
ing records from a parent table, you need to check whether there are any dependent
records in the child table. If there are, you need to do one of the following:

Prevent the deletion of the record(s) in the parent table.

Delete all dependent records in the child table as well.

Set the foreign key value of dependent records in the child table to NULL.

Making sure that the foreign key relationship between parent and child tables remains
intact is known as maintaining referential integrity. In simple terms, it maintains the
integrity of records that reference each other and means that you don’t end up with
incomplete records.

There are two ways to maintain referential integrity. The best way is to use foreign key
constraints. These establish a foreign key relationship in the table definition and specify
what should happen when a record in a parent table is deleted. If your hosting company
supports InnoDB tables, you can use foreign key constraints to automate referential
integrity.

Unfortunately, most hosting companies offer only the default MyISAM tables, which don’t
support foreign key constraints (they’re scheduled for MySQL 5.2). However, you can
reproduce the same effect with PHP. All that’s required is a little conditional logic like this
(in pseudo-code):

if (no dependent records) {
delete;
}

else {
don't delete;
}

I’ll show you both approaches in this chapter. First of all, let’s define the authors and
quotations tables.

WORKING WITH MULTIPLE TABLES

523

16

8598CH16.qxd 6/13/07 12:18 PM Page 523

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Defining the database tables
The basic table definition is the same for MyISAM and InnoDB tables. Since I have given
step-by-step instructions for defining tables in phpMyAdmin in the previous two chapters,
I won’t go through the details again. Create two new tables in the egdwcs3 database, call
them authors and quotations, and give them each three columns (fields), using the set-
tings in Table 16-1.

There’s a setting that you haven’t encountered before: Index. It’s needed only on the
author_id column in the quotations table. Just like the index in the back of this book, an
index on a database column helps identify the location of its contents and speed up
searches. It’s also necessary when defining a foreign key relationship in an InnoDB table.
To add an index to a column, select the radio button under the lightning bolt icon (see
alongside) in the Action section for the column.

If your remote server supports InnoDB tables (see “Deciding whether to enable
InnoDB support” in Chapter 13 for details of how to check), set Storage Engine to
InnoDB when defining the tables in phpMyAdmin. On older versions of phpMyAdmin,
Storage Engine is called Table type. Although the instructions for checking InnoDB sup-
port are in the Windows setup section of Chapter 13, they apply equally if you’re
developing locally on a Mac. The Mac version of MySQL supports InnoDB by default,
but it’s an option in the Windows Essentials version.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

524

Table 16-1. Settings for the authors and quotations tables

Length/ Primary
Table Field Type Values Attributes Null Extra Key Index

authors

author_id INT UNSIGNED not null auto_ Selected
increment

first_name VARCHAR 30 null

family_name VARCHAR 30 not null

quotations

quote_id INT UNSIGNED not null auto_ Selected
increment

author_id INT UNSIGNED null Selected

quotation VARCHAR 255 not null

8598CH16.qxd 6/13/07 12:18 PM Page 524

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see in Figure 16-2, some records in the authors table don’t have a value for
first_name, so I have specified null in the table definition. I have done this because
Dreamweaver treats not null as meaning “required,” so the Insert Record and Update
Record server behaviors reject a blank field.

The other thing to note is that author_id in the quotations table is set to null and does
not use auto_increment, nor is the primary key radio button selected. Although
author_id is the primary key in the authors table, a foreign key must not be automatically
incremented. There are occasions when you might use a foreign key as a primary key (for
example, in a lookup table where two foreign keys form a joint primary key), but on this
occasion it’s not appropriate. The reason for setting the field to null is that you might not
always be able to assign author_id as a foreign key—for instance, when inserting a new
quotation for someone not registered in the authors table.

After defining the quotations table, check the Indexes section at the bottom of the screen
that displays the table structure. It should look like this:

This confirms that quote_id remains the table’s primary key, but that author_id is also
indexed. If author_id isn’t listed in the Indexes section, you can alter the table structure,
as described in the next section.

Adding an index to a column
It’s easy to change a table definition to add an index to a column. Select the table in the
phpMyAdmin navigation frame on the left to display its structure grid, and click the light-
ning bolt icon in the row that describes the column you want to index. Figure 16-3 shows
how to add an index to author_id in the quotations table if you forgot to do so in the
original table definition.

Figure 16-3. You can add an index to a column by clicking the Index icon in the table’s structure grid
in phpMyAdmin.

Although adding an index to a column can speed up searches, don’t apply them indiscrim-
inately. Indexing has drawbacks, the main one being that it increases the size of a table.
The most important index is always the primary key. At this stage, index only foreign key
columns.

WORKING WITH MULTIPLE TABLES

525

16

8598CH16.qxd 6/13/07 12:18 PM Page 525

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Defining the foreign key relationship in InnoDB
The default MyISAM tables in MySQL don’t support foreign key constraints. If your remote
server doesn’t support InnoDB, skip ahead to “Populating the tables.”

The normal way to define a foreign key relationship in MySQL is in the initial table defini-
tion. However, you can alter the structure of a table at any time, and this is the approach
that phpMyAdmin takes. Defining a foreign key relationship in phpMyAdmin involves the
following steps:

1. Define both parent and child tables, and set Storage Engine (Table type in older
versions of phpMyAdmin) to InnoDB.

2. Confirm that the foreign key column in the child table is indexed.

3. Use Relation view to add the foreign key constraint to the child table.

Steps 1 and 2 have already been covered in the preceding sections, but you might want to
convert MyISAM tables to InnoDB at a later stage, so I’ll briefly describe the process.

Checking the storage engine of a table To find out whether a table uses the MyISAM or
InnoDB storage engine, click the database name at the top of the main frame in
phpMyAdmin or in the navigation frame on the left to display the database structure. The
value for Type shows the current storage engine for each table. Figure 16-4 shows that the
authors and quotations tables use InnoDB, while feedback and users use MyISAM.

Figure 16-4. Check the storage engine used by each table by viewing the database structure in
phpMyAdmin.

It’s perfectly acceptable to mix different types of storage engines in MySQL. In fact, it’s rec-
ommended that you use the most appropriate type for each table. MyISAM has the advan-
tage of speed, but it currently lacks support for foreign key constraints and transactions.

In database terminology, a transaction is a linked series of SQL queries, in which every
query must succeed. If any part of the series fails, the whole series is abandoned, and
the database remains unchanged. Transactions are an advanced subject beyond the
scope of this book. For details, see http://dev.mysql.com/doc/refman/5.0/en/
transactional-commands.html.

This section applies only if you are using InnoDB tables. If you have converted your
tables to InnoDB by mistake, refer to “Converting a table’s storage engine.”

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

526

8598CH16.qxd 6/13/07 12:18 PM Page 526

http://dev.mysql.com/doc/refman/5.0/en
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Converting a table’s storage engine You can change a table’s storage engine at any time,
even if it already contains data. The following instructions explain how:

1. Select the table name in the list of links in the phpMyAdmin navigation frame (or
click the Structure icon alongside the table name under Action in the main frame).

2. With the table structure displayed in the main frame, click the Operations tab.

3. Select InnoDB or MyISAM from the Storage Engine drop-down menu in the Table
options section, as shown in the following screenshot, and click Go.

Converting a table from MyISAM to InnoDB shouldn’t cause any problems. However, if for-
eign key constraints have been defined in an InnoDB table relationship, you must first
remove them before converting from InnoDB to MyISAM. Removing a foreign key rela-
tionship simply involves reversing the process described in the next section.

Setting foreign key constraints in phpMyAdmin When a table uses the InnoDB storage
engine, phpMyAdmin adds a new option called Relation view beneath the table structure
(see Figure 16-5). This is where you define foreign key constraints.

Figure 16-5. The Relation view option lets you define foreign key constraints with InnoDB tables.

The foreign key constraint must always be defined in the child table. In the case of
authors and quotations, this is quotations, because it uses the authors primary key
(author_id) as a foreign key. The following instructions show you how to establish the
relationship:

1. Select the child table (quotations) in phpMyAdmin, and click the Structure tab to
display the table grid, as shown in Figure 16-5.

2. Click the Relation view link beneath the structure grid (it’s circled in Figure 16-5).
This displays the screen shown in Figure 16-6.

WORKING WITH MULTIPLE TABLES

527

16

8598CH16.qxd 6/13/07 12:18 PM Page 527

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 16-6. Relation view lets you specify what happens when a record in a parent table is deleted
or updated.

Foreign key relationships can be established only on indexed columns. There are two
indexed columns in the quotations table: quote_id is the table’s primary key, and
author_id is the foreign key. As you can see in Figure 16-6, phpMyAdmin displays three
drop-down menus alongside both indexed columns. These are for you to set the foreign
key constraint options, so the ones you are interested in are alongside author_id. The first
drop-down is where you specify which indexed column you want to reference. (The
underlying SQL command uses the keyword REFERENCES to establish the foreign key rela-
tionship.)

3. Click the down arrow on the right of the first
drop-down menu. This lists all indexed
columns in InnoDB tables in the database. As
you can see from the screenshot alongside,
they are listed in the format tableName
->columnName. Since there are only two
InnoDB tables in the database, the list is very
short, but in a larger database, it would be considerably longer, so you need to
make sure you select the right one.

4. You need to establish a reference to the author_id column in the parent table
(authors). Select authors->author_id in the first drop-down menu.

5. Activate the ON DELETE drop-down menu. It displays the options shown here:

This is what each option means:

CASCADE: If you delete a record in the parent table, MySQL cascades the delete
operation to the child table. So, if you delete the record for Shakespeare in the
authors table, all records in the quotations table with an author_id of 32 are
automatically deleted (see Figure 16-2 at the beginning of the chapter). This is a
silent operation, and there is no way of restoring the records once they have been
deleted.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

528

8598CH16.qxd 6/13/07 12:18 PM Page 528

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SET NULL: If you delete a record in the parent table, the foreign key of related
records in the child table is set to NULL. For this to work, the foreign key column in
the child table must accept NULL values. Taking the Shakespeare example again
from Figure 16-2, if Shakespeare is deleted from the authors table, the value of
author_id is set to NULL in all records that currently have a value of 32. This leaves
the quotations intact, but they are no longer related to Shakespeare. If you sub-
scribe to literary conspiracy theories, you could now reassign those quotations to
Christopher Marlowe.

NO ACTION: This doesn’t mean what you might expect. Some database systems
allow you to delay foreign constraint checks. NO ACTION means a delayed check,
but this is not supported in MySQL. If you select this option, MySQL treats it the
same as RESTRICT.

RESTRICT: This rejects any attempt to delete records in the parent table if related
records still exist in the child table. So, attempting to delete Shakespeare from
the authors table would fail unless all records with an author_id of 32 in the
quotations table have already been deleted.

The fifth option is to select nothing. This applies the default action, which is the same as
RESTRICT. The same options are available for ON UPDATE, although they are less useful,
especially if the foreign key is the primary key in the parent table. In normal circum-
stances, you should never change the primary key of a record. However, in the rare cases
where this might be appropriate, the most useful options are RESTRICT and CASCADE. The
former prevents changes if there are dependent records in the child table; the latter prop-
agates the changes automatically to all dependent records.

6. For the purposes of this chapter, set both ON DELETE and ON UPDATE to
RESTRICT, and click Save.

7. When it confirms the creation of the foreign key constraint, phpMyAdmin displays
the SQL query that it used to change the table definition. It looks like this:

Although SQL query shows that phpMyAdmin used ON DELETE RESTRICT ON UPDATE
RESTRICT, the Links to section gives the impression that your instructions were ignored.

WORKING WITH MULTIPLE TABLES

529

16

8598CH16.qxd 6/13/07 12:18 PM Page 529

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This isn’t the case, because RESTRICT is the same as the default action. In other words, the
only time that you need to set values for ON DELETE or ON UPDATE is if you want to set
them to either CASCADE or SET NULL.

If you need to remove a foreign key constraint (for example, when converting an InnoDB
table to MyISAM), set all drop-down menus to the default value, and click Save.

Populating the tables
Later in the chapter, I’ll show you how to build a content management system to insert,
update, and delete records from the authors and quotations tables. First, though, I’d like
to show you how to display the contents of tables linked through a foreign key. So, to save
you the trouble of typing out lots of quotations and authors’ names, I have created SQL
scripts to populate the tables automatically.

There are six different scripts in the tools folder of the download files. They all contain
the same data but are designed to work with different versions of MySQL and storage
engines. If your server is running MySQL 4.1 or 5.0, use ch16_MyISAM.sql or ch16_InnoDB.
sql, depending on the storage engine that is supported. The versions of files that end in
323.sql and 40.sql are for MySQL 3.23 and MySQL 4.0, respectively.

To populate the authors and quotations tables, use the appropriate file for your version
of MySQL and storage engine, and follow the instructions in “Loading data from a backup
file” at the end of Chapter 13.

Restoring the content of the tables
When learning, it’s a good strategy to experiment. From time to time, you may need to
restore the authors and quotations tables to their original state. To do so, select each
table in turn in phpMyAdmin, and click the Empty tab. Click OK when phpMyAdmin asks
you to confirm that you want to TRUNCATE the table. This removes all existing records in
the table. After removing all records from the authors and quotations tables, you can
use the SQL script to populate them again with the original records.

Selecting records from more than one table
To select records from multiple tables, you need to join them—not in the literal sense, but
by using SQL commands that tell the database you want to retrieve results from more than
one table. We’ll look in more detail at the basic SQL commands shortly, but first let’s try it
out for real by displaying quotations and their associated authors from the authors and
quotations tables.

The “Stroll Along the Thames” page that you’ve used in several chapters has a pull quote
with a quotation from Samuel Johnson. In this exercise, you’ll replace that static quotation
with one drawn at random from the authors and quotations tables. This demonstrates

Displaying a random quotation

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

530

8598CH16.qxd 6/13/07 12:18 PM Page 530

http://lib.ommolketab.ir
http//lib.ommolketab.ir

three useful techniques: how to join multiple tables, randomize the order of recordset
results, and limit the number of results. You can use an existing version of the page, as
long as it has a .php extension. However, you will probably find it easier to use the version
in examples/ch16, as it contains no other PHP script so you can see the new code in
isolation.

1. Copy stroll_quote_start.php from examples/ch16, and save it as stroll_
quote.php in workfiles/ch16. Click Update if Dreamweaver prompts you to
update links in the page.

2. Click the plus button in the Server Behaviors panel, and select Recordset from the
menu. Because you’ll be selecting columns from more than one table, you need to
use the Recordset dialog box in Advanced mode (see Figure 16-7). If necessary, click
the Advanced button on the right of the dialog box to switch from Simple mode.

3. Your recordset should have a meaningful name, so type getQuote in the Name field.

4. The recordset will be used in a public page, so choose the non-administrative user
account for Connection. If you’re using the same connections as me, select
connQuery. The Recordset dialog box should now look like Figure 16-7.

Figure 16-7. The Advanced mode of the Recordset dialog box lets you create more complex
SQL queries.

The SQL field in the top half of the dialog box is where you build the query that
will be sent to the database. If you’re familiar with SQL, you can type your query in
here manually, but the Database items field takes a lot of the hard work out of
typing.

WORKING WITH MULTIPLE TABLES

531

16

8598CH16.qxd 6/13/07 12:18 PM Page 531

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. In the Database items field, expand Tables. You should now see both the authors
and quotations tables listed. Expand quotations, highlight quotation, and click the
SELECT button, as shown here:

This starts building the SQL query. You should now see this code in the SQL field:

SELECT quotations.quotation
FROM quotations

6. Expand authors in the Database items area, and highlight first_name. Click SELECT.

7. Highlight family_name, and click SELECT. The SQL query should now look like this:

SELECT quotations.quotation, authors.first_name, authors.family_name
FROM quotations, authors

8. If you click Test now, you will see every quotation attributed first to Woody Allen,
and then every quotation attributed to Matsuo Basho. The Dreamweaver test
shows only the first 100 results, but if you run the same query in phpMyAdmin,
you’ll see there are 2,000 results altogether—every record in the quotations table
has been matched with every record in the authors table. In other words, it pro-
duces every possible combination.

You have just joined two tables but not in a very practical way.

9. To get the result that you want, you need to add a WHERE clause that matches the
foreign key in the quotations table to the primary key in the authors table.
Highlight author_id in the quotations tree in Database items, and click the WHERE
button. This adds WHERE quotations.author_id to the end of the SQL.

10. Expand the authors tree in Database items, and highlight the other author_id. Click
WHERE again. Each time you click WHERE, Dreamweaver always adds whichever
column is highlighted using AND, so the final line of the SQL query will now look like
this:

WHERE quotations.author_id AND authors.author_id

Although AND is often what you want in a WHERE expression, it’s not always the right
choice, so you have to replace it manually. Click inside the SQL field, and replace
AND with =. The SQL should now look like this:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

532

8598CH16.qxd 6/13/07 12:18 PM Page 532

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11. Click the Test button now, and you’ll see that each quotation has now been cor-
rectly matched with the right name. Adding the WHERE clause uses the foreign key
to select only those records where author_id matches in both tables. Click OK to
close the Test SQL Statement panel.

12. If you click Test again, the recordset appears in exactly the same order, which is the
order the quotations were entered into the table. To change the order, select
family_name in the authors tree in Database items, and click the ORDER BY button.

The SQL query should now look like this:

SELECT quotations.quotation, authors.first_name, authors.family_name
FROM quotations, authors
WHERE quotations.author_id = authors.author_id
ORDER BY authors.family_name

13. Click the Test button again. The quotations should be ordered according to family
name.

14. Close the test panel, and add DESC at the end of the final line of the SQL query like
this:

ORDER BY authors.family_name DESC

When you test the query this time, a quotation from Wordsworth will be at the top
of the list, with the authors listed in reverse alphabetical order (DESC stands for
“descending”).

15. You want to display a random quotation in the page, so edit the last line of the SQL
query like this:

ORDER BY RAND()

This uses the MySQL function RAND() to generate a random order. Make sure there
is no space between RAND and the parentheses.

16. Since you need only one quotation to display in the page, it’s inefficient to create a
full recordset, so let’s limit the result to just one record. How do you do that?
Easy—change the final line of the SQL query like this:

ORDER BY RAND() LIMIT 1

17. Use the test panel several times to make sure that you’re getting just one random
quotation and the associated names. Once you’re happy that everything is as
expected, click OK to close the Recordset dialog box.

18. In Design view, highlight the quotation from Samuel Johnson, open the Bindings
panel, select quotation from Recordset (getQuote), and click Insert. Then replace
Samuel Johnson’s name and the date with dynamic text for first_name, family_name,
and a space in between.

19. Save stroll_quote.php, and load it into a browser. Each time you click the Reload
button, you should see a quotation picked at random from the 50 in the quotations
table (see Figure 16-8). Occasionally, you’ll see the same quotation twice in succes-
sion, but that’s no different from rolling two sixes twice in succession from a pair
of dice.

You can check your code against stroll_quote.php in examples/ch16.

WORKING WITH MULTIPLE TABLES

533

16

8598CH16.qxd 6/13/07 12:18 PM Page 533

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 16-8. The quotations and authors’ names are
drawn seamlessly from separate tables.

The four essential SQL commands
As you have just seen, the advanced Recordset dialog box helps build SQL queries that
work with multiple tables. Using the SELECT, WHERE, and ORDER BY buttons in conjunc-
tion with the table trees in the Database items field helps avoid spelling mistakes and
always creates unambiguous references to columns. However, it cannot do everything. Not
only do you need to hand-code some parts of SQL queries, you also need to have a rea-
sonable understanding of the basic syntax. Fortunately, you don’t need to be a SQL genius.
You can achieve a great number of useful things with just four essential commands:
SELECT, INSERT, UPDATE, and DELETE.

The following sections provide a brief overview of how each command is structured. Read
through them to get a basic understanding of how SQL works, and use them later as a ref-
erence. This is not an exhaustive listing of every available option, but it concentrates on
the most important ones. I have used the same typographic conventions as the MySQL
online manual at http://dev.mysql.com/doc/refman/5.0/en (which you may also want
to consult):

Anything in uppercase is a SQL command.

Expressions in square brackets are optional.

Lowercase italics represent variable input.

A vertical pipe (|) separates alternatives.

When working with SQL, you should follow these simple rules:

SQL commands are case insensitive. Although the convention is to use uppercase,
SELECT, select, and SeLeCt are all acceptable.

Whitespace is ignored. This means you can split queries over several lines for
increased readability.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

534

8598CH16.qxd 6/13/07 12:18 PM Page 534

http://dev.mysql.com/doc/refman/5.0/en
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The one exception where whitespace is not ignored concerns MySQL functions,
such as RAND(). There must be no whitespace between the function name and the
opening parenthesis.

Each section of a query must be in the same order as presented here. For instance,
in a SELECT query, LIMIT cannot come before ORDER BY.

Pay particular attention to punctuation. A missing or superfluous comma will cause
a query to fail, so will missing quotes around a string used in a WHERE expression.
However, you should read carefully “Using variables in a SQL query” later in this
chapter. Since version 8.0.2, Dreamweaver automatically adds quotes where neces-
sary around runtime variables. This subject is also discussed in depth in Chapter 17.

SELECT
SELECT is used for retrieving records from one or more tables. Its basic syntax is as follows:

SELECT [DISTINCT] select_list
FROM table_list
[WHERE where_expression]
[ORDER BY col_name | formula] [ASC | DESC]
[LIMIT [skip_count,] show_count]

The DISTINCT option tells the database you want to eliminate duplicate rows from the
results.

The select_list is a comma-separated list of columns that you want included in the
result. To retrieve all columns, use an asterisk (*).

If the same column name is used in more than one table, you must use unambiguous
references by using the syntax table_name.column_name. In Advanced mode, the
Dreamweaver Recordset dialog box always uses this syntax.

The table_list is a comma-separated list of tables from which the results are to be
drawn. All tables that you want to be included in the results must be listed.

The WHERE clause specifies search criteria, for example:

WHERE quotations.family_name = authors.family_name
WHERE quotations.author_id = 32

WHERE expressions can use comparison, arithmetic, logical, and pattern-matching opera-
tors. The most important ones are listed in Table 16-2.

Table 16-2. The main operators used in MySQL WHERE expressions

Comparison Arithmetic

< Less than + Addition

<= Less than or equal to - Subtraction

= Equal to * Multiplication

Continued

WORKING WITH MULTIPLE TABLES

535

16

8598CH16.qxd 6/13/07 12:18 PM Page 535

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 16-2. The main operators used in MySQL WHERE expressions (continued)

Comparison Arithmetic

<> Not equal to / Division

!= Not equal to DIV Integer division

> Greater than % Modulo

>= Greater than or equal to

IN() Included in list

BETWEEN min Between (and including)
AND max two values

Logical Pattern Matching

AND Logical and LIKE Case-insensitive
match

&& Logical and NOT LIKE Case-insensitive
nonmatch

OR Logical or LIKE BINARY Case-sensitive
match

|| Logical or (best avoided) NOT LIKE BINARY Case-sensitive
nonmatch

Table 16-2 contains two nonstandard operators: != (not equal to) and || (logical or). The
first of these is widely used in other major database systems, but I suggest you avoid using
|| instead of OR because it has a completely different meaning in standard SQL.

DIV is the counterpart of the modulo operator. It produces the result of division as an inte-
ger with no fractional part, whereas modulo produces only the remainder.

5 / 2 /* result 2.5 */
5 DIV 2 /* result 2 */
5 % 2 /* result 1 */

IN() evaluates a comma-separated list of values inside the parentheses and returns true if
one or more of the values is found. Although BETWEEN is normally used with numbers, it
also applies to strings. For instance, BETWEEN 'a' AND 'd' returns true for a, b, c, and d
(but not their uppercase equivalents). Both IN() and BETWEEN can be preceded by NOT to
perform the opposite comparison.

LIKE, NOT LIKE, and the related BINARY operators are used for text searches in combina-
tion with the following two wildcard characters:

%: matches any sequence of characters or none

_ (an underscore): matches exactly one character

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

536

8598CH16.qxd 6/13/07 12:18 PM Page 536

http://lib.ommolketab.ir
http//lib.ommolketab.ir

So, the following WHERE clause matches Dennis, Denise, and so on, but not Aiden:

WHERE first_name LIKE 'den%'

To match Aiden, put % at the front of the search pattern. Because % matches any sequence
of characters or none, '%den%' still matches Dennis and Denise. To search for a literal per-
centage sign or underscore, precede it with a backslash (\% or _). The next chapter covers
the use of wildcard characters in more detail.

Conditions are evaluated from left to right but can be grouped in parentheses if you want
a particular set of conditions to be considered together.

ORDER BY specifies the sort order of the results. This can be specified as a single column, a
comma-separated list of columns, or an expression such as RAND(), which randomizes the
order. The default sort order is ascending (a–z, 0–9), but you can specify DESC (descending)
to reverse the order.

LIMIT followed by one number stipulates the maximum number of records to return. If
two numbers are given separated by a comma, the first tells the database how many rows
to skip. For instance, LIMIT 10, 10 produces results 11–20. If fewer results exist than the
limit specified, you get however many fall within the specified range. You don’t get a series
of empty or undefined results to make up the number.

For more details on SELECT, see http://dev.mysql.com/doc/refman/5.0/en/select.
html.

INSERT
The INSERT command is used to add new records to a database. The general syntax is as
follows:

INSERT [INTO] table_name (column_names)
VALUES (values)

In MySQL, the word INTO is optional; it simply makes the command read a little more like
human language. The column names and values are comma-delimited lists, and both must
be in the same order. So, to insert the forecast for New York (blizzard), Detroit (smog), and
Honolulu (sunny) into a weather database, this is how you would do it:

INSERT INTO forecast (new_york, detroit, honolulu)
VALUES ('blizzard', 'smog', 'sunny')

The reason for this rather strange syntax is to allow you to insert more than one record at
a time. Each subsequent record is in a separate set of parentheses, with each set separated
by a comma:

INSERT INTO numbers (x,y)
VALUES (10,20),(20,30),(30,40),(40,50)

You’ll use this multiple insert syntax in the next chapter. Any columns omitted from an
INSERT query are set to their default value. Never set an explicit value for the primary key
where the column is set to auto_increment; leave the column name out of the INSERT
statement. For more details, see http://dev.mysql.com/doc/refman/5.0/en/insert.
html.

WORKING WITH MULTIPLE TABLES

537

16

8598CH16.qxd 6/13/07 12:18 PM Page 537

http://dev.mysql.com/doc/refman/5.0/en/select
http://dev.mysql.com/doc/refman/5.0/en/insert
http://lib.ommolketab.ir
http//lib.ommolketab.ir

UPDATE
This command is used to change existing records. The basic syntax looks like this:

UPDATE table_name
SET col_name = value [, col_name = value]
[WHERE where_expression]

The WHERE expression tells MySQL which record or records you want to update (or perhaps
in the case of the following example, dream about):

UPDATE sales SET q3_2007 = 25000
WHERE title = 'Essential Guide to Dreamweaver CS3'

For more details on UPDATE, see http://dev.mysql.com/doc/refman/5.0/en/update.
html.

DELETE
DELETE can be used to delete single records, multiple records, or the entire contents of a
table. The general syntax for deleting from a single table is as follows:

DELETE FROM table_name [WHERE where_expression]

Although phpMyAdmin prompts you for confirmation before deleting a record, MySQL
itself takes you at your word and performs the deletion immediately. DELETE is totally
unforgiving—once the data is deleted, it is gone forever. The following query will delete all
records from a table called subscribers where the date in expiry_date has already
passed (as you can probably guess, NOW() is a MySQL function that returns the current
date and time):

DELETE FROM subscribers WHERE expiry_date < NOW()

For more details, see http://dev.mysql.com/doc/refman/5.0/en/delete.html.

Managing content with multiple tables
Now that you’ve seen how to use a foreign key to join tables and retrieve related records,
the great mystery in life remains, “How do I insert the right foreign key in the first place?”
The answer is disarmingly simple: you look it up in the database. Before I describe how to
do it, let me anticipate another question: “What happens if the record I want to use as a
foreign key doesn’t yet exist?”

Although the WHERE clause is optional in both UPDATE and DELETE, you should be
aware that if you leave WHERE out, the entire table is affected. This means that a
careless slip with either of these commands could result in every single record
being identical—or wiped out.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

538

8598CH16.qxd 6/13/07 12:18 PM Page 538

http://dev.mysql.com/doc/refman/5.0/en/update
http://dev.mysql.com/doc/refman/5.0/en/delete.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rather than talk in abstract terms, let’s use the authors and quotations tables as concrete
examples. The authors table is the parent, and quotations is the child.

You can add a new record to authors at any time, because it isn’t dependent on any other
table. Building the insert and update forms for authors is exactly the same as for the
feedback and users tables in Chapters 14 and 15. The delete form, however, needs to be
different, because you shouldn’t delete a record from authors if it has any dependent
records in the child table (quotations). If you’re using InnoDB tables, you can’t anyway,
but we’ll come back to that issue later.

Adding a new record to the quotations table presents us with a chicken-and-egg situa-
tion. If the author has already been registered in the authors table, it’s easy to look up the
author’s primary key and insert it in the foreign key column. What happens, though, when
you want to insert a new quotation and a new author at the same time? The SQL INSERT
command works with only one table, so the record in the parent table must exist before
you can use its primary key as a foreign key in a child table. However, there’s a simple way
around this. The author_id column in the quotations table (where author_id is the for-
eign key) accepts NULL values. This means that you can insert a new quotation without
assigning the foreign key. After registering the new author, you simply update the record
in the quotations table to add the foreign key.

With PHP conditional logic, it is possible to build an insert form with the option to add a
new author at the same time as a quotation. I have chosen this simpler approach so that
you can concentrate on the basic technique of inserting the foreign key in a child table.
You need four management pages for each table—insert, list, update, and delete—so you
have plenty on your hands without adding further complications.

Inserting new quotations
So what’s the magic secret of looking up the primary key from the authors table so you
can use it as a foreign key? In the insert form for a new quotation, you have a drop-down
menu that’s dynamically populated by a recordset containing the names of all the authors.
The drop-down menu displays the name of each author, and the value attribute contains
the author’s primary key. Simple, really. If you’re still confused, I promise that all will come
clear once you see the insert form in action.

First, you need to design the insert form for a new quotation. It contains a text area for the
quotation, a select menu for the authors’ names, and a submit button.

Creating the quotation insert form

From now on, I will assume that you are familiar with all the basics of building web
pages and forms in Dreamweaver and will concentrate my instructions mainly on the
server behaviors that interact with the database. I’ll also assume that you know how to
access the Recordset dialog box from the Server Behaviors panel, Data tab of the Insert
bar, or Data Objects submenu of the Insert menu. I’ll just tell you to open it in
Advanced or Simple mode.

WORKING WITH MULTIPLE TABLES

539

16

8598CH16.qxd 6/13/07 12:18 PM Page 539

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Create a new PHP page, and save it in workfiles/ch16 as quote_insert.php.

2. Attach the form.css style sheet from examples/styles to give the page some min-
imal styling. Give the page a suitable title and heading, insert a form, and lay it out
using the following illustration as a guide:

When inserting the form, set Method to POST, and leave Action empty.

Note that the names I’ve chosen for the text area and the list/menu are the same
as the column names in the database.

The link to quote_list.php will display a list of all quotations (you’ll create this
page later). You can check your code against quote_insert_01.php in examples/
ch16.

Before you can add the Insert Record server behavior, you need to populate the
author_id select menu with each author’s name and primary key.

When building drop-down menus in a static web page, you have to go through the tedious
process of typing in all the values and labels manually. With a dynamic site, all this is done
automatically. First, you create a recordset containing the details you want displayed in the
menu. Dreamweaver then does the rest by creating a PHP loop that runs through the
recordset filling in the details for you.

1. Continue working in the same page. Open the Recordset dialog box in Advanced
mode. In the Name field, type listAuthors, and select connAdmin from the
Connection drop-down menu. The recordset doesn’t require administrative privi-
leges, but the rest of the form does, so it makes more sense to use the same
MySQL connection throughout.

Populating a drop-down menu from a database

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

540

8598CH16.qxd 6/13/07 12:18 PM Page 540

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Build the SQL query by expanding Tables and then authors in the Database items
area at the bottom of the dialog box. Highlight authors in the Tables tree, and click
the SELECT button. This will enter SELECT * FROM AUTHORS in the SQL field.

3. Highlight family_name, and click ORDER BY. Do the same with first_name. The top
half of the Recordset dialog box should now look like this:

This selects all columns from the authors table and orders them first by
family_name and then by first_name. Click Test to make sure you get the right
results. Close the test panel, and click OK to save the recordset.

4. To populate the author_id drop-down menu with the recordset results, you need
to open the Dynamic List/Menu dialog box. There are at least four ways to do this:
Insert ➤ Data Objects ➤ Dynamic Data ➤ Dynamic Select List, from the Dynamic Data
submenu on the Data tab of the Insert bar, from the Server Behaviors panel (choose
Dynamic Form Elements ➤ Dynamic List/Menu), and the quickest way of all—through
the Property inspector. Highlight the author_id menu in Design view, and click the
Dynamic button, as shown here:

Whichever method you use, the Dynamic List/Menu dialog box automatically selects
the author_id menu because it’s the only one on the page.

5. In addition to the results from the database, you need a default option for the
drop-down menu. Click the plus button alongside Static options. Make sure
the Value field is blank, and insert Not registered in the Label field. This ensures that
the foreign key will be set to NULL if Not registered is selected when inserting a new
record.

WORKING WITH MULTIPLE TABLES

541

16

8598CH16.qxd 6/13/07 12:18 PM Page 541

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Activate the Options from recordset drop-down menu, and select listAuthors. This
will automatically populate the Values and Labels drop-down menus with the
names of the available columns in your recordset. Set Values to author_id and
Labels to family_name. Leave the final field (Select value equal to) blank. This is used
when you want a dynamic value to be displayed automatically. You’ll use it later
when building the update form. The settings in the Dynamic List/Menu dialog box
should be the same as in Figure 16-9. Click OK.

Figure 16-9. The Dynamic List/Menu dialog box allows you to use only
one field as the label for each item.

7. Save quote_insert.php, and test it in a browser. Activate the drop-down menu,
and you will see that it has been populated with all family names from the authors
table. If you view the underlying code in your browser, you will also see that the
author_id has been used as the value of each <option> tag. If necessary, check
your code against quote_insert_02.php.

This is impressive, but it’s far from ideal. The Dynamic List/Menu dialog box won’t let you
choose more than a single field to populate the labels of the drop-down menu. A simple
way to get around this is to dive into Code view, find the dynamic text object for
family_name, and use the Bindings panel to insert first_name and a space alongside it.
However, there’s a much cooler way to do it—and that’s to get MySQL to manipulate the
data for you. All it requires is a function and an alias.

Give yourself a bonus point if you spotted an apparent inconsistency with what I said
in Chapter 9. The value attribute of the <option> tag is optional in a drop-down
menu. If it’s omitted, the label is submitted instead. So how does “Not registered”
become NULL? The Insert Record server behavior knows that the author_id column
uses the INT datatype, and it converts any value that’s not a whole number to NULL to
protect the integrity of your data.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

542

8598CH16.qxd 6/13/07 12:18 PM Page 542

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using a MySQL function and alias to manipulate data
Many beginners use SQL to extract raw data, and then rely on PHP or another server-side
language to reformat it, whereas SQL is actually capable of doing most of the transforma-
tion itself. MySQL has an extensive range of functions (http://dev.mysql.com/doc/
refman/5.0/en/functions.html) that allow you to manipulate the data in your tables in
many ways. The data stored in the table remains unchanged, but you can use functions to
perform calculations, format text and dates, and much, much more.

MySQL has two functions that concatenate (join together) strings, namely:

CONCAT(): The arguments passed to CONCAT() can be literal strings (in quotes) or
column names (without quotes). When a column name is used, the value of the
current record is inserted into the string. CONCAT() returns NULL if any argument
is NULL.

CONCAT_WS(): This stands for “concatenate with separator.” The first argument is a
separator that you want inserted between the remaining arguments, which can be
literal strings or column names. If the separator argument is NULL, CONCAT_WS()
returns NULL, but it skips any NULL values in the remaining arguments.

Since some of the first_name fields contain NULL, you can’t use CONCAT() to join the
first_name and family_name columns, but CONCAT_WS() is ideal. To add a space between
the two columns, you pass a pair of quotes with a space between them as the first argu-
ment like this:

CONCAT_WS(' ', first_name, family_name)

When manipulating data as part of a SQL query, you need a convenient way of referring to
the result of the calculation or function. You do this by creating an alias. An alias is simply
a temporary name that becomes part of the recordset. You assign an alias using the AS
keyword. The basic syntax looks like this:

FUNCTION_NAME(column_name, other_arguments) AS alias_name

In this section, you’ll use CONCAT_WS() to join the first_name and family_name columns,
and assign the result to an alias called author.

1. Highlight Recordset (listAuthors) in the Server Behaviors panel, and double-click to
edit the recordset. Expand Tables and authors in the Database items area at the bot-
tom of the Recordset dialog box. Highlight author_id, and click SELECT. Do the
same for first_name and family_name. This changes the existing query:

SELECT *
FROM authors
ORDER BY authors.family_name, authors.first_name

Combining the contents of two columns as a single field

Don’t attempt to use + to concatenate strings. In MySQL, + is
exclusively an arithmetic operator.

WORKING WITH MULTIPLE TABLES

543

16

8598CH16.qxd 6/13/07 12:18 PM Page 543

http://dev.mysql.com/doc/refman/5.0/en/functions.html
http://dev.mysql.com/doc/refman/5.0/en/functions.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

to this:

SELECT authors.author_id, authors.first_name, authors.family_name
FROM authors
ORDER BY authors.family_name, authors.first_name

Both do exactly the same thing, but there is a method in my madness . . .

2. Click inside the SQL field, and amend the SQL query like this (new code in bold):

SELECT authors.author_id,
CONCAT_WS(' ', authors.first_name, authors.family_name) AS author
FROM authors
ORDER BY authors.family_name, authors.first_name

Make sure there is no space before the opening parenthesis of CONCAT_WS()—
leaving a space before the opening parenthesis of a MySQL function generates a
SQL error.

3. Click the Test button. You should now see the authors’ names correctly formatted
as a single field called author, as shown in Figure 16-10. You can now use this to
populate the Labels field in the Dynamic List/Menu dialog box.

Figure 16-10. The results are displayed using the alias instead of the original column names.

4. Close the test panel, and click OK to save the revised recordset. If you look at the
Server Behaviors panel, you’ll notice there’s a red exclamation mark next to
Dynamic List/Menu (author_id). This is because the recordset no longer produces a
result called family_name.

5. Highlight Dynamic List/Menu (author_id) in the Server Behaviors panel, and double-
click to edit it. You will be presented with a warning that the column
“family_name” was not found. Click OK, and select author as the value for the
Labels field. Click OK to close the Dynamic List/Menu dialog box.

6. Save the page, and preview it in a browser again. This time, the authors’ names
should be correctly displayed. You can check your code against quote_insert_
03.php.

All that remains to complete the quotation insert form is to apply the Insert Record server
behavior. This is exactly the same as you have done before, so I won’t give step-by-step
instructions. Use the settings shown in Figure 16-11, and compare your final code against
quote_insert_04.php in examples/ch16.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

544

8598CH16.qxd 6/13/07 12:18 PM Page 544

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 16-11. Use these settings for the Insert Record server behavior in quote_insert.php.

One of the main reasons for needing to update a quotation will be if you insert a quota-
tion by an author who isn’t already registered. So before looking at how to create the
update form, it’s necessary to get some new authors into the database.

Inserting new authors
Since the authors’ names are in a separate table, it’s vital to ensure you don’t insert the
same name twice. There’s nothing to stop you from inserting duplicate quotations, but it
won’t really matter unless you decide to use quote_id as a foreign key in another table.
You can delete duplicate entries in a child table without destroying the referential integrity
of your database. The same cannot be said for the parent table.

When building the users table in the previous chapter, you adapted the Check New
Username server behavior to prevent the same username from being used twice. That
won’t work this time, because you need to check the values of two fields, so I’ll show you
how to build the PHP logic yourself. In the process, you’ll learn how to pass PHP variables
to a SQL query, which forms the basis of all search operations.

First of all, you need to create the form to insert new authors. It requires two text fields
and a submit button.

1. Create a new PHP page, save it in workfiles/ch16 as author_insert.php, attach
the form.css style sheet, and lay out the form as shown in the following screen-
shot:

Building the basic insert form

WORKING WITH MULTIPLE TABLES

545

16

8598CH16.qxd 6/13/07 12:18 PM Page 545

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Apply an Insert Record server behavior, using the following values:

Submit values from: form1

Connection: connAdmin

Insert table: authors

After inserting, go to: author_list.php

Compare your code, if necessary, with author_insert_01.php in examples/ch16.

As it stands, author_insert.php is now ready to insert new records into the authors table.
However, it doesn’t validate the input in any way. You can use the Spry validation widgets
described in Chapter 9 to make sure that required fields are filled in, but this won’t pre-
vent the insertion of duplicate records. For that, you need to roll up your sleeves and dive
into Code view.

Using variables in a SQL query
To find out whether an author has already been registered, you need to check the authors
table to see if any record matches the values submitted in the first_name and
family_name fields. In other words, you need to search the database (or in this case, a
single table). If there’s a match, you need to stop the Insert Record server from executing.
Otherwise, the insert operation can go ahead. Since you don’t know what will be entered
in the form fields, you need to pass their values as variables to the query that creates the
recordset.

The way you do this changed in a subtle but important way with the release of the
Dreamweaver 8.0.2 updater. If you are upgrading from an earlier version of Dreamweaver,
pay careful attention to the instructions in this section. Continue working with
author_insert.php.

Passing form values to a SQL query

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

546

8598CH16.qxd 6/13/07 12:18 PM Page 546

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Open the Recordset dialog box in Advanced mode. Name the recordset
checkAuthor, and select connAdmin in the Connection field.

2. Expand Tables in the Database items area, highlight the authors table, and click
SELECT. Expand authors, highlight first_name, and click WHERE. Then do the same
with family_name. You should now have a SQL query that looks like this:

SELECT *
FROM authors
WHERE authors.first_name AND authors.family_name

The WHERE expression needs to search for the names entered in the first_name and
family_name fields. Although you don’t know what the names will be, they will be stored
in the $_POST array when the Insert author button is clicked. Instead of entering the PHP
variables directly in the SQL query, you need to use runtime variables and define them in
the Variables area in the center of the Recordset dialog box.

The runtime variables are not PHP variables, so they shouldn’t begin with a dollar sign. You
can use any alphanumeric characters to create the variables, as long as they don’t clash
with the names of columns or any other part of the SQL query. I normally call the runtime
variables var1, var2, and so on, but another common convention is to use col1, col2, and
so on.

Dreamweaver uses runtime variables to prevent a type of malicious attack known as SQL
injection, which exploits poorly written scripts to inject spurious code into SQL queries.
SQL injection can be used to gain unauthorized access to a database and even wipe out all
the stored data. Dreamweaver changed its approach to SQL injection with the 8.0.2
updater for Dreamweaver 8, so if you’re upgrading from an earlier version of
Dreamweaver, the way you insert these runtime variables has changed slightly. You will
probably also find that recordsets built with versions of Dreamweaver prior to 8.0.2 need
to be rebuilt.

Dreamweaver replaces the runtime variables with PHP format specifiers (normally %s or
%d), and uses the GetSQLValueString() function (see “Inspecting the server behavior
code” in Chapter 14) to handle quotes and other characters that might cause problems
with the SQL query. It also automatically adds quotes around text values. This is an impor-
tant change. Prior to Dreamweaver 8.0.2, you needed to add the quotes around the
runtime variables yourself. Now you insert the runtime variables without quotes.

3. I’m going to use var1 and var2 as my runtime variables, so change the last line of
the SQL query like this:

WHERE authors.first_name = var1 AND authors.family_name = var2

4. You now need to define the runtime variables. Click the plus button alongside the
Variables label in the Recordset dialog box. This opens the Add Variable dialog box,
which has the following four fields:

Name: This is the name of the runtime variable that you want to define.

Type: This is a drop-down menu with four options: Numeric, Text, Date, and
Double. Numeric accepts whole numbers (integers) only. Text is self-explanatory.
The Date option doesn’t have any practical use in PHP, so you can ignore it.
Double is for floating-point numbers with a decimal fraction.

WORKING WITH MULTIPLE TABLES

547

16

8598CH16.qxd 6/13/07 12:18 PM Page 547

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Default value: As you’ll see in the next chapter, Dreamweaver handles this value
in an unexpected way. The only time it’s used is when you click the Test button
inside the Recordset dialog box or when the page first loads. You must enter a
value in this field, because Dreamweaver uses it to prevent a MySQL error if the
variable defined as Runtime value doesn’t exist. Unless you want to display a
default recordset result when a page first loads, set this to -1 or anything that
produces no results.

Runtime value: This is the value you want to use instead of the runtime variable.

5. When the form is submitted, you want var1 to use the value in the first_name
field, so set Runtime value to $_POST['first_name']. Unless you want to check the
SQL with the Test button, enter anything in the Default value field. Here are the set-
tings that I used:

PHP is case sensitive, so make sure that $_POST is all uppercase. Click OK.

6. Define var2 in the same way, using $_POST['family_name'] as Runtime value. The
central section of the Recordset dialog box should look like this:

7. Click OK to close the Recordset dialog box, and save author_insert.php. You can
check your code against author_insert_02.php.

The recordset that you created in the preceding section checks whether there’s already an
author of the same name registered in the table. Unfortunately, Dreamweaver puts the
code for a recordset immediately above the DOCTYPE declaration, so it’s after the Insert
Record server behavior. I know what you’re thinking, but it doesn’t matter which order you

Preventing duplicate entries

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

548

8598CH16.qxd 6/13/07 12:18 PM Page 548

http://lib.ommolketab.ir
http//lib.ommolketab.ir

enter them. Dreamweaver always puts recordsets beneath Insert Record and Update
Record server behaviors, so you need to move it manually.

1. Open Code view. Locate the section of code in the following screenshot:

This is the code for the checkAuthor recordset. You can easily identify it, because
the first line begins with $var1_checkAuthor, which is the way Dreamweaver
defines var1, which you created in step 5. The part of the code that interacts with
the database begins with mysql_select_db on line 61 and continues to the end of
the line that reads as follows:

$totalRows_checkAuthor = mysql_num_rows($checkAuthor);

As you can probably guess, $totalRows_checkAuthor contains the total number of
records in the checkAuthor recordset. You can use this information to determine
whether a record already exists for the same author. If the number of rows is zero,
there are no matching records, so you can safely insert the new author. But if any
matching records are found, you know it’s a duplicate, so you need to skip the
insert operation and display a warning.

2. Highlight the code shown on lines 53–65 in the screenshot, and cut them to the
clipboard.

3. Scroll up about 17 lines, and paste the recordset in the position indicated here:

4. Make sure your cursor is at the end of the code you have just pasted, and press
Enter/Return to make room to insert the following code highlighted in bold:

$totalRows_checkAuthor = mysql_num_rows($checkAuthor);
// assume that no match has been found
$alreadyRegistered = false;

// check whether recordset found any matches
if ($totalRows_checkAuthor > 0) {

WORKING WITH MULTIPLE TABLES

549

16

8598CH16.qxd 6/13/07 12:18 PM Page 549

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// if found, reset $alreadyRegistered
$alreadyRegistered = true;
}

else {
// go ahead with server behavior

if ((isset($_POST["MM_insert"])) && ($_POST["MM_insert"] == "form1")) {

5. Position your cursor right at the end of the code shown on line 37 in the previous
screenshot (it should now be around line 60). This is the beginning of the Insert
Record server behavior. Click the Balance Braces button on the Coding toolbar (or
press Ctrl+'/Cmd+') to find the end of the server behavior, and insert a closing
brace (}) to match the opening one at the end of the code in step 10.

This wraps the Insert Record server behavior in an else clause to prevent it from
running if a matching record is found in the authors table.

6. All that remains now is to display a warning message if the insert is abandoned.
Scroll down until you find the following code (around line 86):

<h1>Insert new author</h1>

7. Add the following code immediately after it:

<?php
if ($_POST && $alreadyRegistered) {
echo '<p class="warning">'.$_POST['first_name'].' '. ➥

$_POST['family_name'].' is already registered</p>';
}

?>

This section of code will run only if the $_POST array has been set (in other words,
the insert form has been submitted) and if $alreadyRegistered has been set to
true.

8. Save the page, and preview it in a browser. Try inserting a name that you know
already exists in the table, such as William Shakespeare. You should see a warning
that William Shakespeare is already registered.

Then try a name you know hasn’t been registered. You’ll see a warning that
author_list.php wasn’t found (you haven’t created it yet), but when you reload
quote_insert.php, the new name should be listed in the drop-down menu of
authors’ names. Check your code against author_insert_03.php if you have any
problems.

Although this is an adequate safeguard for a basic content management system,
it won’t prevent you from entering similar names or misspelled ones.

Note that false and true in this code block are keywords. They must not be
enclosed in quotes.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

550

8598CH16.qxd 6/13/07 12:18 PM Page 550

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Updating authors
As you saw in the previous chapter, the way to update and delete records is to create a list
of all records with EDIT and DELETE links that pass the record’s primary key to the update
or delete form through a query string appended to the URL. The authors table has a lot of
records in it, so we’ll improve the basic technique from the last chapter by adding a
Recordset Navigation Bar, which lets you page through a long set of search results a spec-
ified number of records at a time.

To save space and time, I have created the basic code for the page to display a list of
authors. Refer to “Creating a recordset” in Chapter 14 if you need to refresh your memory
on how to build this sort of page.

1. Copy author_list_01.php from examples/ch16, and save it as author_list.php in
workfiles/ch16. The page has a recordset called listAuthors, which retrieves
everything from the authors table, and the EDIT and DELETE links point to
author_update.php and author_delete.php with the author_id primary key
appended as a query string.

2. The page doesn’t yet have a repeat region, so insert your cursor anywhere in the
second row of the table, and click the <tr> tag in the Tag selector at the bottom of
the Document window to select the entire row. Choose Repeat Region from the
Server Behaviors panel. Alternatively, use the Data tab of the Insert bar or the Data
Objects submenu of the Insert menu. Set the repeat region to show 15 records at a
time.

3. Before inserting the Recordset Navigation Bar, you need to make sure that your
insertion point is in the right place. Select <table> in the Tag selector and press your
right arrow key once to move the insertion point outside the table. Then select
Recordset Navigation Bar from the Data tab of the Insert bar, as shown in the fol-
lowing screenshot (or go to Insert ➤ Data Objects ➤ Recordset Paging ➤ Recordset
Navigation Bar):

Paging through the list of registered authors

WORKING WITH MULTIPLE TABLES

551

16

8598CH16.qxd 6/13/07 12:18 PM Page 551

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. The Recordset Navigation Bar dialog box has two settings. The first lets you choose
which recordset you want to use. There’s only one on the current page, so
listAuthors is selected automatically. The other setting lets you choose whether to
use text or images. Select Images, and click OK.

5. The Recordset Navigation Bar is inserted beneath the table that displays the
recordset. As you can see from the following screenshot, it’s a rather enigmatic
jumble of images with gray tabs on top.

In previous versions of Dreamweaver, the Recordset Navigation Bar was formatted
with presentational markup that you needed to remove before you could style it
with CSS. As part of Project Hoover (see Chapter 1), the markup has gone, and
you’re left with a simple table to style however you want.

6. Click anywhere in the Recordset Navigation Bar, and click the <table> tag in the Tag
selector to select the whole table. Give the navigation bar an ID by typing recNav in
the Table Id field in the Property inspector. Now, click the New CSS Rule icon at the
bottom right of the CSS Styles panel, and create a rule for #recNav (the New CSS
Rule dialog box automatically suggests the selector name if the navigation bar table
is still selected).

For the purposes of this exercise, select This document only to embed the rule in the
<head> of the page. In the Box category, set Width to 400 pixels, and click OK. This
is 50 pixels narrower than the table that contains the recordset results, but it seems
to fit better.

7. A simple way of formatting the Recordset Navigation Bar is to click inside the first
cell to the right of the double arrow image and insert a space. Next, hold down the
mouse button and drag-select the first two table cells. Merge the two cells by click-
ing the Merge selected cells icon in the Property inspector:

8. Do the same with the third and fourth cells by inserting a space to the right of the
arrow in the third cell and merging the two cells. Finally, create a style rule (I used
a class called textRight with the rule text-align: right) to move the right
arrows to the right edge of the table.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

552

8598CH16.qxd 6/13/07 12:18 PM Page 552

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Save author_list.php, and test it in a browser. You should see two arrows at the
bottom right of the list of authors, as shown in the following screenshot:

Click the single arrow, and you’ll see the continuation of the list of authors,
together with arrows at the bottom left of the table for you to navigate back. The
double arrows take you to the beginning and end of the list—pagination for a long
list of records made easy!

You can check your code against author_list_02.php in examples/ch16.

Now that you have a list of all authors registered in the database, you can adapt the insert
form to handle updates. Instead of building the whole page from scratch, it’s quicker to
base it on author_insert.php.

Adapting the insert form involves removing the Insert Record server behavior—a simple,
clean operation that involves just two clicks. You then create a recordset to retrieve the
details of the record you want to update and bind the results to the fields in the form.
This displays the existing contents of the record ready for editing. Finally, you apply the
Update Record server behavior and move the code into the space originally occupied by
the Insert Record server behavior.

1. Open author_insert.php, and save it (File ➤ Save As or Ctrl+Shift+S/Shift+
Cmd+S) as author_update.php.

2. You now have an exact copy of author_insert.php. Change the title and heading
to Update author. Use the Property inspector to change the Button name and Value
of the submit button to update and Update author, respectively.

3. In the Server Behaviors panel, highlight Insert
Record, and click the minus button to delete it,
as shown alongside. Make sure you delete only
the Insert Record server behavior, as you still
need the checkAuthor recordset.

If you alter a Dreamweaver server behavior, normally, it disappears from the Server
Behaviors panel, or a red exclamation mark indicates the code is no longer editable
through the server behavior’s dialog box. However, when building the insert form, you
simply moved the recordset code and wrapped the Insert Record server behavior in
an else clause, without altering the actual code. Consequently, they still remain fully
accessible through the Server Behaviors panel. When you remove the Insert Record
server behavior in this way, the conditional statement you added to the insert form
remains intact, ready for reuse in this page.

Adapting the author insert form for updates

WORKING WITH MULTIPLE TABLES

553

16

8598CH16.qxd 6/13/07 12:18 PM Page 553

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. As with the update form in the previous chapter, you need to create a recordset for
the Update Record server behavior to work with. Open the Recordset dialog box in
Simple mode, and use the settings shown in the following screenshot. Click OK
to create the getAuthor recordset. This selects just one author identified by
author_id passed in the URL query string.

5. Open the Bindings panel. You should now have
two recordsets listed there: checkAuthor and
getAuthor. The second one will be used to set
the initial values for the text fields in the
updateAuthor form. Expand the getAuthor record-
set in the Bindings panel, and highlight the
first_name text field in the form, followed by
first_name in the recordset, as shown alongside.
The label on the Insert button at the bottom of
the Bindings panel changes to Bind, and the
drop-down menu alongside should display input.
value. Click Bind, and a dynamic placeholder will
appear inside the first_name text field. The Bind
button changes to Unbind. Click this if you ever
want to remove dynamic text bound in this way.

6. Repeat step 5 with the family_name text field and family_name in the recordset.

7. The Update Record server behavior also needs to know the author_id. Click any
blank space inside the form, and insert a hidden field (see Chapter 9). In the
Property inspector, change the name of the hidden field to author_id, and click the
lightning bolt icon alongside the Value field.

8. In the Dynamic Data dialog box that opens, select author_id from Recordset
(getAuthor), and click OK. Make sure you use the correct recordset.

9. Apply the Update Record server behavior by clicking the plus button in the Server
Behaviors panel, and select Update Record. If you have followed all the steps cor-
rectly, the Update Record dialog box will automatically apply the correct values as

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

554

8598CH16.qxd 6/13/07 12:18 PM Page 554

http://lib.ommolketab.ir
http//lib.ommolketab.ir

soon as you select connAdmin in the Connection field. Set the final field to go to
author_list.php after updating. Check your settings against those shown here,
and click OK.

10. Switch to Code view, and locate the following section of code:

This is the Update Record server behavior code. Highlight it, making sure you don’t
miss the closing curly brace shown on line 52 in the screenshot, and cut it to your
clipboard.

11. Scroll down until you find the empty else clause just above the DOCTYPE declara-
tion, and paste the Update Record server behavior between the braces.

You can check your code against author_update.php in examples/ch16 if necessary.

WORKING WITH MULTIPLE TABLES

555

16

8598CH16.qxd 6/13/07 12:18 PM Page 555

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deleting authors
In “Avoiding orphaned records” at the beginning of the chapter, I told you that using for-
eign key constraints in InnoDB tables automates the preservation of referential integrity. It
does—in the sense that it prevents you from deleting records in a parent table if there are
still dependent records in a child table. Figure 16-12 shows what happened when I tried to
delete William Shakespeare from the authors table using InnoDB with a foreign key con-
straint defined.

Figure 16-12. A foreign key constraint prevents the deletion of a record while it still has dependent
records in a child table.

When I did the same thing with MyISAM tables, William Shakespeare vanished into cyber
oblivion without so much as a by-your-leave to his children. So foreign key constraints are
a good security measure, but you don’t want an ugly MySQL error message like that in
Figure 16-12 on your website. Consequently, even if you’re using InnoDB tables, you need
to incorporate the same sort of checks into a delete page as with MyISAM tables. In other
words, when deleting a record from a parent table, you need to do the following:

1. Search the child table to see if the record’s primary key has any matches in the for-
eign key column. In the example in Figure 16-2 at the beginning of the chapter,
Shakespeare’s primary key is 32. So, before you can delete his record, you need to
check whether any records in the quotations table have the same value as the
foreign key (author_id).

2. If there are any matches, display a message saying that the deletion cannot go
ahead, and hide the delete button.

If there are no matching records, display the delete button, asking for confirmation.

The conditional logic that you used in the insert and update forms checked whether an
author was already registered in the authors table. For the delete form, you need to per-
form a similar check, only this time in the quotations table. Although you’re checking
a different table, the script flow is exactly the same. If there are any matching records,
you stop the server behavior from being executed. Otherwise, you let it go ahead.
Consequently, you can adapt the existing script quite easily.

1. Open author_update.php, and save it as author_delete.php.

2. Change the title and heading to Delete author. Use the Property inspector to change
the Button name and Value of the submit button to delete and Delete author, respec-
tively.

Adapting the author update page to handle deletes

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

556

8598CH16.qxd 6/13/07 12:18 PM Page 556

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. In the Server Behaviors panel, highlight Recordset (checkAuthor), and delete it by
clicking the minus button.

4. Do the same with Update Record.

5. Click the plus button in the Server Behaviors panel, and select Delete Record. As in
the previous chapter, you get the value of the record to be deleted from a hidden
field, so make sure you choose Form Variable for Primary key value. Check that your
settings are the same as shown in the screenshot, and click OK.

6. Before deleting a record from the authors table, you must check whether its pri-
mary key is still in use in the quotations table. Create a new recordset called
checkForeign. Use the Recordset dialog box in Advanced mode with the settings
shown in the following screenshot:

The WHERE clause selects records where quotations.author_id is equal to a vari-
able (we’ll define that in a moment) and where quotations.author_id is the same
as authors.author_id. As explained in the “The four essential SQL commands”
earlier in the chapter, the dot notation tableName.columnName eliminates ambigu-
ity in a SQL query when columns in different tables have the same name. What this
SQL query is looking for is any record where author_id matches the runtime vari-
able var1.

7. The value of author_id is passed through the query string from author_list.php,
so var1 needs to be defined in the Variables field. Click the plus button alongside
Variables, and use the following settings:

WORKING WITH MULTIPLE TABLES

557

16

8598CH16.qxd 6/13/07 12:18 PM Page 557

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The value of author_id is an integer, so Type needs to be set to Numeric. I have set
Default Value to -1 because I don’t want the variable to default to a genuine value.
Runtime value is set to $_GET['author_id'] because the value is passed through a
query string in the URL. Remember, $_GET is used for URL variables and $_POST for
form variables submitted using the POST method. Click OK to close the Add Variable
dialog box, and click OK again to save the recordset.

8. Now it’s time to move the Delete Record server behavior from its current position
so that it’s inside the else clause previously occupied by both the Insert Record
and Update Record server behaviors. Locate the following code, and cut it to your
clipboard:

9. Paste the code from your clipboard to the position indicated here:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

558

8598CH16.qxd 6/13/07 12:18 PM Page 558

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. Next, amend the code shown on lines 54–59 of the preceding screenshot to match
the name of the checkForeign recordset like this:

// assume that no match has been found
$recordsExist = false;

//check whether recordset found any matches
if ($totalRows_checkForeign > 0) {
// if found, reset $recordsExist
$recordsExist = true;
}

else {

11. Scroll down until you find this line (it should be around line 90):

if ($_POST && $alreadyRegistered) {

The check for $_POST is not needed this time, because the checkForeign recordset
will be created as soon as the page loads. You also need to change the variable to
$recordsExist. Change the line to look like this:

if ($recordsExist) {

12. In the next line, $_POST['first_name'] and $_POST['family_name'] need to
be replaced with dynamic data from the checkForeign recordset. Highlight
$_POST['first_name'], and open the Bindings panel. Expand Recordset
(checkForeign), select family_name, and click the Insert button. This will replace
$_POST['first_name'] with $row_checkForeign['first_name']. Do the same
with $_POST['family_name'], selecting family_name from the Bindings panel.

13. Change the remaining text in the warning paragraph, and add the opening part of
an else clause so that the entire PHP code block now looks like this:

<?php
if ($recordsExist) {
echo '<p class="warning">'.$row_checkForeign['first_name'].' '. ➥

$row_checkForeign['family_name'].' has dependent records. Can\'t be ➥

deleted.</p>';
}

else {
?>

14. Scroll all the way down to the closing </form> tag (around line 110), and insert a
closing curly brace inside a pair of PHP tags like this:

<?php } ?>

What you have done is enclose the entire form in an else clause, so it will be dis-
played only if there are no dependent records in the quotations table.

15. Switch back to Design view, click immediately to the right of the first PHP shield,
and press Enter/Return to create a new paragraph. Type a warning that the delete
operation cannot be undone, and apply the warning class to the paragraph.

WORKING WITH MULTIPLE TABLES

559

16

8598CH16.qxd 6/13/07 12:18 PM Page 559

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16. Save author_delete.php, and load author_insert.php into your browser. Select
an author that you know has dependent records in the quotations table, and click
DELETE. You should see a message like this:

17. Now insert a new author. When the name appears in the list, click DELETE. This
time you should see a screen like the following one. Click Delete author. You will be
taken back to the list of authors, and the new entry will have disappeared without
a trace. You can check your code against author_delete.php in examples/ch16.

Improving the delete form
As the screenshot in step 16 shows, the warning message simply tells you that the author
has dependent records. A simple improvement would be to display a list of the dependent
records, so that you can delete them, if required. All that’s needed is to add quotation to
the checkForeign recordset. You can then use a repeat region to display the dependent
records if any are found. Sample code showing how this is done can be found in
author_delete_display.php in examples/ch16. The code is fully commented, explaining
how to incorporate the display of dependent records.

Another improvement would be to remove the text fields that display the name of the
author to be deleted and just display the first_name and family_name values in the same
way as with delete_user.php in the previous chapter. However, it doesn’t matter that the
names are displayed in editable text fields. Even if you edit the names, it has no effect on
the database, because the delete operation is controlled entirely by the author_id
primary key.

Performing a cascading delete with InnoDB tables
Although you still need to use PHP logic in the delete form for a parent table, one advan-
tage that InnoDB tables have over MyISAM is the ability to perform a cascading delete.
This means that when you delete a record in the parent table, all dependent records are

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

560

8598CH16.qxd 6/13/07 12:18 PM Page 560

http://lib.ommolketab.ir
http//lib.ommolketab.ir

automatically deleted from the child table. To enable this behavior, you need to change
the foreign key constraint to ON DELETE CASCADE.

The following instructions show you how to adapt author_delete.php to perform a cas-
cading delete with InnoDB tables. You can use author_delete.php in examples/ch16 as
the starting point. The completed code is in author_delete_cascade.php.

1. In phpMyAdmin, select the quotations table in the egdwcs3 database. Click the
Structure tab to display the table structure, and select Relation view.

2. In the Links to area, change the value of ON DELETE for author_id to CASCADE, as
shown in the following screenshot, and click Save.

3. Open author_delete.php, and double-click Recordset (checkForeign) in the
Server Behaviors panel to edit it.

4. Expand the Tables tree in the Database items area at the bottom of the Recordset
dialog box, highlight quotation in the quotations table, and click the SELECT button
to add it to the SQL query. This will enable you to display the dependent records
about to be deleted.

5. Save the edited recordset, and locate the following section in Code view:

6. Delete the PHP code block shown on lines 89–94 of the preceding screenshot.

7. Delete the PHP code block immediately after the closing </form> tag. It contains
only a closing curly brace to match the opening one on line 93 of the preceding
screenshot.

These instructions apply only to InnoDB tables. They do not work with
the default MyISAM tables.

Deleting dependent records simultaneously

WORKING WITH MULTIPLE TABLES

561

16

8598CH16.qxd 6/13/07 12:18 PM Page 561

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Inside the form, delete the first_name and family_name text fields, leaving only
the submit button and hidden field. The <body> section of the page should now
look like this:

9. Select the words the following record (shown on line 89 of the preceding screen-
shot), and replace them with dynamic text from the getAuthor recordset to display
the author’s first name and family name. Add another sentence warning that all
dependent records will also be deleted at the same time.

10. You could use the page like this, but it’s much better to display the dependent
records that are about to be deleted. Switch to Design view, position your cursor at
the end of the warning paragraph, and press Enter/Return to insert a new para-
graph. Type The following records will also be deleted:.

11. Press Enter/Return, and click the Unordered List button in the Property inspector (or
use Text ➤ List ➤ Unordered List).

12. Open the Bindings panel, select quotation in Recordset (checkForeign), and click
Insert. Then click in the Tag inspector at the bottom of the Document window
to select the whole element, and apply a repeat region to show all records.
This will display all dependent records from the quotations table.

13. Not every record in the parent table will have dependent records, so you need to
say if no records were found. Click in the Tag Inspector to select the whole
unordered list, and press the right arrow key once to move the insertion point after
the closing tag. Press Enter/Return to insert a new paragraph, and type No
dependent records.

14. You now have contradictory displays in the page. You want to show the unordered
list only if there are dependent records, and the paragraph you have just typed if
there are none. Dreamweaver has another set of server behaviors for just this type
of situation.

Click the <p> tag in the Tag Inspector to select the paragraph you have just typed.
Then, click the plus button in the Server Behaviors panel, and select Show Region ➤
Show If Recordset Is Empty (the same option is available on the Data Objects sub-
menu of the Insert menu). The dialog box that opens has one option: to choose the
recordset. Select checkForeign, and click OK.

15. Position your cursor anywhere inside the unordered list, and click the tag in
the Tag Inspector to select the whole list. Select the Show Region submenu again,
and choose Show If Recordset Is Not Empty. Again, select checkForeign for
Recordset.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

562

8598CH16.qxd 6/13/07 12:18 PM Page 562

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In my testing, Dreamweaver had a problem on one occasion applying the server
behavior correctly to the unordered list. In Design view, you might see a yellow
highlighted </MM_HIDDENREGION> tag at the end of the list (see Figure 16-13).
Yellow tags indicate incorrectly nested elements.

Figure 16-13. Dreamweaver sometimes fails to position correctly the closing brace of
the Show Region server behavior.

If this happens to you, reverse the order of lines 97 and 98 in Figure 16-13, to move
the closing tag inside the closing curly brace of the PHP conditional state-
ment.

You now have a user-friendly cascading delete form for use with InnoDB tables.
Check your code, if necessary, against author_delete_cascade.php in examples/
ch16.

Updating quotations
Now that you’ve dealt with all the issues involved with the parent table, authors, you can
return to the child table and finish the content management system for quotations. You’ll
be relieved to know that building the update and delete forms doesn’t involve a great deal
of work. However, the presence of the foreign key in a child table does add a slight com-
plication to creating the page that displays a list of all records. Let’s start by building
quote_list.php to display a list of all quotations with links to the update and delete
forms.

The layout of the page follows the same pattern as all other lists of records. The main dif-
ference lies in the SQL query that you build in the Recordset dialog box, because you need
to draw records from the child and parent tables, using the foreign key to match records
in both tables.

Displaying a list of quotations

WORKING WITH MULTIPLE TABLES

563

16

8598CH16.qxd 6/13/07 12:18 PM Page 563

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Create a PHP page called quote_list.php in workfiles/ch16, and lay it out like
this:

2. Open the Recordset dialog box in Advanced mode, and build the following query:

This selects the quotation and its primary key, as well as the author’s first name
and family name by matching the author_id in both tables. The results are ordered
by family name, first name, and quotation in that order.

3. Use the Bindings panel to add the dynamic text objects to the page, building the
EDIT and DELETE links in the same way as before (linking to quote_update.php and
quote_delete.php and passing quote_id as a parameter through the query string.

4. Apply a repeat region and a Recordset Navigation Bar. I won’t give step-by-step
instructions, because you’ve done this before. Check your code, if necessary,
against quote_list_01.php in examples/ch16.

That was easy, wasn’t it? Unfortunately, it was too easy, because there’s a hidden flaw in
the SQL.

Load quote_insert.php into a browser, and insert a new quotation. It doesn’t matter what
it is, as long as you don’t select an author. Leave the author drop-down menu on Not reg-
istered. Now load quote_list.php into a browser, and look for the quotation that you
have just inserted. It’s not listed. Double-check in phpMyAdmin, the new quotation should
be at the end of the quotations table. What’s going on?

Solving the mystery of missing records
The reason for the failure of quote_list.php to display quotations without an associated
author lies in the WHERE expression:

WHERE quotations.author_id = authors.author_id

This works fine when there are matching records in both tables, but if the author_id for-
eign key hasn’t been set in the quotations table, there’s nothing to match it in the
authors table. You need a way to find all records, even if there isn’t a corresponding
match for the foreign key. This is achieved in SQL by what is known as a left join.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

564

8598CH16.qxd 6/13/07 12:18 PM Page 564

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The SQL queries generated by Dreamweaver are known as inner joins—there must be a
complete match in both tables of all conditions in a WHERE expression. The difference with
a left join is that when there’s no match for a record in the table(s) to the “left” of the join,
the result is still included in the recordset, but all the columns in the table to the “right”
of the join are set to NULL. “Left” and “right” are used in the sense of which side of the key-
words LEFT JOIN they appear in the SQL query. The syntax looks like this:

SELECT column_name(s) FROM first_table
LEFT JOIN second_table ON condition

If the condition is matching two columns of the same name (such as author_id), an alter-
native syntax can be used:

SELECT column_name(s) FROM first_table
LEFT JOIN second_table USING (column_name)

You can now amend the SQL query in quote_list.php to use a left join. Dreamweaver
doesn’t have an automatic way of generating a left join, so you need to adjust the query
manually. Continue working with quote_list.php from the preceding section.

1. Highlight Recordset (quoteList) in the Server Behaviors panel, and double-click it to
open the Recordset dialog box.

2. Edit the SQL query by hand like this:

SELECT quotations.quote_id, quotations.quotation, authors.first_name,
authors.family_name
FROM quotations LEFT JOIN authors USING (author_id)
ORDER BY authors.family_name, authors.first_name, quotations.quotation

3. Click the Test button to make sure you haven’t made any mistakes in the query. I
find that I frequently forget to remove the comma after the first table name when
replacing an inner join with a left join.

4. Click OK to save the recordset. Save the page, and refresh your browser. Any quo-
tations without an author_id will now appear at the top of the list with the name
column blank, as shown here:

Compare your code, if necessary, with quote_list_02.php in examples/ch16.

Using a left join to find incomplete records

WORKING WITH MULTIPLE TABLES

565

16

8598CH16.qxd 6/13/07 12:18 PM Page 565

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rather than build the update form from scratch, you can easily adapt the insert page
again. Because there is no need to check for duplicate entries, this is simpler than the
update page for authors. After removing the Insert Record server behavior, you create a
recordset for the record being updated, bind the existing values to the quotation text area
and author drop-down menu, and apply an Update Record server behavior.

1. Save quote_insert.php as quote_update.php. Change the title and heading to
Update quotation. Also change the Button name and Value of the submit button
to update and Update quotation, respectively.

2. Select the Insert Record server behavior in the Server Behaviors panel, and click the
minus button to remove it.

3. When the EDIT link in quote_list.php is clicked, you need to display the details of
the record. Open the Recordset dialog box in Simple mode, and create a recordset
called getQuote, using the following settings:

4. Expand Recordset (getQuote) in the Bindings panel. Select the quotation text area in
the form, and then select quotation in the recordset. Click Bind.

5. You also need the author_id drop-down menu to display the correct value. Select
the menu object in the form, and click the Dynamic button in the Property inspec-
tor. All the existing values are fine, but to display the selected value dynamically,
click the lightning bolt icon to the right of the Select value equal to field at the bot-
tom of the dialog box.

In the Dynamic Data dialog box, select author_id from Recordset (getQuote), as
shown in the screenshot at the top of the next page. Make sure you choose the
correct recordset—both of them include author_id. The other recordset contains
all author_id numbers; you want only the specific one associated with the quota-
tion identified by the URL query string.

Adapting the insert page for updates

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

566

8598CH16.qxd 6/13/07 12:18 PM Page 566

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Click OK twice to close both dialog boxes. What you have just done creates the
code to dynamically insert selected="selected" in the appropriate <option> tag
to display the correct name from the authors table.

6. Before adding the Update Record server behavior, you need to create a hidden
form field to store the correct quote_id. Click in a blank area of the form, and
insert a hidden field. In the Property inspector, name the hidden field quote_id, and
click the lightning bolt icon to insert dynamic data in the Value field. Choose
quote_id from Recordset (getQuote), and click OK.

7. Click the plus button on the Server Behaviors panel, and choose Update Record. Use
the following settings:

Submit values from: updateQuote

Connection: connAdmin

Update table: quotations

After updating, go to: quote_list.php

8. Save the page, and test it. Compare your code, if necessary, with quote_update.php
in examples/ch16.

Deleting quotations
Nearly there! Just one more page to go—the page for deleting quotations is relatively
simple to make, because there’s no need to check for dependent records. It’s only when a
foreign key refers to a deleted record that you have a problem. Delete Shakespeare’s
records in the quotations table, and the integrity of your database remains intact. The
only loss is some of the greatest sayings in the English language.

WORKING WITH MULTIPLE TABLES

567

16

8598CH16.qxd 6/13/07 12:18 PM Page 567

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This is much simpler than the delete form for authors, because no dependent records are
involved. It’s a quick and easy adaptation of the update page.

1. Save quote_update.php as quote_delete.php. Change the title and heading to
Delete quotation. Change the Button name and Value of the submit button to delete
and Confirm deletion, respectively.

2. Insert a new paragraph between the heading and form asking for confirmation of
the deletion and warning that it’s not undoable. Apply the warning class to the
paragraph.

3. Highlight Update Record in the Server Behaviors panel, and click the minus button
to delete it.

4. Click the plus button in the Server Behaviors panel, and select Delete Record. Use
the settings shown in the screenshot, and click OK.

5. Save the page, and compare your code, if necessary, against quote_delete.php in
examples/ch16.

You now have a complete management system for a parent and child set of tables.

What you have achieved
Creating the content management system for two tables in a parent-child relationship
requires a much more complex back-end than for a single table. You may be wondering
whether it’s really worth the effort. The answer is yes. Creating a database and its related
content management system is a time-consuming process, but the time spent on building
a solid foundation for your database will be well rewarded.

Adapting the update page for deletes

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

568

8598CH16.qxd 6/13/07 12:18 PM Page 568

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Although this chapter has involved a lot of steps, and you’ve needed to dive into Code
view from time to time, it’s important to realize that the Dreamweaver server behaviors
have taken an enormous coding burden off your shoulders. Remembering how to fill in
the different dialog boxes takes time and practice, but this chapter has taken you much
further by showing you how to join tables and maintain referential integrity when deleting
records. This has been a relatively simple example, using just two tables. Databases fre-
quently contain many tables with complex relationships, but the underlying principles
remain the same.

In the next chapter, we’ll take a more in-depth look at searching for records, as well as
formatting dates.

WORKING WITH MULTIPLE TABLES

569

16

8598CH16.qxd 6/13/07 12:18 PM Page 569

http://lib.ommolketab.ir
http//lib.ommolketab.ir

17 SEARCHING RECORDS AND
HANDLING DATES

8598CH17.qxd 6/28/07 12:50 PM Page 571

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We don’t store information in a database simply for the fun of it. The idea of a database is
to make it easy to find the precise information you want, when you want, and without the
need to reorganize it constantly. To do this successfully, you need a good knowledge of
SQL. It’s a vast subject, so I’ll only be able to scratch the surface by showing you some
basic search techniques.

I’ll also show you how to handle dates in PHP and MySQL. As you saw in Chapter 14,
MySQL stores dates in the ISO format of YYYY-MM-DD. PHP takes a completely different
approach, calculating dates by counting the number of seconds elapsed since January 1,
1970. It’s not as complicated as it sounds, but you need to ensure that dates submitted to
MySQL are in the correct format and—equally important—that you can display dates in a
human-friendly way.

Specifically, this chapter shows you how to

Display the number of results from a search

Create striped table rows

Troubleshoot MySQL errors

Search for records based on full and partial matches

Use FULLTEXT indexing

Reuse a recordset after a repeat region

Format dates with MySQL and PHP

To work with most of the examples in this chapter, you need to have created the authors
and quotations tables and populated them with data, as described in Chapter 16. The
examples with dates are based on the feedback table from Chapter 14.

Querying a database and displaying the results
By now, you should be very familiar with creating recordsets. In Chapter 14, you started off
by using the Recordset dialog box in Simple mode to select all records in the feedback
table and to filter a recordset by using a primary key passed through a query string. In the
previous chapter, you took things a lot further by using the Advanced mode, selecting
records from two tables, and even using a left join to find records that don’t have a match-
ing foreign key. As you have probably realized by now, a recordset is the result of a data-
base search. Controlling the search is a SQL query using the SELECT command.

Dreamweaver builds the PHP code that passes the SQL query to the database and
processes the result. It can also build the SQL query for very simple searches. For anything
more sophisticated, it’s up to you to build the query yourself. Over the next few pages, I’ll
show you how to tackle some common search problems. However, writing SELECT queries
is a massive subject, about which whole books have been written (one of my favorite
writers on MySQL is Paul DuBois). So treat this chapter as an introduction to a fascinating
and rewarding subject, rather than a definitive guide to search queries.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

572

8598CH17.qxd 6/28/07 12:50 PM Page 572

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Enhancing the look of search results
Before getting into the nitty-gritty of searching, let’s take a quick look at a couple of ways
to improve the presentation of a list of search results: showing the number of records
retrieved and giving table rows an alternating background color. Both are quick and easy
to implement.

Displaying the number of search results
The big search engines, such as Google or Yahoo!, always tell you how many records
matched your criteria. In Dreamweaver, the Recordset Navigation Status data object makes
this child’s play.

You can do this with any page that contains a recordset, but I’ll use quote_list.php from
the previous chapter because it contains 50 results displayed over several pages. You
can use your own file from workfiles/ch16 or copy quote_list_start.php from
examples/ch17.

1. Open the page in the Document window, position the insertion point at the end of
the page heading, and press Enter/Return to insert a new paragraph above the
table that displays the recordset.

2. Select Recordset Navigation Status on the Data tab of the Insert bar, as shown in the
following screenshot. Alternatively, use Insert ➤ Data Objects ➤ Display Record
Count ➤ Recordset Navigation Status.

3. The dialog box has only one option: to choose the recordset that you want to use.
There’s only one on this page, so just click OK. Dreamweaver inserts a mixture of
static and dynamic text to display the numbers of the first and last records cur-
rently being displayed, plus the total number of records in the recordset.

Using the Recordset Navigation Status data object

SEARCHING RECORDS AND HANDLING DATES

573

17

8598CH17.qxd 6/28/07 12:50 PM Page 573

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Save the page, and test it in a browser. As you move back and forth through the
recordset, the numbers of the currently displayed records change dynamically, as
shown in the following screenshot:

Check your code, if necessary, against quote_list_stats.php in examples/ch17.

You can edit the static text surrounding the dynamic text object to customize the display.
As you can see from the screenshot in step 2, the starting record, ending record, and total
records numbers can be inserted independently. These independent options can also be
accessed from the Display Record Count submenu of the Server Behaviors panel.

Creating striped table rows
Viewing a long list of similar items on a computer screen can be tiring on the eyes, so it’s
often useful to give alternate rows a background color. This is very easy with a little bit of
simple math and PHP. If you divide any number by 2, the remainder is always 1 or 0. Since
PHP treats 1 as true, and 0 as false (see “The truth according to PHP” in Chapter 10), all
you need is a counter; increment it by 1 each time a new table row is added, and use the
modulo operator (%) to divide it by 2. The modulo operator returns the remainder of a
division, so this produces 1 (true) or 0 (false) every alternate row, which you can use to
control the CSS class for a different background color.

This exercise uses the same page as in the preceding section. It involves locating the code
for the repeat region and adding two short blocks of PHP to add the counter and insert
the class in every alternate row. You also need to define the class that controls the back-
ground color.

1. In the Server Behaviors panel, select Repeat Region (quoteList). This highlights the
repeat region, making it easy to find in Code view. The first section looks like this:

The code shown on line 102 is the start of a do . . . while loop that iterates
through the quoteList recordset to display the list of quotations (see Chapter 10
for details of loops).

Using modulo to create stripes in alternate rows

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

574

8598CH17.qxd 6/28/07 12:50 PM Page 574

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Amend the code like this (new code is shown in bold type):

</tr>
<?php $counter = 0; // initialize counter outside loop ?>
<?php do { ?>
<tr <?php if ($counter++ % 2) {echo 'class="hilite"';} ?>>
<td><?php echo $row_quoteList['first_name']; ?>

The first new block of code initializes the counter outside the loop, while the
second increments the counter by 1 inside the loop, and uses modulo to create a
Boolean (true/false) test to insert the hilite class in alternate rows. I have used
separate blocks to avoid breaking Dreamweaver’s Repeat Region server behavior
code.

The increment operator (++) performs the current calculation and then adds 1 to
the variable. So, the first time through the loop $counter is 0. This leaves a remain-
der of 0 (false), so the hilite class isn’t inserted into the <tr> tag. Next time, the
calculation produces a remainder of 1 (true), and so on until the loop comes to
an end.

3. Define the hilite class with the background color of your choice. Save the page,
and view it in a browser. Voilà, stripes. You can check your code against quote_
list_stripes.php in examples/ch17.

Some developers use slightly more complex code to insert a different class in odd-
numbered rows, too. This isn’t necessary. By utilizing the cascade in your CSS, you can set
a default background color for the table, and override it with the hilite class like this:

#striped tr {background-color: #EEE;}
#striped tr.hilite {background-color: #E8F2F8;}

These rules will produce alternate pale gray and pale blue stripes in a table with an ID
called striped. If you want to use the same effect in more than one table, change striped
from an ID to a class.

To get rid of the vertical gaps between cells, set cellpadding to 0, or use text-collapse:
collapse in a style rule that applies to the table.

SEARCHING RECORDS AND HANDLING DATES

575

17

8598CH17.qxd 6/28/07 12:50 PM Page 575

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Understanding how Dreamweaver builds a SQL query
Relying entirely on Dreamweaver to construct your queries puts you at a disadvantage
when seeking help in an online forum or reading a book or tutorial not specifically aimed
at Dreamweaver users. So it’s important to understand the code that’s generated. You
don’t need to learn how to write the code yourself. The purpose is to recognize various
parts of the script and know what they do. With that knowledge, you can easily adapt SQL
queries from other sources.

The file find_author_01.php in examples/ch17 contains a form with a single text field
called first_name and a submit button. Beneath the form is a table with a single row in a
repeat region, which displays the results of the search. Load the page into a browser, type
William in the text field, and click Search. You should see a list of authors whose first name
is William, as shown here:

Try some other names, such as John, Dorothy, and Mae, and a list of matching records is
displayed. By default, text searches in MySQL are case insensitive, so it doesn’t matter what
combination of uppercase and lowercase you use. We’ll get on to case-sensitive and
partial-word searches later, but let’s look at the code that Dreamweaver uses to submit the
query to the database.

I created the getAuthors recordset in find_author_01.php using the following settings in
the Recordset dialog box in Simple mode:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

576

8598CH17.qxd 6/28/07 12:50 PM Page 576

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The same query looks like this in Advanced mode:

The first thing to note is that Dreamweaver doesn’t add the table name in front of each
column name when you use the Recordset dialog box in Simple mode. As explained in the
previous chapter, adding the table name is necessary only when the same column name is
used in more than one table (like author_id in the authors and quotations tables).
Simple mode is capable of handling only single tables, so there’s never any danger of ambi-
guity. However, Dreamweaver automatically adds the table names to all columns when you
build a query in Advanced mode. It does so as a precautionary measure, even if there’s no
likelihood of ambiguity.

The other thing to note is that the Filter settings from Simple mode have been converted
to this:

WHERE first_name = colname

Dreamweaver uses colname to represent the unknown value that will be passed to the SQL
query through the text field in find_author_01.php. The properties of colname are
defined in the Variables area below, with Type set to Text, Default value to -1, and Run-time
Value to $_POST['first_name'].

It’s important to realize that colname is not part of SQL. Dreamweaver uses the concept of
replacement when dealing with unknown values in SQL queries. When you close the
Recordset dialog box, Dreamweaver replaces colname with PHP code that inserts the run-
time value into the query. So, in this example, it inserts “William” or whatever name is
input into the search form. The choice of colname is purely arbitrary. It can be anything
that doesn’t clash with the rest of the query. In the previous chapter, you used var1 and
var2 as the names for runtime variables.

The other important thing to know about Dreamweaver’s use of runtime variables is that
the PHP code automatically encloses the value in quotes unless you specify Type as
Numeric. Because strings must be enclosed in quotes, the correct way to write this query in
SQL is as follows (assuming that you’re searching for “William”):

Even though first_name uses a text datatype, it’s perfectly acceptable to use -1 as the
default value. Numbers can be stored as text. In fact, it’s sometimes essential to do so.
Telephone numbers usually contain nonnumeric characters, and a staff number might
begin with a leading zero, which would be stripped off by a numeric datatype.

SEARCHING RECORDS AND HANDLING DATES

577

17

8598CH17.qxd 6/28/07 12:50 PM Page 577

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SELECT first_name, family_name
FROM authors
WHERE first_name = 'William'
ORDER BY family_name ASC

Because Dreamweaver handles the quotes automatically, you need to adapt SQL from
other sources accordingly.

Now, look at the PHP code generated by these settings (see Figure 17-1).

Figure 17-1. The code Dreamweaver generates to create a recordset using a form variable

The first section of code (lines 32–35 in Figure 17-1) uses the runtime variable to create a
PHP variable, which derives its name from a combination of the runtime variable (colname)
and the recordset name (getAuthors) to become $colname_getAuthors.

Line 32 sets $colname_getAuthors to the default value. The conditional statement on lines
33–35 checks to see whether the form variable ($_POST['first_name']) exists. If it does,
$colname_getAuthors is reset to whatever value is submitted from the form.

If further runtime variables are used in the Recordset dialog box, each one is converted to
a PHP variable in a similar manner.

The code shown on line 36 of Figure 17-1 selects the appropriate database using variables
that are stored in the MySQL connection you created for the site (see Chapter 14).

The SQL query that performs the search is the long section of code shown on line 37.
Dreamweaver uses a PHP function called sprintf() to build the query and assigns the
result to a variable called $query_recordsetName (in this case, $query_getAuthors).

The sprintf() function can be difficult to get your head around, but it takes a minimum
of two arguments. The first of these is a string that contains one or more predefined place-
holders; the number of remaining arguments matches the number of placeholders in the
first argument. When the script runs, sprintf() replaces each placeholder with its corre-
sponding argument.

Why use such a convoluted way of inserting something into the SQL query? It’s a short-
hand way of passing the runtime variables to another function without the need to assign
the result to a variable. Dreamweaver passes all runtime variables to a custom-built func-
tion called GetSQLValueString(), which is a security measure against SQL injection.
GetSQLValueString() checks a variable from an external source, such as a form, makes
sure it’s of the expected datatype, and prepares it for insertion into the SQL query. This
involves removing magic quotes, escaping characters that cause problems with database
queries, and surrounding the variable with quotes, if necessary. If Dreamweaver didn’t use

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

578

8598CH17.qxd 6/28/07 12:51 PM Page 578

http://lib.ommolketab.ir
http//lib.ommolketab.ir

sprintf(), it would need to store the result of passing each runtime variable to
GetSQLValueString() before building the query. It also avoids complex problems with
escaping quotes with a lot of variables.

The most commonly used predefined placeholder used with sprintf() is %s, which stands
for “string.” So, the colname that you saw in the Recordset dialog box becomes %s, and
when the script runs, it is replaced by the result of GetSQLValueString($colname_
getAuthors, "text").

When there’s more than one runtime variable in a SQL query, Dreamweaver replaces each
one with %s, and passes it to GetSQLValueString() when listing the variable as an argu-
ment to sprintf().

The final three lines of code in Figure 17-1 pass the SQL query to MySQL, extract the first
record from the recordset, and find out how many records were found. $row_recordsetName
stores the first record, and $totalRows_recordsetName stores the number of records
retrieved.

Troubleshooting SQL queries
At the end of line 38 in Figure 17-1 is this rather doom-laden command:

or die(mysql_error());

This tells the script to stop running if there’s a problem with the SQL query, and to display
the error message returned by MySQL. Figure 17-2 shows what happens if you add single
quotes around the %s placeholder in the SQL query in find_author_01.php.

Figure 17-2. MySQL error messages look cryptic but are very useful.

The error is reported as being on line 1, because the message comes from MySQL, not PHP.
MySQL sees only the query, so the error is always on line 1. The important information is
the reference to the error being “near” a particular part of the query. The error is always
immediately preceding the segment quoted in the message, but the only way to diagnose
the problem is to study the contents of the query.

Don’t waste time trying to analyze the code. As explained earlier, the SQL query is stored
in a variable called $query_recordsetName. Dive into Code view, use echo to display the
query onscreen, and comment out the section of code that submits it to MySQL, as shown
in the following illustration:

GetSQLValueString() automatically handles quotes around text values, so you
shouldn’t add quotes around the %s placeholder in sprintf().

SEARCHING RECORDS AND HANDLING DATES

579

17

8598CH17.qxd 6/28/07 12:51 PM Page 579

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can then load the page into a browser and see exactly what is being sent to the data-
base. In the case of find_author_01.php, the query is displayed as soon as you load the
page (see Figure 17-3). In some cases, you need to pass the necessary values to the query
through the form or as part of a query string in the browser address bar. You might see a
lot of error messages onscreen, but that’s not important. As long as you can see what the
SQL query contains, you can get to the root of the problem.

Figure 17-3. Displaying the contents of a SQL query onscreen is the best way to analyze MySQL
errors.

At first glance, the output in Figure 17-3 seems OK, but on closer inspection, what looks
like a pair of double quotes around -1 is, in fact, four single quotes (if you try this yourself,
use the browser’s View Source option to see the output in monospaced type). The extra
pair of quotes is causing the error.

Even if you can’t spot the problem yourself, you can copy the output and paste it into a
question in an online forum. You’re much more likely to get a helpful response by show-
ing what’s being passed to the database and giving details of the MySQL error message.

You can use this technique with all SQL queries, not just SELECT ones.

Setting search criteria
All the SELECT queries used so far in this book have either retrieved all records or used a
single search criterion, but you often want to search on the basis of multiple conditions. As
Table 16-2 in the previous chapter shows, SQL accepts multiple conditions in a WHERE
clause, using AND or OR. Let’s use the authors and quotations tables from the previous

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

580

8598CH17.qxd 6/28/07 12:51 PM Page 580

http://lib.ommolketab.ir
http//lib.ommolketab.ir

chapter to perform a variety of searches. We’ll start with the authors table and then get
more adventurous by adding the quotations table into the mix.

Using numerical comparisons
As you’ve already seen, a single equal sign in a SQL query looks for an exact match. You
can also use comparison operators, such as > (greater than) and < (less than). This would
be of more practical value in a price list, where you’re looking for something cheaper or
more expensive than a particular amount, but you can demonstrate it using the primary
key column of the authors table, which uses numbers.

In find_author_02.php, I changed the Filter setting in the Recordset dialog box in Simple
mode to author_id < Form Variable author_id. This changes the WHERE clause to this:

WHERE author_id < colname

The Type of colname is changed to Numeric, and its Runtime Value to $_POST['author_id'].
Because the default is left at -1, nothing is displayed when the page first loads, but if you
enter a number and click the Search button, you see a list of all authors with a primary key
lower than the figure entered.

This is a rather trivial example, but if you go through the various Filter options in Simple
mode, and examine the SQL in Advanced mode, you’ll quickly learn how the operators are
used in a SQL query. Dreamweaver uses <> as the “not equal to” operator instead of !=.
Either is perfectly acceptable.

At the bottom of the Filter drop-down menu are three options: begins with, ends with, and
contains. These perform wildcard searches, where the user enters only part of the search
term. Unfortunately, the code generated by Dreamweaver fails when you use any of these
options with a numeric column. I’ll come back to wildcard searches later in the chapter
and explain how to perform them successfully with either text or numbers.

Although the Filter options in Simple mode have their uses, they’re not very practical in a
real-world situation. Normally, you want a search form to offer the user a variety of
options. That’s where an understanding of the code generated by Dreamweaver becomes
invaluable.

Roll up your sleeves to create something a little more practical.

This exercise enhances find_author_02.php by adding a drop-down menu that gives the
user the option to choose how the comparison should be performed—greater than, less
than, equal to, or not equal to. The selection is passed to the SQL query as a form variable.
Since Dreamweaver has options only for numbers and text, you need to do some elemen-
tary hand-coding.

Performing user-controlled comparisons

For a greater-than comparison, the default needs to be higher than any existing value
in the column. If you leave it at -1, all records are displayed when the page first loads.

SEARCHING RECORDS AND HANDLING DATES

581

17

8598CH17.qxd 6/28/07 12:51 PM Page 581

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Copy find_author_02.php from examples/ch17, and save it as find_author_03.
php in workfiles/ch17.

2. Click inside the Author_id label to the left of the text field, select the <label> tag in
the Tag selector at the bottom of the Document window, and press the right arrow
key once to position the insertion point correctly between the label and text field.

3. Select List/Menu from the Forms tab of the Insert bar (or use the Form submenu of
the Insert menu). In the Input Tag Accessibility Attributes dialog box, enter operator in
the ID field, leave Label blank, select No label tag, and click OK.

4. Click the List Values button in the Property inspector, and enter the following oper-
ators in both the Item Label and Value fields: =, !=, <, <=, >, and >=. Although you
don’t normally need to set the Value field if it’s the same as Item Label, you need to
do it on this occasion, because Dreamweaver replaces the less-than and greater-
than operators with HTML entities.

5. Select the equal sign as Initially Selected.

6. Open Split view, and edit the value properties of the <option> tags to change the
HTML entities to the less-than and greater-than operators. Leave the HTML entities
intact between the opening and closing <option> tags. The page should look
like this:

7. Switch to Code view, and scroll up to locate the recordset code, which looks like
this:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

582

8598CH17.qxd 6/28/07 12:51 PM Page 582

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. You need to replace the < in the WHERE clause (shown on line 37 of the preceding
screenshot) with a variable and define it in the same way as Dreamweaver has done
with colname. Begin by positioning your cursor on the blank line shown on line 31
and inserting the following code:

// define the operator variable and give it a default value
$operator = '=';
// define an array of acceptable operators
$permittedOperators = array('=', '!=', '<', '<=', '>', '>=');
// get operator value from form, if submitted
if (isset($_POST['operator']) && in_array($_POST['operator'], ➥

$permittedOperators)) {
$operator = $_POST['operator'];
}

This sets $operator to a default value of an equal sign, defines an array of accept-
able operators, and reassigns the value submitted from the form, if it exists and is
one of the permitted operators. Using the $permittedOperators array and
in_array() like this performs a similar security check to the $expected array that
you used with the feedback form in Chapter 11. Any variable that’s passed to a SQL
query should be scrutinized to prevent SQL injection.

9. Now edit the SQL query (shown on line 37 of the preceding screenshot) like this
(new code is highlighted in bold):

$query_getAuthors = sprintf("SELECT first_name, family_name ➥

FROM authors WHERE author_id %s %s ORDER BY family_name ASC", ➥

$operator, GetSQLValueString($colname_getAuthors, "int"));

As explained earlier in “Understanding how Dreamweaver builds a SQL query,”
sprintf() uses %s as a placeholder and replaces each one in order by the subse-
quent arguments passed to the function. So, the form values are both passed to
the SQL query in a secure manner; the first %s is replaced by the operator, and the
second one is replaced the value entered in the text field.

10. Save the page, and test it in a browser. Enter 32 in the text field, and click Search.
William Shakespeare should be displayed. Change the operator to !=, and perform
the same search. All authors except Shakespeare are displayed, and so on.

You can check your code against find_author_03.php in examples/ch17.

Searching within a numerical range
There are two ways to specify a range in SQL. One is to use >= (greater than or equal to)
for the bottom end of the range and <= (less than or equal to) for the top end. The alter-
native is BETWEEN . . . AND. Both require two input fields. This means setting two variables,
so you’re obliged to use the Recordset dialog box in Advanced mode. The files
find_author_04.php and find_author_05.php in examples/ch17 have been modified by
adding a second text input field and naming the two fields min and max. The recordset set-
tings in find_author_04.php look like this:

SEARCHING RECORDS AND HANDLING DATES

583

17

8598CH17.qxd 6/28/07 12:51 PM Page 583

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I have used var1 and var2 as the runtime variables and given them both the same settings,
as shown in the preceding screenshot (Run-time Value for var2 is $_POST['max']).

The only difference in find_author_05.php is the WHERE clause in the SQL query, which
looks like this:

WHERE authors.author_id BETWEEN var1 AND var2

If you test both pages in a browser, they produce identical results. As long as you enter a
number in both fields, you should see a list of authors’ names (unless, of course, the min-
imum is greater than the highest number in the table).

Now try entering a value in just the minimum field. As you might expect, there are no
results. This is hardly surprising, because the default value of var2 (which controls the
maximum) is set to -1. So try just the maximum field. Again, no results. This is more
puzzling, because the default for the minimum field is also -1, so you would expect to get
a list of authors whose primary keys belong in the range from 1 (since primary keys can’t
be negative) to whatever you entered in the maximum field.

You need to look at the code to understand what’s happening.

This exercise helps explain how the default value of a runtime variable is used in a SQL
query. It also shows how to tweak the Dreamweaver code to influence the way default
values are used. You can use either find_author_04.php or find_author_05.php, as the
PHP code is identical.

1. In the Server Behaviors panel, double-click Recordset (getAuthors) to open the
Recordset dialog box. Select var2 in the Variables field, click the Edit button, and
change Default value to 10. Since var2 is the runtime variable for max, this resets the
default maximum.

2. Save the changes, and load the page into a browser. The names of the first ten
authors are displayed after the form.

3. Enter a number between 1 and 9 in the Minimum field, but leave the Maximum field
empty. Click Search. It doesn’t matter what number you choose, nothing is dis-
played. So what’s happened to the default you set in step 1?

Experimenting with the default value

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

584

8598CH17.qxd 6/28/07 12:51 PM Page 584

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. To find out, open Code view, and locate the code that sets the default values.
It looks like this:

The code shown on line 36 sets the default value of $var2_getAuthors to 10.
However, the conditional statement on lines 37–39 resets it if the value of
$_POST['max'] has been defined. I imagine that many of you will be scratching
your head at this point. Surely, if the field is left blank, the value isn’t defined?
Wrong. It is defined—as an empty string. As a result the WHERE clause in
find_author_04.php is converted to this:

WHERE authors.author_id >= -1 AND authors.author_id <=

Similarly, the WHERE clause in find_author_05.php has no maximum. Without it,
the SQL query returns no results. It doesn’t trigger any error messages, either,
because a valid value is passed to the query. The problem is that it’s a number you
want, not an empty string.

5. To preserve the default number when a blank field is submitted, change the code
shown on line 37 like this:

if (isset($_POST['max']) && !empty($_POST['max'])) {

6. Test the page again. This time, if you leave the Maximum field blank, the script uses
10 as its default value. Of course, you can override this by entering a different num-
ber in the field. But if you leave the Minimum field blank, you still get no results. It
needs to be changed in the same way if you always want a default value to be used
when the form is submitted.

Is this a bug in Dreamweaver? It depends on your point of view. When creating runtime
variables in Simple mode, Dreamweaver always uses -1 as its default value. This ensures
that a search form displays no results when the page first loads. This is usually what you
want, but you should ask, “Why bother to run the SQL query when the page first loads?”
It’s inefficient to submit a query to the database when no search criteria have been
defined.

The more efficient way to prevent the display of recordset results when a search form first
loads is to wrap the recordset code in a conditional statement and execute the SQL query
only when the search form has been submitted. If you name the submit button search, you
can use the following code:

if (array_key_exists('search', $_POST)) {
// recordset code goes here
}

SEARCHING RECORDS AND HANDLING DATES

585

17

8598CH17.qxd 6/28/07 12:51 PM Page 585

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This is the same technique as used in Chapter 11 to make sure that the client-side valida-
tion of the feedback form is run only after the form has been submitted. Since the record-
set isn’t created when the page first loads, you need to wrap the table that displays the
recordset results in a similar conditional statement. You also need to amend this block of
code below the closing </html> tag:

<?php
mysql_free_result($recordsetName);
?>

Change it like this:

<?php
if (isset($recordsetName)) mysql_free_result($recordsetName);
?>

A fully commented version of this code is in find_author_06.php in examples/ch17. Only
the form is displayed when the page first loads. If nothing is entered in either or both of
the text fields when the form is submitted, the default values are used. Otherwise, the
search is based on the values entered into each field. This results in a much more efficient
way of searching through a numerical range.

Searching for text
Searching for text follows the same basic principles, but there are more options, as you
frequently need to base text searches on partial information. For example, you might want
to find all authors whose family name begins with “S,” or you might want to search for
quotations that contain the word “winter.” In some cases, you might also want the search
to be case sensitive.

Making a search case sensitive
As explained earlier, text searches in MySQL are, by default, case insensitive. To enforce
case sensitivity, you simply add the keyword BINARY in front of the runtime variable.

In find_author_01.php (see “Understanding how Dreamweaver builds a SQL query”
earlier in the chapter), the SQL query looks like this:

SELECT first_name, family_name
FROM authors
WHERE first_name = colname
ORDER BY family_name ASC

When the form is submitted, colname is replaced by the value in the first_name field. To
make the search case sensitive, change the WHERE clause like this:

WHERE first_name = BINARY colname

The SQL query in find_author_07.php performs a case-sensitive search. Enter John in the
search field, and you get three results. Enter john, JOHN, or any other combination of
uppercase and lowercase letters, and you’ll see no results.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

586

8598CH17.qxd 6/28/07 12:51 PM Page 586

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Displaying a message when no results are found
It’s not very user friendly to leave users wondering whether a search is still being per-
formed or whether it simply produced no results. The Show Region server behavior makes
it easy to display a special message if nothing is found.

This brief exercise shows you how to add a message to find_author_07.php to tell a user
that no results were found. The default code generated by Dreamweaver needs to be
edited slightly if you don’t want the message to appear when the page first loads.

1. Copy find_author_07.php from examples/ch17, and save it in workfiles/ch17 as
find_author_08.php.

2. Click inside the search form, select <form#form1> in the Tag selector at the bottom
of the Document window, and press your right arrow key once to place the inser-
tion point outside the closing </form> tag.

3. Press Enter/Return to insert a new paragraph, click the Bold button in the Property
inspector, and type No results found.

4. Click the <p> tag in the Tag selector to highlight the paragraph that you have just
inserted, and select Show Region ➤ Show If Recordset Is Empty from the Server
Behaviors panel menu (the same options are also available on the Data tab of the
Insert bar and the Data Objects submenu of the Insert menu).

5. The dialog box that opens has only one option: for you to select the recordset.
Since there’s only one on this page, it automatically selects the correct one, so just
click OK. This surrounds the selected paragraph with a gray border and a Show If
tab at the top-left corner, indicating that it’s controlled by a conditional statement.

6. Save the page, and load it into a browser. As the following screenshot shows, the
No results found message is automatically displayed:

This is because of the way that Dreamweaver handles runtime variables (see
“Searching within a numerical range” earlier in the chapter). Unless you wrap the
recordset code in a conditional statement, as described earlier, the SQL query is
submitted to the database when the page first loads. The default value of -1 delib-
erately prevents any results from being found, so the message is displayed.

Using the Show Region server behavior

SEARCHING RECORDS AND HANDLING DATES

587

17

8598CH17.qxd 6/28/07 12:51 PM Page 587

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There are two ways to get around this. One is to wrap the code in conditional state-
ments as described earlier (the Show Region server behavior code needs to go
inside the conditional statement that controls the display of results). The other,
simpler solution is to edit the Show Region server behavior code. This time, we’ll
take the second option.

7. Select Show If Recordset is Empty (getAuthors) in the Server Behaviors panel to select
the server behavior code, and switch to Code view. The code should be highlighted
like this:

8. You want the code in this conditional statement to be executed only if the form
has been submitted, so amend the code shown on line 60 like this:

<?php if (array_key_exists('search', $_POST) && $totalRows_getAuthors➥

== 0) { // Show if form submitted and recordset empty ?>

Changing the code like this prevents you from editing the Show Record server
behavior in the Server Behaviors panel, but it tidies up the display of your search
form. When you reload the page into a browser, the message is hidden until you
conduct a search that genuinely produces no results.

Check your code, if necessary, against find_author_08.php in examples/ch17.

The Show Record server behavior has a companion option: Show If Recordset Is Not Empty.
It’s applied in exactly the same way. Its main purpose is to keep static text hidden if no
results are found. For example, you might want to display a Recordset Navigation Status
data object only when there’s at least one result. You can also use it to keep text or col-
umn headings hidden unless there’s a search result.

Searching multiple columns
Frequently, text searches are based on matching multiple criteria or alternatives. SQL uses
AND and OR to build such queries. The meaning is self-explanatory. To search for an author
by both first name and family name, create a second runtime variable, such as colname2,
and change the WHERE clause to this:

WHERE first_name = colname AND family_name = colname2

To search on the basis of either first name or family name, change the WHERE clause to this:

WHERE first_name = colname OR family_name = colname2

Examples of this are in find_author_09.php and find_author_10.php, respectively, in
examples/ch17. The file find_author_11.php shows an example of passing AND or OR as a
runtime variable to the SQL query using the same technique as described earlier in
“Performing user-controlled comparisons.”

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

588

8598CH17.qxd 6/28/07 12:51 PM Page 588

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Searching with a partial match
In SQL, the equal sign looks only for an exact match. All the examples so far have used the
authors table, where each column normally contains only a single word. A search for
“William” produces two results: William Shakespeare and William Wordsworth. However, a
search for “Will” produces no results. You might also want to search for all family names
beginning with “S” or search the quotations table for all entries that include “winter.”

When searching through columns that contain short text entries or numbers, you can use
wildcard characters in your search. For longer sections of text, you should consider creat-
ing a FULLTEXT index. We’ll look briefly at both approaches.

Using wildcard characters in a search
MySQL has two wildcard characters: the underscore (_) matches a single character, and the
percentage sign (%) matches any number of characters. A particularly useful feature about
% is that it also matches nothing. This means that a search for “Will%” matches both
William and Will on its own. Consequently, most wildcard searches use %.

To use a wildcard character in a SQL query in Dreamweaver, add it to the beginning, end,
or both ends of the runtime variable. Also, replace the equal sign with the keyword LIKE.
So, to search for authors based on the first part of their name, change the WHERE clause in
find_author_09.php like this:

WHERE first_name LIKE colname% AND family_name LIKE colname2%

You can test this in find_author_12.php. Start by entering the first part of a name in both
fields. For example, if you type W in the First name field and S in the Family name field, the
result is William Shakespeare. Try it again, just typing W in the First name field. You should
see four results.

Pause a moment to think about this. The SQL query uses AND, so shouldn’t there be some-
thing in both fields? To understand what’s happened, repeat the test with find_
author_13.php. The SQL query is identical, but the page displays the query along with the
results (see Figure 17-4 on the next page).

Although nothing is entered in the second field, the wildcard character % is added to the
end of the runtime variable. This results in the second condition matching the
family_name column with %—in other words, anything.

Now try it with find_author_14.php, where the only difference is that AND has been
changed to OR.

If you enter values in both fields, you’ll get the results that you expect. However, if you
leave one of the fields blank, you’ll always get a full list of all records. This is because the
query tells the database to match anything in one of the fields.

SEARCHING RECORDS AND HANDLING DATES

589

17

8598CH17.qxd 6/28/07 12:51 PM Page 589

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 17-4. Using AND with a wildcard character search allows a field to be left blank.

Adding % at the front of a runtime variable lets you search for words that end with a par-
ticular letter or series of characters. Putting % at both ends of a runtime variable finds the
search expression in the middle of a string; and since % can also match nothing, it means
the search term can be anywhere—at the beginning, in the middle, at the end, or it can
even be the full string itself.

So, let’s bring the quotations table into our search.

This exercise adapts the SQL query used in quote_list.php in the last chapter. Instead of
displaying a list of all quotations and their authors, it uses a runtime variable with % at both
ends to search for quotations that contain a specific word or phrase. To save you time, I
have created find_quote_01.php in examples/ch17 for you to use as a starting point. The
finished code is in find_quote_02.php.

Searching for quotations that contain a word or phrase

This illustrates an important difference between SQL and PHP. When it encounters OR,
the PHP engine doesn’t bother to evaluate the second half of the condition if the first
half is true. In a SQL query, however, both sides are evaluated. So, in the first case, the
SQL query finds authors whose first name begins with “W” AND whose family name is
anything. In the second case, it finds authors whose first name begins with “W” OR
whose family name is anything. Creating searches with wildcards can be confusing, so
it’s a good idea to display the SQL query onscreen while testing to understand why
you get the results you do.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

590

8598CH17.qxd 6/28/07 12:51 PM Page 590

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Copy find_quote_01.php to workfiles/ch17, and open it in the Document
window. The page contains a form with a single text input field called searchTerm,
a submit button, and code to display the results of the search.

2. Double-click Recordset (getQuote) in the Server Behaviors panel to open the
Recordset dialog box. The SQL query looks like this:

SELECT authors.first_name, authors.family_name, quotations.quotation
FROM authors, quotations
WHERE quotations.author_id = authors.author_id
ORDER BY authors.family_name

It’s the same as in quote_list.php. Click the Test button, and you’ll see every quo-
tation listed with its author’s name.

3. To search for quotations containing a particular word or phrase, you need to add
the quotation column to the WHERE clause. In the Database items section at the
bottom of the Recordset dialog box, expand Tables, and highlight quotation in
the quotations tree menu. Click the WHERE button to add it to the SQL query. The
WHERE clause should now look like this:

WHERE quotations.author_id = authors.author_id AND quotation.quotation

4. Add LIKE %var1% to the end of the WHERE clause, click the plus button alongside
Variables, and define the runtime variable var1 using the following settings:

Name: var1

Type: Text

Default value: -1

Runtime value: $_POST['searchTerm']

The settings in the SQL and Variables fields should now look like this:

5. Click OK to close the Recordset dialog box, save the page, and load it into a
browser. The quotations contain a lot of seasonal references, so enter summer or
winter in the Search for field. You should see a list of quotations that contain the
search term.

6. Searches with the % wildcard aren’t limited to single words. Try entering just x in the
Search for field. You should see a quotation from Winston Churchill that contains
the word “except.”

SEARCHING RECORDS AND HANDLING DATES

591

17

8598CH17.qxd 6/28/07 12:51 PM Page 591

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. You can also search for a phrase. Enter red, red rose, and click the Search button.
You should see the following result:

Note that the phrase must be exact and must not be enclosed in quotes.

Check your code, if necessary, against find_quote_02.php in examples/ch17.

In this exercise, I used only one search term, but there’s no limit to the number of runtime
variables that you can use. However, the more complex a search becomes, the longer it
takes to process, so it’s wise to limit the number of options.

This type of wildcard search works fine for even quite large databases. I use it on a data-
base that contains more than 14,000 records, and the search results are normally displayed
in one or two seconds. If you need to do a lot of text searches, you might consider
FULLTEXT indexing, which offers a more sophisticated range of text search options.

Before moving on to FULLTEXT indexing, we need to take a look at using wildcard charac-
ters with numbers, because this causes a lot of confusion.

Using wildcard characters with numbers
When the Dreamweaver 8.0.2 updater was released in mid-2006, many people complained
that wildcard searches for numerical columns suddenly stopped working. Dreamweaver
CS3 uses the same code as the 8.0.2 updater, so to be able to use wildcard characters
when searching for numbers, you need to understand why things now work differently.
There are two reasons:

The SQL specification says that LIKE is for use with strings. Dreamweaver now
enforces this rule.

There is a bug in the way that the Recordset dialog box handles wildcard searches
in Simple mode. Adobe is aware of this bug, so it’s likely to be corrected in an
updater to Dreamweaver CS3.

The easiest way to explain how to get around both issues is with a practical exercise.

This exercise shows you how to use wildcards with numerical columns. All that’s necessary
is to check that Dreamweaver treats the runtime variable as text.

Setting the correct datatype for wildcard searches with numbers

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

592

8598CH17.qxd 6/28/07 12:51 PM Page 592

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Open find_author_15.php in examples/ch17. It contains all the necessary code to
search for authors by primary key, using a wildcard search for author_id.

2. Double-click Recordset (getAuthors) in the Server Behaviors panel to open the
Recordset dialog box. Switch to Simple mode, if necessary. The settings should look
like this:

3. Click the Test button, and enter a test value when prompted. If you enter 3, you
should see a set of results like this:

4. Close the test panel and the Recordset dialog box, and load the page into a
browser. Try the same test by entering a number in the text field and clicking the
Search button. This time, you’ll get no results. As the following screenshot shows,
the page displays the contents of the SQL query to help you understand what’s
happened.

SEARCHING RECORDS AND HANDLING DATES

593

17

8598CH17.qxd 6/28/07 12:51 PM Page 593

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It doesn’t matter what number you enter in the search field, the SQL query always
uses the following WHERE clause:

WHERE author_id LIKE 0

In both SQL and PHP, numbers are not enclosed in quotes, so the absence of
quotes around 0 indicates that Dreamweaver is treating the runtime variable as a
number. Although that sounds logical, the SQL specification says LIKE is for strings.
Dreamweaver now enforces that rule, but the bug in the Recordset dialog box
forgets about it.

5. Open the Recordset dialog box again, and switch to Advanced mode. The settings
should look like this:

As you can see from the preceding screenshot, the value of Type for the runtime
variable colname is set to Numeric. Click the Edit button, and change Type to Text.

6. Save the page, and test it again in a browser. This time, you should see a result like
that shown in Figure 17-5.

Although the preceding exercise is based on the bug in the Recordset dialog box in Simple
mode, the key to successful wildcard searches with numbers lies in step 5: set Type for the
runtime variable to Text in Advanced mode. Although this seems counterintuitive when
you’re searching a numerical column, MySQL silently converts the string back to a number
and performs the search correctly.

The WHERE clause uses 0 if you set Type to Numeric, because Dreamweaver adds the wild-
card character to the runtime variable before passing it to GetSQLValueString(). This is
the Dreamweaver function that sanitizes user input before inserting it into a SQL query.
The function sees that the wildcard character isn’t a number, so replaces it with 0 to pro-
tect your database from malicious attack.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

594

8598CH17.qxd 6/28/07 12:51 PM Page 594

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 17-5. Always set the datatype to text in wildcard searches that use LIKE.

Using a FULLTEXT index
A problem with wildcard characters is that you need to design SQL queries to take into
account the various combinations of search terms that users might want to use. MySQL
offers a useful alternative approach: creating a FULLTEXT index on the column(s) you want
to search. You can use FULLTEXT searches in a number of ways, but the following are the
most useful:

Natural language searching: This finds all words passed to the query as a runtime
variable. So a search for “winter discontent” (without the quotes) in the
quotations table returns all records that contain either “winter” or “discontent.”

Searching in Boolean mode: This lets the user refine the search by preceding
required words with a plus sign (+) and words to be excluded by a minus sign (–).
So, a search for “+winter +discontent” (without the quotes) in the quotations
table would find the Shakespeare quotation about “the winter of our discontent”
but exclude all other records. Boolean mode also permits the use of double quotes
to specify exact phrases and the asterisk (*) as a wildcard character.

SEARCHING RECORDS AND HANDLING DATES

595

17

8598CH17.qxd 6/28/07 12:51 PM Page 595

http://lib.ommolketab.ir
http//lib.ommolketab.ir

These are significant advantages to FULLTEXT, but it does have the following limitations:

Only MyISAM tables support FULLTEXT indexes. You cannot add a FULLTEXT index
to InnoDB tables. So you need to choose between maintaining referential integrity
with foreign key constraints and FULLTEXT searching.

Only CHAR, VARCHAR, and TEXT columns can be included in a FULLTEXT index.

Words that occur in more than 50 percent of the records are ignored.

Words that contain fewer than four characters are ignored.

More than 500 common words, such as “the,” “also,” and “always,” are designated
as stopwords that are always ignored, even if preceded with a plus sign in Boolean
mode. See http://dev.mysql.com/doc/refman/5.0/en/fulltext-stopwords.html
for the full list of stopwords.

Only full words are matched unless the wildcard asterisk is used in a Boolean
search.

Boolean mode requires MySQL 4.0 or higher. It does not work in MySQL 3.23.

A FULLTEXT index can be created to search multiple columns simultaneously.
However, all columns must be in the same table.

The syntax for a FULLTEXT search is different from a wildcard search with LIKE. The WHERE
clause for a natural language search looks like this:

WHERE MATCH (columnName) AGAINST ('searchTerm')

For a Boolean search, it looks like this:

WHERE MATCH (columnName) AGAINST ('searchTerm' IN BOOLEAN MODE)

You can test FULLTEXT searching with find_quote_03.php and find_quote_04.php in
examples/ch17. The SQL query in find_quote_03.php performs a natural language search
and looks like this:

SELECT authors.first_name, authors.family_name, quotations.quotation
FROM authors, quotations
WHERE quotations.author_id = authors.author_id
AND MATCH (quotations.quotation) AGAINST (var1)
ORDER BY authors.family_name

The query in find_quote_04.php searches in Boolean mode and looks like this:

SELECT authors.first_name, authors.family_name, quotations.quotation
FROM authors, quotations
WHERE quotations.author_id = authors.author_id
AND MATCH (quotations.quotation) AGAINST (var1 IN BOOLEAN MODE)
ORDER BY authors.family_name

Since these are text searches, it goes without saying that the Type of the runtime variable
must always be set to Text.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

596

8598CH17.qxd 6/28/07 12:51 PM Page 596

http://dev.mysql.com/doc/refman/5.0/en/fulltext-stopwords.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Before you can use the example files, you need to add a FULLTEXT index to the quotations
table. If you used the InnoDB version of the quotations table, you also need to convert it
to MyISAM first.

Follow these instructions only if you installed the InnoDB version of the quotations table.
If you installed the MyISAM version, skip ahead to “Adding a FULLTEXT index.”

1. Launch phpMyAdmin, select the egdwcs3 database, and click quotations in the left
navigation frame to display the quotations table structure in the main frame.

2. Click Relation view under the table structure grid (see Figure 16-5 in the previous
chapter). Reset the drop-down menu alongside author_id to remove the link to
author_id in the authors table, as shown in the following screenshot, and click
Save:

3. Click the Operations tab at the top of the screen. In the Table options section of the
screen that opens, change Storage Engine to MyISAM, as shown in the next screen-
shot, and click Go:

4. Click the Structure tab at the top of the screen to return to the table structure grid.
There is no need to convert the authors table to MyISAM unless you want to add
a FULLTEXT index to it also.

Converting the quotations table from InnoDB to MyISAM

SEARCHING RECORDS AND HANDLING DATES

597

17

8598CH17.qxd 6/28/07 12:51 PM Page 597

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding a FULLTEXT index to a MyISAM table in phpMyAdmin is as simple as clicking a button.

1. If it’s not already open, launch phpMyAdmin, and display the quotations table
structure in the main frame.

2. Click the Fulltext icon in the quotation row, as shown in the following screenshot:

As you can see from the screenshot, the Fulltext icon is grayed out for quote_id and
author_id, because they’re not capable of taking a FULLTEXT index. If the icon is also
grayed out for quotation, it probably means that the table is still using the InnoDB
storage engine. You must convert the table to MyISAM first.

That’s all there is to adding a FULLTEXT index.

A FULLTEXT index is best suited to very large text databases. When building the database,
it’s recommended to add the index after the data has been imported.

Working with multiple-column indexes A multiple-column FULLTEXT index allows you to
search several columns simultaneously. To create a multiple-column index in phpMyAdmin,
select the checkbox alongside each column name in the table structure grid, and click the
Fulltext icon at the bottom of the grid.

To create a SQL query for a multiple-column FULLTEXT index, list the column names sepa-
rated by commas in the parentheses after MATCH like this:

WHERE MATCH (column1, column2, column3) AGAINST ('searchTerm')

The index must include all columns listed. You cannot create a FULLTEXT index for each
column and list them in a MATCH definition. You need to create a separate index for
each combination of columns that you want to use in searches.

See http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html to learn more
about FULLTEXT searches.

Solving common problems
This section deals with frequently asked questions about SQL queries. Although the solu-
tions are relatively simple, you need to use the Recordset dialog box in Advanced mode for
all of them.

Adding a FULLTEXT index

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

598

8598CH17.qxd 6/28/07 12:51 PM Page 598

http://dev.mysql.com/doc/refman/5.0/en/fulltext-search.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Counting records
In Chapter 14, I warned you to resist the temptation to renumber primary keys to keep
track of how many records you have in a table. To count the number of records, just use
this simple query:

SELECT COUNT(*) FROM tableName

There must be no gap between COUNT and the opening parenthesis.

You can also combine this with a WHERE clause like this:

SELECT COUNT(*) FROM tableName WHERE price > 10
SELECT COUNT(*) FROM tableName WHERE first_name = 'John'

With SELECT COUNT(*), it’s a good idea to use an alias (see Chapter 16) like this:

SELECT COUNT(*) AS num_authors FROM authors

You can then access the result as num_authors from the Bindings panel. If you don’t use an
alias, Dreamweaver displays COUNT(*) in the Bindings panel, but when you insert the value
in Design view, you see a gold PHP shield instead of a dynamic text object. It works, but the
ability to see dynamic text objects makes it easier to understand what’s in your page.

The code for this example is in Recordset (countAuthors) in count.php in examples/ch17.
There are gaps in the author_id sequence, so the result is 40.

Eliminating duplicates from a recordset
SQL uses the keyword DISTINCT to eliminate duplicates from a SELECT query. You simply
insert DISTINCT immediately after SELECT. The authors table has three Johns and two
Williams. The following query results in John and William being listed only once:

SELECT DISTINCT first_name FROM authors

You can combine this with the COUNT() function to find out the number of distinct
records. The query looks like this:

SELECT COUNT(DISTINCT first_name) AS num_names FROM authors

The code for this example is in Recordset (countUnique) in count.php in examples/ch17.
The result for Recordset (countAuthors) is 40 and for Recordset (countUnique) is 34.

Hang on a moment . . . If you eliminate the two duplicate Johns and one duplicate William,
the result should be 37. The discrepancy comes from the fact that the first_name column
permits NULL values. Three records are NULL. COUNT(DISTINCT) ignores NULL values,
making 34 the correct result.

Reusing a recordset
It’s sometimes useful to use the same recordset more than once on a page, but you might
get a bit of a shock if you try to do so. A practical example will help explain the problem—
and the solution.

SEARCHING RECORDS AND HANDLING DATES

599

17

8598CH17.qxd 6/28/07 12:51 PM Page 599

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following exercise shows what happens when you attempt to reuse a recordset after
displaying its contents in a repeat region. To gain access to the data, you need to reset the
MySQL result resource. If you just want to look at the finished code, it’s in rewind_04.php
in examples/ch17.

1. Copy rewind_01.php from examples/ch17 to workfiles/ch17, and open it in the
Document window. The page has been laid out like this:

The getAuthors recordset retrieves the first five authors alphabetically by family
name and displays them in a repeat region as an unordered list.

2. Test the page by clicking the Live Data view button in the Document toolbar or by
loading the page into a browser. You should see the first five names displayed in
the unordered list. Nothing will be displayed after the paragraph that reads “Let’s
display the first one again:” because there’s no dynamic text object there yet.

3. Open the Bindings panel, and insert dynamic text objects for first_name and
family_name at the bottom of the page, as shown here:

4. Test the page again. There should be no difference from what you saw in step 2.
Check your code against rewind_02.php in examples/ch17, if you need to make sure.

So, why do the dynamic text objects no longer work? The answer, as always, lies in the
code. A repeat region is simply a PHP do . . . while loop. In Code view, the repeat
region that creates the unordered list to display the recordset looks like this:

Rewinding a recordset for reuse

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

600

8598CH17.qxd 6/28/07 12:51 PM Page 600

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In pseudo-code, the PHP code is doing this:

do {
display the first_name and family_name fields in an element

} while (records are still left in the recordset)

As the loop progresses, the recordset (or to be more precise, the MySQL result resource)
keeps track of its current position by moving an internal pointer. With each iteration, the
pointer moves to the next record, and when it gets to the last record, the do . . . while
loop comes to a halt. That’s why you can’t display anything else from the recordset. You
have reached the end of the line. But a recordset is just like a fishing line. You can rewind
it and use it again.

To rewind a MySQL result resource, you use the mysql_data_seek() function like this:

mysql_data_seek(resultResource, 0);

This resets the pointer and moves it back to the first record.

In Dreamweaver, the MySQL result resource is stored in a variable that has the same name
as your recordset. To reuse a recordset, you also need to prime the variable that holds the
current record. The name of this variable is made up of $row_ followed by the recordset
name (see why I told you to choose memorable names for your recordsets). You prime the
variable with the first record like this:

$row_recordsetName = mysql_fetch_assoc($recordsetName);

Unfortunately, Dreamweaver doesn’t let you apply a repeat region to the same record
more than once, so you need to code it manually. Let’s fix the code in our example page.

5. Place your cursor at the end of the do . . . while loop, and insert the code high-
lighted in the following screenshot:

The name of the recordset is getAuthors, so the variables for the recordset and the
current record become $getAuthors and $row_getAuthors, respectively.

6. Test the page again. This time, the name of the first author should be displayed
again at the bottom of the page (you can check your code against rewind_03.php).

If you simply want to display the unordered list of authors’ names again, you can
copy the code shown on lines 47–50 of the preceding screenshot and paste them
anywhere on the page after the highlighted section that rewinds the recordset.
However, you rarely want to use a recordset in exactly the same way, so let’s use a
table this time and see how to insert the repeat region code manually.

SEARCHING RECORDS AND HANDLING DATES

601

17

8598CH17.qxd 6/28/07 12:51 PM Page 601

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. In Design view, position your cursor at the end of the paragraph that displays the
name of the first author again. Insert a table with two columns and two rows, put
some column headings in the first row and dynamic text objects for first_name
and family_name in the second row, so the page now looks like this:

8. Click inside the second table row, and select the entire row by clicking the <tr> tag
in the Tag selector at the bottom of the Document window. Although you can’t use
the Repeat Region server behavior again, this highlights the section of code that
you want to repeat. This makes it easier to see where to insert the repeat region
code.

9. Switch to Code view, copy the highlighted sections of code from the original repeat
region, and paste them into the positions indicated in Figure 17-6.

Figure 17-6. Creating a repeat region manually involves copying two short PHP code blocks.

10. Save the page, and test it again. The table should now display the names of the first
five authors. Check your code, if necessary, against rewind_04.php in examples/ch17.

Understanding how a repeat region works
Note that the first name (Woody Allen) is displayed three times: in the original repeat
region, in the paragraph after the rewind code, and in the manually coded repeat region.
This is because the do . . . while loop doesn’t move to the next row of the recordset
until the end of the loop.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

602

8598CH17.qxd 6/28/07 12:51 PM Page 602

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The code that controls the repeat region is highlighted on lines 48 and 50 of Figure 17-6.
In effect, what it does is this:

<?php do { // start the repeat region ?>
Display the contents of the current record

<?php } while (retrieve and store the next record); ?>

The code inside the parentheses following while looks like this:

$row_getAuthors = mysql_fetch_assoc($getAuthors)

It’s exactly the same as the code on line 52 of Figure 17-6, which is used to prime the vari-
able that holds the current record. The mysql_fetch_assoc() function retrieves the next
available record from a MySQL query result as an associative array (see Chapter 10 for an
explanation of associative arrays), and moves the internal pointer to the next record. The
array is stored in $row_getAuthors. The name of each column is used as the array key, so
$row_getAuthors['first_name'] contains the first_name field of the current record,
and $row_getAuthors['family_name'] contains the family_name field. You can use these
values as often as you like until the next iteration of the loop, when the next record
replaces all the values in the array.

Many books and online tutorials use a for or a while loop and place this code at the
beginning of the loop. Dreamweaver takes a slightly different approach by retrieving the
first record outside the loop and getting each subsequent record at the end of the loop.
Either approach is perfectly acceptable. The only reason you need to be aware of this is in
case you want to incorporate code from another source. Mixing two styles of coding with-
out understanding how they work might result in records being skipped as the conflicting
styles iterate through a set of database results.

Formatting dates and time in MySQL
Let’s turn now to the thorny subject of dates. The calendars of most countries now agree
on the current year, month, and date (at least for international purposes—some countries
have different calendars for domestic use). What they don’t agree on is the order of the
component parts. In the United States, it’s month, date, year. In Europe, it’s date, month,
year. And in China and Japan, it’s year, month, date.

To avoid this mess, MySQL stores dates and time in the ISO-approved order of largest unit
(year) first, followed by the next largest (month), and so on down to the smallest (second).
In all versions of MySQL, dates are stored in the format YYYY-MM-DD, and times as
HH:MM:SS. In Chapter 14, we used a TIMESTAMP datatype for the submitted column of the
feedback table. In MySQL 4.1 and above, this is stored in the following format: YYYY-MM-DD
HH:MM:SS. Earlier versions of MySQL omit the punctuation, which makes a TIMESTAMP col-
umn less readable, but the underlying format is the same. The following examples show
how MySQL stores a TIMESTAMP created at 1:21 PM on May 7, 2007:

2007-05-07 13:21:00 /* MySQL 4.1 and above */
20070507132100 /* MySQL 4.0 and earlier */

SEARCHING RECORDS AND HANDLING DATES

603

17

8598CH17.qxd 6/28/07 12:51 PM Page 603

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This inevitably leads to the question, “But how can I store dates in the American (or
European) style?” The simple answer is, “You can’t. Or as Star Trek fans might put it: resist-
ance is futile.”

The situation isn’t as bad as you might think. By storing dates and time in a standard for-
mat, you’re never in any doubt as to the meaning. If the date in the preceding example
were stored as 5/7/2007, it would mean May 7 to an American, but 5 July to a European.
Love it or hate it, 2007-05-07 is unambiguous. Moreover, MySQL makes it very easy to dis-
play the date (or part of it) in just about every imaginable format.

I’ll come back at the end of the chapter, in the section “Storing dates in MySQL,” to discuss
the best way of handling dates in user input, but, for the moment, let’s concentrate on
how to display a date that has already been stored in this format.

Using DATE_FORMAT() to output user-friendly dates
MySQL has a wide range of date and time functions. The one that concerns us here is
DATE_FORMAT(), which does exactly what its name suggests. The syntax for DATE_FORMAT()
is as follows:

DATE_FORMAT(date, format)

Normally, date is the name of the table column that you want to format, and format is a
string that tells MySQL which format to use. You build the format string from specifiers.
Table 17-1 lists those most commonly used.

Table 17-1. Frequently used MySQL date format specifiers

Period Specifier Description Example

Year %Y Four-digit format 2007

%y Two-digit format 07

Month %M Full name January,
September

%b Abbreviated name, Jan, Sep
three letters

%m Number, with leading zero 01, 09

%c Number, no leading zero 1, 9

Day of month %d With leading zero 01, 25

%e No leading zero 1, 25

%D With English text suffix 1st, 25th

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

604

8598CH17.qxd 6/28/07 12:51 PM Page 604

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Period Specifier Description Example

Weekday name %W Full text Monday, Thursday

%a Abbreviated name, Mon, Thu
three letters

Hour %H 24-hour clock, with 01, 23
leading zero

%k 24-hour clock, 1, 23
no leading zero

%h 12-hour clock, with 01, 11
leading zero

%l 12-hour clock, 1, 11
(lowercase “L”) no leading zero

Minute %i With leading zero 05, 25

Second %S With leading zero 08, 45

AM/PM %p

The specifiers can be combined with ordinary text or punctuation in the format string. As
always, when using a function in a SQL query, there must be no space between the func-
tion name and the opening parenthesis. It’s also a good idea to assign the result to an alias
using the AS keyword (see Chapter 16). Referring to Table 17-1, you can now format the
date in the submitted column of the feedback table in a variety of ways. To present the
date in a common U.S. style and retain the name of the original column, use the following:

DATE_FORMAT(submitted, '%c/%e/%Y') AS submitted

To format the same date in European style, reverse the first two specifiers like this:

DATE_FORMAT(submitted, '%e/%c/%Y') AS submitted

You can now format the TIMESTAMP value in the feedback table in a way that’s easier
to read.

The following exercise shows you how to use DATE_FORMAT() to transform the TIMESTAMP
value stored in the feedback table. The same technique applies to any date or time col-
umn. By using different aliases, you can extract different parts of the date or time to use
in a variety of ways in your web pages. The exercise uses the feedback table created in
Chapter 14. Use ch17_feedback.sql, ch17_feedback40.sql, or ch17_feedback323.sql
in the tools folder to import the table and sample data, if necessary.

Formatting the date and time in the feedback table

SEARCHING RECORDS AND HANDLING DATES

605

17

8598CH17.qxd 6/28/07 12:51 PM Page 605

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. If you created feedback_list.php in Chapter 14, open the page in the Document
window. Otherwise, copy feedback_list_01.php from examples/ch17, and save it
in workfiles/ch17. Test the page in a browser to make sure that it displays a list of
dates and names, as shown in the following screenshot:

2. In the Server Behaviors panel, double-click Recordset (getFeedback) to edit the SQL
query. Switch to Advanced mode if necessary.

The first line of the SQL query looks like this:

SELECT message_id, name, submitted

3. For a U.S.-style date, amend it like this:

SELECT message_id, name, DATE_FORMAT(submitted, '%b %e, %Y') AS ➥

submitted

Reverse the order of the first two specifiers for a European-style date.

4. Click the Test button to make sure that everything is working correctly. You should
still have a column called submitted, but the dates will now be formatted as shown
here:

If Dreamweaver displays a MySQL error message instead, check that you have not
left any space between DATE_FORMAT and the opening parenthesis of the function.
Although some computer languages allow you to leave a space, MySQL doesn’t.
Also, make sure that the format string is enclosed in matching quotes. Although I
have used single quotes, double quotes are equally acceptable.

5. Close the test panel. You now have a nicely formatted date, but the time is missing.
Let’s experiment a little. The format string can contain any text in addition to the
format specifiers, so change the format string to this:

'%b %e, %Y at %l:%i %p'

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

606

8598CH17.qxd 6/28/07 12:51 PM Page 606

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Click the Test button again. The date and time should now be formatted like this:

7. You could leave it like that, but it’s sometimes convenient to have the date and
time available as separate variables, so let’s create a new alias for the time. Close
the test panel, and edit the first line of the SQL query like this:

SELECT message_id, name, DATE_FORMAT(submitted, '%b %e, %Y') ➥

AS the_date, DATE_FORMAT(submitted, '%l:%i %p') AS the_time

This extracts two formatted values from the same column: one as the_date and the
other as the_time.

8. Close the Recordset dialog box. The page now has a dynamic text object for
submitted, which is no longer part of the recordset. Select Dynamic Text (getFeedback.
submitted) in the Server Behaviors panel, and click the minus button to delete it.

9. Use the Bindings panel to insert dynamic text objects for the_date and the_time. The
actual layout is not important, but I inserted “at” as plain text between them like
this:

10. Save feedback_list.php, and view it in a browser. The dates should now be
formatted in a more user-friendly way. You can check your code against feedback_
list__02.php in examples/ch17.

This gives you just a brief glimpse of working with dates in MySQL. Other functions allow
you to perform useful calculations, such as working out people’s ages from their birth-
dates, calculating the difference between two dates, and adding to or subtracting from
dates. You can find details of all MySQL date and time functions, together with examples
at http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html.

Working with dates in PHP
PHP handles dates in a very different way from MySQL that’s not as easy to visualize in
everyday terms. Whereas MySQL timestamps are based on the human calendar, it’s impossible

SEARCHING RECORDS AND HANDLING DATES

607

17

8598CH17.qxd 6/28/07 12:51 PM Page 607

http://dev.mysql.com/doc/refman/5.0/en/date-and-time-functions.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

for anyone—except, perhaps, a mathematical genius—to read the date from a PHP time-
stamp, as this example shows:

1178544060 // Unix timestamp for 13:21:00 UTC on May 7, 2007

This seemingly arbitrary figure is the number of seconds since midnight UTC (Coordinated
Universal Time) on January 1, 1970—a point in time commonly referred to as the Unix
epoch and used as the basis for date and time calculations in many computing languages.
Except when referring to the current time, all dates in PHP need to be converted to a Unix
timestamp. After performing any calculations, you format the result in a more human-
readable way by using the date() or strftime() function, which I’ll describe shortly. But
first, let’s take a look at time zones and Unix timestamps.

Setting the correct time zone
The internal workings of the PHP date and time functions were revised in PHP 5.1 and
require a time zone to be defined. Normally, this should be done by setting the value of
date.timezone in php.ini; but if your hosting company forgets to do so, or you want to
use a different time zone, you need to set it yourself. You can do this in three different
ways.

The simplest way is to add the following at the beginning of any script that uses date or
time functions:

ini_set('date.timezone', 'timezone');

You can find a full list of valid time zones at www.php.net/manual/en/timezones.php. The
correct setting for where I live is this:

ini_set('date.timezone', 'Europe/London');

ini_set() fails silently if your server doesn’t support the date.timezone setting. As long
as you use a valid PHP time zone, your scripts will automatically use this setting whenever
your server is upgraded.

A slightly longer way is to add this (with the appropriate time zone) before using date and
time functions:

if (function_exists('date_default_timezone_set')) {
date_default_timezone_set('Europe/London');
}

If your remote server runs Apache, you may be able to set a default time zone for your
entire site by putting the following in an .htaccess file in the site root (use the correct
time zone for your location):

php_value date.timezone 'Europe/London'

This works only if Apache has been set up to allow .htaccess to override default settings.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

608

8598CH17.qxd 6/28/07 12:51 PM Page 608

http://www.php.net/manual/en/timezones.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a Unix timestamp
PHP offers two main ways of creating a Unix timestamp. The first uses mktime() and is
based on the actual date and time; the other attempts to parse any English date or time
expression with strtotime().

The mktime() function takes six arguments as follows:

mktime(hour, minutes, seconds, month, date, year)

All arguments are optional. If a value is omitted, it is set to the current date and time.
However, you can’t skip arguments; as soon as you leave one out, all remaining ones must
also be omitted. Consequently, if you are interested only in the date, you need to set the
first three arguments to 0 (midnight) like this:

$Xmas2007 = mktime(0, 0, 0, 12, 25, 2007);

The strtotime() function attempts to parse dates from American English but holds some
unpleasant surprises. The following expressions produce the correct timestamp for
Christmas day 2007:

$Xmas2007 = strtotime('12/25/2007');
$Xmas2007 = strtotime('2007-12-25');

However, replacing the slashes with hyphens in the first example, as follows, produces a
false result:

$notXmas = strtotime('12-25-2007'); // produces Jan 1, 1970 timestamp

To avoid such problems, it’s best to use the name of the month, either spelled out in full
or just the first three letters, and to place the year at the end of the string.

The real value of strtotime(), however, lies in its ability to add or subtract from dates by
parsing simple time-related expressions. For instance, strtotime() understands all these
expressions:

strtotime('tomorrow');
strtotime('yesterday');
strtotime('last Monday');
strtotime('next Thursday');
strtotime('-3 weeks');
strtotime('+1 week 2 days');

The previous examples calculate the timestamp based on the current date and time.
However, you can supply a specific timestamp as a second, optional argument to
strtotime(). This means you can add or subtract from a particular date. The following
example calculates the timestamp for January 6, 2008:

$Xmas2007 = mktime(0, 0, 0, 12, 25, 2007);
$twelfthNight = strtotime('+12 days', $Xmas2007);

Be careful when using next in a strtotime() expression. In versions prior to PHP 4.4,
it is incorrectly interpreted as +2, instead of +1.

SEARCHING RECORDS AND HANDLING DATES

609

17

8598CH17.qxd 6/28/07 12:51 PM Page 609

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you ever need to generate a Unix timestamp from a date-type column in MySQL, you
can use the UNIX_TIMESTAMP() function in a SELECT statement like this:

SELECT UNIX_TIMESTAMP(submitted) AS PHPtimestamp FROM feedback

Formatting dates in PHP
PHP offers two functions that format dates: date(), which displays the names of weekdays
and months in English only, and strftime(), which uses the server’s locale. So, if the
server’s locale is set to Spanish, date() displays Saturday, but strftime() displays sábado.
Both functions take as their first, required argument a string that indicates the format in
which you want to display the date. A second, optional argument specifies the timestamp,
but if it’s omitted, the current date and time are assumed.

There are a lot of format characters. Some are easy to remember, but many seem to have
no obvious reasoning behind them. You can find a full list at www.php.net/manual/en/
function.date.php and www.php.net/manual/en/function.strftime.php. Table 17-2
lists the most useful.

Table 17-2. The main format characters used in the date() and strftime() functions

Unit date() strftime() Description Example

Day d %d Day of the month 01 through 31
with leading zero

j %e* Day of the month 1 through 31
without leading zero

S English ordinal suffix st, nd, rd,
for day of the month or th

D %a First three letters of Sun, Tue
day name

l (lowercase “L”) %A Full name of day Sunday,
Tuesday

Month m %m Number of month 01 through 12
with leading zero

n Number of month 1 through 12
without leading zero

M %b First three letters of Jan, Jul
month name

F %B Full name of month January, July

Year Y %Y Year displayed as 2007
four digits

y %y Year displayed as 07
two digits

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

610

8598CH17.qxd 6/28/07 12:51 PM Page 610

http://www.php.net/manual/en
http://www.php.net/manual/en/function.strftime.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Unit date() strftime() Description Example

Hour g Hour in 12-hour 1 through 12
format without
leading zero

h %I Hour in 12-hour 01 through 12
format with
leading zero

G Hour in 24-hour 0 through 23
format without
leading zero

H %H Hour in 24-hour 01 through 23
format with
leading zero

Minutes i %M Minutes with leading 00 through 59
zero if necessary

Seconds s %S Seconds with leading 00 through 59
zero if necessary

AM/PM a %p Lowercase am

AM/PM A Uppercase PM

* Note: %e is not supported on Windows.

You can combine these format characters with punctuation to display the current date in
your web pages according to your own preferences. For instance, the following code
(in dates.php in examples/ch17) produces output similar to that shown in the following
screenshot:

<p>American style: <?php echo date('l, F jS, Y'); ?></p>
<p>European style: <?php echo date('l, jS F Y'); ?></p>

SEARCHING RECORDS AND HANDLING DATES

611

17

8598CH17.qxd 6/28/07 12:51 PM Page 611

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Storing dates in MySQL
There’s one outstanding issue—the problem of converting user-supplied dates to the for-
mat expected by MySQL. Using a TIMESTAMP column in the feedback table to get MySQL to
format the date and time automatically was very convenient, but it’s not an approach that
is appropriate to all situations. So this final part of the chapter is devoted to dealing with
human-generated dates.

A very simple way to handle dates in user input is to use the Spry Validation Text Field
widget (see Chapter 9) to enforce a particular format. One of the available formats is
YYYY-MM-DD. So, if you’re in an enclosed environment, such as an intranet, where you can
guarantee compliance—and that JavaScript won’t be disabled—this might be your solution.

However, getting Internet users to adhere to rules is rather like herding cats. It’s far safer
to ensure accurate date input by providing separate fields for month, day of the month,
and year, and then to use PHP to verify and format the input.

Validating and formatting dates for database input
In the examples/ch17 folder of the download files, you will find a page called date_
converter.php. When you load it into a browser, it displays a drop-down menu preset to
the current month, together with two text fields for the date and year, as shown in the
screenshot. The Max Chars settings for the text fields have been set to 2 and 4, respectively,
to limit the range of mistakes that can be made.

Experiment with the page, inserting a variety of valid and invalid input. When you click the
Convert to MySQL format button, either the correctly formatted date or an error message
is displayed at the foot of the page. You can incorporate the construction and validation
techniques used in this example page in any of your PHP forms.

The drop-down menu for the month is created in two parts. The first section of code goes
in a PHP block above the DOCTYPE declaration and consists of an array of the names of the
months, plus the PHP getdate() function. This is how it looks:

$months = array('Jan','Feb','Mar','Apr','May','Jun','Jul','Aug',➥

'Sep','Oct','Nov','Dec');
$now = getdate();

The getdate() function produces an associative array that contains a number of useful
date parts, such as the year, weekday name, and so on. When used without an argument
like this, getdate() returns information about the current date, so we can find the

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

612

8598CH17.qxd 6/28/07 12:51 PM Page 612

http://lib.ommolketab.ir
http//lib.ommolketab.ir

number of the current month in $now['mon'] and use it to preset the drop-down menu.
There’s a full list of the array elements returned by getdate() at www.php.net/manual/en/
function.getdate.php.

The code for the form looks like this (the section that builds the drop-down menu is high-
lighted in bold):

<form id="convert" name="convert" method="post" action="<?php➥

$_SERVER['PHP_SELF']; ?>">
<p>
<label for="select">Month:</label>
<select name="month" id="month">
<?php for ($i=1;$i<=12;$i++) { ?>
<option value="<?php echo $i < 10 ? '0'.$i : $i; ?>"
<?php if ($i == $now['mon']) {
echo ' selected="selected"'; } ?>><?php echo $months[$i-1]; ?>

</option>
<?php } ?>

</select>
<label for="day">Date:</label>
<input name="day" type="text" id="day" size="2" maxlength="2" />
<label for="year">Year:</label>
<input name="year" type="text" id="year" size="4" maxlength="4" />

</p>
<p>
<input type="submit" name="Submit" value="Convert to MySQL format"

/>
</p>

</form>

The PHP code uses a for loop to populate the menu’s <option> tags. Although counters
normally begin at 0, I have set the initial value of $i to 1, because I want to use it for the
value of the month.

The second line highlighted in bold uses the conditional operator (see Chapter 10) to test
whether $i is less than 10. If it is, a leading zero is added to the number; otherwise it is left
alone. Another way of writing it would be to use this:

if ($i < 10) {
echo '0'.$i;
}

else {
echo $i;
}

The third line of PHP checks whether the value of $i is the same as $now['mon']. If it is,
the following line inserts selected="selected" into the opening <option> tag. The final
part of the script displays the name of the month by drawing it from the $months array.
Because indexed arrays begin at 0, you need to subtract 1 from the value of $i to get the
right month.

SEARCHING RECORDS AND HANDLING DATES

613

17

8598CH17.qxd 6/28/07 12:51 PM Page 613

http://www.php.net/manual/en
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The code that validates the input and formats the date for MySQL also goes above the
DOCTYPE declaration. It’s a straightforward chain of if . . . else statements, which looks
like this:

if ($_POST) {
$m = $_POST['month'];
$d = trim($_POST['day']);
$y = trim($_POST['year']);
if (empty($d) || empty($y)) {
$error = 'Please fill in all fields';
}

elseif (!is_numeric($d) || !is_numeric($y)) {
$error = 'Please use numbers only';
}

elseif (($d <1 || $d > 31) || ($y < 1000 || $y > 9999)) {
$error = 'Please use numbers within the correct range';
}

elseif (!checkdate($m,$d,$y)) {
$error = 'You have used an invalid date';
}

else {
$d = $d < 10 ? '0'.$d : $d;
$mysqlFormat = "$y-$m-$d";
}

}

You don’t need to perform any checks on the value of the month, because the drop-down
menu has generated it. So, after trimming any whitespace from around the day and year,
they are subjected to the first three checks: to see if they are empty, not numeric, or out
of range. You have met the empty() function before. The second check uses
is_numeric(), which is basically self-explanatory. It takes advantage of PHP’s loose typing.
In strict terms of datatypes, the content of a text field is always a string, but is_numeric()
also returns true if a string contains a number, such as '5'. (No, it’s not clever enough to
recognize 'five' as a number.) The third test looks for numbers within acceptable ranges.
It looks like this:

elseif (($d <1 || $d > 31) || ($y < 1000 || $y > 9999)) {

The values set for the day (1–31) are immediately understandable, even though they don’t
apply to every month. The range for years (1000–9999) is dictated by the legal range for
MySQL. I suggest that you use a narrower range, more in line with the requirements of the
application you’re building. In the unlikely event that you need a year out of that range,

I have not created similar drop-down menus for the day and year because PHP is a
server-side language. Although you could create a script to display the correct num-
ber of days for the month, you would have to reload the page every time the month
was changed. You could create an intelligent date input system with JavaScript, but
that makes the dangerous assumption that all users will have JavaScript enabled.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

614

8598CH17.qxd 6/28/07 12:51 PM Page 614

http://lib.ommolketab.ir
http//lib.ommolketab.ir

you must choose a different column type to store the data. MySQL was not designed to
handle stardates from Star Trek: The Next Generation!

By using a series of elseif clauses, this code stops testing as soon as it meets the first mis-
take. If the input has survived the first three tests, it’s then subjected to the PHP function
checkdate(), which really puts a date through the mill. It’s smart enough to know the dif-
ference between February 29 in a leap year and an ordinary year.

Finally, if the input has passed all these tests, it’s rebuilt in the correct format for insertion
into MySQL. The first line of the final else clause uses the ternary operator, as described
earlier, to add a leading zero to the day of the month if necessary.

The way to integrate this routine into your own pages is by testing whether the POST array
has any values, and whether the $error or $mysqlFormat variables have been set. The fol-
lowing code shows the way that it’s done in date_converter.php:

if ($_POST) {
echo '<p>';
if (isset($error)) {
echo $error;
}

elseif (isset($mysqlFormat)) {
echo $mysqlFormat;
}

echo '</p>';
}

In the case of the example file, the tests are used to display the result. When adapting it
for an insert form, for example, you would use the tests like this:

if (isset($error)) {
// abandon insertion of data and display error messages
}

elseif (isset($mysqlFormat)) {
// go ahead with insertion of data
}

Continuing the search for perfection
As I said at the outset of this chapter, building SQL queries is a vast subject. The more you
learn, the more you realize just how much more there is to know. Even when working with
a single table, you can fine-tune your searches by using MySQL functions and aliases. So
it’s important to break out of the confines of the Recordset dialog box in Simple mode and
learn how to build queries that extract the information that you want—and in the format
you want. When you have a moment to spare, visit http://dev.mysql.com/doc/refman/
5.0/en/functions.html, and take a look at the impressive range of functions that you can
use in MySQL queries. The most useful categories are the string and date and time func-
tions. The online documentation has lots of examples showing how to use the functions.
Experiment with them and take your SQL skills to a new level.

SEARCHING RECORDS AND HANDLING DATES

615

17

8598CH17.qxd 6/28/07 12:51 PM Page 615

http://dev.mysql.com/doc/refman
http://lib.ommolketab.ir
http//lib.ommolketab.ir

18 USING XSLT TO DISPLAY LIVE NEWS
FEEDS AND XML

8598CH18.qxd 6/28/07 1:02 PM Page 617

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Extensible Markup Language (XML) is probably one of the most hyped and least under-
stood aspects of web development. XML has the simple objective of storing data in a
format that both humans and computers can easily understand. It’s not a database, nor is
it a programming language. It’s a highly structured way of presenting data. Because it uses
tags like HTML and XHTML, XML looks very familiar to web developers. However, there is
no master list of tags or attributes, and although XML frequently contains data intended
for display on the Web, it provides no way of displaying it.

That’s where programs like Dreamweaver come in. Dreamweaver CS3 offers two important
ways of processing raw XML and incorporating it in a web page, which we’ll look at in the
remaining chapters of this book. In this chapter, we’ll explore Extensible Stylesheet
Language Transformations (XSLT), a language for transforming XML into XHTML. Then, in
Chapters 19 and 20, we’ll look at using Spry, the Adobe implementation of Ajax, to manip-
ulate XML data sets. The final chapter will also show you how to generate your own XML
documents from data stored in MySQL.

In this chapter you’ll

Learn what XML and XSLT do

Determine whether your host supports XSLT within PHP

Draw data from a live news feed into your site

Experiment with the XPath Expression Builder

A quick guide to XML and XSLT
XML became a W3C standard in February 1998, and XSLT followed almost two years later,
in November 1999. Because of the “stylesheet” in its name, the role of XSLT is often
described as being to format XML documents in a similar way to CSS. However, there is no
real similarity. The real strength of XSLT lies in its ability to manipulate data, sorting and
filtering it in much the same way as SQL does with a database. Unfortunately, it’s not an
easy language to learn, but the XSL Transformation server behavior in Dreamweaver eases
the process considerably.

Before delving into the mysteries of XSLT, let’s take a look at the structure of an XML
document.

What an XML document looks like
XML is closely related to XHTML, so it looks reassuringly familiar, but there are two funda-
mental differences between them:

XHTML has a fixed range of tags and attributes. In XML, you create your own.

XHTML tags are concerned with the structure of a page (<head>, <body>, <p>,
<table>, and so on), whereas XML tags normally describe the data they contain
(for instance, the following example uses <Book> to store details of individual
books).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

618

8598CH18.qxd 6/28/07 1:02 PM Page 618

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The following is a simple example of an XML document:

<?xml version="1.0" ?>
<BookList>
<Book ISBN13="9781590598597">
<Title>The Essential Guide to Dreamweaver CS3 with CSS, Ajax, ➥

and PHP</Title>
<Authors>
<Author>David Powers</Author>

</Authors>
<Publisher>friends of ED</Publisher>
<ListPrice>49.99</ListPrice>

</Book>
<Book ISBN13="9781590598610">
<Title>Foundation Flash CS3 for Designers</Title>
<Authors>
<Author>Tom Green</Author>
<Author>David Stiller</Author>

</Authors>
<Publisher>friends of ED</Publisher>
<ListPrice>39.99</ListPrice>

</Book>
</BookList>

The first line is the XML declaration, often also referred to as the XML prolog, which tells
browsers and processors that it’s an XML document. The XML declaration is recommended
but not required. However, if you do include it, the XML declaration must be the first thing
in the document. The W3C recommends using XML 1.0 unless you need the highly spe-
cialized features of XML 1.1 (www.w3.org/TR/2004/REC-xml11-20040204/#sec-xml11).
The XML declaration can also contain an encoding attribute. If this attribute is omitted, as
in the previous example, XML parsers automatically use Unicode (UTF-8 or UTF-16).

As you can see from the example document, the tags give no indication as to how the doc-
ument is intended to look. In fact, it’s normally recommended that they shouldn’t,
because XML is intended primarily to store data in a hierarchical structure according to
meaning and without any reference to presentation. Unless you are working in a large col-
laborative project, which needs to use a standardized vocabulary, you can make up your
own tags, as I have done here. They can be made up not only of alphanumeric characters
but also accented characters, Greek, Cyrillic, Chinese, and Japanese—in fact, any valid
Unicode character. However, they cannot include any whitespace or punctuation other
than the hyphen (-), underscore (_), and period (.), nor can they begin with xml in any
combination of uppercase or lowercase letters.

The goals of XML include being human-legible, and terseness is considered of minimal
importance. So, instead of using <pub>, which could mean publisher, publication date, or
somewhere to get a drink, I have been specific and used <Publisher>. The most important
thing about an XML document is that it must be well formed. The main rules of what con-
stitutes a well-formed document are as follows:

There can be only one root element.

Every start tag must have a matching closing tag.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

619

18

8598CH18.qxd 6/28/07 1:02 PM Page 619

http://www.w3.org/TR/2004/REC-xml11-20040204/#sec-xml11
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Empty elements can omit the closing tag, but, if they do so, must have a forward
slash before the closing angle bracket (/>).

Elements must be properly nested.

Attribute values must be in quotes.

In the content of an element or attribute value, < and & must be replaced by <
and &, respectively.

An empty element is one that doesn’t have any content, although it can have attributes
that point to content stored elsewhere. To borrow a couple of examples from XHTML,
which is HTML 4.01 reformulated to adhere to XML rules, and
 are empty
elements. The src attribute of the tag points to the location of the image, but the
tag itself is empty. The
 tag simply creates a line break, so never has any content. To
comply with XML rules, they can be written as and
</br> or use the
shorthand and
. To avoid problems with older browsers, a space is normally
inserted before the closing forward slash in XHTML, but this is not a requirement of XML.

If you look at the previous example, you will see that it has only one root element:
<BookList>. All other elements are nested inside the root element, and the nesting
follows an orderly pattern. Even when a book has only one author, the <Author> tag is still
nested inside <Authors>, and the value of the ISBN13 attribute is always in quotes. While
these strict rules make XML more time-consuming to write, the predictability of a well-
formed document makes it a lot easier to process. As you will see shortly, when you define
an XML source, Dreamweaver instantly builds a diagrammatic representation of the docu-
ment structure that enables you to manipulate its content with XSLT.

Using HTML entities in XML
Among the conditions of being well-formed is the need to replace < and & with the HTML
entities < and & in the content of an element or attribute value. This often leads to
the misconception that XML supports the full range of HTML entities, such as é
(for é). It doesn’t. XML understands only the following five entities: < (<), & (&),
> (>), " ("), and ' (').

When creating an XML document in an accented language, such as Spanish, French, or
German, you should use accented characters in the same way as in ordinary text. A key
principle of XML is that it should be human-readable. You can use other HTML entities in
XML, but they will not be automatically rendered as their text equivalent. The XSL
Transformation server behavior defines the most frequently used HTML entities so they
render correctly. If your XML source contains other HTML entities, you can add your own
definitions to the XSL page, as described in “Understanding how XSLT is structured” later
in the chapter.

A good starting place to learn more about XML is the XML FAQ, edited by Peter Flynn,
at http://xml.silmaril.ie.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

620

8598CH18.qxd 6/28/07 1:02 PM Page 620

http://xml.silmaril.ie
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using XSLT to display XML
There are two ways of using XSLT: client-side and server-side. With client-side XSLT, you
create an XSL page and link it to the XML document just like linking a CSS style sheet to an
ordinary web page. The job of interpreting the XSLT instructions is then left up to the vis-
itor’s browser. Most modern browsers are now capable of handling client-side XSLT, but
support is by no means universal. This lack of universal support means that you can use it
only in controlled environments, such as an intranet, where you know that everyone is
using a compatible browser.

Another drawback of client-side XSLT is that the XSL and XML documents must both reside
in the same folder on the web server. So, if you want to display the contents of a news
feed from another site, you must first download the XML feed and store it locally.

To get round these problems, you can use PHP to process the XSLT on the server. This con-
verts the XML into XHTML before it’s sent from the server, providing your visitors with
exactly the same page regardless of which browser they’re using. Moreover, with server-
side transformation, you can pull the XML feed from any publicly available source on the
Internet.

As I mentioned earlier, XSLT is a difficult language, but Dreamweaver automatically builds
the XSL page for you. All you need to do is embed the XSL fragment in a PHP page. We’ll
take a look at XSLT code in “Understanding how XSLT is structured” later in the chapter,
but first let’s see it in action.

Checking your server’s support for XSLT
PHP 4 and PHP 5 handle XSLT completely differently, but Dreamweaver’s XSL Transfor-
mation server behavior has been designed to work seamlessly with both by automatically
detecting the version of PHP running on your server. However, XSLT isn’t enabled by
default, so you need to check that it is supported.

Use test.php from examples/ch03 to display the PHP configuration page that you used in
Chapter 3. Scroll almost to the bottom of the page, and look for a section similar to that
shown in the following screenshot.

The screenshot shows what you are likely to see on a server running PHP 5 if it has been
configured to handle XSLT. The configuration details will look slightly different on a PHP 4
installation. Instead of xsl, it should say xslt, but it should be in the same position just
above the Additional Modules section, close to the bottom of the page. The difference in
name reflects the functions they use.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

621

18

8598CH18.qxd 6/28/07 1:02 PM Page 621

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you can’t find either xsl or xslt, contact your host, and ask for the server to be upgraded.
If hosts realize there is a genuine demand for new features, they are likely to respond, or
risk losing business. If your host doesn’t support XSLT, you can build the pages in the rest
of this chapter and test them on your local computer, but you won’t be able to upload
them to your website. If you set up PHP as described in Chapter 3, the XSL extension
should be enabled in your local testing environment.

Pulling in an RSS news feed
You can use the XSL Transformation server behavior with any XML file, but one of its most
useful applications is working with a live news feed. For this book, I have chosen one of the
feeds from BBC Online primarily because it offers very good news coverage. The feed is
also very easy to work with, and the BBC welcomes its use on websites, subject to certain
simple terms and conditions. You can find the full details at http://news.bbc.co.uk/2/
hi/help/rss/4498287.stm, but the main conditions are as follows:

You cannot use the BBC logo on your site.

You must provide a link back to the original story on the BBC website.

You must attribute the source, using a specified formula, such as “From BBC News.”

You are not allowed to edit or alter the content in any way.

You cannot use the content on sites that promote pornography, hatred, terrorism,
or any illegal activity.

Of course, another reason for choosing the BBC is sentimental. I worked in BBC News for
nearly 30 years, both as a correspondent and as an editor. I remember sitting in a base-
ment in Marylebone High Street more than a decade ago talking to Mike Smartt about the
Internet’s potential for news. In spite of skepticism all around, he was convinced it was the
way of the future. I knew he was right, but without Mike’s vision and drive as the first
editor of BBC Online, it wouldn’t have become the force that it is today.

To see all RSS feeds available from BBC News, go to http://news.bbc.co.uk/2/hi/help/
3223484.stm. There are nearly 20 specialist news feeds, ranging from world news, health,
science, and business to British news and entertainment. If you prefer news with an

The XSL Transformation server behavior relies on allow_url_fopen being on. As
explained in Table 3-1 in Chapter 3, this is the default setting, but many hosting com-
panies turn it off as a security measure. Unfortunately, there is no simple way around
this problem, although Adobe hints that this might be addressed in an updated
version. A comment in version 0.6.3 of the file that processes the remote feed,
MM_XSLTransform.class.php, lists adding support for socket connection. If your host-
ing company’s security policy prevents the XSL Transformation server behavior from
working, submit an enhancement request to Adobe at www.adobe.com/cfusion/
mmform/index.cfm?name=wishform, urging support for socket connection. The same
URL is the best way to submit bug reports and other requests for improvements in
Dreamweaver and other Adobe products.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

622

8598CH18.qxd 6/28/07 1:02 PM Page 622

http://www.adobe.com/cfusion
http://news.bbc.co.uk/2
http://news.bbc.co.uk/2/hi/help
http://lib.ommolketab.ir
http//lib.ommolketab.ir

American flavor, try the New York Times (www.nytimes.com/services/xml/
rss/index.html) or CNN (www.cnn.com/services/rss). In fact, you can get
RSS feeds wherever you see the orange RSS or XML logos shown alongside.
Much RSS content is copyright protected, so always make sure that you study
the terms of use carefully.

RSS is one of those sets of initials that no one can agree on what they really stand for.
Some say it means Really Simple Syndication. Others say it’s Rich Site Summary. Yet others
insist that it stands for RDF Site Summary, and that RDF is the Resource Description
Framework. They’re all equally valid; the important thing is that RSS feeds all conform to
the rules of XML, so they’re ideal for handling with the Dreamweaver XSL Transformation
server behavior.

Figure 18-1 shows what the news feed looks like when it’s incorporated into the sidebar of
the “Stroll Along the Thames” page that has been used in several chapters throughout this
book.

Figure 18-1. Live news headlines from an external news feed can add constantly changing interest to
a site.

How Dreamweaver handles server-side XSLT
When a visitor requests the page shown in Figure 18-1, it looks and works in exactly the
same way as any other web page. However, what goes on in the background is consider-
ably more complex.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

623

18

8598CH18.qxd 6/28/07 1:02 PM Page 623

http://www.nytimes.com/services/xml/rss/index.html
http://www.nytimes.com/services/xml/rss/index.html
http://www.cnn.com/services/rss
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The XSL Transformation server behavior relies on two external files, as follows:

MM_XSLTransform.class.php: Dreamweaver creates this file automatically and
stores it in the MM_XSLTransform subfolder of the includes folder. If you don’t
already have an includes folder, Dreamweaver creates it. This file is similar to the
Spry JavaScript libraries in that it contains all the PHP code needed to process XSLT
and XML. It’s also responsible for importing the XML source. All you need to do is
remember to upload this file to your remote server when deploying your site.

An XSL file that contains details of the XML source and how you want to display the
data it contains. Dreamweaver calls this an XSLT Fragment.

You create the XSLT Fragment using the same drag and drop interface as for all dynamic
data. Instead of PHP code, everything in the XSLT Fragment uses XSLT syntax. The great
thing from the developer’s point of view is that you don’t need to know any XSLT syntax
for it to work. Of course, if you do know XSLT syntax, you can get the XSL Transformation
server behavior to do a great deal more.

Figure 18-2 shows a simplified outline of what happens when a visitor to a site requests a
page that includes code generated by the XSL Transformation server behavior.

Figure 18-2. How the XSL Transformation server behavior communicates with an XML data source

Using XSLT to access the XML source data
Using the XSL Transformation server behavior is a two-stage process, as follows:

1. Create an XSLT Fragment to access the XML source, and extract the data that you
want.

2. Embed the XSLT Fragment in a PHP page.

The following instructions use the BBC Online world news feed. The principles behind dis-
playing any XML source are the same, but I suggest you use the same feed until you are
comfortable with the process, because some of the concepts might be unfamiliar.

Because you are working with a live feed, you need to be connected to the Internet for
several steps during the following section.

Creating the XSLT Fragment

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

624

8598CH18.qxd 6/28/07 1:02 PM Page 624

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. From the Dreamweaver File menu, choose New. In the New Document dialog box,
select Blank Page, and XSLT (Fragment) as Page Type. Click Create.

2. Dreamweaver immediately presents you with the Locate XML Source dialog box
shown here. It offers two options: to work with a local XML file or a remote one on
the Internet. Select the radio button labeled Attach a remote file on the Internet,
and insert the following URL: http://newsrss.bbc.co.uk/rss/newsonline_world_edition/
front_page/rss.xml. Click OK.

3. If you don’t know the URL of the XML file, clicking Cancel doesn’t stop
Dreamweaver from creating a page for the XSLT Fragment. You can reopen the
Locate XML Source dialog box by clicking either Source or XML in the Bindings
panel, as shown here.

4. As long as you are connected to the Internet, Dreamweaver will contact the BBC
Online site and populate the Bindings panel with a document tree like that shown
in Figure 18-3. This shows you the structure (Dreamweaver uses the technical term,
schema) of the XML document sent by the RSS feed.

5. Before working with the XML data, save the page as bbc_feed.xsl. On Windows,
Dreamweaver will automatically add the .xsl on the end of the file name, even if
you delete it in the Save As dialog box.

Make sure you choose XSLT (Fragment). The New Document dialog box has
another option for XSLT (Entire page), which is used only for client-side XSLT.
For a tutorial on client-side XSLT, visit www.adobe.com/devnet/dreamweaver/
articles/display_xml_data.html.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

625

18

8598CH18.qxd 6/28/07 1:02 PM Page 625

http://www.adobe.com/devnet/dreamweaver
http://newsrss.bbc.co.uk/rss/newsonline_world_edition
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 18-3. Dreamweaver builds a tree (or schema) of the
XML source in the Bindings panel.

Take a good look at Figure 18-3 or the actual schema in your own Bindings panel. You’ll see
that it’s like a family tree. The angle brackets (<>) represent the different elements or
nodes of the source document, with the name shown alongside. The top level or root
element of the XML document is rss. As you go up and down the structure, nodes share a
parent-child relationship. Go up a level to reach the parent; go down a level to reach the
child or children. This genealogical terminology also extends to nodes on the same level,
which are called siblings. So item is a child of channel and a sibling to image. Dreamweaver
builds this diagrammatic hierarchy to make it easier for you to identify the elements you
want to manipulate, and XSLT uses it as a sort of road map to perform the transformation.

Attributes that appear within XML tags are designated by @. So at the top of Figure 18-3,
you can see that rss has an attribute called version. The channel and image nodes contain
child nodes that describe the feed. The news comes much further down: in the seventh
node from the bottom labeled item.

The important thing to note about item is that it has a tiny plus sign to the upper-right of
the angle brackets. This indicates that it’s a repeating element.

Branching off item are six child nodes: title, description, link, guid (with an attribute
isPermaLink), pubDate, and category. The ones we are interested in are title, which contains
the headline; description, which contains a summary of the news story; and link, the URL to
the full story.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

626

8598CH18.qxd 6/28/07 1:02 PM Page 626

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Make sure you’re in Design view, select title from the item node in the Bindings
panel, and drag it into the page.

7. You should now see a dynamic placeholder inside the
page. The placeholder indicates the path to title within
the hierarchy of the XML document. Select the place-
holder and select Heading 3 from the Format drop-
down menu in the Property inspector. The page
should now look like the screenshot alongside.

8. Click to the right of the dynamic placeholder, and press Enter/Return to insert a
new paragraph. Highlight description in the item node, and drag it into the para-
graph that you have just created. You should now have a similar dynamic place-
holder for {rss/channel/item/description}.

9. The news feed contains a large number of news items, so you need to apply a
repeat region to it. The simplest way to do this would have been to put the news
feed into a table or surround each item with a <div>, but either solution results in
unnecessary code. Open Split view, and click inside Code view to highlight all the
code from the opening <h3> tag to the closing </p> tag, as shown in the following
screenshot:

Don’t worry about the meaning of the code. It’s simply the XSLT way of inserting
dynamic data in the same way as PHP does with echo and a variable. Just make sure
that the opening and closing XHTML tags are properly selected.

10. Look at the Insert bar. You’ll see a new XSLT tab has appeared. It’s displayed only
when the current document is an XSL file. Select the XSLT tab, and click the Repeat
Region button as shown here. Alternatively, use the menu option: Insert ➤ XSLT
Objects ➤ Repeat Region.

It’s very easy to go wrong when selecting nodes, because several share the same name.
There are three nodes each called title and link, and two called description. All the
nodes that you need to select are children of the item repeating node.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

627

18

8598CH18.qxd 6/28/07 1:02 PM Page 627

http://lib.ommolketab.ir
http//lib.ommolketab.ir

11. This brings up a completely different dialog box from the one you used with the
PHP server behavior. It’s the XPath Expression Builder.

XPath is the W3C standard that describes how to identify parts of an XML docu-
ment. In many ways, it’s very similar to ordinary file paths and URLs, but it has many
more options (www.w3.org/TR/xpath), including functions. The XPath Expression
Builder incorporates a lot of these functions and builds an XPath with the correct
syntax for you.

All you need to do is highlight the parent node of the elements that you want to
repeat—in other words, item. In the XPath Expression Builder (Repeat Region) dialog
box, scroll down to the bottom of the section labeled Select node to repeat over,
and select item. Dreamweaver inserts rss/channel/item into the Expression field at
the bottom. Click OK.

12. When the XPath Expression Builder closes, the dynamic place-
holders will have changed to just the node names. This is
because the XPath expression created in the previous step tells
the underlying XSLT code where to find them. There will also
be a gray border around the placeholders with a tab labeled
xsl:for-each at the top-left corner, as shown alongside, indicat-
ing that this is now a repeat region.

13. Save bbc_feed.xsl, and press F12/Opt+F12 to view the page in a browser. If you
are connected to the Internet, you should see something like Figure 18-4, except
with the very latest headlines, not something from all those months ago when I was
writing this book.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

628

8598CH18.qxd 6/28/07 1:02 PM Page 628

http://www.w3.org/TR/xpath
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Look in the browser address bar, and you’ll see that Dreamweaver is using a
temporary file, even if you have set your preferences not to use temporary files.
You can’t use an XSLT Fragment in a browser on its own, nor can you use Live Data
view, but Dreamweaver processes it internally so you can check that everything is
working as expected before embedding it into a PHP file.

You can check your code against bbc_feed_01.xsl in examples/ch18.

Figure 18-4. Dreamweaver uses a temporary file to confirm that the XSLT Fragment is working as
expected.

As part of the BBC conditions of use, you must either provide a link back to the complete
story or insert a link to the part of the BBC site from which the feed was drawn. Since the
XML source contains a link node (see the schema in Figure 18-3), it’s easy to provide a link
to each story by converting its headline into a link.

Continue working with the XSLT Fragment from the previous exercise. Alternatively, use
bbc_feed_01.xsl in examples/ch18.

1. In Design view, select the title dynamic placeholder, and click the Browse for File
icon to the right of the Link field in the Property inspector.

2. When the Select File dialog box opens, choose Data sources as the option for Select
file from. (It’s a radio button at the top of the dialog box in Windows, but an ordi-
nary button at the bottom of the dialog box in the Mac version.) Scroll down inside
the area labeled Select node to display, and select link, as shown in the screenshot
at the top of the next page. Leave the other options at their default settings, and
click OK.

Converting the headlines into links

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

629

18

8598CH18.qxd 6/28/07 1:02 PM Page 629

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Look in the Link field in the Property inspector. It should contain {link}, indicating
that it will draw its value from the link node in the XML source.

4. Save bbc_feed.xsl, and press F12/Opt+F12 to test it again. This time, the headlines
should have been converted to links. Click one of them to check that it takes you
to the relevant story on the BBC website.

You can check your code against bbc_feed_02.xsl in examples/ch18.

The BBC news feed normally contains 20 or more items. Unlike the Repeat Region server
behavior, the XPath Expression Builder (Repeat Region) dialog box has no option to limit the
number of items displayed. Instead, you need to use an XSLT conditional region, as shown
in the following exercise.

Continue working with the XSLT Fragment from the previous exercise. Alternatively, use
bbc_feed_03.xsl in examples/ch18. The following instructions show you how to limit the
page to displaying the first five items.

1. Open Split view, and click in Code view to select all the code from the opening
<h3> tag to the closing </p> tag in the same way as in step 10 in “Creating an XSLT
Fragment.” Then click the Conditional Region button in the XSLT tab of the Insert
bar, as shown in the following screenshot:

Restricting the number of items in an XSLT repeat region

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

630

8598CH18.qxd 6/28/07 1:02 PM Page 630

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. The Conditional Region dialog box contains just one field, Test. Enter the following
code and click OK:

position() <= 5

XSLT uses the position() function to determine a node’s position in the XML hier-
archy. Unlike PHP or JavaScript, it begins counting at 1, so you need to use <= 5 to
display the first five items.

3. Save bbc_feed.xsl, and press F12/Opt+F12 to test it again. This time, just the first
five items should be displayed. You can check your code against bbc_feed_03.xsl.

Dreamweaver places another gray border around the dynamic placeholders in Design
view, with an xsl:if tab at the top-left corner. Confusingly, Dreamweaver positions the xsl:if
tab above the repeat region’s xsl:for-each tab, giving the incorrect impression that the
repeat region is nested inside the conditional one. In Figure 18-5, the conditional region
has been selected by clicking the xsl:if gray tab. As you can see, lines 17–20 are highlighted
in the underlying code. The code that controls the repeat region is on line 16 and the
closing tag of the repeat region is on line 21. If in doubt about the order of code, check
the Tag selector at the bottom of the Document window, as it always displays the correct
hierarchy of parent and child tags.

Figure 18-5. XSLT uses <xsl:if> tags to create a simple conditional region.

As you can see on line 17 of Figure 18-5, Dreamweaver has converted the less-than oper-
ator from < to <. XSLT follows the rules of XML and cannot use < within the test attrib-
ute value. Although it looks strange, it’s the way that XSLT expects it. More important, it
works!

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

631

18

8598CH18.qxd 6/28/07 1:02 PM Page 631

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Displaying the news feed in a web page
Now that you have got the XSLT Fragment to display the items that you want, it’s time to
embed the XSLT into a PHP page. To save time, I have created a copy of the “Stroll Along
the Thames” page with a <div> called news in the sidebar. The style sheet contains a small
number of extra rules to adjust the font size, margins, padding, and colors of the news
<div>. The rules use basic CSS, so I’ll leave you to study the style sheet yourself and just
concentrate on the mechanics of embedding the XSLT Fragment into the page.

You can’t use the XSLT Fragment on its own; you need to serve it through a dynamic page
so that the PHP server behavior can perform the necessary server-side transformation.

1. Copy stroll_xsl_start.php from examples/ch18 to workfiles/ch18, and save it
as stroll_xsl.php. It uses stroll_xsl.css, which is in examples/styles, so
update the links when Dreamweaver prompts you.

2. Open Split view, and highlight the placeholder text in the news <div>. Make sure
that only the placeholder text is selected, and press Delete. The insertion point
should be between the opening and closing <div> tags.

3. Click the XSL Transformation button in the Data tab of the Insert bar, as shown
in the next screenshot. Alternatively, select Insert ➤ Data Objects ➤ XSL
Transformation.

4. In the XSL Transformation dialog box that opens, click the top Browse button, and
navigate to bbc_feed.xsl. When you click OK in the Select XSLT File dialog box,
Dreamweaver will automatically populate the XML URI field. This is the address of
the BBC RSS feed, which Dreamweaver gets from the XSLT Fragment. You don’t
need to bother with XSLT parameters, so just click OK. The use of XSLT parameters
is explained later in the chapter.

Embedding the XSLT Fragment in a dynamic page

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

632

8598CH18.qxd 6/28/07 1:02 PM Page 632

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Your page should now look like Figure 18-6. Although it looks as though the XSLT
Fragment has just been included in the page in the same way as a PHP include file,
the underlying code is completely different. Notice that the embedded version dis-
plays the repeat region and conditional region tabs in the correct order.

Figure 18-6. The XSLT Fragment embedded in a PHP page

6. You can test the page by clicking the Live Data view icon in the Document toolbar.
(Although it won’t work with an XSLT Fragment on its own, you can use it after
embedding the fragment in a dynamic page.)

7. Save the page, and test it in a browser. It should now look like Figure 18-1.
Compare your code, if necessary, with stroll_xsl.php in examples/ch18.

When deploying on the Internet a page that contains an embedded XSLT Fragment, don’t
forget to upload the XSL page and the PHP class that does all the hard work:
MM_XSLTransform.class.php, which is located in includes/MM_XSLTransform.

If instead of the latest news headlines, you see an MM_XSL Transform error message, it
means that your remote server doesn’t have the necessary support for XSLT. Pressure your
hosting company to provide support, or move to one that does. As noted earlier, another
problem might be that your hosting company has turned off allow_url_fopen. In that
case, use the URL at the end of “Checking your server’s support for XSLT” to urge Adobe
to upgrade the XSL Transformation server behavior.

Being a bit more adventurous with XSLT
Up to now, I have deliberately avoided discussing most of the code that’s being generated.
There’s actually very little of it in the XSLT Fragment and PHP page, because all the pro-
cessing is done by an external PHP class. What’s more, the code in the XSLT Fragment is
very different from what you’ve been working with in previous chapters. In the remaining
pages of this chapter, I’d like to show you just a few of the things you can do if you decide
to experiment with XSLT and XPath. Instead of using a live news feed as the XML source,
I’ve prepared an XML document that contains details of the friends of ED and Apress cat-
alog. (In Chapter 20, I’ll show you how to generate XML from your own data in MySQL.)

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

633

18

8598CH18.qxd 6/28/07 1:02 PM Page 633

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting up a local XML source
Getting XML data from a local source involves nothing more complicated than telling
Dreamweaver where to find it. You will find a copy of booklist.xml in the examples/ch18
folder, and you can access it directly from there. Open it, and take a look at its structure.
The root element is called BookList, and it contains ten elements each called Book, which
look like this:

<Book ISBN13="9781590598597">
<Title>The Essential Guide to Dreamweaver CS3 with CSS, Ajax, ➥

and PHP</Title>
<Authors>
<Author>David Powers</Author>

</Authors>
<Publisher>friends of ED</Publisher>
<ListPrice>49.99</ListPrice>

</Book>

Each Book element or node has an attribute called ISBN13 and four child elements: Title,
Authors, Publisher, and ListPrice. In turn, Authors can have one or more child ele-
ments called Author.

The following series of exercises shows you how to access the XML structure for use in a
web page.

Before you can do anything with the XML data, you need to create an XSLT Fragment and
display the node tree or schema.

1. Choose File ➤ New ➤ Blank Page ➤ XSLT (Fragment).

2. In the Locate XML Source dialog box, choose the default option (Attach a local file on
my computer or local area network), and click the Browse button to navigate to
booklist.xml in examples/ch18.

Notice that the dialog box you use to locate the XML file is called Locate Source
XML for XSL Template. Although XSL templates are very different from
Dreamweaver templates, the idea is the same: an XSL template defines the basic
pattern that will be applied to all the data passed to it.

After locating booklist.xml, click OK (or Choose on a Mac). Click OK to close the
Locate XML Source dialog box.

3. This attaches booklist.xml to the XSLT Fragment and displays the structure of the
document in the Bindings panel, as shown in Figure 18-7. Although the document
tree is much shorter than the BBC RSS feed, it contains two repeating nodes: Book

Displaying the node tree (schema) of booklist.xml

Each exercise builds upon the previous one. The finished code for
each exercise is in examples/ch18.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

634

8598CH18.qxd 6/28/07 1:02 PM Page 634

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and Author. Moreover, Author is a grandchild of Book. In other words, you have a
repeating region within a repeating region. Each book can have more than one
author, so this makes handling this XML document more complex than the
BBC feed.

4. Save the XSLT Fragment page as books1.xsl in workfiles/ch18.

Since the purpose is to show you a few of the things you can do with XSLT in
Dreamweaver, I don’t plan on styling the content. The data in the book list is best dis-
played in a table, so that’s what I’ll use.

1. Insert a table in books1.xsl. The table should have two rows and five columns. I
also set Table width to 80 percent, and Cell padding to 4, leaving both Border thick-
ness and Cell spacing blank.

2. Give the first row the following headings: Title, Author(s), Publisher, ISBN13, and
Price.

3. Drag the Title node from the Bindings panel, and drop it in the second row, so that
the dynamic placeholder sits beneath the Title heading in the first row. Do the same
for Publisher, ISBN13, and ListPrice, dropping them in the appropriate cells in the
second row. What should you do about the Author(s) cell? You want to show the
names of all the authors, so you probably think you should use the Author node.
Illogical though it may seem, drag the parent node, Authors, not the child node.

4. Click anywhere in the second row, and then select <tr> in the Tag selector to high-
light the entire table row.

5. In the XSLT tab of the Insert bar, click the Repeat Region button, and select the
Book node in the XPath Expression Builder (Repeat Region) dialog box. Click OK.
Your page should now look like this:

Displaying the book list in a table

Figure 18-7.
The node tree (schema) of booklist.xml

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

635

18

8598CH18.qxd 6/28/07 1:02 PM Page 635

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Save books1.xsl, and press F12/Opt+F12 to view the XSLT Fragment in a browser.
Surprise, surprise . . . all the authors’ names are listed. To understand why, you need
to dive into the mysteries of XSLT syntax.

Understanding how XSLT is structured
Now’s the time to look at an XSLT Fragment in detail in Code view. The first line of
books1.xsl looks like this:

<?xml version="1.0" encoding="utf-8"?> ➥

<!-- DWXMLSource="../../examples/ch18/booklist.xml" -->

The first part is the XML declaration, which must go at the beginning of every XML docu-
ment. By default, Dreamweaver inserts the encoding attribute using the same value as in
your Dreamweaver preferences. If your XML source uses a different encoding, you should
change the setting for your XSLT Fragment and any dynamic page that you intend to
embed it in. Do this by choosing Page Properties from the Modify menu. In the Page
Properties dialog box, select the Title/Encoding category, and set Encoding to the appropri-
ate value.

The second part of the first line is an XML comment (the same format as HTML is used),
where Dreamweaver stores the location of the XML source.

The next ten lines define common HTML entities. As mentioned earlier, only five entities
are predefined in XML, so Dreamweaver anticipates the need for others that are likely to
occur in XML feeds. You can also define others, if necessary.

Defining new entities If you discover that your XSLT Fragments are having problems with
unrecognized entities, add a new definition on a new line within this section, using the
same format. For example, if you want to add the entity for lowercase e acute (é),
add this line:

<!ENTITY eacute "é">

In other words, remove the leading & and trailing semicolon from the HTML entity, and put
the character entity equivalent in quotes. You can find a full list of HTML entities and their
character entity equivalents at www.w3.org/TR/html4/sgml/entities.html.

Embedding XHTML in XSLT The rest of the code in the page is a mixture of XSLT and
XHTML. The two fit together in a very similar way to PHP and XHTML. The XSLT processor
handles anything in an XSLT tag (they all begin with <xsl:), and it treats anything outside
as literal text. I have reproduced here the main XSLT code from books1.xsl, and high-
lighted some key points in bold:

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/ ➥

XSL/Transform">
<xsl:output method="html" encoding="utf-8"/>
<xsl:template match="/">
<table width="80%" cellpadding="4">
<tr>
<th scope="col">Title</th>
<th scope="col">Author(s)</th>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

636

8598CH18.qxd 6/28/07 1:02 PM Page 636

http://www.w3.org/TR/html4/sgml/entities.html
http://www.w3.org/1999/�XSL/Transform
http://www.w3.org/1999/�XSL/Transform
http://lib.ommolketab.ir
http//lib.ommolketab.ir

<th scope="col">Publisher</th>
<th scope="col">ISBN13</th>
<th scope="col">Price</th>

</tr>
<xsl:for-each select="BookList/Book">
<tr>
<td><xsl:value-of select="Title"/></td>
<td><xsl:value-of select="Authors"/></td>
<td><xsl:value-of select="Publisher"/></td>
<td><xsl:value-of select="@ISBN13"/></td>
<td><xsl:value-of select="ListPrice"/></td>

</tr>
</xsl:for-each>

</table>
</xsl:template>
</xsl:stylesheet>

The first line that I have highlighted creates an XSLT template. XSLT templates match a cer-
tain part of the XML source (hence the attribute match). The closing </xsl:template> tag
is on the second line from the bottom, so all the code in between is part of the template.
The value of match is /, which is the XPath way of indicating the document root. In other
words, this set of XSLT instructions will be applied to the whole of the XML source, rather
than just a specific part of it.

The next highlighted line uses <xsl:for-each>. As you can probably guess, this is the way
that XSLT creates a loop or repeat region. The value of select is BookList/Book, so the
loop applies to every Book node or element in the XML document. As the loop goes
through each Book node, the <xsl:value-of> instruction gets the selected value. When it
gets to the Author node, it also loops through the child nodes. That’s why you see all the
author’s names displayed in the table, even though you haven’t selected the Author node
in your XSLT Fragment.

Accessing nested repeating elements
In some respects, the way that XSLT loops through the child nodes is quite useful, but
there are no commas between the authors’ names. You need a way of getting to the
Author nodes and manipulating them. This is where things get interesting or fiendishly
complicated, depending on your point of view. I’ll try to keep things as simple as possible.
Once you understand what’s happening, it’s a lot simpler than it may seem at your first
attempt.

This uses the same XSLT Fragment as in the previous exercise. Save books1.xsl as
books2.xsl before continuing, and then work with the new version.

1. Select the {Authors} placeholder in the second row of the table, and press Delete.
The second cell of the second row should now be empty.

Accessing the Author elements directly

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

637

18

8598CH18.qxd 6/28/07 1:02 PM Page 637

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Select the Author repeating node in the Bindings panel, and drag and drop it into
the empty cell. Instead of inserting an Author dynamic placeholder, as you might
expect, Dreamweaver inserts an XSLT repeat region with a text placeholder, as
shown here:

3. Highlight the words Content goes here, and press Delete. Make sure you remove
only the text and not the gray tab labeled xsl:for-each. Don’t click anywhere in the
document, because the cursor must remain inside the repeat region.

4. In the XSLT tab of the Insert bar, click the Dynamic Text button (or choose Insert ➤

XSLT Objects ➤ Dynamic Text). This opens the XPath Expression Builder. Select
Author. It may appear as though Dreamweaver hasn’t created anything in the
Expression field, but look a bit closer. There’s a single period (.) there, which is
the XPath way of saying “current node.” Click OK.

5. You should now have a current-node dynamic placeholder inside
the repeat region.

6. Save books2.xsl, and press F12/Opt+F12 to view the output in a
browser. The authors’ names are there, but things have gotten
worse—there’s no space between them any more. Switch back to Dreamweaver,
where you’ll put it right.

7. Select the current-node dynamic placeholder that you created in step 5. Open Split
view. You will see the following line highlighted in the underlying code:

<xsl:value-of select="."/>

8. Click inside Code view, and add the following code on a new line underneath. I’ve
shown the preceding and following lines to help you get the right location.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

638

8598CH18.qxd 6/28/07 1:02 PM Page 638

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<xsl:value-of select="."/>
<xsl:text>, </xsl:text>

</xsl:for-each></td>

When you start typing, Dreamweaver code hints will display the available XSLT tags.
To save typing, you can scroll down to xsl:text and press Enter/Return. Automatic
code completion will also insert the correct closing tag after you type </.

This inserts a comma followed by a space after the name of each author. You could
just type the comma, but to get the space you need to wrap it in the <xsl:text>
tags.

9. Save books2.xsl, and view it in a browser. This is progress, but you don’t want a
comma after the last name. To deal with that, you need to use a conditional region.

Creating conditional regions
When working with an XSLT Fragment, there are two options on the XSLT tab of the Insert
bar (and XSLT Objects submenu of the Insert menu) for creating a conditional region—
Conditional Region and Multiple Conditional Region. We’ll take a closer look at both of them.
First, a simple conditional expression.

Testing a single condition
You used a simple conditional expression in “Restricting the number of items in an XSLT
repeat region” earlier in the chapter. As Figure 18-5 shows, the code inserted by
Dreamweaver is very similar in structure to a PHP if statement. In the same way as a pair
of curly braces, the <xsl:if> tags surround the code you want to display only if the con-
dition is met. The condition is specified as the test attribute in the opening <xsl:if> tag.

This builds on the XSLT Fragment from the previous exercise and shows you how to get rid
of the comma following the name of the last author. Save books2.xsl as books3.xsl, and
work on the new document.

1. Open Split view, and highlight the line that you inserted in step 8 of the previous
exercise. Alternatively, click the xsl:text tab in Design view. Click the Conditional
Region button in the XSLT tab of the Insert bar.

2. Earlier in the chapter, you used the position() function to select the first five ele-
ments in the item node. Another very intuitively named function, last(), deter-
mines whether an element is the last one in the current node. You don’t want the
comma to be displayed if the author’s name is the last one, so type position() != last()
in the Test field of the Conditional Region dialog box. != has the same meaning as
in PHP.

3. Save books3.xsl, and view it in a browser. The final comma is no longer displayed,
so single author’s names appear on their own, but the names of multiple authors
are nicely formatted as a comma-separated list.

Removing the final comma from authors’ names

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

639

18

8598CH18.qxd 6/28/07 1:02 PM Page 639

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you look in Code view, you’ll see that the <xsl:text> tags that insert the comma and
space have been surrounded by <xsl:if> tags like this:

<xsl:if test="position() != last()">
<xsl:text>, </xsl:text>

</xsl:if>

Testing alternative conditions
Although there’s a comma between each of the author’s names when there are more than
one, it would be more natural to replace the comma with “and” or “&” before the last
name. The logic behind how you do this is simple. Instead of placing the comma after each
author’s name, create a conditional statement that decides whether to put a comma or
“and” before the name. In pseudo-code this becomes:

if (position is greater than 1 AND position is not last) {
insert a comma before the name
}

else if (position is greater than 1 AND position is last) {
insert "and" before the name
}

The if . . . else structure is exactly what you would use in PHP, but the XSLT syntax is
a little more complex. XSLT wraps the whole conditional block in <xsl:choose> tags;
<xsl:when> equates to if; and <xsl:otherwise> equates to else. Dreamweaver takes
care of inserting the correct tags when you select Multiple Conditional Region from the XSLT
tab of the Insert bar or from the XSLT Objects submenu of the Insert menu.

Save books3.xsl as books4.xsl, and continue working with the new file. In this exercise,
you’ll use a multiple conditional region to replace the final comma in a list of authors’
names with “and.”

1. Things are beginning to look rather crowded in the
table cell that contains the dynamic placeholders for
the authors’ names. You need to click the xsl:if tab indi-
cated by the arrow in the screenshot alongside.

You will know that you have selected it correctly if the
Property inspector displays the test expression for the
conditional region as shown here (this is also how you
would edit it).

Inserting “and” before the final author’s name

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

640

8598CH18.qxd 6/28/07 1:02 PM Page 640

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Open Split view. The conditional region that you inserted in the preceding exercise
should be highlighted. Since the syntax for a multiple conditional region is com-
pletely different, press Delete to remove the highlighted code.

3. In Code view, your cursor will be just below <xsl:value-of select="."/>. This is
what XSLT uses to display the name of each author. This time, the comma needs to
go in front of the author’s name, so insert it as <xsl:text> on a new line above,
like this:

<td><xsl:for-each select="Authors/Author">
<xsl:text>, </xsl:text>
<xsl:value-of select="."/>

4. Highlight the line that you have just inserted, and click the Multiple Conditional
Region button on the XSLT tab of the Insert bar, as shown in the following
screenshot:

5. Type the following in the Test field of the Multiple Conditional Region dialog box:

position() > 1 and position() != last()

This will show the comma and space if the element is neither first nor last. Click OK.

6. If you thought the table cell was crowded before, just look at it now! Dreamweaver
inserts Content goes here as a placeholder inside <xsl:otherwise>. This is where
you are expected to create a default value if all tests fail. However, you don’t want
a default for this conditional region, so highlight Content goes here and delete it.
Keep Split view open to make sure you don’t delete any XSLT tags.

7. To create the second condition, you need to position your cursor inside Code view
immediately before the opening <xsl:otherwise> tag. Then click the Conditional
Region button on the XSLT tab of the Insert bar. Make sure you click the one for a
single condition (marked with IF), and not the icon for a multiple condition.

If you have difficulty selecting the tab, use the Zoom tool (it looks like a magnifying
glass) at the bottom right of the Document window. When you select the Zoom tool,
click on the area that you want to magnify until it’s big enough to work with. Then
choose the Select tool (an arrow). To zoom out, select the Zoom tool again and hold
down Alt/Opt while clicking.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

641

18

8598CH18.qxd 6/28/07 1:02 PM Page 641

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Type the following in the Test field of the Conditional Region dialog box, and then
click OK:

position() > 1 and position() = last()

You’ll use this test to insert “and” surrounded by a space on either side before the
last author’s name. It’s necessary to check that the position is greater than 1,
because you don’t want “and” to appear before the names of single authors. Also
notice that XSLT uses a single equal sign to test for equality.

9. There’s now a severe overcrowding problem in the table cell, as Dreamweaver
inserts another Content goes here to indicate where to insert what will be displayed
when the test evaluates to true. It’s easier to work in Code view at this stage, so
click inside Code view, and replace Content goes here with the following:

<xsl:text> and </xsl:text>

10. Save books4.xsl, and view it in a browser. You should see commas between names,
with “and” separating the final two.

11. Change <xsl:text> and </xsl:text> to <xsl:text> & </xsl:text>, and view the
page again. It won’t work. You get the following error:

SAXParseException: Expected entity name for reference (books4.xsl, line 33, column 25)

This is because & is used by XML-related languages, such as XSLT, to designate an
entity. Replace & with &, and all will be well.

Sorting elements
XSLT has many powerful features, including the ability to sort nodes, so they appear in a
different order from the original XML source. Dreamweaver doesn’t generate the code for
you automatically, but it’s very easy to do by hand.

Save books4.xsl as books5.xsl, and continue working with the new document. This exer-
cise shows you how to sort the books first by title, and then by publisher and title.

1. In Code view, locate the following line (it should be around line 24):

<xsl:for-each select="BookList/Book">

Sorting the book list by title and publisher

As you’re typing, you’ll notice that the greater-than sign you added in step 8 has been
replaced by >. This is because > indicates the end of a tag, so XSLT conditional
expressions use the HTML entity instead. XSLT also requires quotes in expressions.
Dreamweaver handles all the necessary conversions automatically if you use the
appropriate dialog boxes.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

642

8598CH18.qxd 6/28/07 1:02 PM Page 642

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. Insert a new line immediately below, and add the code shown in bold:

<xsl:for-each select="BookList/Book">
<xsl:sort select="Title"/>

3. Save the page, and view it in a browser. The value of select determines which
node is used to sort the document. The list is now sorted by the books’ titles.

By chance, most of the books that I chose from the Apress catalog have titles that start
with B, so they appear first in the list, but Pro CSS Techniques is lurking among the friends
of ED titles. You can use multiple sort conditions by adding similar tags in the order of
priority that you want to give each element.

4. To sort by publisher and then by title, use the following:

<xsl:for-each select="BookList/Book">
<xsl:sort select="Publisher"/>
<xsl:sort select="Title"/>

5. Test the page again and Pro CSS Techniques will have joined its Apress buddies.

6. But, hey, this is a friends of ED book. Surely the order should be reversed. No prob-
lem. Just add an order attribute to the <xsl:sort> tag like this:

<xsl:sort select="Publisher" order="descending"/>

Note that, as you type the code, Dreamweaver displays code hints for XSLT, show-
ing you the available options.

7. The friends of ED books now appear first, with their titles sorted in correct alpha-
betical order, followed by all Apress books similarly sorted. Like PHP, XSLT is
case sensitive, so make sure you use the correct case for the node names.

Formatting elements
You may have noticed that there’s a drop-down menu labeled Format in the middle of the
XPath Expression Builder. This allows you to apply 22 preset formats to the content of a
node. Most of them deal with formatting numbers or currency.

Save books5.xsl as books6.xsl, and continue working with the new file. This exercise
shows you how to format the book prices using the dollar and other currency symbols.

1. In Design view, select the ListPrice dynamic placeholder in the second row of the
table, and click the Dynamic Text button in the XSLT tab of the Insert bar. This
opens the XPath Expression Builder.

2. Activate the Format drop-down menu, and select Currency – Leading 0, 2 Decimal
Places. The Expression field displays the XPath function that will be inserted in the
underlying code: format-number(ListPrice, '$#0.00'). Click OK.

Formatting the book prices

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

643

18

8598CH18.qxd 6/28/07 1:02 PM Page 643

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Save books6.xsl, and view it in a browser. Nothing is different—the prices don’t
have any currency symbol. This is because the parser used by Dreamweaver can’t
process all XSLT functions.

4. Create a PHP page called books.php. The only reason you need this page is to
embed the XSLT Fragment, but it’s best to insert some ordinary text. Otherwise,
you won’t be able to click inside the Document window after the fragment has
been embedded. Type a heading, such as Good Books. Move the cursor out of the
heading, and select the XSL Transformation button on the Data tab of the Insert bar.

5. In the XSL Transformation dialog box, click the top Browse button, and select
books6.xsl as the XSLT file. Click OK (or Choose on a Mac) to close both dialog
boxes.

6. Save books.php, and view it in a browser. The currency symbols now appear
correctly.

At the bottom of the Format drop-down menu in the XPath Expression Builder is an option
to edit the format list. Ideally, this should be the place to create a custom currency format
for sterling or euros. Unfortunately, Dreamweaver converts both the £ and € symbols to
their HTML equivalents, which not only prevents them being displayed in the final page
but also prevents you from using the XPath Expression Builder to edit any element to
which you apply the format. The solution, fortunately, is very simple: apply one of the
standard currency formats and edit it manually in Code view.

Change this:

format-number(ListPrice, '$#0.00')

to this (for pounds sterling):

format-number(ListPrice, '£#0.00')

or this (for euros):

format-number(ListPrice, '€€#0.00')

You may wonder why the actual symbol is used instead of an entity. It’s because the sec-
ond argument to format-number() is a string literal. If you use an entity, it will be ignored.

Displaying output selectively
There are two ways of displaying output that meets certain criteria. One is to use an XPath
filter. The other is to use a parameter. Let’s take a quick look at both of them.

Filtering nodes with XPath
The XPath Expression Builder has an option that lets you build filters to display XML data
selectively. The filters work in a very similar way to a WHERE clause in a SQL query, so you
should have little difficulty understanding how they work.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

644

8598CH18.qxd 6/28/07 1:02 PM Page 644

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Save books6.xsl as books7.xsl, and continue working with the new file. This exercise
shows you how to select books cheaper than or equal to a specified price.

1. Select the repeat region for the second table row by clicking the xsl:for-each tab
above the {Title} dynamic placeholder. You can tell that you have selected it cor-
rectly by checking the Property inspector, which should look like this:

2. Click the lightning bolt icon to the right of the Select field in the Property inspec-
tor to open the XPath Expression Builder (Repeat Region) dialog box.

3. Click the triangle to the side of Build Filter in the middle of the XPath Expression
Builder to expand the filter builder.

4. Click the plus button at the top of the Build Filter area. Click in the Where field to
activate the drop-down menu that contains a list of all nodes. Select ListPrice.

5. Click in the Operator field and choose <= (less than or equal to).

6. Click in the Value field, and type 40. Click anywhere inside the dialog box to remove
the focus from the Value field. The Build Filter area should now look like this:

The Expression field below the Build Filter area shows you the XPath expression that
Dreamweaver will insert into the XSLT code.

7. Click OK. Save books7.xsl, and view the page in a browser. Instead of the previous
ten books, you should now see just seven—all priced $40 or less.

As you can see from the preceding screenshot, the Build Filter area has an and/or option.
This exercise shows you how to filter XML data using more than one condition. Save
books7.xsl as books8.xsl, and continue working with the new file.

Selecting books by price and publisher

Selecting books by price

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

645

18

8598CH18.qxd 6/28/07 1:02 PM Page 645

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Repeat steps 1 and 2 of the previous exercise to open the XPath Expression Builder.
Expand the Build Filter area if it’s not already open.

2. Click in the and/or field, and select and from the drop-down menu.

3. Click the plus button at the top left of the Build Filter area to add another filter.

4. Click the Where field and select Publisher.

5. Leave Operator at the default =.

6. Click the Value field and type 'Apress'—it must be in quotes (single or double: it
doesn’t matter). The Build Filter area should now look like this.

7. Click OK, save the page, and view it in a browser. You will now see just three titles
listed.

Look at the Expression field and the underlying code, and you will see that Dreamweaver
has converted the quotes and the less-than operator to HTML entities, saving you a lot of
effort with building XPath expressions. Remember to use the normal characters in the dia-
log boxes so that Dreamweaver can convert them correctly. It’s also vital to remember that
strings entered in the Value field must always be in quotes.

Using XSLT parameters to filter data
The other way of selecting output is by passing one or more parameters from the PHP
page to the XSLT Fragment. This is much more interactive, because the decision about
what to display is dynamically generated, unlike filters, which are hard-coded into the XSLT
instructions.

Before using a parameter to change the content dynamically, you need to create a default
parameter inside the XSLT Fragment. Save books8.xsl as books9.xsl, and continue work-
ing with the new page.

1. Insert an XSLT parameter after the opening <xsl:output> tag (around line 14) like
this:

<xsl:output method="html" encoding="utf-8"/>
<xsl:param name="pub" select="'friends of ED'"/>
<xsl:template match="/">

Creating a default parameter to select the publisher

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

646

8598CH18.qxd 6/28/07 1:02 PM Page 646

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The <xsl:param> tag takes two attributes: name, which is self-explanatory, and
select, which sets the parameter value. Note that there are two sets of quotes
around friends of ED. The double quotes surround the value of select, which is
a string and must itself be enclosed in quotes. To avoid a clash, single quotes are
used for the inner pair.

By declaring the parameter immediately after the <xsl:output> tag, you make it
global in scope—in other words, available throughout the XSLT script.

2. Switch to Design view, select the xsl:for-each tab that controls the repeat region for
the entire table row, and click the lighting bolt icon in the Property inspector to
open the XPath Expression Builder. You should see the same two filters as in step 6
of the last exercise.

3. Highlight the first filter (based on ListPrice), and click the minus button to remove it.

4. Click inside the Value field of the remaining filter to reveal a drop-down menu. You
should now see your XSLT parameter listed with a dollar sign in front of it. Select
$pub in place of 'Apress', as shown in the following screenshot:

The Expression field should now read: BookList/Book[Publisher = $pub]. Click OK.

5. Save books9.xsl, and view it in a browser. Only friends of ED books should be
listed.

Once you have defined a default parameter, you can use it to change the content of an
XSLT fragment dynamically when it’s embedded in a PHP page.

This simple exercise demonstrates how you can toggle between displaying books pub-
lished by Apress and friends of ED, using a jump menu to send the parameter to the XSLT
Fragment through a URL query string.

1. Create a new PHP page called books_param.php.

2. From the Insert menu, select Form ➤ Jump Menu.

3. In the Insert Jump Menu dialog box, insert Apress in the Text field, and ?pub=Apress
in the field labeled When selected, go to URL. This will add the name and value of
the parameter to a query string that will be added to the URL when the page
reloads.

Sending a parameter from a PHP page

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

647

18

8598CH18.qxd 6/28/07 1:02 PM Page 647

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Click the plus button to add a second menu item. Insert friends of ED in the Text
field and ?pub=friends of ED for When selected, go to URL. Leave the other options
in the dialog box unchanged. When you have finished, it should look like this:

5. Click OK to insert the jump menu, and then select the menu object in Design view.
In the Property inspector, change the name of the menu to pub. You also need the
menu to display the currently selected value. Apart from the first time the page
loads, this comes from the value of pub in the URL query string. Before clicking the
Dynamic button in the Property inspector, you need to create a URL variable for
Dreamweaver to use.

6. Open the Bindings panel, click the plus button, and select URL variable. Type pub in
the Name field, and click OK.

7. Make sure the menu item is still selected in Design view, and click the Dynamic but-
ton in the Property inspector. When the Dynamic List/Menu dialog box opens, click
the lightning bolt icon alongside the field labeled Select value equal to.

8. Expand the URL tree in the Dynamic Data dialog box, select pub, and click OK. Also
click OK in the Dynamic List/Menu dialog box to close it.

9. Unfortunately, the code created by Dreamweaver needs tweaking slightly. Open
Code view or Split view. The jump menu code should look like this:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

648

8598CH18.qxd 6/28/07 1:02 PM Page 648

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10. Delete the two sections indicated in the preceding screenshot by removing ?pub=
from the PHP code. This is necessary because $_GET['pub'] contains just the value
of the pub variable, not the whole query string. Be careful to remove the correct
sections—you still want the full query string in the value attribute of each
<option> tag.

11. $_GET['pub'] won’t be set when the page first loads, so add the following code
immediately above the opening <form> tag:

<?php if (!isset($_GET['pub'])) {$_GET['pub'] = 'Apress';} ?>

This sets the default value of pub to Apress and prevents any error from being gen-
erated if the query string is missing. I’ve deliberately chosen the opposite default
from the one in the XSLT Fragment to show how passing a parameter from outside
takes precedence over the value of select in <xsl:param>.

12. Position your cursor just after the closing </form> tag, and switch back to Design
view.

13. Embed the XSLT Fragment by clicking the XSL Transformation button in the Data tab
of the Insert bar. In the XSL Transformation dialog box, click the top Browse button,
and select books9.xsl as the XSLT file. Then click the plus button alongside XSLT
parameters. Type pub in the Name field of the Add Parameter dialog box, and click
the lightning bolt icon to the right of the Value field. This opens the Dynamic Data
dialog box, where you should select pub from the URL tree.

14. When you click OK to close the Dynamic Data dialog box, the Default value field is
no longer grayed out in the Add Parameter dialog box. This is where you can insert
a default value to be passed to the XSLT Fragment. However, it’s not necessary
because you created a default value in the <xsl:param> tag in the previous exercise.

15. When you click OK to close the Add Parameter dialog box, you’ll see the pub
parameter listed, as shown in the following screenshot. An Edit button has been
added in case you need to make any changes. Click OK to close the XSL
Transformation dialog box.

USING XSLT TO DISPLAY LIVE NEWS FEEDS AND XML

649

18

8598CH18.qxd 6/28/07 1:02 PM Page 649

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16. Save books_param.php, and press F12/Opt+F12 to view it in a browser. It should
look like Figure 18-8. Even though the default parameter in the XSLT Fragment was
set to friends of ED, the parameter sent from the PHP page takes precedence.

Figure 18-8. The contents of the XML document have been sorted, formatted, and displayed
selectively through a combination of XSLT and PHP.

17. Select friends of ED from the jump menu, and the display will change, showing only
foED books.

More XML to come . . .
This has been only a brief introduction to working with XSLT. It’s a massive and complex
subject, but I think Dreamweaver has done a good job of making it more accessible to
nonexperts. However, in spite of its power, XSLT has failed to take the web development
community by storm. Although lack of browser support for client-side XSLT has played
some part in holding it back, I think the main reason probably lies in the fact that XSLT on
its own doesn’t style the output. It manipulates data in a similar way to PHP, and since
most XML is generated dynamically from a database, developers prefer to go straight to
the source and use more familiar server-side technologies. The nonintuitive syntax is also
a major put off for many developers.

In the next chapter, we’ll look at a different approach to XML, using Spry, Adobe’s imple-
mentation of Ajax. The Dreamweaver interface for handling Spry data sets is very similar to
XSLT, but the underlying technology is completely different.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

650

8598CH18.qxd 6/28/07 1:02 PM Page 650

http://lib.ommolketab.ir
http//lib.ommolketab.ir

19 USING SPRY TO DISPLAY XML

8598CH19.qxd 6/20/07 10:51 AM Page 653

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The ability to manipulate XML data without the need to refresh the web page lies at the
very heart of Ajax. It’s also the prime motivation behind Adobe’s decision to develop
the Spry framework. In theory, it’s the most exciting development in Dreamweaver CS3.
The reality leaves much to be desired, partly because of the accessibility problems that I
outlined in Chapter 2, but also because Spry is still work in progress. The original release
of Dreamweaver CS3 incorporated Spry 1.4. Only a month later Spry 1.5 was made avail-
able on Adobe Labs (http://labs.adobe.com/technologies/spry/), raising expectations
of an update for Dreamweaver. It took a further month before Adobe announced that an
extension to update Dreamweaver would be made available for the “production release”
of Spry during summer 2007. Details were still hazy at the time this book went to press,
but it's anticipated that there may be three or four releases of Spry before the next
version of Dreamweaver. At the time of this writing, it had not been decided whether to
release extensions on a regular basis to allow Dreamweaver to keep pace with new fea-
tures in Spry.

This chapter focuses on creating and using Spry data sets through the Dreamweaver inter-
face, so it is based on Spry 1.4, the version supported at the time of publication. Once you
have learned the basics, you can study the latest version by visiting Adobe Labs at the URL
in the preceding paragraph. In this chapter, you’ll learn how to

Create a Spry data set from an XML document

Display data in a sortable table

Use a Spry detail region to display related information

Distinguish the different types of Spry repeat regions

Build a Spry online photo gallery

You don’t need a deep knowledge of JavaScript to use Spry data sets. In fact, you don’t
need any knowledge at all. Nevertheless, you’ll get more out of working with Spry if you
know what the code looks like and what it’s for. So, throughout this chapter, you’ll be
diving regularly into Code view to see what’s going on under the hood.

I assume that you’re familiar with the basic structure of an XML document and the role of
XPath, both of which are described in the previous chapter.

How Spry handles XML data
Before you can display or manipulate the content of an XML document with Spry, you
need to create a Spry data set. Dreamweaver analyzes the structure of the XML and dis-
plays dynamic data objects in the Bindings panel for you to incorporate into a web page in
much the same way as with a database recordset or an XSL fragment. If you have worked
through the previous chapter, you will see a lot of similarities between the way you create
an XSL fragment and a Spry data set. However, there are some important differences, namely:

Browser security restrictions mean that the XML source must originate from the
same domain as the web page. This means you can’t normally use a remote XML or
RSS feed unless you fetch the remote file with a proxy script and serve it as though
it comes from the same domain. I’ll show you how to do this in the next chapter.
It’s very easy to do with PHP.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

654

8598CH19.qxd 6/20/07 10:51 AM Page 654

http://labs.adobe.com/technologies/spry
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Spry 1.4 ignores XML nodes that have child nodes of their own. This means that the
version of Spry that shipped with Dreamweaver CS3 is unsuitable for handling com-
plex XML with deeply nested information.

This second limitation has been overcome in Spry 1.5, but if you want to use the
Dreamweaver interface to work with Spry data sets, you will probably find it easier to
structure your XML documents to eliminate nesting.

Making sure Spry can find data
To give a practical example of the problem caused by child nodes, let’s look at the data in
booklist.xml from the previous chapter. The basic XML structure looks like this:

<BookList>
<Book ISBN13="number">
<Title>Book title</Title>
<Authors>
<Author>Name</Author>
<Author>Name</Author>

</Authors>
<Publisher>Name</Publisher>
<ListPrice>Price</ListPrice>

</Book>
</BookList>

Figure 19-1 displays this as a node tree. The <Authors> node and its <Author> child nodes
are shaded in gray to illustrate how Spry treats them.

Figure 19-1. A Spry data set ignores nodes that have child nodes of their own.

When creating a Spry data set, you need to specify the XPath to the repeating element
from which you want to extract the data. If you set the XPath to BookList/Book, Spry 1.4
is capable of extracting the ISBN13 attribute. It can also extract the values of <Title>,
<Publisher>, and <ListPrice>, but it ignores <Authors>. If you attempt to access
<Authors>, Spry 1.4 displays undefined.

You can create a Spry data set by specifying BookList/Book/Authors as the XPath, but that
gives you access only to the <Author> child nodes. You cannot get to the <Author> nodes
from their grandparent <Book>. In other words, with Spry 1.4 you get either the values
shown with a white background or those with a gray background but not both.

USING SPRY TO DISPLAY XML

655

19

8598CH19.qxd 6/20/07 10:51 AM Page 655

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The implication of this is that your XML documents should ideally have no more than
three levels: the root node, a repeating element such as <Book>, and all details should be
stored either in attributes of the repeating element or in child nodes that have no children
of their own. So, for booklist.xml to work with Spry, the structure needs to be altered
like this:

<BookList>
<Book ISBN13="number">
<Title>Book title</Title>
<Authors>Names</Authors>
<Publisher>Name</Publisher>
<ListPrice>Price</ListPrice>

</Book>
</BookList>

Some of the Adobe sample files rely heavily on attributes. The Spry gallery shown in
Figure 2-11 in Chapter 2 uses <gallery> as the root node, <photos> as the repeating ele-
ment, and <photo> for each individual image. To get around the child node issue, the
<photo> nodes contain all the details in six different attributes like this:

<photo path="china_01.jpg" width="263" height="350" ➥

thumbpath="china_01.jpg" thumbwidth="56" thumbheight="75"></photo>

Creating a Spry data set
You can create a Spry data set from either a static XML document or XML data generated
on the fly from a database. To keep things simple, let’s start with a static XML document.

Later in the chapter, you’ll create an online gallery using Spry. One of the XML documents
used in the gallery, england.xml, contains details of photos. The basic XML structure looks
like this:

<gallery>
<photo>
<file width="number" height="number">filename</file>
<caption>text</caption>
<description><![CDATA[XHTML formatted text]]></description>

</photo>
</gallery>

The root node is <gallery> and each photo’s details are in a repeating node called
<photo>. Each <photo> node has three child nodes, as follows:

Spry 1.5 addresses the problem of accessing grandchildren nodes by introducing
nested data sets. See http://labs.adobe.com/technologies/spry/samples/
data_region/NestedXMLDataSample.html.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

656

8598CH19.qxd 6/20/07 10:51 AM Page 656

http://labs.adobe.com/technologies/spry/samples
http://lib.ommolketab.ir
http//lib.ommolketab.ir

<file>: This contains the photo’s file name as a text node, and the file’s width and
height as attributes.

<caption>: This contains a text node with a caption that can double as alternate
text.

<description>: This contains a description of the photograph formatted as
XHTML. To avoid conflicts with the XML structure, the contents of this node are
enclosed in a CDATA section.

In XML, < is always treated as the opening of an XML tag, and & is always treated as the
beginning of an entity (such as —, which represents an em dash). If you want to use
them in any other context, < and & must be replaced by < and &. The alternative is
to use a CDATA section, which allows you to embed literal code—or raw character data—
inside an XML document. In simple terms, this means that the opening < of an XHTML tag
inside a CDATA section is treated as ordinary text and not as the opening of an XML tag. To
create a CDATA section, just place the literal code between opening <![CDATA[and closing
]]> tags like this:

<description><![CDATA[<p>This is XHTML.</p>]]></description>

In this example, <description> is treated as an XML element, but the <p> and tags
inside the CDATA section are regarded as part of the text node. They’re ignored in the XML,
but will be recognized as XHTML markup when the text node is extracted and displayed in
a web page.

Right, let’s use england.xml to create a Spry data set.

This exercise examines the various options in the Spry XML Data Set dialog box (see
Figure 19-2).

1. Create a new web page, and save it as spry_data.php in workfiles/ch19.

2. To create a Spry data set, click the Spry XML Data Set button on the Spry tab of the
Insert bar, as shown in the following screenshot.

You can also use Insert ➤ Spry ➤ Spry XML Data Set, or click the plus button in the
Bindings panel and select Spry XML Data Set from the menu that appears.

Creating a Spry data set from a static XML document

I have created all the example files for this chapter in PHP pages. However, PHP is not
required to work with Spry data sets, except for the accessible examples in the next
chapter. If you don’t have a local PHP testing environment, you might find it easier to
use .html pages for the exercises in this chapter.

USING SPRY TO DISPLAY XML

657

19

8598CH19.qxd 6/20/07 10:51 AM Page 657

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. This opens the Spry XML Data Set dialog box, as shown in Figure 19-2. You need to
give a data set a name in the same way as a recordset. Dreamweaver automatically
assigns the name ds1 to the first data set on a page, but it’s a good idea to change
this to something more meaningful. So, change ds1 in the Data Set name field to
dsEngland.

Figure 19-2. The Spry XML Data Set dialog box

4. Next, tell Dreamweaver where to find the XML source. Click the Browse button
alongside the XML source field, and navigate to examples/ch19/england.xml. Click
OK (Choose on a Mac) to return to the Spry XML Data Set dialog box. Then click the
Get schema button to load the XML structure into the Row element area, which
should now look like this:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

658

8598CH19.qxd 6/20/07 10:51 AM Page 658

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The XML node tree uses the same conventions as the XSL Transformation server
behavior in the previous chapter. A pair of angle brackets (<>) indicates an XML
node. A repeating node or element is indicated by a small plus sign at the top right
of the node symbol. In the preceding screenshot, you can see that photo is a
repeating element. Attributes are indicated by an @ mark. In england.xml, you can
see that height and width are attributes of the file node.

The Design time feed link to the right of the Get schema button is rather confusing.
If you click it now, a dialog box opens telling you that Dreamweaver failed to get a
schema from the dynamic feed and suggesting that you provide a sample feed for
design time. As I explained earlier, you can create a Spry data set from XML data
generated on the fly. If the dynamic data source isn’t available at design time, you
need to use a static XML document with sample data. Since that’s exactly what
you’re doing with england.xml, this message is both misleading and pointless. Just
ignore the Design time feed link.

In Windows, the Select XML Source dialog box shows only files with an .xml extension.
If your XML data is dynamically generated by PHP, you need to set the Files of type
drop-down menu to All Files (*.*) before you can select the source file. As you’ll see in
the next chapter, Dreamweaver works with dynamically generated XML in exactly the
same way as with a static XML document.

USING SPRY TO DISPLAY XML

659

19

8598CH19.qxd 6/20/07 10:51 AM Page 659

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. To create the data set, you need to select the repeating element from which you
want to extract the data. In this case, there’s only one, so select photo in the Row
element area. As the next screenshot shows, this changes XPath from gallery to
gallery/photo and populates the Data Set columns area with the names of all the
child nodes and attributes.

6. Click the Preview button to check what the data set contains. You should see some-
thing similar to Figure 19-3.

Figure 19-3. You can check that you’re getting the right data by previewing the first few rows.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

660

8598CH19.qxd 6/20/07 10:51 AM Page 660

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Data preview panel shows a maximum of the first 20 rows of the data set. There
are only eight in england.xml, so the panel shows them all. Click OK to close the
panel and return to the Spry XML Data Set dialog box.

7. By default, all columns are treated as strings, which can cause problems for sorting
numbers, so the Data type drop-down menu lets you specify how you want individ-
ual columns to be treated. The height and width attributes are numerical, so select
file/@height in the Data Set columns area and set Data type to number. Do the same
for file/@width.

8. As you can see from Figure 19-3, the file column is in alphabetical order. This
reflects the order in which I created england.xml, and the same order will be used
for the data set. However, you can tell Spry to order the data differently by setting
the Sort and Direction options. Just for the sake of demonstration, let’s sort the data
according to width from largest to smallest.

Set Sort to file/@width and Direction to Descending.

9. On this occasion, you don’t need to change the last three options at the bottom
of the Spry XML Data Set dialog box (see Figure 19-2), but let me explain what
they’re for:

Distinct on load: Selecting this checkbox eliminates duplicate records in the
data set.

Turn XML Data Caching Off: By default, Spry caches the data set when it first
loads. This is the most efficient way. Select this option only if you know that the
XML data source is likely to be updated frequently.

Auto refresh data: This option is grayed out unless you select the previous option.
Enter the interval at which you want the browser to check for new data. The
interval must be stated in milliseconds, so 60000 represents one minute. Don’t
use a thousands separator. Also remember that constantly checking for new
data could increase server load and bandwidth use dramatically.

10. When you have made all the changes to the Spry XML Data Set dialog box, click OK
to save your settings. Then save spry_data.php. If this is the first Spry data set that
you have created in the site, Dreamweaver displays an alert telling you that it is
saving two dependent files, xpath.js and SpryData.js, to the Spry assets folder.
These contain all the necessary JavaScript libraries to manipulate a data set.

You can check your code against spry_data_01.php in examples/ch19.

At this stage, you have nothing to show for your efforts in Design view, but if you switch to
Code view, you can see how Dreamweaver has defined the Spry data set. All the code goes
into the <head> of the document, as shown in Figure 19-4.

USING SPRY TO DISPLAY XML

661

19

8598CH19.qxd 6/20/07 10:51 AM Page 661

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-4. A Spry data set is initialized in the <head> of a page so that it’s ready for use when the
main body loads.

The code shown on lines 6–7 attaches the two external JavaScript libraries; the dsEngland
data set is initialized on line 10; and lines 11–12 apply the setColumnType() method to
the data set. The data set is a Spry object with methods and properties (see
“Understanding Spry objects” in Chapter 8) just like the user interface widgets you used in
the first half of this book. If you’re feeling ambitious later, you can study details of the Spry
framework by visiting www.adobe.com/go/learn_dw_spryframework, but for the time
being, let’s content ourselves with the Dreamweaver interface and build a Spry table to
display the contents of the data set.

Displaying a data set in a Spry table
Building a Spry table is very simple. Unfortunately, Dreamweaver CS3 has forgotten an
important aspect of usability—there’s no way to edit a Spry table after you have created it,
other than diving into Code view or scrapping it and starting all over again. So, before
diving into creating a Spry table, you need to do a little planning and decide how you want
the table to look. The Insert Spry Table dialog box has the following options for setting CSS
classes:

Odd row class: This sets the styles for odd-numbered rows.

Even row class: This sets the styles for even-numbered rows.

Hover class: This determines how you want a row to look when the mouse hovers
over it.

Select class: This styles the currently selected row.

Although you can set these classes later in Code view, it’s easier to create skeleton style
rules first. I have created some simple styles in spry_table.css, which you can find in
examples/styles. The rules look like this:

body {
color:#000;
background-color:#FFF;
font-family:Verdana, Arial, Helvetica, sans-serif;
}

div {

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

662

8598CH19.qxd 6/20/07 10:51 AM Page 662

http://www.adobe.com/go/learn_dw_spryframework
http://lib.ommolketab.ir
http//lib.ommolketab.ir

font-size:85%;
width:650px;
margin-left:30px;
}

th, td {
padding:3px 10px;
}

th {
cursor:pointer;
}

.odd {
background-color:#EEEEEE;
}

.even {
background-color:#E8F2F8;
}

.hover {
cursor:pointer;
background-color: #B4C6DB;
}

.selected {
color:#FFFFFF;
background-color: #999999;

}

When using a Spry data set in a web page, you need to create Spry regions, which must be
in a <div> or , so I have used the div Type selector to control the width and font
size. I have also added some padding inside the table headers and table cells. The four
classes are for the Spry table. The odd rows will have a light gray background and even
rows a light blue one.

Spry tables are interactive but don’t use <a> tags, so you need to change the cursor explic-
itly to look like a hand when the mouse pointer passes over a table row. Spry applies the
Hover class action only over table rows, so you must create a separate rule to change the
cursor for table headers. The color I have chosen for table rows when the mouse passes
over them is dark blue, with white text on a dark gray background for the selected row.

Figure 19-5 shows the simple Spry table that you’ll build in the next exercise. When the
page first loads, the table is sorted according to the width of the images, so hgs.jpg and its
associated caption (Hampstead Garden Suburb in North London) appears in the top row.
Clicking the File or Caption column header reorders the rows according to which column
you clicked. The description is displayed in a <div> below the table and is automatically
updated depending on the currently selected row—all without the need to refresh
the page.

USING SPRY TO DISPLAY XML

663

19

8598CH19.qxd 6/20/07 10:51 AM Page 663

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-5. A Spry table can be sorted and display related information in a detail area without the
need to refresh the page.

This exercise shows you how to define a Spry table to display the <file> and <caption>
nodes from the dsEngland data set. You’ll also learn how to create a detail region that is
updated when its related row is clicked in the table. The instructions assume that you
created the dsEngland data set earlier in the chapter. Alternatively, use spry_data_01.php
in examples/ch19. If you just want to look at the finished code, it’s in spry_data_02.php.

1. Attach spry_table.css in the examples/styles folder to spry_data.php (attach-
ing a style sheet was covered in Chapter 5).

2. Click the Spry Table button in the Spry tab of the Insert bar, as shown in the fol-
lowing screenshot, or choose Insert ➤ Spry ➤ Spry Table.

Displaying the photo details

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

664

8598CH19.qxd 6/20/07 10:51 AM Page 664

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. This opens the Insert Spry Table dialog box, as shown here:

The layout and functionality of the dialog box should be immediately familiar from
other parts of Dreamweaver. There’s only one data set on the current page, but if
there are more, select the data set you want to use from the Spry Data Set drop-
down menu at the top. This populates the Columns area with the names of XML
nodes and attributes in the data set.

You can remove a column by selecting it and clicking the minus button; and if you
change your mind, restore it using the plus button.

By default, the columns are not sortable. To make a column sortable when its
header is clicked, select the column name and select the sort option at the bottom
of the Columns area.

The remaining options set the CSS classes discussed earlier and let you update one
or more detail regions when a row is clicked.

The table in Figure 19-5 displays just the file and caption columns, so highlight the
rest and delete them, make both columns sortable, and set the remaining options
so that the dialog box looks like this:

USING SPRY TO DISPLAY XML

665

19

8598CH19.qxd 6/20/07 10:51 AM Page 665

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Click OK to create the Spry table. Dreamweaver will ask you if you want to insert a
Spry region. Since you need a Spry region or detail region to display the contents
of a data set, the answer is Yes (you could have created the Spry region first, but
it’s usually easier to get Dreamweaver to add it for you when inserting the table).

5. The page should now look like Figure 19-6. As you can see, it’s similar to what you
might get with a table built from a PHP recordset. Unlike PHP, though, Live Data
view can’t handle Spry. You must launch the page in a browser.

Figure 19-6. In Design view, a Spry table gives no real indication of what it will look like in a browser.

Save the page, and press F12/Opt+F12 to view spry_data.php in a browser. It
should look like Figure 19-5 minus the description at the foot of the table. We’ll
add that in a moment, but first, test the page by running the mouse over the rows
and clicking the column headers to sort the data. As long as you’re using a modern
browser with JavaScript enabled, it should work very smoothly without needing to
refresh the page.

6. Return to Dreamweaver, and click anywhere inside the table. The <div> and <tr>
tags in the Tag selector at the bottom of the Document window are highlighted in
orange, indicating that they contain Spry data set code. Select the <div> tag and
press the right arrow key once to move the insertion point outside the <div>.

7. To display the description, you need to
create a Spry detail region. Click the
Spry Region button on the Spry tab of
the Insert bar, as shown alongside, or
select Insert ➤ Spry ➤ Spry Region.

8. This opens the Insert Spry Region dialog box, as shown here:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

666

8598CH19.qxd 6/20/07 10:51 AM Page 666

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The options let you choose a <div> or as the container. Most of the time,
you’ll want to use a <div>, unless you want the region to appear inline. You also
have the choice of Region or Detail Region. The link at the bottom of the dialog box
opens the Dreamweaver help files to explain the difference. Basically, a Spry region
is used to display multiple elements from a data set, as in the table you built in
steps 2–5. A Spry detail region gives you access to the currently selected element
within the data set. In this case, you’re going to display the description of
whichever file name or caption the user clicks in the table.

The remaining options in the dialog box let you choose the data set if there’s more
than one on the page and whether to wrap the region around the current selection
or to replace it. Since nothing is currently selected in spry_data.php, the Wrap
selection and Replace selection options are grayed out.

Use the settings shown in the preceding screenshot, and click OK.

9. Dreamweaver inserts the Spry region with placeholder text, as shown here:

10. Open the Bindings panel. As you can see from
the screenshot alongside, dynamic objects for
the data set values are listed in the same way as
for a recordset or in an XSLT fragment. At the
bottom of the list are three Spry data objects
that can be used to get access to the row ID, cur-
rent row ID, and row count.

The data object that we’re interested in at the
moment is description. Select it, and use it to
replace the placeholder text in the Spry detail
region. You can either drag and drop it, or use
the Insert button at the bottom of the Bindings
panel.

11. The page should now look like this:

In Design view, it still looks very unimpressive, but when you save the page and test
it in a browser, it should look like Figure 19-5 and be fully interactive.

You can check your code against spry_data_02.php in examples/ch19.

USING SPRY TO DISPLAY XML

667

19

8598CH19.qxd 6/20/07 10:51 AM Page 667

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Understanding the Spry data code
I don’t intend to go into great detail about how the code works. The whole idea of incor-
porating Spry into Dreamweaver CS3 is to make it easy to use Ajax without needing to
become a JavaScript guru, but it does help to recognize the code and have a basic under-
standing of what it’s for.

The table and detail region use remarkably little code, as you can see from the following
listing (all the Spry code is highlighted in bold):

<div spry:region="dsEngland">
<table>
<tr>
<th spry:sort="file">File</th>
<th spry:sort="caption">Caption</th>

</tr>
<tr spry:repeat="dsEngland" spry:setrow="dsEngland" spry:odd= ➥

"odd" spry:even="even" spry:hover="hover" spry:select="selected">
<td>{file}</td>
<td>{caption}</td>

</tr>
</table>

</div>
<div spry:detailregion="dsEngland">{description}</div>

Even if you don’t know how it works, the Spry syntax is easy to follow. Everything begins
with spry: followed by the name of a property and its value. The property names are all
very intuitive: region, sort, repeat, and so on.

Take the code in the second table row. It begins with spry:repeat="dsEngland". This
turns the row into a repeat region that draws data from the dsEngland data set. The
spry:setrow property controls the display in the detail region. When the row is clicked,
Spry sets it as the current row, which sends a message—or triggers an event, to use the
correct terminology—that tells any dsEngland detail region to update its contents.

The data objects that hold the contents are in curly braces. So {description} tells the
browser to display the current value of the <description> node.

Validating pages that use Spry
If you submit a page that uses Spry to the W3C validator at http://validator.w3.org/,
you get a series of errors saying, for example, that there is no attribute spry:region or

If you forget to set one of the classes in a Spry table, you can easily edit the repeat
row by adding spry:odd, spry:even, spry:hover, or spry:select and the name of
the class. Dreamweaver code hints speed up the process by displaying the available
options after you type spry: in Code view.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

668

8598CH19.qxd 6/20/07 10:51 AM Page 668

http://validator.w3.org
http://lib.ommolketab.ir
http//lib.ommolketab.ir

spry:repeatchildren. This happens even though Dreamweaver amends the <html> tag at
the top of the page like this:

<html xmlns="http://www.w3.org/1999/xhtml" ➥

xmlns:spry="http://ns.adobe.com/spry">

The code highlighted in bold declares spry as a namespace. This tells the browser not to
confuse anything prefixed with spry: with standard XHTML attributes or custom attributes
from other namespaces, such as other Ajax frameworks. While this prevents conflicts, it’s
not sufficient for W3C validation. You need to tell the validator where to find the Spry
document type definition (DTD) by amending the top of each page like this:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" ➥

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"
[
<!ENTITY % SPRY SYSTEM "http://www.adobe.com/dtd/spry.dtd">
%SPRY;

]>
<html xmlns="http://www.w3.org/1999/xhtml" ➥

xmlns:spry="http://ns.adobe.com/spry">

So why doesn’t Dreamweaver add the necessary code? Figure 19-7 shows why. Internet
Explorer, Firefox, and Safari all fail to understand the <!ENTITY> tag and display %SPRY;]>
at the top of the page if you include it (see http://labs.adobe.com/technologies/spry/
articles/validation/validating_spry.html).

Figure 19-7. Most leading browsers can’t cope with the code needed to ensure that Spry validates.

If W3C validation is a mandatory requirement for your website, you have two options:
don’t use Spry, or use the <!ENTITY> tag to prove compliance but remove it when the site
goes live.

The fly in Spry’s ointment
Dreamweaver CS3 makes it incredibly easy to create a master/detail display of data as in
spry_data.php, but it’s important to remember that the underlying content seen by
search engines is exactly the same as the listing in “Understanding the Spry data code.”
Search engines don’t interpret JavaScript, so putting vital content in Spry regions is a high-
risk strategy.

USING SPRY TO DISPLAY XML

669

19

8598CH19.qxd 6/20/07 10:51 AM Page 669

http://www.w3.org/1999/xhtml
http://ns.adobe.com/spry
http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd
http://www.adobe.com/dtd/spry.dtd
http://www.w3.org/1999/xhtml
http://ns.adobe.com/spry
http://labs.adobe.com/technologies/spry
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The other thing to remember is that Spry content remains inaccessible to anyone using an
old browser or one with JavaScript disabled. You can see the effect for yourself by turning
off JavaScript temporarily in your browser. Here’s how you do it:

Firefox: Go to Tools ➤ Options, and select the Content tab. Deselect Enable
JavaScript, and click OK.

Internet Explorer for Windows: Go to Tools ➤ Internet Options. Select the Security
tab, then the Internet icon. Click the Custom level button, and in the Security Settings
– Internet Zone dialog box, locate Scripting ➤ Active Scripting, and set it to Disable.
Click OK to close all the dialog boxes.

Safari: Open Preferences from the Safari menu. Click the Security icon, and deselect
Enable JavaScript. Close Preferences.

When you reload spry_data.php in your browser, all you’ll see is what’s shown in Figure
19-8. Unlike the Spry widgets covered in Chapters 7 and 8, Spry data sets do not degrade
gracefully unless you combine them with static links or server-side technology. I’ll show
you how to do that in the next chapter.

Figure 19-8. With JavaScript disabled, the page shown in Figure 19-5 displays only meaningless code.

Displaying a data set as a list
As well as automatically creating tables to display a Spry data set, Dreamweaver creates
four types of lists: unordered (), ordered (), definition (<dl>), and drop-down
menus (<select>). The way you create them is the same as for a table, although there are
no options for setting CSS classes. You can either create a Spry region first and insert the
list, or you can leave it up to Dreamweaver to wrap the list in a Spry region when you have
finished.

Unordered and ordered lists have only two options: the data set and the name of the col-
umn that you want to display. Definition lists and drop-down menus have an extra option
because both have a label and value for each item in the list. I’ll show you how to create a
drop-down menu when building the photo gallery later, but let’s look briefly at creating a
Spry definition list. To keep things simple, we’ll adapt spry_data.php from the previous
exercise.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

670

8598CH19.qxd 6/20/07 10:51 AM Page 670

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This exercise converts the Spry table in spry_data.php into a definition list. The result
won’t look very elegant, but the purpose is simply to demonstrate how to create a list with
Spry. Use spry_data_02.php in examples/ch19 if you don’t have your own copy of the file.
The finished code is in spry_data_03.php.

1. Select the <div> that encloses the Spry table, and press Delete to remove it. You
should be left with the <div> that contains the detail region and the {description}
data object. In Split view, your page should now look like this, with the insertion
point immediately after the opening <body> tag:

2. Click the Spry Repeat List button in the Spry tab of the Insert bar, as shown in the
following screenshot, or select Insert ➤ Spry ➤ Spry Repeat List.

3. This opens the Spry Repeat List dialog box, as shown here:

Creating a Spry definition list

USING SPRY TO DISPLAY XML

671

19

8598CH19.qxd 6/20/07 10:51 AM Page 671

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Container tag drop-down menu contains the following four options:

UL (Unordered List): This creates an unordered list using tags and populates
the tags with the values stored in the XML node selected as Display column.
Only one node can be selected.

OL (Ordered List): This creates an ordered (numbered) list using tags. In
other respects, it’s identical to the previous option.

DL (Definition List): This creates a definition list using <dl> tags. When you select
this option, the Display column option is replaced by DT Column and DD Column,
which let you choose what to display in the <dt> and <dd> tags.

SELECT (Drop-down List): This creates a drop-down menu using <select> tags.
When you select this option, a Value column option is added at the bottom of
the dialog box. Display column determines the value displayed in the drop-down,
and Value column sets the value attribute of each <option> tag. You’ll see this in
operation when building the Spry gallery later in the chapter.

Whichever option you choose for Container tag, the Spry Data Set option selects the
data set to be used. There’s only one data set on the current page, so it’s selected
by default.

4. Select DL (Definition List) for Container tag, and set DT column to file and DD column
to caption. This will display the same information as in the original Spry table, but
as a definition list. Click OK to save the settings, and click Yes when Dreamweaver
asks if you want to insert a Spry region. The page should now look like this in
Split view:

As you can see from the preceding screenshot, Dreamweaver has inserted a <div>
on lines 19–24, and set the spry:region property to dsEngland, the name of the
data set to use.

The opening tag of the definition list on line 20 contains the spry:repeatchildren
property, which is also set to dsEngland. This tells the browser to loop through the
dsEngland data set for each child element of the <dl> tag—in other words, the
<dt> and <dd> tags.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

672

8598CH19.qxd 6/20/07 10:51 AM Page 672

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Lines 21–22 insert {file} and {caption} data objects in the <dt> and <dd> tags,
respectively.

Dreamweaver does all this coding for you automatically, so you don’t need to
bother about it unless you want to start using Spry in more sophisticated ways.

5. Save spry_data.php, and press F12/Opt+F12 to view the page in a browser. It
should look like Figure 19-9. However, clicking any of the list items no longer
changes the description at the bottom of the page. To do that, you need to hand-
code some Spry properties.

Figure 19-9. The contents of the Spry table are now displayed as a definition list.

6. Just as an example of how to add some Spry interactivity to the definition list, edit
the <dd> tag by adding a around the data object like this (new code is
shown in bold):

<dd><span spry:setrow="dsEngland" spry:hover="hover" ➥

spry:select="selected">{caption}</dd>

I have used a to limit the width of the background color to the text. When
you start typing in Code view, code hints pop up. As soon as you select spry:setrow,
another code hint displays the name of the available data set; and when you select
spry:hover and spry:select, you are presented with a list of classes defined in the
page’s style sheet. Make sure you don’t use spry:selected instead of spry:select, as
they have different meanings.

USING SPRY TO DISPLAY XML

673

19

8598CH19.qxd 6/20/07 10:51 AM Page 673

http://lib.ommolketab.ir
http//lib.ommolketab.ir

7. Test the page again. This time, the hover and selected classes are applied to the
caption, and the spry:setrow property triggers an event that updates the descrip-
tion at the bottom of the page. You can check your code, if necessary, with
spry_data_03.php in examples/ch19.

What’s the difference between repeat and repeatchildren?
If you’re interested in taking Spry further, look more closely at the code in the Spry table
and the Spry definition list. Both use Spry repeat regions, but there’s a subtle difference
between them.

The repeat region in the table is defined in the <tr> tag of the second row like this:

<tr spry:repeat="dsEngland" spry:setrow="dsEngland" spry:odd="odd" ➥

spry:even="even" spry:hover="hover" spry:select="selected">
<td>{file}</td>
<td>{caption}</td>

</tr>

The repeat region in the definition list is defined like this:

<dl spry:repeatchildren="dsEngland">
<dt>{file}</dt>
<dd><span spry:setrow="dsEngland" spry:hover="hover" ➥

spry:select="selected">{caption}</dd>
</dl>

In the table, the spry:repeat property repeats an element and all of its content for each
row in the data set. In other words, it repeats the table row (<tr>) and its two cells (<td>)
for each row in the dsEngland data set. This results in the creation of eight table rows.

In the definition list, on the other hand, spry:repeatchildren repeats all the children of
a given element for each row in a data set. The property is defined in the <dl> tag, which
has two children: <dt> and <dd>. As a result, Spry creates one definition list with a <dt>
and <dd> pair for every row in the dsEngland data set.

So the difference can be summarized as follows:

spry:repeat repeats the element in which it is declared.

spry:repeatchildren doesn’t repeat the element itself but does repeat its children.

Because Spry manipulates the content in the browser window without creating any under-
lying source code for you to inspect, it can sometimes be difficult to grasp the difference
between what’s happening. For example, if you change the code in the <dl> tag from
spry:repeatchildren to spry:repeat, the output seems to be identical. However, if you
create a style rule to add a visible border around a definition list, the difference becomes
obvious. With spry:repeatchildren, there’s a single border around the list, but with
spry:repeat, you get a border around each list item (see Figure 19-10). In other words,
the <dl> element is also repeated, so you end up with eight definition lists instead of one.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

674

8598CH19.qxd 6/20/07 10:51 AM Page 674

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-10. Using spry:repeat with the <dl> tag creates a separate definition list for each
row of the data set.

This might tempt you to remove the Spry property from the <dl> tag, and use
spry:repeat directly on the <dt> and <dd> elements like this:

<dl>
<dt spry:repeat="dsEngland">{file}</dt>
<dd spry:repeat="dsEngland">{caption}</dd>

</dl>

Figure 19-11 shows what happens—all the <dt> elements are repeated first, followed by
all the <dd> elements.

Figure 19-11. Using the wrong type of Spry repeat region
brings unwanted results.

You get equally undesirable results if you use spry:repeatchildren in the <tr> tag of the
table. Instead of eight table rows with two table cells each, you get one table row with
16 table cells.

USING SPRY TO DISPLAY XML

675

19

8598CH19.qxd 6/20/07 10:51 AM Page 675

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Case study: Building a Spry image gallery
Now that I have shown you the basics of creating a Spry data set and displaying text out-
put, let’s use that knowledge to build an online gallery. Figure 19-12 shows you what the
finished gallery looks like. There are two sets of images and thumbnails, which can be
selected by using the drop-down menu at the top left of the page. Clicking any of the
thumbnails changes the large image on the right and displays the appropriate caption and
description. All the interactivity is controlled by Spry within the browser, so the relevant
sections of the page are updated without reloading.

Figure 19-12. The gallery draws from three data sources and displays the output in two repeat
regions and two detail regions.

Planning the gallery
The gallery uses two Spry data sets: one to select the currently displayed photo gallery and
the other to load details of the selected gallery. The first data set uses a very simple XML
document called galleries.xml, which looks like this:

<?xml version="1.0" encoding="utf-8"?>
<galleries>
<gallery file="england.xml">
<name>England</name>

</gallery>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

676

8598CH19.qxd 6/20/07 10:51 AM Page 676

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<gallery file="japan.xml">
<name>Japan</name>

</gallery>
</galleries>

Dynamically selecting the gallery data set
The file attribute of the repeating <gallery> element tells Spry where to find the data
source for the selected gallery, and the <name> node is displayed as the label in the drop-
down menu. This generates a data set, which we’ll call dsGalleries, which always exists.
The second data set, dsPhotos, is generated dynamically depending on which option is
selected in the drop-down menu, as shown in the following illustration:

In effect, this means that the gallery has three data sets, but only two exist at the same
time. The contents of dsPhotos change whenever a different option is selected in the
drop-down menu.

The details of the galleries are contained in england.xml and japan.xml. The first of these
is the same file that you have been using throughout the chapter. It contains a repeating
element called <photo> with three child nodes: <file> (which has the file’s width and
height properties), <caption>, and <description>. The other file, japan.xml, is identical
in structure and contains details of eight photographs of Japan.

The photos are in the gallery subfolder of the main images folder. Each photo has a cor-
responding thumbnail in the thumbs subfolder of gallery. To simplify the code, I have
given each thumbnail the same name as the large photo. So, images/gallery/thumbs/
basin.jpg is the thumbnail version of images/gallery/basin.jpg.

Controlling the structure with CSS
Figure 19-13 shows the underlying structure of the page. The whole page is enclosed in a
<div> called wrapper with a fixed width of 720 pixels. The left and right margins are set to
auto, which centers the content in the page and aligns it with the background image. The
background image is also centered and tiled vertically and is 1,200 pixels wide. Each side
has a subtle gradient that fades to the same light pink as the background color (#F9F2F8),
so the two blend if the browser viewport is wider than 1,200 pixels.

USING SPRY TO DISPLAY XML

677

19

8598CH19.qxd 6/20/07 10:51 AM Page 677

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-13. The gallery is held together by a series of <div> elements enclosed in a wrapper
<div> that centers the page.

The rest of the positioning is achieved through margins and by floating to the left the
thumbs and mainPic elements. A Spry table can’t loop both horizontally and vertically, so
the thumbs <div> is given a fixed width that accommodates only two thumbnails side by
side. The thumbnails are all a standard 80 pixels ✕ 54 pixels.

The large images vary in size up to a maximum width of 400 pixels. When a large image is
displayed, it is centered within the mainPic <div> by placing it and its accompanying cap-
tion in a paragraph styled with the CSS property text-align: center.

The style rules in gallery.css are fully commented, so I’ll leave you to study them at
leisure.

Putting everything together
To save time, I have prepared all the basic files for you. The images are already in the cor-
rect folders. You need to copy the following files from examples/ch19 to workfiles/ch19:

gallery_start.php

galleries.xml

england.xml

japan.xml

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

678

8598CH19.qxd 6/20/07 10:51 AM Page 678

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The style sheet gallery.css is already attached to gallery_start.php. You can leave
gallery.css in the examples/styles folder by clicking Update when prompted to update
the links in gallery_start.php. Alternatively, if you want to experiment with the styles,
copy gallery.css to workfiles/styles, and leave the relative links unchanged.

Before starting, open the XML files to examine their structure. Make sure you understand
what they contain. See “Creating a Spry data set” earlier in the chapter for a description of
england.xml; the structure of japan.xml is identical. The structure and purpose of gal-
leries.xml was described at the beginning of the preceding section.

Right, let’s begin. By the time you have finished, you might be surprised at how little code
has been created. However, getting everything right involves a lot of steps. Give yourself
plenty of time and follow the instructions carefully.

In this section, you’ll create the initial data sets, insert the drop-down menu that selects
the gallery, and build the thumbnail display on the left of the page. The drop-down menu
will eventually switch dynamically between two versions of the dsPhotos data set.
However, Dreamweaver cannot generate the schema from a dynamically selected data
source, so you need to work initially with a static version. Don’t worry if you find this con-
fusing; it should become clear once you have built the page.

1. Rename gallery_start.php as gallery.php.

2. Open the Spry XML Data Set dialog box by clicking the Spry XML Data Set button on
the Spry tab of the Insert bar or choosing Insert ➤ Spry ➤ Spry XML Data Set.

Name the data set dsGalleries, and use galleries.xml in workfiles/ch19 as the
XML source.

In the Row element area, select the repeating element gallery, and click the Preview
button. You should see the following data set displayed:

3. Close the Data preview panel, and click OK to close the Spry XML Data Set dialog
box.

4. Create another Spry data set. Call this one dsPhotos, and use england.xml in
workfiles/ch19 as the XML source. In the Row element area, select the repeating
element photo, and in Data Set columns, set file/@height and file/@width to number.

Creating the data sets and displaying the thumbnail

USING SPRY TO DISPLAY XML

679

19

8598CH19.qxd 6/20/07 10:51 AM Page 679

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Your settings should look like this:

This is almost identical to the dsEngland data set in the earlier exercises. The only
difference is that I have left the data set in its original order, rather than sorting it
by the width of each photo.

Click OK to close the Spry XML Data Set dialog box.

5. Next, you need to start inserting the Spry regions. Although Spry regions normally
use <div> tags, the Insert Spry Region dialog box doesn’t have the same option as
the Insert Div Tag dialog box, which lets you specify where to put it in the page. If
you use the Insert Div Tag dialog box first, select the <div>, and instruct
Dreamweaver to replace the current selection with a Spry region, the id attribute
is deleted. This leaves you with a messy Catch 22 situation, so the best approach is
to know exactly where your insertion point is before inserting a Spry region, table,
or list.

You want the select <div> that contains the drop-down menu to go after the
header <div>, but inside the wrapper <div>. So, click the image of tulips at the top
of the page, and select <div#header> in the Tag selector at the bottom of the
Document window. Press the right arrow key once to move the insertion point into
the correct position. Check in Split view, if you’re not sure.

6. Click the Spry Repeat List button on the Spry tab of the Insert bar (or use the Insert
menu), and use the following settings in the Insert Spry Repeat List dialog box:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

680

8598CH19.qxd 6/20/07 10:51 AM Page 680

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This uses the dsGalleries data set to create a drop-down menu, displaying the
name node (England or Japan), and setting the value attribute of the <option> tag
to the value of the file attribute (england.xml or japan.xml).

Click OK to insert the drop-down menu, and click Yes when asked if you want to
insert a Spry region. The top of the page should now look like this:

7. Select the menu element to bring up its details in the Property inspector, and
change its name from the default select to chooseGallery. Press Enter/Return to
effect the change. Now move the insertion point into the correct position to add a
label by selecting <select#chooseGallery> in the Tag selector and pressing the left
arrow key once.

8. Click the Label button on the Forms tab of the Insert bar (or use Insert ➤ Form ➤
Label). This opens Split view with the insertion point between two <label> tags.
Type Select gallery followed by a colon and a space. Then edit the opening <label>
tag to add the for attribute and set its value to chooseGallery. Click back in Design
view to view the change. The page should now look like this:

USING SPRY TO DISPLAY XML

681

19

8598CH19.qxd 6/20/07 10:51 AM Page 681

http://lib.ommolketab.ir
http//lib.ommolketab.ir

9. Right-click the orange-colored <div> in the Tag selector (click inside the <div> that
contains the drop-down menu if you can’t see it), and choose Set ID from the con-
text menu. Because all the ID selectors have been declared in the style sheet, they
are listed on a flyout. Choose select from the list of IDs.

This applies the styles to the <div> and changes the listing in the Tag selector to
<div#select>. Press the right arrow key once to move the insertion point into the
correct position for inserting the thumbs <div>. In Design view, it looks as though
the cursor is still inside the select <div>, but you can verify that it’s in the right
position by checking in Split view.

10. Insert a Spry region for the thumbnails by clicking the Spry Region button on the
Spry tab of the Insert bar (or use the Insert menu). Use the following settings, and
click OK:

Container: DIV

Type: Region

Spry Data Set: dsPhotos

11. This inserts a <div> as a Spry region with some placeholder text. You now want to
nest a repeat region within this <div> to display the thumbnails.

With the placeholder text still highlighted, click the Spry Repeat button on the Spry
tab of the Insert bar (or use the menu equivalent). This time, use the following
settings:

Container: SPAN

Type: Repeat

Spry Data Set: dsPhotos

Insert: Replace selection

When you click OK, the placeholder text is still there. What’s happened is that the
old placeholder text has been replaced by the repeat region, but new placeholder
text has been inserted inside the repeat region to aid with inserting the real
content.

12. Your instinct is probably to press Delete to get rid of the placeholder text. If you do
so, the repeat region is also deleted. So, insert a thumbnail by selecting Insert ➤
Image, navigating to images/gallery/thumbs, and selecting one of the images.
It doesn’t matter which one, because you’re going to replace it in a moment with a
dynamic object. However, inserting a real image has the advantage of setting
the correct path to the thumbs folder, as well as setting the correct values for
height and width. When prompted for alternate text, type something generic like
“thumbnail.”

13. Inserting the thumbnail doesn’t get rid of the placeholder text, so delete it. Go into
Code view, and replace the file name of the image with {file}. This is a Spry dynamic
object that contains the value of the file node from england.xml in the dsPhotos
data set. As soon as you type the opening curly brace, code hints display the
dynamic objects you can use in this repeat region, as shown in the following
screenshot:

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

682

8598CH19.qxd 6/20/07 10:51 AM Page 682

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Use your mouse to double-click file or select it with your down arrow key, and press
Enter/Return to insert it. Dreamweaver automatically adds the closing curly brace.

14. When you click back in Design view, the thumbnail is replaced by a broken image
icon. This is perfectly normal. Before checking your code so far, let’s first harness
the thumbnails.

In the Tag selector, right-click the <div> that contains them, and select thumbs from
Set ID on the context menu. The thumbs <div> is styled, but still contains only one
broken image icon. You need a good imagination or to have carefully planned your
page layout when using Spry data sets.

15. Save gallery.php, and test the page in a browser. Eight thumbnails should be dis-
played in a neat box at the side of the page, as shown in Figure 19-14.

Figure 19-14. The Spry gallery begins to take shape—the thumbnails are all there.

USING SPRY TO DISPLAY XML

683

19

8598CH19.qxd 6/20/07 10:51 AM Page 683

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If things don’t look like Figure 19-14, check your code against gallery_01.php in
examples/ch19. There’s remarkably little code when working with Spry data sets,
but it’s easy to nest elements incorrectly. Also make sure that you have the correct
path and file names. Spry and XML are case sensitive.

The next stage is to create the sections that display the large version of the selected image,
its caption, and its description. Although the caption and photo can go together in a single
<div>, the description looks better in a separate <div>. This presents no problem, because
you can have as many Spry detail regions as you like. All of them automatically register
event listeners with the data set they are associated with. As the name suggests, an event
listener sits in wait listening for a specific event and reacts accordingly when it receives
notification. So, when the currently selected row in the data set changes as the result of
clicking a thumbnail, the detail regions respond by displaying the data corresponding to
that row.

In this section, you’ll add two detail regions that listen for changes to the dsPhotos data
set.

1. Select <div#thumbs> in the Tag selector, and press the right arrow key once to
move the insertion point to the correct place for inserting the mainPic <div>.

2. Click the Spry Region button on the Spry tab of the Insert bar (or use the menu
equivalent), use the following settings, and click OK:

Container: DIV

Type: Detail region

Spry Data Set: dsPhotos

3. You want the image and caption to be in a paragraph so that they can be centered,
so format the placeholder text as a paragraph. Make sure that only the text inside
the paragraph is selected, and press Delete. This leaves behind a pair of <p> tags
with a nonbreaking space in between. This is where you’ll insert the main image.

4. Because the large photos vary in size, we’ll use a different way to insert the image
this time. Select Insert ➤ Image, and navigate to the images/gallery folder.

As well as selecting an image from the file system, Dreamweaver lets you specify a
data source. However, when you do so, Dreamweaver assumes that the data source
will supply the full path, so it deletes the path from the dialog box. However, this is
easily overcome. The Windows and Mac interfaces are subtly different, so I’ll give
separate instructions. First, Windows . . .

Highlight the path to the images/gallery folder in the URL field at the bottom of
the Select Image Source dialog box (see Figure 19-15), and copy it (Ctrl+C) to your
clipboard. Then select the Data sources radio button at the top of the dialog box.

Adding the detail regions

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

684

8598CH19.qxd 6/20/07 10:51 AM Page 684

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-15. Selecting the data source for the main image in Windows

The Select Image Source dialog box changes as shown on the right of Figure 19-15.
Expand the dsPhotos tree menu if necessary, and select file. This inserts
{dsPhotos::file} into the URL field. Click inside this field, and move your cursor so
that it’s immediately in front of the opening curly brace. Paste (Ctrl+V) the path to
images/gallery. Skip to step 5 before clicking OK.

If you’re using the Mac version of Dreamweaver, select the path to the
images/gallery folder in the URL field at the bottom of the Select Image Source
dialog box (see Figure 19-16 on the next page), and copy (Cmd+C) it to your clip-
board. Then click the Data Sources button at the bottom of the dialog box.

This opens the Dynamic Data dialog box, as shown on the right of Figure 19-16.
Expand the dsPhotos tree menu if necessary, and select file. This inserts
{dsPhotos::file} into the Code field. Click inside this field, and move your cursor so
that it’s immediately in front of the opening curly brace. Paste (Cmd+V) the path to
images/gallery. The path you have just pasted doesn’t end with a forward slash,
so insert a forward slash between gallery and the opening curly brace of
{dsPhotos::file}. Check the contents of the Code field as described in the next step.

USING SPRY TO DISPLAY XML

685

19

8598CH19.qxd 6/20/07 10:51 AM Page 685

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-16. Selecting the data source for the main image in the Mac version

5. If you’re using document-relative links, the URL (Windows) or Code (Mac) field
should look like this:

../../images/gallery/{dsPhotos::file}

If you’re using site-root-relative links, it will look like this:

/images/gallery/{dsPhotos::file}

Click OK to insert the image. When prompted
for alternate text, just click OK, because you’ll
make that dynamic, too. You’ll have another
broken image icon in your page (you need to
get used to them with Spry). Leave the image
selected, and open the Bindings panel.

You can use the caption as alternate text. So,
expand the dsPhotos tree menu, if necessary,
and select caption. Then select img.alt from the
Bind to drop-down menu at the bottom of the
Bindings panel, as shown alongside, and click the
Bind button.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

686

8598CH19.qxd 6/20/07 10:51 AM Page 686

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. Do the same with file/@height and file/@width, binding them to img.height and
img.width, respectively. This adds the XHTML attributes inside the tag, and
assigns dynamic objects as the value to each one. The code in the tag should
now look like this:

<img src="../../images/gallery/{file}" alt="{caption}" ➥

width="{file/@width}" height="{file/@height}" />

7. In Design view, click alongside the image you have just been working on, and press
Shift+Enter/Shift+Return to insert a single line break (
 tag). Select caption in
the Bindings panel, and click the Insert button (this is the same as the Bind button
that you used in steps 5–6, but Dreamweaver’s context sensitivity changes its name
and function because nothing is currently selected).

8. In the Tag selector, right-click the <div> that contains the image and caption, and
select mainPic from the Set ID submenu.

9. Press the right arrow key to make sure the insertion point is outside the mainPic
<div>, and insert another detail region, using the same settings as in step 2.

10. With the placeholder text still highlighted, select description in the Bindings panel,
and click Insert. This replaces the placeholder text with {description}.

11. Select the new <div>, and set its ID to description in the same way as with all the
other Spry regions. In Design view, your page should now look like Figure 19-17. To
say the least, it looks rather nondescript.

Figure 19-17. You need a lot of imagination to visualize what a Spry page will look like in a browser.

12. Save gallery.php, and test it in a browser. It should look like Figure 19-12 earlier
in the chapter. However, nothing happens if you try clicking the thumbnails or
changing the drop-down menu. You still need to wire up the event handling
manually.

Check your code, if necessary, against gallery_02.php in examples/ch19.

USING SPRY TO DISPLAY XML

687

19

8598CH19.qxd 6/20/07 10:51 AM Page 687

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Activating the event handling
As explained in “Understanding the Spry data code” earlier in the chapter, the
spry:setrow property controls what is displayed in the detail region. You set its value to
the name of the data set that you want to control. Internally, a Spry data set is like a data-
base recordset, and each row has an ID, rather like a database primary key. This ID is called
ds_RowID (you can see it listed in the Bindings panel in step 5 of the preceding section).
When an element that contains the spry:setrow property is clicked, Spry checks the
ds_RowID, and broadcasts it to all registered event listeners. “Hey, guys, ds_RowID 5 is now
the current row. Time to get in line.”

Counting from 0 in dsPhotos, ds_RowID 5 represents hgs.jpg. So by adding the
spry:setrow property to the tag in thumbs <div> and setting its value to dsPhotos,
whenever the hgs.jpg thumbnail is clicked the detail regions automatically update to dis-
play the large image, caption, and description.

Edit the tag in thumbs <div> like this:

<div id="thumbs" spry:region="dsPhotos">➥

<img src="../../images/gallery/thumbs/{file}" alt="thumbnail"➥

width="80" height="54" spry:setrow="dsPhotos" /></div>

Save the page, and test it in a browser. The addition of that tiny snippet of code has acti-
vated the thumbnails. The code is in gallery_03.php, if you need to check your own
version.

The next step is to activate the drop-down menu. This works on the same principle but
requires different code.

Distinguishing between data sets
All the dynamic objects placed in the code up to now have consisted of the XML
node name enclosed in curly braces. So the <description> node is represented as
{description}. An XML attribute consists of the node name followed by a forward slash,
the @ sign, and the attribute name. So, the height attribute of the <file> node is repre-
sented as {file/@height}. If the attribute belongs to the repeating element, as is the case
with the file attribute of the <gallery> node in the dsGalleries data set, the node
name is omitted: {@file}.

Although there are two data sets on the same page, there’s no danger of confusion,
because Spry dynamic objects must always be inside a Spry region. The spry:region or
spry:detailregion property specifies the data set that the region utilizes.

However, there are times when you want to refer to another data set. To do so, you add
the name of the data set followed by two colons and the node or attribute name. So, a
fully qualified reference to the <file> node in dsPhotos becomes {dsPhotos::file}, and
to the file attribute in dsGalleries becomes {dsGalleries::@file}.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

688

8598CH19.qxd 6/20/07 10:51 AM Page 688

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a data set dynamically
The code that initializes the two data sets in the <head> of gallery.php looks like this:

var dsGalleries = new Spry.Data.XMLDataSet("galleries.xml", ➥

"galleries/gallery");
var dsPhotos = new Spry.Data.XMLDataSet("england.xml", ➥

"gallery/photo");

Two arguments are passed to the Spry.Data.XMLDataSet() method: the location of the
XML source and the XPath to the repeating element.

The XML source for dsPhotos is contained in the file attribute of the <gallery> node of
galleries.xml. Since the same information is held in {dsGalleries::@file}, change the
initialization code for dsPhotos to this:

var dsPhotos = new Spry.Data.XMLDataSet("{dsGalleries::@file}", ➥

"gallery/photo");

As soon as you type the double colon after dsGalleries, Dreamweaver shows you the avail-
able properties, so you can use code hints to auto-complete the dynamic object. The other
thing to notice is that all the dynamic objects disappear from the Bindings panel, as shown
in Figure 19-18. This is why I told you to use england.xml as the XML source while build-
ing the page. Once the name of the source is generated dynamically, Dreamweaver has no
way of accessing the XML structure. But this no longer matters, since you have already laid
out the page.

Figure 19-18. You no longer have access to dynamic
objects when the XML source is specified dynamically.

USING SPRY TO DISPLAY XML

689

19

8598CH19.qxd 6/20/07 10:51 AM Page 689

http://lib.ommolketab.ir
http//lib.ommolketab.ir

For Spry to generate the dsPhotos data set, it now needs to know the current selection in
the drop-down menu. So, instead of sending the file name, the drop-down menu needs to
send the ds_RowID of the currently selected item, as shown in the following illustration:

When you inserted the drop-down menu, the Insert Spry Repeat List dialog box didn’t offer
the opportunity to use ds_RowID, so you need to edit the value attribute of the <option>
tag manually like this:

<option value="{ds_RowID}">{name}</option>

You also need to add an onchange event handler to the <select> tag to change the cur-
rent row number of the dsGalleries data set whenever a new value is selected in the
drop-down menu. The Spry method that does this is called, appropriately enough,
setCurrentRow(). By passing this.value as the argument, it obtains ds_RowID from the
<option> tag. Insert the following code in the <select> tag:

onchange="dsGalleries.setCurrentRow(this.value)"

After editing, the select <div> should look like this:

<div id="select" spry:region="dsGalleries">
<label for="chooseGallery">Select gallery: </label><select ➥

name="chooseGallery" spry:repeatchildren="dsGalleries" ➥

id="chooseGallery" onchange="dsGalleries.setCurrentRow(this.value)">
<option value="{ds_RowID}">{name}</option>

</select>
</div>

Save gallery.php, and load it into a browser. Select Japan from the drop-down menu, and
you should see a different set of thumbnails, as shown in Figure 19-19. Click the thumb-
nails: the gallery works exactly the same as before, except the dsPhotos data set is drawing
details of the photos from japan.xml. Select England again, and the original gallery is dis-
played again—but the page never reloads; only the content changes.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

690

8598CH19.qxd 6/20/07 10:51 AM Page 690

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 19-19. Changing the selected value in the drop-down menu displays a completely new gallery
without reloading the page.

You can check your code against gallery_04.php.

To add a little more Spry interactivity to the gallery, you can also apply the Spry Highlight
effect to add a border to each thumbnail as it’s moused over. You can find the code for
that in gallery_05.php.

Nearly there . . .
Throughout this chapter, you have worked with static XML documents. No doubt, many of
you are probably wondering, “What’s the point of storing information in a database if you
need to type everything out again as XML? It’s just as time consuming as creating a static
web page, and nowhere near as intuitive.” So, in the next chapter, I’ll show you how to
generate XML on the fly from a MySQL database. I’ll also show you how to adapt the Spry
gallery from this chapter so that it remains accessible when JavaScript is disabled. Equally
important, it’s search engine friendly, too.

USING SPRY TO DISPLAY XML

691

19

8598CH19.qxd 6/20/07 10:51 AM Page 691

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20 GETTING THE BEST OF BOTH
WORLDS WITH PHP AND SPRY

8598CH20.qxd 6/26/07 3:29 PM Page 693

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Spry gallery that you built in the previous chapter has two important shortcomings.
First, the page’s content is generated entirely inside the browser using JavaScript, leaving
nothing for a search engine to index and failing miserably in an older browser or if
JavaScript is disabled. Second, although the content is generated dynamically, the XML
sources are static. In the case of a photo gallery, this might not be a major drawback, but
one of the main reasons for creating dynamic web pages is to exploit the ability to update
content on the fly without the need to build everything from scratch again. Rather than
creating a new XML document every time a new photo is added or deleted, it’s more con-
venient to add or delete the details from a database and generate the XML dynamically.
This has the added advantage that you can use the database content for other purposes,
greatly increasing your efficiency.

In this, the final chapter, we’ll address both of these shortcomings. You can incorporate
Spry into a static or PHP-driven page, giving you and your site visitors the best of both
worlds. The content remains accessible to both search engines and browsers that don’t
understand the Spry code, but anyone using a modern browser gets updated content
without the page needing to reload for every change. The Spry functionality needs to be
added manually in Code view, but it’s quite easy with the help of Dreamweaver code hints.
We’ll also look at several ways of generating XML with PHP, as well as using PHP as a proxy
to access XML hosted on a different domain.

What this chapter covers

Using the XML Export extension

Adapting a recordset to generate XML

Using PHP as a proxy for a remote XML source

Building Spry pages that still work with JavaScript turned off

Adapting the Spry gallery from Chapter 19

Since the new version of the Spry gallery draws the image details from a MySQL database,
let’s start by looking at ways to generate XML on the fly.

Generating XML dynamically
Some people think that XML is a new way of writing web pages or an alternative to using
a database. Although you can use XML as a database substitute, it’s not a very efficient way
of storing large amounts of data. An XML document is simply a platform-neutral way of
presenting information in a structured manner. Because each repeating element contains
the same nodes, it’s very easy to automate the creation of an XML document by querying
a database and using a loop to insert the data in each node. To use the Dreamweaver
terminology, it’s the same as creating a recordset and using a repeat region to display all
results.

Before I can show you how to do this, you need to insert the data in your MySQL database.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

694

8598CH20.qxd 6/26/07 3:29 PM Page 694

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preparing the database table
To save time, I’m not going to show you how to build the content management system for
the ch20_gallery table. You should be able to create the pages to insert, update, delete,
and list records yourself, using the knowledge from earlier chapters. Instead, let’s get
straight to the heart of the matter by loading the necessary data into your database.
There are three versions of the SQL file in the tools folder of the download files:
ch20_gallery.sql, ch20_gallery323.sql, and ch20_gallery40.sql. If you’re running
MySQL 4.1 or higher, use ch20_gallery.sql. For MySQL 3.23 or 4.0, use the file with
appropriate number at the end of the file name.

The following instructions show you how to create the ch20_gallery table and populate it
with data:

1. Open phpMyAdmin, navigate to the egdwcs3 database, and select the Import tab
(on older versions of phpMyAdmin, use the SQL tab).

2. Use the Browse button alongside the field labeled Location of the text file to navigate
to the appropriate SQL file in the tools folder, and click Go.

3. When the SQL file has finished executing its commands, click the Browse tab at the
top of the screen to see the table you have just created. Figure 20-1 shows the first
five records.

Figure 20-1. The details of the photos are now stored in a database table.

The table consists of seven columns. The width and height attributes are in
columns of their own, and there’s a category column that identifies which set of
photos a particular image belongs to (JPN for Japan, and GB for England).

I have chosen the name ch20_gallery to avoid clashing with an existing table if you’re
restricted to only one database. In the highly unlikely event that you have a table with
the same name, do not run this SQL file unless you are prepared to lose all existing
data in that table. The SQL commands in the file drop any table called ch20_gallery
and build a completely new one. To use a different name, open the SQL file
in Dreamweaver, and use Edit ➤ Find and Replace to replace all instances of
ch20_gallery.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

695

20

8598CH20.qxd 6/26/07 3:29 PM Page 695

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Click the Structure tab to examine the structure of the ch20_gallery table (see
Figure 20-2).

Figure 20-2. The structure of the ch20_gallery table

There’s nothing new or unusual here. The category column uses the ENUM datatype
with two options: GB and JPN. The caption column uses the VARCHAR datatype with
a perhaps overly generous maximum of 255 characters, and the description col-
umn uses the TEXT datatype to allow for a lengthy description. You don’t need any
special settings to store XHTML in a TEXT or other datatype designed for storing
strings.

Now that the data has been loaded into the database, you can use PHP to build the XML
sources for the gallery. Since you have phpMyAdmin open, let’s see what it’s capable of
doing.

Using phpMyAdmin to generate XML
The XML capabilities of phpMyAdmin are very basic, but they’re worth knowing about if
you need a quick and easy way to generate a static XML document. You can export data
from a single table or from several tables. The structure always looks like this:

<DatabaseName>
<TableName>
<ColumnName>Data</ColumnName>
<ColumnName>Data</ColumnName>

</TableName>
</DatabaseName>

The name of the table becomes the repeating element that contains each record, and the
column names make it easy to identify the data you want to use. The XML that
phpMyAdmin creates from the ch20_gallery table looks like this (for space reasons, I
have included only the first two records and shortened the descriptions):

<egdwcs3>
<!-- Table ch20_gallery -->
<ch20_gallery>
<photo_id>1</photo_id>
<filename>basin.jpg</filename>
<category>JPN</category>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

696

8598CH20.qxd 6/26/07 3:30 PM Page 696

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<width>350</width>
<height>237</height>
<caption>Water basin at Ryoanji temple, Kyoto</caption>
<description><p>Most visitors to Ryoanji Temple go to see ➥

just one thing&#8212;the rock garden . . . </p></description>
</ch20_gallery>
<ch20_gallery>
<photo_id>2</photo_id>
<filename>buck_palace.jpg</filename>
<category>GB</category>
<width>400</width>
<height>300</height>
<caption>Buckingham Palace and St James's Park</caption>
<description><p>St James's . . . </p></description>

</ch20_gallery>
</egdwcs3>

As you can see, the XHTML <p> tags in the <description> nodes have been converted to
<p>. The ampersand at the beginning of the em dash entity (—) has also been
converted into an HTML entity, so it becomes &#8212;. This isn’t a mistake, but you do
need to know how to handle it with Spry. I’ll explain the situation in “Using XHTML with
Spry” later in the chapter.

Use the following steps to create an XML document with phpMyAdmin:

1. In the phpMyAdmin navigation frame, select the database from which you want to
create the XML document. If you want to use just one table, navigate to that table.

2. Click the Export tab at the top of the main frame.

3. If you are creating an XML document from more than one table, select the tables
that you want to use in the Export list at the top left of the page. This list is not dis-
played if you selected an individual table in step 1.

4. Select the XML radio button at the bottom of the Export section.

5. Select the Save as file checkbox at the bottom of the page.

6. If you are exporting data from several tables, the field labeled File name template
should contain __DB__. This creates a file using the database name, for example,
egdwcs3.xml. For a single table, it will be __TABLE__, which creates a file using the
table name, for example, ch20_gallery.xml. You can add other text at the begin-
ning or end of the file name template.

Make any changes you want to the file name, and click Go. Depending on your
browser setup, you might be prompted to specify a location to save the file in.
Otherwise, it will be saved to your normal download destination.

Using the XML Export extension
When planning the features in Dreamweaver CS3, Adobe made the strange decision not to
include the ability to export XML from a database, even though XML plays such a crucial
role in Spry data sets. Instead, it was decided to offer the XML Export extension as one of

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

697

20

8598CH20.qxd 6/26/07 3:30 PM Page 697

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the bonuses that you can claim after registering your version of Dreamweaver CS3 or one
of the Creative Suite packages.

The XML Export extension was originally created by InterAKT, the Romanian company that
was responsible for Kollection, a suite of popular Dreamweaver extensions. Adobe
acquired InterAKT in September 2006 and released a modified version of Kollection as the
Adobe Dreamweaver Developer Toolbox (ADDT). The XML Export extension is part of
ADDT, so if you have ADDT or selected the extension as your registration bonus, this sec-
tion is for you. If you don’t have ADDT and chose a different bonus, skip to “Building XML
manually from a recordset.”

The XML Export extension is very easy to use, and it has the advantage that you have much
more control over the structure of the XML. This is because the XML is generated from a
recordset, so you could create an XML source from the authors and quotations tables
used in Chapter 16, associating the correct author with each quotation by using a left join.
This would be impossible with the phpMyAdmin XML export feature described in the pre-
ceding section.

Since the purpose of this chapter is to show you how to generate an XML source for the
Spry gallery from Chapter 19, the following instructions show you how to use the XML
Export extension to generate XML with details of the Japanese images in the ch20_gallery
table. They assume that you have installed the XML Export extension or ADDT.

1. Create a new PHP page called japan_xe.php in workfiles/ch20. The page should
contain nothing apart from the default code inserted by Dreamweaver.

2. Open the Recordset dialog box in Simple mode, and create a recordset called
getPhotos. This doesn’t need administrative privileges, so use connQuery for
Connection, and select ch20_gallery in the Table field.

You don’t need the photo_id and category columns for the XML output, so select
all other columns except those two.

However, you do want to retrieve only those records where category is set to JPN.
Set Filter to category, and leave the second drop-down set to =. Since JPN is a fixed
value, select Entered Value from the third drop-down, and type JPN in the field
alongside.

When you have finished, the settings should look like this:

The minimum requirement for the XML Export extension is PHP 4.4.0. The PHP
mbstring extension must also be enabled. If you used the instructions in
Chapter 3 to set up a local testing environment, mbstring should already be
enabled. See “Checking installed extensions” in Chapter 3 for details of how to
check your remote server.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

698

8598CH20.qxd 6/26/07 3:30 PM Page 698

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Use the Test button to make sure the recordset works, and then click OK to save it.

4. How you access the Export Recordset As XML server behavior depends on whether
you installed the extension on its own or have the full version of ADDT. If you
installed the extension on its own, it sits in splendid isolation on the Developer
Toolbox tab of the Insert bar, as shown in the following screenshot:

Alternatively, click the plus button in the Server Behaviors panel, and select
Developer Toolbox ➤ Export Recordset As XML.

If you have the full version of ADDT, it’s not on the Insert bar. Your only options are
to access it through the Server Behaviors panel or add it to the Developer Toolbox
Favorites button.

5. This opens the Export Recordset As XML dialog box, as shown in the screenshot at
the top of the next page.

The dialog box has two tabs: Basic and Advanced. The Basic tab lets you choose the
recordset to use, but in most cases, you’re unlikely to have more than one on
the page.

The Columns area lets you exclude columns from the XML output by highlighting
them and clicking the minus button. However, this shouldn’t be necessary if you
selected the columns you want in the recordset. You can also use the up and down
arrows to change the order the nodes or attributes appear in the XML.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

699

20

8598CH20.qxd 6/26/07 3:30 PM Page 699

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can change the name of individual nodes or attributes by selecting them in the
Columns area, and entering a new value in the XML node/attribute field at the bot-
tom of the Basic tab.

As the labels suggest, the extension lets you choose whether to export data as XML
nodes or attributes. You make that choice in the Advanced tab.

6. Select the Advanced tab, which presents you with the options shown in the next
screenshot.

The help hints at the bottom of the tab explain briefly what each option is for. The
first option lets you choose whether to export columns as XML nodes or as attrib-
utes of the repeating element (referred to in the fifth option as the “Row node”).
This is an all or nothing option: all columns are treated the same way. You cannot
choose, for example, to make the height and width columns attributes of the
<filename> node.

The Export all records checkbox is selected by default. If you deselect it, enter how
many records you want to include in the XML in the Number of records field. This
field is grayed out and ignored when Export all records is selected.

The next two options, Root node and Row node, let you specify the names of the
root and repeating nodes. The defaults are deliberately neutral: export signifying
that the XML has been exported from a recordset, and row representing each
record or row in the recordset.

When working with dynamic data, I find it’s always a good idea to use meaningful
names so that you know instantly what you’re working with. Change Root node to
gallery and Row node to photo.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

700

8598CH20.qxd 6/26/07 3:30 PM Page 700

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The final two options let you specify the encoding of the database and XML output.
The choices are unrealistically limited: UTF-8 (the default) or ISO-8859-1 (Western
European). The encoding values are not vital in the case of unaccented English,
because it uses a subset of ISO-8859-1, which uses identical coding to UTF-8.
However, you need to select the appropriate encoding if you are using other
languages.

7. Click OK when you’re happy with the settings.

8. The page remains blank in Design view. This is perfectly normal. Save
japan_xe.php, and press F12/Opt+F12 to view the page in a browser. You should
see raw XML output, as shown in Figure 20-3 at the top of the next page.

9. View the page source in the browser. The <p> tags in the <description> node have
been converted to <p> in the same way as when you export XML with
phpMyAdmin. Again, I’ll explain the implications in “Using XHTML with Spry” later
in the chapter.

The XML Export extension doesn’t create a static XML document—that’s not the idea. It’s
intended to provide a live XML feed from a database. When creating a Spry data set or
XSLT fragment, you use the PHP page as the XML source, and—as long as you have a test-
ing server defined for your site—Dreamweaver treats it as XML. On Windows, you need to
select All Files (*.*) in the Files of type field of the Select XML Source dialog box to be able to
find the PHP file.

When you save the PHP page, Dreamweaver creates a new subfolder called XMLExport in
your site’s includes folder. It also creates the includes folder, if it doesn’t already exist.
The XML Export folder contains two files, XMLExport.class.php and XMLExport.php.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

701

20

8598CH20.qxd 6/26/07 3:30 PM Page 701

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 20-3. The XML Export extension generates XML on the fly from a MySQL database.

As long as you don’t attempt to put anything else in the PHP page, japan_xe.php or any
other page created using this extension should generate XML successfully. However, the
PHP code uses the header() function to ensure that the output is treated as XML. If you
make any changes to the code generated by Dreamweaver, you might see a warning that
the headers have already been sent and XML cannot be exported. See Chapter 12 for
details about the “headers already sent” error.

Updating the includes folder
If you access the XML Export extension through the Server Behaviors panel, there’s another
option called Control Panel on the Developer Toolbox submenu. This opens the ADDT
Control Panel. A full installation of ADDT contains a large number of options, but a stand-
alone version of the XML Export extension has just a single option labeled Update includes
folder. Click the icon on the left, as shown in the following illustration, to open the Update
Includes Folder dialog box:

You must upload the XML Export folder and its contents to your remote site when
deploying on the Internet a page made with the XML Export extension. You also need
to upload the Connections folder to connect to the database. If you forget either
folder, the page will generate a fatal error.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

702

8598CH20.qxd 6/26/07 3:30 PM Page 702

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This checks the version of the XML Export files installed in Dreamweaver and compares it
with the version currently uploaded to your remote server. If the remote version is older
than the one in Dreamweaver, select the Update site version checkbox, and click Update
selected to upload the newer version.

Building XML manually from a recordset
The XML Export extension is a very quick way to create the code to generate XML on the
fly, but it gives you very little control over the format of the XML. If you don’t have the
extension or want to fine-tune the structure of your XML, it takes only a little effort to roll
your own. Before getting down to the detail, here’s a brief outline of the steps involved:

1. Create a recordset.

2. Build a skeleton of XML tags for the repeating element and its child nodes.

3. Populate the child nodes with dynamic text objects from the recordset.

4. Apply a Repeat Region server behavior to the repeating element.

5. Remove the XHTML code from the page.

6. Add the XML declaration and root node tags.

7. Add headers to tell Dreamweaver and browsers to treat the output as XML.

You build everything in a similar way to an ordinary web page and remove the DOCTYPE
declaration and XHTML tags, leaving behind just the code to create the XML feed.
However, it’s important to leave all the XHTML code in the page until you have applied the
server behavior. Otherwise, Dreamweaver gets rather upset.

The following instructions show you how to create an XML feed of details of the Japanese
images in the ch20_gallery table:

1. Create a new PHP page called japan_manual.php in workfiles/ch20.

2. Create a recordset using the same settings as in step 2 of the preceding section.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

703

20

8598CH20.qxd 6/26/07 3:30 PM Page 703

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. Now build a skeleton for the repeating element, <photo>, and its child nodes. You
need just one set of tags, because the repeat region generates the rest. Switch to
Code view, and insert the following code between the <body> tags:

<body>
<photo>
<filename></filename>
<width></width>
<height></height>
<caption></caption>
<description><![CDATA[]]></description>

</photo>
</body>

The <description> node contains XHTML, so I have added opening and closing
CDATA tags inside the node tags (see “Creating a Spry data set” in Chapter 19 if you
need a reminder of the role of CDATA sections). When building your own XML,
create a similar skeleton using the node names of your choice.

As you’re typing, you’ll notice that Dreamweaver code hints recognize your custom
XML tags, making it easier to complete the closing tags.

4. Now populate the child nodes with dynamic text objects from the recordset.
Position the insertion point between the opening and closing <filename> tags.

5. Open the Bindings panel, expand the recordset, select filename, and click the Insert
button. This inserts a dynamic text object inside the <filename> child node.

6. Repeat steps 4 and 5 with the other child node tags, positioning the insertion point
between the CDATA tags for the <description> node. The XML skeleton should
now look like this:

<photo>
<filename><?php echo $row_getPhotos['filename']; ?></filename>
<width><?php echo $row_getPhotos['width']; ?></width>
<height><?php echo $row_getPhotos['height']; ?></height>
<caption><?php echo $row_getPhotos['caption']; ?></caption>
<description><![CDATA[<?php echo $row_getPhotos['description']; ?> ➥

]]></description>
</photo>

7. Select the XML skeleton, and apply a Repeat Region server behavior (use the Server
Behaviors panel, the Data tab of the Insert bar, or the Insert ➤ Data Objects sub-
menu). In the Repeat Region dialog box, select Show All Records.

You need to insert the XML skeleton between the <body> tags in order to use the
Repeat Region server behavior.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

704

8598CH20.qxd 6/26/07 3:30 PM Page 704

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Once the Repeat Region server behavior has been applied, you can get rid of the
unwanted XHTML. Select everything from the opening tag of the DOCTYPE declara-
tion to the opening PHP tag at the start of the repeat region that you have just
created, as shown in the following screenshot:

9. Delete the selected code, and replace it with the XML declaration and the opening
tag of the XML root node like this:

$totalRows_getPhotos = mysql_num_rows($getPhotos);
?>
<?xml version="1.0" encoding="utf-8"?>
<gallery>
<?php do { ?>

10. Scroll down and replace the closing </body> and </html> tags with the closing tag
of the XML root node (</gallery>).

11. The last change that you need to make is to insert headers to tell Dreamweaver
and browsers to treat the output as XML. Without them, they treat it as plain text.
The headers go just before the closing PHP tag shown on line 37 of the preceding
screenshot, like this:

$totalRows_getPhotos = mysql_num_rows($getPhotos);
// Send the headers
header('Content-type: text/xml');
header('Pragma: public');
header('Cache-control: private');
header('Expires: -1');
?>
<?xml version="1.0" encoding="utf-8"?>

Forgetting the headers is a common cause of problems when generating XML on the
fly. The XML declaration added in step 9 isn’t sufficient on its own (in fact, an XML
document is perfectly legal without it). Since you’re using a file with a .php extension,
the web server doesn’t know that it’s meant to treat the output as XML without send-
ing the Content-type header. The remaining three headers are optional but are
designed to prevent the XML output from being cached.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

705

20

8598CH20.qxd 6/26/07 3:30 PM Page 705

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12. Save japan_manual.php, and test the page in a browser. It should look the same as
Figure 20-3. The only difference is that the <p> tags are in a CDATA section and use
<p> in the underlying source code, rather than <p>. It makes no difference
to the XML, although using a CDATA section does have an important advantage
when used with Spry 1.4, the version distributed with the original release of
Dreamweaver CS3. This is discussed in “Using XHTML with Spry” later in the
chapter.

You can compare your code with japan_manual.php in examples/ch20.

Using a proxy script to fetch a remote feed
Security restrictions in browsers prevent Spry and other Ajax frameworks from accessing
an XML source that’s hosted on a different domain from the web page. To get around this
restriction, you need to use a proxy script. If your server supports allow_url_fopen (see
Table 3-1 in Chapter 3), a few of lines of code will do the trick. The following example,
which can be found in proxy.php in examples/ch20, acts as a proxy for the friends of ED
RSS feed:

<?php
$url = 'http://friendsofed.com/news.php';
// Make sure the remote feed is accessible, then fetch it
if (file_exists($url) && is_readable($url)) {
$remote = file_get_contents($url);
// Send an XML header and display the feed
header('Content-Type: text/xml');
echo $remote;
}

else {
echo "Cannot open remote file at $url";
}?>

This script checks that the remote feed is available and stores it in a variable called
$remote. The two lines highlighted in bold create an XML header and output the content
of $remote. If the feed can’t be found, an error message is displayed instead.

If your hosting company doesn’t allow you to open remote files directly, it might have pro-
vided an alternative through the cURL (Client URL Library) extension. You can tell whether
cURL is available by displaying the output of phpinfo() using test.php in examples/ch03.
If you can see a listing similar to Figure 20-4, cURL is enabled.

Figure 20-4. Confirmation that the PHP cURL extension is enabled

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

706

8598CH20.qxd 6/26/07 3:30 PM Page 706

http://friendsofed.com/news.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The cURL extension lets you communicate with many different types of servers with a
large number of protocols. The following script, which is in curl.php in examples/ch20,
does the same as proxy.php, using a cURL session to retrieve the friends of ED RSS feed:

<?php
$url = 'http://friendsofed.com/news.php';
// Open the cURL session
if ($session = curl_init($url)) {
// Block HTTP headers, and get XML only
curl_setopt($session, CURLOPT_HEADER, false);
curl_setopt($session, CURLOPT_RETURNTRANSFER, true);
// Get the remote feed
$remote = curl_exec($session);
// Close the cURL session
curl_close($session);
// Check that the feed was retrieved successfully
if ($remote) {
// Send an XML header and display the feed
header('Content-Type: text/xml');
echo $remote;
}

else {
echo "No content found at $url";
}

}
else {
echo "Cannot initialize session";
}

?>

Again, the content of the feed is stored in a variable called $remote. If the cURL session
succeeds, the lines highlighted in bold output an XML header and the content of $remote.
For more details about cURL, visit www.php.net/manual/en/ref.curl.php.

In both files, all you need to do to fetch a different feed is replace the value of $url with
a different address.

Creating an XML document from a dynamic source
A potential problem with XML generated on the fly from a database or through a proxy
script is that slow network connections will slow down the response. Even worse, the
dynamic source may be unavailable. So you might want to consider generating a static

When using a remote XML or RSS feed, remember to check ownership of copyright
and any restrictions on reuse of material contained in the feed. Using copyrighted
material without permission could land you with a hefty legal bill.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

707

20

8598CH20.qxd 6/26/07 3:30 PM Page 707

http://friendsofed.com/news.php
http://www.php.net/manual/en/ref.curl.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

XML document and using that instead. This is particularly appropriate if the XML content
is unlikely to change very often. Instead of putting repeated strain on the database server,
for example, the static document acts as a cache, which is faster and more efficient.

The principle behind creating a static document from a dynamic source is very simple:
capture the XML output in a PHP variable and use PHP file system functions to write the
document to your site or local hard disk. Before you can do this, you need to make sure
that the web server has permission to write to the target folder.

Setting permission for PHP to write files
Most hosting companies use Linux servers, which impose strict rules about the ownership
of files and directories. Writing a file creates a new version of the file on the server, so the
user needs all three privileges—read, write, and execute. However, in most cases, PHP
doesn’t run in your name, but as the web server—usually nobody or apache. Unless your
hosting company has configured PHP to run in your own name, you need to give global
access (chmod 777) to every directory to which you want to be able to write files. Since 777
is the least secure setting, you need to adopt a cautious approach. Begin by testing the
scripts in this section with a setting of 700. If that doesn’t work, try 770, and use 777 only
as a last resort.

Windows servers use a different system of setting permissions. Consult your hosting com-
pany if you have problems writing files.

When testing locally, there are usually no permissions issues on Windows.

However, on Mac OS X, you need to change the permissions of any folder that you want
PHP to be able to write to like this:

1. Select the folder in Finder, and press Cmd+I or choose File ➤ Get Info.

2. In the Ownership & Permissions section at the bottom of the Info window, click
the triangle alongside Details to reveal the permissions for all users, as shown in
Figure 20-5.

3. Change the setting for Others from Read only to Read & Write, and close the Info
window. The folder is now writable.

Using PHP to write to a file
Writing to a file with PHP isn’t difficult, but it involves three steps, as follows:

1. Create a resource handler to open the file.

2. Write the contents to the file.

3. Close the file.

Each step uses an intuitively named function: fopen(), fwrite(), and fclose().
Unfortunately, fopen() has a bewildering range of options that prepare the file for read-
ing and writing in different ways. If you’re interested in the details, study the PHP online
manual at www.php.net/manual/en/function.fopen.php or read Chapter 7 of my book
PHP Solutions: Dynamic Web Design Made Easy (friends of ED, ISBN-13: 978-1-59059-731-6).

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

708

8598CH20.qxd 6/26/07 3:30 PM Page 708

http://www.php.net/manual/en/function.fopen.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 20-5. On Mac OS X, you need to set global read and write permissions on
the folder you want to write to.

The option that I’m going to use overwrites any existing content in the file. This is ideal for
creating a static XML document from a dynamic source. All you need to do is run the
script, and the XML document is automatically updated. I have wrapped the script in a cus-
tom function and put it in an include file, so you can use it in conjunction with any script
that you want to write the contents of a variable to an external file.

The function, complete with inline comments, follows (it’s in write_file.inc.php in
examples/includes):

<?php
// function to overwrite content in a file
function writeToFile($content, $targetFile) {
// open the file ready for writing
if (!$file = fopen($targetFile, 'w')) {
echo "Cannot create $targetFile";
exit;
}

// write the content to the file
if (fwrite($file,$content) === false) {
echo "Cannot write to $targetFile";
exit;
}

echo "Success: content updated in $targetFile";

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

709

20

8598CH20.qxd 6/26/07 3:30 PM Page 709

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// close the file
fclose($file);
}

?>

The writeToFile() function takes two arguments, as follows:

The content that you want to write to the file

The name of the target file

Creating an XML document from a remote source Delete the following lines from proxy.php
or curl.php in the previous section (they are highlighted in bold in the full listings):

header('Content-Type: text/xml');
echo $remote;

Replace them with a call to the writeToFile() function like this:

$xmlfile = 'foed.xml';
require('../includes/write_file.inc.php');
writeToFile($remote, $xmlfile);

This creates a file called foed.xml that contains the latest version of the friends of ED RSS
feed. If there’s any problem with creating the file, an appropriate error message is dis-
played instead.

Creating an XML document from a local dynamic source You can use the writeToFile()
function to create a static XML document from an XML source generated dynamically
using either the XML Export extension or the technique described in “Building XML manu-
ally from a recordset.” It involves using an adaptation of proxy.php.

The script in proxy.php uses the file_get_contents() function to retrieve the XML from
a remote source. If you try to use this on a local file, such as japan_manual.php, instead of
the XML, you get the PHP script that generates the XML. So, instead of using the file name,
you need to use the full URL, so that the file is processed by the web server in your local
testing environment.

However, proxy.php uses a conditional statement that checks whether the remote feed
exists and is readable. This causes the script to fail when accessing a local dynamic source.
The simple answer is to leave it out. This leaves the following script (it’s in local_proxy_
write.php in examples/ch20):

<?php
// URL to file that generates local dynamic XML source
$url = 'http://egdwcs3/workfiles/ch20/japan_manual.php';
// Get the XML and store it in a variable
$xml = file_get_contents($url);
// Set the name of the file to write the XML to
$xmlfile = 'japan_proxy_manual.xml';
// Include the writeToFile() function and call it
require('../includes/write_file.inc.php');
writeToFile($xml, $xmlfile);
?>

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

710

8598CH20.qxd 6/26/07 3:30 PM Page 710

http://egdwcs3/workfiles/ch20/japan_manual.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This gets the XML generated by japan_manual.php (the file that created XML from a
recordset earlier in the chapter) and writes it to a file called japan_proxy_manual.xml. It
also works with japan_xe.php, the file created using the XML Export extension. Just
change the value of $url at the beginning of the script.

The following three values (highlighted in bold in the preceding listing) are the only things
you need to change:

$url: To find the correct value, open in the Document window the page that gen-
erates the XML source, and press F12/Opt+F12 to view the XML output in the
browser. Select the URL in the browser address bar, and paste it into
local_proxy_write.php. This won’t work if you have set your Dreamweaver pref-
erences to use a temporary file for Preview in Browser (see Chapter 4 for details of
how to change the setting).

$xmlfile: This is the name of the file you want to write to. The preceding example
writes the file to the same folder as local_proxy_write.php. If you want to write
to a different folder, use a relative address or a full pathname.

require(): This needs to point to the location of write_file.inc.php. As
explained in Chapter 12, this should be a relative address or a full pathname.

Using Spry in pages that work without JavaScript
There are no two ways about it: Spry doesn’t work without JavaScript. However, it is possi-
ble to use Spry to refresh content seamlessly in pages that not only provide content for
search engines to index but also continue to work normally in browsers that have
JavaScript turned off or don’t understand the latest scripting standards. The technique
involves building a standard web page first and adding some simple code that refreshes
the page’s content if JavaScript is enabled.

How to incorporate a Spry data set in an ordinary web page
In Chapter 19, you created a Spry table that displayed the captions of a set of photos, and
when you clicked a caption, the related description was displayed in a <div> at the foot of
the table. To create a similar effect with PHP, you need two recordsets: one that contains
details of each caption and the record’s primary key, and the other that retrieves a single
description based on the primary key passed through the URL.

Let’s build the PHP version.

Although I designed the writeToFile() function to write an XML source to file, it is
completely generic. It writes any string stored in the first argument to the file named
in the second argument.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

711

20

8598CH20.qxd 6/26/07 3:30 PM Page 711

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This creates a PHP version of the Spry table in spry_data_02.php in Chapter 19. Since all
of the techniques have been covered in previous chapters, I’ll keep the details to a mini-
mum. I won’t bother with any styling either, because the purpose is to concentrate on the
code.

1. Create a new PHP page called accessible.php in workfiles/ch20.

2. Open the Recordset dialog box in Simple mode, and use the following settings:

Name: getCaptions

Connection: connQuery

Table: ch20_gallery

Columns (Selected): photo_id, filename, caption

Filter: category = Entered Value GB

3. Insert a table with two rows and two columns. Enter column headings in the first
row and dynamic text objects for filename and caption in the second row. Apply
a repeat region to the second row. The page should now look like this in Design
view:

4. Select the dynamic text object for caption, and create a link using the Browse for
File icon in the Property inspector. Select accessible.php, and click the Parameters
button. In the Parameters dialog box, set Name to photo_id, and click the lightning
bolt icon in the Value field. Select photo_id from the getCaptions recordset.

5. Open the Recordset dialog box in Simple mode, and use the following settings:

Name: getDescription

Connection: connQuery

Table: ch20_gallery

Columns (Selected): description

Filter: photo_id = URL Parameter photo_id

6. Before closing the Recordset dialog box, switch to Advanced mode, and edit the
colname variable to set Default value to 2. This is the photo_id of the first record in
the getCaptions recordset. As explained in Chapter 18, Dreamweaver always sets
Default value to –1 to prevent anything from displaying when the page first loads.
On this occasion, you need the description of the first record to display by default.

7. Insert a <div> after the table, and replace the placeholder text with a dynamic text
object for description.

Building the PHP table

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

712

8598CH20.qxd 6/26/07 3:30 PM Page 712

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8. Save accessible.php, and load it into a browser. It should look like Figure 20-6.
Test the links, and the content of the description <div> should change. You can
check your code against accessible_01.php in examples/ch20.

Figure 20-6. Although not styled as elegantly, this has roughly the same functionality as the Spry
table in Chapter 19.

What drives the page is passing the primary key of the selected caption through a query
string appended to the URL. Each time you click a link, the URL changes, the page reloads,
and the changed content is displayed.

Use the browser’s View Source feature to check the underlying code. Each time the page
reloads, the content of the description <div> also changes in the source. Although the
content is generated dynamically, what’s being sent by the web server each time is, in
effect, a static page.

By contrast, what Spry does is to load the data set into the browser’s memory and manip-
ulate the Document Object Model (DOM) to refresh the content without reloading the page.

To create an accessible version of the Spry table, you need to add a Spry data set and tell
the page to use Spry instead. This involves just two steps, as follows:

1. Add an onclick event handler to each link. The event handler takes this form:

onclick="datasetName.setCurrentRowNumber(number); return false"

This sets the current row number for the Spry data set to update the detail region.
Adding return false prevents the browser from following the link. However, if the
browser doesn’t understand JavaScript, it follows the link in the normal way.

2. Add the spry:detailregion and spry:content properties to the element that you
want to act as the Spry detail region. The spry:detailregion property takes the
Spry data set name as its value, and the spry:content property requires the name
of the data set node in curly braces.

So, let’s add the necessary code to accessible.php.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

713

20

8598CH20.qxd 6/26/07 3:30 PM Page 713

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this exercise, you’ll add the Spry data set and the code that controls the detail region. A
self-incrementing PHP counter inserts the row number in the setCurrentRowNumber()
method for each link.

1. Continue working with accessible.php from the previous exercise.

2. Create a Spry data set called dsPhotos, using england.xml in examples/ch19 as the
XML source, and selecting photo as Row element.

3. Switch to Code view, and insert the following PHP code block anywhere before the
code that applies the repeat region to the second table row:

<?php $i = 0; ?>

This initializes a variable called $i that will act as a counter to insert the correct row
number in the event handler for each link in the repeat region.

4. To insert the event handler, position your cursor immediately to the left of the
closing angle bracket of the <a> tag in the table cell. There are a lot of angle
brackets in there, so make sure you get the right place. Use the following screen-
shot to guide you:

Insert a space and enter the following code:

onclick="dsPhotos.setCurrentRowNumber(<?php echo $i++; ?>)"

As you type, Dreamweaver code hints will appear, first showing you the available
attributes and event handlers for the <a> tag, and when you type the period after
dsPhotos, the available methods and properties for a Spry data set. The
setCurrentRowNumber() method is self-explanatory: it sets the current row number
of the dsPhotos data set. It takes one argument: the number of the current row.
Because this code is in a repeat region, you need the counter ($i) to increment by
1 for every row in the recordset. By placing the ++ operator after $i, PHP performs
the increment after inserting the number. As a result, the first row is 0; the next
one is 1, and so on. Since Spry data sets use JavaScript and count from zero, this is
exactly what you want. However, you don’t want the browser to follow the link if it
understands Spry.

5. To prevent the browser from following the link, you need to add a semicolon
followed by return false to the event handler. The entire line of code shown in the
preceding screenshot should now look like this (new code is in bold):

<td><a href="accessible.php?photo_id=<?php echo ➥

$row_getCaptions['photo_id']; ?>" ➥

onclick="dsPhotos.setCurrentRowNumber(<?php echo $i++; ?>); ➥

return false"><?php echo $row_getCaptions['caption']; ?></td>

Adding Spry functionality to the PHP table

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

714

8598CH20.qxd 6/26/07 3:30 PM Page 714

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6. You now need to tell Spry that you want to use description <div> as a detail
region for the dsPhotos data set, and that it should draw its content from the
<description> node. Add the spry:detailregion and spry:content properties to
the <div> tag like this:

<div id="description" spry:detailregion="dsPhotos" ➥

spry:content="{description}">

Dreamweaver code hints suggest available options as you type, helping you get the
correct combination of uppercase and lowercase. Note that you enclose description
in curly braces when specifying the value of spry:content.

7. Save accessible.php, and test it in a browser. If you use the browser reload but-
ton, remove the query string from the end of the URL. As long as JavaScript is
enabled in your browser, the description should change at the bottom of the page
each time you click a link.

8. Click any of the links apart from the first one, and view the source code in the
browser. Figure 20-7 shows what happened when I clicked the final link. The
description of the summer country fair is displayed, but the underlying source code
still shows the description of Buckingham Palace and St James’s Park—proof that
Spry is in action.

Figure 20-7. Although Spry changes the content in the browser, the underlying code remains
unchanged.

You can check your code against accessible_02 in examples/ch20.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

715

20

8598CH20.qxd 6/26/07 3:30 PM Page 715

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you temporarily turn off JavaScript in your browser, the page will act the same way as
before you added the event handler and Spry code. This not only makes the page accessi-
ble to the admittedly small number of people who surf the Web with JavaScript disabled,
but it also leaves content in your page for a search engine to index. Search engines are
capable of following dynamic links that use query strings, so all your links can be followed.

The disadvantages of this approach are that specific content can’t be bookmarked, and
the browser back button takes you to the last URL, not to the most recently displayed con-
tent. However, these failings are common to all Ajax pages at the moment. The other
disadvantage is that it involves more effort, but the payoff of greater accessibility is prob-
ably worth it.

Using XHTML with Spry
The exercise in the previous section uses england.xml as the XML source for the Spry data
set. The XHTML tags in that XML document are stored in CDATA sections, so the <p> tags
use angle brackets. However, the XML generated by phpMyAdmin and the XML Export
extension converts the angle brackets into entities like this: <p>. This is a perfectly
acceptable way of treating XHTML tags in XML.

However, due to an oversight in Spry 1.4, the version that shipped with the original release
of Dreamweaver CS3, Spry is incapable of handling these tags correctly. Figure 20-8 shows
what happened when I generated the XML for the previous exercise with the XML Export
extension. Instead of interpreting the <p> tags as XHTML markup, the browser displayed
them as though they were part of the text.

Figure 20-8. Version 1.4 of Spry fails to handle XHTML tags correctly if the XML source uses entities
instead of angle brackets.

This problem has been corrected in Spry 1.5. As noted in the previous chapter, Adobe
has promised to release an extension to update the Spry functionality in Dreamweaver.
However, the precise details were still not available at the time this book went to press, so
the following instructions are based on updating the Spry data JavaScript library manually.

If you replace SpryData.js in the Spry assets folder with version 1.5 or later, you can fix
the display of XHTML tags by applying the setColumnType() method to the data set
initialization in the <head> of your page. In the case of accessible.php, this is how you
need to edit the code (I have used a file called england_xe.php in examples/ch20 to
generate the XML source):

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

716

8598CH20.qxd 6/26/07 3:30 PM Page 716

http://lib.ommolketab.ir
http//lib.ommolketab.ir

<script src="../../SpryAssets/SpryData.js" type="text/javascript"> ➥

</script>
<script type="text/javascript">
<!--
var dsPhotos = new Spry.Data.XMLDataSet("england_xe.php", ➥

"gallery/photo");
dsPhotos.setColumnType("description", "html");
//-->
</script>

For more details, see http://labs.adobe.com/technologies/spry/samples/data_region/
HTMLFragsInXMLSample.html. Hopefully, the Dreamweaver updater will add this option to
the Spry XML Data Set dialog box. Changes that affect this book will be listed on my web-
site at http://foundationphp.com/egdwcs3/updates.php.

Case study: Making the Spry gallery accessible
In the previous chapter, you used Spry to create an online gallery to display photos of
England and Japan, together with captions and brief descriptions. Although it looks and
works well in a JavaScript-enabled browser, it’s not search engine friendly, and it fails mis-
erably in a browser that doesn’t support Spry. To round off this book, I’d like to show you
how to get the best of both worlds by combining Spry with PHP. The XML sources will also
be generated dynamically by PHP, so the gallery contents can be updated automatically by
changing only the records in the database.

The techniques involved have all been covered in earlier parts of the book, so I won’t go
into minute detail of each step. You can study the completed files in examples/ch20. In
addition to the ch20_gallery table in the database, the accessible version of the gallery
requires just three files, as follows:

hijax_gallery.php: This displays a PHP-driven version of the gallery but uses Spry
if the browser is capable of understanding it.

england.php: This draws information from the database to generate the XML
source for the England photos.

japan.php: This generates the XML source for the Japan photos. It’s identical to
england.php, except for the SQL query.

Let’s start by building the PHP version of the gallery. By the way, if you don’t want to use
Spry, this page on its own creates an online gallery that works in any visual browser.

Creating the gallery with PHP
Instead of using a Spry data set to populate the page, the PHP version of the gallery uses
two recordsets like this:

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

717

20

8598CH20.qxd 6/26/07 3:30 PM Page 717

http://labs.adobe.com/technologies/spry/samples/data_region
http://foundationphp.com/egdwcs3/updates.php
http://lib.ommolketab.ir
http//lib.ommolketab.ir

One recordset gets details of all the images in either the GB or JPN category. This is
used to display the thumbnails of the selected category, as well as to display the
large image, caption, and description of the first photo when the page loads
initially.

Each thumbnail is enclosed in a link that appends its primary key as a query string
to the URL, which reloads the page and passes the primary key to the second
recordset. This retrieves the details of the selected image to display the large ver-
sion, its caption, and its description.

The <select> drop-down menu also reloads the page and appends the selected category
to the URL as a query string. This changes the category in the first recordset, determining
which set of thumbnails is displayed.

Because the page is rebuilt every time, the recordsets are also refreshed, so the dynami-
cally generated links always have the right details. Basically, what is happening is the same
as with a search page: runtime variables are being passed through the URL, and the results
are displayed on the same page. However, instead of displaying only text, you also use the
result details to build the tags for the thumbnails and main image.

Although the gallery uses the same basic page and layout as gallery.php in Chapter 19,
it’s quicker to start from scratch. We’ll use the same start page and style sheet, and build
everything afresh. This has the advantage of showing you how to build a PHP gallery on its
own if you decide that Spry isn’t for you.

Dreamweaver has a jump menu that could be used to switch between galleries, but the
whole idea of this case study is to create a page that doesn’t rely on JavaScript. Since the
jump menu uses JavaScript, that rules it out. Instead, we’ll insert the <form>, <select>, and
submit button elements separately. But, first, you need to lay out the structure of the
page.

1. Copy gallery_start.php from examples/ch20 to workfiles/ch20, and rename it
hijax_gallery.php. The page should look like this in Design view:

If it’s unstyled, check the link to styles/gallery.css and that the display of styles
isn’t turned off in the Style Rendering toolbar or View ➤ Style Rendering.

Creating the Select gallery menu

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

718

8598CH20.qxd 6/26/07 3:30 PM Page 718

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2. The rules for the select, thumbs, mainPic, and description ID selectors are
already defined in the style sheet, making it easy to insert the <div> elements that
form the structure of the page (refer to Figure 19-13 in the previous chapter).

Select Insert Div Tag from the Common category of the Insert bar (or Insert ➤ Layout
Objects ➤ Div Tag). In the dialog box that opens, set Insert to After tag, and select
<div id="header"> from the drop-down menu alongside. You can then set the ID for
the first <div> by choosing select from the ID drop-down menu, as shown here:

3. Click OK to insert the select <div>. Then repeat step 2 three times to insert the
remaining <div> elements in this order: thumbs, mainPic, and description, each
time setting Insert to After tag and selecting the name of the <div> you have just
inserted from the drop-down menu alongside. By the time you have finished, the
page should look like this:

The ID menu displays only ID selectors that are already defined in the style sheet and
haven’t yet been used in the page. As you add the remaining three <div> elements,
you’ll see this list getting shorter. This is designed to prevent you from using the same
ID in more than one element on a page. If you’re building a new page and haven’t yet
defined the styles, you can type the name of the new ID into the ID field and define its
style rules by clicking the New CSS Style button (it’s hidden behind the ID drop-down
menu in the preceding screenshot).

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

719

20

8598CH20.qxd 6/26/07 3:30 PM Page 719

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. You need to replace the placeholder text in each <div> with the code that gener-
ates the actual content, so it’s a good idea to open Split view to make sure that you
delete only the placeholder text and don’t affect the surrounding tags.

Highlight the placeholder text in the select <div>, and press Delete to remove it.

5. With the insertion point between the empty <div> tags, insert a form, using the
Forms tab of the Insert bar or Insert ➤ Form ➤ Form.

In the Property inspector, set Method to GET. Leave Action blank. You want the
form to reload the same page.

6. Insert a <select> element by choosing List/Menu from the Forms tab or Insert ➤
Form ➤ List/Menu. In the Input Tag Accessibility Attributes dialog box, use the follow-
ing settings:

ID: category

Label: Select gallery:

Style: Attach label tag using 'for' attribute

Position: Before form item

7. Select the menu element in Design view to bring up its details in the Property
inspector, and click the List Values button.

Create two menu items by entering England in the Item Label field and GB in the
Value field for the first item, and Japan and JPN for the second one.

8. The purpose of this gallery is to work even without JavaScript, so click to the side
of the menu element in Design view, and insert a submit button. In the Input Tag
Accessibility Attributes dialog box, give the button an ID called go, but no label. In
the Property inspector, change Value from Submit to Go.

The top of the page should now look like this:

Save the page, and compare your code, if necessary, with hijax_gallery_01.php.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

720

8598CH20.qxd 6/26/07 3:30 PM Page 720

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The thumbnails are displayed using a repeat region. It’s common practice to put thumb-
nails in a table, but the Dreamweaver Repeat Region server behavior is unidirectional—it
can’t go across and down in the same operation—so we’ll do the same as with the Spry
data set, which is to let the width of the thumbs <div> control the number of thumbnails
displayed in a row. Each thumbnail needs to be wrapped in a link that loads the same page
and passes the photo_id of the selected image in a query string. This will be used later to
display the main image and its details.

1. Create a Recordset called getThumbs in Advanced mode. It needs to retrieve only
the photo_id and filename columns, where category is specified by a runtime
variable. Set the default value of the runtime variable to GB, and the runtime value
to $_GET['category']. Your settings should look like this:

2. Select the placeholder text in the thumbs <div>, and press Delete to remove it.

3. With the insertion point still inside the thumbs <div>, insert the image basin.jpg
from images/gallery/thumbs. When prompted, set alternate text to thumbnail. As
with the Spry data set, by inserting an actual thumbnail image, Dreamweaver sets
the width and height attributes automatically. You now need to replace the image
with a dynamic object.

4. Go into Code view, and delete the file name basin.jpg from the src attribute of the
 tag. Then open the Bindings panel, and select filename from the getThumbs
recordset. Do not click the Bind button. If you do so, Dreamweaver deletes the rest
of the path inside the src attribute and removes the width and height attributes.

Drag and drop filename from the Bindings panel so that the dynamic text object
forms the last part of the src attribute. If you find it difficult to drop it in the right
place the first time, choose Edit ➤ Undo, or just cut and paste the PHP code into
the right place. The tag should now look like this:

<img src="../../images/gallery/thumbs/<?php echo ➥

$row_getThumbs['filename']; ?>" alt="thumbnail" width="80" ➥

height="54" />

Creating the thumbnail gallery and links

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

721

20

8598CH20.qxd 6/26/07 3:30 PM Page 721

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5. Click the Live Data view button to check that the first thumbnail is displayed cor-
rectly. Toggle Live Data view off before continuing. Notice that Dreamweaver has
placed a dynamic image placeholder in the thumbs <div>, as shown in the next
screenshot, not a broken image icon, as happens with Spry.

6. You now need to wrap the thumbnail in a link. Make sure the dynamic image place-
holder is selected, and click the Browse for File icon to the right of the Link field in
the Property inspector.

Select hijax_gallery.php in the Select File dialog box, and click the Parameters button.

In the Parameters dialog box, set Name to photo_id, and click the lightning bolt icon
in the Value field to select photo_id from the getThumbs recordset.

7. The repeat region needs to be applied to both the link and the image. The <a> tag
might not be displayed in the Tag selector, so click anywhere in Design view. Then
select the dynamic image placeholder again. You should now be able to select the
<a> tag in the Tag selector.

8. Apply the Repeat Region server behavior, and select the option to show all records.

9. Save the page, and test it in a browser. You should see all eight thumbnails from the
England gallery displayed in four rows of two. Mouse over each thumbnail to check
that it displays a link with a query string on the end like this:

http://egdwcs3/workfiles/ch20/hijax_gallery.php?photo_id=12

You can check your code with hijax_gallery_02.php in examples/ch20.

A second recordset that selects the details of just one image controls the display in the
rest of the page. There’s just one problem: no photo_id is passed through a query string
when the page first loads or when you change the selected gallery. The solution is to use
the photo_id from the first record of the getThumbs recordset as the default value. That
way, the main image and description match the first thumbnail when a new gallery first
loads, but as soon as a thumbnail is clicked, the second recordset gets its runtime value
from the query string.

Displaying the main image

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

722

8598CH20.qxd 6/26/07 3:30 PM Page 722

http://egdwcs3/workfiles/ch20/hijax_gallery.php?photo_id=12
http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. Create a recordset called getDetails. You want all columns from the ch20_gallery
table, filtered by the URL parameter photo_id, so you can use the Recordset dialog
box in Simple mode with the following settings:

Although the default value set by Dreamweaver produces no result when the page
first loads, let’s first insert the dynamic objects for the main image, caption, and
description. We can deal with the default later.

2. Click inside the mainPic <div> placeholder text and format it as a paragraph. Then
select the text and delete it. Insert the main image using the same technique as
shown in Figures 19-15 and 19-16 in the previous chapter. Select Insert ➤ Image,
navigate to the images/gallery folder, and copy the path from the URL field. Then
select Data sources, and choose filename from Recordset (getDetails). Make sure you
choose the correct recordset, as both have a filename field. Finally, paste the path
in front of the PHP code in the URL field, as shown in the following screenshot (in
the Mac version, it’s the Code field, and you need to add the trailing slash after
gallery):

The alternate text is set dynamically using the caption, so just click OK when
prompted for alternate text.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

723

20

8598CH20.qxd 6/26/07 3:30 PM Page 723

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3. You now need to bind the alt, width, and height
attributes to the image. This is all done through
the Bindings panel in the same way as you did in
the previous chapter with a Spry data set.

With the dynamic image placeholder for the
main image still selected, open the Bindings
panel, and highlight caption in Recordset
(getDetails). Choose img.alt from the Bind to drop-
down menu at the bottom of the panel, and click
the Bind button, as shown in the screenshot
alongside.

Do the same with width and height, binding them
to img.width and img.height, respectively.

4. Click alongside the dynamic image placeholder
for the main image, and press Shift+Enter/
Shift+Return to insert a single line space
(
).

5. Select caption in the Bindings panel, and click Insert (this was previously labeled
Bind—nothing is selected in Design view, so there’s nothing to bind the data to).

6. Delete the placeholder text in the description <div>, and replace it with a
dynamic text object for description.

7. Save the page, and test it in a browser. The main image and description won’t dis-
play when the page first loads, but they should when you click any thumbnail. The
Japanese gallery also loads if you select Japan and click Go, but as soon as you click
a thumbnail, everything reverts to the England gallery.

We’ll fix those issues next, but first you might want to check your code against
hijax_gallery_03.php in examples/ch20.

There are just two things that need to be fixed in the code to make the gallery work prop-
erly. First, the default value of the getDetails recordset needs to be made the same as the
photo_id of the first record in getThumbs. Second, you need to tell the page which gallery
has been selected. It’s time to dive into Code view . . .

1. The code that sets the default value of the getDetails recordset is shown on lines
42–45 of the following screenshot:

Fixing the code

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

724

8598CH20.qxd 6/26/07 3:30 PM Page 724

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Three lines higher (on line 39) is the code that retrieves the first record of the
getThumbs recordset (see “Reusing a recordset” in Chapter 17 for an explanation of
this code). This is important, because we want to use a value from the getThumbs
recordset, so it must come before we use it.

Instead of –1, you want the default value of getDetails to be the photo_id of the
first record in getThumbs, so change the code shown on line 42 of the preceding
screenshot to this:

$colname_getDetails = $row_getThumbs['photo_id'];

Dreamweaver gets upset that you have changed part of the recordset code and
puts a red exclamation mark in the Server Behaviors panel, but it’s nothing to worry
about. All it means is that you won’t be able to edit this recordset in the Recordset
dialog box (if you try, it deletes the runtime variable).

2. Next, you need to insert code in the drop-down menu so that it displays the name
of the currently selected gallery. This value is stored in $var1_getThumbs, so edit
the <select> menu like this:

<select name="category" id="category">
<option value="GB" <?php if ($var1_getThumbs == 'GB') {echo ➥

'selected="selected"';}?>>England</option>
<option value="JPN" <?php if ($var1_getThumbs == 'JPN') {echo ➥

'selected="selected"';}?>>Japan</option>
</select>

This inserts selected="selected" in the <option> tag of the selected gallery.

3. Finally, you need to add the value of the selected gallery to the query string when
the user clicks a thumbnail. Edit the opening <a> tag for the thumbnails like this:

<a href="hijax_gallery.php?photo_id=<?php echo ➥

$row_getThumbs['photo_id']; ?>&category=<?php echo ➥

$var1_getThumbs; ?>">

This adds &category=GB or &category=JPN at the end of the query string.

4. Save the page, and test it again. It should now work exactly the same way whether
JavaScript is enabled or not. You can check your code against hijax_gallery_04.
php in examples/ch20.

Generating the XML sources with PHP
Earlier in the chapter, I showed you how to generate an XML source manually from a
recordset. To adapt the PHP version of the gallery to use Spry, yet remain accessible if

Dreamweaver stacks recordset definitions above the DOCTYPE declaration in the same
order that you create them. Since getThumbs was created first, I knew they would be
in the order I wanted. If they’re in the wrong order, you can reorder recordsets, as
long as you keep the code for each one together.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

725

20

8598CH20.qxd 6/26/07 3:30 PM Page 725

http://lib.ommolketab.ir
http//lib.ommolketab.ir

JavaScript is disabled, you need to generate two XML sources: one for the photos of
England, the other for the photos of Japan. The XML structure for each one looks like this:

<gallery>
<photo>
<file width="number" height="number">filename</file>
<thumb>path/to/thumbs/filename</thumb>
<url><![CDATA[tag for main image]]></url>
<caption>caption</caption>
<description><![CDATA[description]]></description>

</photo>
</gallery>

Figure 20-9 shows a sample of the output this produces.

Figure 20-9. Part of the XML source generated for the Spry-enhanced gallery

The SQL query for the XML source for the gallery of photos of England is this:

SELECT * FROM ch20_gallery WHERE category = 'GB'

For the Japanese photos, it’s

SELECT * FROM ch20_gallery WHERE category = 'JPN'

To build the PHP pages to generate the XML sources, it’s just a question of building the
XML skeleton as earlier in the chapter and binding the dynamic text objects to them. You
can find the full scripts in england.php and japan.php in examples/ch20.

Since the only difference between england.php and japan.php is the value passed to
the WHERE clause in the SQL query, you could use just one page and pass the value as
a runtime variable. I used two separate pages to keep the code simple and concen-
trate on the integration with Spry.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

726

8598CH20.qxd 6/26/07 3:30 PM Page 726

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Enhancing the accessible gallery with Spry
Converting the gallery to utilize Spry to refresh the main image, caption, and description
involves the same process as earlier in the chapter, namely:

Create a Spry data set to load the XML data. You can use PHP logic to choose the
correct data set, so Spry will use only one, and reload the data set when the gallery
changes. As before, we’ll call the data set dsPhotos.

The thumbnails act as the trigger to refresh the other areas, so you add an onclick
event handler to the opening <a> tag and set it to return false so that the link
isn’t followed if JavaScript is supported. A PHP counter sets the correct row number
in the underlying code.

The areas to be refreshed—the main image, caption, and description—will be
designated as Spry detail regions, using the spry:content property to load the
appropriate content from the current row of the data set.

So, without further ado, let’s get coding.

Apart from creating the data set, everything involves hand-coding, but it’s basically the
same as the simple example with the table earlier in the chapter.

1. Create a Spry data set called dsPhotos, using england.php in examples/ch20 as the
XML source (if you’re on Windows, select All Files (*.*) for Files of type in the Select
XML Source dialog box).

Select photo as Row element.

Change Data type for url to image link. You don’t need to change Data type for
file/@height or file/@width because the numbers are not required for sorting.

2. In Code view, initialize the PHP counter variable between the opening tag of thumbs
<div> and the repeat region code like this:

<div id="thumbs">
<?php $i = 0; // initialize counter for row number ?>
<?php do { ?>

3. Add the onclick event handler in the opening <a> tag of the thumbnail like this:

<a href="hijax_gallery.php?photo_id=<?php echo ➥

$row_getThumbs['photo_id']; ?>&category=<?php echo ➥

$var1_getThumbs; ?>" onclick="dsPhotos.setCurrentRowNumber(<?php ➥

echo $i++; ?>); return false">

This was explained in “How to incorporate a Spry data set in an ordinary web page”
earlier in the chapter, so I won’t go into details again.

Creating the enhanced gallery

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

727

20

8598CH20.qxd 6/26/07 3:30 PM Page 727

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4. Both the main image and the caption are embedded in a paragraph, so wrap them
in elements, and add the spry:detailregion and spry:content properties
like this:

<div id="mainPic">
<p><img ➥

src="../../images/gallery/<?php echo $row_getDetails['filename']; ➥

?>" alt="<?php echo $row_getDetails['caption']; ?>" width="<?php ➥

echo $row_getDetails['width']; ?>" height="<?php echo ➥

$row_getDetails['height']; ?>" />

 ➥

<?php echo $row_getDetails['caption']; ?></p>
</div>

5. The description is in a <div> of its own, so the spry:detailregion and spry:
content properties can be added to its opening tag like this:

<div id="description" spry:detailregion="dsPhotos" spry:content= ➥

"{description}"><?php echo $row_getDetails['description']; ?></div>

6. All that remains is to use some PHP logic to choose the correct XML source. Locate
the section of code that sets the default value of the getThumbs recordset (around
line 32), and edit it like this:

$var1_getThumbs = "GB";
// use england.php as the default XML source
$set = 'england.php';
if (isset($_GET['category'])) {
$var1_getThumbs = $_GET['category'];
// if the Japan gallery has been selected, change XML source
if ($_GET['category'] == 'JPN') {$set = 'japan.php';}

}

Although Spry changes the content of the Spry detail regions, it’s not affected by
clicking the Go button. This submits the form and passes the selected category
through the URL. So, if category is set to JPN in the $_GET array, the value of $set
changes to japan.php. Otherwise, it remains the default, england.php.

7. Edit the data set initialization to use the selected data source like this:

var dsPhotos = new Spry.Data.XMLDataSet("../../examples/ch20/<?php ➥

echo $set; ?>", "gallery/photo");

This builds the path to the XML source file, so make sure there is no gap between
the forward slash and the opening PHP tag.

8. Save the page, and test it in a browser. With JavaScript enabled, the gallery
refreshes the main image, caption, and description without reloading the page. The
only time the page is reloaded is when you switch galleries. This isn’t quite as slick
as the pure Spry version, but it’s much more accessible and search engine friendly.
With JavaScript disabled, it continues to work as an ordinary dynamic web page,
whereas the pure Spry version fails.

You can check your code against hijax_gallery_05.php in examples/ch20.

THE ESSENTIAL GUIDE TO DREAMWEAVER CS3 WITH CSS, AJAX, AND PHP

728

8598CH20.qxd 6/26/07 3:30 PM Page 728

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The end of a long journey . . .
Congratulations if you have stayed with me all the way from page 1. We’ve covered a lot
of ground and crunched a lot of code. I hope you’ve found it an interesting and not too
difficult journey. Most of all, I hope it has stimulated your interest in exploring further.
Over the past 700 pages or so, we have worked with a wide range of web technologies:
XHTML, CSS, JavaScript, Spry, PHP, MySQL, XSLT, and XML. One of the great attractions of
web design and development is the low threshold of knowledge required to get started.
But if your knowledge remains in the foothills, you’ll be greatly limited in what you can do.
You need to start climbing the slopes of the various technologies; at times, the learning
curve can be steep, but the rewards are often well worth the effort.

One of the difficulties of writing this sort of book is that it can give you only a brief insight
into the possibilities. Don’t treat the exercises and case study as definitive “answers” but
rather as starting points for your own ideas and experimentation. The great thing about
dynamic web development is that it lets you present information in an infinite variety of
ways. Some ideas work better than others, but it’s only by trying out different techniques
that you get a feel for what’s right for a particular situation.

This book has dealt with PHP and MySQL primarily in a Dreamweaver context. If you have
found the techniques taught here useful, I urge you to expand your knowledge by visiting
the online documentation at www.php.net/manual/en/ and http://dev.mysql.com/doc/
refman/5.0/en/index.html. Although they’re not suitable for reading from end to end,
they are well written and crammed with useful examples. The PHP manual has a section
for frequently asked questions at www.php.net/manual/en/faq.php; and if you run into
difficulties with MySQL, a good place to start is http://dev.mysql.com/doc/refman/
5.0/en/problems.html.

Thanks for reading.

GETTING THE BEST OF BOTH WORLDS WITH PHP AND SPRY

729

20

8598CH20.qxd 6/26/07 3:30 PM Page 729

http://www.php.net/manual/en
http://dev.mysql.com/doc
http://www.php.net/manual/en/faq.php
http://dev.mysql.com/doc/refman
http://lib.ommolketab.ir
http//lib.ommolketab.ir

INDEX

8598Index.qxd 6/28/07 1:15 PM Page 731

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Numbers and symbols
@ symbol, 626, 659
*/ symbol, 300
../ symbol, 105
/* symbol, 300
+ (addition operator), 306, 308
& (ampersand) symbol, 657
= (assignment operator), 299
\ (backslash), 303–304
\\ (backslash) escape sequence,

303
} (closing curly brace) escape

sequence, 303
] (closing square bracket) escape

sequence, 303
.= (combined concatenation

operator), 304, 333
. (concatenation operator), 304,

638
?: (conditional operator), 316–317
{} (curly braces), 303, 336–337, 668
-- (decrement operator), 306–307
/ (division operator), 306
$ (dollar sign), 298, 303
"" (double quotes), 301–305
// (double slash), 300
= (equal to), 535, 581
== (equality operator), 299, 313
> (greater than) operator, 313–314,

536, 581, 583, 642
>= (greater than or equal to)

operator, 314, 536, 583
(hash sign), 300
=== (identical operator), 314
++ (increment operator), 306–307
< (less than operator), 313–314,

535, 581, 583, 657
<= (less than or equal to) operator,

314, 535, 583
&& (logical AND operator), 315,

536
|| (logical OR operator), 315, 536
* (multiplication operator), 306
!= (not equal) operator, 314, 502,

536
<> (not equal) operator, 314, 502,

536, 581
!== (not identical) operator, 314

INDEX

732

{ (opening curly brace) escape
sequence, 303

[(opening square bracket) escape
sequence, 303

% (percentage sign), 537, 579, 583,
589–594

; (semicolon), 297, 331, 418
- (subtraction operator), 306
_ (underscore) character, 589–594

A
absolute positioning, 25, 171
access levels, content display

according to, 513–514
access restrictions

for individual pages, 511–512
See also user registration

systems
accessibility issues, with Spry, 189,

670
accessibility options, forms,

253–254
.Accordion selector, 231
.AccordionFocused selector, 232
.AccordionPanel selector, 231
.AccordionPanelContent selector,

232
.AccordionPanelOpen selector, 232
.AccordionPanelTab selector, 232
.AccordionPanelTabHover selector,

232
accordion widget, 229–239

changing defaults with object
initialization, 236–238

changing open panel, 236–237
color selection, 235–236
converting to flexible height,

237–238
editing and styling, 232–236
inserting, 230
opening from a link, 238–239
structure, 230–232
style rules, 231–232

action attribute, 249, 330–331
Action field, 251
Active Server Pages (ASP), 37, 73
addition operator (+), 306, 308

ADDT Control Panel, 702
Adobe Bridge CS3, 2
Adobe Creative Suite, 2–3
Adobe Device Central, 2, 24–25
Adobe Dreamweaver Developer

Toolbox (ADDT), 698, 702
Adobe Labs, 654
Advanced selector, 145
AES_ENCRYPT(), 516
Ajax

accessibility problems with, 60
introduction to, 34
limitations of, 38–39

alias, using for data manipulation,
543

All mode (CSS Styles panel),
141–142

allow_url_fopen, 622, 633, 706
allow_url_include, 93
allow_url_open, 93
Amazon, 36
AND keyword, 536, 583, 588
AP (absolutely positioned)

elements, 18–20
Apache, 37–38, 73

case sensitivity, 83
changing default port, 83–86
creating virtual hosts on,

110–115
disabling, 79
downloading software, 73
installing in parallel with IIS, 75
installing on Windows, 76–77
running in parallel with IIS,

83–86
setting default file for, 108
starting and stopping, on Mac

OS X, 86–87
starting and stopping, on

Windows, 79
Apache Monitor, running on Vista,

78
Apache server root

location of, 107
moving, 107–108

Appear/Fade effect, 51–52
arguments, passing, 320

8598Index.qxd 6/28/07 1:15 PM Page 732

http://lib.ommolketab.ir
http//lib.ommolketab.ir

arithmetic operators, 306–308,
535–536

array elements, 308–310
array index, 308
array key, 308
arrays, 40

associative, 310
foreach loops, 319
indexed, 308
inspecting contents of, with

print_r(), 310
using to store multiple values,

308–311
with zero elements, 482

array_key_exists() function, 332
array_push() function, 342
ASP. See Active Server Pages
ASP.NET, 37, 73
assignment operator (=), 299
associative arrays, 310
asynchronous communication, 38
attributes, node, 659
auto completion, 30–31
Auto refresh data option, 661

B
background colors, 54–55, 167–169
background images, adding,

169–173
background property, 147, 168
backslashes, 303–304

getting rid of unwanted,
338–340

backups
creating, 424–426
of database, 424
loading data from, 426

Balance Braces tool, 336–337
bash shell, amending PATH in, 414
BBC Online news feed, 622
BBEdit, 62–64
behaviors

applying, 43–45
applying multiple to trigger

element, 58–59
editing, 48–50
removing, 50
restoring deleted, 50–51

INDEX

733

Spry effects, 40–59
trigger events for, 41
using, 40–59

Behaviors panel, accessing, 40–45
BETWEEN keyword, 583
BETWEEN min AND max, 536
Beyond Compare, 62–64
binary data, 441
BINARY keyword, 586
binary large object (BLOB), 441
Blind effect, 51–53
BLOB (MySQL column type), 441
Block extra characters option, 287
block property, 147
<blockquote> tag, 176–178
<body> tags, duplicate, 373
Boolean searches, 595–596
Boolean values, 312–313
borders

adding, to menu bars, 191
properties, 147

box properties, 148–149
break keyword, 320
Bridge, 16

adding metadata, 17
controlling thumbnails, 17
dragging and dropping files, 18
renaming files, 17

browser bugs, 23
browser security restrictions, XML

source data and, 654
Build Filter area, 645
built-in CSS layouts

adding pull quote, 176–178
adjusting fonts, 175–176
applying conditional comments,

164–165
choosing, 163
inserting images, 175–176
linking to external style sheets,

164
removing comments, 179–181
style rule locations, 163–165
styling a page with, 165–173

adding background images,
169–173

using, 162–181
linking to external style sheets,

164

C
cache, 118
calculations, performing, 306–307
CASCADE option (MySQL), 528
Cascading Style Sheets (CSS)

attaching external style sheets,
144

classes, 138, 662
comments, removing, 179–181
controlling page structure with,

677–678
creating simple, 138–140
Dreamweaver CS3 features for,

136
management, 21–22
properties, 142–143, 168
Property inspector and, 136–138
rules, defining, 175
setting preferences for, 156–158
structure, 22–23
support for, 18, 23
visual aids for, 22–23
See also CSS layouts; CSS pages;

CSS selectors; CSS Styles
panel

case keyword, 316
case sensitivity

of Apache, 83
of PHP, 328
of table names, 438

case-sensitive links, 118
case-sensitive searches, 586
Cc header, 353
CDATA sections, 657, 704, 716
cgi-bin directory, 249
CHAR (MySQL column type), 439
Char width option, 256
character counter, Spry, 288–289
@charset rule, 166
Check Browser compatibility

feature, 23
Check New Username server

behavior, 480–483, 502, 509,
545

checkbox group, Spry validation,
289–291

checkbox widget, 277, 289–292
checkboxes, 262–267, 354–356

8598Index.qxd 6/28/07 1:15 PM Page 733

http://lib.ommolketab.ir
http//lib.ommolketab.ir

checkdate() function, 615
child nodes

populating with dynamic objects,
704

Spry and, 655–656
See also nodes

child tables, 523
defining foreign key constraints

in, 527
deleting records from, 523,

567–568
displaying list of records,

563–564
inserting records in, 539–545
updating records in, 563–567

chmod 777, 708
class names, 149, 264
class selectors, 145
classes

CSS, 138, 662
tabbed panels widget, 213–214

client-server relationship, 34–35, 38
client-side technology, 34–35
client-side validation, 248, 275–292,

330
Spry validation widgets, 277–292

checkbox, 289–292
custom patterns, 285–286
drop-down menu validation,

292
inserting, 279
limitations of, 278
removing, 279
text area validation, 286–289
text field validation, 280–285

Validate Form behavior, 275–277
client-side XSLT, 621
Cloaking category, 125
code

commenting, 300
including from other files,

364–388
indenting, 30
reusing, with includes, 378–380

Code Format category, 156
code hints, 30–31, 328, 334–335,

704, 714–715
code library, JavaScript, 38

INDEX

734

Code view, 12, 27–31, 251
Coder layout, 14
Coding toolbar, 27–29
ColdFusion, 37
CollapsiblePanels selectors,

240–241
collapsible panels, 239–244

editing and styling, 241–243
inserting, 239
opening from link, 243–244
structure of, 239–241

collation, 446
colname, 577–579
color selection

accordion widget, 235–236
menu bar, 190–191, 203–206
tabbed panels, 218–222

color wheels, 218
column types, 439–444
columns, 436

adding indexes to, 525
combing contents of, in single

field, 543–545
indexing, 524
NOT NULL, 441
number of, 438
searching multiple, 588
searching several simultaneously,

598
combined assignment operators,

308
combined concatenation operator

(.=), 304, 333
Command Line Client, 411–412
commands, PHP, 297
commas, removing, 639
comments

adding to PHP scripts, 300
conditional, 164–165
removing CSS, 179–181

Common tab, Insert bar, 9–10
Community Server (MySQL), 404
comparison operators, 313,

535–536, 581–583
comparisons, of two values,

313–314
CONCAT() function, 543

concatenation operator (.), 304,
638

CONCAT_WS() function, 543–545
conditional expressions, testing,

639–642
conditional operator (?:), 316–317
conditional regions

creating, 639–642
multiple, 640, 642

conditional statements, 311–317
Boolean values, 312–313
comparisons, 313–314
else statements, 311
elseif statements, 312
if ... else statements, 327
if statements, 311, 332
logical operators, 314–315
switch statement, 316
true/false test, 348
wrapping recordset code in,

585–588
constants, defining for site-relevant

paths, 369
contact.css, 330
content, dynamic. See dynamic

data
Content tab, Bridge, 17
Content-Type header, 351
copyright issues, 707
copyright notice, automatically

updating, 375–378
COUNT(*), 599
Counter option (text area

validation widget), 287
Creative Suite, 2–3
CSS. See Cascading Style Sheets
CSS layouts

adding background images,
169–173

adding pull quotes, 176–178
adjusting fonts, 175–176
applying conditional comments,

164–165
choosing, 163
deciding where to locate style

rules, 163–165
inserting images, 175–176

8598Index.qxd 6/28/07 1:15 PM Page 734

http://lib.ommolketab.ir
http//lib.ommolketab.ir

linking to external style sheets,
164

ready-made, 136
removing comments, 179–181
styling a page with, 165–173
using, 162–181

CSS pages
adding pull quote, 176–178
adjusting fonts, 175–176
inserting images, 175–176
using built–in layouts for,

162–181
CSS properties

adding, 168
displaying only set, 143
displaying alphabetically, 143
displaying by category, 142–143

CSS Rule Definition dialog box,
146–152, 175, 177

CSS selectors
case sensitivity of, 167
defining, 145–146
types of, 145

CSS signatures, 167
CSS Styles panel, 20, 140

creating new style rules, 145–152
defining properties, 146–152
defining selectors, 145–146

Current mode, 141–142, 168,
173–174

modes, 141–142
moving styles rules, 152–156
opening, 141
Properties pane, 142–144
styling a page with, 165–173
styling Spry menu bars with,

193–206
CSS Zen Garden, 136
cURL (Client URL Library)

extension, 706–707
curly braces {}, 336–337, 668
Current mode, CSS Styles panel,

141–142, 168, 173–174
current node, 403
current-node dynamic placeholder,

638
custom patterns, in Spry, 285–286

INDEX

735

D
daemon, 403
data

filtering, with XSLT parameters,
646–650

inserting into SET columns,
454–457

storing related, in separate
tables, 520–530

avoiding orphaned records,
523

defining database tables,
524–530

linking with foreign keys,
521–523

structure for, 520–521
transferring between servers,

403, 424–426
data manipulation, using MySQL

function, 543–545
data retrieval, with superglobals,

327–328
data sets

activating event handling,
688–691

creating dynamically, 689–691
displaying as list, 670
displaying in Spry table, 662–667
distinguishing between, 688
handling, with Spry and PHP,

59–60
data source

local XML, 634–636
selecting, 684–686

data submission, GET vs. POST
methods, 259–260

Data tab, Insert bar, 10
database design, normalization,

520–521
database records

displaying, 457–459
creating recordset, 457–462
individual records, 462–467

preserving integrity of, 480–487,
489–490, 492–493

updating and deleting, 474,
493–507

database tables. See tables
database-driven websites, 36
databases

creating backup of, 424–426
creating local test, 431
deleting users from, 505–506
displaying results from queries,

572–580
inserting records in, 441–457
listing registered users in,

494–496
moving between servers,

424–426
MySQL, user account creation,

432–435
preventing duplicate usernames

in, 480–481
querying, 572–580
querying, to create recordset,

457–459
search results, improving

presentation of, 573–575
searching

for text, 586–588
multiple columns, 588
no results message, 587–588
partial matches, 589–598
setting search criteria,

580–598
with wildcard characters,

589–594
setting up MySQL, 430–435
storage of information in,

436–441
table design, 437–441

DATE (MySQL column type), 440
date columns, 440
date() function (PHP), 608–611
dates

in MySQL, 603–607, 612–615
in PHP, 572, 607–611
validating and formatting for

database input, 612–615
DATETIME (MySQL column type),

440, 443
DATE_FORMAT() function

(MySQL), 604–607

8598Index.qxd 6/28/07 1:15 PM Page 735

http://lib.ommolketab.ir
http//lib.ommolketab.ir

debugging, commenting for, 300
DECIMAL (MySQL column type),

440
decrement operator (--), 306–307
decryption, password, 516
Default Document Type (DTD), 5–7
default encoding, 6–7
default extension, 5
default file

adding to IIS, 109–110
setting, on Apache on Windows,

108
default images folder, 117
default selectors, editing menu bar,

198–199
definition lists, 670–674
DELETE command (MySQL), 538
delete form, adding check for

dependent records to, 560
delete pages, creating, 497–500
DELETE privileges (MySQL), 432
Delete Record server behavior, 558
dependent records, deleting

simultaneously, 560–563
Deprecated category, 42
descendant selectors, 145

.VTabbedPanels, 224, 226
accordion widget, 231–232

Design Time Style Sheets, 25,
374–375

Design view, 13, 372–373
Designer layout, 14
detail regions, 684–687
details page, displaying record

contents in, 464–467
development environment

local, 68
setting up, 68–100

checking remote server for
support of PHP, 69–70

creating local testing server,
70–89

Device Central, 24–25
Display Record Count, 61
display_errors, 92–93, 98–99
DISTINCT keyword, 599
Distinct on load checkbox, 661
DIV (MySQL), 536

INDEX

736

<div> tags, 18–20
absolutely positioned, 25–26
accordion widgets and, 231
for Slide effect, 56–58
tabbed panels widgets and, 213
wrapping menu bar in, 193–195

division operator (/), 306
do … while loops, 318, 600–603
DOCTYPE declarations, 373
Document Object Model (DOM),

35, 713
document preferences, setting, 5–7
document root, 82
Document toolbar, 12
Document window, 11–13
document-relative links, 105, 365,

369
documents, creating new, 4–5
double quotes (""), 301–305
double slash (//), 300
Dreamweaver CS3

accessing hidden files and
folders, 15

approach of, to layout, 25–27
behaviors, 40–59
building of SQL queries by,

576–580
bundling of, with Adobe Creative

Suite, 2–3
code hints, 328, 334–335, 704,

714–715
creating new documents, 4–5
cross-browser compatibility

provided by, 35
customized layouts, 14–15
defining PHP site in, 115–130

defining site details, 117–118
defining test server, 121–125
opening Site definition dialog

box, 115–116
remote server access, 119–121
saving site definition, 126
site options, 125–126
troubleshooting, 128–129

displaying optional toolbars, 15
hiding all panels, 15
improved handling of CSS in,

136

processing of XML by, 618
rearranging panels, 14
server behaviors, 474
server-side XSLT handling by,

623–624
setting document preferences,

5–7
setting up test environment for,

68–100
checking PHP configuration,

90–100
checking remote server for

support of PHP, 69–70
creating local testing server,

70–89
site management, 131–132
starting up, 3–7
tracking of users by, 513–515
use of runtime variables by,

577–579
workspace, 7–14

Dreamweaver Exchange, 3
Dreamweaver extensions, 40
Dreamweaver pop-up menus, 42
Dreamweaver System Color Picker,

219
Dreamweaver templates. See

templates
drop-down menus, 248, 262,

267–269, 670–672
getting data from, 356–357
populating from a database,

540–545
Spry validation, 292

DTD (Document Type Definition),
5–7, 669

Dual Screen layout, 14
dump, database, 424
dynamic code

adding to includes, 375–378
testing, 68

dynamic data, 36
applying to radio groups,

490–493
display of, by Spry, 654
displaying, 299–300
handling, with Spry and PHP,

59–60

8598Index.qxd 6/28/07 1:15 PM Page 736

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dynamic List/Menu dialog box,
541–542

dynamic pages
client-side technology for, 35
embedding XSLT Fragment in,

632–633
understanding, 34

dynamic source
creating XML document from,

707–711
local, 710

dynamic text
displaying, 464–467
formatting, with line breaks,

467–469
dynamic web pages

advantages of, 694
Ajax and, 38–39
basic concepts of, 39–40
server-side technology and,

35–38
understanding, 34
See also web pages

dynamic websites, 402. See also
websites

E
echo, 299–301, 310
editable regions, adding to

template, 391–393
Effect setting, 52
element

trigger
applying multiple events to,

58–59
elements

formatting, 643–644
id attributes for, 45–47
sorting, 642–643
supported target, 51–52

else statements, 311
elseif statements, 312
email

filtering out attacks, 348–350
getting rid of unwanted

backslashes in, 338–340
sending, with PHP, 328–359

INDEX

737

testing, 337
troubleshooting, 338

email addresses, 328, 352
email header injection, 348–350
email headers, including user

address in, 350–354
empty() function, 342, 356
ENCODE() function, 516
encoding attribute, 636
encrypted passwords, 511, 516
Enctype option, 251
<!ENTITY> tag, 669
ENUM (MySQL column type), 440,

443
equal sign (=), different meanings,

299, 535, 581
equality operator (==), 299, 313
ereg functions, 352
error messages, 321–322

for duplicate usernames, 481
MySQL, 579
suppressing, 99

errors
displaying in PHP, 98
fatal, 321
parse, 302, 321
strict, 322
warning, 321

error_reporting, 92–93
escape sequences, in strings,

303–304
event handlers/handling, 39, 58,

688–691
event listeners, 684
events, 39

applying multiple, to trigger
element, 58–59

displayed in drop-down menu,
48

trigger, 41
exclusive OR operator (xor), 315
existing style sheets, linking to, 164
$expected array, 342, 354, 583
Export Recordset as XML server

behavior, 699–701
Extensible Markup Language

(XML). See XML

Extensible Stylesheet Language
Transformations. See XSLT

Extension Manager, 2, 40
extensions, 40, 147
external code libraries, 88
external files

converting to includes, 370–373
include_path for, 365–368
including text and code from,

364–370, 372–384, 387–388
external style sheets

attaching, 144
moving rules between, 155–156

F
false, 305, 312–313
fatal errors, 321
Favorites tab, Insert bar, 10–11
fclose() function, 708
feedback forms. See forms
feedback.php, converting to use

generic script, 383–388
fields, 436

binding values to update form,
503–505

combining contents of two
columns in single, 543–545

empty, 441
redisplaying contents of, after

form submittal, 486–490
<fieldset> tag, 274
fieldsets, 274–275
File Compare feature, 62

setting up, 61–62
using, 62–64

file_get_contents() function, 710
file uploads, enabling, 99
file_uploads, 93
file name extensions

displaying in Windows, 72–73
for include files, 369–370

files
accessing hidden, 15
comparing versions of, 61–64
dragging and dropping, 18
merging local and remote

versions, 64

8598Index.qxd 6/28/07 1:15 PM Page 737

http://lib.ommolketab.ir
http//lib.ommolketab.ir

renaming, with Bridge, 17
writing

setting permissions for, 708
using PHP, 708–711

$_FILES array, 327
Find and Replace, using stored

query in, 180–181
firewalls, 121
Flash, 35
FLOAT (MySQL column type), 440
folders, accessing hidden, 15
font changes, 192–193, 203–206
Font property, 148
fonts

adjusting, 175–176
Property inspector and, 137–138

footers, automatically updating,
375–378

fopen() function, 708
for attribute, 254
for loops, 318–319
foreach loops, 319, 342, 382
foreign key constraints, 523

defining, in InnoDB tables,
526–530

options for, 528
referential integrity and, 556
removing, 530
setting, in phpMyAdmin, 527

foreign keys
creating, 520
inserting, 539–545
linking records with, 521–523
NULL values for, 539
primary keys and, 521
referential integrity and, 523
using as primary key, 525

form elements
multiple choice, 354–359

checkboxes, 354–356
drop-down menus, 356–357
multiple-choice lists, 357–358
radio button groups, 358–359

organizing, 274–275
form input, merging with mail

processing, 469–471
format-number() (XSLT), 644

INDEX

738

formats, recognized by text field
validation widget, 283–285

FormMail, 249
<form> tag, 255
forms

activating, 327–359
building simple feedback,

248–262
checking required fields,

341–345
client-side validation, 330
delete pages, building, 497–500
design, GIGO principle and, 480
event processing in, 326–327
fieldsets, adding, 274–275
filtering out potential attacks,

348–350
GET vs. POST methods, 259–260
hidden fields, 260–262
input validation, 248, 275–292
inserting in Code view, 251
inserting into PHP page, 250–252
introduction to, 248
multiple-choice elements,

262–273, 354–359
names, 251
page types for, 248
preserving user input on

incomplete, 345–347
processing and acknowledging

messages from, 330–336
processing submitted, 248
redirections to different pages,

359
reset buttons, 255
scripting, 329–336
sending email, 328–359
storing input from, 441–457
styling, 257–258
testing, 337–338
text input elements, adding,

252–255
text input elements, setting

properties for, 255–256
troubleshooting, 338
update pages, building, 497–500
validating fields in, 481–486

Forms tab, Insert bar, 10

Fport, 77
From header, 350–354
FTP access, 119
FTP options, 120–121
FULLTEXT index, 595–598

limitations of, 596
multiple-column, 598

functions, 39, 320
passing an argument to, 320
wrapper, 41
See also specific functions

fwrite() function, 708

G
garbage collection, 507
$_GET array, 327
GET method, 259–260
getdate() function, 612–613
GetSQLValueString() function, 453,

547, 578–579
GIGO principle, 480
global access, setting, for writing

files, 708–709
gold shields, 336
GoLive, 3
greater than (>) operator, 313–314,

581, 583
greater than or equal to (>=)

operator, 314, 583
group selector, 145
Grow/Shrink effect, 51–54

H
hash sign (#), 300
<head> tags, 21, 373
header() function, 359, 388, 702
headers, inserting, for XML output,

705
“headers already sent” error, 388
headings, editing styles for, 150
hidden characters, display of, 30
hidden fields, in forms, 260–262
Highlight effect, 51, 54–55
Hint option, 283
horizontal menu bar, inserting,

185–186

8598Index.qxd 6/28/07 1:15 PM Page 738

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Host directory field, 124
Hover class action, 663
.htaccess files, 100
htdocs folder, 108
HTML entities

defining, 636
in XML, 620

HTML pages, 250
<html> tags, locking code outside

of, 398
htmlentities() function, 346–347,

503
HTTP address, 118

I
id attributes, 45–47, 254, 271

assigning, through Property
inspector, 45–46

duplicate, 45
removing, 47
setting, with Quick Tag Editor,

46–47
ID field, 254
ID menu, 719
ID selectors, 145, 719
identical operator (===), 314
if ... else statements, 317, 327
if statements, 311, 332
IIS, 38, 73–75

adding default PHP file to,
109–110

changing default port, 84–86
registering virtual directories on,

115
running in parallel with Apache,

83–86
IIS server root location, 107
image gallery (case study)

building, 676–691
activating event handling,

688–691
adding detail regions, 684–687
building thumbnail images,

679–684
controlling structure, 677–678
creating data sets, 679–684

INDEX

739

dynamically selecting data set,
677

planning, 676
building with PHP, 717–725

creating gallery menu,
718–720

creating thumbnails and links,
721–722

enhancing with Spry, 727–728
generating XML sources,

725–726
main image display, 722–724

making non-JavaScript
accessible, 717–728

images
adding background, 169–173
aligning, 149
inserting, 175–176
wrapping text around, 149

implode() function, 355–357, 456
@import, 146
IN() comparison operator (MySQL),

536
.inc file extension, 369
.inc.php file extension, 370
include commands, 364–368
include files

adapting mail processing script
as, 380–388

adding dynamic code to,
375–378

broken links in, 374
converting navigation menu to,

370–373
creating, 364–368
displaying XHTML output, 370
file name extensions for, 369–370
for footers, 375–378
"headers already sent" error, 388
path for, 365–368
problems with, 373–374
reusing PHP code with, 378–380
site-root-relative links with,

368–369
storage of, 370
styling, 374–375
uses of, 369

include() command, 364
includes folder, updating, 701–702
include_once() command, 364
include_path, 365–368
increment operator (++), 306–307
index.php, adding as default file,

109–110
indexed arrays, 308
indexed columns, 528
indexes, 308, 524–525
inequality operator (!=), 314, 502,

536
Init val option, 256
ini_set() function, 99
inner joins, 565
InnoDB tables, 404–407, 524

converting to MyISAM tables,
527, 597

defining foreign key relationship
in, 526–530

performing cascade delete in,
560–563

support for, 524
Input Tag Accessibility Attributes

dialog box, 253–254, 264,
268, 270, 720

<input> tag, 248, 345–346
input validation, 248

before form submission,
275–292

client-side, 248, 275–292
Spry validation widgets,

277–292
Validate Form behavior,

275–277
server-side, 248, 329
validation alerts, 280–282

Insert bar, 9–11
INSERT command, 537
Insert Div Tag dialog box, 194, 680
insert forms

adapting for updates, 553–555
building, 545–546
creating, 539

insert page, adapting for updates,
566–567

INSERT privileges, 432

8598Index.qxd 6/28/07 1:15 PM Page 739

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Insert Record server behavior,
483–484, 493, 542

applying, 450–453
combining with mail processing,

469–471
else clause with, 550
removing, 553–554

Insert Spry Region dialog box, 666,
680

Insert Spry Table dialog box,
662–663, 665

INT (MySQL column type), 439
InterAKT, 698
Internet, client-server relationship

on, 34–35
invalid code, highlighting, 30
in_array() function, 342, 356, 583
IPv6 transfer mode, 121
isset() function, 343, 354
isSuspect() function, 349–350
is_array() function, 342
is_numeric(), 614

J
JavaScript, 35

cross-browser compatibility of,
35

disabled, 59
enabled, 38
framework, 38
using Spry without, 711–717

image gallery (case study),
717–728

JavaScript objects, 41, 228–229
JavaServer Pages (JSP), 37

K
Kollection, 698

L
language support, in MySQL, 408
layers, end of, 18
Layout CSS menu, 163–165
Layout Mode, 26–27
Layout tab, Insert bar, 10

INDEX

740

layouts
adding background images,

169–173
adding pull quotes, 176–178
adjusting fonts, 175–176
applying conditional comments,

164–165
choosing, 163
inserting images, 175–176
removing comments, 179–181
style rule locations, 163–165
styling a page with, 165–173
using built-in CSS, 162–181

left join, 564–565
<legend> tag, 274
less than (<) operator, 313–314,

535, 581, 583, 657
less than or equal to (<=) operator,

314, 535, 583
 tags, 214
LIKE keyword, 536, 589, 592, 594
LIMIT clause, 537
line breaks, in text, 467–469
line numbers, display of, 30
line–height property, 148
<link> tag, 154
linking tables, 522
links

case-sensitive, 118
document-relative, 105
root-relative, 105–106
selecting default style of, 118
site-root-relative, with includes,

368–369
Links relative to option, 118
list properties, 147
lists

definition, creating, 671–674
displaying data sets as, 670–674

Live Data view, testing PHP site
with, 126–128

Liyanage, Marc, 88
Local/Network access, 119
local root folder, 117
local test environment, 68

blocking Apache installation, 77
creating, 70–89
database for, 431

individual or all-in-one
installation, 71

setting up on Mac OS X, 86–89
setting up on Windows, 72–86

checking port 80, 75
downloading software, 73
installing Apache, 76–77
installing PHP, 80–82
preparing installation on Vista,

73
starting and stopping Apache,

79
testing PHP installation, 82–83
troubleshooting, 82

software versions for, 70
local testing options, 122–123
localhost, 115
Log In User server behavior,

509–513
Log Out User server behavior, 509,

512–513
logical AND operator (&&), 315,

536
logical operators, 314–315, 536
logical OR operator (||), 315, 536
login, redirecting to personal page

after, 515
login systems, creating, 509–511
log_errors, 92–93
LONGBLOB (MySQL column type),

441
lookup tables, 522
loops, 317–318

do … while, 318
ending, 320
for, 318–319
foreach, 319, 382
while, 317

M
Mac OS X

accessing php.ini on, 96–97
installing MySQL on, 412–418
registering virtual hosts on,

113–115
securing MySQL on, 416–418
server root location, 107

8598Index.qxd 6/28/07 1:15 PM Page 740

http://lib.ommolketab.ir
http//lib.ommolketab.ir

setting permissions in, 708–709
setting up local test environment

on, 86–89
starting and stopping Apache,

86–87
upgrading PHP on, 87–89
using MySQL monitor on,

418–419
Mac workspace, 8–9
Macromedia, 2
magic quotes, 93, 338–340, 346,

493
mail processing

adapting as include, 380–388
merge form input with, 469–471

mail() function, 328–359
email headers, 350–354
fifth argument for, 338, 353
testing, 337–338
troubleshooting, 338

mail transport agent (MTA), 329
MAMP, 71
Manage Sites dialog box, 116,

131–132
many-to-many relationships, 522
margin property, 148
Mark of the Web, 64
master template

adding editable regions to,
391–393

creating child pages from,
393–398

moving, 391
MATCH keyword (MySQL), 598
Max chars option, 256, 283
max_execution_time, 94
mbstring extension, 698
MEDIUMBLOB (MySQL column

type), 441
menu bars

changing colors and fonts,
203–206

changing width, 190
color changes, 190
editing, 188–189, 196–198
editing default selectors,

198–199

INDEX

741

inserting, 196–198
horizontal, 185–186
vertical, 186–187

removing, 188
setting widths, 199–203
wrapping in <div> tags, 193–195
See also Spry menu bar

message body, 329
metadata, adding, to images, 17
method attribute, GET vs. POST,

259–260
Method menu, 251
methods, 228
Microsoft IIS. See IIS
Microsoft Vista. See Vista
Microsoft Visual SourceSafe, 119
Microsoft Windows. See Windows
Min chars option, 283
missing records, 564–565
mixed datatype, 332
mktime() function, 609
MMHTTPDB.php, 449
_mmServerScripts folder, 449
MM_XSL Transform error message,

633
MM_XSLTransform.class.php, 622,

624, 633
mobile devices, previewing website

on, 24–25
modulo operator, 306–307,

574–575
Multifunctional Database option

(MySQL), 407, 410–411
multiline text area, 248
multiple attribute, 269–270
multiple tables

advantages of using, 520
disadvantages of, 520
inserting records in child table,

539–545
managing content with, 538–568
selecting records from, 530–534
storing related data in, 520–530

avoiding orphaned records,
523

defining database tables,
524–530

linking with foreign keys,
521–523

structure for, 520–521
multiple-choice form elements,

262–273
checkboxes, 262–267
drop-down menus, 267–269
radio buttons, 262, 272–273
scrollable lists, 269–271

multiple-choice lists, 262, 357–358
multiple-column indexes, 598
multiplication operator (*), 306
MyISAM tables, 404, 523

adding FULLTEXT index to, 598
advantages and disadvantages of,

526
converting to InnoDB tables, 527

MySQL, 403
adding to PATH, 414–416
advantages of, 37
configuring on Windows,

406–411
database setup, 430–435
default databases, 430
error messages, 579
formatting dates in, 603–607
formatting time in, 603–607
installation, 404–418

on Mac OS X, 412–418
on Windows, 404–410

interface, 402
introduction to, 402–403
securing on Mac OS X, 416–418
starting and stopping, on

Windows, 411
storing dates in, 612–615
terminology, 403
user account creation, 432–435
using with phpMyAdmin,

419–424
MySQL Administrator, 419
mysql, various meanings explained,

403
MySQL connections, 60

creating, 447–449
restricted, for visitors, 457
site-relative-roots and, 453
troubleshooting, 449–452

8598Index.qxd 6/28/07 1:15 PM Page 741

http://lib.ommolketab.ir
http//lib.ommolketab.ir

MySQL databases
inserting data in, 695–696
information storage in, 436–441

MySQL date format specifiers, 604
MySQL Enterprise, 404
MySQL functions

AES_ENCRYPT(), 516
CONCAT(), 543
CONCAT_WS(), 543–545
COUNT(*), 599
data manipulation with, 543–545
DATE_FORMAT(), 604–607
ENCODE(), 516
for two-way encryption, 516
RAND(), 533

MySQL monitor
on Windows, 411–412
using, 418–419

MySQL Query Browser, 419
MySQL Windows Essentials

changing default table type,
410–411

configuring, 406–411
mysql.php, 449
mysqld, 403
mysql_data_seek() function, 601
mysql_fetch_assoc() function, 603

N
\n (new line) escape sequence,

303
name attribute, 255, 271
names

array element, 309–310
table, 438
variable, 298

natural language searches, 595–596
navigation. See site navigation
navigation menu, converting to

include file, 370–373
negation, 314
Netscape, 35
New CSS Rule dialog box, 177
New CSS Style button, 719
New Document dialog box, 4–5
New Document Preferences dialog

box, 5–7

INDEX

742

news feeds. See RSS news feeds
NO ACTION option, 529
node tree, displaying, 634–635
nodes, 626

attributes of, 659
child. See child nodes
current, 638
determining position of, in XML

hierarchy, 631
filtering, with XPath, 644–646
formatting, 643–644
selecting, 627
sorting, 642–643

Non-Transactional Database Only
option, 407

normalization, 520–521
not identical operator (!==), 314
NOT LIKE operator, 536
NOT NULL operator, 441, 525
_notes folder, 375
notices, 321
null, 305, 441, 525
NULL option, 529
Num lines option, 256
numbers, 40, 306–308
numeric columns, 439–440
numerical comparisons, 581–583
numerical range, searching within,

583–586

O
object initiation, 236–238
object literals, 229
objects, 40, 228
ON DELETE CASCADE, 561
onchange event handler, 690
onclick event handler, 713, 727
one-to-many relationships, 522
online forms. See forms
open() method, 243–244
openPanel() method, 238–239
open_basedir, 94
<option> tag, 267, 542
Options from recordset drop-down

menu, 542
OR keyword, 536, 588–589
ORDER BY clause, 537

ordered lists, 670–672
orphaned records, avoiding, 523
output, displaying selectively,

644–650

P
padding property, 148
Page Properties dialog box,

138–140
pages. See web pages
panel groups, 13–15
parent tables, 523

cascading, 560–563
deleting records from, 523, 556,

560–563
inserting records in, 545–550
updating records in, 551–555

parent-child relationships, 626
parse errors, 302, 321
partial matches, 589–598
passing an argument, 320
Password option, 257
passwords

encrypting and decrypting, 516
root, 409–411, 416–418
validating, 481–486

PATH, adding MySQL to, 414–416
pattern-matching functions, 352
PCRE functions, 352
percentage sign (%) as wildcard

character, 589–594
Perl-compatible regular expression

(PCRE), 348–349
permissions setting, for PHP to

write files, 708
personal pages, redirecting to,

after login, 515
PHP, 34–37

advantages of, 37–38
arrays, 308–311
basics of, 296–322
building websites with, with

Dreamweaver, 60–61
checking remote server

supports, 69–70
commands, 297
conditional statements, 311–317

8598Index.qxd 6/28/07 1:15 PM Page 742

http://lib.ommolketab.ir
http//lib.ommolketab.ir

configuring to display errors, 98
creating image gallery with (case

study), 717–725
creating gallery menu,

718–720
creating thumbnails and links,

721–722
enhancing with Spry, 727–728
generating XML sources,

725–726
main image display, 722–724

dates in, 572, 607–611
downloading software, 73
embedding in a web page,

296–297
enabling file uploads and

sessions, 99
error messages, 321–322
extensions, enabling in Windows,

98–99
formatting dates in, 610–611
functions, 320
garbage collection, 507
generating XML sources with,

725–726
handling of dynamic data by,

59–60
individual or all-in-one

installation, 71
installing, on Windows, 80–82
loops, 317–318
output display, 299–300
previously installed versions of,

74–75
processing forms with, 248
reusing code, with includes,

378–380
scripting feedback forms,

329–336
sending email with, 328–359
setting permission for, to write

files, 708
setting time zone in, 608
superglobal arrays, 327–328
testing installation, 82–83
upgrading, on Mac OS X, 87–89
using to process XSLT, 621
variables, 298–299

INDEX

743

working with numbers, 306–308
writing to a file using, 708,

710–711
PHP configuration

checking, 90–100
checking installed extensions,

95–96
phpinfo() output, 90
php.ini, 90–91

PHP Core settings, 92–94
.php file extension, 296
PHP files

adding default to IIS, 109–110
setting default on Apache, 108

PHP include commands, 364–368
PHP pages

creating, 249–250
as data source, 701
deciding where to test, 68
elements of, 297
embedding XSLT Fragment in,

632–633
importance of site definition for,

104
inserting form into, 250–252
mixing with HTML pages, 250

PHP scripts
adapting as includes, 380–388
commenting, 300
quotes around, 301–304

PHP sessions
checking for enabled, 509
creating, 507
destroying, 508
User Authentication server

behaviors and, 513
PHP sites

choosing location for, 104–110
defining, in Dreamweaver,

115–130
defining site details, 117–118
defining test server, 121–125
opening Site Definition dialog

box, 115–116
remote server access, 119–121
saving site definition, 126
site options, 125–126
troubleshooting, 128–129

management, 131–132
Preview in Browser settings,

129–130
testing, 126–128
using Dreamweaver templates in,

389–398
PHP snippets collection, 339–340
PHP strings

adding text to existing, 304–305
escape sequences in, 303–304
joining together, 304

PHP tables
adding Spry functionality to,

714–716
building, 712–713

PHP tags, 296
PHP variables, 96, 578
php.ini file, 74–75

checking location of, 90–91
editing, 96, 98–99

phpinfo() function, 69–70, 320
displaying output of, 706
output of, 90, 96

phpMyAdmin, 435
configuring, 420–423
creating users table in, 475–476
defining table in, 444–446
downloading and installing, 420
generating XML with, 696–697
interface, 423
launching, 423
logging out of, 424
setting foreign key constraints in,

527
using MySQL with, 419–424

pop-up menus, 42, 184
port 80, 75–77, 83–86
position() function (XSLT), 631
positioning properties, 147
$_POST array, 259–260, 308, 327,

331–332, 335
checkboxes and, 354–356
drop-down menus and, 356–357
multiple-choice lists, 357–358
radio buttons and, 358–359

POST method, 259–260
post_max_size, 94

8598Index.qxd 6/28/07 1:15 PM Page 743

http://lib.ommolketab.ir
http//lib.ommolketab.ir

$_POST variables, automating
naming of, 341–342

predefined lists, 440
Preferences panel, 5–7

Code Format category, 156
setting CSS preferences, 156–158

Preview in Browser settings,
129–130

primary keys, 436–437, 493–494
adding, to query string, 462–464
column for, 442
foreign keys and, 521
message_id, 462
uniqueness of, 522

print, 299–300, 310
print_r() function, 310, 327
procedural code, 388
Project Hoover, 18
Properties (Spry), 228
Properties pane (CSS Styles panel),

142–144, 152
Property inspector, 13

assigning id attribute through,
45–46

fonts and, 137–138
problems with, 136–138
tabbed panels widget, 214–218
text input elements, 255–256

proxy scripts, using to fetch remote
feed, 706–707

proxy.php, 710
pseudo-class selector, 145
pseudo–element selector, 145
pull quotes, adding, 176–178

Q
queries, saving, 181
query strings, adding primary key

to, 462–464
Quick Tag Editor, setting id

attribute with, 46–47
quotation marks, 40

efficient use of, 305
runtime variables and, 547
single vs. double, 301–304
within user input, 345–346

INDEX

744

R
\r (carriage return) escape

sequence, 303
Radio Button option, 272
radio buttons, 262, 272–273

binding field values to, 503–505
getting data from, 358–359

Radio Group option, 272
radio groups, applying dynamic

values to, 490–493
RAND() function (MySQL), 533
ranges, specifying in SQL queries,

583–586
RDS (Remote Development

Services), 119
Reconfigure Instance option

(MySQL Windows Essentials),
410

Record Insertion Form Wizard,
476–480

record management, with multiple
tables, 538–568

Record Update Form Wizard, 496
records, 436

adding to tables, 539
avoiding orphaned, 523
checking for duplicate, 546–548
counting, 599
deleting, 538–563

cascading, 560–563
deleting, from child tables,

567–568
displaying individual, 462–467
displaying list of, 563–564
finding incomplete, with left join,

565
inserting in child tables, 539–545
inserting into parent table,

545–550
inserting new, 537
linking with foreign keys,

521–523
many-to-many relationships, 522
missing, 564–565
one-to-many relationships, 522
paging through list of, 551–553
preventing duplicate, 548–550
primary keys of, 437

retrieving, with SELECT
command, 535–537

selecting from multiple table,
530-–534

sort order of, 446
updating, 538, 551–555

in child tables, 563–567
recordset definitions, 725
Recordset dialog box

Advanced mode, 577, 583
Simple mode, 576–577

Recordset Navigation Bar, 551–552
Recordset Navigation Status data

object, 573–574
Recordset Paging, 61
recordsets

creating, 60, 457–462
displaying results of, 459–462
eliminating duplicates from, 599
generating XML from, 703–706
reusing a, 599–600, 602
wrapping in conditional

statement, 585–588
redirections, after login, 515
REFERENCES keyword, 528
referential integrity, 523, 556
registered users, listing, 494–496
register_globals setting, 94, 328
registration forms

building, 476–480
completing, 489–493
See also forms

regular expressions, 179–181,
348–349

relational database management
system (RDBMS), 430. See
also MySQL

remote feeds
copyright issues with, 707
fetching with proxy script,

706–707
See also RSS news feeds

remote servers
accessing through FTP, 119–121
checking, for support of PHP,

69–70
defining access options, 119–121
for testing, 123–125

8598Index.qxd 6/28/07 1:15 PM Page 744

http://lib.ommolketab.ir
http//lib.ommolketab.ir

overriding settings on, 99–100
testing on, 69

remote source, creating XML
document from, 710

remote testing options, 123–125
Remove Instance option (MySQL

Windows Essentials), 410
Repeat Region server behavior, 60,

704, 721–722
repeat regions, 600–603, 674

displaying results of recordset in,
459–462

displaying thumbnail images
with, 721–722

repeating elements, 626, 637–639
Reply-To header, 350, 352–354
$_REQUEST array, 328
require() command, 364, 711
require_once() command, 364, 452
$required array, 342
Reset form, 255
resource paths

document-relative links, 105
root-relative links, 105–106

Restrict Access to Page server
behavior, 509–512

RESTRICT option, 529
return false, 713–714
root access, 409, 416
root element, 626
root password, 409, 411, 416–418
root-relative links, 105–106
rows, 436, 482, 574–575
RSS news feeds

converting headlines to links,
629–630

displaying in Web page, 632–633
fetching with proxy script,

706–707
limiting number of items

displayed, 630–631
pulling in, 622–633
sources of, 622

Rules pane (CSS Styles panel), 174
runtime variables, 547

BINARY keyword with, 586
conversion of to PHP variables,

578

INDEX

745

default value of, 584–586
defining, 547–548
handling of, in Dreamweaver,

585–587
quotes and, 547
with SQL queries, 577–579
text searches, 596

S
safe_mode, 94
schema, 625
scientific notation, 306
scripts

adapting as includes, 380–388
on dynamic pages, 35

scrollable lists, 248, 269–271
search criteria

numerical comparisons, 581–583
setting, 580–598
text search, 586–588

search engine spiders, JavaScript
and, 38

search engines
non-JavaScript enabled pages

for, 716
Spry and, 669

search results
creating striped table rows,

574–575
displaying message for empty,

587–588
displaying number of, 573–574
improving presentation of,

573–575
partial matches, 589, 591–592,

594–598
within numerical range, 583–586

searches
case-sensitive, 586
FULLTEXT index, 595–598
with wildcard characters,

589–594
Secure FTP (SFTP), 121
security, of sessions, 507
security settings, MySQL, 409,

416–418

SELECT commands, 535–537, 572
DISTINCT option, 535
LIMIT clause, 537
ORDER BY clause, 537
WHERE clause, 535–537

SELECT COUNT(*), 599
Select Image Source dialog box,

684
SELECT privileges, 432
<select> tag, 248, 267, 269, 356
select widget, 277
selectors, 145–146
select_list, 535
semicolons, 297, 331, 418
$_SERVER array, 327, 331
server behavior code, 453
server behaviors, 60–61, 474

building custom, 486–490
using with site-root-relative links,

452–454
See also specific server behaviors

server root, 82, 104–108
server-side languages, 296
server-side technology, 34–38
server-side validation, 248, 329
server-side XSLT, 621
$_SERVER variables, 96, 368
servers

changing default port for, 83–86
checking XSLT support on,

621–622
choosing, 73
retrieving information from, with

superglobals, 327–328
$_SESSION array, 327, 508
session variables, 507

created by User Authentication
server behaviors, 513

creating and destroying, 508
creating, from user details, 515

sessions
checking for enabled, 509
creating, 507
destroying, 508
enabling, 99
introduction to, 507
security of, 507
User Authentication server

behaviors and, 513

8598Index.qxd 6/28/07 1:16 PM Page 745

http://lib.ommolketab.ir
http//lib.ommolketab.ir

session_destroy() command, 508
session_start() function, 508, 513
SET columns, 440, 443, 454–457
Set ID, 47
SET NULL option, 529
setColumnType() method, 716
setCurrentRow() method, 690
setCurrentRowNumber() method,

714
setup.php, configuring

phpMyAdmin with, 420–422
sha1() function, 516
Shake effect, 52, 55
shell prompt, 88
short_open_tag, 94
Show If Recordset Is Not Empty

option, 588
Show Region server behavior, 60,

562, 587–588
showPanel() method, 238–239
siblings, 626
sidebar background, 168–169
simple mail transfer protocol

(SMTP), 329
site definition

duplicating, 131
exporting, 131
importance of, 104, 115
importing, 132
in Dreamweaver, 115–130

defining site details, 117–118
defining test server, 121–125
opening Site Definition dialog

box, 115–116
remote server access, 119–121
saving, 126
setting up for Spry, 125–126
site options, 125–126
troubleshooting, 128–129

removing, 131
Site Definition dialog box

Cloaking category, 125
Local Info options, 117–118
opening, 115–116
Remote Info options, 119–121
Testing Server category, 121–125

site management, 131–132
site name, 117

INDEX

746

site navigation
building with Spry menu bar, 184
building navigation structure,

195–198
horizontal menu bar, 185–186
Spry menu bar

accessibility, 189
customizing styles, 190–193
editing, 188–189
removing, 188

vertical menu bar, 186–187
Site Root button, 170
site-root-relative links

with includes, 368–369
using server behaviors with,

452–454
size attribute, 269–270
Slide effect, 52, 55–58
spam, 329, 338, 348–350
 tags, 280, 289
special pattern characters, 285–286
spreadsheets, 437
sprintf() function, 578–579, 583
Spry, 34, 38

accessibility issues with, 60, 670
adding to PHP tables, 714–716
bookmarks and, 39
capabilities of, 654
child nodes and, 655–656
code library, 41
development of, 654
disadvantages of, 669–670
handling of dynamic data by,

59–60
handling of XML data by,

654–675
limitations of, 38–39
lists, 670–674
setting up site definition for,

125–126
size of code libraries, 39
syntax, 668
using in pages without

JavaScript, 711–717
using without JavaScript enabled

(case study), 717–728
using XHTML with, 716–717

validating pages that use,
668–669

XML data and, 655–656
Spry 1.4, 654
Spry 1.5, 654
Spry Accordion Widget, 210,

229–239
changing defaults with object

initialization, 236–238
color selection, 235–236
editing and styling, 232–236
inserting, 230
opening from a link, 238–239
structure, 230–232

Spry character counter, 288–289
Spry Collapsible Panel Widget,

239–244
editing and styling, 241–243
opening from a link, 243–244
structure of, 239–241

Spry Collapsible Panels, 210
Spry data code, understanding,

668–669
Spry data sets

activating event handling,
688–691

creating, 654–662, 679–684,
689–691

case study, 676–691
distinguishing between, 688
dynamically selecting, 677
incorporating in ordinary web

page, 711–716
initialization of, 662
loading XML data with, 727

Spry detail regions, 684–687,
727–728

Spry effects, 40–59
accessing, 52
Appear/Fade, 52
applying, 43–45
applying multiple events to

trigger element, 58–59
Blind, 53
common settings for, 52
editing, 48–50
Grow/Shrink, 53–54
Highlight, 54–55

8598Index.qxd 6/28/07 1:16 PM Page 746

http://lib.ommolketab.ir
http//lib.ommolketab.ir

removing, 50
restoring deleted, 50–51
Shake, 55
Slide, 55–58
Squish, 56
supported target elements,

51–52
types of, 51–52

Spry menu bar, 43
building site navigation with,

184–206
customizing styles, 190–193

adding borders, 191–192
changing colors, 190–191
changing menu width, 190
font changes, 192–193

editing, 188–189
inserting and editing, 196–198
inserting horizontal menu bar,

185–186
inserting vertical menu bar,

186–187
maintaining accessibility with,

189
removing, 188
structure of, 185–187
styling, with CSS Styles panel,

193–206
changing colors and fonts,

203–206
editing default selectors,

198–199
setting widths, 199–203

wrapping in <div> tags, 193–195
XHTML structure, 187–188

Spry objects, 228–229
Spry regions, 663, 680–682
Spry Repeat List button, 671,

680–682
Spry tab, Insert bar, 10
Spry Tabbed Panels widget,

210–228
color selection, 218–222
converting to vertical tabs,

223–226
design problems with, 227–228
editing, 214–218
structure of, 212–214

INDEX

747

Spry Validation Text Field widget,
612

Spry validation widgets, 277–292
checkbox, 289–292
custom patterns, 285–286
drop-down menu validation, 292
inserting, 279
limitations of, 278
removing, 279
text area, 286–289
text field validation, 280–285

Spry widgets, 210
building tabbed interface,

211–228
collapsible panels, 239–244
features of, 210–211
removing, 244
See also specific widgets

Spry XML Data Set dialog box,
657–662, 717

Spry.Data.XMLDataSet() method,
689

spry:content property, 713–715,
727–728

spry:detailregion property,
713–715, 728

spry:repeat property, 674–675
spry:repeatchildren property,

672–675
spry:setrow property, 688
SpryEffects.js, 44
SpryMenuBarHorizontal.css, 190
SpryMenuBarVertical.css, 190
SQL (Structured Query Language),

403, 502
SQL (Structured Query Language)

commands, 534–538
case sensitivity of, 534
DELETE command, 538
INSERT command, 537
rules for, 534–535
SELECT, 535–537
UPDATE command, 538
whitespace and, 534

SQL (Structured Query Language)
injection attacks, 474, 547

SQL (Structured Query Language)
queries

common problems with,
598–603

counting records, 599
inner joins, 565
left join, 564
numerical comparisons, 581–583
partial matches, 589–598
passing form values to, 546–548
runtime variables in, 577–579,

584–586
searching within numerical

range, 583–586
SELECT command, 572
setting search criteria, 580–598
troubleshooting, 579–580
understanding, 576–580
using variables in, 546–550

Squish effect, 52, 56
SSL connections, 507
Standard toolbar, 15
standards-compliant web pages,

18–31
statements, conditional, 311–317
statements, PHP, 297
static web pages, 34
static XML documents, creating,

707–711
.ste files, importing site definition

from, 132
Sticky Edit Field server behavior

applying, 503
creating, 496–497

Sticky Text Areas server behavior,
creating, 488–489

Sticky Text Field server behavior
adapting, 496–497
applying, 489–490
creating, 486–488

Storage Engine, 524, 527
strcmp() function, 492
strftime() function, 608–611
strict errors, 322
strings, 40
strlen() function, 483
strtotime() function, 609

8598Index.qxd 6/28/07 1:16 PM Page 747

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Style Rendering toolbar, 24
style rules, 166–167

adding, 144
cascade of, 173–174
creating and editing, 157–158
creating new, 145–152, 175

defining properties, 146–152
defining selectors, 145–146

creating with Page Properties,
138–140

deciding where to locate,
163–165

default format for, 158
exporting to new style sheet,

152–154
for accordion widgets, 231–232
for collapsible panels, 240
for vertical tabs, 224
moving, 152–156
specificity of, 174
things to avoid when creating,

136–138
style sheet management, 21–22
style sheets

applying conditional comments,
164–165

attaching external, 144
exporting rules to, 152–154
linking to existing, 164
menu bar, customizing, 190–193
moving rules between, 155–156
moving rules within, 154
removing comments from,

179–181
See also Cascading Style Sheets

styles
deleting, 144
Design Time Style Sheets,

374–375
editing, 144

subject line (email), 329
subtraction operator (–), 306
Summary for Selection pane (CSS

Styles panel), 173
superglobal arrays, 327–328
superglobal variables, 331
$suspect, 349
switch statement, 316

INDEX

748

synchronous communication, 38
syntax coloring, 30

T
\t (tab) escape sequence, 303
tabbed panels, 211–228

changing orientation of, 223–226
classes, 213–214
color selection, 218–222
converting to vertical tabs,

223–226
design problems with, 227–228
editing, 214–218
inserting, 212
opening from a link, 222–223
structure of, 212–214
styling, 220–222

TabbedPanels class, 213
TabbedPanelsContent class, 214
TabbedPanelsContentGroup class,

214
TabbedPanelsContentVisible class,

214
TabbedPanelsTab class, 213
TabbedPanelsTabGroup class, 213
TabbedPanelsTabHover class, 214
TabbedPanelsTabSelected class, 214
tabindex attribute, 214
table definition

defining foreign key relationship
in, 526–530

not null in, 525
null in, 525

table structure, 437–441
tables (database)

adding new records to, 539
changing default type, on

Windows Essentials, 410–411
checking storage engine of, 526
child, 523
collation, 446
column types, 439–441
columns. See columns
creating for users, 475–476
defining, 524–530
defining in phpMyAdmin,

444–446

deleting records from, 556,
560–563, 567–568

designing, 437–441
displaying record list, 563–564
foreign keys, 520–523, 539–545
inconsistency in, 521
information stored in, 436–441
InnoDB. See InnoDB tables
inserting records into parent,

545–550
lookup, 522
managing content with multiple,

538–568
MyISAM. See MyISAM tables
names, 438
parent, 523
populating, 530
primary keys, 436–437, 442,

462–464, 493–494, 521–522
records in, 436, 521–523,

530–534
redundancy in, 521
restoring content of, 530
rows, 436

adding, 482
striped, 574–575

selecting records from multiple,
530–534

vs. spreadsheets, 437
storage engine of, converting,

527
for storing feedback form inputs,

441–457
storing related information in

separate, 520–530
avoiding orphaned records,

523
defining database tables,

524–530
linking with foreign keys,

521–523
structure for, 520–521

updating records in, 563–567
tablespaces, 407
table_list, 535
Tag Editor, inserting form using,

252
Tag Inspector panel group, 42, 271

8598Index.qxd 6/28/07 1:16 PM Page 748

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Tag selector, 13, 145
tags, auto completion of, 30–31
Target Element setting, 52
target elements

identifying, 45–47
for Spry effects, 51–52

Target option, 251
tcsh shell, amending PATH in, 416
templates

adding editable regions to,
391–393

advantages of, 389
creating, 390–391
creating child pages from,

393–398
locking code outside of <html>

tags, 398
moving master, 391
using in PHP site, 389–398

temporary files
for preview, 129–130
used by Dreamweaver, to check

XSLT Fragment, 629
test environment

defining, 121–125
local, 68, 122–123
remote testing options, 123–125
setting up, 68–100

checking PHP configuration,
90–100

checking remote server for
support of PHP, 69–70

creating local test server,
70–89

on Mac OS X, 86–89
on Windows, 72–86

Testing Server category, 121–125
Testing server folder option, 122
TEXT (MySQL column type), 439
text

centering in browser, 151
including from other files,

364–388
line breaks in, 467–469
searching for, 586–588
wrapping, 149

text area validation, 286–289
text area widget, 277

INDEX

749

text areas
converting to text field, 257
properties of, 255–256

<textarea> tag, 248
text columns, 439
text field validation, 283
text field widget, 277, 280–285
text fields

adding to forms, 253–255
converting to text area, 257
properties of, 255–256
Spry validation, 280–285

.textfieldFlashText input,
input.textfieldFlashText
selector, 283

.textfieldFocusState input,
input.textfieldFocusState
selector, 283

text input elements
adding to forms, 252–255
setting properties for, 255–256

text search, multi-column, 588
Text tab, Insert bar, 10
text wrapping, 29
TextWrangler, 62, 64
third-party developers, 40
thumbnail images

controlling, with Bridge, 17
displaying, 679–682, 684

time, formatting in MySQL,
603–607

time columns, 440
time zone, setting, 608
TIMESTAMP (MySQL column type),

440, 443, 445
TINYBLOB (MySQL column type),

441
TINYINT (MySQL column type), 439
Toggle effect setting, 52
Transactional Database Only

option, 407
transactions, 526
trigger events, 41, 58–59
trim() function, 342, 483
troubleshooting

email, 338
MySQL connections, 449–452
site definition, 128–129

SQL queries, 579–580
test environment, 77, 82

true, 305, 312–313
TRUNCATE keyword, 530
Turn XML Data Caching Off option,

661
two-way encryption, 516
type attribute, 248
Type category (CSS Rule Definition

dialog box), 148
Type option (TextField properties),

256–257, 283
type property (CSS Rule Definition

dialog box), 147
type selector (CSS), 145

U
underscore (_) as wildcard

character, 589–594
Unicode (UTF–8), 7, 408
Unicode Normalization Form, 6
Universal Binary, 88–89
Unix, 87
Unix epoch, 608
Unix timestamp, creating, 609–610
unordered lists, 670, 672
unset() function, 343
UPDATE command, 538
update form, binding field values

to, 503–505
Update Includes Folder dialog box

(XML Export), 702
update pages

adapting for deletes, 568
creating, 497–500

UPDATE privileges, 432
Update Record server behavior,

566–567
applying, 498–500, 554–555
merging with validation code,

500–502
upload_max_filesize, 94
upload_tmp_dir, 94
URL prefix field, 122–124
User Account Control (UAC),

73–74

8598Index.qxd 6/28/07 1:16 PM Page 749

http://lib.ommolketab.ir
http//lib.ommolketab.ir

user accounts, creating for MySQL,
432–435

user address, including in email
header, 350–354

User Authentication, 61, 509, 511
User Authentication server

behaviors, 509, 513
user input

preservation of, on feedback
forms, 345–347

quotes in, 345–346
validating, 248

before form submission,
275–292

user privileges, setting for
database, 432

user records, updating and
deleting, 493–507

user registration systems, 474,
489–493

creating, 474–479
building registration form,

476–480
defining database table,

475–476
preserving database record

integrity, 480–493
updating and deleting user

records, 493–507
user-controlled comparisons,

581–583
usernames

checking for duplicate, 502
preventing duplicate, 480–481

users
deleting from database, 505–506
greeting by name, 514
listing registered, 494–496
logging in, 512–513
login system for, 509–511
registering, 509
restricting access of, 511–512
tracking of, by Dreamweaver,

513–515
users table, creating, 475
UTC (Coordinated Universal Time),

608

INDEX

750

V
Validate Form behavior, 275–277

validation widgets and, 279
validation. See input validation
validation alerts, editing and

controlling, 280–282
value attribute, 542
VARCHAR (MySQL column type),

439, 443
variables, 39, 298–299

assigning values to, 298–299
for form fields, 327
naming, 298
runtime. See runtime variables
session, 507–508, 515
See also specific types

vertical menu bar, inserting,
186–187

View menu, 261
virtual directories, registering on

IIS, 115
virtual hosts, 104

creating, on Apache, 110–115
registering on Mac OS X,

113–115
registering on Windows, 111
working with, 106–107

virtual() function, 368, 452
visibility property, 20
Vista

creating virtual hosts in, 111
installing test environment on,

73
running Apache Monitor on, 78
turning off UAC on, 74

visual aids, for CSS structure, 22–23
Visual Aids submenu, 261
visual assets, organizing with

Bridge, 16–18
visual layout, 25–27
VTabbedPanels selectors, 224–226

W
W3C validation, 668–669
warning errors, 321

web browsers, with JavaScript
disabled, 670

Web Content Accessibility
Guidelines (WCAG), 60

web files
adding default to IIS, 109–110
choosing location for, 104–110
organizing on server root, 106
setting default, 108

web pages
displaying database content in,

457–469
creating recordset, 457–462
individual records, 462–467

displaying news feed in, 632–633
dynamic

advantages of, 694
Ajax and, 38–39
basic concepts of, 39–40
client-side technology for, 35
creating from template,

393–398
server-side technology, 35–38
understanding, 34

embedding PHP in, 296–297
incorporating Spry data set in

ordinary, 711–716
parsing, 104
Preview in Browser settings,

129–130
restricting access to individual,

511–512
standards-compliant, 18–31
static, 34
validating Spry, 668–669

web servers
changing default port for, 83–86
choosing, 73

websites
building PHP, 60–61
database-driven, 36
dynamic, 402
simple structure, 105

WebDAV (Web–based Distributed
Authoring and Versioning),
119

welcome screen, 4

8598Index.qxd 6/28/07 1:16 PM Page 750

http://lib.ommolketab.ir
http//lib.ommolketab.ir

well-formed documents,
components of, 619

WHERE clause, 535–537
AND keyword, 588
BINARY keyword with, 586
Boolean searches, 596
conditions in, 580
DELETE command, 538
foreign keys and, 532
missing records and, 564–565
natural language searches, 596
numerical ranges and, 583–586
operators, 535–536
OR keyword, 588
SELECT statement, 547
UPDATE command, 538
using numerical comparisons

with, 581–583
with wildcard characters,

589–594
while loops, 317
whitespace, 534

header() and, 388
ignored in code, 297
removing, 483

wildcard characters
in searches, 589–594
with numbers, 592, 594

Windows
configuring MySQL on, 406–411
displaying file name extensions

in, 72–73
enabling PHP extensions on,

98–99
installing MySQL on, 404–410
minimum system requirements,

72
registering virtual hosts on, 111
server root location, 107–108
setting up local test environment

on, 72–86
checking port 80, 75
choosing web server, 73
compatibility issues, 74–75
downloading software, 73
installing Apache, 76–77
installing PHP, 80–82

INDEX

751

preparing installation on Vista,
73

starting and stopping Apache,
79

testing PHP installation, 82–83
troubleshooting, 77, 82

starting and stopping MySQL on,
411

using MySQL monitor on,
411–412, 418–419

workspace, 7
Windows Essentials

changing default table type,
410–411

configuring, 406–411
installation, 404–406

Windows Installer, enabling file
uploads and sessions, 99

Windows installer packages, 73
Windows service, running MySQL

as, 408
WinMerge, 62
word wrapping, 29, 333
wordwrap() function, 333
workspace, 7–13

Document window, 11–13
Insert bar, 9–11
Mac, 8–9
organizing, 14–15

accessing hidden files and
folders, 15

customized layouts, 14–15
displaying optional toolbars,

15
hiding all panels, 15
rearranging panels, 14

Windows, 7
wrapper functions, 41
writeToFile() function, 710–711

X
XAMPP, 71
XHTML

deleting unwanted, 705
displaying output, 370
embedding in XSLT, 636–637

tags, 716
using with Spry, 716–717

XHTML structure, of Spry menu
bar, 187–188

XML (Extensible Markup Language)
attributes, 626, 688
building manually from a

recordset, 703–706
comments, 636
declaration, 619, 636, 705
generating dynamically, 695–706
HTML entities in, 620
objective of, 618
tags, 619, 626
using XSLT to display, 621–622

XML data
filtering selectively, 644–646
getting from local source,

634–636
handling of, by Spry, 654–675

XML data source, accessing using
XSLT, 624–631

XML declaration, 619, 636
adding, 705

XML documents
creating

from dynamic source, 707–711
from local dynamic source,

710
with phpMyAdmin, 697
from remote source, 710
Spry data sets from, 656–662
static, 707–711

purpose of, 694
root element, 626
structure of, 618–620, 656
XPath and, 628

XML Export extension, using,
697–703

XML feeds, 701–707
XML files, exporting site definition

as, 131
XML node tree, 659
XML nodes, 655–656
XML prolog, 619
XML source schema, 626
XML sources, generating with PHP,

725–726

8598Index.qxd 6/28/07 1:16 PM Page 751

http://lib.ommolketab.ir
http//lib.ommolketab.ir

XML tags, 619
attributes within, 626

XMLExport folder, 701
XPath, 628

filtering nodes with, 644–646
XPath Expression Builder, 628, 638

filtering nodes, 644–646
XPath Expression Builder (Repeat

Region) dialog box, 630
<xsl:choose> tags, 640
<xsl:for-each> tag, 637
<xsl:if> tag, 631, 640
<xsl:otherwise> tag, 640–641
<xsl:param> tag, 647
<xsl:text> tags, 640
<xsl:when> tags, 640
XSL Transformation dialog box, 61,

632
XSL Transformation server

behavior, 621–622
communication with XML data

source, 624
using, 624–631
working with RSS news feeds,

622–633

INDEX

752

XSLT (Extensible Stylesheet
Language Transformations),
61

accessing nested repeating
elements, 637–639

accessing XML data source with,
624–631

checking server support of,
621–622

client-side, 621
conditional regions, 630–631
displaying output selectively,

644–650
embedding XHTML in, 636–637
formatting elements, 643–644
introduction to, 618
processing with PHP, 621
repeat regions, 630–631
server-side, 621–624
sorting elements, 642–643
structure of, 636–637
syntax, 640
tags, 636
templates, 637
using to display XML, 621–622

XSLT Fragments, 624
code details, 636–637
creating, 624–629, 634–635
creating conditional regions,

639–642
creating parameters for, 646
defining new entities for, 636
embedding in dynamic page,

632–633
encoding attribute, 636
temporary files and, 629
using, 629–630

XSLT parameters
creating default, 646–647
filtering data with, 646–650
sending, from PHP page, 647,

650

Z
z-index property, 20
Zoom tool, 641

8598Index.qxd 6/28/07 1:16 PM Page 752

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	CONTENTS
	INTRODUCTION
	Who this book is for
	Do I need Dreamweaver CS3?
	How does this book differ from my previous ones?
	How this book is organized
	What this book isn’t
	Windows- and Mac-friendly
	A note about versions used
	Using the download files
	Support for this book
	Layout conventions

	1 DREAMWEAVER CS3—YOURCREATIVE PARTNER
	Getting your bearings in Dreamweaver
	Starting up
	Creating a new document
	Setting new document preferences

	Exploring the workspace
	Insert bar
	Document window

	Organizing your workspace
	Rearranging panels
	Saving and sharing customized workspace layouts
	Accessing hidden files and folders in Windows
	Displaying optional toolbars
	Temporarily hiding all panels

	Organizing visual assets with Bridge
	Controlling thumbnails
	Adding metadata
	Renaming files
	Dragging and dropping files

	Creating standards-compliant web pages
	Enhanced CSS support
	Layers are dead . . . Welcome, AP elements
	Seeing the impact of CSS changes in real time
	Improved style sheet management
	Using visual aids to understand your CSS structure
	Checking for browser bugs
	Checking what your page will look like on other media

	Understanding Dreamweaver’s approach to layout
	Drawing absolutely positioned elements
	Layout Mode goes into exile

	Getting the best out of Code view
	Using the Coding toolbar
	Setting Code view options
	Using code hints and auto completion

	Dynamic too . . .

	2 BUILDING DYNAMIC SITES WITHAJAX AND PHP
	Understanding how dynamic pages work
	Making pages dynamic with client-side technology
	Increasing user interactivity with server-side technology
	Why choose PHP?

	Taking dynamic functionality a stage further with Ajax
	Understanding the limitations of Ajax

	Dynamic terminology 101

	Using Dreamweaver behaviors and Spry effects
	Accessing the Behaviors panel
	Giving elements a unique identity
	Removing an id attribute

	Editing behavior and effect settings
	Removing behaviors and effects cleanly
	Restoring a deleted behavior or effect

	Exploring Spry effects
	Appear/Fade
	Blind
	Grow/Shrink
	Highlight
	Shake
	Slide
	Squish

	Creating a wrapper <div> for the Slide effect
	Applying multiple events to a trigger element

	Handling dynamic data with Spry and PHP
	Comparing how Spry and PHP handle data sets
	Building PHP sites with Dreamweaver
	Comparing different versions of files
	Setting up the File Compare feature
	Using File Compare
	Comparing two local files in the same site
	Comparing two local files in different sites
	Comparing local and remote files

	Meet Mark of the Web

	The next step

	3 GETTING THE WORK ENVIRONMENTREADY
	Deciding where to test your pages
	Checking that your remote server supports PHP

	Creating a local testing server
	Choosing which versions to install
	Choosing individual installation or an all-in-one package
	Setting up on Windows
	Getting Windows to display file name extensions
	Choosing the right web server
	Downloading the software
	Preparing for installation on Windows Vista
	Turning off User Account Control temporarily on Vista
	Before you begin . . .
	Checking that port 80 is free
	Installing Apache on Windows
	Running the Apache Monitor on Vista
	Starting and stopping Apache on Windows
	Changing startup preferences or disabling Apache
	Installing PHP on Windows
	Testing your PHP installation (Windows XP and Vista)
	Changing the default Apache port
	Changing the default IIS port

	Setting up on Mac OS X
	Starting and stopping Apache on Mac OS X
	Upgrading PHP on Mac OS X

	Checking your PHP configuration
	Understanding the output of phpinfo()
	Checking the location of php.ini
	Checking PHP Core settings
	Checking installed extensions
	Checking supported $_SERVER variables

	Editing php.ini
	Accessing php.ini on Mac OS X
	Configuring PHP to display errors
	Enabling PHP extensions on Windows
	Enabling file uploads and sessions (Windows installer)

	Overriding settings on your remote server
	Suppressing error messages
	Overriding default settings with ini_set()
	Using .htaccess to change default settings

	Summary

	4 SETTING UP A PHP SITE
	Deciding where to locate your sites
	Understanding document- and root-relative links
	Document-relative links
	Root-relative links

	Keeping everything together in the server root
	Working with virtual hosts
	Finding the server root
	Moving the Apache server root on Windows
	Setting a default file for Apache on Windows
	Adding a default PHP file to IIS

	Creating virtual hosts on Apache
	Registering virtual hosts on Windows
	Registering virtual hosts on Mac OS X

	Registering virtual directories on IIS
	Defining a PHP site in Dreamweaver
	Opening the Site Definition dialog box
	Telling Dreamweaver where to find local files
	Telling Dreamweaver how to access your remote server
	Defining the testing server
	Selecting options for local testing
	Selecting options for remote testing

	Setting up other site options
	Setting up for Spry

	Saving the site definition
	Testing your PHP site
	Troubleshooting

	Setting options for Preview in Browser

	Managing Dreamweaver sites
	Now let’s get on with it . . .

	5 ADDING A TOUCH OF STYLE
	Avoiding bad habits
	Stay away from the Property inspector for fonts
	Creating simple CSS for beginners

	Introducing the CSS Styles panel
	Opening the CSS Styles panel
	Viewing All and Current modes
	Exploring the Properties pane of the CSS Styles panel
	Displaying CSS properties by category
	Displaying CSS properties alphabetically
	Displaying only CSS properties that have been set
	Attaching a new style sheet
	Adding, editing, and deleting style rules

	Creating new style rules
	Defining a selector
	Defining the rule’s properties

	Moving style rules
	Exporting rules to a new style sheet
	Moving rules within a style sheet
	Moving rules between external style sheets

	Setting your CSS preferences
	Creating and editing style rules
	Setting the default format of style rules

	Let’s get creative . . .

	6 CREATING A CSS SITE STRAIGHTOUT OF THE BOX
	Using a built-in CSS layout
	Choosing a layout
	Deciding where to locate your style rules
	Linking to existing style sheets
	Making sure conditional comments are applied

	Styling a page
	Inspecting the cascade in Current mode
	Finishing the layout
	Removing the CSS comments

	How was it for you?

	7 BUILDING SITE NAVIGATION WITHTHE SPRY MENU BAR
	Examining the structure of a Spry menu bar
	Looking at the XHTML structure
	Removing a menu bar
	Editing a menu bar
	Maintaining accessibility with the Spry menu bar
	Customizing the styles
	Changing the menu width
	Changing colors
	Adding borders
	Changing the font

	Styling a Spry menu bar
	To wrap or not to wrap, that is the question . . .
	Building the navigation structure
	Customizing the design

	A mixed blessing

	8 SPRUCING UP CONTENT WITHSPRY WIDGETS
	Features common to all Spry widgets
	Building a tabbed interface
	Examining the structure of the tabbed panels widget
	Editing a tabbed panels widget
	Selecting harmonious colors
	Converting to vertical tabs
	Avoiding design problems with tabbed panels

	Understanding Spry objects
	Using the accordion widget
	Examining the structure of an accordion
	Editing and styling a Spry Accordion
	Using the object initialization to change accordion defaults
	Opening an accordion panel from a link

	Using collapsible panels
	Examining the structure of a collapsible panel
	Editing and styling collapsible panels
	Opening a collapsible panel from a link

	Removing a Spry widget
	Yet more widgets . . .

	9 BUILDING ONLINE FORMS ANDVALIDATING INPUT
	Building a simple feedback form
	Choosing the right page type
	Creating a PHP page
	Mixing .php and .html pages in a site

	Inserting a form in a page
	Inserting a form in Code view

	Adding text input elements
	Setting properties for text input elements
	Converting a text field to a text area and vice versa

	Styling the basic feedback form
	Understanding the difference between GET and POST
	Passing information through a hidden field

	Using multiple-choice form elements
	Offering a range of choices with checkboxes
	Offering a single choice from a drop-down menu
	Creating a multiple-choice scrollable list
	Using radio buttons to offer a single choice

	Organizing form elements in logical groups
	Inserting a fieldset

	Validating user input before submission
	Doing minimal checks with the Validate Form behavior
	Using Spry validation widgets for sophisticated checks
	Understanding the limitations of Spry validation widgets
	Inserting a Spry validation widget
	Removing a validation widget
	Validating a text field with Spry
	Building your own custom pattern
	Validating a text area with Spry
	Validating a single checkbox with Spry
	Validating a checkbox group with Spry
	Validating a drop-down menu with Spry

	Next, let’s move to the server side . . .

	10 INTRODUCING THE BASICS OF PHP
	Introducing the basics of PHP
	Embedding PHP in a web page
	Ending commands with a semicolon
	Using variables to represent changing values
	Naming variables
	Assigning values to variables

	Displaying PHP output
	Commenting scripts for clarity and debugging
	Choosing single or double quotation marks
	Using escape sequences in strings
	Joining strings together
	Adding to an existing string
	Using quotes efficiently
	Special cases: true, false and null

	Working with numbers
	Performing calculations
	Combining calculations and assignment

	Using arrays to store multiple values
	Using names to identify array elements
	Inspecting the contents of an array with print_r()

	Making decisions
	The truth according to PHP
	Using comparisons to make decisions
	Testing more than one condition
	Using the switch statement for decision chains
	Using the conditional operator

	Using loops for repetitive tasks
	Loops using while and do . . . while
	The versatile for loop
	Looping through arrays with foreach
	Breaking out of a loop

	Using functions for preset tasks
	Understanding PHP error messages

	Now put it to work . . .

	11 USING PHP TO PROCESS A FORM
	Activating the form
	Getting information from the server with PHP superglobals
	Sending email
	Scripting the feedback form
	Using Balance Braces
	Testing the feedback form
	Troubleshooting mail()
	Getting rid of unwanted backslashes
	Making sure required fields aren’t blank
	Preserving user input when a form is incomplete
	Filtering out potential attacks
	Safely including the user’s address in email headers
	Handling multiple-choice form elements

	Redirecting to another page

	Time for a breather . . .

	12 WORKING WITH PHP INCLUDESAND TEMPLATES
	Including text and code from other files
	Introducing the PHP include commands
	Telling PHP where to find the external file
	Using site-root-relative links with includes
	Lightening your workload with includes
	Choosing the right file name extension for include files
	Displaying XHTML output
	Avoiding problems with include files
	Applying styles with Design Time Style Sheets
	Adding dynamic code to an include
	Using includes to recycle frequently used PHP code

	Adapting the mail processing script as an include
	Analyzing the script
	Building the message body with a generic script

	Avoiding the “headers already sent” error

	Using Dreamweaver templates in a PHP site
	Creating a template
	Adding editable regions to the master template
	Creating child pages from a template
	Locking code outside the <html> tags

	Choosing the right tool

	13 SETTING UP MYSQL ANDPHPMYADMIN
	Introducing MySQL
	Understanding basic MySQL terminology

	Installing MySQL
	Installing MySQL on Windows
	Deciding whether to enable InnoDB support

	Changing the default table type on Windows Essentials
	Starting and stopping MySQL manually on Windows
	Using the MySQL monitor on Windows

	Setting up MySQL on Mac OS X
	Adding MySQL to your PATH
	Securing MySQL on Mac OS X

	Using the MySQL monitor on Windows and Mac
	Using MySQL with phpMyAdmin
	Setting up phpMyAdmin on Windows and Mac
	Launching phpMyAdmin
	Logging out of phpMyAdmin

	Backup and data transfer
	Looking ahead . . .

	14 STORING RECORDSIN A DATABASE
	Setting up a database in MySQL
	Creating a local database for testing
	Creating user accounts for MySQL
	Granting the necessary user privileges

	How a database stores information
	How primary keys work
	Designing a database table
	Choosing the table name
	Deciding how many columns to create
	Choosing the right column type in MySQL
	Deciding whether a field can be empty

	Storing input from the feedback form
	Analyzing the form
	Defining a table in phpMyAdmin
	Understanding collation

	Inserting data from the feedback form
	Troubleshooting the connection
	Troubleshooting

	Using server behaviors with site-root-relative links
	Inspecting the server behavior code
	Inserting data into SET columns

	Displaying database content
	Creating a recordset
	Displaying individual records
	Displaying line breaks in text

	Merging form input with mail processing
	A great deal achieved

	15 CONTROLLING ACCESS TOYOUR SITE
	Creating a user registration system
	Defining the database table
	Building the registration form
	Preserving the integrity of your records
	Building custom server behaviors
	Completing the user registration form

	Updating and deleting user records
	Adapting the Sticky Text Field server behavior
	Building the update and delete pages

	What sessions are and how they work
	Creating PHP sessions
	Creating and destroying session variables
	Destroying a session
	Checking that sessions are enabled

	Registering and authenticating users
	Creating a login system
	Restricting access to individual pages
	Logging out users
	Understanding how Dreamweaver tracks users
	Creating your own $_SESSION variables from user details
	Redirecting to a personal page after login

	Encrypting and decrypting passwords

	Feeling more secure?

	16 WORKING WITH MULTIPLE TABLES
	Storing related information in separate tables
	Deciding on the best structure
	Using foreign keys to link records
	Avoiding orphaned records
	Defining the database tables
	Adding an index to a column
	Defining the foreign key relationship in InnoDB

	Populating the tables
	Restoring the content of the tables

	Selecting records from more than one table
	The four essential SQL commands
	SELECT
	INSERT
	UPDATE
	DELETE

	Managing content with multiple tables
	Inserting new quotations
	Using a MySQL function and alias to manipulate data

	Inserting new authors
	Using variables in a SQL query

	Updating authors
	Deleting authors
	Improving the delete form
	Performing a cascading delete with InnoDB tables

	Updating quotations
	Solving the mystery of missing records

	Deleting quotations

	What you have achieved

	17 SEARCHING RECORDS ANDHANDLING DATES
	Querying a database and displaying the results
	Enhancing the look of search results
	Displaying the number of search results
	Creating striped table rows

	Understanding how Dreamweaver builds a SQL query
	Troubleshooting SQL queries

	Setting search criteria
	Using numerical comparisons
	Searching within a numerical range
	Searching for text
	Making a search case sensitive
	Displaying a message when no results are found
	Searching multiple columns

	Searching with a partial match
	Using wildcard characters in a search
	Using wildcard characters with numbers
	Using a FULLTEXT index

	Solving common problems
	Counting records
	Eliminating duplicates from a recordset
	Reusing a recordset
	Understanding how a repeat region works

	Formatting dates and time in MySQL
	Using DATE_FORMAT() to output user-friendly dates

	Working with dates in PHP
	Setting the correct time zone
	Creating a Unix timestamp
	Formatting dates in PHP

	Storing dates in MySQL
	Validating and formatting dates for database input

	Continuing the search for perfection

	18 USING XSLT TO DISPLAY LIVE NEWSFEEDS AND XML
	A quick guide to XML and XSLT
	What an XML document looks like
	Using HTML entities in XML

	Using XSLT to display XML
	Checking your server’s support for XSLT

	Pulling in an RSS news feed
	How Dreamweaver handles server-side XSLT
	Using XSLT to access the XML source data
	Displaying the news feed in a web page

	Being a bit more adventurous with XSLT
	Setting up a local XML source
	Understanding how XSLT is structured
	Accessing nested repeating elements
	Creating conditional regions
	Testing a single condition
	Testing alternative conditions

	Sorting elements
	Formatting elements
	Displaying output selectively
	Filtering nodes with XPath
	Using XSLT parameters to filter data

	More XML to come . . .

	19 USING SPRY TO DISPLAY XML
	How Spry handles XML data
	Making sure Spry can find data
	Creating a Spry data set
	Displaying a data set in a Spry table
	Understanding the Spry data code
	Validating pages that use Spry

	The fly in Spry’s ointment
	Displaying a data set as a list
	What’s the difference between repeat and repeatchildren?

	Case study: Building a Spry image gallery
	Planning the gallery
	Dynamically selecting the gallery data set
	Controlling the structure with CSS

	Putting everything together
	Activating the event handling
	Distinguishing between data sets
	Creating a data set dynamically

	Nearly there . . .

	20 GETTING THE BEST OF BOTHWORLDS WITH PHP AND SPRY
	Generating XML dynamically
	Preparing the database table
	Using phpMyAdmin to generate XML
	Using the XML Export extension
	Updating the includes folder

	Building XML manually from a recordset
	Using a proxy script to fetch a remote feed
	Creating an XML document from a dynamic source
	Setting permission for PHP to write files
	Using PHP to write to a file

	Using Spry in pages that work without JavaScript
	How to incorporate a Spry data set in an ordinary web page
	Using XHTML with Spry

	Case study: Making the Spry gallery accessible
	Creating the gallery with PHP
	Generating the XML sources with PHP
	Enhancing the accessible gallery with Spry

	The end of a long journey . . .

	INDEX

