downloaded from: lib.ommolkefab.ir

o LINQ Pocket Reference
by Joseph Albahari; Ben Albahari

Publisher: O'Reilly

Pub Date: February 15, 2008

Print ISBN-13: 978-0-59-651924-7
Pages: 172

Table of Contents
Index

Overview

Ready to take advantage of LINQ with C# 3.0? This guide has the detail you need to grasp Microsoft's new
querying technology, and concise explanations to help you learn it quickly. And once you begin to apply LINQ,
the book serves as an on-the-job reference when you need immediate reminders. All the examples in the LINQ
Pocket Reference are preloaded into LINQPad, the highly praised utility that lets you work with LINQ
interactively. Created by the authors and free to download, LINQPad will not only help you learn LINQ, it will
have you thinking in LINQ. This reference explains:

e LINQ's key concepts, such as deferred execution, iterator chaining, and type inference in lambda
expressions

e The differences between local and interpreted queries

e C# 3.0's query syntax in detail-including multiple generators, joining, grouping, query continuations, and
more

e Query syntax versus lambda syntax, and mixed syntax queries

e Composition and projection strategies for complex queries

e All of LINQ's 40-plus query operators

e How to write efficient LINQ to SQL queries

e How to build expression trees from scratch

o All of LINQ to XML's types and their advanced use

LINQ promises to be the locus of a thriving ecosystem for many years to come. This small book gives you a
huge head start. "The authors built a tool (LINQPad) that lets you experiment with LINQ interactively in a way
that the designers of LINQ themselves don't support, and the tool has all kinds of wonderful features that LINQ,
SQL and Regular Expression programmers alike will want to use regularly long after they've read the book." -
Chris Sells, Connected Systems Program Manager, Microsoft

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

o LINQ Pocket Reference
sssmmusnm | OY JOSeph Albahari; Ben Albahari
LINQ

Publisher: O'Reilly

Pub Date: February 15, 2008

Print ISBN-13: 978-0-59-651924-7
Pages: 172

Table of Contents
Index

Copyright

Chapter 1. LINQ Pocket Reference
Section 1.1. Getting Started
Section 1.2. Lambda Queries
Section 1.3. Comprehension Queries
Section 1.4. Deferred Execution
Section 1.5. Subqueries
Section 1.6. Composition Strategies
Section 1.7. Projection Strategies
Section 1.8. Interpreted Queries
Section 1.9. LINQ to SQL
Section 1.10. Building Query Expressions
Section 1.11. Query Operator Overview
Section 1.12. Filtering
Section 1.13. Projecting
Section 1.14. Joining
Section 1.15. Ordering
Section 1.16. Grouping
Section 1.17. Set Operators
Section 1.18. Conversion Methods
Section 1.19. Element Operators
Section 1.20. Aggregation Methods
Section 1.21. Quantifiers
Section 1.22. Generation Methods
Section 1.23. LINQ to XML
Section 1.24. X-DOM Overview
Section 1.25. Instantiating an X-DOM
Section 1.26. Navigating/Querying an X-DOM
Section 1.27. Updating an X-DOM
Section 1.28. Working with Values
Section 1.29. Documents and Declarations
Section 1.30. Names and Namespaces
Section 1.31. Projecting into an X-DOM

Index

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Copyright

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

One Microsoft Way

Redmond

Washington

98052-6399

Copyright © 2002 by Microsoft Corporation

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any
means without the written permission of the publisher.

Library of Congress Cataloging-in-Publication Data pending.

Printed and bound in the United States of America.

123456789 QWE 765432

Distributed in Canada by Penguin Books Canada Limited.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further information
about international editions, contact your local Microsoft Corporation office or contact Microsoft Press
International directly at fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments
to mspinput@microsoft.com.

Microsoft, Microsoft Press, MS-DOS, Windows, and Windows NT are either registered trademarks or trademarks
of Microsoft Corporation in the United States and/or other countries. Other product and company names
mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and
events depicted herein are fictitious. No association with any real company, organization, product, domain
name, e-mail address, logo, person, place, or event is intended or should be inferred.

Acquisitions Editor: David Clark

Project Editor: Lynn Finnel

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 1. LINQ Pocket Reference

LINQ, or Language Integrated Query, allows you to write structured type-safe queries over local object
collections and remote data sources. It is a new feature of C# 3.0 and .NET Framework 3.5.

LINQ lets you query any collection implementing | Enuner abl e<>, whether an array, list, XML DOM, or remote
data source (such as a table in SQL Server). LINQ offers the benefits of both compile-time type checking and
dynamic query composition.

The core types that support LINQ are defined in the Syst em Li nq and Syst em Li nq. Expr essi ons namespaces
in the Syst em Cor e assembly.

oo

i The examples in this book mirror the examples in Chapters 8—10 of C# 3.0 in a Nutshell
w . a (O'Reilly) and are preloaded into an interactive querying tool called LINQPad. You can
Y download LINQPad from http://www.lingpad.net/.

1.1. Getting Started
The basic units of data in LINQ are sequences and elements. A sequence is any object that implements the
generic | Enuner abl e interface, and an element is each item in the sequence. In the following example, nanes is

a sequence, and Tom Di ck, and Harry are elements:

string[] names = { "Tont, "Dick", "Harry" };

We call such a sequence a local sequence because it represents a local collection of objects in memory.

A query operator is a method that transforms a sequence. A typical query operator accepts an input sequence
and emits a transformed output sequence. In the Enuner abl e class in Syst em Li nqg, there are around 40 query
operators, all implemented as static extension methods, called standard query operators.

LINQ also supports sequences that can be dynamically fed from a remote data source
) 4. such as a SQL Server. These sequences additionally implement the | Quer yabl e<>

" interface and are supported through a matching set of standard query operators in the
Quer yabl e class. For more information, see the upcoming "Interpreted Queries" section.

A query is an expression that transforms sequences with query operators. The simplest query comprises one
input sequence and one operator. For instance, we can apply the Wher e operator on a simple array to extract
those whose length is at least four characters as follows:
string[] names = { "Tonl', "Dick", "Harry" },;
| Enuner abl e<string> filteredNanes =
Syst em Li nqg. Enuner abl e. WWhere (

names, n => n.Length >= 4);

foreach (string nin filteredNanes)

downloaded from: lib.ommolkefab.ir

http://www.linqpad.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Console. Wite (n + "|"); /1 Dick|Harry]|
Because the standard query operators are implemented as extension methods, we can call Wher e directly on
nanes-as though it were an instance method:
| Enuner abl e<string> filteredNanes =
names. Where (n => n.Length >= 4);
For this to compile, you must import the Syst em Li nqg hamespace. Here's a complete example:

usi ng System
usi ng System Li nq;

cl ass Li ngDeno

{
static void Main()
{
string[] names = { "Tonm, "Dick", "Harry" };
| Enurer abl e<string> filteredNames =
names.Where (n => n.Length >= 4);
foreach (string name in filteredNanes)
Console. Wite (name + "|");
}
}

/1 RESULT: Dick|Harry|

oo

o If you are unfamiliar with C#'s lambda expressions, extension methods, or implicit
wh ., typing, visit www.albahari.com/cs3primer.
L1158

We can further shorten our query by implicitly typing fil t er edNanes:

var filteredNanes = nanes.\Were (n => n.Length >= 4);

Most query operators accept a lambda expression as an argument. The lambda expression helps guide and
shape the query. In our example, the lambda expression is as follows:

n => n.Length >= 4

The input argument corresponds to an input element. In this case, the input argument n represents each name
in the array and is of type stri ng. The Wer e operator requires that the lambda expression return a bool value,
which if t rue, indicates that the element should be included in the output sequence.

In this book, we describe such queries as lambda queries. C# also defines a special syntax for writing queries,
called query comprehension syntax. Here's the preceding query expressed in comprehension syntax:

| Enuner abl e<string> filteredNanmes =
fromn in nanes
where n. Contains ("a")
sel ect n;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Lambda syntax and comprehension syntax are complementary. In the following sections, we explore each in
more detail.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 1. LINQ Pocket Reference

LINQ, or Language Integrated Query, allows you to write structured type-safe queries over local object
collections and remote data sources. It is a new feature of C# 3.0 and .NET Framework 3.5.

LINQ lets you query any collection implementing | Enuner abl e<>, whether an array, list, XML DOM, or remote
data source (such as a table in SQL Server). LINQ offers the benefits of both compile-time type checking and
dynamic query composition.

The core types that support LINQ are defined in the Syst em Li nq and Syst em Li nq. Expr essi ons namespaces
in the Syst em Cor e assembly.

oo

i The examples in this book mirror the examples in Chapters 8—10 of C# 3.0 in a Nutshell
w . a (O'Reilly) and are preloaded into an interactive querying tool called LINQPad. You can
Y download LINQPad from http://www.lingpad.net/.

1.1. Getting Started
The basic units of data in LINQ are sequences and elements. A sequence is any object that implements the
generic | Enuner abl e interface, and an element is each item in the sequence. In the following example, nanes is

a sequence, and Tom Di ck, and Harry are elements:

string[] names = { "Tont, "Dick", "Harry" };

We call such a sequence a local sequence because it represents a local collection of objects in memory.

A query operator is a method that transforms a sequence. A typical query operator accepts an input sequence
and emits a transformed output sequence. In the Enuner abl e class in Syst em Li nqg, there are around 40 query
operators, all implemented as static extension methods, called standard query operators.

LINQ also supports sequences that can be dynamically fed from a remote data source
) 4. such as a SQL Server. These sequences additionally implement the | Quer yabl e<>

" interface and are supported through a matching set of standard query operators in the
Quer yabl e class. For more information, see the upcoming "Interpreted Queries" section.

A query is an expression that transforms sequences with query operators. The simplest query comprises one
input sequence and one operator. For instance, we can apply the Wher e operator on a simple array to extract
those whose length is at least four characters as follows:
string[] names = { "Tonl', "Dick", "Harry" },;
| Enuner abl e<string> filteredNanes =
Syst em Li nqg. Enuner abl e. WWhere (

names, n => n.Length >= 4);

foreach (string nin filteredNanes)

downloaded from: lib.ommolkefab.ir

http://www.linqpad.net/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Console. Wite (n + "|"); /1 Dick|Harry]|
Because the standard query operators are implemented as extension methods, we can call Wher e directly on
nanes-as though it were an instance method:
| Enuner abl e<string> filteredNanes =
names. Where (n => n.Length >= 4);
For this to compile, you must import the Syst em Li nqg hamespace. Here's a complete example:

usi ng System
usi ng System Li nq;

cl ass Li ngDeno

{
static void Main()
{
string[] names = { "Tonm, "Dick", "Harry" };
| Enurer abl e<string> filteredNames =
names.Where (n => n.Length >= 4);
foreach (string name in filteredNanes)
Console. Wite (name + "|");
}
}

/1 RESULT: Dick|Harry|

oo

o If you are unfamiliar with C#'s lambda expressions, extension methods, or implicit
wh ., typing, visit www.albahari.com/cs3primer.
L1158

We can further shorten our query by implicitly typing fil t er edNanes:

var filteredNanes = nanes.\Were (n => n.Length >= 4);

Most query operators accept a lambda expression as an argument. The lambda expression helps guide and
shape the query. In our example, the lambda expression is as follows:

n => n.Length >= 4

The input argument corresponds to an input element. In this case, the input argument n represents each name
in the array and is of type stri ng. The Wer e operator requires that the lambda expression return a bool value,
which if t rue, indicates that the element should be included in the output sequence.

In this book, we describe such queries as lambda queries. C# also defines a special syntax for writing queries,
called query comprehension syntax. Here's the preceding query expressed in comprehension syntax:

| Enuner abl e<string> filteredNanmes =
fromn in nanes
where n. Contains ("a")
sel ect n;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Lambda syntax and comprehension syntax are complementary. In the following sections, we explore each in
more detail.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.2. Lambda Queries

Lambda queries are the most flexible and fundamental. In this section, we describe how to chain operators to
form more complex queries and introduce several new query operators.

1.2.1. Chaining Query Operators

To build more complex queries, you add additional query operators, creating a chain. For example, the following
query extracts all strings containing the letter a, sorts them by length, and then converts the results to

uppercase:
string[] names = { "Tonl', "D ck", "Harry", "Mary", "Jay" };

| Enurrer abl e<string> query = nanes
. Were (n =>n.Contains ("a"))
.OrderBy (n => n. Length)
.Select (n => n.ToUpper());

foreach (string name in query)
Console. Wite (name + "|");

/1 RESULT: JAY| MARY| HARRY|

Were, O derBy, and Sel ect are all standard query operators that resolve to extension methods in the
Enuner abl e class.

We already introduced the Wher e operator, which emits a filtered version of the input sequence. The O der By
operator emits a sorted version of its input sequence; the Sel ect method emits a sequence where each input
element is transformed or projected with a given lambda expression (n. ToUpper (), in this case). Data flows
from left to right through the chain of operators, so the data is first filtered, then sorted, then projected.

L=

. A query operator never alters the input sequence; instead, it returns a new sequence.
u & This is consistent with the functional programming paradigm, from which LINQ was
inspired.

Here are the signatures of each of these extension methods (with the Or der By signature simplified slightly):

static | Enunerabl e<TSour ce> Wher e<TSour ce> (
thi s | Enuner abl e<TSour ce> sour ce,
Func<TSour ce, bool > predi cat e)

static | Enuner abl e<TSour ce> Or der By<TSour ce, TKey> (
thi s | Enuner abl e<TSour ce> sour ce,
Func<TSour ce, TKey> keySel ect or)

static | Enunmer abl e<TResul t > Sel ect <TSour ce, TResul t > (

thi s | Enumer abl e<TSour ce> source,
Func<TSour ce, TResul t > sel ector)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When query operators are chained as in this example, the output sequence of one operator is the input
sequence of the next. The end result resembles a production line of conveyor belts, as illustrated in Figure 1-1.

We can construct the identical query progressively as follows:
var filtered = names. Were (n => n.Contains ("a"));

var sorted = filtered. OrderBy (n => n.Length);
var final Query = sorted. Sel ect (n => n. ToUpper());

Figure 1-1. Chaining query operators

n =3 n =3 n =»
n.Contains ("a") n.Length n.tolpper()

b A A

v Y v

v i
O fer OO Sor (D Projector

Where() .OrderBy Select

Kef
ey
ey
P
(wiay)

ASHVH
AW
]

fi nal Query is compositionally identical to the query we had constructed previously. Further, each intermediate
step also comprises a valid query that we can execute:

foreach (string nane in filtered)
Console. Wite (name + "|"); /1 Harry| Mary| Jay|

Consol e. WiteLine();
foreach (string nane in sorted)
Console. Wite (name + "|"); /1 Jay| Mary| Harry|

Consol e. WiteLine();
foreach (string name in final Query)
Console.Wite (name + "|"); /1 JAY| MARY| HARRY]|

1.2.2. Composing Lambda Expressions

In previous examples, we fed the following lambda expression to the Wher e operator:

n =>n.Contains ("a") // Input Type = string
/] Return Type = bool

. An expression returning a bool value is called a predicate.

-
e

The purpose of the lambda expression depends on the particular query operator. With the Wher e operator, it

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

indicates whether an element should be included in the output sequence. In the case of the Or der By operator,
the lambda expression maps each element in the input sequence to its sorting key. With the Sel ect operator,
the lambda expression determines how each element in the input sequence is transformed before being fed to
the output sequence.

o

. A lambda expression in a query operator always works on individual elements in the
wh . - input sequence-not the sequence as a whole.
L1

The lambda expression you supply acts as a callback. The query operator evaluates your lambda expression
upon demand-typically once per element in the input sequence. Lambda expressions allow you to feed your
own logic into the query operators. This makes the query operators versatile-as well as simple under the hood.
Here's the complete implementation of Enuner abl e. Wher e, exception handling aside:

public static | Enunmerabl e<TSour ce> Wher e<TSour ce> (
thi s | Enuner abl e<TSour ce> sour ce,

Func<TSour ce, bool > predi cat e)

{

foreach (TSource el enent in source)
if (predicate (elenent))
yield return el enent;

1.2.2.1. Lambda expressions and Func signatures

The standard query operators utilize generic Func delegates. Func is a family of general-purpose generic
delegates in Syst em Li nqg, defined with the following intent:

The type arguments in Func appear in the same order they do in lambda expressions.

Hence, Func<TSour ce, bool > matches a TSour ce=>bool lambda expression-one that accepts a TSour ce
argument and returns a bool value.

Similarly, Func<TSour ce, TResul t > matches a TSour ce=>TResul t lambda expression.
Here are all the Func delegate definitions (notice that the return type is always the last generic argument):

del egate TResult Func <T> ();

del egate TResult Func <T, TResult>
(T argl);

del egate TResult Func <T1, T2, TResult>
(T1 argl, T2 arg2);

del egate TResult Func <T1, T2, T3, TResult>
(T1 argl, T2 arg2, T3 arg3);

del egate TResult Func <T1, T2, T3, T4, TResult>
(T1 argl, T2 arg2, T3 arg3, T4 arg4);

1.2.2.2. Lambda expressions and element typing

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The standard query operators use the following generic type names.

Generic type letter Meaning

TSour ce Element type for the input sequence

TResul t Element type for the output sequence-if different from TSour ce
TKey Element type for the key used in sorting, grouping, or joining

TSour ce is determined by the input sequence. TResul t and TKey are inferred from your lambda expression. For
example, consider the signature of the Sel ect query operator:

static | Enunerabl e<TResul t > Sel ect <TSour ce, TResul t > (
thi s | Enunmer abl e<TSour ce> source,
Func<TSour ce, TResul t > sel ector)

Func<TSour ce, TResul t > matches a TSour ce=>TResul t lambda expression-one that maps an input element to
an output element. TSour ce and TResul t are different types, so the lambda expression can change the type of
each element. Further, the lambda expression determines the output sequence type. The following query uses
Sel ect to transform string type elements to integer type elements:

string[] names = { "Tont,"Dick", "Harry", "Mary","Jay" };
| Enurrer abl e<i nt > query = nanes. Sel ect (n => n. Length);
foreach (int length in query)

Console.Wite (length); /1 34543

The compiler infers the type of TResul t from the return value of the lambda expression. In this case, TResul t is
inferred to be of type i nt .

1.2.3. Natural Ordering

The original ordering of elements within an input sequence is significant in LINQ. Some query operators, such as
Take, Skip, and Rever se, rely on this behavior. The Take operator outputs the first x elements, discarding the
rest; the Ski p operator ignores the first x elements, and outputs the rest; the Rever se operator reverses the
order of elements in the sequence.

Operators such as Wher e and Sel ect preserve the original ordering of the input sequence. LINQ preserves the
ordering of elements in the input sequence wherever possible.

1.2.4. Other Operators

Not all query operators return a sequence. The element operators extract one element from the input sequence;
examples are First, Last, Single, and El ement At :

int[] nunbers { 10, 9, 8, 7, 6 };

int firstNumber = numbers.First(); /1 10
int | astNunber = nunbers. Last(); /1 6
int secondNunber = nunbers. El ement At (1); /19

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The aggregation operators return a scalar value, usually of numeric type:

int count = nunbers. Count(); /1l 5;
int mn = nunbers.Mn(); /1 6;

The quantifiers return a bool value:

bool hasTheNunber Ni ne = nunbers. Contains (9); Il true
bool hasMoreThanZer oEl ements = nunbers. Any(); Il true
bool hasAnCQddEl enent = nunbers. Any

(n=>n%2 == 1); /'l true

Because these operators don't return a collection, you can't call further operators on their results. In other
words, they must appear as the last operator in a query (or subquery).

Some query operators accept two input sequences. Examples are Concat , which appends one sequence to

another, and Uni on, which does the same but with duplicates removed. The joining operators also fall into this
category.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.3. Comprehension Queries

C# provides a syntactic shortcut for writing LINQ queries, called query comprehension syntax, or simply query
syntax.

In the preceding section, we wrote a query to extract strings containing the letter a, sorted by length, and
converted to uppercase. Here's the same query in comprehension syntax:

string[] names = { "Tonl',"Di ck","Harry", "Mary", "Jay" };

| Enuner abl e<string> query =

from n in names

wher e n.Contains ("a") // Filter elenents
orderby n.Length /] Sort elenents

sel ect n. ToUpper(); /'l Project each el ement

foreach (string nane in query)
Console. Wite (name + "/");

/1 RESULT: JAY/ MARY/ HARRY/

A comprehension query always starts with a f r omclause and ends with either a sel ect or gr oup clause. The
f romclause declares an iteration variable (in this case, n), which you can think of as traversing the input
collection-rather like foreach. Figure 1-2 illustrates the complete syntax.

Figure 1-2. Query comprehension syntax

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

identifier) in (enumerable-expr

ascending
orderby expr L t]

& Lde&cending—f
(r : query

! continuation
2 orderby- S
2 clause S
g =
[T o
v

where E

join-

¥
(M:HR gr-:nuptn,r

Y
i inner ™\,) inner
into

The compiler processes comprehension queries by translating them to lambda syntax. It does this in a fairly
mechanical fashion-much like it translates f or each statements into calls to Get Enuner at or and MoveNext . This
means that anything you can write in comprehension syntax you can also write in lambda syntax. The compiler
translates our example query into the following:

identifier

| Enuner abl e<stri ng> query = nanes
.Were (n =>n.Contains ("a"))
.OrderBy (n => n. Length)
.Select (n => n.ToUpper());

The Wher e, Or der By, and Sel ect operators then resolve using the same rules that would apply if the query were
written in lambda syntax. In this case, they bind to extension methods in the Enuner abl e class because the
Syst em Li nq namespace is imported and nanes implements | Enuner abl e<stri ng>. The compiler doesn't
specifically favor the Enuner abl e class, however, when translating comprehension queries. You can think of the
compiler as mechanically injecting the words "Where," "OrderBy," and "Select" into the statement, and then

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

compiling it as though you'd typed the method names yourself. This offers flexibility in how they resolve. The
operators in the LINQ to SQL queries that we'll write in later sections, for instance, will bind instead to extension
methods in Queryabl e.

"'@ Without the usi ng Syst em Li nq directive, this query will not compile because the
Where, O derBy, and Sel ect methods will have nowhere to bind. Comprehension
queries cannot compile unless you import a namespace (or write an instance method for
every query operator!).

1.3.1. lteration Variables

The identifier immediately following the f r omkeyword syntax is called the iteration variable. In our examples,
the iteration variable n appears in every clause in the query. And yet, the variable actually enumerates over a
different sequence with each clause:

from n in names /1 nis our iteration variable
where n.Contains ("a") // n =directly fromthe array
orderby n.Length /l n = after being filtered
sel ect n.ToUpper() /1 n = after being sorted

This becomes clear when we examine the compiler's mechanical translation to lambda syntax:
names. WWhere (n => n.Contains ("a"))

.OrderBy (n => n. Length)
.Select (n => n.ToUpper())

Each instance of n is privately scoped to each lambda expression.

1.3.2. Query Syntax Versus SQL Syntax

LINQ comprehension syntax looks superficially like SQL syntax, yet the two are very different. A LINQ query

boils down to a C# expression, and so it follows standard C# rules. For example, with LINQ you cannot use a
variable before you declare it. In SQL, you reference a table alias in the SELECT clause before defining it in a
FROM clause.

A subquery in LINQ is just another C# expression and so requires no special syntax. Subqueries in SQL are
subject to special rules.

With LINQ, data logically flows from left to right through the query. With SQL, the order is more random.

A LINQ query comprises a conveyor belt, or pipeline, of operators that accept and emit ordered sequences. An
SQL query comprises a network of clauses that work mostly with unordered sets.

1.3.3. Query Syntax Versus Lambda Syntax
Comprehension and lambda syntax each have advantages.

Comprehension syntax is much simpler for queries that involve any of the following:

e Al et clause for introducing a new variable alongside the iteration variable

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e Sel ect Many, Join, or G oupJoi n followed by an outer iteration variable reference

(We describe the | et clause in the upcoming "Composition Strategies" section and Sel ect Many, Joi n, and
GroupJoi n in the upcoming "Projecting” and "Joining" sections.)

The middle ground is queries that involve the simple use of Wher e, Or der By, and Sel ect . Either syntax works
well; the choice here is largely personal.

For queries that comprise a single operator, lambda syntax is shorter and less cluttered.

Finally, there are many operators that have no query comprehension keyword. These require that you use
lambda syntax-at least in part, meaning any operator outside of the following:

Where, Sel ect, Sel ect Many
Order By, ThenBy, OrderByDescendi ng, ThenByDescendi ng
Group, Join, GoupJoin

1.3.4. Mixed Syntax Queries

If a query operator has no comprehension support, you can mix comprehension and lambda syntax. The only
restriction is that each comprehension component must be complete (i.e., start with a f romclause and end with
a sel ect or group clause).

For example:

int count = (fromnane in nanes
where n. Contains ("a")
sel ect nane
). Count ()

There are times when mixed syntax queries offer the highest "bang for the buck” by far in terms of function and
simplicity. It's important not to unilaterally favor either comprehension or lambda syntax; otherwise, you'll be
unable to write mixed syntax queries without feeling a sense of failure!

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.4. Deferred Execution

An important feature of most query operators is that they execute not when constructed, but when enumerated
(in other words, when MoveNext is called on its enumerator). Consider the following query:

var nunbers = new List<int>();
nunbers. Add (1);

/1 Build query

| Enuner abl e<i nt > query = nunbers. Select (n =>n * 10);
nunbers. Add (2); /1 Sneak in an extra el enent
foreach (int n in query)

Console.Wite (n + "|"); /1 10] 20|

The extra number that we sneaked into the list after constructing the query is included in the result because it's
not until the f or each statement runs that any filtering or sorting takes place. This is called deferred or lazy
evaluation. All standard query operators provide deferred execution, with the following exceptions:

e Operators that return a single element or scalar value, such as Fi r st or Count

e The following conversion operators:
ToArray, TolList, ToDictionary, ToLookup
These operators cause immediate query execution because their result types have no mechanism for providing
deferred execution. The Count method, for instance, returns a simple integer, which doesn't then get
enumerated. The following query is executed immediately:
int matches = nunbers.Wiere (n =>n <2).Count(); // 1

Deferred execution is important because it decouples query construction from query execution. This allows you
to construct a query in several steps, and it makes LINQ to SQL queries possible.

. Subqueries provide another level of indirection. Everything in a subquery is subject to
[;) deferred execution- including aggregation and conversion methods (see the upcoming
¥ “Subqueries" section.)

1.4.1. Reevaluation

Deferred execution has another consequence: a deferred execution query is reevaluated when you
reenumerate:

var numbers = new List<int>() { 1, 2 };

| Enuner abl e<i nt > query = nunbers. Select (n =>n * 10);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

foreach (int n in query)
Console.Wite (n + "|"); /1 10| 20|

nunbers. Clear();
foreach (int n in query)
Console.Wite (n + "|"); /'l <not hi ng>

There are a couple of reasons why reevaluation is sometimes disadvantageous:
e Sometimes you want to "freeze" or cache the results at a certain point in time.

e Some queries are computationally intensive (or rely on querying a remote database), so you don't want to
unnecessarily repeat them.

You can defeat reevaluation by calling a conversion operator, such as ToArray or ToLi st. ToArray copies the
output of a query to an array; TolLi st copies to a generic Li st <>:

var numbers = new List<int>() { 1, 2 };

List<int> tinesTen = nunbers
.Select (n =>n * 10)
.ToList(); // Executes imediately into a List<int>

nunbers. C ear();
Consol e. WiteLine (tinmesTen.Count); // Still 2

1.4.2. Outer Variables

If your query's lambda expressions reference local variables, these variables are captured and thus are subject
to outer variable semantics. This means that what matters is the variable's value at the time the query is

executed-not at the time the variable is captured:
int[] nunbers = { 1, 2 };

int factor = 10; // W capture this variable bel ow
var query = nunbers. Select (n =>n * factor);

factor = 20; /1 Change captured variable's val ue

foreach (int n in query)
Console. Wite (n + "|"); /1 20| 40|

This can be a trap when building up a query within a f or each loop. The following code, for instance, requires
the use of a temporary variable to successfully strip all vowels from a string:

| Enuner abl e<char> query = "Not what you m ght expect";
foreach (char vowel in "aeiou")

{
char tenp = vowel ;
query = query.Wiere (c =>c != tenp);

}

Without the temporary variable, the query will use the most recent value of vowel ("u™) on each successive

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

filter, so only the "u" characters will be removed.

1.4.3. How Deferred Execution Works
Query operators provide deferred execution by returning decorator sequences.

Unlike a traditional collection class, such as an array or linked list, a decorator sequence has no backing
structure of its own to store elements. Instead, it wraps another sequence that you supply at runtime, to which
it maintains a permanent dependency. Whenever you request data from a decorator, it in turn must request
data from the wrapped input sequence.

o

;.‘ The query operator's transformation constitutes the "decoration." If the output sequence
[;) performed no transformation, it would be a proxy rather than a decorator.
L1758

Calling Wher e merely constructs the decorator wrapper sequence, holding a reference to the input sequence, the
lambda expression, and any other arguments supplied. The input sequence is enumerated only when the
decorator is enumerated.

Figure 1-3 illustrates the composition of the following query:

| Enuner abl e<i nt > | essThanTen =
newint[] { 5 12, 3 }.Were (n =>n < 10);

Figure 1-3. Decorator sequence

-
Where
hay Decorator
5
lessThanTen
12
3
predigate

When you enumerate | essThanTen, you're, in effect, querying the array through the Wer e decorator.

The good news-if you ever want to write your own query operator-is that implementing a decorator sequence
is easy with a C# iterator. Here's how you can write your own Sel ect method:

static | Enunerabl e<TResul t > Sel ect <TSour ce, TResul t > (
t hi s | Enuner abl e<TSour ce> sour ce,
Func<TSour ce, TResul t > sel ect or)
{
foreach (TSource el enent in source)
yield return selector (elenent);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This method is an iterator by virtue of the yi el d r et ur n statement. Functionally, it's a shortcut for the
following:

static | Enunerabl e<TResul t > Sel ect <TSour ce, TResul t > (
thi s | Enumer abl e<TSour ce> source,
Func<TSour ce, TResul t > sel ector)

{

return new SelLect Sequence (source, selector);

}

where SelLect Sequence is a (compiler-written) class whose enumerator encapsulates the logic in the iterator
method.

Hence, when you call an operator such as Sel ect or Wer e, you're doing nothing more than instantiating an
enumerable class that decorates the input sequence.

1.4.4. Chaining Decorators

Chaining query operators creates a layering of decorators. Consider the following query:

| Enuner abl e<int> query = newint[] { 5 12, 3}
. Were (n =>n < 10)
.OrderBy (n => n)
.Select (n =>n * 10);

Each query operator instantiates a new decorator that wraps the previous sequence-rather like a Russian doll.
The object model of this query is illustrated in Figure 1-4. Note that this object model is fully constructed prior
to any enumeration.

Figure 1-4. Layered decorator sequences

ests for data
- requ r
-
' Ty
i ™
f A N Where OrderBy Select
fray Decorator Decorator Decorator
5 Lambda
17 expressions
3 == compiled to
red keySele | delegates
predicate eySelector selector
A A
. A

data

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When you enumerate query, you're querying the original array, transformed through a layering or chain of
decorators.

L=

. Adding TolLi st onto the end of this query would cause the preceding operators to
wh fi‘- execute right away, collapsing the whole object model into a single list.

A feature of deferred execution is that you build the identical object model if you compose the query
progressively:

| Enunrer abl e<i nt >

source =newint[] { 5 12, 3},
filtered = source . Where (n => n < 10),
sorted =filtered .OrderBy (n => n),

query sorted .Select (n =>n * 10);

1.4.5. How Queries Are Executed
Here are the results of enumerating the preceding query:

foreach (int n in query)
Console. Wite (n + "/"); /1 30/50/

Behind the scenes, the f or each calls Get Enuner at or on Sel ect 's decorator (the last or outermost operator),
which kicks everything off. The result is a chain of enumerators that structurally mirrors the chain of decorator
sequences. Figure 1-5 illustrates the flow of execution as enumeration proceeds.

Figure 1-5. Execution of a local query

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

nexl
next ——
next —
next ——
55—
§ —a
next —
next —— E E .
P =
next —— = '! E
E }— g i ;
j—»
J— L J
30—
next —
next
5 i
) ——
datg —— — requests for data

Recall that a query is like a production line of conveyor belts. Extending this analogy, we can say a LINQ query
is a lazy production line, where the conveyor belts and lambda workers roll elements only upon demand.
Constructing a query creates a production line-with everything in place-but with nothing rolling. Then when
the consumer requests an element (enumerates over the query), the rightmost conveyor belt activates; this in
turn triggers the others to roll-as and when input sequence elements are needed. LINQ follows a demand-
driven pull model, rather than a supply-driven push model. This is important-as we'll see later-in allowing
LINQ to scale to querying SQL databases.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.5. Subqueries

A subquery is a query contained within another query's lambda expression. The following example uses a
subquery to sort musicians by their last name:

string[] nusos =
{ "David Gl nmour", "Roger Waters", "Rick Wight" };

| Enuner abl e<string> query =
musos. OrderBy (m=> m Split().Last());

m Spl i t converts each string into a collection of words, upon which we then call the Last query operator. Last
is the subquery; query references the outer query.

Subqueries are permitted because you can put any valid C# expression on the right side of a lambda. A
subquery is simply another C# expression, meaning that the rules for subqueries are a consequence of the rules
for lambda expressions (and the behavior of query operators in general).

A subquery is privately scoped to the enclosing expression and is able to reference the outer lambda argument
(or iteration variable in comprehension syntax).

Last is a very simple subquery. The next query retrieves all strings in an array whose length matches that of
the shortest string:

string[] names = { "Tont, "D ck","Harry", "Mary", "Jay" };

| Enuner abl e<stri ng> out er Query = nanes
.Were (n => n.Length ==
nanmes. Order By (n2 => n2. Length)
.Select (n2 => n2.Length).First()

)

// RESULT: Tom Jay

Here's the same thing in comprehension syntax:

| Enuner abl e<string> conprehensi on =
from n in nanes
wher e n.Length ==
(fromn2 in nanes
orderby n2.Length
sel ect n2.Length).First()
sel ect n;

Because the outer iteration variable (n) is in scope for a subquery, we cannot reuse n as the subquery's iteration
variable.

A subquery is executed whenever the enclosing lambda expression is evaluated. This means a subquery is
executed upon demand, at the discretion of the outer query. You could say that execution proceeds from the
outside in. Local queries follow this model literally; interpreted queries (e.g., LINQ to SQL queries) follow this
model conceptually.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The subquery executes as and when required to feed the outer query. In our example, the subquery (the top
conveyor belt in Figure 1-6) executes once for every outer loop iteration.

Figure 1-6. Subquery composition

n2 =» ng =»
n2.Length n2.Length

A

4 7

Eg’ﬁ 7“ First()
O soer (D Prjecor
.OrderBy Select

3

dey
ey
ey

Quter
=3 Query
n.Length==] n=»n

H H

]]

' '

Y Y
— = N
¥EEES <3

The preceding subquery can be expressed more succinctly as follows:

| Enuner abl e<string> query =
from n in nanes
where n.Length ==
nanmes. OrderBy (n2 => n2.Length).First().Length
sel ect n;

With the M n aggregation function, it can be simplified further:

| Enuner abl e<string> query =
from n in nanes
where n.Length == names. M n (n2 => n2. Lengt h)
sel ect n;

In the upcoming "Interpreted Queries" section, we describe how remote sources such as SQL tables can be
queried. Our example makes an ideal LINQ to SQL query because it would be processed as a unit, requiring only
one round trip to the database server. This query, however, is inefficient for a local collection because the
subquery is recalculated on each outer loop iteration. We can avoid this inefficiency by running the subquery
separately (so that it's no longer a subquery):

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

int shortest = nanes.Mn (n => n. Length);

| Enuner abl e<string> query = from n in nanes
where n.Length == shortest
sel ect n;

L=
.n Factoring out subqueries in this manner is nearly always desirable when querying local
w4 R collections. An exception is when the subquery is correlated, meaning that it references
L1158

the outer iteration variable. We explore correlated subqueries later in the "Projecting”
section.

1.5.1. Subqueries and Deferred Execution

An element or aggregation operator such as Fi rst or Count in a subquery doesn't force the outer query into
immediate execution-deferred execution still holds for the outer query. This is because subqueries are called
indirectly-through a delegate in the case of a local query, or through an expression tree in the case of an
interpreted query.

An interesting case arises when you include a subquery within a Sel ect expression. In the case of a local query,

you're actually projecting a sequence of queries -each itself subject to deferred execution. The effect is
generally transparent, and it serves to further improve efficiency.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.6. Composition Strategies

In this section, we describe three strategies for building more complex queries:
e Progressive query construction
e Using the i nt o keyword
e Wrapping queries

All are chaining strategies and produce identical runtime queries.

1.6.1. Progressive Query Building

At the start of the chapter, we demonstrated how you could build a lambda query progressively:

var filtered = names. Where (n => n.Contains ("a"));
var sorted = filtered. OrderBy (n => n);
var query = sorted. Select (n => n. ToUpper());

Because each of the participating query operators returns a decorator sequence, the resultant query is the same
chain or layering of decorators that you would get from a single-expression query. There are a couple of
potential benefits, however, to building queries progressively:

e |t can make queries easier to write.
e You can add query operators conditionally.

A progressive approach is often useful in comprehension queries. To illustrate, imagine we wanted to use Regex
to remove all vowels from a list of names, and then present in alphabetical order those whose length is still
more than two characters. In lambda syntax, we could write this query as a single expression-by projecting
before we filter:

| Enuner abl e<stri ng> query = nanes
.Select (n => Regex.Replace (n, "[aeiou]l", ""))
. Were (n => n.Length > 2)
.OrderBy (n => n);
RESULT: { "Dck", "Hrry", "My" }
Translating this directly to comprehension syntax is trouble-some because comprehension clauses must appear
in wher e- or der by- sel ect order to be recognized by the compiler. And if we rearranged the query to project

last, the result would be different:

| Enuner abl e<string> query =

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

from n in names

where n.lLength > 2

orderby n

sel ect Regex.Replace (n, "[aeiou]", "");

RESULT: { "Dck", "Hrry", "Jy", "My","Tni }

Fortunately, there are a number of ways to get the original result in comprehension syntax. The first is by
querying progressively:

| Enuner abl e<string> query =
fromn in nanes
sel ect Regex. Replace (n, "[aeiou]", "");

query = fromn in query
where n. Length > 2
orderby n
sel ect n;

RESULT: { "Dck", "Hrry", "My" }

1.6.2. The into Keyword

The i nt o keyword lets you "continue" a query after a projection, and is a shortcut for progressively querying.
With i nt 0, we can rewrite the preceding query as:

| Enuner abl e<string> query =
from n in nanes
sel ect Regex. Replace (n, "[aeiou]", "")
into noVowel
wher e noVowel . Length > 2
order by noVowel
sel ect noVowel ;

o The i nt o keyword is interpreted in two very different ways in comprehension syntax,
wh . = depending on context. The meaning we're describing now is for signaling query
continuation (the other is for signaling a G oupJoi n).

The only place you can use i nt o is after a sel ect or group clause. i nt o "restarts" a query, allowing you to
introduce fresh wher e, or der by, and sel ect clauses.

A

".'_ Although it's easiest to think of i nt o as restarting a query from the perspective of

w) #. comprehension syntax, it's all one query when translated to its final lambda form.
" Hence, there's no intrinsic performance hit with i nt 0. Nor do you lose any points for its
use!

The equivalent of i nt o0 in lambda syntax is simply a longer chain of operators.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.6.2.1. Scoping rules
All query variables are out of scope following an i nt o keyword. The following will not compile:

var query =
fromnl in names
sel ect nl. ToUpper ()
into n2
where nl. Contains ("x") // Illegal: nl out of scope.
sel ect n2;

To see why, consider how this maps to lambda syntax:

var query = nanes
.Sel ect (nl1 => nl. ToUpper())
.Where (n2 => nl.Contains ("x"));

The original name (nl) is lost by the time the Wer e filter runs. Wher e's input sequence contains only uppercase
names, so it cannot filter based on n1l.

1.6.3. Wrapping Queries

A query built progressively can be formulated into a single statement by wrapping one query around another. In
general terms:

var tenpQuery = tenpQueryExpr
var final Query = from... in tenpQuery ...

can be reformulated as:

var final Query = from... in (tenpQueryExpr)

Wrapping is semantically identical to progressive query building or using the i nt o keyword (without the
intermediate variable). The end result in all cases is a linear chain of query operators. For example, consider the
following query:

| Enuner abl e<string> query =
fromn in nanes
sel ect Regex. Replace (n, "[aeiou]", "");

query = fromn in query
where n.Length < 2
orderby n
sel ect n;

Reformulated in wrapped form, it's this:

| Enuner abl e<string> query =
fromnl in
(
fromn2 in nanes
sel ect Regex. Repl ace (n2, "[aeiou]", "")

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

)
where nl.Length > 2 orderby nl select nil,;

When converted to lambda syntax, the result is the same linear chain of operators as in previous examples:

| Enuner abl e<stri ng> query = names
.Select (n => Regex. Replace (n,"[aeiou]", ""))
.Where (n => n.Length > 2)
.OrderBy (n => n);

(The compiler does not emit the final . Sel ect (n => n) because it's redundant.)

Wrapped queries can be confusing because they resemble the subqueries we wrote earlier: both have the
concept of an inner and outer query. When converted to lambda syntax, however, you can see that wrapping is
simply a strategy for sequentially chaining operators. The end result bears no resemblance to a subquery, which
embeds an inner query within the lambda expression of another.

Returning to a previous analogy, when wrapping, the "inner" query amounts to the preceding conveyor belts. In
contrast, a subquery rides above a conveyor belt and is activated upon demand through the conveyor belt's
lambda worker (as illustrated earlier in Figure 1-6).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.7. Projection Strategies
1.7.1. Object Initializers

So far, all our sel ect clauses have projected scalar element types. With C# object initializers, you can project
into more complex types. For example, suppose, as a first step in a query, we want to strip vowels from a list of
names while still retaining the original versions alongside for the benefit of subsequent queries. We can write
the following class to assist:

class Tenp Projectionltem

{
public string Original; /1 Oiginal nane
public string Vowell ess; /'l Vowel -stripped nane

}

and then project into it with object initializers:
string[] nanmes = { "Tont,"Dick","Harry","Mary","Jay" };

| Enuner abl e<TenpProj ectionlten> tenp =
fromn in nanes
sel ect new TenpProjectionltem
{
Ori gi nal n,
Vowel | ess = Regex. Repl ace (n, "[aeiou]", "")

}

The result is of type | Enuner abl e<TenpPr oj ecti onl t em >, which we can subsequently query:

| Enurrer abl e<string> query =
from itemin tenp
where item Vowelless.Length > 2
select itemOiginal;

/1 RESULT: Dick, Harry, Mary

1.7.2. Anonymous Types

Anonymous types allow you to structure your intermediate results without writing special classes. We can
eliminate the TenpPr oj ecti onl t emclass in our previous example with anonymous types:

var internediate = fromn in nanes
sel ect new

{
Oiginal = n,
Vowel | ess = Regex. Repl ace (n,"[aeiou]", "")

}s

| Enuner abl e<string> query =
fromitemin internediate
where item Vowel | ess. Length > 2
select itemOiginal;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This gives the same result as the previous example, but without needing to write a one-off class. The compiler
does the job instead, writing a temporary class with fields that match the structure of our projection. This
means, however, that the i nt er nedi at e query has the following type:

| Enuner abl e <random conpi | er - pr oduced- nane>
The only way we can declare a variable of this type is with the var keyword. In this case, var is more than just
a clutter reduction device; it's a necessity.

We can write the whole query more succinctly with the i nt o keyword:

var query = fromn in nanes
sel ect new

{

Oiginal = n,

Vowel | ess = Regex. Repl ace (n,"[aeiou]", "")
}
into tenp

where tenp. Vowel | ess. Length > 2
sel ect tenp. Original;

Query comprehension syntax provides a shortcut for writing this kind of query: the | et keyword.

1.7.3. The let Keyword
The | et keyword introduces a new variable alongside the iteration variable.

With | et , we can write a query extracting string whose length excluding vowels exceeds two characters as
follows:

string[] nanmes = {"Tont,"Dick","Harry","Mary","Jay" },
| Enuner abl e<string> query =
fromn in nanes
| et vowel | ess = Regex. Repl ace (n,"[aeiou]", "")
where vowel | ess. Length > 2

order by vowel | ess
sel ect n; /1 Thanks to let, nis still in scope.

The compiler resolves a | et clause by projecting into a temporary anonymous type that contains both the
iteration variable and the new expression variable. In other words, the compiler translates this query into the
preceding example.
| et accomplishes two things:

e |t projects new elements alongside existing elements.

e |t allows an expression to be used repeatedly in a query without being rewritten.

The | et approach is particularly advantageous in this example because it allows the sel ect clause to project
either the original name (n) or its vowel-removed version (v).

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

You can have any number of | et statements before or after a wher e statement (see Figure 1-2, earlier). Al et
statement can reference variables introduced in earlier | et statements (subject to the boundaries imposed by
an i nt o clause). | et reprojects all existing variables transparently.

Al et expression need not evaluate a scalar type: sometimes it's useful to have it evaluate to a subsequence,
for instance.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.8. Interpreted Queries

LINQ provides two parallel architectures: local queries for local object collections, and interpreted queries for
remote data sources. So far, we've examined the architecture of local queries, which operate over collections
implementing | Enuner abl e<>. Local queries resolve to query operators in the Enuner abl e class, which in turn
resolve to chains of decorator sequences. The delegates that they accept-whether expressed in comprehension
syntax, lambda syntax, or traditional delegates-are fully local to Intermediate Language (IL) code just as any

other C# method.

By contrast, inte
and they resolve

rpreted queries are descriptive. They operate over sequences that implement | Quer yabl e<>,

to the query operators in the Quer yabl e class, which emit expression trees that are

interpreted at runtime.

wh o
a

The query operators in Enuner abl e can actually work with | Quer yabl e<> sequences.
The difficulty is that the resultant queries always execute locally on the client-this is
why a second set of query operators is provided in the Quer yabl e class.

There are two | Quer yabl e implementations in the .NET Framework:

e LINQ to SQL

e LINQ to Entities

In addition, the AsQuer yabl e extension method generates an | Quer yabl e wrapper around an ordinary
enumerable collection. We describe AsQuer yabl e in the upcoming "Building Query Expressions" section.

In this section, we'll use LINQ to SQL to illustrate interpreted query architecture.

oo

o
-
Tl "

| Quer yabl e<> is an extension of | Enurer abl e<> with additional methods for
constructing expression trees. Most of the time, you can ignore the details of these
methods; they're called indirectly by the Framework. The upcoming "Building Query
Expressions" section covers | Quer yabl e<> in more detail.

Suppose we create a simple customer table in SQL Server and populate it with a few names using the following

SQL script:

create tabl e Customner

(

IDint not null primary key,
Nane var char (30)

)

insert Custoner values (1, 'Tom)
insert Custoner values (2, 'Dick')

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

insert Customer values (3, 'Harry')
insert Custoner values (4, 'Mary')
insert Customer values (5, 'Jay')

With this table in place, we can write an interpreted LINQ query in C# to retrieve customers whose names
contain the letter a, as follows:

Code View:
usi ng System
usi ng System Lingq;
usi ng Syst em Dat a. Li ng;
usi ng Syst em Dat a. Li nq. Mappi ng;

[Tabl €] public class Custoner

{
[Col um(I sPrinmaryKey=true)] public int ID
[Col um] public string Nane;
}
cl ass Test
{
static void Main()
{
var dataContext = new DataContext ("cx string... ");

Tabl e<Cust oner > custoners =
dat aCont ext . Get Tabl e <Customer>();

| Queryabl e<string> query = fromc in custoners
where c. Nane. Contains ("a")
orderby c. Nanme. Length
sel ect c¢. Nane. ToUpper();

foreach (string name in query)
Consol e. Wi teLine (nane);
}
}

LINQ to SQL translates this query into the following SQL:
SELECT UPPER([tO0].[Name]) AS [val ue]
FROM [Custoner] AS [t 0]
WHERE [t 0] . [Name] LIKE ' %%
ORDER BY LEN([tO0].[Nane])
with the following end result:
JAY

MARY
HARRY

1.8.1. How Interpreted Queries Work

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Let's examine how the preceding query is processed.

First, the compiler converts the query from comprehension to lambda syntax. This is done exactly as it is with
local queries:

| Queryabl e<string> query = custoners
.Where (n=> n. Nane. Contains ("a"))
.OrderBy (n => n. Nane. Lengt h)
.Sel ect (n => n. Nane. ToUpper());

Next, the compiler resolves the query operator methods. Here's where local and interpreted queries
differ-interpreted queries resolve to query operators in the Quer yabl e class instead of the Enuner abl e class.

To see why, we need to look at the cust omer s variable, the source upon which the whole query builds.

cust oner s is of type Tabl e<>, which implements | Quer yabl e<> (a subtype of | Enurer abl e<>). This means the
compiler has a choice in resolving Wer e: it could call the extension method in Enuner abl e, or the following
extension method in Queryabl e:

public static | Queryabl e<TSource> Were<TSource> (
this | Queryabl e<TSour ce> source,
Expr essi on <Func<TSour ce, bool >> predi cat e)

The compiler chooses Quer yabl e. Wher e because its signature is a more specific match.

Note that Quer yabl e. Wher e accepts a predicate wrapped in an Expr essi on<TDel egat e> type. This instructs the
compiler to translate the supplied lambda expression-in other words, n=>n. Nane. Cont ai ns("a") -to an
expression tree rather than a compiled delegate. An expression tree is an object model based on the types in
Syst em Li nq. Expr essi ons that can be inspected at runtime (so that LINQ to SQL can later translate it to an
SQL statement).

Because Quer yabl e. Wher e also returns | Quer yabl e<>, the same process follows with the Or der By and Sel ect
operators. The end result is illustrated in Figure 1-7. In the shaded box is an expression tree describing the
entire query, which can be traversed at runtime.

1.8.1.1. Execution

Interpreted queries follow a deferred execution model-just like local queries. This means that the SQL
statement is not generated until you start enumerating the query. Further, enumerating the same query twice
results in the database being queried twice.

Under the cover, interpreted queries differ from local queries in how they execute. When you enumerate over an
interpreted query, the outermost sequence runs a program that traverses the entire expression tree, processing

it as a unit. In our example, LINQ to SQL translates the expression tree to a SQL statement, which it then
executes, yielding the results as a sequence.

Figure 1-7. Interpreted query composition

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Jataljuery<stnng =

() IQueryable<string>

). Expression

(Customer ¢) =>
t.Name.ToUpper()

M Expression

(Customer ¢} ==
.Name Length

A, Expression

(Customer ¢) ==
. Name. Contains
["A"]

() Queryable<Customer:

o
},. To work, LINQ to SQL needs some clues as to the schema of the database. The Tabl e
wh f;, and Col umm attributes that we applied to the Cust oner class serve just this function. The

upcoming "LINQ to SQL" section describes these attributes in more detail.

We said previously that a LINQ query is like a production line. When you enumerate an | Quer yabl e conveyor
belt, though, it doesn't start up the whole production line, as it does with a local query. Instead, just the

| Quer yabl e belt starts up, with a special enumerator that calls upon a production manager. The manager
reviews the entire production line-which consists not of compiled code, but of dummies (method call
expressions) with instructions pasted to their foreheads (lambda expression trees). The manager then traverses
all the expressions, in this case transcribing them to a single piece of paper (an SQL statement)-which it then
executes-feeding the results back to the consumer. Only one belt turns; the rest of the production line is a
network of empty shells, existing just to describe what has to be done.

This has some practical implications. For instance, with local queries, you can write your own query methods
(fairly easily with iterators) and then use them to supplement the predefined set. With remote queries, this is
difficult, even undesirable. If you wrote a MyWer e extension method accepting | Quer yabl e<>, it would be like
putting your own dummy into the production line. The production manager wouldn't know what to do with your
dummy. Even if you intervened at this stage, your solution would be hard wired to a particular provider, such as
LINQ to SQL, and would not work with other | Quer yabl e implementations. Part of the benefit of having a
standard set of methods in Quer yabl e is that they define a standard vocabulary for querying any remote
collection. As soon as you try to extend the vocabulary, you're no longer interoperable.

Another consequence of this model is that an | Quer yabl e provider may be unable to cope with some
queries-even if you stick to the standard methods. LINQ to SQL, for instance, is limited by the capabilities of
the database server; some LINQ queries have no SQL translation. If you're familiar with SQL, you'll have a good
intuition for what these are, although at times, you will have to experiment to see what causes a runtime error;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

it can be surprising what does work! Your chances with LINQ to SQL are best with the latest version of Microsoft
SQL Server.

1.8.2. AsEnumerable

Enurner abl e. AsEnuner abl e is the simplest of all query operators. Here's its complete definition:
public static | Enunerabl e<TSour ce> AsEnuner abl e<TSour ce>
(this | Enuner abl e<TSour ce> source)

{
}

return source;

Its purpose is to cast an | Quer yabl e<T> sequence to | Enuner abl e<T>, forcing subsequent query operators to
bind to Enuner abl e operators instead of Quer yabl e operators. This causes the remainder of the query to
execute locally.

To illustrate, suppose we had a Medi cal Arti cl es table in SQL Server and wanted to use LINQ to SQL to
retrieve all articles on influenza whose abstract contained fewer than 100 words. For the latter predicate, we
need a regular expression:

Regex wordCounter = new Regex (@\b(\W[-'])+\b");

var query = dataContext.Medical Articles
.Where (article => article. Topic =="influenza" &&
wor dCount er . Mat ches (article. Abstract). Count < 100);

The problem is that SQL Server doesn't support regular expressions, so LINQ to SQL throws an exception,
complaining that the query cannot be translated to SQL. We can solve this by querying in two steps: first
retrieve all articles on influenza through a LINQ to SQL query, and then filter locally for abstracts fewer than 100
words:

Regex wordCounter = new Regex (@\b(\W['])+\b");

| Enuner abl e<Medi cal Articl e> sql Query =
dat aCont ext . Medi cal Articles
.Were (article => article.Topic =="influenza");

| Enuner abl e<Medi cal Articl e> | ocal Query =sql Query
.Where (article =>
wor dCount er . Mat ches (article. Abstract). Count < 100);

Because sql Query is of type | Enuner abl e<Medi cal Arti cl e>, the second query binds to the local query
operators, forcing that part of the filtering to run on the client.
With AsEnuner abl e, we can do the same in a single query:
Regex wor dCount er = new Regex (@\b(\W[-'])+\ b");
var query = dataContext.Medical Articles
.Where (article => article.Topic == "influenza")
. AsEnuner abl e()

.Where (article =>
wor dCount er . Mat ches (article. Abstract). Count <100);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

An alternative to calling AsEnuner abl e is to call ToArray or ToLi st. The advantage of AsEnuner abl e is that it
doesn't force immediate query execution, nor does it create any storage structure.

Moving query processing from the database server to the client can hurt performance,
w! 4. especially if it means retrieving more rows. A more efficient (though more complex) way
% to solve our example would be to use SQL CLR integration to expose a function on the
database that implemented the regular expression.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.9. LINQ to SQL

Throughout this book, we rely on LINQ to SQL to demonstrate interpreted queries. This section examines the
key features of this technology.

1.9.1. LINQ to SQL Entity Classes

LINQ to SQL allows you to use any class to represent data, as long as you decorate it with appropriate
attributes. Here's a simple example:

[Tabl €]
public class Custoner

{
[Col um(I sPri maryKey=true)]

public int ID

[Col umm]

public string Name;
}

The [Tabl e] attribute, in the Syst em Dat a. Li nq. Mappi ng namespace, tells LINQ to SQL that an object of this
type represents a row in a database table. By default, it assumes the table name matches the class name; if
this is not the case, you can specify the table name as follows:

[Tabl e (Nane="Cust oners")]

A class decorated with the [Tabl e] attribute is called an entity in LINQ to SQL. To be useful, its structure must
closely-or exactly-match that of a database table, making it a low-level construct.

The [Col unm] attribute flags a field or property that maps to a column in a table. If the column name differs
from the field or property name, you can specify the column name as follows:

[Col um (Narme="Ful | Nane")]
public string Naneg;

The | sPri mar yKey property in the [Col umm] attribute indicates that the column partakes in the table's primary
key. It is required for maintaining object identity, as well as for allowing updates to be written back to the
database.

Instead of defining public fields, you can define public properties in conjunction with private fields. This allows
you to write validation logic into the property accessors. If you take this route, you can optionally instruct LINQ
to SQL to bypass your property accessors and write to the field directly when populating from the database:
string _nane;
[Col um (Storage="_nane")]

public string Nane
{ get { return _name; } set { _name =value; } }

Col utm(St or age="_nane") tells LINQ to SQL to write directly to the _nane field (rather than the Nanme property)
when populating the entity. LINQ to SQL's use of reflection allows the field to be private-as in this example.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.9.2. DataContext

Once you've defined entity classes, you start querying by instantiating a Dat aCont ext object and then calling
Get Tabl e on it. The following example uses the Cust oner class defined originally:

var dataContext = new DataContext ("cx string...");
Tabl e<Cust oner > custoners =
dat aCont ext . Get Tabl e <Cust oner >();

/1 Print nunber of rows in table
Consol e. WiteLine (custoners. Count());

/] Retrieves Custoner with ID of 2
Cust omer cust = custoners. Single (c =>c.ID == 2);

o The Si ngl e operator is ideal for retrieving a row by primary key. Unlike Fi r st , it throws
wl 4:; an exception if more than one element is returned.

A Dat aCont ext object does two things. First, it acts as a factory for generating tables that you can query.
Second, it keeps track of any changes that you make to your entities so that you can write them back:

var dataContext = new DataContext ("cx string...");
Tabl e<Cust oner > custoners =

dat aCont ext . GCet Tabl e <Cust oner >();
Customer cust = custoners. OrderBy (c =>c.Nane).First();
cust. Nane = "Updat edNane";
dat aCont ext . Submi t Changes() ;

A Dat aCont ext object keeps track of all the entities it instantiates, so it can feed the same ones back to you
whenever you request the same rows in a table. In other words, in its life-time a Dat aCont ext object will never
emit two separate entities that refer to the same row in a table (where a row is identified by primary key).

ey Set Obj ect Tr acki ngEnabl ed to false on the Dat aCont ext object to disable this
wh f-."- behavior. (Disabling object tracking also prevents you from submitting updates to the
data.)

To illustrate object tracking, suppose the customer whose name is alphabetically first also has the lowest ID. In
the following example, a and b will reference the same object:

var dataContext = new DataContext ("cx string...");
Tabl e<Cust omer > custoners =

dat aCont ext . Get Tabl e <Cust oner>();
Customer a = custonmers.OrderBy (¢ => c. Nanme).First();

Custonmer b =custoners. O derBy (¢ => c.ID).First();

This has a couple of interesting consequences. First, consider what happens when LINQ to SOL encounters the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

second query. It starts by querying the database and obtaining a single row. It then reads the primary key of
this row and performs a lookup in the Dat aCont ext 's entity cache. Seeing a match, it returns the existing
object, without updating any values. So, if another user had just updated that customer's Nane in the database,
the new value would be ignored. This is essential for avoiding unexpected side effects (the Cust oner object
could be in use elsewhere) and also for managing concurrency. If you had altered properties on the Cust oner
object and not yet called Submi t Changes, you wouldn't want your properties automatically overwritten.

To get fresh information from the database, you must either instantiate a new
W . Dat aCont ext or call the Dat aCont ext' s Refresh method, passing in the entity or
entities that you want refreshed.

The second consequence is that you cannot explicitly project into an entity type-to select a subset of the row's
columns-without causing trouble. For example, if you wanted to retrieve only a customer's name, any of the
following approaches is valid:

customers. Sel ect (¢ => c. Nane);
custoners. Sel ect (¢ => new { Name =c. Nanme });
customners. Sel ect (¢ => new

MyCust onifype { Nane = c.Nane });

The following, however, is not:
customers. Sel ect (¢ => new Custoner {Nane = c.Nane });
This is because the Cust oner entities will end up partially populated. So, the next time you perform a query that

requests all customer columns, you get the same cached Cust orrer objects with only the Nane property
populated.

In a multitier application, you cannot use a single static instance of a Dat aCont ext

) 4. object in the middle tier to handle all requests because Dat aCont ext is not thread-safe.
" Instead, middle-tier methods must create a fresh Dat aCont ext object per client request.
This is actually beneficial because it shifts the burden in handling simultaneous updates
to the database server, which is properly equipped for the job. A database server, for
instance, will apply transaction isolation level semantics.

1.9.3. Automatic Entity Generation

Because LINQ to SQL entity classes need to follow the structure of their underlying tables, it's likely that you'll
want to generate them automatically from an existing database schema. You can do this either via the SglMetal
command-line tool or the LINQ to SQL designer in Visual Studio. These tools generate entities as partial classes
so that you can incorporate additional logic in separate files.

As a bonus, you also get a strongly typed Dat aCont ext class, which is simply a subclassed Dat aCont ext with
properties that return tables of each entity type. It saves you calling Get Tabl e:

var dataContext = new MyTypedDat aContext ("...");

Tabl e<Cust orrer > custoners = dat aCont ext. Cust oners;
Consol e. Wi teLine (custoners. Count());

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

or simply:

Consol e. Wit eLi ne (dat aCont ext. Cust oners. Count ());

The LINQ to SQL designer automatically pluralizes identifiers where appropriate. In this example, it's
dat aCont ext . Cust oner s and not dat aCont ext . Cust oner - even though the SQL table and entity class are
both called Cust oner .

1.9.4. Associations

The entity generation tools perform another useful job. For each relationship defined in your database,
properties are automatically generated on each side that query that relationship. For example, suppose we
define a customer and purchase table in a one-to-many relationship:

create tabl e Custoner

(

IDint not null primary key,
Name varchar (30) not null

)

create tabl e Purchase

(

IDint not null primary key,

Customer|I D int references Custoner (1D,
Descri ption varchar(30) not null,

Price deci mal not null

If we use automatically generated entity classes, we can write these queries as follows:
var dataContext = new MyTypedDat aContext ("...");

/1 Retrieve all purchases nade by the first
/1 custoner (al phabetically):

Cust omer cust1l = dat aCont ext. Cust oners
.OrderBy (c => c.Nane).First();

foreach (Purchase p in custl. Purchases)
Consol e. WiteLine (p.Price);

/'l Retrieve customer who made the | owest val ue purchase:

Pur chase cheapest = dat aCont ext. Purchases
.OrderBy (p => p.Price).First();

Cust omer cust2 = cheapest. Custoner;

Further, if cust 1 and cust 2 happened to refer to the same customer, c1 and c2 would refer to the same object:
cust 1==cust 2 would return tr ue.

Let's examine the signature of the automatically generated Pur chases property on the Cust oner entity:

[Associ ati on (St orage="_Purchases",

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

O her Key="Custoner| D")]
public EntitySet <Purchase> Purchases

{ get {...} set {...}}

An EntitySet is like a predefined query with a built-in Wher e clause that extracts related entities. The

[Associ ati on] attribute gives LINQ to SQL the information it needs to write the query. As with any other type
of query, you get deferred execution. This means that with an Enti t ySet, the query doesn't execute until you
enumerate over the related collection.

Here's the Pur chases. Cust omer property on the other side of the relationship:

[Associ ation (Storage="_Custoner",
Thi skey="Cust oner | D",
| sFor ei gnKey=t rue)]
public Custoner Custoner { get {...} set{...} }

Although the property is of type Cust oner , its underlying field (_Cust oner) is of type EntityRef. The
EntityRef type implements deferred loading, so the related Cust oner is not retrieved from the database until
you actually ask for it.

1.9.5. Deferred Execution with LINQ to SQL

LINQ to SQL queries are subject to deferred execution, just like local queries, allowing you to build queries
progressively. There is one aspect, however, in which LINQ to SQL has special deferred execution semantics,
and that is when a subquery appears inside a Sel ect expression:

e With local queries, you get double deferred execution because from a functional perspective, you're
selecting a sequence of queries.So, if you enumerate the outer result sequence, but never enumerate the
inner sequences, the subquery will never execute.

e With LINQ to SQL, the subquery is executed at the same time as the main outer query. This avoids
excessive round-tripping.

For example, the following query executes in a single round trip upon reaching the first f or each statement:
var dataContext = new MyTypedDat aContext ("...");

var query = fromc in dataContext.Custoners
sel ect
fromp in c.Purchases
sel ect new{ c.Nane, p.Price };
foreach (var custonerPurchaseResults inquery)
foreach (var nanePrice in custonerPurchaseResults)
Consol e. Wi teLine (nanmePrice. Nane + " spent " +
nanmePrice. Price);

Any EntitySets that you explicitly project are fully populated in a single round trip:

var query = fromc in dataContext.Custoners
sel ect new { c.Nanme, c.Purchases };

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

foreach (var row in query)
foreach (Purchase p in row Purchases)
Consol e. WiteLine (row Nane + " spent " + p.Price);

But if we enumerate Entit ySet properties without first having projected, deferred execution rules apply. In the
following example, LINQ to SQL executes another Pur chases query on each loop iteration:

foreach (Customer c in dataContext.Custoners)
foreach (Purchase p in c.Purchases) // + Round-trip
Consol e. WiteLine (c.Nanme + " spent " + p.Price);

This model is advantageous when you want to selectively execute the inner loop, based on a test that can be
performed only on the client:

foreach (Customer c in dataContext.Customners)
if (myWebService. HasBadCreditHi story (c.I1D))
foreach (Purchase p in c.Purchases) // + Round trip
Console.WiteLine (...);

We explore Sel ect subqueries in more detail in the upcoming "Projecting" section.

1.9.6. DataLoadOptions

The Dat aLoadOpt i ons class has two distinct uses:

e |t lets you specify, in advance, a filter for Enti t ySet associations (Associ ateWt h).

e |t lets you request that certain Enti t ySet s be eagerly loaded to lessen round-tripping (LoadW t h).

1.9.6.1. Specifying a filter in advance

Here's how to use Dat aLoadOpti ons's Associ at eWt h method:
Dat aLoadOpt i ons options = new Dat aLoadOpti ons();
options. Associ at eW t h< Cust oner >

(c => c.Purchases. Were (p => p.Price > 1000));
dat aCont ext . LoadOpt i ons =opti ons;

This instructs the Dat aCont ext instance to always filter a Cust onmer 's Pur chases using the given predicate.

Associ at eW t h doesn't change deferred execution semantics. It simply instructs to implicitly add a particular
filter to the equation when a particular relationship is used.

1.9.6.2. Eager loading
The second use for a Dat aLoadOpt i ons is to request that certain Enti t ySet s be eagerly loaded with their

parents. For instance, suppose you wanted to load all customers and their purchases in a single SQL round trip.
The following does exactly this:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Dat aLoadOpt i ons options = new Dat aLoadOpti ons();
options. LoadWth <Custoner> (c =>c. Purchases);
dat aCont ext . LoadOpti ons = opti ons;

foreach (Custoner c in dataContext.Custoners)
foreach (Purchase p in c.Purchases)
Consol e. WiteLine (c.Nane + " bought a "+
p. Description);

This instructs that whenever a Cust oner is retrieved, its Pur chases should be too at the same time. You can
also request that grandchildren be included:

options. LoadWth <Customer> (c => c. Purchases);

options. LoadWth <Purchase> (p =>p. Purchasel tens);

You can combine LoadW t h with Associ at eW t h. The following instructs that whenever a customer is retrieved,
its high-value purchases should be retrieved in the same round trip:

options. LoadWth <Custoner> (¢ => c. Purchases);

options. Associ at eWt h <Cust orer >
(c => c. Purchases. Where (p => p.Price >1000));

1.9.7. Updates
LINQ to SQL also keeps track of changes you make to your entities and allows you to write them back to the

database by calling Submi t Changes on the Dat aCont ext object. The Tabl e<> class provides | nsert OnSubmi t
and Del et eOnSubni t methods for inserting and deleting rows in a table; here's how to add a row to a table:

var dataContext = new MyTypedDat aContext ("cx string");
Cust omer cust = new Custoner { |D=1000, Nane="Bl oggs" };
dat aCont ext . Cust ormer s. | nsert OnSubmit (cust);
dat aCont ext . Subni t Changes();

We can later retrieve that row, update it, and then delete it:
var dataContext = new MyTypedDat aContext ("...");
Cust omer cust = dat aCont ext. Custoners. Single

(c => c.ID == 1000);

cust. Name = "Bl oggs2";
dat aCont ext . Subni t Changes(); /] Updates the customer
dat aCont ext . Cust orer s. Del et eOnSubmit (cust);

dat aCont ext . Submi t Changes(); /| Del etes the custoner

Dat aCont ext . Submi t Changes gathers all the changes that were made to its entities since the Dat aCont ext's
creation (or the last Subni t Changes), and then executes an SQL statement to write them to the database. Any
Transact i onScope is honored; if none is present, it wraps all statements in a new transaction.

You can also add new or existing rows to an Enti tySet by calling Add. LINQ to SQL automatically populates the
foreign keys when you do this:

var pl = new Purchase { | D=100, Description="Bike",

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Price=500 };
var p2 = new Purchase { | D=101, Description="Tool s",
Price=100 };

Cust omer cust = dat aCont ext. Custoners. Single
(c =>c.ID == 1);

cust . Purchases. Add (pl);

cust. Purchases. Renove (p2);

dat aCont ext . Subni t Changes(); // Inserts the purchases

A

2
R

. If you don't want the burden of allocating unique keys, you can use either an auto-
«* 4. incrementing field (IDENTITY in SQL Server) or a Qui d for the primary key.
L1

In this example, LINQ to SQL automatically writes 100 into the Cust orer | D column of each of the new
purchases. (It knows to do this because of the association that we defined on the Pur chases property):

[Associ ation (Storage="_Purchases",
O her Key="Cust onmer | D")]
public EntitySet <Purchase> Purchases

{ get {...} set {...}

If the Cust oner and Pur chase entities were generated by the Visual Studio designer or SqlMetal, the generated
classes would include further code to keep the two sides of each relationship in sync. In other words, assigning
the Pur chase. Cust oner property would automatically add the new customer to the Cust oner . Pur chases entity
set-and vice versa. We can illustrate this by rewriting the preceding example as follows:

var dataContext = new MyTypedDat aContext ("...");

Cust omer cust = dat aCont ext. Custoners. Single
(c =>c.ID==1);

new Purchase { |1 D=100, Descri ption="Bi ke", Price=500,
Cust onmer =cust };

new Purchase { I D=101, Description="Tools", Price=100,
Cust omer =cust };

dat aCont ext . Submi t Changes(); // Inserts the purchases

When you remove a row from an Enti t ySet, its foreign key field is automatically set to nul | . The following
disassociates our two recently added purchases from their customer:

var dataContext = new MyTypedDat aContext ("...");

Customer cust = dataContext.Custoners. Single
(c =>c.ID == 1);
cust . Pur chases. Renove
(cust. Purchases. Single (p => p.ID == 100));
cust . Pur chases. Renove
(cust.Purchases.Single (p => p.ID == 101));

dat aCont ext . Submi t Changes(); // Submt SQ. to server

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Because this tries to set each purchase's Cust oner | D field to null, Pur chase. Cust orer | D must be nullable in the
database- otherwise, an exception is thrown. (Further, the Cust oner | D field or property in the entity class
must be a nullable type.)

To delete child entities entirely, remove them from the Tabl e<> instead:

Cust omer cust = dat aCont ext. Custoners. Single
(c =>c.ID == 1);

var dc = dat aCont ext;
dc. Pur chases. Del et eOnSubmi t

(dc. Purchases. Single (p => p.1D == 100));
dc. Pur chases. Del et eOnSubmi t

(dc. Purchases. Single (p => p.I1D == 101));

dat aCont ext . Submi t Changes(); // Submt SQ to server

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.10. Building Query Expressions

So far, when we've needed to dynamically compose queries, we've done so by conditionally chaining query
operators. Although this is adequate in many scenarios, sometimes you need to work at a more granular level
and dynamically compose the lambda expressions that feed the operators.

In this section, we'll assume the following Pr oduct class:

[Tabl e] public partial class Product

{
[Col um(I sPrimaryKey=true)] public int ID
[Col umm] public string Description;
[Col umm] public bool Discontinued,
[Col umm] public DateTi me Last Sal e;
}

1.10.1. Delegates Versus Expression Trees

Recall that:

e Local queries, which use Enuner abl e operators, take delegates.
e Interpreted queries, which use Quer yabl e operators, take expression trees.

We can see this by comparing the signature of the Wher e operator in Enuner abl e and Queryabl e:

public static | Enunmerabl e<TSour ce> Wher e<TSource> (this
| Enuner abl e<TSour ce> sour ce,
Func<TSour ce, bool > predi cat e)

public static | Queryabl e<TSource> Where<TSource> (this
| Quer yabl e<TSour ce> source,
Expr essi on<Func<TSour ce, bool >> predi cat e)

When embedded within a query, a lambda expression looks identical whether it binds to Enuner abl e 's
operators or Queryabl e 's operators:

| Enuner abl e<Pr oduct > g1 = | ocal Products. Were
(p => !p.Discontinued);
| Queryabl e<Product > @2 = sqgl Products. Where
(p => !p.Discontinued);

When you assign a lambda expression to an intermediate variable, however, you must be explicit about whether
to resolve to a delegate (i.e., Func<>) or an expression tree (i.e., Expr essi on<Func<>>).

1.10.1.1. Compiling expression trees

You can convert an expression tree to a delegate by calling Conpi | e. This is of particular value when writing
methods that return reusable expressions. To illustrate, we'll add a static method to the Product class that

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

returns a predicate evaluating to t r ue if a product is not discontinued, and has sold in the past 30 days:

public partial class Product

{
public static Expressi on<Func<Product, bool >>
I sSel ling()
{
return p => !p. D scontinued &&
p. Last Sal e > Dat eTi ne. Now. AddDays (- 30);
}
}

(We've defined this in a separate partial class to avoid being overwritten by an automatic Dat aCont ext
generator such as Visual Studio's LINQ to SQL designer.)

The method just written can be used both in interpreted and in local queries as follows:

void Test()

{
var dataContext = new MyTypedDat aContext ("...");
Product[] | ocal Products =

dat aCont ext . Products. ToArray();

| Quer yabl e<Product > sqgl Query =
dat aCont ext . Products. Where (Product.IsSelling());

| Enurrer abl e<Pr oduct > | ocal Query =
| ocal Products. Where (Product.|sSelling.Conpile());

L=
i

. You cannot convert in the reverse direction, from a delegate to an expression tree. This
“w 4. makes expression trees more versatile.
L1158

1.10.1.2. AsQueryable
The AsQuer yabl e operator lets you write whole queries that can run over either local or remote sequences:

| Quer yabl e<Pr oduct > Fi | t er Sort Product s
(I Queryabl e<Product > i nput)

{
return fromp in input

where ...
order by ...
sel ect p;

}

void Test ()

{

var dataContext = new MyTypedDat aContext ("...");

Product[] | ocal Products =
dat aCont ext . Product s. ToArray();

var sql Query =
Fi | ter Sort Products (dataContext.Products);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

var | ocal Query =
FilterSortProducts (I ocal Products. AsQueryable());

AsQuer yabl e wraps | Quer yabl e<> clothing around a local sequence so that subsequent query operators resolve
to expression trees. When you later enumerate over the result, the expression trees are implicitly compiled, and
the local sequence enumerates as it would ordinarily.

1.10.2. Expression Trees

We said previously that assigning a lambda expression to a variable of type Expr essi on<TDel egat e> causes the
C# compiler to emit an expression tree. With some programming effort, you can do the same thing manually at
runtime-in other words, dynamically build an expression tree from scratch. The result can be cast to an

Expr essi on<TDel egat e> and used in LINQ to SQL queries-or compiled into an ordinary delegate by calling
Conpi | e.

1.10.2.1. The Expression DOM

An expression tree is a miniature code DOM. Each node in the tree is represented by a type in the
Syst em Li ng. Expr essi ons namespace; these types are illustrated in Figure 1-8.

Figure 1-8. Expression types

ik

I I | | | I |

Conditional
Expredsion

Invocation
Expression

Listinit
Expression

Membernit
Expression

NewArray
Expression

Parameter
Expression

Unary
Expression

Binary
Expression

(onstant
Expression

Lambda
Expression

Member
Expression

MethodCall
Expression

New
Expression

TypeBinary
Expression

Expression<TDelegate> I

The base class for all nodes is the (nongeneric) Expr essi on class. The generic Expr essi on<TDel egat e> class
actually means "typed lambda expression” and might have been named LanbdaExpr essi on<TDel egat e> if it
weren't for the clumsiness of this:

LanmbdaExpr essi on<Func<Cust oner, bool >> f = ...

Expr essi on<>"'s base type is the (nongeneric) LanbdaExpr essi on class.LanmdbaExpr essi on provides type
unification for lambda expression trees: any typed Expr essi on<> can be cast to a LanbdaExpr essi on.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The fact that LanbdaExpr essi ons have parameters distinguishes them from ordinary Expr essi on s. To create
an expression tree, you don't instantiate node types directly; rather, you call static methods provided on the
Expr essi on class. Here are all the methods:

Add MakeMenber Access
AddChecked MakeUnary

And Menber Bi nd

AndAl so Menber | ni t

Arrayl ndex Modul o
ArraylLength Mul tiply

Bi nd Ml ti pl yChecked
Cal | Negat e

Coal esce Negat eChecked
Condi tion New

Const ant NewAr r ayBounds
Convert NewAr rayl ni t
Convert Checked Not

Di vi de Not Equal

El enent I ni t O

Equal O El se

Excl usi veOr Par anet er
Field Power

G eat er Than Property

G eat er ThanOr Equal

PropertyOrField

I nvoke Quot e

Lanbda Ri ght Shi ft

Left Shift Subt r act
LessThan Subt r act Checked
LessThanOr Equal TypeAs

Li st Bi nd Typel s

Listlnit Unar yPl us

MakeBi nary

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 1-9 shows the expression tree that the following assignment creates:

Expressi on<Func<string, bool>>f = s => s.Length < b;

We can demonstrate this as follows:

Consol e. Wi teLine (f.Body. NodeType); /'l LessThan
Consol e. Wi teLine
(((Bi naryExpression) f.Body).Right); /15

Let's now build this expression from scratch. The principle is that you start from the bottom of the tree and
work your way up. The bottommost thing in our tree is a Par anet er Expr essi on, the lambda expression
parameter called "s" of type string:

Par anet er Expr essi on p = Expressi on. Par anet er
(typeof (string), "s");

Figure 1-9. Expression tree

LambdaExpression
Type = Func <string, bool>

| WA |'..P..:|-. Bm!l
e T

Parameter(ollection BinaryExpression
Nogeype = Less Than

Left Right
S
MemberExpression (onstantExpression
MemberName = “Tength” Walye = §

Type = System.Int32

Expredgion
-

ParameterExpression
Name = 5"
Type = Systemn String

The next step is to build the Menber Expr essi on and Const ant Expr essi on. In the former case, we need to
access the Lengt h property of our parameter, "s" :

Menber Expr essi on stringlLength =

Expression. Property (p, "Length");
Const ant Expression five = Expression. Constant (5);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Next is the LessThan comparison:
Bi nar yExpr essi on conpari son =

Expressi on. LessThan (stringLength, five);

The final step is to construct the lambda expression, which links an expression Body to a collection of
parameters:

Expr essi on<Func<string, bool >> | anbda =
Expr essi on. Lanbda<Func<string, bool >> (conparison, p);
A convenient way to test our lambda is to compile it to a delegate:
Func<string, bool > runnabl e =l anbda. Conpil e();

Consol e. Wi teLine (runnabl e("kangaroo")); /1 Fal se
Consol e. WiteLine (runnable ("dog")); /1 True

The easiest way to figure out which expression type to use is to examine an existing
[) lambda expression in the Visual Studio debugger.

A discussion on dynamically building expression predicates is available online at
www.albahari.com/expressions/.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.11. Query Operator Overview

The sections that follow describe each of the LINQ query operators, as summarized in Table 1-1.

Table 1-1. LINQ guery operators

Category Operators

Filtering Where, Distinct, Take, TakeWile, Skip, Skipwile
Projecting Sel ect, Sel ect Many

Joining Joi n, GroupJoin

Ordering Order By, OrderByDescendi ng, ThenBy, ThenByDescendi ng,
Grouping Gr oupBy

Set Concat, Union, Intersect, Except

Conversion O Type, Cast

import)

Conversion ToArray, ToList, ToDictionary, ToLookup, AsEnunerable, AsQueryable
export)

Element First, FirstOrDefault, Last, LastOrDefault,

Si ngl eOr Def aul t,

El enent At, El enent At OrDefault, DefaultlfEnpty

Aggregation Aggr egat e, Average, Count, LongCount, Sum Max,
Quantifiers Al'l, Any, Contains, SequenceEqual
Generation Enmpty, Range, Repeat

The examples assume that a nanes array is defined as follows:

string[] names = { "Tont, "Dick","Harry", "Mary", "Jay" };

Examples that use LINQ to SQL assume a typed Dat aCont ext variable called dat aCont ext :

Code View:
var dat aCont ext = new DenoDat aCont ext () ;

public cl ass DenoDat aCont ext : DataCont ext

{
publ i c DenoDat aCont ext (string cxString)

base (cxString) { }

publ i ¢ Tabl e<Cust ormer > Cust oners
{ get { return GetTabl e<Custoner>(); } }

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

publ i ¢ Tabl e<Purchase> Pur chases
{ get { return CetTabl e<Purchase>(); } }

}

[Tabl e] public class Custoner

{
[Col um(I sPrimaryKey=true)] public int ID
[Col um] public stringNang;

[Associ ati on(Ot her Key="Cust oner | D")]
public EntitySet<Purchase>Pur chases
= new EntitySet <Purchase>();
}
[Tabl e] public class Purchase
{
[Col um(| sPri maryKey=true)] public int |D
[Col um] public int? Custonerl D
[Col um] public string Description;
[Col um] public decinal Price;
[Col um] public DateTine Date;

Ent it yRef <Cust oner > cust Ref ;

[Associ ation (Storage="custRef",
Thi sKey="Cust oner | D",
| sFor ei gnKey=t rue)]

public Customer Custoner

{

get { return custRef.Entity; }
set { custRef.Entity = value; }

}

}

o

"" The LINQ to SQL entity classes shown are a simplified version of what automated tools
wh . - typically produce, and they do not include code to update the opposing side in a
relationship when their entities have been reassigned.

Here are their corresponding SQL table definitions:

create tabl e Custoner

(
IDint not null primary key,
Name varchar (30) not null

)

create tabl e Purchase

(
IDint not null primary key,
CustomerI D int references Customer (ID),
Description varchar(30) not null,
Price decimal not null

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LI
1.12. Filtering
Method Description SQL equivalents
Wher e Returns a subset of elements that satisfy a given condition | WHERE
Take Returns the first count elements, and discards the rest VWHERE ROW NUMBER() ..orTOPn
subquery
Ski p Ignores the first count elements, and returns the rest WHERE ROW NUMBER() ...or NOT I N
(SELECT TOP n .)
TakeWhi | e | Emits elements from the input sequence until the predicate | Exception thrown
is true
Ski pwhi | e | Ignores elements from the input sequence until the Exception thrown
predicate is true, and then emits the rest
Di stinct |Returns a collection that excludes duplicates SELECT DI STI NCT...
o
;_ The "SQL equivalents” column in the reference tables does not necessarily correspond to

w! #. what an | Queryabl e implementation such as LINQ to SQL will produce. Rather, it

" indicates what you'd typically use to do the same job if you were writing the SQL query
yourself. Where there is no simple translation, the column is left blank. Where there is
no translation at all, the column reads "Exception thrown."

Enuner abl e implementation code, when shown, excludes checking for null arguments,
and indexing predicates.

With each of the filtering methods, you always end up with either the same number or fewer elements than you
started with. You can never get more! The elements are also identical when they come out; they are not
transformed in any way.

1.12.1. Where

Argument Type
Source sequence | Enuner abl e<TSour ce>
Predicate TSource => bool or (TSource,int) => bool [

[1] Prohibited with LINQ to SQL

1.12.1.1. Comprehension syntax
wher e bool - expr essi on

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.12.1.2. Overview

Wher e returns the elements from the input sequence that satisfy the given predicate.

For instance:
string[] names = { "Tont,"Dick", "Harry","Mary","Jay" }:
| Enuner abl e<string> query =
nanmes. Where (nane => name. EndsWth ("y"));

/1 Result: { "Harry", "Mary", "Jay" }

In comprehension syntax:
| Enuner abl e<string> query = fromn in nanes

where n. EndsWth ("y")
sel ect n;

A wher e clause can appear more than once in a query, and it can be interspersed with | et clauses:

fromn in nanes

where n. Length > 3

let u = n.ToUpper()

where u. EndsWth ("Y")

sel ect u; /1 Result: { "HARRY", "MARY" }

Standard C# scoping rules apply to such queries. In other words, you cannot refer to a variable prior to
declaring it with an iteration variable or a | et clause.

1.12.1.3. Indexed filtering

\Wher e's predicate optionally accepts a second argument of type i nt . This is fed with the position of each
element within the input sequence, allowing the predicate to use this information in its filtering decision. For
example, the following skips every second element:

| Enuner abl e<string> query =
names. Were ((n, i) =1 %2 == 0);

/!l Result: { "Tont, "Harry", "Jay" }

An exception is thrown if you use indexed filtering in LINQ to SQL.

1.12.1.4. Where in LINQ to SQL
The following methods on stri ng translate to SQL's LI KE operator:

Contains, StartsWth, EndsWth
For instance, c. Nane. Cont ai ns ("abc") translates to cust oner. Nane LIKE ' %bc% (or more accurately, a
parameterized version of this). You can perform more complex comparisons by calling Sql Met hods. Li ke; this

method maps directly to SQL's LIKE operator. You can also perform order comparison on strings with string's
Conpar eTo method; this maps to SQL's < and > operators:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

dat aCont ext . Pur chases. Where (p => p. Descri pti on. ConpareTo
("C) <0

LINQ to SQL also allows you to apply the Cont ai ns operator to a local collection within a filter predicate. For
instance:

string[] chosenOnes = { "Tont', "Jay" };

fromc in dataContext.Custoners
wher e chosenOnes. Cont ai ns (c. Nane)

This maps to SQL's | Noperator-in other words:

VWHERE custoner. Name | N (" Tont', "Jay")

If the local collection is an array of entities or nonscalar types, LINQ to SQL may instead emit an EXI STS clause.

1.12.2. Take and Skip

Argument Type
Source sequence | Enuner abl e<TSour ce>
Number of elements to take or skip i nt

Take emits the first n elements and discard s the rest; Ski p discards the first n elements and emits the rest.

The two methods are useful together when implementing a web page, allowing a user to navigate through a

large set of matching records. For instance, suppose a user searches a book database for the term "mercury"
and there are 100 matches. The following returns the first 20:

| Quer yabl e<Book> query = dat aCont ext . Books
.Were (b => b.Title.Contains ("mercury"))
.OrderBy (b => Db.Title)
. Take (20);

The next query returns books 21 to 40:
| Quer yabl e<Book> query = dat aCont ext . Books
.Where (b => b. Title.Contains ("nmercury"))

.OrderBy (b => b.Title)
. Skip (20). Take (20);

LINQ to SQL translates Take and Ski p to the ROW NUMBER function in SQL Server 2005, or a TOP n subquery in
earlier versions of SQL Server.

1.12.3. TakeWhile and SkipWhile

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Argument Type
Source sequence | Enuner abl e<TSour ce>
Predicate TSour ce=>bool or (TSource, i nt)=>bool

TakeWhi | e enumerates the input sequence, emitting each item until the given predicate is true. It then ignores
the remaining elements:

int[] nunbers { 3, 5 2 234, 4, 11},
var takeWil eSmall = nunbers. TakeWhile (n => n < 100);

/1 RESULT: { 3, 5, 2}
Ski pwhi | e enumerates the input sequence, ignoring each item until the given predicate is true. It then emits
the remaining elements:

int[] nunbers ={ 3, 5 2, 234, 4, 1};
var ski pWil eSnmall = nunbers. SkipWile (n => n < 100);

/1 RESULT: { 234, 4, 1}

TakeWhi | e and Ski pwhi | e have no translation to SQL, and they cause a runtime error if used in a LINQ to SQL
query.

1.12.4. Distinct

Di stinct returns the input sequence stripped of duplicates. Only the default equality comparer can be used for
equality comparison. The following returns distinct letters in a string:

char[] distinctLetters =
"Hel l oworl d".Distinct(). ToArray();
string s = new string (distinctLetters); /1 Hel owd

We can call LINQ methods directly on a string because st ri ng implements | Enurer abl e<char >.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4)

1.13. Projecting
Method Description SQL equivalents
Sel ect Transforms each input element with the given lambda SELECT

expression
Sel ect Many | Transforms each input element, then flattens and INNER JO N, LEFT QUTER JA N,

concatenates the resultant subsequences CRCSS JON

=

. For LINQ to SQL queries, Sel ect and Sel ect Many are the most versatile joining
wh . = constructs; for local queries, Join and Gr oupJoi n are the most efficient joining
constructs.

1.13.1. Select

Argument Type
Source sequence | Enuner abl e<TSour ce>
Result selector TSource => TResult or (TSource,int) => TResult [2]

[2] Prohibited with LINQ to SQL

1.13.1.1. *Comprehension syntax
sel ect projection-expression

1.13.1.2. Overview

With Sel ect, you always get the same number of elements that you started with. Each element, however, can
be transformed in any manner by the lambda function.

The following selects the names of all fonts installed on the computer (from Syst em Dr awi ng):

| Enuner abl e<string> query =
fromf in FontFamily. Fam lies
sel ect f. Nane;

foreach (string name in query) Consol e. WiteLine (nane);

In this example, the sel ect clause converts a Font Fani | y object to its name. Here's the lambda equivalent:

| Enuner abl e<string> query =
Font Fam | y. Fam | i es. Sel ect (f => f. Nan®);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Sel ect statements are often used to project into anonymous types:

var query =
fromf in FontFamily. Fam lies
sel ect new

{
f. Nane,
Li neSpaci ng = f. Get Li neSpaci ng (Font Styl e. Bol d)

b

A projection with no transformation is sometimes used in comprehension queries to satisfy the requirement that
the query end in a sel ect or group clause. The following selects fonts supporting strikeout:

| Enuner abl e query =
fromf in FontFamly. Fam lies
where f.IsStyl eAvail abl e (Font Style. Stri keout)

sel ect f;

foreach (FontFamily ff in query)
Consol e. WiteLine (ff.Name);

In such cases, the compiler omits the projection when translating to lambda syntax.

1.13.1.3. Indexed projection

The sel ect or expression can optionally accept an integer argument, which acts as an indexer, providing the
expression with the position of each input in the input sequence:

This works only with local queries:
string[] names = { "Tont, "D ck","Harry", "Mary", "Jay" };

| Enuner abl e<string> query = nanes
.Select ((s,i) =>1i +"=" +5s);

/1 RESULT: { "O=Tont, "1=Dick", "2=Harry", ... }

1.13.1.4. Select subqueries and object hierarchies

You can nest a subquery in a sel ect clause to build an object hierarchy. The following example returns a
collection describing each directory under D:\source, with a subcollection of files under each directory:

Directorylnfo[] dirs =
new Directorylnfo (@d:\source").GetDirectories();

var query =
fromdindirs
where (d.Attributes & FileAttributes. Systen) ==
sel ect new
{
Di rect oryName = d. Ful | Nane,
Created = d. CreationTing,
Files =
fromf in d. GetFiles()
where (f.Attributes & FileAttributes. H dden) == 0

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

select new { FileName = f.Nane, f.Length, }
b

The inner portion of this query can be called a correlated subquery. A subquery is correlated if it references an
object in the outer query-in this case, it references d, the directory being enumerated.

. A subquery inside a Sel ect allows you to map one object hierarchy to another or map a
wh f-."- relational object model to a hierarchical object model.

With local queries, a subquery within a Sel ect causes double-deferred execution. In our example, the files don't
get filtered or projected until the inner f or each statement enumerates.

1.13.1.5. Subqueries and joins in LINQ to SQL

Subquery projections work well in LINQ to SQL, and they can be used to do the work of SQL-style joins. Here's
how we retrieve each customer's name along with his high-value purchases:

var query =

fromc in dataContext.Custoners

sel ect new

{

c. Nane,

Pur chases =
fromp in dataContext.Purchases
where p.CustonmerID == c. 1D && p.Price > 1000
sel ect new { p.Description, p.Price }

}s

. This style of query is ideally suited to interpreted queries. LINQ to SQL processes the

) outer query and subquery as a unit, avoiding unnecessary round-tripping. With local
queries, however, it's inefficient because every combination of outer and inner element
must be enumerated to get the few matching combinations. A better choice for local
queries is Joi n or Gr oupJoi n, described in the following sections.

This query matches up objects from two disparate collections, and can be thought of as a "join." The difference
between this and a conventional database join (or subquery) is that we're not flattening the output into a single
two-dimensional result set. We're mapping the relational data to hierarchical data rather than to flat data.

Here's the same query simplified using the Pur chases association property on the Cust oner entity:

fromc in dataContext. Custoners
sel ect new

{
c. Nane,
Purchases = fromp in c.Purchases
where p. Price > 1000
sel ect new { p.Description, p.Price }
¥

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Both queries are analogous to a left outer join in SQL in the sense that we get all customers in the outer
enumeration, regardless of whether they have any purchases. To emulate an inner join-where customers
without high-value purchases are excluded-we would need to add a filter condition on the purchases collection:

fromc in dataContext.Customners
where c. Purchases. Any (p => p.Price > 1000)
sel ect new {
c. Nane,
Pur chases =
fromp in c.Purchases
where p. Price > 1000
sel ect new { p.Description, p.Price }

}s

This is slightly untidy, however, in that we've written the same predicate (Pri ce>1000) twice. We can avoid this
duplication with a | et clause:

fromc in dataContext.Custoners
| et highValueP = fromp in c.Purchases
where p.Price > 1000
sel ect new { p.Description, p.Price }
wher e hi ghVal ueP. Any()
sel ect new { c. Nanme, Purchases = highVal ueP };

This style of query is flexible. By changing Any to Count , for instance, we can modify the query to retrieve only
customers with at least two high-value purchases:

wher e hi ghVal ueP. Count () >= 2
sel ect new { c.Nanme, Purchases = hi ghVal ueP };

1.13.1.6. Projecting into concrete types

Projecting into anonymous types is useful in obtaining intermediate results, but not so useful if you want to
send a result set back to a client, for instance, because anonymous types can exist only as local variables within
a method. An alternative is to use concrete types for projections, such as DataSets or custom business entity
classes. A custom business entity is simply a class that you write with some properties, similar to a LINQ to SQL
[Tabl e] annotated class, but designed to hide lower-level (database-related) details. You might exclude foreign
key fields from business entity classes, for instance. Assuming we wrote custom entity classes called

Custoner Entity and PurchaseEntity, here's how we could project into them:

| Queryabl e<Cust oner Entity> query =
fromc in dataContext.Custoners
sel ect new CustonerEntity
{
Nane = c. Nane,
Purchases = (
fromp in c.Purchases
where p. Price > 1000
sel ect new PurchaseEntity
{
Description = p.Description,
Value = p.Price
}
). ToList()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

}s

/| Force query execution, converting output to a
/1 more convenient List:
Li st<CustonerEntity> result = query. ToList();

Notice that so far, we've not had to use a Joi n or Sel ect Many statement. This is because we're maintaining the
hierarchical shape of the data, as illustrated in Figure 1-10. With LINQ, you can often avoid the traditional SQL
approach of flattening tables into a two-dimensional result set.

Figure 1-10. Projecting an object hierarchy

Flat
S
Ja

Ei“ ’E!-"'r '%’%r,%
A Ve W

\’\'."M "}.9_,.*
o [

//’ aﬂ-"ﬂ
, A S
Relational ————— Select-subquery or Grouploin —————Hierarchical

Select-subquery

1.13.2. SelectMany

Argument Type
Source sequence || Enuner abl e<TSour ce>

Result selector TSour ce=> | Enuner abl e<TResul t > or (TSource, int)=> | Enunerabl e<TResul t> [3]

[31 Prohibited with LINQ to SQL

1.13.2.1. Comprehension syntax

fromidentifierl in enunerabl e-expressionl
fromidentifier2 in enumerabl e-expression2

1.13.2.2. Overview
Sel ect Many concatenates subsequences into a single flat output sequence.
Recall that for each input element, Sel ect yields exactly one output element. In contrast, Sel ect Many yields

0..n output elements. The 0..n elements come from a subsequence or child sequence that the lambda
expression must emit.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Sel ect Many can be used to expand child sequences, flatten nested collections, and join two collections into a
flat output sequence. Using the conveyer belt analogy, Sel ect Many funnels fresh material onto a conveyer belt.
With Sel ect Many, each input element is the trigger for the introduction of fresh material. The fresh material is
emitted by the sel ect or lambda expression, and it must be a sequence. In other words, the lambda expression
must emit a child sequence per input element. The final result is a concatenation of the child sequences emitted
for each input element.

Let's start with a simple example. Suppose we have an array of names as follows:
string[] full Names =
{ "Anne WIllians", "John Fred Smth", "Sue G een" };
that we wish to convert to a single flat collection of words- in other words:

"Anne","WIIlians","John","Fred","Smth", "Sue", Geen"

Sel ect Many is ideal for this task because we're mapping each input element to a variable number of output
elements. All we must do is come up with a sel ect or expression that converts each input element to a child
sequence. string. Split does the job nicely: it takes a string and splits it into words, emitting the result as an
array:

string testlnputEl enent = "Anne WIlians";
string[] childSequence = testlnputEl ement.Split();

/1 childSequence is { "Anne", "WIIlians" };

So, here's our SelectMany query and the result:

| Enurer abl e<string> query =
ful | Nanes. Sel ect Many (name => nane. Split());

foreach (string nane in query)
Console. Wite (name + "|");

/] RESULT: Anne|W I Iians| John| Fred| Sm t h| Sue| G een|

A._ If you replace Sel ect Many with Sel ect, you get the same results in hierarchical form.
wh f. The following emits a sequence of string arrays, requiring nested f or each statements to
~ enumerate:

| Enuner abl e<string[]> query =
full Nanes. Sel ect (
name => nane. Split());

foreach (string[] stringArray in query)

foreach (string name in stringArray)
Console. Wite (name + "/");

The benefit of Sel ect Many is that it yields a single flat result sequence.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Sel ect Many is supported in query comprehension syntax and is invoked by having an additional generator - i n
other words, an extra f r omclause in the query. The f romkeyword has two meanings in comprehension syntax.
At the start of a query, it introduces the original iteration variable and input sequence. Anywhere else in the
query, it translates to Sel ect Many. Here's our query in comprehension syntax:

| Enuner abl e<string> query =
fromfull Nane in full Names
fromname in full Name. Split()
sel ect nane;

Note that the additional generator introduces a new query variable-in this case, nanme. The new query variable
becomes the iteration variable from then on, and the old iteration variable is demoted to an outer iteration
variable.

1.13.2.3. Outer iteration variables

In the preceding example, f ul | Nane becomes an outer iteration variable after the Sel ect Many. Outer iteration
variables remain in scope until the query either ends or reaches an i nt o clause. The extended scope of these
variables is the Killer scenario for comprehension syntax over lambda syntax.

To illustrate, we can take the preceding query and include f ul | Nane in the final projection:

| Enuner abl e<string> query =
fromfull Nane in full Nanes /] outer variable
fromnane in full Nane. Split() /1 iteration variable
sel ect name + " cane from" + full Nane;

Anne cane fromAnne Wl li ans
WIllians cane fromAnne WIIians
John cane fromJohn Fred Snith

Behind the scenes, the compiler must pull some tricks to resolve outer references. A good way to appreciate
this is to try writing the same query in lambda syntax. It's tricky! It gets harder still if you insert a wher e or
or der by clause before projecting:

fromfull Nane i n full Names
fromnanme in full Nane. Split()

orderby full Nane, nane

sel ect name + " cane from" + full Nang;

The problem is that Sel ect Many emits a flat sequence of child elements- in our case, a flat collection of words.
The original outer element from which it came (f ul | Nane) is lost. The solution is to "carry"” the outer element
with each child in a temporary anonymous type:

fromfull Nane in full Nanmes
fromx in
full Nane. Split()
. Sel ect (name => new { nane, fullName })
orderby x.ful | Name, x.nane
select x.nane + " cane from" + x.full Nang;

The only change here is that we're wrapping each child element (nane) in an anonymous type that also contains

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

its ful | Nane. This is similar to how a | et clause is resolved.

Here's the final conversion to lambda syntax:

| Enuner abl e<string> query = ful | Nanes
. Sel ect Many (f Name =>
fName. Split()
. Select (nane => new { nane, fNane }))
.OrderBy (x => x.fNane)
. ThenBy (x => x.nane)
.Select (x => x.nanme + " canme from" + x.fNane);

oo

‘.‘ Sel ect Many provides an overload that performs a Sel ect Many and Sel ect in one step.
W = We could use this to (slightly) simplify the preceding example, replacing the code in
boldface with this:

= I

. Sel ect Many (
fName => fNane. Split(),
(f Nane, nane) => new { nane, fNanme }

)

1.13.2.4. Thinking in comprehension syntax

As we just demonstrated, there are good reasons to use comprehension syntax if you need the outer iteration
variable. In such cases, it helps not only to use comprehension syntax, but also to think directly in its terms.

There are two basic patterns when writing additional generators. The first is expanding and flattening
subsequences. To do this, call a property or method on an existing query variable in your additional generator.
We did this in the previous example:

fromfull Name in full Names
fromnane in full Nanme. Split()

Here, we've expanded from enumerating full names to enumerating words. An analogous query in LINQ to SQL
is when you expand child association properties. The following query lists all customers along with their
purchases:

| Enuner abl e<string> query =
fromc in dataContext.Custoners
fromp in c.Purchases
select c.Name + " bought a " + p.Description;

Tom bought a Bi ke
Tom bought a Hol i day
Di ck bought a Phone
Harry bought a Car

Here, we've expanded each customer into a subsequence of purchases.
The second pattern is performing a cross product or cross join-where every element of one sequence is

matched with every element of another. To do this, you introduce a generator whose sel ect or expression
returns a sequence unrelated to an iteration variable:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

int[] nunmbers = { 1, 2, 3 };
string[] letters = { "a", "b" };

| Enuner abl e<string> query = fromn in nunbers
froml in letters
select n.ToString() + I;

RESULT: { "1a", "1b", "2a", "2b", "3a", "3b" }

This style of query is the basis of Sel ect Many-style joins.

1.13.2.5. Joining with SelectMany

You can use Sel ect Many to join two sequences simply by filtering the results of a cross product. For instance,
suppose we wanted to match players for a game. We could start as follows:

string[] players = { "Tont, "Jay", "Mary" };

| Enuner abl e<string> query =
fromnanmel in players
fromnane2 in players
sel ect namel + " vs " + nane2;

RESULT: {"Tomvs Ton{, "Tomvs Jay", "Tomvs Mary",
"Jay vs Tont, "Jay vs Jay", "Jay vs Mary",
"Mary vs Tonl, "Mary vs "Jay", "Mary vs Mary"}

The query reads: "For every player, reiterate every player, selecting player 1 versus player 2." Although we got
what we asked for (a cross join), the results are not useful until we add a filter:

| Enuner abl e<string> query =
fromnanel in players
fromnane2 in players
wher e nanel. ConpareTo (nanme2) > 0
orderby namel, nane2
sel ect namel + " vs " + nane2;

RESULT: { "Jay vs Mary", "Jay vs Ton, "Mary vs Tonl }

The filter predicate constitutes the join condition. Our query can be called a non-equi join because the join
condition doesn't use an equality operator. We'll demonstrate the remaining types of joins with LINQ to SQL.

1.13.2.6. SelectMany in LINQ to SQL

Sel ect Many in LINQ to SQL can perform cross joins, non-equi joins, inner joins, and left outer joins. You can use
Sel ect Many with both predefined associations and ad hoc relationships- just as with Sel ect . The difference is
that Sel ect Many returns a flat rather than a hierarchical result set.

A cross join in LINQ to SQL is written just as in the preceding section. The following query matches every
customer to every purchase (a cross join):

var query =

fromc in dataContext. Custoners
fromp in dataContext.Purchases

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sel ect c.Nanme + " might have bought " + p.Description;

More typically, though, you'd want to match customers to their own purchases only. You achieve this by adding
a wher e clause with a joining predicate. This results in a standard SQL-style equi-join:

var query =
fromc in dataContext.Custoners
fromp in dataContext.Purchases
where c.| D == p. Custonerl D
select c.Name + " bought a " + p.Description;

A
.

. This translates well to SQL. In the next section, we'll see how it extends to support outer
wh . - joins. Reformulating such queries with LINQ's Joi n operator actually makes them less
extensible- LINQ is opposite to SQL in this sense.

=

If you have association properties for relationships in your LINQ to SQL entities, you can express the same
query by expanding the subcollection instead of filtering the cross product:

fromc in dataContext.Custoners
fromp in c.Purchases
sel ect new { c.Nane, p.Description };

The advantage is that we've eliminated the joining predicate. We've gone from filtering a cross product to
expanding and flattening it. Both queries, however, will result in the same SQL.

You can add wher e clauses to such a query for additional filtering. For instance, if we wanted only customers
whose names started with J, we could filter as follows:

fromc in dataContext. Customners
where c. Nane. StartsWth ("J")

fromp in c.Purchases

sel ect new { c.Nane, p.Description };

This LINQ to SQL query would work equally well if the wher e clause was moved one line down. If it were a local
query, however, moving the wher e clause down would make it less efficient. With local queries, you should filter
before joining.

You can introduce new tables into the mix with additional f r omclauses. For instance, if each purchase had
purchase item child rows, you could produce a flat result set of customers with their purchases, each with their
purchase detail lines as follows:

fromc in dataContext.Custoners

fromp in c.Purchases

frompi in p.Purchaseltens

sel ect new { c. Nane, p.Description, pi.DetaillLine };

Each f r omclause introduces a new child table. To include data from a parent table (via an association property),
you don't add a f r omclause; you simply navigate to the property. For example, if each customer had a
salesperson whose name you wanted to query, you'd just do this:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

fromc in dataContext. Custoners
sel ect new {
Name = c. Nane,
Sal esPerson = c. Sal esPer son. Nane

}s

You don't use Sel ect Many in this case because there's no sub-collection to flatten. Parent association properties
return a single item.

1.13.2.7. Outer joins with SelectMany
We saw previously that a Sel ect -subquery yields a result analogous to a left outer join:

fromc in dataContext.Custoners
sel ect new {
c. Nane,
Pur chases =
fromp in c.Purchases
where p. Price > 1000
sel ect new { p.Description, p.Price }

b

In this example, every outer element (customer) is included, regardless of whether the customer has any
purchases. But suppose we rewrite this query with Sel ect Many, so we can obtain a single flat collection rather
than a hierarchical result set:

fromc in dataContext.Customners

fromp in c.Purchases

where p. Price > 1000

sel ect new { c.Nanme, p.Description, p.Price };

In the process of flattening the query, we've switched to an inner join; customers are now included only for
whom one or more high-value purchases exists. To get a left outer join with a flat result set, we must apply the
Def aul t | f Enpty query operator on the inner sequence. This method returns null if its input sequence has no
elements. Here's such a query, price predicate aside:

fromc in dataContext.Custoners
fromp in c.Purchases. Defaul t|fEnmpty()
sel ect new {

c. Nane,

p. Descri ption,

Price = (decimal ?) p.Price

b

This works perfectly with LINQ to SQL, returning all customers even if they have no purchases. But if we were to
run this as a local query, it would crash because when p is null, p. Descri pti on and p. Pri ce throw a
Nul | Ref er enceExcepti on. We can make our query robust in either scenario as follows:

fromc in dataContext.Custoners
fromp in c.Purchases. Defaul t|1fEnmpty()
sel ect new
{
c. Nane,
Descript = p == null ? null : p.Description,

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Price = p == null ? (decimal?) null : p.Price

}s

Let's now reintroduce the price filter. We cannot use a wher e clause as we did before because it would execute
after Defaul t | f Enpty:

fromc in dataContext.Custoners
fromp in c.Purchases. Defaul tIfEnmpty()
where p.Price > 1000. ..

The correct solution is to splice the Wher e clause before Def aul t | f Enpty with a subquery:

fromc in dataContext.Custoners
fromp in c.Purchases. Were (p => p.Price > 1000)
.Defaul t1fEmty()

sel ect new

{
c. Nane,
Descript = p == null ? null : p.Description,
Price = p == null ? (decinal?) null : p.Price
b

This translates to a left outer join in LINQ to SQL, and it is an effective pattern for writing this type of query.

If you're used to writing outer joins in SQL, you might be tempted to overlook the
u* &. simpler option of a Sel ect -subquery in favor of the awkward but familiar SQL-centric

% flat approach. The hierarchical result set from a Sel ect -subquery is often better suited
to outer join-style queries because there are no additional nulls to deal with.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LI
1.14. Joining
Method Description SQL equivalents
Joi n Applies a lookup strategy to match elements from two collections, I NNER JO N
emitting a flat result set
G oup As above, but emits a hierarchical result set INNER JO N, LEFT QUTER
Join JON

1.14.1. Join and GroupJoin
1.14.1.1. Join arguments

Argument Type

Outer sequence | Enurrer abl e<TCut er >

Inner sequence I Enuner abl e<TI nner >

Outer key selector TQuter => TKey

Inner key selector Tl nner => TKey

Result selector (TQuter, Tinner) => TResult
1.14.1.2. GroupJoin arguments

Argument Type

Outer sequence | Enuner abl e<TCut er >

Inner sequence | Enuner abl e<TIl nner >

Outer key selector TQut er => TKey

Inner key selector Tl nner => TKey

Result selector (TQut er, | Enuner abl e<TI nner >) => Tresul t

Return type = | Enuner abl e<TResul t >

1.14.1.3. Comprehension syntax
fromouter-var in outer-enunerable
join inner-var in inner-enunerable
on outer-key-expr equal s inner-key-expr
[into identifier]

1.14.1.4. Overview

Joi n and GroupJoi n mesh two input sequences into a single output sequence. Joi n emits flat output;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

G oupJoi n emits hierarchical output.

Joi n and G oupJoi n provide an alternative strategy to Sel ect and Sel ect Many. The advantage of Joi n and
GroupJoi n is that they execute efficiently over local in-memory collections because they first load the inner
sequence into a keyed lookup, avoiding the need to repeatedly enumerate over every inner element. Their
disadvantage is that they offer the equivalent of inner and left outer joins only; cross joins and non-equi joins
must still be done with Sel ect / Sel ect Many. With LINQ to SQL queries, Joi n and G oupJoi n offer no real
benefits over Sel ect and Sel ect Many.

The differences between each of the joining strategies can be summarized as follows.

Strategy Result Local query Inner Left outer Cross Nonequi
shape speed joins joins joins joins

Sel ect Many Flat Slow Yes Yes Yes Yes

Sel ect + Sel ect Nested Slow Yes Yes Yes Yes

Joi n Flat Fast Yes - - -

GroupJoi n Nested Fast Yes Yes - -

GroupJoin + Flat Fast Yes Yes - -

Sel ect Many

1.14.1.5. Join
The Joi n operator performs an inner join, emitting a flat output sequence.

The simplest way to demonstrate Joi n is with LINQ to SQL. The following query lists all customers alongside
their purchases without using an association property:

| Queryabl e<string> query =
fromc in dataContext.Custoners
join p in dataContext.Purchases
on c.|D equals p.Custonerl D
sel ect c.Nane + " bought a " + p.Description;

The results match what we would get from a Sel ect Many -style query:

Tom bought a Bi ke
Tom bought a Hol i day
Di ck bought a Phone
Harry bought a Car

To see the benefit of Joi n over Sel ect Many, we must convert this to a local query. We can demonstrate this by
first copying all customers and purchases to arrays, and then querying the arrays:

Custoner[] custoners = dat aContext. Customers. TOArray();
Purchase[] purchases = dataCont ext. Purchases. ToArray();

var sl owQuery =
fromc in custoners
fromp in purchases where c.|D == p. Custoner| D

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

select c.Name + " bought a " + p.Description;

var fastQuery =
fromc in custoners
join p in purchases on c.|D equals p.CustonerlD
select c.Name + " bought a " + p.Description;

Although both queries yield the same results, the Joi n query is considerably faster because its implementation
in Enuner abl e preloads the inner collection (pur chases) into a keyed lookup.

The comprehension syntax for j oi n can be written in general terms as follows:

join inner-var in inner-sequence
on out er-key-expr equal s inner-key-expr

Join operators in LINQ differentiate between the outer sequence and inner sequence. Syntactically:

e The outer sequence is the input sequence (in this case, cust oner s).

e The inner sequence is the new collection you introduce (in this case, pur chases).

Joi n performs inner joins, meaning customers without purchases are excluded from the output. With inner
joins, you can swap the inner and outer sequences in the query and still get the same results:

fromp in purchases
join c in custoners on p.CustonerlD equals c.ID

You can add further j oi n clauses to the same query. If each purchase, for instance, had one or more purchase
items, you could join them as follows:

fromc in custoners
join p in purchases on c.ID equal s p.CustonerlD
join pi in purchaseltens on p.ID equals pi.Purchasel D

pur chases acts as the inner sequence in the first join, and the outer sequence in the second join. You could
obtain the same results (inefficiently) using nested f or each statements as follows:

foreach (Customer c in custoners)
foreach (Purchase p in purchases)
if (c.1D == p.Custonerl D)
foreach (Purchaseltempi in purchaseltens)
if (p.1D == pi.Purchasel D
Consol e.WiteLine (c.Name + "," + p.Price +
"," + pi.Detail);

In query comprehension syntax, variables from earlier joins remain in scope-just as outer iteration variables do
with Sel ect Many-style queries. You're also permitted to insert wher e and | et clauses in between j oi n clauses.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.14.1.6. Joining on multiple keys
You can join on multiple keys with anonymous types as follows:
fromx in segX

joiny in seqY on new { Kl
equal s new { Kl

x. Propl, K2 x. Prop2 }
y.Prop3, K2 = y.Prop4 }

For this to work, the two anonymous types must be structured identically. The compiler then implements each
with the same internal type, making the joining keys compatible.

1.14.1.7. Joining in lambda syntax
The following comprehension syntax join:
fromc in custoners

join p in purchases on c.1D equal s p. Custonerl| D
sel ect new { c.Nane, p.Description, p.Price };

in lambda syntax is as follows:

custoners. Join (/1 outer collection
pur chases, /1 inner collection
c => c.1D /1 outer key sel ector
p => p. Custonerl D, /'l inner key selector
(c, p) => new /] result selector

{ c.Nane, p.Description, p.Price }
)

The result selector expression at the end creates each element in the output sequence. If you have additional
clauses prior to projecting, such as or der by in this example:

fromc in customers

join p in purchases on c.ID equals p.CustonerlD
orderby p.Price

select c.Name + " bought a " + p.Description;

you must manufacture a temporary anonymous type in the result selector in lambda syntax. This keeps both c
and p in scope following the join:

customers. Join (/1 outer collection
pur chases, /1 inner collection
c =>c.ID /1 outer key sel ector
p => p. Custonerl D, /1 inner key selector

(c, p) =>new{ c, p}) // result selector

.OrderBy (x => x.p.Price)
.Select (x => x.c.Nane + " bought a
+ x.p.Description);

Comprehension syntax is usually preferable when joining; it's less fiddly.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.14.1.8. GroupJoin

G oupJoi n does the same work as Joi n, but instead of yielding a flat result, it yields a hierarchical result,
grouped by each outer element. It also allows left outer joins.

The comprehension syntax for G oupJoi n is the same for Joi n, but it is followed by the i nt o keyword.

Here's the most basic example:

| Enuner abl e<| Enuner abl e>Pur chase>> query =
fromc in custoners
join p in purchases on c.ID equals p.CustonerlD
into custPurchases
sel ect cust Purchases; /'l custPurchases is a sequence

A
.

. An i nt o clause translates to G- oupJoi n only when it appears directly after a j oi n

wh #. clause. After a sel ect or group clause, it means query continuation. The two uses of the
" into keyword are quite different, although they have one feature in common: they both
introduce a new query variable.

The result is a sequence of sequences, which we could enumerate as follows:

foreach (1 Enumerabl e<Purchase> purchaseSequence i n query)
foreach (Purchase p in purchaseSequence)
Consol e. WiteLine (p.Description);

This isn't very useful, however, because out er Seq has no reference to the outer customer. More commonly,
you'd reference the outer iteration variable in the projection:

fromc in customers
join p in purchases on c.ID equals p.CustonerlD
i nto cust Purchases
sel ect new { CustNane = c. Nane, custPurchases };

This gives the same results as the following (inefficient) Sel ect -subquery:

fromc in custoners
sel ect new

{
Cust Nanme = c. Nane,

cust Purchases =
pur chases. Where (p => c. 1D == p. Custoner| D)

b

By default, G- oupJoi n does the equivalent of a left outer join. To get an inner join-where customers without
purchases are excluded-you need to filter on cust Pur chases:

fromc in custonmers join p in purchases
on c. 1D equals p.CustonerlD

i nto custPurchases

wher e cust Purchases. Any()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

sel ect

Clauses after a group-join i nt o operate on subsequences of inner child elements, not individual child elements.
This means that to filter individual purchases, you'd have to call Wher e before joining:

fromc in custoners

join p in purchases. Were (p2 => p2.Price > 1000)
on c.|D equal s p.Custonerl|D

into custPurchases ...

You can construct lambda queries with Gr oupJoi n as you would with Joi n.

1.14.1.9. Flat outer joins

You run into a dilemma if you want both an outer join and a flat result set. Gr oupJoi n gives you the outer join;
Joi n gives you the flat result set. The solution is to first call G oupJoi n, and then Def aul t | f Enpty on each child
sequence, and then finally Sel ect Many on the result:

fromc in custoners

join p in purchases on c.ID equal s p.CustonerlD
i nto cust Purchases

fromcp in custPurchases. Defaul tIfEmty()

sel ect new

{
Cust Nanme = c. Nane,

Price = cp == null ? (decinmal?) null : cp.Price

b

Def aul t | f Enpty emits a null value if a subsequence of purchases is empty. The second f r omclause translates
to Sel ect Many. In this role, it expands and flattens all the purchase subsequences, concatenating them into a
single sequence of purchase elements.

1.14.1.10. Joining with lookups

The Joi n and G oupJoi n methods in Enuner abl e work in two steps. First, they load the inner sequence into a
lookup. Second, they query the outer sequence in combination with the lookup.

A lookup is a sequence of groupings that can be accessed directly by key. Another way to think of it is as a
dictionary of sequences-a dictionary that can accept many elements under each key. Lookups are read-only
and defined by the following interface:

public interface | Lookup<TKey, TEl ement > :

| Enuner abl e<| Gr oupi ng<TKey, TEl enent >>, | Enuner abl e
{

int Count { get; }

bool Contains (TKey key);

| Enuner abl e<TEl enent> this [TKey key] { get; }

}

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A

".'_ The joining operators-like other sequence-emitting operators-honor deferred or lazy
wh . - execution semantics. This means the lookup is not built until you begin enumerating the
output sequence.

You can create and query lookups manually as an alternative strategy to using the joining operators when
dealing with local collections. This allows you to reuse the same lookup over multiple queries.

The ToLookupTT extension method creates a lookup. The following loads all purchases into a lookup-keyed by
their Cust oner | D:

| Lookup<i nt ?, Pur chase> pur chLookup =
purchases. ToLookup (p => p.CustonerlD, p => p);

The first argument selects the key; the second argument selects the objects that are to be loaded as values into
the lookup.

Reading a lookup is rather like reading a dictionary, except that the indexer returns a sequence of matching
items, rather than a single matching item. The following enumerates all purchases made by the customer whose
IDis 1:

foreach (Purchase p in purchLookup [1])
Consol e. WiteLine (p.Description);

With a lookup in place, you can write Sel ect Many / Sel ect queries that execute as efficiently as Joi n
/ GroupJoi n queries. Joi n is equivalent to using Sel ect Many on a lookup:

fromc in custoners
fromp in purchLookup [c. 1D
sel ect new { c.Nane, p.Description, p.Price };

Tom Bi ke 500
Tom Hol i day 2000
Di ck Bi ke 600

Di ck Phone 300

Adding a call to Def aul t | f Enpt y makes this into an outer join:

fromc in custoners
fromp in purchLookup [c.ID].Defaul tlfEnmpty()
sel ect new

{
c. Nane,
Descript = p == null ? null :p.Description,
Price = p == null ? (decinmal?) null :p.Price
b

GroupJoi n is equivalent to a reading the lookup inside a projection:

fromc in custoners
sel ect new {

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Cust Name = c. Nane,
Cust Pur chases = purchLookup [c.|D]
b

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.15. Ordering

Method

Description

SQL equivalents

O der By, ThenBy

Sorts a sequence in ascending order

CRDER BY ...

O der ByDescendi ng,

ThenByDescendi ng

Sorts a sequence in descending order

ORDER BY ..DESC

Rever se

Returns a sequence in reverse order

Exception thrown

Ordering operators return the same elements in a different order.

1.15.1. OrderBy, OrderByDescending, ThenBy, ThenByDescending

1.15.1.1. OrderBy, OrderByDescending arguments

Argument

Type

Input sequence

| Enurrer abl e<TSour ce>

Key selector

TSource => Tkey

Return type = | Or der edEnuner abl e<TSour ce>

1.15.1.2. ThenBy, ThenByDescending arguments

Argument

Type

Input sequence

| Or der edEnuner abl e<TSour ce>

Key selector

TSource => Tkey

1.15.1.3. Comprehension syntax
order by expressionl [descending]
[, expression2 [descending] ...]

1.15.1.4. Overview

Or der By returns a sorted version of the input sequence, using the keySel ect or expression to make
comparisons. The following query emits a sequence of names in alphabetical order:

| Enuner abl e<string> query = nanmes. OrderBy (s=> s);

The following sorts names by length:

| Enuner abl e<stri ng>

query =

nanes. OrderBy (s => s.Length);

/'l Result: { "Jay",

downloaded from: lib.ommolkefab.ir

"Tont, "Mary", "Dick",

"Harry" }:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The relative order of elements with the same sorting key (in this case, Jay/Tom and Mary/Dick) is
indeterminate-unless you append a ThenBy operator:

| Enuner abl e<string> query = nanmes. OrderBy (s => s. Length)
ThenBy (s => s);

/!l Result: { "Jay", "Tont, "Dick", "Mary", "Harry" };

ThenBy reorders only elements that had the same sorting key in the preceding sort. You can chain any number
of ThenBy operators. The following sorts first by length, then by the second character, and finally by the first
character:

names. OrderBy (s => s. Length)
. ThenBy (s => s[1]).ThenBy (s => s[0]);

The equivalent in comprehension syntax is this:

froms in nanes
orderby s.Length, s[1], s[O]
sel ect s;

LINQ also provides Or der ByDescendi ng and ThenByDescendi ng operators that do the same things, emitting the
results in reverse order. The following LINQ to SQL query retrieves purchases in descending order of price, with
those of the same price listed alphabetically:

dat aCont ext . Pur chases. Or der ByDescendi ng(p => p. Price)
. ThenBy (p =>p.Description);

In comprehension syntax:

fromp in dat aCont ext. Purchases
orderby p.Price descendi ng, p.Description
sel ect p;

1.15.1.5. Comparers and collations

In a local query, the key selector objects themselves determine the ordering algorithm via their default
| Conpar abl e implementation. You can override the sorting algorithm by passing in an | Conpar er object. The
following performs a case-insensitive sort:

names. OrderBy (n => n,
StringConparer. Current Cul turel gnoreCase) ;

Passing in a comparer is not supported in comprehension syntax, nor in any way by LINQ to SQL. In LINQ to
SQL, the comparison algorithm is determined by the participating column's collation. If the collation is case-
sensitive, you can request a case-insensitive sort by calling ToUpper in the key selector:

fromp in dataCont ext. Purchases

orderby p.Description. ToUpper ()
sel ect p;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.15.1.6. I0rderedEnumerable and 10rderedQueryable
The ordering operators return special subtypes of | Enuner abl e<T>; those in Enuner abl e return
| Or der edEnuner abl e; and those in Queryabl e return | Or der edQuer yabl e. These subtypes allow a subsequent

ThenBy operator to refine rather than replace the existing ordering.

The additional members that these subtypes define are not publicly exposed, so they present like ordinary
sequences.

The fact that they are different types comes into play when building queries progressively:

| Or der edEnuner abl e<stri ng> queryl
nanmes. OrderBy (s => s.Length);

| Or der edEnuner abl e<stri ng> query2
queryl. ThenBy (s => s);

If we instead declared quer y1 of type | Enuner abl e<stri ng>, the second line would not compile-ThenBy
requires an input of type | Or der edEnuner abl e<stri ng>. You can avoid worrying about this by implicitly typing
query variables:

var queryl names. OrderBy (s =>s.Length);
var query2 = queryl. ThenBy (s => s);

Implicit typing can create problems of its own, though. The following will not compile:
var query = names. OrderBy (s =>s.Length);

query = query.Were (n =>n.Length > 3); /] Error

Based on O der By's output sequence type, the compiler infers query to be of type

| Or der edEnuner abl e<stri ng>. However, the Wher e on the next line returns an ordinary | Enuner abl e<stri ng>
that cannot be assigned back to query. You can work around this either with explicit typing or by calling
AsEnuner abl e() after Or der By:

var query = names. OrderBy (s =>s.Length). AsEnunerabl e();

query =query.\Were (n => n.Length > 3); I K

The equivalent in interpreted queries is to call AsQuer yabl e.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.16. Grouping

Method| Description SQL equivalents

G oupBy Groups a sequence into subsequences CRCOUP BY

1.16.1. GroupBy

Argument Type

Input sequence | Enurrer abl e<TSour ce>
Key selector TSource => TKey

Element selector (optional) TSour ce => TEl enent
Comparer (optional) | Equal i t yConpar er <TKey>

Return type = | Enuner abl e<l G oupi ng<TSour ce, TEl enent >>

1.16.1.1. Comprehension syntax
group el ement - expressi on by key-expression

1.16.1.2. Overview

G oupBy organizes a flat input sequence into sequences of groups. For example, the following organizes all the
files in c:\temp by extension:

string[] files = Directory. GetFiles("c:\\tenp");
| Enuner abl e<| Groupi ng<string, string>> query =
files.GoupBy (file => Path. Get Extension (file));
or if you're comfortable with implicit typing:
var query = files. G oupBy
(file => Path. Get Extension (file));
Here's how to enumerate the result:
foreach (I Groupi ng<string, string>grouping in query)
{ Consol e. Wi teLine("Extension: " + grouping. Key);
foreach (string filename in grouping)

Consol e. WiteLine (" - " + filename);

}

Ext ensi on: . pdf
-- chapt er 03. pdf

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

-- chapt er 04. pdf

Ext ensi on: . doc
-- todo. doc
-- menu. doc
-- Copy of menu. doc

Enuner abl e. G oupBy works by reading the input elements into a temporary dictionary of lists so that all
elements with the same key end up in the same sublist. It then emits a sequence of groupings. A grouping is a
sequence with a Key property:

public interface | Goupi ng <TKey, TEl emrent >
| Enuner abl e<TEl enent >, | Enuner abl e

{

/'l Key applies to the subsequence as a whol e
TKey Key { get; }
}

By default, the elements in each grouping are untransformed input elements, unless you specify an
el ement Sel ect or argument. The following projects each input element to uppercase:

files. GoupBy (file =>
Pat h. Get Extension (file), file => file. ToUpper());

An el enent Sel ect or is independent of the keySel ect or. In our case, this means that the Key on each grouping
is still in its original case:

Ext ensi on: . pdf
-- CHAPTERO3. PDF
-- CHAPTERO04. PDF
Ext ensi on: .doc
-- TODO DOC

Note that the subcollections are not emitted in alphabetical order of key. Gr oupBy only groups; it does not do
any sorting- in fact, it preserves the original ordering. To sort, you must add an O der By operator:
files
.G oupBy (file =>
Pat h. Get Extension (file), file => file. ToUpper())
. Order By (grouping => grouping. Key);

Gr oupBy has a simple and direct translation in comprehension syntax:

group el enent - expr by key-expr
Here's our example in comprehension syntax:

fromfile in files
group file. ToUpper() by Path. Get Extension(file);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As with sel ect, group "ends" a query-unless you add a query continuation clause:

fromfile in files

group file. ToUpper() by Path. Get Extension(file)
into grouping

order by groupi ng. Key

sel ect grouping;

Query continuations are often useful in a group by query. The next query filters out groups that have fewer
than five files in them:

fromfile in files

group file. ToUpper()by Path. Get Extension (file)
i nto groupi ng

wher e grouping. Count() < 5

sel ect grouping;

. A wher e after a group by is equivalent to HAVI NGin SQL. It applies to each subsequence
W fi'- or grouping as a whole, rather than the individual elements.

Sometimes you're interested purely in the result of an aggregation on a grouping, and so can abandon the
subsequences:

string[] votes = {"Bush","CGore", " Core", "Bush", "Bush" };

| Enuner abl e<string> query = fromvote in votes
group vote by vote into g
orderby g. Count () descending
sel ect g. Key;

string wnner = query.First(); /'l Bush

1.16.1.3. GroupBy in LINQ to SQL

Grouping works in the same way with interpreted queries. If you have association properties set up in LINQ to
SQL, you'll find, however, that the need to group arises less frequently than with standard SQL. For instance, to
select customers with at least two purchases, you don't need to gr oup; the following query does the job nicely:

fromc in dataContext. Custoners

where c. Purchases. Count >= 2

select c.Nanme + " has made " + c. Purchases. Count
+ " purchases"”;

An example of when you might use grouping is to list total sales by year:

fromp in dataContext. Purchases
group p.Price by p.Date. Year into sal esByYear
sel ect new {
Year sal esByYear . Key,
Tot al Val ue = sal esByYear. Sum()

}s

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

LINQ's grouping operators expose a superset of SQL's "GROUP BY" functionality. Another departure from
traditional SQL is there is no obligation to project the variables or expressions used in grouping or sorting.

1.16.1.4. Grouping by multiple keys

You can group by a composite key using an anonymous type:

fromn in nanes
group n by new { FirstLetter = n[0], Length = n.Length };

1.16.1.5. Custom equality comparers

You can pass a custom equality comparer into G- oupBy, in a local query, to change the algorithm for key
comparison. Rarely is this required, though, because changing the key selector expression is usually sufficient.
For instance, the following creates a case-insensitive grouping:

group nane by nane. ToUpper ()

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4
1.17. Set Operators
Method Description SQL equivalents
Concat Returns a concatenation of elements in each of the two sequences UNI ON ALL
Uni on Returns a concatenation of elements in each of the two sequences, UNI ON
excluding duplicates
I nt er sect | Returns elements present in both sequences WHERE..L N...
Except Returns elements present in the first, but not the second sequence EXCEPT or WHERE..NOT
I'N...

1.17.1. Concat and Union

Cont act returns all the elements of the first sequence, followed by all the elements of the second. Uni on does
the same, but removes any duplicates:

int[] seql = { 1, 2, 3}, seq2 ={ 3, 4,5 };

| Enurrer abl e<i nt >
concat = seql. Concat (seq2), // {1 , 3
union = seql.Union (seq2); // { 1, 2, 3,4,
1.17.2. Intersect and Except

I nt er sect returns the elements that two sequences have in common. Except returns the elements in the first
input sequence that are not present in the second:

int[] seql = { 1, 2, 3}, seq2 = { 3, 4,5},

| Enuner abl e<i nt >
comonal ity = seql.Intersect (seq2), /1 { 3}
di fferencel seql. Except (seq2), /1 {1, 2}
di fference2 = seq2. Except (seql); /1 {4, 5}

Enuner abl e. Except works internally by loading all of the elements in the first collection into a dictionary, then
removing from the dictionary all elements present in the second sequence. The equivalent in SQL is a NOT
EXI STS or NOT | Nsubquery:

SELECT nunber FROM nunbersiTabl e
VWHERE nunber NOT | N (SELECT nunber FROM nunbers2Tabl e)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.18. Conversion Methods

LINQ deals primarily in sequences; in other words, collections of type | Enuner abl e<T>. The conversion methods
convert to and from, other types of collections:

Method Description
O Type Converts | Enuner abl e to | Enuner abl e<T>, discarding wrongly typed elements
Cast Converts | Enuner abl e to | Enuner abl e<T>, throwing an exception if there are any wrongly

typed elements
ToAr r ay Converts | Enuner abl e<T> to T[]
ToLi st Converts | Enuner abl e<T> to Li st <T>
ToDi cti onary | Converts | Enuner abl e<T> to Di cti onar y<TKey, TVal ue>
ToLookup Converts | Enuner abl e<T> to | Lookup<TKey, TEl enent >
AsEnurrer abl e | Downcasts to | Enuner abl e<T>

AsQuer yabl e | Casts or converts to | Quer yabl e<T>

1.18.1. OfType and Cast

O Type and Cast accept a nongeneric | Enuner abl e collection and emit a generic | Enuner abl e<T> sequence
that you can subsequently query:

/1 ArrayList is defined in System Col | ecti ons
ArraylLi st classiclList = new ArrayList();

cl assi cLi st. AddRange (newint[] { 3, 4,5});

| Enuner abl e<i nt > sequencel =cl assi cList. Cast<int>();

Cast and O Type differ in their behavior when encountering an input element that's of an incompatible type.
Cast throws an exception; O Type ignores the incompatible element. Continuing the preceding example:

Dat eTi me of f ender = Dat eTi ne. Now,
cl assi cLi st. Add (of fender);

| Enuner abl e<i nt > sequence2 = cl assi cLi st
. O Type<i nt>(); I/l OK - Ignoresoffending DateTine

| Enuner abl e<i nt > sequence3 = cl assi cLi st
. Cast<int>(); /1 Throws exception
The rules for element compatibility exactly follow those of C#'s i s operator. We can see this by examining the

internal implementation of O Type:

public static | Enunerabl e<TSource> O Type<TSour ce>
(1 Enuner abl e source)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

{
foreach (object elenent in source)
if (element is TSource)
yield return (TSource)el enent;

Cast has an identical implementation, except that it omits the type compatibility test:

public static | Enunerabl e<TSour ce> Cast <TSour ce>
(1 Enuner abl e source)

{

foreach (object elenent in source)
yield return(TSource)el enent;

A consequence of these implementations is that you cannot use Cast to convert elements from one value type
to another (for this, you must perform a Sel ect operation instead). In other words, Cast is not as flexible as
C#t's cast operator, which also allows static type conversions such as the following:

int i =3
long I =1i; /] Static conversion int->long
int i2 =(int) I; /1 Static conversion | ong->int

We can demonstrate this by attempting to use O Type or Cast to convert a sequence of i nt s to a sequence of
| ongs:

int[] integers = { 1, 2, 3},
| Enuner abl e<l ong> test1l =integers. O Type<l ong>();
| Enurrer abl e<l ong> test2 =i ntegers. Cast <l ong>();
When enumerated, t est 1 emits zero elements and t est 2 throws an exception. Examining O Type's

implementation, it's fairly clear why. After substituting TSour ce, we get the following expression:

(el ement is |ong)

which returns f al se for an i nt el ement, due to the lack of an inheritance relationship.
As we suggested previously, the solution is to use an ordinary Sel ect :

| Enuner abl e<l ong> castLong =
integers. Select (s => (long) s);

O Type and Cast are also useful in downcasting elements in a generic input sequence. For instance, if you had
an input sequence of type | Enuner abl e<Fruit>, O Type<Appl e> would return just the apples. This is
particularly useful in LINQ to XML.

1.18.2. ToArray, TolList, ToDictionary, ToLookup

ToArray and ToLi st emit the results into an array or generic list. These operators force the immediate
enumeration of the input sequence (unless indirected via a subquery or expression tree). For examples, refer to

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

the earlier "Deferred Execution" section.

ToDi cti onary and ToLookup accept the following arguments:

Argument Type

Input sequence | Enurmer abl e<TSour ce>
Key selector TSource => TKey

Element selector (optional) TSource => TEl ement
Comparer (optional) | Equal i t yConpar er <TKey>

ToDi cti onary also forces immediate execution of a sequence, writing the results to a generic Di cti onary. The
keySel ect or expression you provide must evaluate to a unique value for each element in the input sequence;
otherwise, an exception is thrown. In contrast, ToLookup allows many elements of the same key. We described
lookups earlier in the "Joining with lookups" section.

1.18.3. Asenumerable and AsQueryable

AsEnuner abl e upcasts a sequence to | Enuner abl e<T>, forcing the compiler to bind subsequent query operators
to methods in Enuner abl e, instead of Quer yabl e. For an example, see the the earlier "Interpreted Queries"
section.

AsQuer yabl e downcasts a sequence to | Quer yabl e<T> if it implements that interface.Otherwise, it instantiates
an | Quer yabl e<T> wrapper over the local query.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

4)
1.19. Element Operators
Method Description SQL equivalents
First, FirstO Default Returns the first element in the sequence, optionally SELECT TOP 1..0RDER
satisfying a predicate BY...
Last, LastO Default Returns the last element in the sequence, optionally SELECT TOP 1..0RDER
satisfying a predicate BY..DESC
Single, SingleO Default |Equivalent to First/ FirstO Default, but throws an
exception if there is more than one match
El enent At , Returns the element at the specified position Exception thrown

El enent At Or Def aul t

Def aul t1f Enpty Returns null or def aul t (TSour ce) if the sequence has no |OQUTER JO N
elements

Methods ending in "OrDefault” return def aul t (TSour ce) rather than throw an exception if the input sequence is
empty, or if no elements match the supplied predicate.

defaul t (TSource) = null for reference type elements, or "blank” (usually zero) for value type elements.

1.19.1. First, Last, Single

Argument Type
Source sequence | Enuner abl e<TSour ce>
Predicate (optional) TSource => bool

The following example demonstrates Fi r st and Last :

{1 2 3 4 5}

int[] nunbers

int first = nunbers. First(); /111
int |ast = nunbers. Last () ; /15
int firstEven = nunbers.First (n =>n %2 ==20); // 2
int |astEven = nunbers.Last (n =>n %2 ==0); // 4

The following demonstrates Fi r st versus Fi rst O Def aul t :

/1 Throws an exception:
int firstBigError = nunbers.First (n => n> 10);

/1 Evaluates to O:

int firstBi gNunmber =nunbers. FirstODefault(n =>n > 10);

To avoid an exception, Si ngl e requires exactly one matching element; Si ngl eOr Def aul t requires one or zero

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

matching elements:

int divisibleBy3 =
nunbers.Single (n =>n %3 ==0); // 3

int divisibleBy2Error =
nunbers. Single (n=>n %2 == 0); /1 Error: 2 matches

int singleError =
nunbers. Single (n => n> 10); /1 Error: no natches

int noMatches =
nunbers. Si ngl e Default(n => n > 10); /10

int divisibleBy2Error =
nunbers. Singl eODefault (n =>n %2 ==0); Il Error

Si ngl e is the "fussiest"” in this family of element operators; Fi rst Or Def aul t and Last Or Def aul t are the most
tolerant.
In LINQ to SQL, Si ngl e is often used to retrieve a row from a table by primary key:

Customer cust =
dat aCont ext . Custoners. Single (¢ => c.|D== 3);

1.19.2. ElementAt

Argument Type
Source sequence | Enuner abl e<TSour ce>
Index of element to return int

El enent At picks the nth element from the sequence:

{1 2 3 4 5}

int[] nunbers

int third = nunbers. El ement At (2); /1 3
int tenthError = nunbers. El enent At (9); /1 Error
int tenth = nunbers. El ement At OrDefault (9); // O

Enuner abl e. El enent At is written such that if the input sequence happens to implement | Li st <T>, it calls
I Li st <T> 's indexer. Otherwise, it enumerates n times, and then returns the next element. El enent At is not
supported in LINQ to SQL.

1.19.3. DefaultlfEmpty

Def aul t | f Enpty converts empty sequences to null/def aul t () . This is used when writing flat outer joins; see
the earlier "Outer joins with SelectMany" and "Flat outer joins" sections.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.20. Aggregation Methods

Method Description SQL
equivalents

Count, Returns the number of elements in the input sequence, optionally COUNT()

LongCount satisfying a predicate

M n, Max Returns the smallest or largest element in the sequence MN(), MAX()

Sum Average Calculates a numeric sum or average over elements in the sequence SUM), AVG ()

Aggr egat e Performs a custom aggregation Exception
thrown

1.20.1. Count and LongCount

Argument Type
Source sequence | Enuner abl e<TSour ce>
Predicate (optional) TSource => bool

Count simply enumerates over a sequence, returning the number of items:

int full Count = newint[] { 5 6, 7}.Count(); /1 3
The internal implementation of Enuner abl e. Count tests the input sequence to see whether it happens to
implement | Col | ecti on<T>. If it does, it simply calls | Col | ecti on<T>. Count . Otherwise, it enumerates over
every item, incrementing a counter.
You can optionally supply a predicate:

int digitCount =

"pa55word". Count (c => char.lsbDigit (c)); /113

LongCount does the same job as Count, but returns a 64-bit integer, allowing for sequences of greater than 2
billion elements.

1.20.2. Min and Max

Argument Type
Source sequence | Enuner abl e<TSour ce>
Result selector (optional) TSource => TResult

M n and Max return the smallest or largest element from a sequence:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

int[] nunbers = { 28, 32, 14 },
int snallest = nunbers. M n(); /1 14;
int largest = numbers. Max(); Il 32;

If you include a sel ect or expression, each element is first projected:

int smallest = nunbers.Max (n => n % 10); /1 8,

A sel ect or expression is mandatory if the items themselves are not intrinsically comparable-in other words, if
they do not implement | Conpar abl e<T>:

Purchase runti nmeError =
dat aCont ext . Purchases. M n(); /'l Runtine error

decimal ? | owestPrice =
dat aCont ext . Purchases. M n (p => p.Price); I K

A sel ect or expression determines not only how elements are compared, but also the final result. In the
preceding example, the final result is a decimal value, not a purchase object. To get the cheapest purchase, you
need a subquery:

Pur chase cheapest = dat aCont ext. Purchases
.\Were (p => p.Price ==
dat aCont ext . Purchases. M n (p2 => p2.Price))
.FirstODefault();

In this case, you could also formulate the query without an aggregation-using an Or der By followed by
FirstOrDefaul t.

1.20.3. Sum and Average

Argument Type
Source sequence | Enuner abl e<TSour ce>
Result selector (optional) TSource => TResul t

Sumand Aver age are aggregation operators that are used in similar manner to M n and Max:

decimal [] nunbers = { 3, 4, 8 };
deci mal sunffotal = nunbers. Sun(); /1 15
deci mal aver age = nunbers. Aver age() ; /1 5 (mean)

The following returns the total length of each of the strings in the nanes array:

int conbi nedLength = nanes. Sum (s =>s. Length); /1 19

Sumand Aver age are fairly restrictive in their typing. Their definitions are hard wired to each of the numeric
types (int, long, float, double, decinal, and their nullable versions). In contrast, M n and Max can

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

operate directly on anything that implements | Conpar abl e<T>-such as a stri ng, for instance.

Further, Aver age always returns either deci mal or doubl e, according to the following table.

Selector type Result type
deci nal deci nmal
int, long, float, double doubl e

This means the following does not compile (“cannot convert doubl e toi nt ™):

int avg = newint[] { 3, 4 }.Average();

But this will compile:

double avg = new int[] { 3, 4}.Average(); /1 3.5

Aver age implicitly upscales the input values to avoid loss of precision. In this example, we averaged integers
and got 3.5, without needing to resort to an input element cast:

doubl e avg = nunbers. Average (n =>(double) n);

In LINQ to SQL, Sumand Aver age translate to the standard SQL aggregations. The following query returns
customers whose average purchase was more than $500:

fromc in dataContext. Custoners
where c. Purchases. Average (p => p.Price) > 500
sel ect c. Nane;

1.20.4. Aggregate

Aggr egat e allows you to plug a custom accumulation algorithm for implementing unusual aggregations.
Aggr egat e is not supported in LINQ to SQL and is somewhat specialized in its use cases. The following
demonstrates how Aggr egat e can do the work of Sum:

int[] nunbers = { 1, 2, 3 };
int sum = nunbers. Aggregate (0, (seed, n)=> seed + n);

The first argument to Aggr egat e is the seed, from which accumulation starts. The second argument is an
expression to update the accumulated value, given a fresh element. You can optionally supply a third argument
to project the final result value from the accumulated value.

The difficulty with Aggr egat e is that a simple scalar type rarely serves the job as a useful accumulator. To
calculate an average, for instance, you need to keep a running tally of the number of the elements-as well as
the sum. Writing a custom accumulator type solves the problem, but it is uneconomical compared to the
conventional approach of using a simple f or each loop to calculate the aggregation.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.21. Quantifiers

Method Description SQL
equivalents
Cont ai ns Returns t r ue if the input sequence contains the given element WHERE..LN (.)
Any Returns t r ue if any elements satisfy the given predicate WHERE..LN (.)
All Returns t r ue if all elements satisfy the given predicate WHERE (..)

SequenceEqual |Returns true if the second sequence has identical elements to the input
sequence

1.21.1. Contains and Any
The Cont ai ns method accepts an argument of type TSour ce; Any accepts an optional predicate.
Cont ai ns returns t r ue if the given element is present:
bool isTrue = newint[] { 2, 3, 4}.Contains (3);
Any returns t r ue if the given expression is true for at least one element. We can rewrite the preceding query
with Any as follows:

bool isTrue = newint[] { 2, 3, 4 }.Any (n =>n == 3);

Any can do everything that Cont ai ns can do, and more:
bool isFalse = newint[] { 2, 3, 4 }.Any (n = n > 10);

Calling Any without a predicate returns tr ue if the sequence has one or more elements. Here's another way to
write the preceding query:

bool isFalse = newint[] { 2, 3, 4}
.\Were (n =>n > 10). Any();

Any is particularly useful in subqueries.

1.21.2. All and SequenceEqual

Al'l returns true if all elements satisfy a predicate. The following returns customers whose purchases are less
than $100:

dat aCont ext . Cust oners. Wher e

(c => c.Purchases.All (p => p.Price < 100));

SequenceEqual compares two sequences. To return true, each sequence must have identical elements, in the

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

identical order.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.22. Generation Methods

Method | Description
Enmpty Creates an empty sequence
Repeat |Creates a sequence of repeating elements

Range Creates a sequence of integers

Enpty, Repeat, and Range are static (nonextension) methods that manufacture simple local sequences.

1.22.1. Empty
Enpt y manufactures an empty sequence and requires just a type argument:
foreach (string s in Enunerabl e. Enpty<string>())

Consol e. Wite(s); /'l <not hi ng>

In conjunction with the ?? operator, Enpt y does the reverse of Def aul t | f Enpty. For example, suppose we have
a jagged array of integers, and we want to get all the integers into a single flat list. The following Sel ect Many
query fails if any of the inner arrays is null:

int[][] nunbers =

{

newint[] { 1, 2, 3},

newint[] { 4, 5 6},

nul | /1 this null mekes the query below fail.
H

| Enunerabl e<int> flat =
nunbers. Sel ect Many (innerArray =>i nnerArray);
Enpt y in conjunction with ?? fixes the problem:
| Enunrer abl e<i nt> flat = nunbers
. Sel ect Many (i nnerArray =>

innerArray ?? Enunerable. Enpty <int>());

foreach (int i in flat)
Console. Wite (i + " "); /Il 123456

1.22.2. Range and Repeat
Range and Repeat work only with integers. Range accepts a starting index and count:

foreach (int i in Enumerable. Range (5,5))
Console. Wite (i +" "); /l 56789

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Repeat accepts the number to repeat and the number of iterations:

foreach (int i in Enunerable. Repeat (5, 3))
Console. Wite (i +" "); /I 555

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.23. LINQ to XML

The .NET Framework provides a number of APIs for working with XML data. From Framework 3.5, the primary
choice for general-purpose XML document processing is LINQ to XML. LINQ to XML comprises a lightweight
LINQ-friendly XML document object model, and a set of supplementary query operators. In most scenarios, it
can be considered a complete replacement for the preceding W3C-compliant DOM, a.k.a. Xm Docunent .

o The LINQ to XML DOM is extremely well designed and highly performant. Even without
wh o R LINQ, the LINQ to XML DOM is valuable as a lightweight facade over the low-level
¥ Xm Reader and Xm Witer classes.

All LINQ to XML types are defined in the Syst em Xnl . Li nq hamespace.

1.23.1. Architectural Overview

Consider the following XML file:

<?xm version="1.0" encodi ng="utf-8" standal one="yes"?>
<custoner id="123" status="archived">
<firstname>Joe</firstnanme>
<| ast nane>Bl oggs</ | ast nane>
</ cust oner >

As with all XML files, we start with a declaration, and then a root element, whose name is cust oner . The

cust oner element has two attributes, each with a name (i d and st at us) and value (" 123" and "archi ved").
Within cust oner , there are two child elements, first nane and | ast nane, each having simple text content
("Joe" and "Bl oggs").

Each of these constructs-declaration, element, attribute, value, and text content-can be represented with a
class. And if such classes have collection properties for storing child content, we can assemble a tree of objects
to fully describe a document. This is called a document object model, or DOM.

LINQ to XML comprises two things:

¢ An XML DOM, which we call the X-DOM

e A set of about 10 supplementary query operators

As you might expect, the X-DOM consists of types such as XDocunent, XEl ement, and XAttri bute.
Interestingly, the X-DOM types are not tied to LINQ-you can load, instantiate, update, and save an X-DOM
without ever writing a LINQ query.

Conversely, you could use LINQ to query a DOM created of the older W3C-compliant types. However, this would
be frustrating and limiting. The distinguishing feature of the XDOM is that it's LINQ-friendly, meaning:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e It has methods that emit useful | Enuner abl e sequences, upon which you can query.

e Its constructors are designed such that you can build an X-DOM tree through a LINQ projection.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.24. X-DOM Overview

Figure 1-11 shows the core X-DOM types. XEl ement i s the most frequently used of these. XObj ect is the root
of the inheritance hierarchy; XEl enent and XDocunent are roots of the containership hierarchy.

Figure 1-11. Core X-DOM types

XObject
Farent Doqument

I |
XAttribute I .|' XNode '
mmt X(ontainer IPmt ![amment
rnstruu:tim

IEnumerable<XNode >

I |

XElement XDocument
Attributes Declaration

X(Data

Root

IEnumerable<XAttribute>

XDeclaration .

Figure 1-12 shows the X-DOM tree created from the following code:
string xm =
@ <custoner id='123" status='archived >
<firstname>Joe</firstnane>
<l ast name>Bl oggs<! --ni ce nane -></| ast nane>
</ cust oner >";

XEl ement custoner = XEl enent. Parse (xml);

Figure 1-12. A simple X-DOM tree

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XElement
Name = tustomer”
Attributes Kodes
XElement
Name ="firstname”
Nodes
: | XText Walve ="loe" |
XAttribute
Name ="id" XElement [Enumerable<XNode >
Volue="123" Name = “lastname”
— [XText Value ="Bloggs” |
‘ ext_Volue = Bloggs
N}Mnn.bu - # |IEnumerable< XNode =
lame = status
¥alve = “srehived” X{omment
Vialue = "
IEnumerable<XAttribute: ialue = “nice name
|Enumerable< XNode >

XObj ect is the abstract base class for all XML content. It defines a link to the Par ent element in the
containership tree as well as an optional XDocunent .

XNode is the base class for most XML content, excluding attributes. The distinguishing feature of XNode is that it
can sit in an ordered collection of mixed-type XNode's. For instance, consider the following XML:

<dat a>
Hello world
<subel enent 1/ >
<l--coment-->
<subel enent 2/ >
</ dat a>

Within the parent element <dat a>, there's first an XText node (Hel | owor | d), then an XEl enent node, then an
XComment node, and then a second XEl enent node. In contrast, an XAttri but e will tolerate only other
XAttribute's as peers.

Although an XNode can access its parent XEl enent , it has no concept of child nodes; this is the job of its
subclass XCont ai ner . XCont ai ner defines members for dealing with children and is the abstract base class for
XEl ement and XDocunent .

XEl erent introduces members for managing attributes-as well as a Nane and Val ue. In the (fairly common)
case of an element having a single XText child node, the Val ue property on XEl enent encapsulates this child's
content for both get and set operations, cutting unnecessary navigation. Thanks to Val ue, you can mostly avoid
working directly with XText nodes.

XDocunent represents the root of an XML tree. More precisely, it wraps the root XEl enent , adding an
XDecl ar at i on, processing instructions, and other root-level "fluff.” Unlike with the W3C DOM, its use is

optional: you can load, manipulate, and save an X-DOM without ever creating an XDocunent ! The non-reliance
on XDocunent also means you can efficiently and easily move a node subtree to another X-DOM hierarchy.

1.24.1. Loading and Parsing

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Both XEl enent and XDocunent provide static Load and Par se methods to build an X-DOM tree from an existing
source:

e Load builds an X-DOM from a file, URI, Text Reader, or Xm Reader .

e Par se builds an X-DOM from a string.

XNode also provides a static ReadFr ommethod, which instantiates and populates any
w) 4. type of node from an X Reader . Unlike Load, it stops after reading one (complete)
" node, so you can continue to read manually from the Xm Reader afterward.

You can also do the reverse, and use an Xm Reader or Xnml Witer to read or write an
XNode, via its Cr eat eReader and Creat eWiter methods.

For example:

XDocument fromAéb = XDocunent. Load
("http://al bahari.confsanple.xm");

XEl enent fronFile = XEl enent. Load
(@e:\nedia\sonefile.xm");

XEl ement config = XEl enent. Parse (
@ <configuration>
<client enabl ed='true' >
<ti meout >30</ti neout >
</client>
</ configuration>");

1.24.2. Saving and Serializing

Calling ToStri ng on any node converts its content to an XML string-formatted with line breaks and indentation
as we just saw. (You can disable the line breaks and indentation by specifying
SaveOpti ons. Di sabl eFormat ti ng when calling ToStri ng.)

XEl emrent and XDocunent also provide a Save method that writes an X-DOM to a file, Text Witer, or
Xm Wi ter. If you specify a file, an XML declaration is automatically written. There is also a Wit eTo method
defined in the XNode class, which accepts just an Xm Witer.

We describe the handling of XML declarations when saving in more detail in the upcoming "Documents and
Declarations” section.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.25. Instantiating an X-DOM

Rather than use the Load or Par se methods, you can build an X-DOM tree by manually instantiating objects and
adding them to a parent via XCont ai ner 's Add method.

To construct an XEl ement and XAttri but e, you simply provide a name and value:

XEl enent | ast Nane = new XEl enent ("l astnane", "Bl oggs");
| ast Name. Add (new XConment ("nice nane"));

XEl enent custoner = new XEl enment ("custoner");
customer. Add (new XAttribute ("id", 123));

cust omer. Add (new XEl erent ("firstname", "Joe"));
cust ormer . Add (| ast Nane) ;

Consol e. WiteLine (custoner. ToString());

The result:

<customer id="123">
<firstname>Joe</firstnanme>
<l ast name>Bl oggs<! - - ni ce nane -></| ast nane>
</ cust oner >

A value is optional when constructing an XEl enent -you can provide just the element name and add content
later. Notice that when we did provide a value, a simple string sufficed- we didn't need to explicitly create and
add an XText child node. The X-DOM does this work automatically, so you can deal simply with "values."

1.25.1. Functional Construction

In our preceding example, it's hard to glean the XML structure from the code. X-DOM supports another mode of
instantiation called functional construction (from functional programming). With functional construction, you
build an entire tree in a single expression:

XEl emrent custoner =
new XEl enent ("custoner", new XAttribute("id", 123),
new XEl ement ("firstnanme","joe"),
new XEl ement ("I astnane","bl oggs",
new XComment ("nice nanme")
)
)

This has two benefits. First, the code resembles the shape of the XML. Second, it can be incorporated into the
sel ect clause of a LINQ query. For example, the following LINQ to SQL query projects directly into an X-DOM:

XEl erent query =
new XEl ement ("custoners",
fromc in dataContext.Custoners
sel ect
new XEl ement ("custoner",
new XAttribute("id", c.1D),
new XEl enent ("firstname", c.FirstName),

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

new XEl ement ("l astnane", c.LastNane,
new XConment ("nice nane")

)
)
)

More on this in the upcoming "Projecting into an X-DOM" section.

1.25.2. Specifying Content

Functional construction is possible because the constructors for XEl enent (and XDocunent) are overloaded to
accept a par ans object array:

public XEl ement (XNane nanme, paranms object[] content)

The same holds true for the Add method in XCont ai ner :

public void Add (parans object[] content)

Hence you can specify any number of child objects of any type when building or appending an X-DOM. This
works because anything counts as legal content. To see how, we need to examine how each content object is
processed internally. Here are the decisions made by XCont ai ner, in order:

1. If the objectis nul |, it's ignored.

2. If the object is based on XNode or XSt r eam ngEl enment , it's added as is to the Nodes collection.

3. If the object is an XAttri but e, it's added to the Attri but es collection.

4. If the object is a stri ng, it gets wrapped in an XText node and added to Nodes.

5. If the object implements | Enuner abl e, it's enumerated and the same rules are applied to each element.

6. Otherwise, the object is converted to a string, wrapped in an XText node, and then added to Nodes. [4]

[4]1 The X-DOM actually optimizes this step internally by storing simple text content in a string. The XText node is not actually created
until you call Nodes() on the XCont ai ner .

Everything ends up in one of two buckets: Nodes or Attri but es. Furthermore, any object is valid content
because it can always ultimately call ToStri ng on it and treat it as an XText node.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A

2
R

il
[

Before calling ToSt ri ng on an arbitrary type, XCont ai ner first tests whether it is one of
the following types:

float, double, decimal, bool,
Dat eTi me, DateTi meCf fset, Ti meSpan

If so, it calls an appropriate typed ToSt ri ng method on the Xm Convert helper class
instead of calling ToStri ng on the object itself. This ensures that the data is round-
trippable and compliant with standard XML-formatting rules.

1.25.3. Automatic Deep Cloning

When a node or attribute is added to an element (whether via functional construction or an Add method), the
node or attribute's Par ent property is set to that element. A node can have only one parent element: if you add
an already parented node to a second parent, the node is automatically deep-cloned. This automatic duplication

keeps X-DOM object instantiation free of side effects-another hallmark of functional programming.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.26. Navigating/Querying an X-DOM

As you might expect, the XNode and XCont ai ner classes define methods and properties for traversing the X-
DOM tree. Unlike a conventional DOM, however, these functions don't return a collection that implements

| Li st <T>. Instead, they return either a single value or a sequence that implements | Enuner abl e<T> -upon
which you are then expected to execute a LINQ query (or enumerate with a f or each). This allows for advanced
queries as well as simple navigation tasks-using familiar LINQ query syntax.

L=
i

. Element and attribute names are case-sensitive in the XDOM-just as they are in XML.

g
i

Ey

1.26.1. Child Node Navigation

Return type Members Works on
XNode Fi r st Node XCont ai ner
Last Node XCont ai ner
| Enuner abl e Nodes() XCont ai ner *
<XNode> Descendant Nodes() XCont ai ner *
Descendant NodesAndSel f () XEl erment *
XEl enent El enent (XNane) XCont ai ner
| Enurer abl e El ement s() XCont ai ner *
<XEl enent > El enent s(XNane) XCont ai ner *
Descendant s() XCont ai ner *
Descendant s(XNane) XCont ai ner *
Descendant sAndSel f () XEl ermrent *
Descendant sAndSel f (XNane) XEl ermrent *
bool HasEl enent s XEl erment
A A
:" Functions marked with an asterisk in the third column of this table (and others
[fi'_- following) also operate on sequences of the same type. For instance, you can call Nodes

on either an XCont ai ner or a sequence of XCont ai ner objects. This is possible because
of extension methods defined in Syst em Xm . Li nq-the supplementary query operators
we talked about in the overview.

1.26.1.1. FirstNode, LastNode, and Nodes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Fi r st Node and Last Node give you direct access to the first or last child node; Nodes returns all children as a
sequence. All three functions consider only direct descendants.

1.26.1.2. Retrieving elements
The El ement s method returns just the child nodes of type XEl enent . For example:

var bench = new XEl enent ("bench",
new XEl ement ("t ool box",

new XEl enent ("handtool ", "Hamrer"),
new XEl enrent ("handtool", "Rasp")

)

new XEl ement ("t ool box",
new XEl enent ("handtool", "Saw'),
new XEl enent ("powertool", "Nailgun")

)

new XComment ("Careful with the nail gun")

)i
foreach (XEl enent e in bench.El enents())
Consol e. WiteLine (e.Name + "=" + e. Val ue);

/1 RESULT: t ool box=Hanmer Rasp
t ool box=SawNai | gun

The following LINQ query finds the toolbox with the nail gun:

| Enuner abl e<string> query =
from tool box in bench. El ements()
wher e tool box. El enents(). Any
(tool => tool.Value == "Nail gun")
sel ect tool box. Val ue;

RESULT: { "SawNailgun" }

L=

an El enent s itself is equivalent to a LINQ query on Nodes. Our preceding query could be
[4. started as follows:

fromtool box in bench. Nodes(). O Type<XEl ement >()
where ...

The next example uses a Sel ect Many query to retrieve the hand tools in all toolboxes:

| Enurrer abl e<string> query =
fromtool box in bench. El ements()
fromtool in tool box.El enents()
where tool. Nane == "handt ool "
sel ect tool. Val ue;

RESULT: { "Hanmmer", "Rasp", "Saw' }

El ement s can also return just the elements of a given name. For example:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

int x = bench. El ements ("tool box").Count(); /11 2

This is equivalent to:

Code View:
int x = bench. El ement s()
.Where (e => e.Nanme == "tool box")
. Count () ; /11 2

El ement s is also defined as an extension method accepting | Enuner abl e<XCont ai ner >. More precisely, it
accepts an argument of this type:

| Enuner abl e<T> where T : XCont ai ner
This allows it to work with sequences of elements too. Using this method, we can rewrite the query that finds
the hand tools in all toolboxes as follows:

fromtool in bench. El enents ("tool box")

. El enents ("handtool")
sel ect tool. Val ue. ToUpper();

The first call to El enent s binds to XCont ai ner 's instance method; the second call to it binds to the extension
method.

1.26.1.3. Retrieving a single element

The method El enent (singular) returns the first matching element of the given name. El enent is useful for
simple navigation, as follows:

var settings = XEl enent. Load ("databaseSettings.xm");
string cx = settings. El enent ("database")

. El ement ("connectString")
. Val ue;

El enent is equivalent to calling El ement s() and then applying LINQ's Fi r st Or Def aul t query operator with a
name matching predicate. El enment returns nul | if the requested element doesn't exist.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

=
‘.‘ El enent (" xyz") . Val ue will throw a Nul | Ref er enceExcepti on if element xyz does not
[-2 exist. If you'd prefer a nul | rather than an exception, cast the XEl enent to a string

instead of querying its Val ue property. In other words:
string xyz =

(string) settings. El ement ("xyz");

This works because XEl enent defines an explicit st ri ng conversion-just for this
purpose!

1.26.1.4. Recursive functions

XCont ai ner also provides Descendant sand Descendant Nodes methods, which return child elements or nodes,
recursively. Descendant s accepts an optional element name. Returning to our earlier example, we can use
Descendant s to find all the hand tools as follows:

Consol e. Wi teLi ne
(bench. Descendants ("handtool "). Count()); /1 3

Both parent and leaf nodes are included in a depth-first traversal. The following query extracts all comments
anywhere within the X-DOM that contain the word "careful":

| Enuner abl e<string> query =
fromc in bench. Descendant Nodes(). Of Type<XComment >()
where c. Val ue. Contains ("careful")
orderby c. Val ue
sel ect c. Val ue;

1.26.2. Parent Navigation

All XNodes have a Par ent property and Ancest or XXX methods for parent navigation. A parent is always an

XEl enent :

Return type Members Works on

XEl enent Parent { get; } XNode*

Enuner abl e Ancestors() XNode*

<XEl enent > Ancestors (XNane) XNode*
Ancest or sAndSel f () XEl enent *
Ancest or sAndSel f (XNane) XEl enent *

If x is an XEl enent , the following always prints true:

foreach (XNode child in x. Nodes())
Consol e. WiteLine (child.Parent == x);

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

It is not the same case, however, if x is an XDocunent . XDocumnent is peculiar: it can have children, but can

never be anyone

's parent! To access the XDocunent , you instead use the Docunent property-this works on any

object in the X-DOM tree.

Ancest or s returns a sequence whose first element is Par ent , and whose next element is Par ent . Parent , and
so on until the root element.

You can navigate to the root element with the LINQ query
Ancest or sAndSel f (). Last ().

Another way to achieve the same thing is to call Docunent . Root -although this works
only if an XDocunent is present.

1.26.3. Peer Node Navigation

Return type

bool

XNode

| Enuner abl e
<XNode>
| Enunrer abl e

<XEl enment >

Members Defined in
| sBef ore (XNode) XNode
| sAfter (XNode) XNode
Pr evi ousNode XNode
Next Node XNode
NodesBef oreSel f () XNode
NodesAft er Sel f () XNode
El ement sBef or eSel f () XNode
El enent sBef or eSel f (XNane) XNode
El ement sAfter Sel f () XNode
El enent sAft er Sel f (XNane) XNode

With Previ ousNode and Next Node (and Fi r st Node/ Last Node) , you can traverse nodes with the feel of a linked
list. This is noncoincidental: internally, nodes are stored in a linked list.

=

XNode internally uses a singly linked list, so Pr evi ousNode is nonperformant.

1.26.4. Attri

Return type

bool

downloaded from: lib.ommolkefab.ir

bute Navigation

Members Defined in

HasAttri butes XEl enent

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Return type Members Defined in

XAttribute At tri but e(XNane) XEl erment
FirstAttribute XEl ement
LastAttri bute XEl enent

| Enuner abl e Attributes() XEl erment

<XAttribute> Attribut es(XNane) XEl enment

In addition, XAt tri but e defines Previ ousAttribute and Next Attri bute properties, as well as Par ent .

The Attri but es method that accepts a name returns a sequence with either zero or one element; an element
cannot have duplicate attribute names in XML.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.27. Updating an X-DOM

You can update elements and attributes in the following ways:

Call Set Val ue or reassign the Val ue property.

Call Set El enent Val ue or Set Attri but eVal ue.

Call one of the RenbveXXX methods.

Call one the of the AddXXX or Repl aceXXX methods, specifying fresh content.

You can also reassign the Nane property on XEl ement objects.

1.27.1. Simple Value Updates

Members Works on
Set Val ue (object) XEl enment, XAttribute
Val ue XEl enent, XAttribute

The Set Val ue method replaces an element or attribute's content with a simple value. Setting the Val ue
property does the same, but accepts string data only. We describe both of these functions in detail later (see
the upcoming "Working with Values™ section).

An effect of calling Set Val ue (or reassigning Val ue) is that it replaces all child nodes:

XEl ement settings = new XEl enent ("settings",
new XEl emrent ("tinmeout", 30)
)
settings. Set Val ue ("blah");
Consol e. WiteLine (settings. ToString());

/1 RESULT: <settings>bl ah</settings>

1.27.2. Updating Child Nodes and Attributes

Category| Members Works on
Add Add (paramnms object[]) XCont ai ner

AddFirst (parans object[]) XCont ai ner
Remove | RenoveNodes() XCont ai ner

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Category| Members Works on
RenmoveAttri but es() XEl enent
RenmoveAl | () XEl enment

Update Repl aceNodes (parans object[]) XCont ai ner
Repl aceAttri butes (parans object[]) XEl enent
Repl aceAl | (parans object[]) XEl enment
Set El enent Val ue (XNane, object) XEl enent
Set Attri but evVal ue (XNarme, object) XEl ermrent

The most convenient methods in this group are the last two: Set El enent Val ue and Set At tri but eVal ue. They
serve as shortcuts for instantiating an XEl ement or XAttri but e and then Addi ng it to a parent, replacing any
existing element or attribute of that name:

XEl ement settings = new XEl enent ("settings");

settings. Set El ement Val ue ("timeout”, 30); // Adds child
settings. Set El enent Val ue ("timeout", 60); // Updates it

Add appends a child node to an element or document. AddFi r st does the same thing, but it inserts at the
beginning of the collection rather than at the end.

You can remove all child nodes or attributes in one hit with RenmbveNodes or RenoveAttri but es. RenoveAl | is
equivalent to calling both of these methods.

The Repl aceXXX methods are equivalent to Renovi ng and then Addi ng. They take a snapshot of the input, so
e. Repl aceNodes(e. Nodes()) works as expected.

1.27.3. Updating Through the Parent

Members Works on

AddBef oreSel f (parans object[]) XNode

AddAfter Sel f (parans object[]) XNode

Remove() XNode*, XAttribute*
Repl aceWth (parans object[]) XNode

The methods AddBef oreSel f, AddAfter Self, Renove, and Repl aceWt h don't operate on the node's children.
Instead, they operate on the collection the node itself is in. This requires that the node have a parent
element-otherwise, an exception is thrown. AddBef or eSel f and AddAft er Sel f are useful for inserting a node
into an arbitrary position:

XEl emrent items = new XEl enent ("itens",

new XEl ement ("one"),
new XEl enent ("three")

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

)
items. First Node. AddAfter Sel f (new XEl enent ("two"));

Here's the result:

<itens><one /><two /><three /></itens>

Inserting into an arbitrary position within a long sequence of elements is actually quite efficient because nodes
are stored internally in a linked list.

The Renpbve method removes the current node from its parent. Repl aceW t h does the same and then inserts
some other content at the same position. For instance:

XEl ement items = XEl ement. Parse
("<itenms><one/ ><two/ ><t hree/ ></itenms>");
i tens. First Node. Repl aceWth
(new XComment ("One was here"));

Here's the result:

<itens><!--one was here--><two /><three/ ></itens>

1.27.3.1. Removing a sequence of nodes or attributes

Thanks to extension methods in Syst em Xm . Li ng, you can also call Renpbve on a sequence of nodes or
attributes. Consider this X-DOM:

XEl enent contacts = XEl enent. Parse (
@ <contacts>
<cust oner nanme=' Mary'/>
<custoner nane='Chris' archived='true'/>
<suppl i er nanme=' Susan' >
<phone archi ved='true' >
<012345678
<!--confidential-->
</ phone>
</ supplier>
</ contacts>");

The following removes all customers:

contacts. El ements ("custoner"). Renove();

The next statement removes all archived contacts (so "Chris" disappears):
contacts. El enents()

.Where (e => (bool ?) e.Attribute ("archived") == true)
. Remove();

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

o
".'_ Internally, the Renove methods first read all matching elements into a temporary list,
«w! #. and then enumerate over the temporary list to perform the deletions. This avoids errors
L1 . - . .
-~ that could otherwise result from deleting and querying at the same time.

If we replaced El ement s() with Descendant s() , all archived elements throughout the DOM would disappear,

with this result:

<cont act s>
<cust omer nanme="Mary" />
<suppl i er nanme="Susan" />

</ cont act s>
The next example removes all contacts that feature the comment “confidential” anywhere in their tree:

contacts. El enents()

. Were (
e => e. Descendant Nodes()

. O Type<XConment >()
.Any (c => c.Value == "confidential")

). Renove();

This is the result:

<cont act s>
<cust onmer nanme="Mary" />
<cust oner nanme="Chris" archived="true"

</ cont act s>

/>

Contrast this with the following simpler query, which strips all comment nodes from the tree:

cont act s. Descendant Nodes() . O Type<XConment >() . Renove() ;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.28. Working with Values

XEl emrent and XAttri but e both have a Val ue property of type stri ng. If an element has a single XText child
node, XEl enent 's Val ue property acts as a convenient shortcut to the content of that node. With XAttri bute,
the Val ue property is simply the attribute's value.

Despite the storage differences, the X-DOM provides a consistent set of operations for working with element
and attribute values.

1.28.1. Setting Values

There are two ways to assign a value: call Set Val ue or assign the Val ue property. Set Val ue is more flexible
because it accepts not just strings, but other simple data types too:

var e = new XEl enent ("date", DateTi me. Now);
e. Set Val ue (Dat eTi ne. Now. AddDays(1));
Consol e. Wite (e.Val ue);
/1 RESULT: 2007-12-19T16: 39: 10. 734375+09: 00
We could have instead just set the element's Val ue property, but this would mean manually converting the

Dat eTi ne to a string. This is more complicated than calling ToStri ng -it requires the use of Xnm Convert for an
XML-compliant result.

When you pass a value into XEl enent or XAttri but e's constructor, the same automatic conversion takes place

for non-string types. This ensures that Dat eTi nes is correctly formatted; t r ue is written in lowercase, and
doubl e. Negativelnfinity is written as "-INF."

1.28.2. Getting Values

To go the other way around and parse a Val ue back to a base type, you simply cast the XEl enent or
XAttri but e to the desired type. It sounds like it shouldn't work- but it does! For instance:

XEl enent e = new XEl enent ("now', DateTi ne. Now);
Dat eTi me dt = (DateTine) e;

XAttribute a = new XAttribute ("resolution", 1.234);
doubl e res = (doubl e) a;

An element or attribute doesn't store Dat eTi nes or numbers natively-they're always stored as text, and then
parsed as needed. It also doesn't "remember" the original type, so you must cast it correctly to avoid a runtime
error. To make your code robust, you can put the castinatry /catch block, catching a For nat Excepti on.

Explicit casts on XEl ement and XAt tri but e can parse to the following types:

e All standard numeric types

e string, bool, DateTine, DateTimeOffset, TinmeSpan, and Guid

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

e Nul | abl e<> versions of the aforementioned value types

Casting to a nullable type is useful in conjunction with the El enent and Attri but e methods because if the
requested name doesn't exist, the cast still works. For instance, if x has no ti neout element, the first line
generates a runtime error and the second line does not:

int tineout = (int) x.El ement ("tineout"); /1 Error
int? timeout = (int?) x.Elenent ("timeout"); // OK

You can factor away the nullable type in the final result with the ?? operator. The following evaluates to 1. 0 if
the resol uti on attribute doesn't exist:

doubl e resolution =
(doubl e?) x.Attribute ("resolution") ?? 1.0;

Casting to a nullable type won't get you out of trouble, though, if the element or attribute exists and has an
empty (or improperly formatted) value. For this, you must catch a For nat Except i on.

You can also use casts in LINQ queries. The following returns "John":

var data = XEl enent. Parse (
@ <dat a>
<custoner id='1" name=' Mary' credit="100" />
<custoner id='2" nane='John' credit="150" />
<custoner id='3" nane=' Anne' />
</ data>");

| Enuner abl e<string> query =
fromcust in data. El enents()

where (int?) cust.Attribute ("credit") > 100
sel ect cust.Attribute ("nanme"). Val ue;

Casting to a nullable i nt avoids a Nul | Ref er enceExcepti on in the case of Anne, who has no credit attribute.
Another solution would be to add a predicate to the wher e clause:

where cust. Attributes ("credit"). Any()
&&(int) cust.Attribute...

The same principles apply when querying element values.

1.28.3. Values and Mixed Content Nodes

Given the value of Val ue, you might wonder when you'd ever need to deal directly with XText nodes. The
answer: when you have mixed content. For example:

<sunmar y>

An XAttribute is <bol d>not</bol d> an XNode
</ summar y>

A simple Val ue property is not enough to capture summrar y's content. The sunmar y element contains three
children: an XText node, followed by an XEl enent , followed by another XText node. Here's how to construct it:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XEl erent summary = new XEl ement ("sumary",

new XText ("An XAttribute is "),
new XEl ement ("bold", "not"),
new XText (" an XNode")

)
Interestingly, we can still query summar y's Val ue -without getting an exception. Instead, we get a
concatenation of each child's value:

An XAttribute is not an XNode

It's also legal to reassign sunmar y's Val ue, at the cost of replacing all previous children with a single new XText
node.

1.28.4. Automatic XText Concatenation

When you add simple content to an XEl enent , the X-DOM appends to the existing XText child rather than
creating a new one. In the following examples, el and e2 end up with just one child XText element whose value

is Hel | oWor | d:

var el = new XEl ement ("test", "Hello");
el. Add ("World");

var e2 = new XEl enent ("test", "Hello", "World");

If you specifically create XText nodes, however, you end up with multiple children:

var e = new XEl enent ("test",

new XText ("Hello"),

new XText ("World"));
Consol e. WiteLine (e.Value); /1 Hellowrld
Consol e. WiteLine (e.Nodes().Count()); [/ 2

XEl emrent doesn't concatenate the two XText nodes so the nodes' object identities are preserved.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.29. Documents and Declarations
1.29.1. XDocument

An XDocunent wraps a root XEl enent and allows you to add an XDecl ar ati on, processing instructions, a
document type, and root-level comments. An XDocunent is optional and can be ignored or omitted: unlike with
the W3C DOM, it does not serve as glue to keep everything together.

An XDocurent provides the same functional constructors as XEl ement . And as it's based on XCont ai ner , it also
supports the Add XXX, RenbveXXX, and Repl aceXXX methods. Unlike XEl enent , however, an XDocunent can

accept only limited content:

e A single XEl enent object (the "root")

e A single XDecl ar ati on object

e A single XDocunent Type object (to reference a DTD)

e Any number of XProcessi ngl nstructi on objects

e Any number of XConment objects

o -

i Of these, only the root XEl erent is mandatory to have a valid XDocunent . The
wh fi'- XDecl ar at i on is optional-if omitted, default settings are applied during serialization.

The simplest valid XDocunment has just a root element:

var doc = new XDocument (
new XEl ement ("test", "data")

E

Notice that we didn't include an XDecl ar at i on object. The file generated by calling doc. Save would still contain
an XML declaration, however, because one is generated by default.

The next example produces a simple but correct XHTML file, illustrating all the constructs that an XDocunent can

accept:
Code View:
var stylelnstructi on = new XProcessi nglnstruction (
"xm -styl esheet"”, "href="styles.css' type='text/css'");

var docType = new XDocumnent Type ("htm ",
"-//WBC// DTD XHTM. 1.0 Strict//EN',

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

"http://ww. w3. org/ TR xht m 1/ DTD/ xht m 1-strict.dtd",
nul l);

XNarmespace ns = "http://ww. w3. org/ 1999/ xht m ";
var root =
new XEl ement (ns + "htm ",
new XEl enent (ns + "head",
new XEl ement (ns + "title", "An XHTM. page")),
new XEl ement (ns + "body",
new XEl ement (ns + "p", "This is the content"))
)
var doc =
new XDocunent (
new XDecl aration ("1.0", "utf-8", "no"),
new XComment ("Reference a stylesheet"),
styl el nstruction,
docType,
root);

doc. Save ("test.htm");

The resultant test.html reads as follows:

<?xm version="1.0" encodi ng="utf-8" standal one="no"?>
<!--Reference a styl esheet-->
<?xm - styl esheet href="styles.css' type='text/css' ?>
<I DOCTYPE htm PUBLIC "-//WBC//DTD XHTM. 1.0 Strict//EN
"http://ww. w3. org/ TR/ xht Ml 1/ DTDY xht M 1-strict. dtd">
<htm xm ns="http://ww. w3. org/ 1999/ xht ml ">
<head>
<title>An XHTM. page</title>
</ head>
<body>
<p>This is the content</p>
</ body>
</htnm >

XDocunent has a Root property that serves as a shortcut for accessing a document's single XEl ement . The
reverse link is provided by XObj ect 's Docunent property, which works for all objects in the tree:

Consol e. Wi teLine (doc. Root. Nane. Local Nan®e) ; /] htm
XEl enent bodyNode = doc. Root. El ement (ns + "body");
Consol e. Wi teLine (bodyNode. Docunent == doc); /'l True

aa
".‘ An XDecl ar ati on is not an XNode and does not appear in the document's Nodes
W fi'- collection-unlike comments, processing instructions, and the root element. Instead, it

gets assigned to a dedicated property called Decl ar ati on. This is why "True" is
repeated four and not five times in the last example.

Recall that a document's children have no Par ent :

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Consol e. WiteLine (doc. Root. Parent == null); /Il True
foreach (XNode node in doc. Nodes())

Console. Wite
(node. Parent == null); /] TrueTrueTrueTrue

1.29.2. XML Declarations
A standard XML file starts with a declaration such as the following:

<?xm version="1. 0" encodi ng="utf-8"standal one="yes" ?>

An XML declaration ensures that the file will be correctly parsed and understood by a reader. XEl enent and
Xbocunent follow these rules in emitting XML declarations:

e Calling Save with a filename always writes a declaration.

e Calling Save with an Xml Wit er writes a declaration unless the Xml Wi t er is instructed otherwise.

e The ToStri ng method never emits an XML declaration.

You can instruct an Xml Wit er not to produce a declaration by setting the
wh . = OnitXnl Decl aration and Conf or manceLevel properties of an Xm WiterSettings
object when constructing the Xml Witer.

The presence or absence of an XDecl ar at i on object has no effect on whether an XML declaration gets written.
The purpose of an XDecl ar at i on is instead to hint the XML serialization process-in two ways:

e What text encoding to use

e What to put in the XML declaration's encoding and standalone attributes (should a declaration be written)

XDecl ar at i on's constructor accepts three arguments, which correspond to the version, encoding, and
standalone attributes. In the following example, test.xml is encoded in UTF-16:

var doc = new XDocunent (
new XDecl aration ("1.0", "utf-16", "yes"),
new XEl ement ("test", "data")
)

doc. Save ("test.xm");

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A

2
R

il
[
&

Whatever you specify for the XML version is ignored by the XML writer: it always writes
"1.0".

The encoding must use an IETF code such as "ut f- 16" -just as it would appear in the XML declaration.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.30. Names and Namespaces

Just as .NET types can have namespaces, so too can XML elements and attributes.

XML namespaces achieve two things. First, rather like namespaces in C#, they help avoid naming collisions.
This can become an issue when you merge data from one XML file into another. Second, namespaces assign
absolute meaning to a name. The name "nil,"” for instance, could mean anything. Within the
http://www.w3.0rg/2001/XMLSchema-instancenamespace, however, "nil" means something equivalent to nul |
in C# and comes with specific rules on how it can be applied.

A namespace in XML is defined with the xm ns attribute:

<custonmer xm ns="CReilly. Nutshell.CSharp"/>

xm ns is a special reserved attribute. When used in this manner, it performs two functions:

e |t specifies a namespace for the element in question.

e |t specifies a default namespace for all descendant elements.
You can also specify a namespace with a prefix -an alias that you assign to a namespace to avoid repetition.
There are two steps-defining the prefix and using the prefix. You can do both together as follows:

<nut:customer xm ns:nut="OReilly. Nutshell.CSharp"/>

Two distinct things are happening here. On the right, xm ns: nut =".." defines a prefix called nut and makes it
available to this element and all its descendants. On the left, nut : cust omer assigns the newly allocated prefix to
the cust omer element.

A prefixed element does not define a default namespace for descendants. In the following XML, fir st name has
an empty namespace:

<nut: cust omer nut:xm ns="OReilly. Nutshell.CSharp">
<firstnane>Joe</firstnane>
</ cust oner >

To give firstnanme the ORei | | y. Nut shel | . CShar p prefix, we must do this:
<nut: customer xm ns: nut="0ORei |l | y. Nut shel | . CShar p" >

<nut:firstname>Joe</firstnanme>
</ cust oner >

XML lets you define prefixes purely for the convenience of your descendants, without assigning any of them to
the parent element itself. The following defines two prefixes, i and z, while leaving the cust oner element itself
with an empty namespace:

<cust omer
xmns:i="http://ww.w3. org/ 2001/ XM_Schena-i nst ance"

downloaded from: lib.ommolkefab.ir

http://www.w3.org/2001/XMLSchema-instance
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

xm ns: z="http://schemas. m crosoft.conf Serialization/">
</ cust orer >
(Both namespaces in this example are URIs. It is standard practice to use URIs [that you own]; it ensures
namespace uniqueness.)

You can also assign namespaces to attributes; the main difference is that it always requires a prefix. For
instance:

<cust oner

xm ns: nut="ORei | | y. Nut shel | . CSharp" nut:id="123" />

Another difference is that an unqualified attribute always has an empty namespace: it never inherits a default
namespace from a parent element.

1.30.1. Specifying Namespaces in the X-DOM

So far in this book, we've used just simple strings for XEl enent and XAttri but e names. A simple string
corresponds to an XML name with an empty namespace-rather like a .NET type defined in the global
namespace.

There are a couple of ways to specify an XML namespace. The first is to enclose it in braces before the local
name. For example:

var e = new XEl enent
("{http://domai n. coml xn space} custonmer”, "Bl oggs");
Consol e.WiteLine (e.ToString());
Here's the resultant XML:
<cust onmer xm ns="http://domai n. com xn space" >

Bl oggs
</ cust oner >

The second (and more performant) approach is to use the XNanespace and XNane types. Here are their
definitions:

public seal ed cl ass XNanespace

{
public string NanespaceNane { get; }
}
public seal ed cl ass XNane
{
public string Local Nane { get; }
publ i c XNanmespace Nanespace { get; } /1 Optional
}

Both types define implicit casts from stri ng, so the following is legal:

XNamespace ns = "http://domai n. com xn space";
XNane | ocal Name = "custoner";
XNarme full Nanme = "{http://domain.conl xnm space}custoner"”;

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

XNane also overloads the + operator, allowing you to combine a namespace and name without using braces:

XNamespace ns = "http://domai n. con’ xn space";
XNarme ful | Nane = ns + "custoner"”;
Consol e. WiteLine (full Nane);

/1 RESULT: {http://donmin.conl xm space}cust oner

All constructors and methods in the X-DOM that accept an element or attribute name actually accept an XNane
object rather than a stri ng. The reason you can substitute a string-as in all our examples to date-is because
of the implicit cast.

Specifying a namespace is the same whether for an element or an attribute:

XNanmespace ns = "http://domai n. com xnl space";
var data = new XEl ement (ns + "data",
new XAttribute (ns + "id", 123)

)
1.30.2. The X-DOM and Default Namespaces
The X-DOM ignores the concept of default namespaces until it comes time to actually output XML. This means

that when you construct a child XEl enent , you must explicitly give it a namespace if needed: it will not inherit
from the parent:

XNamespace ns = "http://donai n. conl xm space";

var data = new XEl emrent (ns + "data",
new XEl ement (ns + "customer", "Bl oggs"),
new XEl ement (ns + "purchase", "Bicycle")

)

The X-DOM does, however, apply default namespaces when reading and outputting XML:
Consol e. WiteLine (data. ToString());

QUTPUT:
<data xm ns="http://donai n. conl xm space" >
<cust oner >Bl oggs</ cust oner >
<pur chase>Bi cycl e</ pur chase>
</ dat a>

Consol e. Wi teLine
(data. El enent (ns + "custoner").ToString());

QUTPUT:

<custonmer xm ns="http://domai n. com xm space" >Bl oggs
</ cust oner >

If you construct XEl enent children without specifying namespaces-in other words:

XNamespace ns = "http://donai n. conf xm space";
var data = new XEl enent (ns + "data",
new XEl enent ("custonmer", "Bl oggs"),

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

new XEl enent ("purchase", "Bicycle")
)i
Consol e. WiteLine (data. ToString());

you get this result instead:
<data xm ns="http://donai n. com xm space" >
<cust ormer xm ns="">Bl oggs</ cust oner >

<pur chase xm ns="">Bi cycl e</ purchase>
</ dat a>

Another trap is failing to include a namespace when navigating an X-DOM:

XNanmespace ns = "http://domai n. com xnl space";
var data = new XEl emrent (ns + "data",
new XEl enent (ns + "customer", "Bl oggs"),
new XEl ement (ns + "purchase", "Bicycle")
)
XEl enent x = data. Elenent (ns + "custoner"); /1 ok
XEl erent y = data. El enent ("custonmer"); /1 null

If you build an X-DOM tree without specifying namespaces, you can subsequently assign every element to a
single namespace as follows:

foreach (XEl enent e in data. Descendant sAndSel f())

if (e.Nane. Nanespace == "")
e.Nane = ns + e. Nane. Local Nane;

1.30.3. Prefixes
The X-DOM treats prefixes just as it treats namespaces: purely as a serialization function. This means you can
choose to completely ignore the issue of prefixes-and get by! The only reason you might want to do otherwise

is for efficiency when outputting to an XML file. For example, consider this:

XNanmespace nsl = "http://test.com spacel”;
XNamespace ns2 = "http://test.com space2";

var mx = new XEl enent (nsl + "data",

new XEl ement (ns2 + "elenent", "value"),
new XEl ement (ns2 + "elenment", "value"),
new XEl emrent (ns2 + "elenent", "val ue")

E

By default, XEl erent will serialize this as follows:

<data xm ns="http://test.conm spacel">
<el enment xm ns="http://test.conl space2">val ue</ el enent >
<el ement xm ns="http://test.conl space2">val ue</ el enent >
<el ement xm ns="http://test.conl space2">val ue</ el enent >
</ dat a>

As you can see, there's a bit of unnecessary duplication. The solution is not to change the way you construct the
X-DOM, but to hint the serializer prior to writing the XML. You do this by adding attributes defining prefixes that

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

you want to see applied. This is typically done on the root element:

m x. Set Attri but eVal ue (XNanespace. Xn ns + "nsl1l", nsl);
m x. Set Attri but eVal ue (XNanespace. Xm ns + "ns2", ns2);

This assigns the prefix "ns1" to our XNanespace variable ns1, and "ns2" to ns2. The X-DOM automatically picks

up these attributes when serializing and uses them to condense the resulting XML. Here's the result now of
calling ToString on m x:

<nsl:data xm ns: nsl="http://test.coni spacel”
xm ns: ns2="http://test.conl space2">
<ns2: el enent >val ue</ ns2: el enent >
<ns2: el enent >val ue</ ns2: el enent >
<ns2: el enment >val ue</ ns2: el enent >
</ nsl: dat a>

Prefixes don't change the way you construct, query, or update the X-DOM-for these activities you ignore the
presence of prefixes and continue to use full names. Prefixes come into play only when converting to and from
XML files or streams.

Prefixes are also honored in serializing attributes. In the following example, we record a customer's date of birth
and credit as "ni | " using the W3C-standard attribute. The high-lighted line ensures that the prefix is serialized
without unnecessary namespace repetition:

XNanespace xsi =
"http://ww. w3. or g/ 2001/ XM_Schena- i nst ance";

var nil = new XAttribute (xsi + "nil", true);
var cust =
new XEl ement ("custoners",
new XAttribute (XNanmespace. Xm ns + "xsi", xsi),
new XEl enent ("custoner",
new XEl erent ("l astnane", "Bl oggs"),

new XEl ement ("dob", nil),
new XEl ement ("credit", nil)
)
)

This is its XML:

<cust oner s>
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" >
<cust oner >
<l ast name>Bl oggs</ | ast nane>
<dob xsi:nil="true" />
<credit xsi:nil="true" />
</ cust omer >
</ cust oner s>

For brevity, we predeclared the nil XAt tri but e so that we could use it twice in building the DOM. You're allowed
to reference the same attribute twice because it's automatically duplicated as required.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

1.31. Projecting into an X-DOM

You can also use LINQ queries to project into an X-DOM. The source can be anything over which LINQ can
query, such as:

e LINQ to SQL Tabl es
e A local collection
e Another X-DOM

Regardless of the source, the strategy is the same in using LINQ to emit an X-DOM: you first write a functional
construction expression that produces the desired X-DOM shape, and then build a LINQ query around the

expression.

For instance, suppose we wanted to retrieve customers from a database into the following XML:

<cust oner s>
<customer id="1">
<name>Sue</ nane>
<buys>3</ buys>
</ cust oner >

</ cust oner s>

We start by writing a functional construction expression for the X-DOM using simple literals:

var custoners =
new XEl enent ("custoners",
new XEl enment ("custoner", new XAttribute ("id", 1),
new XEl erent ("nane", "Sue"),
new XEl ement ("buys", 3)
)
)

We then turn this into a projection and build a LINQ query around it:

var custoners =
new XEl ement ("custoners",
fromc in dataContext.Custoners
sel ect
new XEl ement ("custoner",

new XAttribute ("id", c.1D),
new XEl ement ("nane", c.Nane),
new XEl enent ("buys", c.Purchases. Count)

)
)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Here's the result:

<cust oner s>

<customrer id="1">
<nanme>Tonk/ first nane>
<buys>3</ buys>

</ cust oner >

<customer id="2">
<nane>Harry</first name>
<buys>2</ buys>

</ cust oner >

</ cust oner s>

The outer query in this case defines the line at which the query transitions from being a remote LINQ to SQL
query to a local LINQ to enumerable query. XEl enent 's constructor doesn't know about | Quer yabl e<>, so it
forces enumeration of the LINQ to SQL query-and execution of the SQL statement.

1.31.1. Eliminating Empty Elements

Suppose in the preceding example that we also wanted to include details of the customer's most recent
highvalue purchase. We could do this as follows:

Code View:
var custoners =
new XEl ement ("custoners",
fromc in dataContext.Custoners
let lastBigBuy = (fromp in c.Purchases
where p.Price > 1000
orderby p.Date descendi ng
select p).FirstO Defaul t()
sel ect
new XEl ement ("custoner",
new XAttribute ("id", c.1D),
new XEl ement ("nane", c.Nane),
new XEl ement ("buys", c. Purchases. Count),
new XEl enent ("I ast Bi gBuy",
new XEl ement ("description",
| ast Bi gBuy == nul |
? null: |astBigBuy.Description),
new XEl enent ("price",
| ast Bi gBuy == nul |
? Om : 1| astBi gBuy. Price)

This emits empty elements, though, for customers with no high-value purchases. (If it were a local query, not a
LINQ to SQL query, a Nul | Ref er enceExcepti on would be thrown. In such cases, it would be better to omit the

| ast Bi gBuy node entirely. We can achieve this by wrapping the constructor for the | ast Bi gBuy element in a
conditional operator:

sel ect
new XEl ement ("custoner",

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

new XAttribute ("id", c.1D),
new XEl emrent ("nane", c.Nane),
new XEl ement ("buys", c.Purchases. Count),
| ast BigBuy == null ? null
new XEl enent ("I ast Bi gBuy",
new XEl ement ("description",
| ast Bi gBuy. Descri ption),
new XEl ement ("price", |astBigBuy.Price)

For customers with no | ast Bi gBuy, a nul | is emitted instead of an empty XEl enent . This is what we want
because nul | content is simply ignored.

1.31.2. Streaming a Projection

If you're projecting into an X-DOM only to Save it (or call ToStri ng on it) you can improve memory efficiency
through an XSt r eam ngEl ement . An XSt r eam ngEl enment is a cut-down version of XEl enent that applies deferred
loading semantics to its child content. To use it, you simply replace the outer XEl enent s with

XSt r eani ngEl enent s:

var customers =
new XSt rean ngEl ement ("custoners"”,
fromc in dataContext.Custoners
sel ect
new XStreamn ngEl ement ("customer",
new XAttribute ("id", c.1D),
new XEl emrent ("nane", c.Nane),
new XEl enent ("buys", c.Purchases. Count)
)
)

customers. Save ("data.xm");

The queries passed into an XSt r eam ngEl enent 's constructor are not enumerated until you call Save,
ToString, or WiteTo on the element; this avoids loading the whole X-DOM into memory at once. The flipside is
that the queries are reevaluated should you re-Save. Also, you cannot traverse an XSt r eam ngEl enment 's child
content-it does not expose methods such as El ements or Attri butes.
XSt r eani ngEl enent is not based on XObj ect -nor any other class-because it has such a limited set of
members. The only members it has, besides Save, ToString, and WiteTo, are the following:

e An Add method, which accepts content like the constructor

e A Name property

XSt r eanm ngEl enent does not allow you to read content in a streamed fashion-for this, you must use an
Xm Reader in conjunction with the X-DOM.

1.31.3. Transforming an X-DOM

You can transform an X-DOM by reprojecting it. For instance, suppose we want to transform an msbuild XML
file, used by the C# compiler and Visual Studio to describe a project, into a simple format suitable for
generating a report. An msbuild file looks like this:

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<Proj ect Defaul t Target s="Bui | d"
xm ns="http://schemas. m crosoft.confdev...>
<Pr opertyG oup>
<Pl atform Condi tion=" '$(Platform' == ">
AnyCPU
</ Pl atfornp
<Pr oduct Ver si on>9. 0. 11209</ Pr oduct Ver si on>

</ PropertyG oup>
<l tenG oup>
<Conpi | e | ncl ude="bj ect G aph. cs" />
<Conpi | e | ncl ude="Program cs" />
<Conpi | e I ncl ude="Properties\Assenbl yl nfo.cs" />
<Conpi | e I ncl ude="Test s\ Aggr egati on. cs" />
<Conpi | e I ncl ude="Test s\ Advanced\ Recur si veXm . cs" />
</|tenmG oup>
<l tenG oup>

</ltenG oup>

</ Proj ect >

Let's say we wanted to include only files, as follows:

<Pr oj ect Report >

<Fi | e>bj ect G aph. cs</Fi |l e>

<Fi | e>Program cs</ Fi | e>

<Fi | e>Properties\ Assenbl yl nfo. cs</Fil e>

<Fi | e>Test s\ Aggr egati on. cs</Fil e>

<Fi | e>Test s\ Advanced\ Recur si veXm . cs</ Fi | e>
</ Proj ect Report >

The following query performs this transformation:

XEl enent project = XEl ement. Load("nyProjectFile.csproj");
XNamespace ns = proj ect. Nane. Nanmespace;
var query =
new XEl enent ("ProjectReport",
fromconpileltemin
project.Elements (ns + "ltenG oup")
.Elenents (ns + "Conpile")

let include = conpileltemAttribute ("Include")

where include != null

sel ect new XEl enent ("File", include. Val ue)

)

The query first extracts all | t emG oup elements, and then uses the El enent s extension method to obtain a flat
sequence of all their Conpi | e subelements. Notice that we had to specify an XML namespace-everything in the
original file inherits the namespace defined by the Pr oj ect element-so a local element name such as

I t enGr oup won't work on its own. Then, we extracted the | ncl ude attribute value and projected its value as an

element.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F1 [GT [H] [17 (1 [L] [M] [NT [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [91 [L] [M] [N] [O] [P] [QT [R] [S] [T] [U] [V] [W] [X] [Y]

Add method 2nd
AddAfterSelf method
AddBeforeSelf method
AddFirst method
Aggregate method 2nd
aggregation methods 2nd 3rd 4th 5th
Aggregate
Average 2nd
Count
LongCount
Max 2nd
Min 2nd
Sum 2nd
All method
Ancestors method
AncestorsAndSelf method
anonymous types
Any method
AsEnumerable method 2nd 3rd
advantage of using
AsQueryable method 2nd 3rd
associations (LINQ to SQL) 2nd
Attributes method
Average method 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F1 [G] [H] [11 [[L1 [M] [NT [O] [P] [Q1 [R] [ST [T1 [V] [V] [W] [X] [Y]
building query expressions 2nd 3rd 4th 5th 6th

expression trees 2nd
methods

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F1 [G] [H] [11 (1 [L] [M] [NT [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

captured variables
Cast method 2nd 3rd
casting to nullable type
chaining query operators 2nd 3rd 4th
Column attribute
compiling expression trees
composition strategies 2nd
comprehension queries 2nd 3rd 4th 5th 6th
group clause
iteration variable
mixed syntax queries
OrderBy method
Select method
Where method
Concat method
Contains method
conversion methods 2nd 3rd 4th
AsEnumerable
AsQueryable
Cast 2nd 3rd 4th
OfType 2nd 3rd 4th
ToArray
ToDictionary
TolList
TolLookup
correlated subqueries 2nd
Count method
Cross join
LINQ to SQL 2nd
cross product
custom equality comparers

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [91 [L] [M] [N] [O] [P] [QT [R] [S] [T] [U] [V] [W] [X] [Y]

database schema

DataContext class 2nd 3rd
multitier applications
SubmitChanges method

DataloadOptions class 2nd
AssociateWith method

decorator sequences

DefaultIfEmpty method 2nd

deferred execution 2nd 3rd 4th 5th 6th
with LINQ to SQL

deferred loading with XML (streaming)

delegates versus expression trees 2nd

Descendants method

DescendantsAndSelf method

Distinct method 2nd

document object model (DOM)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [91 [L] [M] [N] [O] [P] [QT [R] [S] [T] [U] [V] [W] [X] [Y]

eager loading (LINQ to SQL)
Element method
element operators 2nd 3rd 4th
element typing
ElementAt method 2nd 3rd
ElementAtOrDefault method
elements
mapping input to output
projected
Elements method
ElementsAfterSelf method
ElementsBeforeSelf method
elementSelector
Empty method
entities (LINQ to SQL)
automatic entity generation
EntityRef type
EntitySet
Enumerable class 2nd
query operators
Enumerable.Where
equi-join
Except method
expanding and flattening subsequences
Expression class
expression trees 2nd 3rd 4th 5th 6th 7th
methods

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [91 [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

filtering 2nd 3rd

indexed
First method 2nd 3rd
FirstAttribute method
FirstNode
FirstOrDefault method 2nd
foreign keys
from clause 2nd

multiple from clauses
Func signatures
functional construction (LINQ to XML) 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F1 [G] [H] [17 (1 [L] [M] [NT [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

generation methods
Empty
Range
Repeat

group clause

GroupBy method 2nd 3rd 4th
grouping by multiple keys
LINQ to SQL
overview 2nd

GroupJoin method 2nd 3rd 4th
flat outer joins
joining with lookups 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index
[A] [B] [C] [D1 [E] [F] [G] [H1 [1] [31 [L] [M] N1 [O] [P1 [Q1 [R] [S] [T1 [UI [V] [W] [X] [Y]

HasAttributes method
HasElements method

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 [31 [L] [M] [N] [O] [P] [QT [R] [S] [T] [U] [V] [W] [X] [Y]

IEnumerable interface

implicit typing

indexed filtering

interpreted queries 2nd 3rd 4th 5th 6th 7th 8th
Enumerable.AsEnumerable 2nd
execution 2nd
how they work 2nd 3rd 4th
IQueryable

Intersect method

into keyword

I0rderedEnumerable

I0rderedQueryable

IQueryable
implementations

IsAfter method

IsBefore method

IsPrimaryKey property

iteration variable 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [11 [3] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Join method 2nd 3rd
lambda syntax
multiple keys
joining 2nd 3rd 4th 5th 6th
Cross join
LINQ to SQL
Join method
lambda syntax
LINQ to SQL 2nd 3rd 4th

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 (91 [1] [M] [N] [O] [P] [QT [R] [S] [T] [U] [V] [W] [X] [Y]

lambda expressions
composing 2nd
lambda queries 2nd 3rd 4th 5th 6th 7th 8th
composing lambda expressions 2nd 3rd
natural ordering
syntax
joining in
versus query syntax
LambdaExpression class
Last method 2nd 3rd
LastAttribute method
LastNode
LastOrDefault method
lazy evaluation
let keyword
LINQ to SQL 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
Cross join
deferred execution 2nd
entity classes 2nd 3rd 4th
subqueries and joins 2nd 3rd 4th
updates 2nd
LINQ to XML 2nd 3rd 4th
architectural overview
automatic deep cloning
containership hierarchy
default namespaces 2nd 3rd 4th
documents and declarations 2nd 3rd 4th 5th 6th
functional construction
expression
inheritance hierarchy
instantiating 2nd
loading and parsing
navigating and querying 2nd 3rd 4th 5th 6th 7th 8th
attribute navigation
child node navigation 2nd 3rd 4th
parent navigation
peer node navigation
overview 2nd
prefixes 2nd 3rd
projecting into 2nd 3rd 4th 5th
eliminating empty elements
streaming projection
recursive functions
retrieving elements 2nd 3rd 4th
saving and serializing
specifying content 2nd
specifying namespaces 2nd
transforming
updating 2nd 3rd 4th
child nodes and attributes
removing sequence of nodes or attributes
simple value updates
through parent 2nd 3rd
working with values 2nd 3rd 4th 5th
Load method

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

local queries

local sequence
LongCount method
lookups

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 (91 [L] [M] [N] [©] [P] [QT [R] [S] [T] [U] [V] [W] [X] [Y]

Max method 2nd

Min method 2nd
mixed syntax queries
MoveNext

multiple keys

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 (91 [L] [M] [N] [©] [PT [QT [R] [S] [T] [U] [V] [W] [X] [Y]

NextNode method
Nodes method
NodesAfterSelf method
NodesBeforeSelf method
non-equi join

nullable type
NullReferenceException

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F1 [G] [H] [11 (1 [L] [M] [NT [O1 [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

object hierarchies (projecting into)
object initializers
ObjectTrackingEnabled
OfType method 2nd
OrderBy method 2nd 3rd 4th 5th 6th
comprehension queries
lambda expressions
OrderByDescending method 2nd
ordering 2nd 3rd
comparers and collations
I0rderedEnumerable
I0rderedQueryable
outer iteration variables 2nd
outer joins with GroupJoin 2nd 3rd 4th
outer joins with SelectMany method 2nd 3rd 4th
outer sequence
join operators
outer variable semantics

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 (91 [L] [M] [NT [O] [PT [QT [R] [S] [T] [U] [V] [W] [X] [Y]

Parent method
Parse method
predicate
prefixes (XML)
PreviousNode method
primary keys (LINQ to SQL)
progressively constructing queries
projecting 2nd 3rd 4th
comprehension syntax
concrete types
indexed projection
LINQ to SQL SelectMany method 2nd 3rd 4th
outer iteration variables
subqueries and object hierarchies
projection strategies 2nd 3rd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F1 [G] [H] [17 (1 [L] [M] [NT [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

quantifiers 2nd
queries
mixed syntax
wrapping 2nd
query comprehension syntax
query continuation 2nd
query operators 2nd
lambda expressions
standard
query processing
Queryable class
standard set of methods

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 (91 [L] [M] [NT [O] [P] [Q] [R1 [S] [T [V] [V] [W] [X] [Y]

Range method
Remove method 2nd
calling on sequence of nodes
RemoveAll method
RemoveAttributes method
RemoveNodes method
Repeat method
Replace method
ReplaceAll method
ReplaceAttributes method
ReplaceNodes method
ReplaceWith method
Reverse method

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F1 [G] [H] [11 (1 [L] [M] [NT [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Save method
Select method 2nd 3rd
concrete types
LINQ to SQL 2nd
ordering
SelectMany method 2nd 3rd 4th
comprehension syntax
joining
LINQ to SQL 2nd
overview 2nd
versus Join
SequenceEqual method
sequences
set operators
SetAttributeValue method
SetElementValue method 2nd
SetValue method
Single method 2nd 3rd 4th
SingleOrDefault method 2nd
Skip method 2nd 3rd
SkipWhile method
SQL
AVG ()
COUNT()
CROSS JOIN
EXCEPT
GROUP BY
INNER JOIN 2nd
LEFT OUTER JOIN 2nd
MAX()
MIN()
NOT IN
ORDER BY 2nd
ORDER BY ... DESC
SELECT
SELECT DISTINCT
SELECT TOP 1
subqueries
SUM()
UNION
UNION ALL
WHERE 2nd
WHERE ... IN 2nd
WHERE ROW_NUMBER
SQL Server 2nd 3rd 4th
auto-incrementing field
ROW_NUMBER function
SQL syntax versus LINQ query syntax
SqglMetal 2nd
standard query operators
subqueries 2nd 3rd 4th
correlated 2nd
deferred execution of
Select method
Sum method 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

System.Core
System.Ling

standard query operators
System.Ling.Expressions

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [GT [H] [17 (91 [L] [M] [NT [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Table attribute

Take method 2nd 3rd
TakeWhile method
TextWriter

ThenBy method
ThenByDescending method 2nd
ToArray method 2nd
ToDictionary method 2nd
ToList method 2nd
ToLookup method 2nd
ToString method

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D]1 [E] [F] [G] [H] [17 [91 [L1 [M1 [N] [O] [P] [Q1 [R1 [S] [T1 [V] [V1 [W] [X] [Y]
Union method 2nd

updates
using System.Ling directive

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index
[A] [B] [C] [D1 [E] [F] [G] [H] [11 [91 [L] [M] [N] [O1 [P] [Q] [R1 [S1 [T1 [U] [V1 [W] [X] [Y]

var keyword 2nd
Visual Studio 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D]1 [E] [F] [G] [H] [17 [91 [L1 [M1 [N] [O] [P] [Q1 [R1 [S] [T1 [U] [V1 [WI1 [X] [Y]
Where method 2nd 3rd 4th 5th

LINQ to SQL
wrapping queries 2nd

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F1 [G] [H] [17 (1 [L] [M] [NT [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

XAttribute
Value property 2nd 3rd 4th
getting values 2nd
setting values
XComment 2nd
XContainer
child nodes
decisions
ToString
XDeclaration
absence
XDocument 2nd 3rd 4th
accepted content
constructs
Root property
XElement
XDocumentType
XElement
namespaces
XDocument
XML
declarations
names and namespaces 2nd 3rd 4th 5th 6th 7th 8th 9th
prefixes 2nd
serialization
XmIWriter
XName 2nd
+ operator
XNamespace
XNode
XObject
Document property
XProcessinglnstruction
XStreamingElement
XText
automatic concatenation
values and mixed content nodes

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [17 (91 [L] [M] [NT [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

yield return

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	LINQ Pocket Reference
	Table of Contents
	Copyright
	Chapter 1. LINQ Pocket Reference
	Section 1.1. Getting Started
	Section 1.2. Lambda Queries
	Section 1.3. Comprehension Queries
	Section 1.4. Deferred Execution
	Section 1.5. Subqueries
	Section 1.6. Composition Strategies
	Section 1.7. Projection Strategies
	Section 1.8. Interpreted Queries
	Section 1.9. LINQ to SQL
	Section 1.10. Building Query Expressions
	Section 1.11. Query Operator Overview
	Section 1.12. Filtering
	Section 1.13. Projecting
	Section 1.14. Joining
	Section 1.15. Ordering
	Section 1.16. Grouping
	Section 1.17. Set Operators
	Section 1.18. Conversion Methods
	Section 1.19. Element Operators
	Section 1.20. Aggregation Methods
	Section 1.21. Quantifiers
	Section 1.22. Generation Methods
	Section 1.23. LINQ to XML
	Section 1.24. X-DOM Overview
	Section 1.25. Instantiating an X-DOM
	Section 1.26. Navigating/Querying an X-DOM
	Section 1.27. Updating an X-DOM
	Section 1.28. Working with Values
	Section 1.29. Documents and Declarations
	Section 1.30. Names and Namespaces
	Section 1.31. Projecting into an X-DOM

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

