
 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Cascading Style Sheets, 2nd Edition

By Eric Meyer

Publisher: O'Reilly

Pub Date: March 2004

ISBN: 0-596-00525-3

Pages: 528

Slots: 1.0

Cascading Style Sheets: The Definitive Guide, 2nd Edition is a thorough review of all aspects of
CSS2.1 and a comprehensive guide to CSS implementation. The book includes new content on
positioning, lists and generated content, table layout, user interface, paged media, and more. It
explores in detail each individual CSS property and how it interacts with other properties, and shows
how to avoid common mistakes in interpretation.

 < Day Day Up >

 < Day Day Up >

• Table of Contents

• Index

• Reviews

• Reader Reviews

• Errata

• Academic

Cascading Style Sheets, 2nd Edition

By Eric Meyer

Publisher: O'Reilly

Pub Date: March 2004

ISBN: 0-596-00525-3

Pages: 528

Slots: 1.0

 Copyright

 Dedication

 Foreword

 Preface

 Conventions Used in This Book

 Property Conventions

 How to Contact Us

 Acknowledgments

 Chapter 1. CSS and Documents

 Section 1.1. The Web's Fall from Grace

 Section 1.2. CSS to the Rescue

 Section 1.3. Elements

 Section 1.4. Bringing CSS and XHTML Together

 Section 1.5. Summary

 Chapter 2. Selectors

 Section 2.1. Basic Rules

 Section 2.2. Grouping

 Section 2.3. Class and ID Selectors

 Section 2.4. Attribute Selectors

 Section 2.5. Using Document Structure

 Section 2.6. Pseudo-Classes and Pseudo-Elements

 Section 2.7. Summary

 Chapter 3. Structure and the Cascade

 Section 3.1. Specificity

 Section 3.2. Inheritance

 Section 3.3. The Cascade

 Section 3.4. Summary

 Chapter 4. Values and Units

 Section 4.1. Numbers

 Section 4.2. Percentages

 Section 4.3. Color

 Section 4.4. Length Units

 Section 4.5. URLs

 Section 4.6. CSS2 Units

 Section 4.7. Summary

 Chapter 5. Fonts

 Section 5.1. Font Families

 Section 5.2. Font Weights

 Section 5.3. Font Size

 Section 5.4. Styles and Variants

 Section 5.5. Stretching and Adjusting Fonts

 Section 5.6. The font Property

 Section 5.7. Font Matching

 Section 5.8. Summary

 Chapter 6. Text Properties

 Section 6.1. Indentation and Horizontal Alignment

 Section 6.2. Vertical Alignment

 Section 6.3. Word Spacing and Letter Spacing

 Section 6.4. Text Transformation

 Section 6.5. Text Decoration

 Section 6.6. Text Shadows

 Section 6.7. Summary

 Chapter 7. Basic Visual Formatting

 Section 7.1. Basic Boxes

 Section 7.2. Block-Level Elements

 Section 7.3. Inline Elements

 Section 7.4. Altering Element Display

 Section 7.5. Summary

 Chapter 8. Padding, Borders, and Margins

 Section 8.1. Basic Element Boxes

 Section 8.2. Margins

 Section 8.3. Borders

 Section 8.4. Padding

 Section 8.5. Summary

 Chapter 9. Colors and Backgrounds

 Section 9.1. Colors

 Section 9.2. Foreground Colors

 Section 9.3. Backgrounds

 Section 9.4. Summary

 Chapter 10. Floating and Positioning

 Section 10.1. Floating

 Section 10.2. Positioning

 Section 10.3. Summary

 Chapter 11. Table Layout

 Section 11.1. Table Formatting

 Section 11.2. Table Cell Borders

 Section 11.3. Table Sizing

 Section 11.4. Summary

 Chapter 12. Lists and Generated Content

 Section 12.1. Lists

 Section 12.2. Generated Content

 Section 12.3. Summary

 Chapter 13. User Interface Styles

 Section 13.1. System Fonts and Colors

 Section 13.2. Cursors

 Section 13.3. Outlines

 Section 13.4. Summary

 Chapter 14. Non-Screen Media

 Section 14.1. Designating Medium-Specific Style Sheets

 Section 14.2. Paged Media

 Section 14.3. Aural Styles

 Section 14.4. Summary

 Appendix A. Property Reference

 Section A.1. Visual Media

 Section A.2. Tables

 Section A.3. Paged Media

 Section A.4. Dropped from CSS2.1

 Section A.5. Visual Styles

 Section A.6. Paged Media

 Section A.7. Aural Styles

 Appendix B. Selector, Pseudo-Class, andPseudo-Element Reference

 Section B.1. Selectors

 Section B.2. Pseudo-Classes and Pseudo-Elements

 Appendix C. Sample HTML 4 Style Sheet

 Colophon

 Index

 < Day Day Up >

 < Day Day Up >

Copyright © 2004, 2000 O'Reilly Media, Inc.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Cascading Style Sheets: The Definitive Guide, the image of salmon, and related
trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

 < Day Day Up >

http://safari.oreilly.com

 < Day Day Up >

Dedication

In memory of my mother, Carol, for all the things she taught me.

And to my daughter, Carolyn, for all the things she has yet to teach me.

 < Day Day Up >

 < Day Day Up >

Foreword
CSS is realized. CSS has proven itself beyond imagination. Cascading Style Sheets have
unquestionably revolutionized the Web. Without CSS, we would most certainly be limited by
presentation-laden documents, tables for layout, and impossibly messy markup.

The movement toward standardizing styles, design, and layout is now firmly in place, and CSS is
playing an enormous role in that. CSS gives us more control over our layouts; more options to
manage and control color, images, and text sizing; and greater ability to maintain numerous
documents, provide accessibility, and serve multiple devices much more easily.

Are we still challenged by browser implementations of CSS? Well, sure, and that's a reality we have
to work with. But even as we're encumbered by the lack of updates for Microsoft IE 6.0, there are
encouraging advancements in other web browsers. Safari, Opera, Mozilla, and Mozilla Firefox all
stand as evidence that a majority of implementers are concerned about standards within browsers.
We're finally seeing terrific support for CSS emerge in a wide range of developer tools including
Macromedia Dreamweaver MX, Adobe GoLive CS, and many of the weblogging tools in use around
the Web today.

That this book-Version 2.0 of Eric Meyer's seminal work on CSS-should grace the shelves at such a
transitional time in the Web's evolution is extremely encouraging. CSS is making itself felt in almost
every spectrum of web design.

For inspiration and motivation, designers have the CSS Zen Garden, a magnificent site that
demonstrates the use of structured markup with CSS. Each designer who submits a design to the
CSS Zen Garden must use the same markup and content but create his or her own CSS design. The
CSS Zen Garden proves CSS designs can be not only beautiful but also more innovative and
interesting than anything that's come before.

CSS is proving to be cost-effective, too. Sales and marketing folks looking for proof can turn to a
growing list of impressive case studies that drive home the bottom-line savings of moving toward
web standards and CSS. Each time a major site such as ESPN, Sprint, or AOL makes a move toward
CSS and web standards, a leadership phenomenon begins; other companies realize they can save
costs and improve quality, too.

As CSS' value becomes more apparent to designers, important to the economic choices companies
make, and better integrated with the tools that designers and technologist use, CSS will finally earn
the permanent recognition it deserves within the technological realm.

As we implement CSS from the ground up, we find that we have a great deal yet to learn. Those of
us who have developed sites for a long time must actually unlearn bad habits born of convention. As
for young designers and developers entering the fold, we need to help them avoid our mistakes and
encourage them toward better practices. This book will be a great help to both audiences.

As a web standards evangelist and student of markup and CSS, it's easy for me to say that Eric
Meyer has changed my life. Many readers of his first edition (and, I hope, this book) will readily
agree. As with so many readers, I use Eric's books, I follow his web site, and I subscribe to CSS-D,

the email list that Eric chaperones and offers discussion and solutions for list members facing real-
world CSS challenges. I pay attention to Eric and will continue to do so because it's just so damned
nutritious.

Because the Web is as much of a social construct as a technical one, designing it effectively demands
that we seek an understanding of the art and science of living, as well as how to use structured
markup and CSS. There's no one I've met who has ever demonstrated how to think, how to live, how
to do the right thing more clearly to me than Eric Meyer. He's worked tirelessly as a CSS
evangelist-from his early days with the W3C CSS Working Group to his groundbreaking support
charts, books, resources, and time at Netscape. Eric continues to lead us, through his own web site
and conference sessions, and he's more than justified the variety of witty monikers he's earned, such
as "The Pope of CSS."

As public a person as Eric's come to be-as much of a rock star within the Web world-he remains
one of the most down-to-earth people I know, and a true-blue friend to boot. I have grieved deeply
with him for the premature loss of his mother Carol, and danced in true joy in my office when I
received the news that Eric and his wife Kat brought their daughter Carolyn home just eight months
later.

I'm certain that after any opportunity you have to spend time with Eric-whether at a class, by
visiting his web site regularly, or via this book-you will walk away with more than just a greater
understanding of CSS. You will laugh, you will be uplifted, and you will ultimately be inspired to put
the best of yourself forward in all of life's situations.

-Molly E. Holzschlag

Tucson, Arizona 2004

 < Day Day Up >

 < Day Day Up >

Preface
If you are a web designer or document author interested in sophisticated page styling, improved
accessibility, and saving time and effort, this book is for you. All you really need before starting the
book is a decent knowledge of HTML 4.0. The better you know HTML, of course, the better prepared
you'll be. You will need to know very little else in order to follow this book.

This second edition of the book covers CSS2 and CSS2.1, the latter of which is in many ways a
clarification of the first. While some CSS3 modules have reached Candidate Recommendation status
as of this writing, I have chosen not to cover them in this edition. This was done in part because the
book seemed long enough without them, but also because implementation of these modules is still
incomplete. I feel it's important to keep the book focused on currently supported and well-understood
levels of CSS, and leave any future capabilities for future editions.

Remember one thing about web standards and books: the former are continually evolving, while the
latter are frozen in time (until the next edition comes out, anyway). In the case of (X)HTML and CSS,
many changes are afoot even as these words are being written. Despite this, it is my hope that this
second edition will stay relevant over a period of several years, as did the first edition.

In order to keep the text relevant, as well as to save space, I cut CSS support information from this
edition. Such information is much better published online, where it can be corrected and updated
whenever there are changes in browser CSS support. Committing such information to paper, while
useful in the first edition, no longer makes a great deal of sense. This is doubly true because CSS
support has advanced so far in the last few years that whatever bugs remain are difficult to express
in a simple chart. For example, as of this writing there is a bug in Safari in which applying text-
transform through a :first-letter rule triggers some very strange behavior. There is, practically

speaking, no good way to represent this in a chart, even a three-dimensional array. Furthermore, the
bug is expected to be fixed in the very near future, and in fact may already have been fixed by the
time this book is on shelves.

Therefore, rather than doom large portions of the book to obsolescence the moment they are
published, I instead dropped the information. Doing so actually enabled me to keep the book from
growing too much while adding a great deal more information. The support information I did preserve
was that relating to bugs and limitations in the Internet Explorer line, which has ceased development.

 < Day Day Up >

 < Day Day Up >

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic

Indicates new terms, URLs, variables in text, user-defined files and directories, commands, file
extensions, filenames, directory or folder names, and UNC pathnames.

Constant width

Indicates command-line computer output, code examples, Registry keys, and keyboard
accelerators.

Constant width bold

Indicates user input in examples.

Constant width italic

Indicates variables in examples and in Registry keys. It is also used to indicate variables or
user-defined elements within italic text (such as pathnames or filenames). For instance, in the
path \Windows\username, replace username with your name.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

 < Day Day Up >

 < Day Day Up >

Property Conventions

Throughout this book, there are boxes that break down a given CSS property. These have been
reproduced practically verbatim from the CSS specifications, but some explanation of the syntax is in
order.

Throughout, the allowed values for each property are listed with a syntax like the following:

Value: [<length> | thick | thin]{1,4}

Value: [<family-name> ,]* <family-name>
Value: <url>? <color> [/ <color>]?
Value: <url> || <color>

Any words between "<" and ">" give a type of value, or a reference to another property. For
example, the property font will accept values that actually belong to the property font-family. This
is denoted by using the text <font-family>. Any words presented in constant width are keywords

that must appear literally, without quotes. The forward slash (/) and the comma (,) must also be
used literally.

Several keywords strung together means that all of them must occur, in the given order. For
example, help me would mean that the property must use those keywords in that exact order.

If a vertical bar separates alternatives (X | Y), then any one of them must occur. A vertical double
bar (X || Y) means that X, Y, or both must occur, but they may appear in any order. Brackets ([...])
are for grouping things together. Juxtaposition is stronger than the double bar, and the double bar is
stronger than the bar. Thus "V W | X || Y Z" is equivalent to "[V W] | [X || [Y Z]]".

Every word or bracketed group may be followed by one of the following modifiers:

An asterisk (*) indicates that the preceding value or bracketed group is repeated zero or more
times. Thus, bucket* means that the word bucket can be used any number of times, including

zero. There is no upper limit defined on the number of times it can be used.

A plus (+) indicates that the preceding value or bracketed group is repeated one or more times.
Thus, mop+ means that the word mop must be used at least once, and potentially many more

times.

A question mark (?) indicates that the preceding value or bracketed group is optional. For
example, [pine tree]? means that the words pine tree need not be used (although they must

appear in that exact order if they are used).

A pair of numbers in curly braces ({M,N}) indicates that the preceding value or bracketed group
is repeated at least M and at most N times. For example, ha{1,3} means that there can be one,
two, or three instances of the word ha.

Some examples follow:

give || me || liberty

At least one of the three words must be used, and they can be used in any order. For example,
give liberty, give me, liberty me give, and give me liberty are all valid interpretations of

this example.

[I | am]? the || walrus

Either the word I or am may be used, but not both, but use of either is optional. In addition,
either the or walrus, or both, must follow in any order. Thus, you could construct I the
walrus, am walrus the, am the, I walrus, walrus the, and so forth.

koo+ ka-choo

One or more instances of koo must be followed by ka-choo. Therefore, koo koo ka-choo, koo
koo koo ka-choo, and koo ka-choo are all legal. The number of koos is potentially infinite,

although there are bound to be implementation-specific limits.

I really{1,4}* [love | hate] [Microsoft | Netscape | Opera | Safari]

The all-purpose web designer's opinion-expresser. This can be interpreted as I love Netscape,
I really love Microsoft, and similar expressions. Anywhere from zero to four reallys may
be used. You also get to pick between love and hate, even though only love was shown in this

example.

[[Alpha || Baker || Cray],]{2,3} and] Delphi

This is a potentially long and complicated expression. One possible result would be Alpha,
Cray, and Delphi. The comma is placed because of its position within the nested bracket

groups.

 < Day Day Up >

 < Day Day Up >

How to Contact Us

We at O'Reilly have tested and verified the information in this book to the best of our ability, but you
may find that features have changed (or even that we have made mistakes!). Please let us know
about any errors you find, as well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

There is a web page for this book, which lists errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/css2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about books, conferences, Resource Centers, and the O'Reilly Network, see the
O'Reilly web site at:

http://www.oreilly.com

 < Day Day Up >

http://www.oreilly.com/catalog/css2
http://www.oreilly.com

 < Day Day Up >

Acknowledgments

Writing a book is by no means a solitary activity, except maybe for my wife, who spent many an
evening wondering if I'd ever come down from my office. So I'd like to take a moment to thank the
people who have backed me up during the long process of getting this book on the shelves.

First off, I'd like to thank everyone at O'Reilly for sticking with me through all the delays. Due to one
event or another, not to mention changes in the CSS realm itself, I managed to stretch out the
process so far that I had three editor changes before it was all said and done-and one of those
editors, in the style of Grover Cleveland, took on the project twice. Thank you all for your patience,
understanding, and willingness to do what was best for the book. Thanks especially to Lorrie LeJeune
and Molly Wood; and also to Marlowe Shaeffer and David Futato, who really went the extra mile to
make things as right as could be.

I'd also like to thank most profoundly my technical reviewers, Tantek Çelik and Ian Hickson. Both
gentlemen lent their considerable expertise and insight to the project, keeping me honest and up-to-
date on the latest changes in CSS2.1 as well as taking me to task for sloppy descriptions and muddled
explanations. The book could not have been as good as it is without them, and whatever errors you
find in the text are my fault, not theirs. This has become a tired cliché, but it is so true that it's
almost impossible to avoid saying it.

There are a few personal acknowledgments to make as well.

To TEDS, the standards evangelism team at Netscape, up until its disbanding in July 2003: we fought
the good fight and made a difference, and I'm honored to have been a part of the team. So my
thanks, respect, and gratitude to Bob Clary, Marcio Galli, Katsuhiko Momoi, Chris Nalls, Tristan Nitot,
Arun Ranganathan, Doron Rosenberg, and Susie Wyshak-comrades all.

To Dave, thank you for all the years of laughter and conversation, and we'll definitely get to work on
a script for "CSS: The Movie" any year now.

To Jeff and Carrie, thanks for being friends that I may not deserve, but definitely enjoy and am
deeply grateful to have.

To Gini and Ferrett, who have two of the odder names and biggest hearts of anyone I know, thanks
for keeping me (and Kat) distracted and amused when it was most needed.

To Jim and Genevieve, thanks for all the great meals, great parties, and great conversations.

To my family, both immediate and extended, I cannot express enough thanks for your continued love
and support.

And to my wife, Kathryn, who has never wavered in her belief in me and my abilities, nor in her
willingness to let me do what needs to be done, I thank you with all the love we share. I couldn't
have done all this without your support, your laugh, and your boundless joy.

-Eric A. Meyer, Cleveland Heights, Ohio

23 February 2004

 < Day Day Up >

 < Day Day Up >

Chapter 1. CSS and Documents
Cascading Style Sheets (CSS) are a powerful way to affect the presentation of a document or a
collection of documents. Obviously, without a document of some sort, CSS is basically useless since it
would have no content to present. Of course, the definition of "document" is extremely broad. For
example, Mozilla and related browsers use CSS to affect the presentation of the browser chrome
itself. Still, without the content of the chrome-buttons, address inputs, dialog boxes, windows, and
so on-there would be no need for CSS (or any other presentational information).

 < Day Day Up >

 < Day Day Up >

1.1 The Web's Fall from Grace

Back in the dimly remembered, early years of the Web (1990-1993), HTML was a fairly lean
language. It was composed almost entirely of structural elements that were useful for describing
things like paragraphs, hyperlinks, lists, and headings. It had nothing even remotely approaching
tables, frames, or the complex markup we assume is a necessary part of creating web pages. The
general idea was that HTML would be a structural markup language, used to describe the various
parts of a document. Very little was said about how those parts should be displayed. The language
wasn't concerned with appearance. It was just a clean little markup scheme.

Then came Mosaic.

Suddenly, the power of the World Wide Web was obvious to almost anyone who spent more than 10
minutes playing with it. Jumping from one document to another was no harder than pointing the
mouse cursor at a specially colored bit of text, or even an image, and clicking the mouse button.
Even better, text and images could be displayed together, and all you needed to create a page was a
plain-text editor. It was free, it was open, and it was cool.

Web sites began to spring up everywhere. There were personal journals, university sites, corporate
sites, and more. As the number of sites increased, so did the demand for new HTML elements that
would each perform a specific function. Authors started demanding that they be able to make text
boldfaced, or italicized.

At the time, HTML wasn't equipped to handle those sorts of desires. You could declare a bit of text to
be emphasized, but that wasn't necessarily the same as being italicized-it could be boldfaced
instead, or even normal text with a different color, depending on the user's browser and her
preferences. There was nothing to ensure that what the author created was what the reader would
see.

As a result of these pressures, markup elements like and <I> started to creep into the language.

Suddenly, a structural language started to become presentational.

1.1.1 What a Mess

Years later, we have inherited the problems of this haphazard process. Large parts of HTML 3.2 and
HTML 4.0, for example, were devoted to presentational considerations. The ability to color and size
text through the font element, to apply background colors and images to documents and tables, to
use table elements (such as cellspacing), and to make text blink on and off are all the legacy of

the original cries for "more control!"

For an example of the mess in action, take a quick glance at almost any corporate web site's markup.
The sheer amount of markup in comparison to actual useful information is astonishing. Even worse,
for most sites, the markup is almost entirely made up of tables and font elements, none of which

conveys any real semantic meaning to what's being presented. From a structural standpoint, these
pages are little better than random strings of letters.

For example, let's assume that for page titles, an author is using font elements instead of heading
elements like h1:

Page Title

Structurally speaking, the font tag has no meaning. This makes the document far less useful. What
good is a font tag to a speech-synthesis browser, for example? If an author uses heading elements
instead of font elements, though, the speaking browser can use a certain speaking style to read the
text. With the font tag, the browser has no way to know that the text is any different from other

text.

Why do authors run roughshod over structure and meaning this way? Because they want readers to
see the page as they designed it. To use structural HTML markup is to give up a lot of control over a
page's appearance, and it certainly doesn't allow for the kind of densely packed page designs that
have become so popular over the years. But consider the following problems with such a roughshod
approach:

Unstructured pages make content indexing inordinately difficult. A truly powerful search engine
would allow users to search only page titles, or only section headings within pages, or only
paragraph text, or perhaps only those paragraphs that are marked as being important. In order
to accomplish such a feat, however, the page contents must be contained within some sort of
structural markup-exactly the sort of markup most pages lack. Google, for example, does pay
attention to markup structure when indexing pages, so a structural page will increase your
Google rank.

Lack of structure reduces accessibility. Imagine that you are blind and rely on a speech-
synthesis browser to search the Web. Which would you prefer: a structured page that lets your
browser read only section headings so that you can choose which section you'd like to hear
more about; or a page that is so lacking in structure that your browser is forced to read the
entire thing with no indication of what's a heading, what's a paragraph, and what's important?
Let's return to Google-the search engine is in effect the world's most active blind user, with
millions of friends who accept its every suggestion about where to surf and shop.

Advanced page presentation is possible only with some sort of document structure. Imagine a
page in which only the section headings are shown, with an arrow next to each. The user can
decide which section heading applies to him and click on it, thus revealing the text of that
section.

Structured markup is easier to maintain. How many times have you spent several minutes
hunting through someone else's HTML (or even your own) in search of the one little error that's
messing up your page in one browser or another? How much time have you spent writing
nested tables and font elements, just to get a sidebar with white hyperlinks in it? How many

linebreak elements have you inserted trying to get exactly the right separation between a title
and the following text? By using structural markup, you can clean up your code and make it
easier to find what you're looking for.

Granted, a fully structured document is a little plain. Due to that one single fact, a hundred arguments
in favor of structural markup won't sway a marketing department from using the type of HTML that
was so prevalent at the end of the 20th century, and which persists even today. What we need is a
way to combine structural markup with attractive page presentation.

 < Day Day Up >

 < Day Day Up >

1.2 CSS to the Rescue

Of course, the problem of polluting HTML with presentational markup was not lost on the World Wide
Web Consortium (W3C), which began searching for a quick solution. In 1995, the consortium started
publicizing a work-in-progress called CSS. By 1996, it had become a full Recommendation, with the
same weight as HTML itself. Here's why.

1.2.1 Rich Styling

In the first place, CSS allows for much richer document appearances than HTML ever allowed, even
at the height of its presentational ferver. CSS lets you set colors on text and in the background of
any element; permits the creation of borders around any element, as well as the increase or
decrease of the space around them; lets you change the way text is capitalized, decorated (e.g.,
underlining), spaced, and even whether it is displayed at all; and allows you to accomplish many
other effects.

Take, for example, the first (and main) heading on a page, which is usually the title of the page itself.
The proper markup is:

<h1>Leaping Above The Water</h1>

Now, suppose you want this title to be dark red, use a certain font, be italicized and underlined, and
have a yellow background. To do all of that with HTML, you'd have to put the h1 into a table and load
it up with a ton of other elements like font and U. With CSS, all you need is one rule:

h1 {color: maroon; font: italic 2em Times, serif; text-decoration: underline;

 background: yellow;}

That's it. As you can see, everything you did in HTML can be done in CSS. There's no need to confine
yourself to only those things HTML can do, however:

h1 {color: maroon; font: italic 2em Times, serif; text-decoration: underline;

 background: yellow url(titlebg.png) repeat-x;

 border: 1px solid red; margin-bottom: 0; padding: 5px;}

You now have an image in the background of the h1 that is only repeated horizontally, and a border

around it, which is separated from the text by at least five pixels. You've also removed the margin
(blank space) from the bottom of the element. These are feats that HTML can't even come close to
matching-and that's just a taste of what CSS can do.

1.2.2 Ease of Use

If the depth of CSS doesn't convince you, then perhaps this will: style sheets can drastically reduce a
web author's workload.

First, style sheets centralize the commands for certain visual effects in one handy place, instead of
scattering them throughout the document. As an example, let's say you want all of the h2 headings
in a document to be purple. Using HTML, the way to do this would be to put a font tag in every

heading, like so:

<h2>This is purple!</h2>

This has to be done for every heading of level two. If you have 40 headings in your document, you
have to insert 40 font elements throughout, one for each heading! That's a lot of work for one little

effect.

Let's assume that you've gone ahead and put in all those font elements. You're done, you're
happy-and then you decide (or your boss decides for you) that those h2 headings should really be
dark green, not purple. Now you have to go back and fix every single one of those font elements.

Sure, you might be able to find-and-replace, as long as headings are the only purple text in your
document. If you've put other purple font elements in your document, then you can't find-and-

replace because you'd affect those too.

It would be much better to have a single rule instead:

h2 {color: purple;}

Not only is this faster to type, but it's easier to change. If you do switch from purple to dark green,
all you have to change is that one rule.

Let's go back to the highly styled h1 element from the previous section:

h1 {color: maroon; font: italic 2em Times, serif; text-decoration: underline;

 background: yellow;}

This may look like it's worse to write than using HTML, but consider a case where you have a page
with about a dozen h2 elements that should look the same as the h1. How much markup will be
required for those 12 h2 elements? A lot. On the other hand, with CSS, all you need to do is this:

h1, h2 {color: maroon; font: italic 2em Times, serif; text-decoration: underline;

 background: yellow;}

Now the styles apply to both h1 and h2 elements, with just three extra keystrokes.

If you want to change the way h1 and h2 elements look, the advantages of CSS become even more
striking. Consider how long it would take to change the HTML markup for an h1 and 12 h2 elements,

compared to changing the previous styles to this:

h1, h2 {color: navy; font: bold 2em Helvetica, sans-serif;

 text-decoration: underline overline; background: silver;}

If the two approaches were timed on a stopwatch, I'm betting the CSS-savvy author would handily

beat the HTML jockey.

In addition, most CSS rules are collected into one location in the document. It is possible to scatter
them throughout the document by grouping them into associated styles or individual elements, but
it's usually far more efficient to place all of your styles into a single style sheet. This lets you create
(or change) the appearance of an entire document in one place.

1.2.3 Using Your Styles on Multiple Pages

But wait-there's more! Not only can you centralize all of the style information for a page in one
place, but you can also create a style sheet that can then be applied to multiple pages. This is done
by a process in which a style sheet is saved to its own document and then imported by any page for
use with that document. Using this capability, you can quickly create a consistent look for an entire
web site. All you have to do is link the single style sheet to all of the documents on your web site.
Then, if you ever want to change the look of your site's pages, you need only edit a single file and the
change will be propagated throughout the entire server-automatically!

Consider a site where all of the headings are gray on a white background. They get this color from a
style sheet that says:

h1, h2, h3, h4, h5, h6 {color: gray; background: white;}

Now let's say this site has 700 pages, each of which uses the style sheet that says the headings
should be gray. At some point, it's decided that the headings should be white on a gray background.
So the site's webmaster edits the style sheet to say:

h1, h2, h3, h4, h5, h6 {color: white; background: gray;}

Then she saves the style sheet to disk and the change is made. That sure beats having to edit 700
pages to enclose every heading in a table and a font tag, doesn't it?

1.2.4 Cascading

That's not all! CSS also makes provisions for conflicting rules; these provisions are collectively
referred to as the cascade. For instance, take the previous scenario in which you import a single style
sheet into several web pages. Now inject a set of pages that share many of the same styles, but also
include specialized rules that apply only to them. You can create another style sheet that is imported
into those pages, in addition to the already existing style sheet, or you could just place the special
styles into the pages that need them.

For example, on one page out of the 700, you might want headings to be yellow on dark blue instead
of white on gray. In that single document, then, you could insert this rule:

h1, h2, h3, h4, h5, h6 {color: yellow; background: blue;}

Thanks to the cascade, this rule will override the imported rule for white-on-gray headings. By
understanding the cascade rules and using them to your advantage, you can create highly
sophisticated sheets that can be changed easily and come together to give your pages a professional
look.

The power of the cascade is not confined to the author. Web surfers (or readers) can, in some
browsers, create their own style sheets (called reader style sheets , obviously enough) that will
cascade with the author's styles as well as the styles used by the browser. Thus, a reader who is
colorblind could create a style that makes hyperlinks stand out:

a:link, a:visited {color: white; background: black;}

A reader style sheet can contain almost anything: a directive to make text large enough to read if the
user has impaired vision, rules to remove images for faster reading and browsing, and even styles to
place the user's favorite picture in the background of every document. (This isn't recommended, of
course, but it is possible.) This lets readers customize their web experience without having to turn off
all of the author's styles.

Between importing, cascading, and its variety of effects, CSS is a wonderful tool for any author or
reader.

1.2.5 Compact File Size

Besides the visual power of CSS and its ability to empower both author and reader, there is
something else about it that your readers will like. It can help keep document sizes as small as
possible, thereby speeding download times. How? As I've mentioned, a lot of pages have used tables
and font elements to achieve nifty visual effects. Unfortunately, both of these methods create

additional HTML markup that drives up the file sizes. By grouping visual style information into central
areas and representing those rules using a fairly compact syntax, you can remove the font elements

and other bits of the usual tag soup. Thus, CSS can keep your load times low and your reader
satisfaction high.

1.2.6 Preparing for the Future

HTML, as I pointed out earlier, is a structural language, while CSS is its complement: a stylistic
language. Recognizing this, the W3C, the body that debates and approves standards for the Web, is
beginning to remove stylistic elements from HTML. The reasoning for this move is that style sheets
can be used to create the effects that certain HTML elements now provide, so who needs them?

Thus, the XHTML specification has a number of elements that are deprecated-that is, they are in the
process of being phased out of the language altogether. Eventually, they will be marked as obsolete,
which means that browsers will be neither required nor encouraged to support them. Among the
deprecated elements are , <basefont>, <u>, <strike>, <s>, and <center>. With the advent

of style sheets, none of these elements are necessary. And there may be more elements deprecated
as time goes by.

As if that weren't enough, there is the very strong possibility that HTML will be gradually replaced by
the Extensible Markup Language (XML). XML is much more complicated than HTML, but it is also far
more powerful and flexible. Despite this, XML does not provide any way to declare style elements
such as <i> or <center>. Instead, it is quite probable that XML documents will rely on style sheets to

determine the appearance of documents. While the style sheets used with XML may not be CSS, they
will probably be whatever follows CSS and very closely resembles it. Therefore, learning CSS now
gives authors a big advantage when the time comes to make the jump to an XML-based Web.

So, to get started, it's very important to understand how CSS and document structures relate to each
other. It's possible to use CSS to affect document presentation in a very profound way, but there are
also limits to what you can do. Let's start by exploring some basic terminology.

 < Day Day Up >

 < Day Day Up >

1.3 Elements

Elements are the basis of CSS display. In HTML, the most common elements are easily recognizable,
such as p, table, span, a, and div. In XML languages, the elements are defined by the language's

Document Type Definition (DTD). Every single element in a document plays a part in its presentation.
In CSS terms, at least as of CSS2.1, that means each element generates a box that contains the
element's content.

1.3.1 Replaced and Nonreplaced Elements

Although CSS depends on elements, not all elements are created equally. For example, images and
paragraphs are not the same type of element, nor are span and div. In CSS, elements generally

take two forms: replaced and nonreplaced. The two types are explored in detail in Chapter 7, which
covers the particulars of the box model, but I'll address them briefly here.

1.3.1.1 Replaced elements

Replaced elements are those where the element's content is replaced by something that is not
directly represented by document content. The most familiar XHTML example is the img element,
which is replaced by an image file external to the document itself. In fact, img has no actual content,

as you can see by considering a simple example:

This code snippet contains no actual content-only an element name and an attribute. The element
presents nothing unless you point it to some external content (in this case, an image specified by the
src attribute). The input element is also replaced by a radio button, checkbox, or text input box,

depending on its type. Replaced elements also generate boxes in their display.

1.3.1.2 Nonreplaced elements

The majority of HTML and XHTML elements are nonreplaced elements. This means their content is
presented by the user agent (generally a browser) inside a box generated by the element itself. For
example, hi there is a nonreplaced element, and the text "hi there" will be displayed

by the user agent. This is true of paragraphs, headings, table cells, lists, and almost everything else
in XHTML.

1.3.2 Element Display Roles

In addition to replaced and nonreplaced elements, CSS2.1 uses two other basic types of elements:

block-level and inline-level. These types will be more familiar to authors who have spent time with
HTML or XHTML markup and its display in web browsers; the elements are illustrated in Figure 1-1.

Figure 1-1. Block- and inline-level elements in an XHTML document

1.3.2.1 Block-level elements

Block-level elements generate an element box that (by default) fills its parent element's content area
and cannot have other elements at its sides. In other words, it generates "breaks" before and after
the element box. The most familiar block elements from HTML are p and div. Replaced elements can

be block-level elements, but they usually are not.

List items are a special case of block level elements. In addition to behaving in a manner consistent
with other block elements, they generate a marker-typically a "bullet" for unordered lists and a
number for ordered lists-that is "attached" to the element box. Except for the presence of this
marker, list items are in all other ways identical to other block elements.

1.3.2.2 Inline-level elements

Inline-level elements generate an element box within a line of text and do not break up the flow of
that line. The best inline element example is the a element in XHTML. Other candidates would be
strong and em. These elements do not generate a "break" before or after themselves, and so they

can appear within the content of another element without disrupting its display.

Note that while the names "block" and "inline" share a great deal in common with block- and inline-
level elements in XHTML, there is an important difference. In HTML and XHTML, block-level elements
cannot descend from inline-level elements. In CSS, there is no restriction on how display roles can be
nested within each other.

To see how this works, let's consider a CSS property.

display

Values

none | inline | block | inline-block | list-item | run-in | table | inline-
table | table-row-group | table-header-group | table-footer-group | table-
row | table-column-group | table-column | table-cell | table-caption |
inherit

Initial value

inline

Applies to

all elements

Inherited

no

Computed value

varies for floated, positioned, and root elements (see CSS2.1, section 9.7);
otherwise, as specified

You may have noticed that there are a lot of values, only three of which I've even come close to
mentioning: block, inline, and list-item. We're not going to explore the others now, mostly

because they get covered in some detail in Chapter 2 and Chapter 7.

For the moment, let's just concentrate on block and inline. Consider the following markup:

<body>

<p>This is a paragraph with an inline element within it.</p>

</body>

Here we have two block elements (body and p) and an inline element (em). According to the XHTML
specification, em can descend from p, but the reverse is not true. Typically, the XHTML hierarchy

works out such that inlines can descend from blocks, but not the other way around.

CSS, on the other hand, has no such restrictions. You can leave the markup as it is but change the
display roles of the two elements like this:

p {display: inline;}

em {display: block;}

This would cause the elements to generate a block box inside an inline box. This is perfectly legal and
violates no specification. The only problem would be if you tried to reverse the nesting of the
elements:

<p>This is a paragraph improperly enclosed by an inline element.</p>

No matter what you do to the display roles via CSS, this is not legal in XHTML.

While changing the display roles of elements can be useful in XHTML documents, it becomes
downright critical for XML documents. An XML document is unlikely to have any inherent display
roles, so it's up to the author to define them. For example, you might wonder how to lay out the
following snippet of XML:

<book>

 <maintitle>Cascading Style Sheets: The Definitive Guide</maintitle>

 <subtitle>Second Edition</subtitle>

 <author>Eric A. Meyer</author>

 <publisher>O'Reilly and Associates</publisher>

 <pubdate>2004</pubdate>

 <isbn>blahblahblah</isbn>

</book>

<book>

 <maintitle>CSS2 Pocket Reference</maintitle>

 <author>Eric A. Meyer</author>

 <publisher>O'Reilly and Associates</publisher>

 <pubdate>2004</pubdate>

 <isbn>blahblahblah</isbn>

</book>

Since the default value of display is inline, the content would be rendered as inline text by default,

as illustrated in Figure 1-2. This isn't a terribly useful display.

Figure 1-2. Default display of an XML document

You can define the basics of the layout with display:

book, maintitle, subtitle, author, isbn {display: block;}

publisher, pubdate {display: inline;}

You've now set five of the seven elements to be block and two to be inline. This means each of the
block elements will be treated much as div is treated in XHTML, and the two inlines will be treated in
a manner similar to span.

This fundamental ability to affect display roles makes CSS highly useful in a variety of situations. You
could take the preceding rules as a starting point, add a number of other styles, and get the result
shown in Figure 1-3.

Figure 1-3. Styled display of an XML document

Throughout the rest of this book, we'll explore the various properties and values that allow
presentation like this. First, though, we need to look at how one can associate CSS with a document.
After all, without tying the two together, there's no way for the CSS to affect the document. We'll
explore this in an XHTML setting since it's the most familiar to people.

 < Day Day Up >

 < Day Day Up >

1.4 Bringing CSS and XHTML Together

I've mentioned that HTML and XHTML documents have an inherent structure, and that's a point
worth repeating. In fact, that's part of the problem with web pages of old: too many of us forgot that
documents are supposed to have an internal structure, which is altogether different than a visual
structure. In our rush to create the coolest-looking pages on the Web, we bent, warped, and
generally ignored the idea that pages should contain information that has some structural meaning.

That structure is an inherent part of the relationship between XHTML and CSS; without the structure,
there couldn't be a relationship at all. In order to understand it better, let's look at an example
XHTML document and break it down by pieces:

<html>

<head>

<title>Eric's World of Waffles</title>

<link rel="stylesheet" type="text/css" href="sheet1.css" media="all" />

<style type="text/css">

@import url(sheet2.css);

h1 {color: maroon;}

body {background: yellow;}

/* These are my styles! Yay! */

</style>

</head>

<body>

<h1>Waffles!</h1>

<p style="color: gray;">The most wonderful of all breakfast foods is

the waffle--a ridged and cratered slab of home-cooked, fluffy goodness

that makes every child's heart soar with joy. And they're so easy to make!

Just a simple waffle-maker and some batter, and you're ready for a morning

of aromatic ecstasy!

</p>

</p>

</body>

</html>

The above markup is shown in Figure 1-4.

Figure 1-4. A simple document

Now, let's examine the various ways this document connects to CSS.

1.4.1 The Tag

First, consider the use of the link tag:

<link rel="stylesheet" type="text/css" href="sheet1.css" media="all" />

The link tag is a little-regarded but nonetheless perfectly valid tag that has been hanging around the

HTML specification for years just waiting to be put to good use. Its basic purpose is to allow HTML
authors to associate other documents with the document containing the link tag. CSS uses it to link

style sheets to the document; in Figure 1-5, a style sheet called sheet.css is linked to the document.

Figure 1-5. A representation of how external style sheets are applied to
documents

These style sheets, which are not part of the HTML document but are still used by it, are referred to
as external style sheets. This is because they're style sheets that are external to the HTML document.
(Go figure.)

In order to successfully load an external style sheet, link must be placed inside the head element
but may not be placed inside any other element, rather like title. This will cause the web browser to

locate and load the style sheet and use whatever styles it contains to render the HTML document in
the manner shown in Figure 1-5.

And what is the format of an external style sheet? It's simply a list of rules, just like those we saw in
the previous section and in the example XHTML document, but in this case, the rules are saved into
their own file. Just remember that no HTML or any other markup language can be included in the
style sheet-only style rules. Here are the contents of an external style sheet:

h1 {color: red;}

h2 {color: maroon; background: white;}

h3 {color: white; background: black;

 font: medium Helvetica;}

That's all there is to it-no HTML tags or comments at all, just plain-and-simple style declarations.
These are saved into a plain-text file and are usually given an extension of .css, as in sheet1.css.

An external style sheet cannot contain any document markup at all, only CSS
rules and comments. The presence of markup in an external style sheet can
cause some or all of it to be ignored.

The filename extension is not required, but some browsers won't recognize the file as containing a
style sheet unless it actually ends with .css, even if you do include the correct type of text/css in
the link element. In fact, some web servers won't hand over a file as text/css unless its filename

ends with .css. So make sure you name your style sheets appropriately.

1.4.1.1 Attributes

For the rest of the link tag, the attributes and values are fairly straightforward. rel stands for
"relation," and in this case, the relation is stylesheet. type is always set to text/css. This value
describes the type of data that is to be loaded using the link tag. That way, the web browser knows

that the style sheet is a CSS style sheet, a fact that will determine how the browser deals with the
data it imports. After all, there may be other style languages in the future, such as XSL, so it will be
important to declare which language you're using.

Next, we find the href attribute. The value of this attribute is the URL of your style sheet. This URL

can be either absolute or relative, depending on what works for you. In our example, of course, the
URL is relative. It could as easily have been something like http://www.meyerweb.com/sheet1.css.

Finally, we have a media attribute. The value that was used, all, means that the style sheet should

be applied in all presentation media. There are a number of allowed values for this attribute that are
all defined by CSS2:

all

Use in all presentational media.

aural

Use in speech synthesizers, screen readers, and other audio renderings of the document.

braille

Use when rendering the document with a Braille device.

embossed

Use when printing with a Braille printing device.

handheld

Use on handheld devices like personal digital assistants or web-enabled cell phones.

http://www.meyerweb.com/sheet1.css

print

Use when printing the document for sighted users and also when displaying a "print preview" of
the document.

projection

Use in a projection medium, such as a digital projector used to present a slideshow when
delivering a speech.

screen

Use when presenting the document in a screen medium like a desktop computer monitor. All
web browsers running on such systems are screen-medium user agents.

tty

Use when delivering the document in a fixed-pitch environment like teletype printers.

tv

Use when the document is being presented on a television.

The majority of these media types are not supported by any current web browser. The three that are
the most widely supported are all, screen, and print. As of this writing, Opera also supports
projection, which allows a document to be presented as a slideshow.

You can use a style sheet in more than one medium by providing a comma-separated list of the
media in which it applies. Thus, for example, you can use a linked style sheet in both screen and
projection media:

<link rel="stylesheet" type="text/css" href="visual-sheet.css"

 media="screen, projection" />

Note that there can be more than one linked style sheet associated with a document. In these cases,
only those link tags with a rel of stylesheet will be used in the initial display of the document.

Thus, if you wanted to link two style sheets named basic.css and splash.css, it would look like this:

<link rel="stylesheet" type="text/css" href="basic.css" />

<link rel="stylesheet" type="text/css" href="splash.css" />

This will cause the browser to load both style sheets, combine the rules from each, and apply them

all to the document. (We'll see exactly how the sheets are combined in Chapter 3, but for now, let's
just accept that they're combined.) For example:

<link rel="stylesheet" type="text/css" href="basic.css" />

<link rel="stylesheet" type="text/css" href="splash.css" />

<p class="a1">This paragraph will be gray only if styles from the

stylesheet 'sheet-a.css' are applied.</p>

<p class="b1">This paragraph will be gray only if styles from the

stylesheet 'sheet-b.css' are applied.</p>

The one attribute not in your example markup, but could be, is the title attribute. This attribute is

not often used, but it could become important in the future and, if used improperly, can have
unexpected effects. Why? We will explore that in the next section.

1.4.1.2 Alternate style sheets

It's also possible to define alternate style sheets. These are defined by making the value of the rel
attribute alternate stylesheet and are used in document presentation only if they are selected by

the user.

Should a browser be able to use alternate style sheets, it will use the values of the link elements'
title attributes to generate a list of style alternatives. So you could write the following:

<link rel="stylesheet" type="text/css"

 href="sheet1.css" title="Default" />

<link rel="alternate stylesheet" type="text/css"

 href="bigtext.css" title="Big Text" />

<link rel="alternate stylesheet" type="text/css"

 href="zany.css" title="Crazy colors!" />

Users could then pick the style they want to use, and the browser would switch from the first one
(labeled "Default" in this case) to whichever the user picked. Figure 1-6 shows one way in which this
selection mechanism is accomplished.

Figure 1-6. A browser offering alternate style sheet selection

Alternate style sheets are supported in most Gecko-based browsers like Mozilla
and Netscape 6+, and in Opera 7. They can be supported in Internet Explorer
through the use of JavaScript but are not natively supported by those
browsers.

It is also possible to group alternate style sheets together by giving them the same title value.

Thus, you make it possible for the user to pick a different presentation for your site in both screen
and print media. For example:

<link rel="stylesheet" type="text/css"

 href="sheet1.css" title="Default" media="screen" />

<link rel="stylesheet" type="text/css"

 href="print-sheet1.css" title="Default" media="print" />

<link rel="alternate stylesheet" type="text/css"

 href="bigtext.css" title="Big Text" media="screen" />

<link rel="alternate stylesheet" type="text/css"

 href="print-bigtext.css" title="Big Text" media="print" />

If a user selects "Big Text" from the alternate style sheet selection mechanism in a conforming user
agent, then bigtext.css will be used to style the document in the screen medium, and print-
bigtext.css will be used in the print medium. Neither sheet1.css nor print-sheet1.css will be used in
any medium.

Why is that? Because if you give a link with a rel of stylesheet a title, then you are designating

that style sheet as a preferred style sheet. This means that its use is preferred to alternate style
sheets, and it will be used when the document is first displayed. Once you select an alternate style
sheet, however, the preferred style sheet will not be used.

Furthermore, if you designate a number of style sheets as preferred, then all but one of them will be
ignored. Consider:

<link rel="stylesheet" type="text/css"

 href="sheet1.css" title="Default layout" />

<link rel="stylesheet" type="text/css"

 href="sheet2.css" title="Default text sizes" />

<link rel="stylesheet" type="text/css"

 href="sheet3.css" title="Default colors" />

All three link elements now refer to preferred style sheets, thanks to the presence of a title

attribute on all three, but only one of them will actually be used in that manner. The other two will be
ignored completely. Which two? There's no way to be certain, as neither HTML nor XHTML provide a
method of determining which preferred style sheets should be ignored or which should be used.

If you simply don't give a stylesheet a title, then it becomes a persistent style sheet and is

always used in the display of the document. Often, this is exactly what an author wants.

1.4.2 The style Element

The style element, which is a new element in HTML, is the most common way to define a style

sheet, since it appears in the document itself:

<style type="text/css">

style should always use the attribute type; in the case of a CSS document, the correct value is
"text/css", just as it was with the link element.

The style element should always start with <style type="text/css">, as shown in the preceding
example. This is followed by one or more styles and is finished with a closing </style> tag. It is also
possible to give the style element a media attribute, with the same allowed values as previously

discussed for linked style sheets.

The styles between the opening and closing style tags are referred to as the document style sheet

or the embedded style sheet since this style sheet is embedded within the document. It will contain
many of the styles that will apply to the document, but it can also contain multiple links to external
style sheets using the @import directive.

1.4.3 The @import Directive

Now we'll discuss the stuff that is found inside the style tag. First, we have something very similar
to link: the @import directive:

@import url(sheet2.css);

Just like link, @import can be used to direct the web browser to load an external style sheet and use

its styles in the rendering of the HTML document. The only major difference is in the actual syntax
and placement of the command. As you can see, @import is found inside the style container. It

must be placed there, before the other CSS rules, or else it won't work at all. Consider this example:

<style type="text/css">

@import url(styles.css); /* @import comes first */

h1 {color: gray;}

</style>

Like link, there can be more than one @import statement in a document. Unlike link, however, the
style sheets of every @import directive will be loaded and used; there is no way to designate
alternate style sheets with @import. So given the following markup:

@import url(sheet2.css);

@import url(blueworld.css);

@import url(zany.css);

all three external style sheets will be loaded, and all of their style rules will be used in the display of
this document, as Figure 1-7 illustrates.

Figure 1-7. Combined styles from @import directives

Navigator 4.x and Opera 3.x both ignore @import outright, and several older
browsers cannot process varying forms of the @import directive. This can

actually be used to one's advantage in "hiding" styles from these browsers. For
more details, see http://w3development.de/css/hide_css_from_browsers/.

As with link, you can restrict imported style sheets to one or more media by listing the media it

should be applied to after the style sheet's URL:

@import url(sheet2.css) all;

@import url(blueworld.css) screen;

@import url(zany.css) projection, print;

@import can be highly useful if you have an external style sheet that needs to use the styles found in

other external style sheets. Since external style sheets cannot contain any document markup, the
link element can't be used-but @import can. Therefore, you might have an external style sheet

that contains the following:

http://w3development.de/css/hide_css_from_browsers/

@import url(http://example.org/library/layout.css);

@import url(basic-text.css);

@import url(printer.css) print;

body {color: red;}

h1 {color: blue;}

Well, maybe not those exact styles, but you get the idea. Note the use of both absolute and relative
URLs in the previous example. Either URL form can be used, just as with link.

Note also that the @import directives appear at the beginning of the style sheet, as they did in our
example document. It is required by CSS that the @import directive come before any other rules in a
style sheet. An @import that comes after other rules (e.g., body {color: red;}) will be ignored by

conforming user agents.

Internet Explorer for Windows does not ignore any @import directive, even

those that come after other rules. Since other browsers do ignore improperly
placed @import directives, it is easy to mistakenly place the @import directive

incorrectly and thus alter the display in other browsers.

1.4.4 Actual Style Rules

After the @import statement in our example, we find some ordinary style rules. What they mean
doesn't actually matter for this discussion, although you can probably guess that they set h1
elements to be maroon and body elements to have a yellow background:

h1 {color: maroon;}

body {background: yellow;}

Styles such as these comprise the bulk of any embedded style sheet-simple and complex, short and
long. It will be rare if you have a document where the style element does not contain any rules.

1.4.4.1 Backward accessibility

For those of you concerned about making your documents accessible to older browsers, there is an
important warning to be made. You're probably aware that browsers ignore tags they don't
recognize; for example, if a web page contains a blooper tag, browsers will completely ignore the

tag because it isn't one they recognize.

The same is true with style sheets. If a browser does not recognize <style> and </style>, it will

ignore them altogether. However, the declarations within those tags will not necessarily be ignored
because they will appear to be ordinary text so far as the browser is concerned. So your style
declarations will appear at the top of your page! (Of course, the browser should ignore the text
because it isn't part of the body element, but this is never the case.)

In order to combat this problem, it is recommended that you enclose your declarations in a comment
tag. In the example given here, the beginning of the comment tag appears right after the opening
style tag, and the end of the comment appears right before the closing style tag:

<style type="text/css"><!--

@import url(sheet2.css);

h1 {color: maroon;}

body {background: yellow;}

--></style>

This should cause older browsers to completely ignore the declarations as well as the style tags

because HTML comments are not displayed. Meanwhile, those browsers that understand CSS will still
be able to read the style sheet.

1.4.5 CSS Comments

CSS also allows for comments. These are very similar to C/C++ comments in that they are
surrounded by /* and */:

/* This is a CSS1 comment */

Comments can span multiple lines, just as in C++:

/* This is a CSS1 comment, and it

can be several lines long without

any problem whatsoever. */

It's important to remember that CSS comments cannot be nested. So, for example, this would not be
correct:

/* This is a comment, in which we find

 another comment, which is WRONG

 /* Another comment */

 and back to the first comment */

However, it's hardly ever desirable to nest comments, so this limitation is no big deal.

If you wish to place comments on the same line as markup, then you need to be careful about how
you place them. For example, this is the correct way to do it:

h1 {color: gray;} /* This CSS comment is several lines */

h2 {color: silver;} /* long, but since it is alongside */

p {color: white;} /* actual styles, each line needs to */

pre {color: gray;} /* be wrapped in comment markers. */

Given this example, if each line isn't marked off, then most of the style sheet will become part of the
comment and will not work:

h1 {color: gray;} /* This CSS comment is several lines

h2 {color: silver;} long, but since it is not wrapped

p {color: white;} in comment markers, the last three

pre {color: gray;} styles are part of the comment. */

In this example, only the first rule (h1 {color: gray;}) will be applied to the document. The rest of

the rules, as part of the comment, are ignored by the browser's rendering engine.

Moving on with the example, you see some more CSS information actually found inside an XHTML
tag!

1.4.6 Inline Styles

For cases where you want to simply assign a few styles to one individual element, without the need
for embedded or external style sheets, employ the HTML attribute style to set an inline style:

<p style="color: gray;">The most wonderful of all breakfast foods is

the waffle--a ridged and cratered slab of home-cooked, fluffy goodness...

</p>

The style attribute is new to HTML, and it can be associated with any HTML tag whatsoever, except
for those tags that are found outside of body (head or title, for instance).

The syntax of a style attribute is fairly ordinary. In fact, it looks very much like the declarations
found in the style container, except here the curly braces are replaced by double quotation marks.
So <p style="color: maroon; background: yellow;"> will set the text color to be maroon and the

background to be yellow for that paragraph only. No other part of the document will be affected by
this declaration.

Note that you can only place a declaration block, not an entire style sheet, inside an inline style
attribute. Therefore, you can't put an @import into a style attribute, nor can you include any
complete rules. The only thing you can put into the value of a style attribute is what might go

between the curly braces of a rule.

Use of the style attribute is not generally recommended. Indeed, it is marked as deprecated by

XHTML 1.1 and is very unlikely to appear in XML languages other than XHTML. Some of the primary
advantages of CSS-the ability to organize centralized styles that control an entire document's

appearance or the appearance of all documents on a web server-are negated when you place styles
into a style attribute. In many ways, inline styles are not much better than the font tag, although

they do have a good deal more flexibility.

 < Day Day Up >

 < Day Day Up >

1.5 Summary

With CSS, it is possible to completely change the way elements are presented by a user agent. This
can be done at a basic level with the display property, and in a different way by associating style

sheets with a document. The user will never know whether this is done via an external or embedded
style sheet, or even with an inline style. The real importance of external style sheets is the way in
which they allow authors to put all of a site's presentation information in one place, and point all of
the documents to that place. This not only makes site updates and maintenance a breeze, but it
helps to save bandwidth since all of the presentation is removed from documents.

To make the most of the power of CSS, authors need to know how to associate a set of styles with
the elements in a document. In order to fully understand how CSS can do all of this, authors need a
firm grasp of the way CSS selects pieces of a document for styling, which is the subject of the next
chapter.

 < Day Day Up >

 < Day Day Up >

Chapter 2. Selectors
Once of the primary advantages of CSS-particularly to designers-is its ability to easily apply a set
of styles to all elements of the same type. Unimpressed? Consider this: by editing a single line of
CSS, you can change the colors of all your headings. Don't like the blue you're using? Change that
one line of code, and they can all be purple, yellow, maroon, or any other color you desire. That lets
you, the designer, focus on design, rather than grunt work. The next time you're in a meeting and
someone wants to see headings with a different shade of green, just edit your style and hit Reload.
Voilà! The results are accomplished in seconds and are there for everyone to see.

Of course, CSS can't solve all your problems-you can't use it to change the color of your GIFs, for
example-but it can make some global changes much easier. So let's begin with selectors and
structure.

 < Day Day Up >

 < Day Day Up >

2.1 Basic Rules

As I've stated, a central feature of CSS is its ability to apply certain rules to an entire set of element
types in a document. For example, let's say that you want to make the text of all h2 elements appear
gray. Using old-school HTML, you'd have to do this by inserting ...
tags in all your h2 elements:

<h2>This is h2 text</h2>

Obviously, this is a tedious process if your document contains a lot of h2 elements. Worse, if you later
decide that you want all those h2s to be green instead of gray, you'd have to start the manual

tagging all over again.

CSS allows you to create rules that are simple to change, edit, and apply to all the text elements you
define (the next section will explain how these rules work). For example, simply write this rule once
to make all your h2 elements gray:

h2 {color: gray;}

If you want to change all h2 text to another color-for example, silver-simply alter the rule:

h2 {color: silver;}

2.1.1 Rule Structure

In order to understand the concept of rules in more detail, let's break down the structure.

Each rule has two fundamental parts, the selector and the declaration block. The declaration block is
composed of one or more declarations, and each declaration is a pairing of a property and a value.
Every style sheet is made up of a series of rules.Figure 2-1 shows the parts of a rule.

Figure 2-1. The structure of a rule

The selector, shown on the left side of the rule, defines which piece of the document will be affected.
In Figure 2-1, h1 elements are selected. If the selector were p, then all p (paragraph) elements

would be selected.

The right side of the rule contains the declaration block, which is made up of one or more

declarations. Each declaration is a combination of a CSS property and a value of that property. In
Figure 2-1, the declaration block contains two declarations. The first states that this rule will cause
parts of the document to have a color of red, and the second states that part of the document will
have a background of yellow. So, all of the h1 elements in the document (defined by the selector)

will be styled in bold purple.

2.1.2 Element Selectors

A selector is most often an HTML element, but not always. For example, if a CSS file contains styles
for an XML document, a selector might look something like this:

QUOTE {color: gray;}

BIB {color: red;}

BOOKTITLE {color: purple;}

MYElement {color: red;}

In other words, the elements of the document serve as the most basic selectors. In XML, a selector
could be anything since XML allows for the creation of new markup languages that can have just
about anything as an element name. If you're styling an HTML document, on the other hand, the
selector will generally be one of the many HTML elements such as p, h3, em, a, or even html itself.

For example:

html {color: black;}

h1 {color: gray;}

h2 {color: silver;}

The results of this style sheet are shown in Figure 2-2.

Figure 2-2. Simple styling of a simple document

Once you've globally applied styles directly to elements, you can shift those styles from one element

to another. Let's say you decide that the paragraph text, not the h1 elements, in Figure 2-2 should
be gray. No problem. Simply change the h1 selector to p:

html {color: black;}

p {color: gray;}

h2 {color: silver;}

The results are shown in Figure 2-3.

Figure 2-3. Moving a style from one element to another

2.1.3 Declarations and Keywords

The declaration block contains one or more declarations. A declaration is always formatted as a
property followed by a colon and then a value followed by a semicolon. The colon and semicolon can
be followed by zero or more spaces. In nearly all cases, a value is either a single keyword or a space-
separated list of one or more keywords that are permitted for that property. If you use either an
incorrect property or value in a declaration, the whole thing will be ignored. Thus, the following two
declarations would fail:

brain-size: 2cm; /* unknown property */

color: ultraviolet; /* unknown value */

In an instance where you can use more than one keyword for a property's value, the keywords are
usually separated by spaces. Not every property can accept multiple keywords, but many, such as
the font property, can. Let's say you want to define medium-sized Helvetica for paragraph text, as

illustrated in Figure 2-4.

Figure 2-4. The results of a property value with multiple keywords

The rule would read as follows:

p {font: medium Helvetica;}

Note the space between medium and Helvetica, each of which is a keyword (the first is the font's

size and the second is the actual font name). The space allows the user agent to distinguish between
the two keywords and apply them correctly. The semicolon indicates that the declaration has been
concluded.

These space-separated words are referred to as keywords because, taken together, they form the
value of the property in question. For instance, consider the following fictional rule:

rainbow: red orange yellow green blue indigo violet;

There is no such property as rainbow, of course, and two of the colors used aren't valid either, but
the example is useful for illustrative purposes. The value of rainbow is red orange yellow green
blue indigo violet, and the seven keywords add up to a single, unique value. We can redefine the
value for rainbow as follows:

rainbow: infrared red orange yellow green blue indigo violet ultraviolet;

Now we have a new value for rainbow composed of nine keywords instead of seven. Although the

name of the two values is the same, the two are as unique and different as zero and one.

As we've seen, CSS keywords are separated by spaces-except in one instance.
In the CSS property font, there is exactly one place where a forward-slash (/)

can be used to separate two specific keywords. Here's an example:

h2 {font: large/150% sans-serif;}

The slash separates the keywords that set the element's font size and line
height. This is the only place the slash is allowed to appear in the font
declaration. All of the other keywords allowed for font are separated by

spaces.

Those are the basics of simple declarations, but they can get much more complex. The next section
begins to show you just how powerful CSS can be.

 < Day Day Up >

 < Day Day Up >

2.2 Grouping

So far, we've learned fairly simple techniques for applying a single style to a single selector. But what
if you want the same style to apply to multiple elements? If that's the case, you'll want to use more
than one selector or apply more than one style to an element or group of elements.

2.2.1 Grouping Selectors

Let's say you want h2 elements and paragraphs to have gray text. The easiest way to accomplish this

is to use the following declaration:

h2, p {color: gray;}

By placing the h2 and p selectors on the left side of the rule and separating them with a comma,
you've defined a rule where the style on the right (color: gray;) applies to the elements referenced

by both selectors. The comma tells the browser that there are two different selectors involved in the
rule. Leaving out the comma would give the rule a completely different meaning, which we'll explore
later in Section 2.5.2.

There are really no limits on how many selectors you can group together. For example, if you want to
display a large number of elements in gray, you might use something like the following rule:

body, table, th, td, h1, h2, h3, h4, p, pre, strong, em, b, i {color: gray;}

Grouping allows an author to drastically compact certain types of style assignments, which makes for
a shorter style sheet. The following alternatives produce exactly the same result, but it's pretty
obvious which one is easier to type:

h1 {color: purple;}

h2 {color: purple;}

h3 {color: purple;}

h4 {color: purple;}

h5 {color: purple;}

h6 {color: purple;}

h1, h2, h3, h4, h5, h6 {color: purple;}

Grouping allows for some interesting choices. For example, all of the groups of rules in the following

example are equivalent-each merely shows a different way of grouping both selectors and
declarations:

/* group 1 */

h1 {color: silver; background: white;}

h2 {color: silver; background: gray;}

h3 {color: white; background: gray;}

h4 {color: silver; background: white;}

b {color: gray; background: white;}

/* group 2 */

h1, h2, h4 {color: silver;}

h2, h3 {background: gray;}

h1, h4, b {background: white;}

h3 {color: white;}

b {color: gray;}

/* group 3 */

h1, h4 {color: silver; background: white;}

h2 {color: silver;}

h3 {color: white;}

h2, h3 {background: gray;}

b {color: gray; background: white;}

Any of these will yield the result shown in Figure 2-5. (These styles use grouped declarations, which
are explained in the upcoming section.)

Figure 2-5. The result of equivalent style sheets

2.2.1.1 The universal selector

CSS2 introduced a new simple selector called the universal selector, displayed as an asterisk (*). This

selector matches any element at all, much like a wildcard. For example, to make every single
element in a document red, you would write:

* {color: red;}

This declaration is equivalent to a grouped selector that lists every single element contained within
the document. The universal selector lets you assign the color value red to every element in the

document in one efficient stroke. Beware, however: although the universal selector is convenient, it
can have unintended consequences, which I'll discuss in the next chapter.

2.2.2 Grouping Declarations

Since you can group selectors together into a single rule, it follows that you can also group
declarations. Assume that you want all h1 elements to appear in purple, 18-pixel-high Helvetica text

on an aqua background (and you don't mind blinding your readers). You could write your styles like
this:

h1 {font: 18px Helvetica;}

h1 {color: purple;}

h1 {background: aqua;}

But this method is inefficient; imagine creating such a list for an element that will carry 10 or 15
styles! Instead, you can group your declarations together:

h1 {font: 18px Helvetica; color: purple; background: aqua;}

This will have exactly the same effect as the three-line style sheet just shown.

Note that using semicolons at the end of each declaration is crucial when you're grouping them.
Browsers ignore whitespace in style sheets, and the user agent must rely on correct syntax to parse
the style sheet. You can fearlessly format styles like the following:

h1 {

 font: 18px Helvetica;

 color: purple;

 background: aqua;

}

If the second semicolon is omitted, however, the user agent will interpret the style sheet as follows:

h1 {

 font: 18px Helvetica;

 color: purple background: aqua;

}

Since background: is not a valid value for color, and also since color can be given only one
keyword, a user agent will ignore the color declaration (including the background: aqua part)
entirely. It might render h1s as purple text without an aqua background, but more likely, you won't
even get purple h1s. Instead, they'll be the default color (usually black) with no background at all.
(The declaration font: 18px Helvetica will still take effect since it was correctly terminated with a

semicolon.)

While it is not technically necessary to follow the last declaration of a rule with a
semicolon, it is generally good practice to do so. First, it will keep you in the
habit of terminating your declarations with semicolons, the lack of which is one
of the most common causes of rendering errors. Second, if you decide to add
another declaration to a rule, you won't have to worry about forgetting to insert
an extra semicolon. Finally, some older browsers such as Internet Explorer 3.x
have a greater tendency to become confused if the semicolon is left off the final
declaration in a rule. Avoid all these problems: always follow a declaration with
a semicolon, wherever the rule appears.

As with selector grouping, declaration grouping is a convenient way to keep your style sheets short,
expressive, and easy to maintain.

2.2.3 Grouping Everything

You now know that you can group selectors, and you can group declarations. By combining both
kinds of grouping in single rules, you can define very complex styles using only a few statements.
Now, what if you want to assign some complex styles to all the headings in a document, and you
want the same styles to be applied to all of them? Here is how you do this:

h1, h2, h3, h4, h5, h6 {color: gray; background: white; padding: 0.5em;

 border: 1px solid black; font-family: Charcoal, sans-serif;}

You've grouped the selectors, so the styles on the right side of the rule will be applied to all the
headings listed, and grouping the declarations means that all of the listed styles will be applied to the
selectors on the left side of the rule. The result of this rule is shown in Figure 2-6.

Figure 2-6. Grouping both selectors and rules

This approach is preferable to the drawn-out alternative, which would begin with something like this:

h1 {color: gray;}

h2 {color: gray;}

h3 {color: gray;}

h4 {color: gray;}

h5 {color: gray;}

h6 {color: gray;}

h1 {background: white;}

h2 {background: white;}

h3 {background: white;}

and continue for many lines. You certainly can write out your styles the long way, but I wouldn't
recommend it. Editing your styles would be almost as tedious as using font tags everywhere!

It's possible to add even more expression to selectors and to apply styles in a way that cuts across
elements in favor of types of information. Of course, to get something so powerful, you'll have to do

a little work in return, but it's well worth it.

 < Day Day Up >

 < Day Day Up >

2.3 Class and ID Selectors

So far, we've been grouping selectors and declarations together in a variety of ways, but the
selectors we've been using are still simple ones. The selectors we've used refer only to document
elements; they're fine up to a point, but there are times when you need something a little more
specialized.

In addition to raw document elements, there are two other types of selectors: class selectors and ID
selectors, which let you assign styles in a way that is independent of document elements. These
selectors can be used on their own or in conjunction with element selectors. However, they work only
if you've marked up your document appropriately, so using them generally involves a little
forethought and planning.

For example, say you're drafting a document that discusses ways of handling plutonium. The
document contains various warnings about safely dealing with such a dangerous substance. You want
each warning to appear in boldface text so that it will stand out. However, you don't know which
elements these warnings will be. Some warnings could be entire paragraphs, while others could be a
single item within a lengthy list or a small section of text. So, you can't define a rule using simple
selectors of any kind. Suppose you tried this route:

p {font-weight: bold;}

All paragraphs would be bold, not just those that contain warnings. You need a way to select only the
text that contains warnings, or more precisely, a way to select only those elements that are
warnings. How do you do it? You apply styles to parts of the document that have been marked in a
certain way, independent of the elements involved, by using class selectors.

2.3.1 Class Selectors

The most common way to apply styles without worrying about the elements involved is to use class
selectors. Before you can use them, however, you need to modify your actual document markup so
that the class selectors will work. Enter the class attribute:

<p class="warning">When handling plutonium, care must be taken to avoid

the formation of a critical mass.</p>

<p>With plutonium, the possibility of implosion is

very real, and must be avoided at all costs. This can be accomplished

by keeping the various masses separate.</p>

In order to associate the styles of a class selector with an element, you must assign a class attribute
to the appropriate value. In the previous code, a class value of warning was assigned to two

elements: the first paragraph and the span element in the second paragraph.

All you need now is a way to apply styles to these classed elements. In HTML documents, you can
use a very compact notation where the name of a class is preceded by a period (.) and can be

joined with a simple selector:

*.warning {font-weight: bold;}

When combined with the example markup shown earlier, this simple rule has the effect shown in
Figure 2-7. That is, the style of font-weight: bold will be applied to every element (thanks to the
presence of the universal selector) that carries a class attribute with a value of warning.

Figure 2-7. Using a class selector

As you can see, the class selector works by directly referencing a value that will be found in the
class attribute of an element. This reference is always preceded by a period (.), which marks it as a

class selector. The period helps keep the class selector separate from anything with which it might be
combined-like an element selector. For example, you may want boldface text only when an entire
paragraph is a warning:

p.warning {font-weight: bold;}

The selector now matches any p elements that have a class attribute containing the word warning,
but no other elements of any kind, classed or otherwise. The selector p.warning translates to: "Any
paragraph whose class attribute contains the word warning." Since the span element is not a

paragraph, the rule's selector doesn't match it, and it won't be converted to bold text.

If you did want to assign different styles to the span element, you could have used the selector
span.warning:

p.warning {font-weight: bold;}

span.warning {font-style: italic;}

In this case, the warning paragraph is boldfaced, while the warning span is italicized. Each rule

applies only to a specific type of element/class combination and so does not leak over to other
elements.

Another option is to use a combination of a general class selector and an element-specific class
selector to make the styles even more useful, as in the following markup:

.warning {font-style: italic;}

span.warning {font-weight: bold;}

The results are shown in Figure 2-8.

Figure 2-8. Using generic and specific selectors to combine styles

In this situation, any warning text will be italicized, but only the text within a span element and text
with a class of warning will be boldfaced and italicized.

Notice the format of the general class selector in the previous example: it's simply a class name
preceded by a period without any element name. In cases where you only want to select all elements
that share a class name, you can omit the universal selector from a class selector without any ill
effects.

2.3.2 Multiple Classes

In the previous section, we dealt with class values that contained a single word. In HTML, it's
possible to have a space-separated list of words in a single class value. For example, if you want to

mark a particular element as being both urgent and a warning, you could write:

<p class="urgent warning">When handling plutonium, care must be taken to

avoid the formation of a critical mass.</p>

<p>With plutonium, the possibility of implosion is

very real, and must be avoided at all costs. This can be accomplished

by keeping the various masses separate.</p>

The order of the words doesn't actually matter; warning urgent would also suffice.

Now let's say you want all elements with a class of warning to be boldface, those with a class of
urgent to be italic, and those elements with both values to have a silver background. This would be

written as follows:

.warning {font-weight: bold;}

.urgent {font-style: italic;}

.warning.urgent {background: silver;}

By chaining two class selectors together, you can select only those elements that have both class
names, in any order. As you can see, the HTML source contains class="urgent warning" but the
CSS selector is written .warning.urgent. Regardless, the rule will still cause the "When handling

plutonium..." paragraph to have a silver background, as illustrated in Figure 2-9.

Figure 2-9. Selecting elements with multiple class names

If a multiple class selector contains a name that is not in the space-separated list, then the match will
fail. Consider the following rule:

p.warning.help {background: red;}

As you would expect, the selector will match only those p elements with a class containing the
words warning and help. Therefore, it will not match a p element with just the words warning and
urgent in its class attribute. It would, however, match the following:

<p class="urgent warning help">Help me!</p>

Internet Explorer for both platforms has problems correctly handling multiple
class selectors. While you can select a single class name out of a list, selecting
based on multiple names in a list will not work properly. Thus, p.warning
would work as expected, but p.warning.help would match any p elements
that have a class attribute with the word help because it came last in the
selector. If you wrote p.help.warning, then Explorer would match any p
elements that have warning in their class value.

2.3.3 ID Selectors

In some ways, ID selectors are similar to class selectors, but there are a few crucial differences. First,
ID selectors are preceded by an octothorpe (#)-also known as a pound sign, hash mark, or tic-tac-

toe board-instead of a period. Thus, you might see a rule like this one:

*#first-para {font-weight: bold;}

This rule applies boldface text to any element whose id attribute has a value of first-para.

The second difference is that instead of referencing values of the class attribute, ID selectors refer,
unsurprisingly, to values found in id attributes. Here's an example of an ID selector in action:

*#lead-para {font-weight: bold;}

<p id="lead-para">This paragraph will be boldfaced.</p>

<p>This paragraph will NOT be bold.</p>

Note that the value lead-para could have been assigned to any element within the document. In this

particular case, it is applied to the first paragraph, but you could have applied it just as easily to the
second or third paragraph.

As with class selectors, it is possible to omit the universal selector from an ID selector. In the
previous example, you could also have written:

#lead-para {font-weight: bold;}

The effect of this selector would be the same.

2.3.4 Deciding Between Class and ID

You may assign classes to any number of elements, as demonstrated earlier; the class name
warning was applied to both a p and a span element, and it could have been applied to many more

elements. IDs, on the other hand, are used once, and only once, within an HTML document.
Therefore, if you have an element with an id value of lead-para, no other element in that document
can have an id value of lead-para.

In the real world, browsers don't usually check for the uniqueness of IDs in
HTML, which means that if you sprinkle an HTML document with several
elements, all of which have the same value for their ID attributes, you'll
probably get the same styles applied to each. This is incorrect behavior, but it
happens anyway. Having more than one of the same ID value in a document
also makes DOM scripting more difficult, since functions like getElementById(
) depend on there being one, and only one, element with a given ID value.

Unlike class selectors, ID selectors can't be combined, since ID attributes do not permit a space-

separated list of words.

On a purely syntactical level, the dot-class notation (e.g., .warning) is not guaranteed to work for

XML documents. As of this writing, the dot-class notation works in HTML, SVG, and MathML, and it
may well be permitted in future languages, but it's up to each language's specification to decide that.
The hash-ID notation (e.g., #lead) will work in any document language that has an attribute that
enforces uniqueness within a document. Uniqueness can be enforced with an attribute called id, or

indeed anything else, as long as the attribute's contents are defined to be unique within the
document.

Another difference between class and id names is that IDs carry a heavier weight when trying to

determine which styles should be applied to a given element. I'll explain this in greater detail in the
next chapter.

Like classes, IDs can also be selected independently of an element. There may be circumstances in
which you know that a certain ID value will appear in a document, but you don't know the element
on which it will appear (as in the plutonium-handling warnings), so you'll want to declare standalone
ID selectors. For example, you may know that in any given document, there will be an element with
an ID value of mostImportant. You don't know whether that most important thing will be a

paragraph, a short phrase, a list item, or a section heading. You know only that it will exist in each
document, occur in an arbitrary element, and appear no more than once. In that case, you would
write a rule like this:

#mostImportant {color: red; background: yellow;}

This rule would match any of the following elements (which, as I noted before, should not appear
together in the same document because they all have the same ID value):

<h1 id="mostImportant">This is important!</h1>

<em id="mostImportant">This is important!

<ul id="mostImportant">This is important!

Also note that class and ID selectors may be case-sensitive, depending on the document language.
HTML and XHTML define class and ID values to be case-sensitive, so the capitalization of your class
and ID values must match that found in your documents. Thus, in the following pairing of CSS and
HTML, the element will not be boldfaced:

p.criticalInfo {font-weight: bold;}

<p class="criticalinfo">Don't look down.</p>

Because of the change in case for the letter "I", the selector will not match the element shown.

Some older browsers did not treat class and ID names as case-sensitive, but all
current browsers as of this writing enforce case sensitivity.

 < Day Day Up >

 < Day Day Up >

2.4 Attribute Selectors

When it comes to both class and ID selectors, what you're really doing is selecting values of
attributes. The syntax used in the previous two sections is particular to HTML, SVG, and MathML
documents (as of this writing). In other markup languages, these class and ID selectors may not be
available. To address this situation, CSS2 introduced attribute selectors, which can be used to select
elements based on their attributes and the values of those attributes. There are four types of
attribute selectors.

Attribute selectors are supported by the Opera and Gecko browsers but not by
Internet Explorer through IE5/Mac and IE6/Win.

2.4.1 Simple Attribute Selection

If you want to select elements that have a certain attribute, regardless of the attribute's value, you
can use a simple attribute selector. For example, to select all h1 elements that have a class attribute

with any value and make their text silver, write:

h1[class] {color: silver;}

So given the following markup:

<h1 class="hoopla">Hello</h1>

<h1 class="severe">Serenity</h1>

<h1 class="fancy">Fooling</h1>

you get the result shown in Figure 2-10.

Figure 2-10. Selecting elements based on their attributes

This strategy is very useful in XML documents, as XML languages tend to have element and attribute
names that are very specific to their purpose. Consider an XML language that is used to describe
planets of the solar system (we'll call it PlanetML). If you want to select all planet elements with a

moons attribute and make them boldface, thus calling attention to any planet that has moons, you

would write:

planet[moons] {font-weight: bold;}

This would cause the text of the second and third elements in the following markup fragment to be
boldfaced, but not the first:

<planet>Venus</planet>

<planet moons="1">Earth</planet>

<planet moons="2">Mars</planet>

In HTML documents, you can use this feature in a number of creative ways. For example, you could
style all images that have an alt attribute, thus highlighting those images that are correctly formed:

img[alt] {border: 3px solid red;}

(This particular example is useful more for diagnostic purposes-that is, determining whether images
are indeed correctly formed-than for design purposes.)

If you wanted to boldface any element that includes title information, which most browsers display

as a "tooltip" when a cursor hovers over the element, you could write:

*[title] {font-weight: bold;}

Similarly, you could style only those anchors (a elements) that have an href attribute.

It is also possible to select based on the presence of more than one attribute. This is done simply by
chaining the attribute selectors together. For example, to boldface the text of any HTML hyperlink
that has both an href and a title attribute, you would write:

a[href][title] {font-weight: bold;}

This would boldface the first link in the following markup, but not the second or third:

W3C

Standards Info

dead.letter

2.4.2 Selection Based on Exact Attribute Value

In addition to selecting elements with attributes, you can further narrow the selection process to
encompass only those elements whose attributes are a certain value. For example, let's you we want
to boldface any hyperlink that points to a certain document on the web server. This would look
something like:

a[href="http://www.css-discuss.org/about.html"] {font-weight: bold;}

Any attribute and value combination can be specified for any element. However, if that exact

combination does not appear in the document, then the selector won't match anything. Again, XML
languages can benefit from this approach to styling. Let's return to our PlanetML example. Suppose
you want to select only those planet elements that have a value of 1 for the attribute moons:

planet[moons="1"] {font-weight: bold;}

This would boldface the text of the first and second elements in the following markup fragment, but
not the first or third:

<planet>Venus</planet>

<planet moons="1">Earth</planet>

<planet moons="2">Mars</planet>

As with attribute selection, you can chain together multiple attribute-value selectors to select a single
document. For example, to double the size of the text of any HTML hyperlink that has both an href
with a value of http://www.w3.org/ and a title attribute with a value of W3C Home, you would

write:

a[href="http://www.w3.org/"][title="W3C Home"] {font-size: 200%;}

This would double the text size of the first link in the following markup, but not the second or third:

W3C

<a href="http://www.webstandards.org"

 title="Web Standards Organization">Standards Info

dead.link

The results are shown in Figure 2-11.

Figure 2-11. Selecting elements based on attributes and their values

Note that this format requires an exact match for the attribute's value. Matching becomes an issue
when the form encounters values that can in turn contain a space-separated list of values (e.g., the
HTML attribute class). For example, consider the following markup fragment:

<planet type="barren rocky">Mercury</planet>

The only way to match this element based on its exact attribute value is to write:

planet[type="barren rocky"] {font-weight: bold;}

If you had written planet[type="barren"], the rule would not have matched the example markup
and thus would have failed. This is true even for the class attribute in HTML. Consider:

http://www.w3.org/

<p class="urgent warning">When handling plutonium, care must be taken to

avoid the formation of a critical mass.</p>

To select this element based on its exact attribute value, you would have to write:

p[class="urgent warning"] {font-weight: bold;}

This is not the dot-class notation we covered earlier.

Also, be aware that ID selectors and attribute selectors that target the id attribute are not precisely
the same. In other words, there is a subtle but crucial difference between h1#page-title and
h1[id="page-title"]. This difference is explained in the next chapter.

2.4.3 Selection Based on Partial Attribute Values

For any attribute that accepts a space-separated list of words, it is possible to select based on the
presence of any one of those words. The classic example in HTML is the class attribute, which can

accept one or more words as its value. Consider our usual example text:

<p class="urgent warning">When handling plutonium, care must be taken to

avoid the formation of a critical mass.</p>

Let's say you want to select elements whose class attribute contains the word warning. You can do

this with an attribute selector:

p[class~="warning"] {font-weight: bold;}

Note the presence of the tilde (~) in the selector. It is the key to selection based on the presence of a

space-separated word within the attribute's value. If you omit the tilde, you would have an exact-
value matching requirement, as discussed in the previous section.

This selector construct is equivalent to the dot-class notation discussed earlier. Thus, p.warning and
p[class~="warning"] are equivalent when applied to HTML documents. Let's return to our previous

XML example:

<planet type="barren rocky">Mercury</planet>

<planet type="barren cloudy">Venus</planet>

<planet type="life-bearing cloudy">Earth</planet>

In order to make all elements with the word barren in their type attribute italicized, you write:

planet[type~="barren"] {font-style: italic;}

This rule's selector will match the first two elements in the example XML and thus italicize their text,
as shown in Figure 2-12.

Figure 2-12. Selecting elements based on portions of attribute values

Even in HTML, this form of attribute selector can be useful. For example, you might have a document
that contains a number of images, only some of which are figures. You can use a partial-value
attribute selector aimed at the title text to select only those figures:

img[title~="Figure"] {border: 1px solid gray;}

This rule will select any image whose title text contains the word Figure. Therefore, as long as all
your figures have title text that looks something like "Figure 4. A bald-headed elder statesman,"
the rule above will match those images. For that matter, the selector img[title~="Figure"] will

also match a title attribute with the value "How To Figure Out Who's In Charge." Any image that does
not have a title attribute, or whose title value doesn't contain the word "Figure," won't be

matched.

2.4.4 A Particular Attribute Selection Type

A fourth type of attribute selector, the particular attribute selector, is easier to show than it is to
describe. Consider the following rule:

*[lang|="en"] {color: white;}

This rule will select any element whose lang attribute is equal to en or begins with en-. Therefore,

the first three elements in the following example markup would be selected, but the last two would
not:

<h1 lang="en">Hello!</h1>

<p lang="en-us">Greetings!</p>

<div lang="en-au">G'day!</div>

<p lang="fr">Bonjour!</p>

<h4 lang="cy-en">Jrooana!</h4>

In general, the form [att|="val"] can be used for any attribute and its values. Let's say you have a

series of figures in an HTML document, each of which has a filename like figure-1.gif and figure-
3.jpg. You can match all of these images using the following selector:

img[src|="figure"] {border: 1px solid gray;}

The most common use for this type of attribute selector is to match language values, as
demonstrated later in this chapter.

 < Day Day Up >

 < Day Day Up >

2.5 Using Document Structure

As I've mentioned before, CSS is powerful because it uses the structure of HTML documents to
determine appropriate styles and how to apply them. That's only part of the story since it implies that
such determinations are the only way CSS uses document structure. Structure plays a much larger
role in the way styles are applied to a document. Let's take a moment to discuss structure before
moving on to more powerful forms of selection.

2.5.1 Understanding the Parent-Child Relationship

In order to understand the relationship between selectors and documents, you need to once again
examine how documents are structured. Consider this very simple HTML document:

<html>

<head>

 <base href="http://www.meerkat.web/">

 <title>Meerkat Central</title>

</head>

<body>

 <h1>Meerkat Central</h1>

 <p>

 Welcome to Meerkat Central, the best meerkat web site

 on the entire Internet!</p>

 We offer:

 Detailed information on how to adopt a meerkat

 Tips for living with a meerkat

 Fun things to do with a meerkat, including:

 Playing fetch

 Digging for food

 Hide and seek

 ...and so much more!

 <p>

 Questions? Contact us!

 </p>

</body>

</html>

Much of the power of CSS is based on the parent-child relationship of elements. HTML documents
(actually, most structured documents of any kind) are based on a hierarchy of elements, which is
visible in the "tree" view of the document (Figure 2-13). In this hierarchy, each element fits
somewhere into the overall structure of the document. Every element in the document is either the
parent or the child of another element, and it's often both.

Figure 2-13. A document tree structure

An element is said to be the parent of another element if it appears directly above that element in the
document hierarchy. For example, in Figure 2-13, the first p element is parent to an em and a strong
element, while the strong is parent to an anchor element, which is, itself, parent to another em

element. Conversely, an element is the child of another element if it is directly beneath the other
element. Thus, the anchor element in Figure 2-13 is a child of the strong element, which is in turn

child to the paragraph, and so on.

The terms parent and child are specific applications of the terms ancestor and descendant. There is a
difference between them: in the tree view, if an element is exactly one level above another, then
they have a parent-child relationship. If the path from one element to another continues through two
or more levels, the elements have an ancestor-descendant relationship, but not a parent-child
relationship. (Of course, a child is also a descendant, and a parent is an ancestor.) In Figure 2-13,
the first ul element is parent to two li elements, but the first ul is also the ancestor of every
element descended from its li element, all the way down to the most deeply nested li elements.

Also, in Figure 2-13, there is an anchor that is a child of strong, but also a descendant of paragraph,
body, and html elements. The body element is an ancestor of everything that the browser will display
by default, and the html element is ancestor to the entire document. For this reason, the html

element is also called the root element.

2.5.2 Descendant Selectors

The first benefit derived from understanding this model is the ability to define descendant selectors
(also known as contextual selectors). Defining descendant selectors is the act of creating rules that
operate in certain structural circumstances but not others. As an example, let's say you want to style
only those em elements that are descended from h1 elements. You could put a class attribute on
every em element found within an h1, but that's almost as time-consuming as using the font tag. It's
obviously far more efficient to declare rules that match only em elements that are found inside h1

elements.

To do so, write the following:

h1 em {color: gray;}

This rule will make gray any text in an em element-that is, the descendant of an h1 element. Other
em text, such as that found in a paragraph or a block quote, will not be selected by this rule. Figure 2-

14 makes this clear.

Figure 2-14. Selecting an element based on its context

In a descendant selector, the selector side of a rule is composed of two or more space-separated
selectors. The space between the selectors is an example of a combinator. Each space combinator
can be translated as "found within," "which is part of," or "that is a descendant of," but only if you
read the selector right to left. Thus, h1 em can be translated as, "Any em element that is a descendant
of an h1 element." (To read the selector left to right, you might phrase it something like, "Any h1
that contains an em will have the following styles applied to the em.")

You aren't limited to two selectors, of course. For example:

ul ol ul em {color: gray;}

In this case, as Figure 2-15 shows, any emphasized text that is part of an unordered list that is part
of an ordered list that is itself part of an unordered list (yes, this is correct) will be gray. This is
obviously a very specific selection criterion.

Figure 2-15. A very specific descendant selector

Descendant selectors can be extremely powerful. They make possible what could never be done in
HTML-at least not without oodles of font tags. Let's consider a common example. Assume you have

a document with a sidebar and a main area. The sidebar has a blue background, the main area has a
white background, and both areas include lists of links. You can't set all links to be blue because
they'd be impossible to read in the sidebar.

The solution: descendant selectors. In this case, you give the table cell that contains your sidebar a
class of sidebar, and assign the main area a class of main. Then you write styles like this:

td.sidebar {background: blue;}

td.main {background: white;}

td.sidebar a:link {color: white;}

td.main a:link {color: blue;}

Figure 2-16 shows the result.

Figure 2-16. Using descendant selectors to apply different styles to the
same type of element

:link refers to links to resources that haven't been visited. We'll talk about this

in detail later in this chapter.

Here's another example: let's say that you want gray to be the text color of any b (boldface) element

that is part of a blockquote, and also for any bold text that is found in a normal paragraph:

blockquote b, p b {color: gray;}

The result is that the text within b elements that are descended from paragraphs or block quotes will

be gray.

One overlooked aspect of descendant selectors is that the degree of separation between two
elements can be practically infinite. For example, if you write ul em, that syntax will select any em
element descended from a ul element, no matter how deeply nested the em may be. Thus, ul em
would select the em element in the following markup:

List item 1

List item 1-1

List item 1-2

List item 1-3

List item 1-3-1

List item 1-3-2

List item 1-3-3

List item 1-4

2.5.3 Selecting Children

In some cases, you don't want to select an arbitrarily descended element; rather, you want to
narrow your range to select an element that is a child of another element. You might, for example,
want to select a strong element only if it is a child (as opposed to a descendant) of an h1 element.
To do this, you use the child combinator, which is the greater-than symbol (>):

h1 > strong {color: red;}

This rule will make red the strong element shown in the first h1 below, but not the second:

<h1>This is very important.</h1>

<h1>This is really very important.</h1>

Read right to left, the selector h1 > strong translates as "selects any strong element that is a child
of an h1 element." The child combinator is optionally surrounded by whitespace. Thus, h1 > strong,
h1> strong, and h1>strong are all equivalent. You can use or omit whitespace as you like.

When viewing the document as a tree structure, it's easy to see that a child selector restricts its
matches to elements that are directly connected in the tree. Figure 2-17 shows part of a document
tree.

Figure 2-17. A document tree fragment

In this tree fragment, you can easily pick out parent-child relationships. For example, the a element
is parent to the strong, but it is child to the p element. You could match elements in this fragment
with the selectors p > a and a > strong, but not p > strong, since the strong is a descendant of the
p but not its child.

You can also combine descendant and child combinations in the same selector. Thus, table.summary
td > p will select any p element that is a child of a td element that is itself descended from a table
element that has a class attribute containing the word summary.

2.5.4 Selecting Adjacent Sibling Elements

Let's say you want to style the paragraph immediately after a heading or give a special margin to a
list that immediately follows a paragraph. To select an element that immediately follows another
element with the same parent, you use the adjacent-sibling combinator, represented as a plus
symbol (+). Like the child combinator, the symbol can be surrounded by whitespace at the author's

discretion.

To remove the top margin from a paragraph immediately following an h1 element, write:

h1 + p {margin-top: 0;}

The selector is read as, "selects any paragraph that immediately follows an h1 element that shares a
parent with the p element."

In order to visualize how this selector works, it is easiest to once again consider a fragment of a
document tree, shown in Figure 2-18.

Figure 2-18. Another document tree fragment

In this fragment, a pair of lists descends from a div element, one ordered and the other not, each

containing three list items. Each list is an adjacent sibling, and the list items themselves are also
adjacent siblings. However, the list items from the first list are not siblings of the second, since the
two sets of list items do not share the same parent element. (At best, they're cousins.)

Remember that you can select the second of two adjacent siblings only with a single combinator.
Thus, if you write li + li {font-weight: bold;}, only the second and third items in each list will be

boldfaced. The first list items will be unaffected, as illustrated in Figure 2-19.

Figure 2-19. Selecting adjacent siblings

In order to work properly, CSS requires that the two elements appear in "source order." In our
example, an ol element is followed by a ul element. This would allow you to select the second
element with ol + ul, but you cannot select the first using the same syntax. For ul + ol to match, an

ordered list would have to immediately follow an unordered list.

In addition, text content between two elements does not prevent the adjacent-sibling combinator
from working. Consider this markup fragment, whose tree view would be the same as that shown in
Figure 2-18:

<div>

List item 1

List item 1

List item 1

This is some text that is part of the 'div'.

A list item

Another list item

Yet another list item

</div>

Even though there is text between the two lists, you can still match the second list with the selector
ol + ul. That's because the intervening text is not contained with a sibling element, but is instead
part of the parent div. If you wrapped that text in a paragraph element, it would then prevent ol +
ul from matching the second list. Instead, you might have to write something like ol + p + ul.

As the following example illustrates, the adjacent-sibling combinator can be used in conjunction with
other combinators:

html > body table + ul{margin-top: 1.5em;}

The selector translates as "selects any ul element that immediately follows a sibling table element
that is descended from a body element that is itself a child of an html element."

Internet Explorer for Windows through IE6, the most recent version as of this
writing, does not support child and adjacent-sibling selectors.

 < Day Day Up >

 < Day Day Up >

2.6 Pseudo-Classes and Pseudo-Elements

Things get really interesting with pseudo-class selectors and pseudo-element selectors . These selectors
let you assign styles to structures that don't necessarily exist in the document, or to phantom classes
that are inferred by the state of certain elements, or even by the state of the document itself. In other
words, the styles are applied to pieces of a document based on something other than the structure of
the document, and in a way that cannot be precisely deduced simply by studying the document's
markup.

It may sound like I'm applying styles at random, but I'm not. Instead, I'm applying styles based on
somewhat ephemeral conditions that can't be predicted in advance. However, the circumstances under
which the styles will appear are, in fact, well-defined. Think of it this way: during a sporting event,
whenever the home team scores, the crowd will cheer. You don't know exactly when during a game the
scoring will happen, but when it does, the crowd will cheer, just as predicted. The fact that you can't
predict the moment of the cause doesn't make the effect any less expected.

2.6.1 Pseudo-Class Selectors

Let's begin by examining pseudo-class selectors since they're better supported by browsers and are
therefore more widely used.

Consider the anchor element (a), which, in HTML and XHTML, establishes a link from one document to

another. Anchors are always anchors, of course, but some anchors refer to pages that have already
been visited, while others refer to pages that have yet to be visited. You can't tell the difference by
simply looking at the HTML markup, because in the markup, all anchors look the same. The only way to
tell which links have been visited is by comparing the links in a document to the user's browser history.
So, there are actually two basic types of anchors: visited and unvisited. These types are known as
pseudo-classes , and the selectors that use them are called pseudo-class selectors.

To better understand these classes and selectors, consider how browsers behave with regard to links.
The Mosaic convention designated that links to pages you hadn't visited were blue, and links to already
visited pages were red (the red became purple in succeeding browsers such as Internet Explorer). So, if
you could insert classes into anchors, such that any anchor already visited would have a class of, say,
"visited," then you could write a style to make such anchors red:

a.visited {color: red;}

W3C Web site

However, such an approach requires that the classes on anchors change every time you visit a new
page, which is a little silly. Instead, CSS defines pseudo-classes that make the anchors to visited pages
act as though they have classes of "visited":

a:visited {color: red;}

Now any anchor that points to a visited page will be red, and you don't even have to add class
attributes to any of the anchors. Note the colon (:) in the rule. The colon separating the a and the
visited is the calling card of a pseudo-class or pseudo-element. All pseudo-class and -element

keywords are preceded by a colon.

2.6.1.1 Link pseudo-classes

CSS2.1 defines two pseudo-classes that apply only to hyperlinks. In HTML and XHTML 1.0 and 1.1, these
would be any a elements having an href attribute; in XML languages, they would be any elements that

act as links to another resource. Table 2-1 describes these two pseudo-classes.

Table 2-1. Link pseudo-classes

Name Description

:link
Refers to any anchor that is a hyperlink (i.e., has an href attribute) and points to an

address that has not been visited. Note that some browsers may incorrectly interpret
:link to refer to any hyperlink, visited or unvisited.

:visited Refers to any anchor that is a hyperlink to an already visited address.

The first of the pseudo-classes in Table 2-1 may seem a little bit redundant. After all, if an anchor hasn't
been visited, then it must be unvisited, right? If that's the case, all we should need is the following:

a {color: blue;}

a:visited {color: red;}

Although this format seems reasonable, it's actually not quite enough. The first of the rules shown here
applies not only to unvisited links, but also to target anchors such as this one:

4. The Lives of Meerkats

The resulting text would be blue because the a element will match the rule a {color : blue;} , as
shown above. Therefore, in order to avoid applying your link styles to target anchors, use the :link

pseudo-class:

a:link {color: blue;} /* unvisited links are blue */

a:visited {color: red;} /* visited links are red */

As you may have already realized, the :link and :visited pseudo-class selectors are functionally
equivalent to the body attributes link and vlink . Assume that an author wants all anchors to unvisited

pages to be purple and anchors to visited pages to be silver. In HTML 3.2, this could be done as follows:

<body link="purple" vlink="silver">

In CSS, the same effect would be accomplished with:

a:link {color: purple;}

a:visited {color: silver;}

In the case of the CSS pseudo-classes, of course, you can apply more than just colors. Let's say you
want visited links to be italicized and to have, in addition to their silver color, a strikethrough line, as
shown in Figure 2-20 .

Figure 2-20. Applying multiple styles to a visited link

This is simply done with the following styles:

a:visited {color: silver; text-decoration: line-through; font-style: italic;}

This is a good place to revisit class selectors and show how they can be combined with pseudo-classes.
For example, let's say you want to change the color of links that point outside your own site. If you
assign a class to each of these anchors, it's easy:

My home page

Another home page

In order to apply different styles to the external link, all you need is a rule like this:

a.external:link, a.external:visited {color: maroon;}

This rule will make the second anchor in the preceding markup maroon, while the first anchor will
remain the default color for hyperlinks (usually blue).

The same general syntax is used for ID selectors as well:

a#footer-copyright:link{font-weight: bold;}

a#footer-copyright:visited {font-weight: normal;}

Although :link and :visited are very useful, they're also static-they typically don't change the styling

of a document after its initial display. Other pseudo-classes that aren't quite so static are available in
CSS2.1; we'll review them next.

2.6.1.2 Dynamic pseudo-classes

CSS2.1 defines three pseudo-classes that can change a document's appearance as a result of user
behavior. These dynamic pseudo-classes have traditionally been used to style hyperlinks, but the
possibilities are much wider. Table 2-2 describes these pseudo-classes.

Table 2-2. Dynamic pseudo-classes

Name Description

:focus
Refers to any element that currently has the input focus-i.e., can accept keyboard input or
be activated in some way.

:hover
Refers to any element over which the mouse pointer is placed-e.g., a hyperlink over which
the mouse pointer is hovering.

:active
Refers to any element that has been activated by user input-e.g., a hyperlink on which a
user is clicking during the time the mouse button is held down.

As with :link and :visited , these pseudo-classes are most familiar in the context of hyperlinks. Many

web pages have styles that look like this:

a:link {color: navy;}

a:visited {color: gray;}

a:hover {color: red;}

a:active {color: yellow;}

The first two rules use link pseudo-classes, and the last two employ dynamic pseudo-classes. :active is
analogous to the alink attribute in HTML 3.2, although, as before, you can apply color changes and any

style you like to active links.

The order of the pseudo-classes is more important than it might seem at first. The
usual recommendation is "link-visited-hover-active," although this has been
modified to "link-visited-focus-hover-active." The next chapter explains why this
particular ordering is important and reasons you might choose to change or even
ignore the recommended ordering.

Notice that the dynamic pseudo-classes can be applied to any element, which is good since it's often
useful to apply dynamic styles to elements that aren't links. For example, using this markup:

input:focus {background: silver; font-weight: bold;}

you could highlight a form element that is ready to accept keyboard input, as shown in Figure 2-21 .

Figure 2-21. Highlighting a form element that has focus

You can also perform some rather odd feats by applying dynamic pseudo-classes to arbitrary elements.
You might decide to give users a "highlight" effect by way of the following:

body *:hover {background: yellow;}

This rule will cause any element that's descended from the body element to acquire a yellow background

when it's in a hover state. Headings, paragraphs, lists, tables, images, and anything else found inside
the body will be changed to have a yellow background. You could also change the font, put a border

around the element being hovered, or anything else the browser will let you do.

Internet Explorer for Windows through IE6, the most recent version as of this
writing, does not permit dynamic pseudo-classes to select any elements other
than hyperlinks.

2.6.1.3 Real-world issues with dynamic styling

Dynamic pseudo-classes raise some interesting issues and peculiarities. For example, it's possible to set
visited and unvisited links to one font size and make hovered links a larger size, as shown in Figure 2-22
:

a:link, a:visited {font-size: 13px;}

a:hover {font-size: 20px;}

Figure 2-22. Changing layout with dynamic pseudo-classes

As you can see, the user agent increases the size of the anchor while the mouse pointer hovers over it.
A user agent that supports this behavior must redraw the document while an anchor is in hover state,
which could force a reflow of all the content that follows the link.

However, the CSS specifications state that user agents are not required to redraw a document once it's
been rendered for initial display, so you can't absolutely rely on your intended effect actually happening.
I strongly recommend that you avoid designs that depend on such behavior.

2.6.1.4 Selecting a first child

Another static pseudo-class, :first-child , is used to select elements that are the first children of

other elements. This particular pseudo-class is easily misunderstood, so an extended example is in
order. Consider the following markup:

<div>

<p>These are the necessary steps:</p>

Insert key

Turn key clockwise

Push accelerator

<p>

Do not push the brake at the same time as the accelerator.

</p>

</div>

In this example, the elements that are first children are the first p , the first li , and the strong and em

elements. Given the following two rules:

p:first-child {font-weight: bold;}

li:first-child {text-transform: uppercase;}

you get the result shown in Figure 2-23 .

Figure 2-23. Styling first children

The first rule boldfaces any p element that is the first child of another element. The second rule
uppercases any li element that is the first child of another element (which, in HTML, must be either an
ol or a ul element).

The most common error is to assume that a selector like p:first-child will select the first child of a p

element. However, remember the nature of pseudo-classes, which is to attach a sort of phantom class
to the element associated with the pseudo-class. If you were to add actual classes to the markup, it
would look like this:

<div>

<p class="first-child">These are the necessary steps:</p>

<li class="first-child">Insert key

Turn key <strong class="first-child">clockwise

Push accelerator

<p>

Do <em class="first-child">not push the brake at the same time as the accelerator.

</p>

</div>

Therefore, if you want to select those em elements that are the first children of another element, you
write em:first-child . This selector allows you to, for example, style the first list item in a list, the first
paragraph of a div , or the first td in a table row.

Internet Explorer for Windows through IE6, the most recent version as of this
writing, does not support :first-child .

2.6.1.5 Selecting based on language

For situations where you want to select an element based on its language, you can use the :lang()
pseudo-class. In terms of its matching patterns, the :lang() pseudo-class is exactly like the |=

attribute selector. For example, to italicize any element in the French language, you would write:

*:lang(fr) {font-style: italic;}

The primary difference between the pseudo-selector and the attribute selector is that the language
information can be derived from a number of sources, some of which are outside the element itself. As
CSS2.1 states:

In HTML, the language is determined by a combination of the "lang" attribute, the META element,
and possibly by information from the protocol (such as HTTP headers). XML uses an attribute
called xml:lang, and there may be other document language-specific methods for determining the
language.

Therefore, the pseudo-class is a bit more robust than the attribute selector and is probably a better
choice in most cases where language-specific styling is needed.

2.6.1.6 Combining pseudo-classes

With CSS2.1, you can combine pseudo-classes in the same selector. For example, you can make
unvisited links red when they're hovered, but visited links maroon:

a:link:hover {color: red;}

a:visited:hover {color: maroon;}

The order you specify doesn't actually matter; you could also write a:hover:link to the same effect.

It's also possible to assign separate hover styles to unvisited and visited links that are in another
language-for example, German:

a:link:hover:lang(de) {color: gray;}

a:visited:hover:lang(de) {color: silver;}

Be careful not to combine mutually exclusive pseudo-classes. For example, a link cannot be both visited
and unvisited, so a:link:visited doesn't make any sense. User agents will most likely ignore such a

selector and thus effectively ignore the entire rule.

Internet Explorer for Windows through IE6, which is the most recent version as of
this writing, does not correctly recognize combined pseudo-classes. As with class-
value combinations, it will pay attention to the last of the combined pseudo-
classes. Thus, given a:link:hover , it will pay attention to the :hover but not the
:link portion of the selector.

2.6.2 Pseudo-Element Selectors

Much as pseudo-classes assign phantom classes to anchors, pseudo-elements insert fictional elements
into a document in order to achieve certain effects. Four pseudo-elements are defined in CSS2.1: styling
the first letter, styling the first line, and styling before and after elements.

2.6.2.1 Styling the first letter

The first pseudo-element styles the first letter, and only that letter, of a block-level element:

p:first-letter {color: red;}

This rule causes the first letter of every paragraph to be colored red. Alternatively, you could make the
first letter of each h2 twice as big as the rest of the heading:

h2:first-letter {font-size: 200%;}

The result of this rule is shown in Figure 2-24 .

Figure 2-24. The :first-letter pseudo-element in action

As I mentioned, this rule effectively causes the user agent to respond to a fictional element that
encloses the first letter of each h2 . It would look something like this:

<h2><h2:first-letter>T</h2:first-letter>his is an h2 element</h2>

The :first-letter styles are applied only to the contents of the fictional element shown in the
example. This <h2:first-letter> element does not appear in the document source. Instead, its
existence is constructed on the fly by the user agent and is used to apply the :first-letter style(s) to
the appropriate block of text. In other words, <h2:first-letter> is a pseudo-element. Remember,

you don't have to add any new tags. The user agent will do it for you.

2.6.2.2 Styling the first line

Similarly, :first-line can be used to affect the first line of text in an element. For example, you could

make the first line of each paragraph in a document purple:

p:first-line {color: purple;}

In Figure 2-25 , the style is applied to the first displayed line of text in each paragraph. This is true no
matter how wide or narrow the display region is. If the first line contains only the first five words of the
paragraph, then only those five words will be purple. If the first line contains the first 30 words of the
element, then all 30 will be purple.

Figure 2-25. The :first-line pseudo-element in action

Since the text from "This" to "only" should be purple, the user agent employs a fictional markup that
looks something like this:

<p><p:first-line>This is a paragraph of text that has only</p:first-line>

one stylesheet applied to it. That style

causes the first line to be purple. No other ...

If the first line of text were edited to include only the first seven words of the paragraph, then the
fictional </p:first-line> would move back and occur just after the word "that."

2.6.2.3 Restrictions on :first-letter and :first-line

In CSS2, the :first-letter and :first-line pseudo-elements can be applied only to block-level

elements such as headings or paragraphs and not to inline-level elements such as hyperlinks. In CSS2.1,
:first-letter applies to all elements. There are also limits on the CSS properties that may be applied
to :first-line and :first-letter . Table 2-3 displays the limits.

Table 2-3. Properties permitted on pseudo-elements

:first-letter :first-line

All font properties All font properties

All color properties All color properties

All background properties All background properties

All margin properties word-spacing

:first-letter :first-line

All padding properties letter-spacing

All border properties text-decoration

text-decoration vertical-align

vertical-align (if float is set to none) text-transform

text-transform line-height

line-height clear (CSS2 only; removed in CSS2.1)

float text-shadow (CSS2 only)

letter-spacing (added in CSS2.1)

word-spacing (added in CSS2.1

clear (CSS2 only; removed in CSS2.1)

text-shadow (CSS2 only)

In addition, all pseudo-elements must be placed at the very end of the selector in which they appear.
Therefore, it would not be legal to write p:first-line em since the pseudo-element comes before the

subject of the selector (the subject is the last element listed). The same rule applies to the other two
pseudo-elements CSS2.1 defines.

2.6.2.4 Style before and after elements

Let's say you want to preface every h2 element with a pair of silver square brackets as a typographical

effect:

h2:before {content: "]]"; color: silver;}

CSS2.1 lets you insert generated content , and then style it directly using the pseudo-elements :before
and :after . An example is shown in Figure 2-26 .

Figure 2-26. Inserting content before an element

The pseudo-element is used to insert the generated content and to style it. To place content after an
element, use the pseudo-element :after . You could end your documents with an appropriate finish:

body:after {content: " The End.";}

Generated content is a separate subject, and the entire topic (including more detail on :before and
:after) is covered in more detail in Chapter 12 .

 < Day Day Up >

All padding properties letter-spacing

All border properties text-decoration

text-decoration vertical-align

vertical-align (if float is set to none) text-transform

text-transform line-height

line-height clear (CSS2 only; removed in CSS2.1)

float text-shadow (CSS2 only)

letter-spacing (added in CSS2.1)

word-spacing (added in CSS2.1

clear (CSS2 only; removed in CSS2.1)

text-shadow (CSS2 only)

In addition, all pseudo-elements must be placed at the very end of the selector in which they appear.
Therefore, it would not be legal to write p:first-line em since the pseudo-element comes before the

subject of the selector (the subject is the last element listed). The same rule applies to the other two
pseudo-elements CSS2.1 defines.

2.6.2.4 Style before and after elements

Let's say you want to preface every h2 element with a pair of silver square brackets as a typographical

effect:

h2:before {content: "]]"; color: silver;}

CSS2.1 lets you insert generated content , and then style it directly using the pseudo-elements :before
and :after . An example is shown in Figure 2-26 .

Figure 2-26. Inserting content before an element

The pseudo-element is used to insert the generated content and to style it. To place content after an
element, use the pseudo-element :after . You could end your documents with an appropriate finish:

body:after {content: " The End.";}

Generated content is a separate subject, and the entire topic (including more detail on :before and
:after) is covered in more detail in Chapter 12 .

 < Day Day Up >

 < Day Day Up >

2.7 Summary

By using selectors based on the document's language, authors can create CSS rules that apply to a
large number of similar elements just as easily as they can construct rules that apply in very narrow
circumstances. The ability to group together both selectors and rules keeps style sheets compact and
flexible, which incidentally leads to smaller file sizes and faster download times.

Selectors are the one thing that user agents usually have to get right because the inability to
correctly interpret selectors pretty much prevents a user agent from using CSS at all. On the flip side,
it's crucial for authors to correctly write selectors because errors can prevent the user agent from
applying the styles as intended. An integral part of correctly understanding selectors and how they
can be combined is an understanding of how selectors relate to document structure and how
mechanisms-such as inheritance and the cascade itself-come into play when determining how an
element is to be styled. This is the subject of the next chapter.

 < Day Day Up >

 < Day Day Up >

Chapter 3. Structure and the Cascade
Chapter 2 showed how document structure and CSS selectors allow you to apply a wide variety of
styles to elements. Knowing that every valid document generates a structural tree, you can create
selectors that target elements based on their ancestors, attributes, sibling elements, and more. The
structural tree is what allows selectors to function and is also central to a similarly crucial aspect of
CSS: inheritance.

Inheritance is the mechanism by which some property values are passed on from an element to its
descendants. In determining which values should apply to an element, a user agent must consider
not only inheritance but also the specificity of the declarations, as well as the origin of the
declarations themselves. This process of consideration is what's known as the cascade. We will
explore the interrelation between these three mechanisms-specificity, inheritance, and the
cascade-in this chapter.

Above all, regardless of how abstract things may seem, keep going! Your perseverance will be
rewarded.

 < Day Day Up >

 < Day Day Up >

3.1 Specificity

You know from Chapter 2 that you can select elements using a wide variety of means. In fact, it's
possible that the same element could be selected by two or more rules, each with its own selector.
Let's consider the following three pairs of rules. Assume that each pair will match the same element:

h1 {color: red;}

body h1 {color: green;}

h2.grape {color: purple;}

h2 {color: silver;}

html > body table tr[id="totals"] td ul > li {color: maroon;}

li#answer {color: navy;}

Obviously, only one of the two rules in each pair can win out, since the matched elements can be only
one color or the other. How do you know which one will win?

The answer is found in the specificity of each selector. For every rule, the user agent evaluates the
specificity of the selector and attaches it to each declaration in the rule. When an element has two or
more conflicting property declarations, the one with the highest specificity will win out.

This isn't the whole story in terms of conflict resolution. In fact, all style conflict
resolution is handled by the cascade, which has its own section later in this
chapter.

A selector's specificity is determined by the components of the selector itself. A specificity value is
expressed in four parts, like this: 0,0,0,0 . The actual specificity of a selector is determined as

follows:

For every ID attribute value given in the selector, add 0,1,0,0 .

For every class attribute value, attribute selection, or pseudo-class given in the selection, add
0,0,1,0 .

For every element and pseudo-element given in the selector, add 0,0,0,1 . CSS2 contradicted

itself as to whether pseudo-elements had any specificity at all, but CSS2.1 makes it clear that

they do, and this is where they belong.

Combinators and the universal selector do not contribute anything to the specificity (more on
these values later).

For example, the following rules' selectors result in the indicated specificities:

h1 {color: red;} /* specificity = 0,0,0,1 */

p em {color: purple;} /* specificity = 0,0,0,2 */

.grape {color: purple;} /* specificity = 0,0,1,0 */

.bright {color: yellow;} / specificity = 0,0,1,0 */

p.bright em.dark {color: maroon;} /* specificity = 0,0,2,2 */

#id216 {color: blue;} /* specificity = 0,1,0,0 */

div#sidebar *[href] {color: silver;} /* specificity = 0,1,1,1 */

Given a case where an em element is matched by both the second and fifth rules in the example

above, that element will be maroon because the fifth rule's specificity outweighs the second's.

As an exercise, let's return to the pairs of rules from earlier in the section, and fill in the specificities:

h1 {color: red;} /* 0,0,0,1 */

body h1 {color: green;} /* 0,0,0,2 (winner)*/

h2.grape {color: purple;} /* 0,0,1,1 (winner) */

h2 {color: silver;} /* 0,0,0,1 */

html > body table tr[id="totals"] td ul > li {color: maroon;} /* 0,0,1,7 */

li#answer {color: navy;} /* 0,1,0,1 (winner) */

You've indicated the winning rule in each pair; in each case, it is because the specificity is higher.
Notice how they're sorted. In the second pair, the selector h2.grape wins because it has an extra
one: 0,0,1,1 beats out 0,0,0,1 . In the third pair, the second rule wins because 0,1,0,1 wins out
over 0,0,1,7 . In fact, the specificity value 0,0,1,0 will win out over the value 0,0,0,13 .

This happens because the values are sorted from left to right. A specificity of 1,0,0,0 will win out
over any specificity that begins with a 0 , no matter what the rest of the numbers might be. So
0,1,0,1 wins over 0,0,1,7 because the 1 in the first value's second position beats out the second 0

in the second value.

3.1.1 Declarations and Specificity

Once the specificity of a selector has been determined, the value will be conferred on all of its
associated declarations. Consider this rule:

h1 {color: silver; background: black;}

For specificity purposes, the user agent must treat the rule as if it were "ungrouped" into separate
rules. Thus, the previous example would become:

h1 {color: silver;}

h1 {background: black;}

Both have a specificity of 0,0,0,1 , and that's the value conferred on each declaration. The same

splitting-up process happens with a grouped selector as well. Given the rule:

h1, h2.section {color: silver; background: black;}

the user agent treats it as follows:

h1 {color: silver;} /* 0,0,0,1 */

h1 {background: black;} /* 0,0,0,1 */

h2.section {color: silver;} /* 0,0,1,1 */

h2.section {background: black;} /* 0,0,1,1 */

This becomes important in situations where multiple rules match the same element and where some
declarations clash. For example, consider these rules:

h1 + p {color: black; font-style: italic;} /* 0,0,0,2 */

p {color: gray; background: white; font-style: normal;} /* 0,0,0,1 */

.aside {color: black; background: silver;} / 0,0,1,0 */

When applied to the following markup, the content will be rendered as shown in Figure 3-1 :

<h1>Greetings!</h1>

<p class="aside">

It's a fine way to start a day, don't you think?

</p>

<p>

There are many ways to greet a person, but the words are not as important as the act

of greeting itself.

</p>

<h1>Salutations!</h1>

<p>

There is nothing finer than a hearty welcome from one's fellow man.

</p>

<p class="aside">

Although a thick and juicy hamburger with bacon and mushrooms runs a close second.

</p>

Figure 3-1. How different rules affect a document

In every case, the user agent determines which rules match an element, calculates all of the
associated declarations and their specificities, determines which ones win out, and then applies the
winners to the element to get the styled result. These machinations must be performed on every
element, selector, and declaration. Fortunately, the user agent does it all automatically. This behavior
is an important component of the cascade, which we will discuss later in this chapter.

3.1.2 Universal Selector Specificity

As was stated earlier, the universal selector does not contribute to the specificity of a selector. In
other words, it has a specificity of 0,0,0,0 , which is different than having no specificity (as we'll
discuss in Section 3.2). Therefore, given the following two rules, a paragraph descended from a div

will be black, but all other elements will be gray:

div p {color: black;} /* 0,0,0,2 */

* {color: gray;} /* 0,0,0,0 */

As you might expect, this means that the specificity of a selector that contains a universal selector
along with other selectors is not changed by the presence of the universal selector. The following two
selectors have exactly the same specificity:

div p /* 0,0,0,2 */

body * strong /* 0,0,0,2 */

Combinators, by comparison, have no specificity at all-not even zero specificity. Thus, they have no
impact on a selector's overall specificity.

3.1.3 ID and Attribute Selector Specificity

It's important to note the difference in specificity between an ID selector and an attribute selector
that targets an id attribute. Returning to the third pair of rules in the example code, we find:

html > body table tr[id="totals"] td ul > li {color: maroon;} /* 0,0,1,7 */

li#answer {color: navy;} /* 0,1,0,1 (winner) */

The ID selector (#answer) in the second rule contributes 0,1,0,0 to the overall specificity of the
selector. In the first rule, however, the attribute selector ([id="totals"]) contributes 0,0,1,0 to
the overall specificity. Thus, given the following rules, the element with an id of meadow will be green:

#meadow {color: green;} /* 0,1,0,0 */

[id="meadow"] {color: red;} / 0,0,1,0 */

3.1.4 Inline Style Specificity

So far, we've seen specificities that begin with a zero, so you may be wondering why it's there at all.
As it happens, that first zero is reserved for inline style declarations, which trump any other
declaration's specificity. Consider the following rule and markup fragment:

h1 {color: red;}

<h1 style="color: green;">The Meadow Party</h1>

Given that the rule is applied to the h1 element, you would still probably expect the text of the h1 to

be green. This is what happens in CSS2.1, and it happens because every declaration has a specificity
of 1,0,0,0 .

This means that even elements with id attributes that match a rule will obey the inline style
declaration. Let's modify the previous example to include an id :

h1#meadow {color: red;}

<h1 id="meadow" style="color: green;">The Meadow Party</h1>

Thanks to the inline declaration's specificity, the text of the h1 element will still be green.

The primacy of inline style declarations is new to CSS2.1, and it exists to
capture the state of web browser behavior at the time CSS2.1 was written. In
CSS2, the specificity of an inline style declaration was 1,0,0 (as CSS2

specificities have three values, not four). In other words, it had the same
specificity as an ID selector, which would have easily overridden inline styles.

3.1.5 Importance

Sometimes, a rule is so important that it outweighs all other considerations. CSS2.1 calls these
important rules (for obvious reasons) and lets you mark them by inserting the phrase !important

just before the terminating semicolon in a rule:

p.dark {color: #333 !important; background: white;}

Here, the color value of #333 is marked !important , whereas the background value of white is not.
If you wish to mark both rules as important, each rule will need its own !important :

p.dark {color: #333 !important; background: white !important;}

You must place !important correctly, or the rule may be invalidated. !important always goes at the

end of the declaration, right before the semicolon. This placement is especially important-no pun
intended-when it comes to properties that allow values containing multiple keywords, such as font :

p.light {color: yellow; font: smaller Times, serif !important;}

If !important were placed anywhere else in the font declaration, the entire declaration would likely

be invalidated and none of the styles applied.

Declarations that are marked !important do not have a special specificity value, but are instead
considered separately from nonimportant rules. In effect, all !important declarations are grouped

together and specificity conflicts are resolved relative to each other. Similarly, all nonimportant
declarations are considered together, with property conflicts resolved using specificity. In any case
where an important and a nonimportant declaration conflict, the important declaration always wins.

The result of the following rules and markup fragment is illustrated in Figure 3-2 :

h1 {font-style: italic; color: gray !important;}

.title {color: black; background: silver;}

* {background: black !important;}

<h1 class="title">NightWing</h1>

Figure 3-2. Important rules always win

Important rules and their handling are discussed in more detail in Section 3.3 ,
later in this chapter.

 < Day Day Up >

 < Day Day Up >

3.2 Inheritance

As important as specificity may be to understanding how declarations are applied to a document,
another key concept is that of inheritance. Inheritance is the mechanism by which styles are applied
not only to a specified element, but also to its descendants. If a color is applied to an h1 element, for
example, then that color is applied to all text in the h1, even the text enclosed within child elements
of that h1:

h1 {color: gray;}

<h1>Meerkat Central</h1>

Both the ordinary h1 text and the em text are colored gray because the em element inherits the value
of color. If property values could not be inherited by descendant elements, the em text would be

black, not gray, and you'd have to color that element separately.

Inheritance also works well with unordered lists. Let's say you apply a style of color: gray; for ul

elements:

ul {color: gray;}

You expect that a style that is applied to a ul will also be applied to its list items, and to any content

of those list items. Thanks to inheritance, that's exactly what happens, as Figure 3-3 demonstrates.

Figure 3-3. Inheritance of styles

It's easier to see how inheritance works by turning to a tree diagram of a document. Figure 3-4
shows the tree diagram for a very simple document containing two lists: one unordered and the
other ordered.

Figure 3-4. A simple tree diagram

When the declaration color: gray; is applied to the ul element, that element takes on that

declaration. The value is then propagated down the tree to the descendant elements and continues
on until there are no more descendants to inherit the value. Values are never propagated upward;
that is, an element never passes values up to its ancestors.

There is an exception to the upward propagation rule in HTML: background
styles applied to the body element can be passed to the html element, which is

the document's root element and therefore defines its canvas.

Inheritance is one of those things about CSS that is so basic that you almost never think about it
unless you have to. However, you should still keep a few things in mind.

First, note that some properties are not inherited-generally as a result of simple common sense. For
example, the property border (which is used to set borders on elements) does not inherit. A quick

glance at Figure 3-5 will reveal why this is the case. Were borders inherited, documents would
become much more cluttered unless the author took the extra effort to turn off the inherited borders.

Figure 3-5. Why borders aren't inherited

As it happens, most of the box-model properties-including margins, padding, backgrounds, and
borders-are not inherited for the same reason. After all, you wouldn't want all of the links in a
paragraph to inherit a 30-pixel left margin from their parent element!

Inherit the Bugs

Thanks to problems in various browser implementations, an author cannot rely on
inheritance to operate as expected in all circumstances. For example, Navigator 4 (and, to
a lesser extent, Explorer 4 and 5) does not inherit styles into tables. Thus, the following
rule would result in a document with smaller text everywhere outside of tables:

body {font-size: 0.8em;}

This is not correct behavior under CSS, but it does exist, so authors have historically
resorted to tricks such as:

body, table, th, td {font-size: 0.8em;}

This is more likely, although still not certain, to achieve the desired effect in buggy
browsers.

Unfortunately, the above "fix" leads to an even worse problem in browsers that do
implement inheritance correctly, such as IE6/Win, IE5/Mac, Netscape 6+, and others. In
those browsers, you will end up with text inside a table cell that is 41% the size of the
user's default font size setting. It is often more dangerous to attempt to work around
inheritance bugs in old browsers than it is to write correct CSS for updated browsers.

In terms of specificity, inherited values have no specificity at all, not even zero specificity. This seems
like an academic distinction until you work through the consequences of the lack of inherited
specificity. Consider the following rules and markup fragment and compare them to the result shown
in Figure 3-6:

* {color: gray;}

h1#page-title {color: black;}

<h1 id="page-title">Meerkat Central</h1>

<p>

Welcome to the best place on the web for meerkat information!

</p>

Figure 3-6. Zero specificity defeats no specificity

Since the universal selector applies to all elements and has zero specificity, its color declaration's

value of gray wins out over the inherited value of black, which has no specificity at all. Therefore,
the em element is rendered gray instead of black.

This example vividly illustrates one of the potential problems of using the universal selector
indiscriminately. Because it can match any element, the universal selector often has the effect of
short-circuiting inheritance. This can be worked around, but it's often more sensible to avoid the
problem in the first place by not using the universal selector indiscriminately.

The complete lack of specificity for inherited values is not a trivial point. For example, assume that a
style sheet has been written such that all text in a "toolbar" is to be white on black:

#toolbar {color: white; background: black;}

This will work as long as the element with an id of toolbar contains nothing but plain text. If,
however, the text within this element is all hyperlinks (a elements), then the user agent's styles for

hyperlinks will take over. In a web browser, this means they'll likely be colored blue, since the
browser's style sheet probably contains an entry like this:

a:link {color: blue;}

In order to overcome this problem, you would need to declare:

#toolbar {color: white; background: black;}

#toolbar a:link {color: white;}

By targeting the rule directly to the a elements within the toolbar, you'll get the result shown in

Figure 3-7.

Figure 3-7. Directly assigning styles to the relevant elements

 < Day Day Up >

 < Day Day Up >

3.3 The Cascade

Throughout this chapter, we've skirted one rather important issue: what happens when two rules of
equal specificity apply to the same element? How does the browser resolve the conflict? For example,
say you have the following rules:

h1 {color: red;}

h1 {color: blue;}

Which one wins? Both have a specificity of 0,0,0,1, so they have equal weight and should both

apply. That simply can't be the case because the element can't be both red and blue. But which will it
be?

Finally the name "Cascading Style Sheets" makes some sense. CSS is based on a method of causing
styles to cascade together made possible by combining inheritance and specificity. The cascade rules
for CSS2.1 are simple enough:

Find all declarations that contain a selector that matches a given element.1.

Sort by explicit weight all declarations applying to the element. Those rules marked !important

are given higher weight than those that are not. Also sort by origin all declarations applying to a
given element. There are three origins: author, reader, and user agent. Under normal
circumstances, the author's styles win out over the reader's styles. !important reader styles
are stronger than any other styles, including !important author styles. Both author and reader

styles override the user agent's default styles.

2.

Sort by specificity all declarations applying to a given element. Those elements with a higher
specificity have more weight than those with lower specificity.

3.

Sort by order all declarations applying to a given element. The later a declaration appears in the
style sheet or document, the more weight it is given. Declarations that appear in an imported
style sheet are considered to come before all declarations within the style sheet that imports
them.

4.

In order to be perfectly clear about how this all works, let's consider three examples that illustrate
the last three of the four cascade rules.

3.3.1 Sorting by Weight and Origin

Under the second rule, if two rules apply to an element, and one is marked !important, the

important rule wins out:

p {color: gray !important;}

<p style="color: black;">Well, hello there!</p>

Despite the fact that there is a color assigned in the style attribute of the paragraph, the
!important rule wins out, and the paragraph is gray. This gray is inherited by the em element as

well.

Furthermore, the origin of a rule is considered. If an element is matched by normal-weight styles in
both the author's style sheet and the reader's style sheet, then the author's styles are used. For
example, assume that the following styles come from the indicated origins:

p em {color: black;} /* author's stylesheet */

p em {color: yellow;} /* reader's stylesheet */

In this case, emphasized text within paragraphs is colored black, not yellow, because normal-weight
author styles win out over normal-weight reader styles. However, if both rules are marked
!important, the situation changes:

p em {color: black !important;} /* author's stylesheet */

p em {color: yellow !important;} /* reader's stylesheet */

Now the emphasized text in paragraphs will be yellow, not black.

As it happens, the user agent's default styles-which are often influenced by the user
preferences-are figured into this step. The default style declarations are the least influential of all.
Therefore, if an author-defined rule applies to anchors (e.g., declaring them to be white), then this

rule overrides the user agent's defaults.

To sum up, in terms of declaration weight, there are five levels to consider. In order of most to least
weight, these are:

Reader important declarations1.

Author important declarations2.

Author normal declarations3.

Reader normal declarations4.

User agent declarations5.

Authors typically need to worry about only the first four weight levels, since anything declared will
win out over the user agent styles.

3.3.2 Sorting by Specificity

According to the third rule, if conflicting declarations apply to an element and they all have the same
weight, they should be sorted by specificity, with the most specific declaration winning out. For
example:

p#bright {color: silver;}

p {color: black;}

<p id="bright">Well, hello there!</p>

Given the rules shown, the text of the paragraph will be silver, as illustrated in Figure 3-8. Why?
Because the specificity of p#bright (0,1,0,0) overrode the specificity of p (0,0,0,1), even though

the latter rule comes later in the style sheet.

Figure 3-8. Higher specificity wins out over lower specificity

3.3.3 Sorting by Order

Finally, under the fourth rule, if two rules have exactly the same weight, origin, and specificity, then
the one that occurs later in the style sheet wins out. Therefore, let's return to our earlier example,
where we find the following two rules in the document's style sheet:

h1 {color: red;}

h1 {color: blue;}

Because its rule comes later in the style sheet, the value of color for all h1 elements in the
document will be blue, not red. Any rule that is contained in the document, having a higher weight

than the imported rule, wins out. This is true even if the rule is part of the document's style sheet
and not part of an element's style attribute. Consider the following:

p em {color: purple;} /* from imported stylesheet */

p em {color: gray;} /* rule contained within the document */

In this case, the second rule shown will win out over the imported rule because it is a part of the
document's style sheet.

For the purposes of this rule, styles specified in the style attribute of an element are considered to

be at the end of the document's style sheet, which places them after all other rules. However, this is
a largely academic point, since inline style declarations have a higher specificity than any style sheet
selector in CSS2.1.

Remember that in CSS2, inline style declarations have a specificity equal to ID
selectors. In a CSS2 (but not CSS2.1) user agent, style attribute declarations

are considered to appear at the end of the document's style sheet and are
sorted by weight, origin, specificity, and order like any other declaration in the
style sheet.

Order sorting is the reason behind the often recommended ordering of link styles. The
recommendation is that you array your link styles in the order link-visited-hover-active, or LVHA, like
this:

:link {color: blue;}

:visited {color: purple;}

:hover {color: red;}

:active {color: orange;}

Thanks to the information in this chapter, you now know that the specificity of all these selectors is
the same: 0,0,1,0. Because they all have the same weight, origin, and specificity, the last one that

matches an element will win out. An unvisited link that is being "clicked" is matched by three of the
rules-:link, :hover, and :active-and so the last one of those three declared will win out. Given
the LVHA ordering, :active will win, which is likely what the author intended.

Assume for a moment that you decided to ignore the common ordering and alphabetize your link
styles instead. This would yield:

:active {color: orange;}

:hover {color: red;}

:link {color: blue;}

:visited {color: purple;}

Given this ordering, no link would ever show :hover or :active styles because the :link and
:visited rules come after the other two. Every link must be either visited or unvisited, so those
styles will always override the :hover rule.

Let's consider a variation on the LVHA order that an author might want to use. In this ordering, only
unvisited links will get a hover style-visited links do not. Both visited and unvisited links will get an
active style:

:link {color: blue;}

:hover {color: red;}

:visited {color: purple;}

:active {color: orange;}

Of course, sometimes such conflicts arise when all the states attempt to set the same property. If
each state styles a different property, then the order does not matter. In the following case, the link
styles could be given in any order and still function:

:link {font-weight: bold;}

:visited {font-style: italic;}

:hover {color: red;}

:active {background: yellow;}

You may also have realized that the order of the :link and :visited styles doesn't matter. You

could order the styles LVHA or VLHA with no ill effect. However, LVHA tends to be preferred because
it was recommended in the CSS2 specification and also because the mnemonic "LoVe-HA!" gained
rather wide currency. (There's some bitterness out there, apparently.)

The ability to chain pseudo-classes together eliminates these worries. The following could be listed in
any order without any negative effects:

:link {color: blue;}

:visited {color: purple;}

:link:hover {color: red;}

:visited:hover {color: gray;}

Because each rule applies to a unique set of link states, they do not conflict. Therefore, changing
their order will not change the styling of the document. The last two rules do have the same
specificity, but that doesn't matter. A hovered unvisited link will not be matched by the rule regarding
hovered visited links, and vice versa. If we were to add active-state styles, then order would start to
matter again. Consider:

:link {color: blue;}

:visited {color: purple;}

:link:hover {color: red;}

:visited:hover {color: gray;}

:link:active {color: orange;}

:visited:active {color: silver;}

If the active styles were moved before the hover styles, they would be ignored. Again, this would
happen due to specificity conflicts. The conflicts could be avoided by adding more pseudo-classes to
the chains, like this:

:link:hover:active {color: orange;}

:visited:hover:active {color: silver;}

Chained psuedo-classes, which lessen the worries about specificity and ordering, would be used much
more if they were supported by Internet Explorer.

3.3.4 Non-CSS Presentational Hints

It is possible that a document will contain presentational hints that are not CSS-e.g., the font
element. Non-CSS hints are treated as if they have a specificity of 0 and appear at the beginning of

the author's style sheet. Such presentation hints will be overridden by any author or reader styles,
but not by the user agent's styles.

 < Day Day Up >

 < Day Day Up >

3.4 Summary

Perhaps the most fundamental aspect of Cascading Style Sheets is the cascade itself-the process by
which conflicting declarations are sorted out and from which the final document presentation is
determined. Integral to this process is the specificity of selectors and their associated declarations,
and the mechanism of inheritance.

In the next chapter, we will look at the many types of units that are used to give property values
their meaning. Once we have completed that discussion, the fundamentals will be out of the way, and
you'll be able to learn about the properties used to style documents.

 < Day Day Up >

 < Day Day Up >

Chapter 4. Values and Units
In this chapter, we'll tackle the elements that are the basis for almost everything you can do with
CSS: the units that affect the colors, distances, and sizes of a whole host of properties. Without units,
you couldn't declare that a paragraph should be purple, or that an image should have 10 pixels of
blank space around it, or that a heading's text should be a certain size. By understanding the
concepts put forth here, you'll be able to learn and use the rest of CSS much more quickly.

 < Day Day Up >

 < Day Day Up >

4.1 Numbers

There are two types of numbers in CSS: integers ("whole" numbers) and reals (fractional numbers).
These number types serve primarily as the basis for other value types, but, in a few instances, raw
numbers can be used as a value for a property.

In CSS2.1, a real number is defined to be an integer that is optionally followed by a decimal and
fractional numbers. Therefore, the following are all valid number values: 15.5, -270.00004, and 5.
Both integers and reals may be either positive or negative, although properties can (and often do)
restrict the range of numbers they will accept.

 < Day Day Up >

 < Day Day Up >

4.2 Percentages

A percentage value is a calculated real number followed by a percentage sign (%). Percentage values

are nearly always relative to another value, which can be anything, including the value of another
property of the same element, a value inherited from the parent element, or a value of an ancestor
element. Any property that accepts percentage values will define any restrictions on the range of
allowed percentage values, and will also define the degree to which the percentage is relatively
calculated.

 < Day Day Up >

 < Day Day Up >

4.3 Color

One of the first questions every starting web author asks is, "How do I set colors on my page?" Under
HTML, you had two choices: you could use one of a small number of colors with names, like red or
purple, or employ a vaguely cryptic method using hexadecimal codes. Both of these methods for

describing colors remain in CSS, along with some other-and, I think, more intuitive-methods.

4.3.1 Named Colors

Assuming that you're content to pick from a small, basic set of colors, the easiest method is simply to
use the name of the color you want. CSS calls these color choices, logically enough, named colors.

Contrary to what some browser makers might have you believe, you have a limited palette of
named-color keywords. For example, you're not going to be able to choose "mother-of-pearl"
because it isn't a defined color. As of CSS2.1, the CSS specification defines 17 color names. These are
the 16 colors defined in HTML 4.01 plus orange:

aqua fuchsia lime olive red white

black gray maroon orange silver yellow

blue green navy purple teal

So, let's say you want all first-level headings to be maroon. The best declaration would be:

h1 {color: maroon;}

Simple and straightforward, isn't it? Figure 4-1 shows a few more examples:

h1 {color: gray;}

h2 {color: silver;}

h3 {color: black;}

Figure 4-1. Naming colors

Of course, you've probably seen (and maybe even used) color names besides the ones listed earlier.
For example, if you specify:

h1 {color: lightgreen;}

it's likely that all of your h1 elements will indeed turn light green, despite lightgreen not being on

the list of named colors in CSS2.1. It works because most web browsers recognize as many as 140
color names, including the standard 17. These extra colors are defined in the CSS3 Color
specification, which is not covered in this book. The 17 standard colors (as of this writing) are likely to
be more reliable than the longer list of 140 or so colors because the color values for these 17 are
defined by CSS2.1. The extended list of 140 colors given in CSS3 is based on the standard X11 RGB
values that have been in use for decades, and so they are likely to be very well supported.

Fortunately, there are more detailed and precise ways to specify colors in CSS. The advantage is
that, with these methods, you can specify any color in the 8-bit color spectrum, not just 17 (or 140)
named colors.

4.3.2 Colors by RGB

Computers create colors by combining different levels of red, green, and blue, which is why color in
computers is often referred to as RGB color. In fact, if you were to open up a computer monitor, or
even a television, and you got far enough into the projection tube, you would discover three "guns."
(I don't recommend trying to find the guns, though, if you're worried about voiding your monitor's
warranty.) These guns shoot out beams of light at varying levels of light and dark, in one of the three
RGB colors, at each point on the screen. Then, the brightness of each beam combines at those points
on your screen, forming all of the colors you see. Each point, by the way, is known as a pixel, which
is a term we'll return to later in this chapter.

Given the way colors are created on a monitor, it makes sense that for maximum control, you should
have direct access to those color guns, determining your own mixture of the beams. That solution is
complex, but possible, and the payoffs are worth it because there are very few limits on which colors
you can produce. There are four ways to affect color in this way.

4.3.2.1 Functional RGB colors

There are two color value types that use functional RGB notation as opposed to hexadecimal
notation. The generic syntax for this type of color value is rgb(color), where color is expressed
using a triplet of either percentages or integers. The percentage values can be in the range 0%-100%,
and the integers can be in the range 0-255.

Thus, to specify white and black respectively using percentage notation, the values would be:

rgb(100%,100%,100%)

rgb(0%,0%,0%)

Using the integer-triplet notation, the same colors would be represented as:

rgb(255,255,255)

rgb(0,0,0)

Assume you want your h1 elements to be colored a shade of red somewhere between the values for
red and maroon. red is equivalent to rgb(100%,0%,0%), whereas maroon is equal to (50%,0%,0%).

In order to get a color between those two, you might try this:

h1 {color: rgb(75%,0%,0%);}

This makes the red component of the color lighter than maroon, but darker than red. If, on the other

hand, you want to create a pale red color, you would raise the green and blue levels:

h1 {color: rgb(75%,50%,50%);}

The closest equivalent color using integer-triplet notation is:

h1 {color: rgb(191,127,127);}

The easiest way to visualize how these values correspond to color is to create a table of gray values.
Besides, grayscale printing is all we can afford for this book, so that's what we'll do in Figure 4-2:

p.one {color: rgb(0%,0%,0%);}

p.two {color: rgb(20%,20%,20%);}

p.three {color: rgb(40%,40%,40%);}

p.four {color: rgb(60%,60%,60%);}

p.five {color: rgb(80%,80%,80%);}

p.six {color: rgb(0,0,0);}

p.seven {color: rgb(51,51,51);}

p.eight {color: rgb(102,102,102);}

p.nine {color: rgb(153,153,153);}

p.ten {color: rgb(204,204,204);}

Figure 4-2. Text set in shades of gray

Of course, since we're dealing in shades of gray, all three RGB values are the same in each
statement. If any one of them were different from the others, then a color would start to emerge. If,
for example, rgb(50%,50%,50%) were modified to be rgb(50%,50%,60%), the result would be a

medium-dark color with just a hint of blue.

It is possible to use fractional numbers in percentage notation. You might, for some reason, want to
specify that a color be exactly 25.5% red, 40% green, and 98.6% blue:

h2 {color: rgb(25.5%,40%,98.6%);}

A user agent that ignores the decimal points (and some do) should round the value to the nearest
integer, resulting in a declared value of rgb(26%,40%,99%). In integer triplets, of course, you are

limited to integers.

Values that fall outside the allowed range for each notation are "clipped" to the nearest range edge,
meaning that a value that exceeds 100% or is less than 0% will default to those allowed extremes.

Thus, the following declarations would be treated as if they were the values indicated in the
comments:

P.one {color: rgb(300%,4200%,110%);} /* 100%,100%,100% */

P.two {color: rgb(0%,-40%,-5000%);} /* 0%,0%,0% */

p.three {color: rgb(42,444,-13);} /* 42,255,0 */

Conversion between percentages and integers may seem arbitrary, but there's no need to guess at
the integer you want-there's a simple formula for calculating them. If you know the percentages for
each of the RGB levels you want, then you need only apply them to the number 255 to get the
resulting values. Let's say you have a color of 25% red, 37.5% green, and 60% blue. Multiply each of
these percentages by 255, and you get 63.75, 95.625, and 153. Round thse values to the nearest
integers, and voilà: rgb(64,96,153).

Of course, if you already know the percentage values, there isn't much point in converting them into
integers. Integer notation is more useful for people who use programs such as Photoshop, which can
display integer values in the "Info" dialog, or for those who are so familiar with the technical details of
color generation that they normally think in values of 0-255. Then again, such people are probably
more familiar with thinking in hexadecimal notation, which is our next topic.

4.3.2.2 Hexadecimal RGB colors

CSS allows you to define a color using the same hexadecimal color notation so familiar to HTML web
authors:

h1 {color: #FF0000;} /* set H1s to red */

h2 {color: #903BC0;} /* set H2s to a dusky purple */

h3 {color: #000000;} /* set H3s to black */

h4 {color: #808080;} /* set H4s to medium gray */

Computers have been using hex notation for quite some time now, and programmers are typically
either trained in its use or pick it up through experience. This hexadecimal familiarity among
programmers likely led to its use in setting colors in old-school HTML. The practice was simply carried
over to CSS.

Here's how it works: by stringing together three hexadecimal numbers in the range 00 through FF,
you can set a color. The generic syntax for this notation is #RRGGBB. Note that there are no spaces,

commas, or other separators between the three numbers.

Hexadecimal notation is mathematically equivalent to the integer-pair notation discussed in the
previous section. For example, rgb(255,255,255) is precisely equivalent to #FFFFFF, and
rgb(51,102,128) is the same as #336680. Feel free to use whichever notation you prefer-they'll be

rendered identically by most user agents. If you have a calculator that converts between decimal and
hexadecimal, making the jump from one to the other should be pretty simple.

For hexadecimal numbers that are composed of three matched pairs of digits, CSS permits a
shortened notation. The generic syntax of this notation is #RGB:

h1 {color: #000;} /* set H1s to black */

h2 {color: #666;} /* set H2s to dark gray */

h3 {color: #FFF;} /* set H3s to white */

As you can see from the markup, there are only three digits in each color value. However, since
hexadecimal numbers between 00 and FF need two digits each, and you have only three total digits,

how does this method work?

The answer is that the browser takes each digit and replicates it. Therefore, #F00 is equivalent to
#FF0000, #6FA would be the same as #66FFAA, and #FFF would come out #FFFFFF, which is the
same as white. Obviously, not every color can be represented in this manner. Medium gray, for
example, would be written in standard hexadecimal notation as #808080. This cannot be expressed in
shorthand; the closest equivalent would be #888, which is the same as #888888.

4.3.2.3 Bringing the colors together

Table 4-1 presents an overview of some of the colors we've discussed. These color keywords might
not be recognized by browsers and, therefore, they should be defined with either RGB or hex-pair
values (just to be safe). In addition, there are some shortened hexadecimal values that do not
appear at all. In these cases, the longer (6-digit) values cannot be shortened because they do not

replicate. For example, the value #880 expands to #888800, not #808000 (otherwise known as
olive). Therefore, there is no shortened version of #808000, and the appropriate entry in the table is

left blank.

Table 4-1. Color equivalents

Color Percentage Numeric Hexadecimal
Short
hex

red rgb(100%,0%,0%) rgb(255,0,0) #FF0000 #F00

orange rgb(100%,40%,0%) rgb(255,102,0) #FF6600 #F60

yellow rgb(100%,100%,0%) rgb(255,255,0) #FFFF00 #FF0

green rgb(0%,100%,0%) rgb(0,255,0) #00FF00 #0F0

blue rgb(0%,0%,100%) rgb(0,0,255) #0000FF #00F

aqua rgb(0%,100%,100%) rgb(0,255,255) #00FFFF #0FF

black rgb(0%,0%,0%) rgb(0,0,0) #000000 #000

fuchsia rgb(100%,0%,100%) rgb(255,0,255) #FF00FF #F0F

gray rgb(50%,50%,50%) rgb(128,128,128) #808080

lime rgb(0%,100%,0%) rgb(0,255,0) #00FF00 #0F0

maroon rgb(50%,0%,0%) rgb(128,0,0) #800000

navy rgb(0%,0%,50%) rgb(0,0,128) #000080

olive rgb(50%,50%,0%) rgb(128,128,0) #808000

purple rgb(50%,0%,50%) rgb(128,0,128) #800080

silver rgb(75%,75%,75%) rgb(192,192,192) #C0C0C0

teal rgb(0%,50%,50%) rgb(0,128,128) #008080

white rgb(100%,100%,100%) rgb(255,255,255) #FFFFFF #FFF

4.3.2.4 Web-safe colors

The "web-safe" colors are those colors that generally avoid dithering on 256-color computer systems.
Web-safe colors can be expressed in multiples of the RGB values 20% and 51, and the corresponding
hex-pair value 33. Also, 0% or 0 is a safe value. So, if you use RGB percentages, make all three
values either 0% or a number divisible by 20-for example, rgb(40%,100%,80%) or rgb(60%,0%,0%).
If you use RGB values on the 0-255 scale, the values should be either 0 or divisible by 51, as in
rgb(0,204,153) or rgb(255,0,102).

With hexadecimal notation, any triplet using the values 00, 33, 66, 99, CC, and FF is considered to be
web-safe. Examples are #669933, #00CC66, and #FF00FF. This means the shorthand hex values that

are web-safe are 0, 3, 6, 9, C, and F; therefore, #693, #0C6, and #F0F are examples of web-safe

colors.

 < Day Day Up >

 < Day Day Up >

4.4 Length Units

A lot of CSS properties, such as margins, depend on length measurements to properly display various
page elements. It's no surprise, then, that there are a number of ways to measure length in CSS.

All length units can be expressed as either positive or negative numbers followed by a label (although
some properties will accept only positive numbers). You can also use real numbers-that is, numbers
with decimal fractions, such as 10.5 or 4.561. All length units are followed by a two-letter abbreviation
that represents the actual unit of length being specified, such as in (inches) or pt (points). The only
exception to this rule is a length of 0 (zero), which need not be followed by a unit.

These length units are divided into two types: absolute length units and relative length units.

4.4.1 Absolute Length Units

We start with absolute units because they're easiest to understand, despite the fact that they're
almost unusable in web design. The five types of absolute units are as follows:

Inches (in)

As you might expect, this notation refers to the inches one finds on a ruler in the United States.
(The fact that this unit is in the specification, given that almost the entire world uses the metric
system, is an interesting insight into the pervasiveness of U.S. interests on the Internet-but
let's not get into virtual sociopolitical theory right now.)

Centimeters (cm)

Refers to the centimeters that one finds on rulers the world over. There are 2.54 centimeters
to an inch, and one centimeter equals 0.394 inches.

Millimeters (mm)

For those Americans who are metric-challenged, there are 10 millimeters to a centimeter, so
you get 25.4 millimeters to an inch, and 1 millimeter equals 0.0394 inches.

Points (pt)

Points are standard typographical measurements that have been used by printers and
typesetters for decades and by word-processing programs for many years. Traditionally, there
are 72 points to an inch (points were defined before widespread use of the metric system).
Therefore, the capital letters of text set to 12 points should be a sixth of an inch tall. For
example, p {font-size: 18pt;} is equivalent to p {font-size: 0.25in;}.

Picas (pc)

Picas are another typographical term. A pica is equivalent to 12 points, which means there are
6 picas to an inch. As above, the capital letters of text set to 1 pica should be a sixth of an inch
tall. For example, p {font-size: 1.5pc;} would set text to be the same size as the example

declarations found in the definition of points.

Of course, these units are really useful only if the browser knows all the details of the monitor on
which your page is displayed, the printer you're using to generate hard copy, or whatever other user
agent you might be using. On a web browser, display is affected by the size of the monitor and the
resolution to which the monitor is set-and there isn't much that you, as the author, can do about
these factors. You can only hope that, if nothing else, the measurements will be consistent in relation
to each other-that is, that a setting of 1.0in will be twice as large as 0.5in, as shown in Figure 4-3.

Figure 4-3. Setting absolute-length left margins

4.4.1.1 Working with absolute lengths

If a monitor is set to be 1,024 pixels wide by 768 pixels tall, the monitor's screen is exactly 14.22
inches wide by 10.67 inches tall, and the display area fills the monitor, then each pixel will be 1/72 of
an inch wide and tall. As you might guess, this scenario is a very, very rare occurrence (have you
ever seen a monitor with those dimensions?). So, on most monitors, the actual number of pixels per
inch (ppi) is higher than 72-sometimes much higher, up to 120 ppi and beyond.

As a Windows user, you might be able to set your display driver to make the display of elements
correspond correctly to real-world measurements. To try, click Start Settings Control Panel.
In the Control Panel, double-click Display. Click the Settings tab, and click Advanced to reveal a
dialog box that may be different on each PC. You should see a section labeled Font Size, in which
case select Other, and then hold a ruler up to the screen and move the slider until the onscreen ruler
matches the physical ruler. Click OK until you're free of dialog boxes, and you're set.

If you're a Mac user, there's no place to set this information in the operating system-the Mac OS has
already made an assumption about the relationship between on-screen pixels and absolute
measurements by declaring your monitor to have 72 pixels to the inch. This assumption is totally
wrong, but it's built into the operating system, and therefore pretty much unavoidable, at least for
now. The result is that, on many Macintosh-based web browsers, any point value will be equivalent to
the same length in pixels: 24pt text will be 24 pixels tall, and 8pt text will be 8 pixels tall. This is,

unfortunately, just slightly too small to be legible. Figure 4-4 illustrates the problem.

Figure 4-4. Teensy text makes for difficult reading

The Mac display problem is an excellent example of why points should be strenuously avoided when
designing for the Web. Ems, percentages, and even pixels are all preferable to points where browser
display is concerned.

Beginning with Internet Explorer 5 for Macintosh and Gecko-based browsers
such as Netscape 6+, the browser itself contains a preference setting for
setting ppi values. You can pick the standard Macintosh ratio of 72ppi, the
common Windows ratio of 96ppi, or set a value that matches your monitor's ppi
ratio. This last option works similarly to the Windows setting described above,
where you use a sliding scale to compare to a ruler and thus get an exact
match between your monitor and physical-world distances.

Despite all we've seen, let's make the highly suspect assumption that your computer knows enough
about its display system to accurately reproduce real-world measurements. In that case, you could
make sure every paragraph has a top margin of half an inch by declaring p {margin-top: 0.5in;}.

No matter what the circumstances, a paragraph will have a half-inch top margin, regardless of font
size or anything else.

Absolute units are much more useful in defining style sheets for printed documents, where measuring
things in terms of inches, points, and picas is common. As you've seen, attempting to use absolute
measurements in web design is fraught with peril at best, so let's turn to some more useful units of
measure.

4.4.2 Relative Length Units

Relative units are so called because they are measured in relation to other things. The actual (or
absolute) distance they measure can change due to factors beyond their control, such as screen
resolution, the width of the viewing area, the user's preference settings, and a whole host of other
things. In addition, for some relative units, their size is almost always relative to the element that
uses them and will thus change from element to element.

There are three relative length units: em, ex, and px. The first two stand for "em-height" and "x-

height," which are common typographical measurements; however, in CSS, they have meanings you
might not expect if you are familiar with typography. The last type of length is px, which stands for

"pixels." A pixel is one of the dots you can see on your computer's monitor if you look closely enough.
This value is defined to be relative because it depends on the resolution of the display device, a
subject we'll soon cover.

4.4.2.1 em and ex units

First, however, let's consider em and ex. In CSS, one "em" is defined to be the value of font-size for
a given font. If the font-size of an element is 14 pixels, then for that element, 1em is equal to 14

pixels.

Obviously, this value can change from element to element. For example, given an h1 whose font is 24
pixels in size, an h2 element whose font is 18 pixels in size, and a paragraph whose font is 12 pixels in
size, if you set the left margin of all three at 1em, they will have left margins of 24 pixels, 18 pixels,

and 12 pixels, respectively:

h1 {font-size: 24px;}

h2 {font-size: 18px;}

p {font-size: 12px;}

h1, h2, p {margin-left: 1em;}

small {font-size: 0.8em;}

<h1>Left margin = <small>24 pixels</small></h1>

<h2>Left margin = <small>18 pixels</small></h2>

<p>Left margin = <small>12 pixels</small></p>

When setting the size of the font, on the other hand, the value of em is relative to the font size of the

parent element, as illustrated by Figure 4-5.

Figure 4-5. Using em for margins and font sizing

ex, on the other hand, refers to the height of a lowercase x in the font being used. Therefore, if you

have two paragraphs of text in which the text for each is 24 points in size, but each paragraph uses a
different font, then the value of ex could be different for each paragraph. This is because different

fonts have different heights for x, as you can see in Figure 4-6. Even though the examples use 24-
point text-and therefore, each example's em value is 24 points-the x-height for each is different.

Figure 4-6. Varying x-heights

4.4.2.2 Practical issues with em and ex

Of course, everything I've just explained is completely theoretical. I've outlined what is supposed to
happen, but in practice, many user agents get their value for ex by taking the value of em and
dividing it in half. Why? Apparently, most fonts don't have the value of their ex height built-in, and

it's a very difficult thing to compute. Since most fonts have lowercase letters that are about half as
tall as uppercase letters, it's a convenient fiction to assume that 1ex is equivalent to 0.5em.

A few browsers, including Internet Explorer 5 for Mac, actually attempt to determine the x-height of a
given font by internally rendering a lowercase x and counting pixels to determine its height compared
to the font-size value used to create the character. This is not a perfect method, but it's much
better than simply making 1ex equal to 0.5em. We CSS practitioners hope that, as time goes on,
more user agents will start using real values for ex and the half-em shortcut will fade into the past.

4.4.2.3 Pixel lengths

On the face of things, pixels are straightforward. If you look at a monitor closely enough, you can see
that it's broken up into a grid of tiny little boxes. Each box is a pixel. If you define an element to be a
certain number of pixels tall and wide, as in the following markup:

<p>

The following image is 20 pixels tall and wide: <img src="test.gif"

 style="width: 20px; height: 20px;" alt="" />

</p>

then it would follow that the element will be that many monitor elements tall and wide, as shown in
Figure 4-7.

Figure 4-7. Using pixel lengths

Unfortunately, as with all things, there is a potential drawback to using pixels. If you set font sizes in
pixels, then users of Internet Explorer for Windows through IE6 (the current release as of this writing)
cannot resize the text using the Text Size menu in their browser. This can be a problem if your text is
too small for a user to comfortably read. If you use more flexible measurements, such as em, the

user can resize text. (Those who are exceedingly protective of their design might call that a
drawback, of course.)

On the other hand, pixel measurements are perfect for expressing the size of images, which are
already a certain number of pixels tall and wide. In fact, the only time you would not want pixels to
express the size of images is if you want them scaled along with the size of the text. This is an
admirable and occasionally useful approach, and one that would really make sense if you were using
vector-based images instead of pixel-based images. (With the adoption of Scalable Vector Graphics,
look for more on this in the future.)

4.4.2.4 Pixel theory

So why are pixels defined as relative lengths? I've explained that the tiny little boxes of color in a
monitor are pixels. However, how many of those boxes equals one inch? This may seem like a non
sequitur, but bear with me for a moment.

In its discussion of pixels, the CSS specification recommends that in cases where a display type is
significantly different than 96ppi, user agents should scale pixel measurements to a "reference pixel."
CSS2 recommended 90ppi as the reference pixel, but CSS2.1 recommends 96ppi-a measurement
common to Windows machines and adopted by modern Macintosh browsers such as IE5 and Safari.

In general, if you declare something like font-size: 18px, a web browser will almost certainly use

actual pixels on your monitor-after all, they're already there-but with other display devices, like
printers, the user agent will have to rescale pixel lengths to something more sensible. In other words,
the printing code has to figure out how many dots there are in a pixel, and to do so, it may use the
96ppi reference pixel.

One example of problems with pixel measurements can be found in an early
CSS1 implementation. In Internet Explorer 3.x, when a document was printed,
IE3 assumed that 18px is the same as 18 dots, which on a 600dpi printer works
out to be 18/600, or 3/100, of an inch-or, if you prefer, .03in. That's pretty

small text!

Because of this potential for rescaling, pixels are defined to be a relative unit of measurement, even
though, in web design, they behave much like absolute units.

4.4.2.5 What to do?

Given all the issues involved, the best measurements to use are probably the relative measurements,
most especially em, and also px when appropriate. Since ex is, in most currently used browsers,
basically a fractional measurement of em, it's not all that useful for the time being. If more user
agents support real x-height measurements, ex might come into its own. In general, ems are more

flexible because they scale with font sizes, so elements and element separation will stay more
consistent.

Other element aspects may be more amenable to the use of pixels, such as borders or the positioning
of elements. It all depends on the situation. For example, in designs that would have traditionally
used spacer GIFs to separate pieces of a design, pixel-length margins will produce an identical effect.
Converting that separation distance to ems would allow it to grow or shrink as the text size
changes-which might or might not be a good thing.

 < Day Day Up >

 < Day Day Up >

4.5 URLs

If you've written web pages, you're obviously familiar with URLs (or, in CSS2.1, URIs). Whenever you
do need to refer to one-as in the @import statement, which is used when importing an external

style sheet-the general format is:

url(protocol://server/pathname)

The above example defines what is known as an absolute URL. By absolute, I mean a URL that will
work no matter where (or rather, in what page) it's found because it defines an absolute location in
web space. Let's say that you have a server called www.waffles.org. On that server, there is a
directory called pix, and in this directory is an image waffle22.gif. In this case, the absolute URL of

that image would be:

http://www.waffles.org/pix/waffle22.gif

This URL is valid no matter where it is found, whether the page that contains it is located on the
server www.waffles.org or web.pancakes.com.

The other type of URL is a relative URL, so named because it specifies a location that is relative to the
document that uses it. If you're referring to a relative location, such as a file in the same directory as
your web page, then the general format is:

url(pathname)

This works only if the image is on the same server as the page that contains the URL. For argument's
sake, assume that you have a web page located at http://www.waffles.org/syrup.html and that you
want the image waffle22.gif to appear on this page. In that case, the URL would be:

pix/waffle22.gif

The above path works because the web browser knows that it should start with the place it found the
web document and then add the relative URL. In this case, the pathname pix/waffle22.gif added to
the server name http://www.waffles.org/ equals http://www.waffles.org/pix/waffle22.gif. You can
almost always use an absolute URL in place of a relative URL, and it doesn't matter which you use, as
long as they all define valid locations.

In CSS, relative URLs are relative to the style sheet itself, not to the HTML document that uses the
style sheet. For example, you may have an external style sheet that imports another style sheet. If
you use a relative URL to import the second style sheet, it must be relative to the first style sheet. As
an example, consider an HTML document at http://www.waffles.org/toppings/tips.html, which has a
link to the style sheet http://www.waffles.org/styles/basic.css:

<link rel="stylesheet" type="text/css"

 href="http://www.waffles.org/styles/basic.css">

http://www.waffles.org/pix/waffle22.gif
http://www.waffles.org/syrup.html
http://www.waffles.org/
http://www.waffles.org/pix/waffle22.gif
http://www.waffles.org/toppings/tips.html
http://www.waffles.org/styles/basic.css

Inside the file basic.css is an @import statement referring to another style sheet:

@import url(special/toppings.css);

This @import will cause the browser to look for the style sheet at

http://www.waffles.org/styles/special/toppings.css, not at
http://www.waffles.org/toppings/special/toppings.css. If you have a style sheet at the latter location,
then the @import in basic.css should read:

@import url(http://www.waffles.org/toppings/special/toppings.css);

Netscape Navigator 4 interprets relative URLs in relation to the HTML
document, not the style sheet. If you have a lot of NN4.x visitors or want to
make sure NN4.x can find all of your style sheets and background images, it's
generally easiest to make all of your URLs absolute, since Navigator handles
those correctly.

Note that there cannot be a space between the url and the opening parenthesis:

body {background: url(http://www.pix.web/picture1.jpg) /* correct */

body {background: url (images/picture2.jpg);} /* INCORRECT */

If the space is not omitted, the entire declaration will be invalidated and therefore ignored.

4.5.1 Keywords

For those times when a value needs to be described with a word of some kind, there are keywords. A
very common example is the keyword none, which is distinct from 0 (zero). Thus, to remove the

underline from links in an HTML document, you would write:

a:link, a:visited {text-decoration: none;}

Similarly, if you want to force underlines on the links, then you would use the keyword underline.

If a property accepts keywords, then its keywords will be defined only for the scope of that property.
If two properties use the same word as a keyword, the behavior of the keyword for one property will
not be shared with the other. As an example, normal, as defined for letter-spacing, means
something very different than the normal defined for font-style.

4.5.1.1 inherit

There is one keyword that is shared by all properties in CSS2.1: inherit. This value makes the value

of a property the same as the value of its parent element. In most cases, you don't need to specify
inheritance, since most properties inherit naturally; however, inherit can still be very useful.

For example, consider the following styles and markup:

http://www.waffles.org/styles/special/toppings.css
http://www.waffles.org/toppings/special/toppings.css

#toolbar {background: blue; color: white;}

<div id="toolbar">

One | Two |

Three

</div>

The div itself will have a blue background and a white foreground, but the links will be styled

according to the browser's preference settings. They'll most likely end up as blue text on a blue
background, with white vertical bars between them.

You could write a rule that explicitly sets the links in the "toolbar" to be white, but you can make
things a little more robust by using inherit. All you need to add is the following rule to the style

sheet:

#toolbar a {color: inherit;}

This will cause the links to use the inherited value of color in place of the user agent's default styles.
Ordinarily, directly assigned styles override inherited styles, but inherit can reverse that behavior.

 < Day Day Up >

 < Day Day Up >

4.6 CSS2 Units

In addition to what we've covered in CSS2.1, CSS2 contains a few extra units, all of which are
concerned with aural style sheets (employed by those browsers that are capable of speech). These
units were not included in CSS2.1, but since they may be part of future versions of CSS, we'll briefly
discuss them here:

Angle values

Used to define the position from which a given sound should originate. There are three types of
angles: degrees (deg), grads (grad), and radians (rad). For example, a right angle could be
declared as 90deg, 100grad, or 1.57rad; in each case, the values are translated into degrees

in the range 0 through 360. This is also true of negative values, which are allowed. The
measurement -90deg is the same as 270deg.

Time values

Used to specify delays between speaking elements. They can be expressed as either
milliseconds (ms) or seconds (s). Thus, 100ms and 0.1s are equivalent. Time values may not

be negative, as CSS is supposed to avoid paradoxes.

Frequency values

Used to declare a given frequency for the sounds that speaking browsers can produce.
Frequency values can be expressed as hertz (Hz) or megahertz (mHz) and cannot be negative.
The values' labels are case-insensitive, so 10mHz and 10mhz are equivalent.

The only user agent known to support any of these values at this writing is Emacspeak, an aural style
sheets implementation. See Chapter 14 for details on aural styles.

In addition to these values, there is also an old friend with a new name. A URI is a Uniform Resource
Identifier, which is sort of another name for a Uniform Resource Locator (URL). Both the CSS2 and
CSS2.1 specifications require that URIs be declared with the form url(...), so there is no practical

change.

 < Day Day Up >

 < Day Day Up >

4.7 Summary

Units and values cover a wide spectrum of areas, from length units to special keywords that describe
relationships (such as smaller) to color units to the location of files (such as images). For the most

part, units are the one area that user agents get almost totally correct; it's those few little bugs and
quirks that get you, though. Navigator 4.x's failure to interpret relative URLs correctly, for example,
has bedeviled many authors, and lead to an overreliance on absolute URLs. Colors are another area
where user agents almost always do well, except for a few little quirks here and there. The vagaries
of length units, however, far from being bugs, are an interesting problem for any author to tackle.

These units all have their advantages and drawbacks, depending on the circumstance in which
they're used. We've already seen some of these (and the nuances of such circumstances will be
discussed in the rest of the book), beginning with the CSS properties that describe ways to alter the
way text is displayed.

 < Day Day Up >

 < Day Day Up >

Chapter 5. Fonts
As the authors of the CSS specification clearly recognized, font selection would be a popular (and
crucial) feature. After all, how many pages are littered with dozens, or even hundreds, of tags? In fact, the beginning of the "Font Properties" section of the specification begins

with the sentence, "Setting font properties will be among the most common uses of style sheets."

Despite that importance, however, there currently isn't a way to ensure consistent font use on the
Web because there isn't a uniform way of describing fonts and variants of fonts. For example, the
fonts Times, Times New Roman, and TimesNR may be similar or even the same, but how would a
user agent know that? An author might specify "TimesNR" in a document, but what happens when a
user views the document without that particular font installed? Even if Times New Roman is installed,
the user agent has no way to know that the two are effectively interchangeable. And if you're hoping
to force a certain font on a reader, forget it.

Although CSS2 defined facilities for downloadable fonts, they weren't well implemented by web
browsers, and a reader could always refuse to download fonts for performance reasons. CSS does not
provide ultimate control over fonts any more than a word processor; when someone else loads a
Microsoft Office document you have created, its display will depend on that person's installed fonts. If
they don't have the same fonts you do, then the document will look different. This is also true of
documents designed using CSS.

The problem of font naming becomes especially confusing once you enter the realm of font variants,
such as bold or italic text. Most people know what italic text looks like, but few can explain how it's
different from slanted text, even though there are differences. "Slanted" is not the only other term
for italic-style text, either-for example, you'll find oblique, incline (or inclined), cursive, and kursiv,
among others. Thus, one font may have a variant called something like TimesItalic, whereas another
uses something like GeorgiaOblique. Although the two may be effectively equivalent as the "italic
form" of each font, they are labeled quite differently. Similarly, the font variant terms bold, black,
and heavy may or may not mean the same thing.

CSS attempts to provide some resolution mechanisms for all these font questions, although it cannot
provide a complete solution. The most complicated parts of font handling in CSS are font family
matching and font weight matching, with font size calculations running a close third. The font aspects
addressed by CSS are font styles, such as italics, and font variants, such as small caps; these are
much more straightforward, relatively speaking. These various aspects of font styling are all brought
together in a single property, font, which we'll discuss later in this chapter. First, let's discuss font

families, since they're the most basic step in choosing the right font for your document.

 < Day Day Up >

 < Day Day Up >

5.1 Font Families

Although there are, as was discussed earlier, a number of ways to label what is effectively the same
font, CSS makes a valiant attempt to help user agents sort out the mess. After all, what we think of
as a "font" may be composed of many variations to describe boldfacing, italic text, and so forth. For
example, you're probably familiar with the font Times. However, Times is actually a combination of
many variants, including TimesRegular, TimesBold, TimesItalic, TimesOblique, TimesBoldItalic,
TimesBoldOblique, and so on. Each of these variants of Times is an actual font face, but Times, as we
usually think of it, is a combination of all these variant faces. In other words, Times is actually a font
family, not just a single font, even though most of us think about fonts as being single entities.

In addition to each specific font family such as Times, Verdana, Helvetica, or Arial, CSS defines five
generic font families:

Serif fonts

These fonts are both proportional and have serifs. A font is proportional if all characters in the
font have different widths due to their various sizes. For example, a lowercase i and a
lowercase m are of different widths. (This book's paragraph font is proportional, for example.)
Serifs are the decorations on the ends of strokes within each character, such as little lines at
the top and bottom of a lowercase l or at the bottom of each leg of an uppercase A. Examples
of serif fonts are Times, Georgia, and New Century Schoolbook.

Sans-serif fonts

These fonts are proportional and do not have serifs. Examples of sans-serif fonts are Helvetica,
Geneva, Verdana, Arial, and Univers.

Monospace fonts

Monospace fonts are not proportional. These generally are used to emulate typewritten text,
the output from an old dot-matrix printer, or an even older video display terminal. In these
fonts, each character is exactly the same width as all the others, so a lowercase i is the same
width as a lowercase m. These fonts may or may not have serifs. If a font has uniform
character widths, it is classified as monospace, regardless of the presence of serifs. Examples
of monospace fonts are Courier, Courier New, and Andale Mono.

Cursive fonts

These fonts attempt to emulate human handwriting. Usually, these fonts are composed largely
of curves and have stroke decorations that exceed those found in serif fonts. For example, an
uppercase A might have a small curl at the bottom of its left leg or be composed entirely of
swashes and curls. Examples of cursive fonts are Zapf Chancery, Author, and Comic Sans.

Fantasy fonts

Such fonts are not really defined by any single characteristic other than their inability to be
easily classified in one of the other families. A few such fonts are Western, Woodblock, and
Klingon.

In theory, every font family a user could install will fall into one of these generic families. In practice,
this may not be the case, but the exceptions (if any) are likely to be few and far between.

5.1.1 Using Generic Font Families

Any of the above families can be employed in a document by using the property font-family.

font-family

Values

[[<family-name> | <generic-family>],]* [<family-name> | <generic-family>] |
inherit

Initial value

user agent-specific

Applies to

all elements

Inherited

yes

Computed value

as specified

If you want a document to use a sans-serif font, but you do not particularly care which one, then the
appropriate declaration would be this:

body {font-family: sans-serif;}

This will cause the user agent to pick a sans-serif font family (such as Helvetica) and apply it to the
body element. Thanks to inheritance, the same font choice will be applied to all the elements that
descend from the body-unless a more specific selector overrides it, of course.

Using nothing more than these generic families, an author can create a fairly sophisticated style
sheet. The following rule set is illustrated in Figure 5-1:

body {font-family: serif;}

h1, h2, h3, h4 {font-family: sans-serif;}

code, pre, tt, span.input {font-family: monospace;}

p.signature {font-family: cursive;}

Figure 5-1. Various font families

Thus, most of the document will be in a serif font such as Times, including all paragraphs save those
that have a class of signature, which will instead be rendered in a cursive font such as Author.
Headings 1 through 4 will be in sans-serif font like Helvetica, while the elements code, pre, tt, and
span.input will be in a monospace font like Courier-which, as it happens, is how most of these

elements are usually presented.

5.1.2 Specifying a Font Family

An author may, on the other hand, have more specific preferences for which font to use in the display
of a document or element. In a similar vein, a user may want to create a user style sheet that
defines the exact fonts that are used in the display of all documents. In either case, font-family is

still the property to use.

Assume for the moment that all h1s should use Georgia as their font. The simplest rule for this would

be the following:

h1 {font-family: Georgia;}

This will cause a user agent displaying the document to use Georgia for all h1s, as shown in Figure 5-

2.

Figure 5-2. An h1 element using Georgia

Of course, the above rule assumes that the user agent has Georgia available for use. If it doesn't, the
user agent will be unable to use the rule at all. It won't ignore the rule, but if it can't find a font called
"Georgia," it can't do anything but display h1 elements using the user agent's default font.

All is not lost, however. By combining specific font names with generic font families, you can create
documents that come out, if not exactly, at least close to your intentions. To continue the previous
example, the following markup tells a user agent to use Georgia, if it's available, and to use another
serif font if it's not.

h1 {font-family: Georgia, serif;}

If a reader doesn't have Georgia installed but does have Times, the user agent might use Times for
h1 elements. Even though Times isn't an exact match to Georgia, it's probably close enough.

For this reason, I strongly encourage you always to provide a generic family as part of any font-
family rule. By doing so, you provide a fallback mechanism that lets user agents pick an alternative

when they can't provide an exact font match. Such a backup measure is especially helpful since, in a
cross-platform environment, there is no way to know who has which fonts installed. Sure, every
Windows machine in the world may have Arial and Times New Roman installed, but many
Macintoshes don't, and the same is probably true of Unix machines. Conversely, while Chicago and
Charcoal are common to all recent Macintoshes, it's unlikely that Windows and Unix users will have
either font installed, and it is even less likely that they'll have both. Here are a few more examples:

h1 {font-family: Arial, sans-serif;}

h2 {font-family: Charcoal, sans-serif;}

p {font-family: TimesNR, serif;}

address {font-family: Chicago, sans-serif;}

If you're familiar with fonts, you might have a number of similar fonts in mind for use in displaying a
given element. Let's say that you want all paragraphs in a document to be displayed using Times, but
you would also accept TimesNR, Georgia, New Century Schoolbook, and New York (all of which are
serif fonts). First, decide the order of preference for these fonts, and then string them together with

commas:

p {font-family: Times, TimesNR, 'New Century Schoolbook', Georgia,

 'New York', serif;}

Based on this list, a user agent will look for the fonts in the order they're listed. If none of the listed
fonts are available, then it will simply pick a serif font that is available.

5.1.2.1 Using quotation marks

You may have noticed the presence of single quotes in the previous example, which we haven't seen
before. Quotation marks are needed in a font-family declaration only if a font name has one or

more spaces in it, such as New York, or if the font name includes symbols such as # or $. In both
cases, the entire font name should be enclosed in quotation marks to keep the user agent from
getting confused about what the name really is. (You might think the commas would suffice, but they
don't.) Thus, a font called Karrank% should probably be quoted:

h2 {font-family: Wedgie, 'Karrank%', Klingon, fantasy;}

If you leave off the quotation marks, there is a chance that user agents will ignore that particular font
name altogether, although they'll still process the rest of the rule. Note that the quoting of a font
name containing a symbol is not actually required by the CSS2.1 specification. Instead, it's
recommended, which is as close to describing "best practices" as the CSS specification really ever
gets. Similarly, it is recommended that a font name containing spaces be quoted. As it turns out, the
only required quotation is for font names that happen to match accepted keywords. Thus, if you call
for a font whose actual name is "cursive," you'll need to quote it.

Obviously, font names that use a single word-that doesn't conflict with any of the keywords for
font-family-need not be quoted, and generic family names (serif, monospace, etc.) should never

be quoted when they refer to the actual generic families. If you quote a generic name, then the user
agent will assume that you are asking for a specific font with that name (for example, "serif"), not a
generic family.

As for which quotation marks to use, both single and double quotes are acceptable. Remember that if
you place a font-family rule in a style attribute, you'll need to use whichever quotes you didn't
use for the attribute itself. Therefore, if you use double quotes to enclose the font-family rule,

then, within the rule, you'll have to use single quotes, as in the following markup:

p {font-family: sans-serif;} /* sets paragraphs to sans-serif by default */

<!-- the next example is correct (uses single-quotes) -->

<p style="font-family: 'New Century Schoolbook', Times, serif;">...</p>

<!-- the next example is NOT correct (uses double-quotes) -->

<p style="font-family: "New Century Schoolbook", Times, serif;">...</p>

If you use double quotes in such a circumstance, they would interfere with the attribute syntax, as
you can see in Figure 5-3.

Figure 5-3. The perils of incorrect quotation marks

 < Day Day Up >

 < Day Day Up >

5.2 Font Weights

Even though you may not realize it, you're already familiar with font weights; boldfaced text is a very
common example of an increased font weight. CSS gives you more control over weights, at least in
theory, with the property font-weight.

font-weight

Values

normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 |
900 | inherit

Initial value

normal

Applies to

all elements

Inherited

yes

Computed value

one of the numeric values (100, etc.), or one of the numeric values plus one of the
relative values (bolder or lighter)

Generally speaking, the heavier a font weight becomes, the darker and "more bold" a font appears.
There are a great many ways to label a heavy font face. For example, the font family known as
Zurich has a number of variants, such as Zurich Bold, Zurich Black, Zurich UltraBlack, Zurich Light,
and Zurich Regular. Each of these uses the same basic font, but each has a different weight.

So let's say that you want to use Zurich for a document, but you'd like to make use of all those
different heaviness levels. You could refer to them directly through the font-family property, but

you really shouldn't have to do that. Besides, it's no fun having to write a style sheet such as this:

h1 {font-family: 'Zurich UltraBlack', sans-serif;}

h2 {font-family: 'Zurich Black', sans-serif;}

h3 {font-family: 'Zurich Bold', sans-serif;}

h4, p {font-family: Zurich, sans-serif;}

small {font-family: 'Zurich Light', sans-serif;}

Aside from the obvious tedium of writing such a style sheet, it works only if everyone has these fonts
installed, and it's a pretty safe bet that most people don't. It would make far more sense to specify a
single font family for the whole document and then assign different weights to various elements. You
can do this, in theory, using the various values for the property font-weight. A fairly obvious font-
weight declaration is this:

b {font-weight: bold;}

This says, simply, that the b element should be displayed using a boldface font; or, to put it another

way, a font that is heavier than is normal for the document. This is what we're used to, of course,
since b does cause text to be boldfaced.

However, what's really happening is that a heavier variant of the font is used for displaying a b

element. Thus, if you have a paragraph displayed using Times, and part of it is boldfaced, then there
are really two variants of the same font in use: Times and TimesBold. The regular text is displayed
using Times, and the boldfaced text is displayed using TimesBold.

5.2.1 How Weights Work

In order to understand how a user agent determines the heaviness, or weight, of a given font
variant, not to mention how weight is inherited, it's easiest to start by talking about the keywords
100 through 900. These number keywords were defined to map to a relatively common feature of

font design in which a font is given nine levels of weight. OpenType, for example, employs a numeric
scale with nine values. If a font has these weight levels built-in, then the numbers are mapped
directly to the predefined levels, with 100 as the lightest variant on the font and 900 as the heaviest.

In fact, there is no intrinsic weight in these numbers. The CSS specification says only that each
number corresponds to a weight at least as heavy as the number that precedes it. Thus, 100, 200,
300, and 400 might all map to the same relatively lightweight variant; 500 and 600 could correspond
to the same heavier font variant; and 700, 800, and 900 could all produce the same very heavy font

variant. As long as no keyword corresponds to a variant that is lighter than the variant assigned to
the previous keyword, everything will be all right.

As it happens, these numbers are defined to be equivalent to certain common variant names, not to
mention other values for font-weight. 400 is defined to be equivalent to normal, and 700
corresponds to bold. The other numbers do not match up with any other values for font-weight,

but they can correspond to common variant names. If there is a font variant labeled something such

as "Normal," "Regular," "Roman," or "Book," then it is assigned to the number 400 and any variant
with the label "Medium" is assigned to 500. However, if a variant labeled "Medium" is the only variant
available, it is not assigned to 500 but instead to 400.

A user agent has to do even more work if there are fewer than nine weights in a given font family. In
this case, it has to fill in the gaps in a predetermined way:

If the value 500 is unassigned, it is given the same font weight as that assigned to 400.

If 300 is unassigned, it is given the next variant lighter than 400. If no lighter variant is
available, 300 is assigned the same variant as 400. In this case, it will usually be "Normal" or
"Medium." This method is also used for 200 and 100.

If 600 is unassigned, it is given the next variant darker than 400. If no darker variant is
available, 600 is assigned the same variant as 500. This method is also used for 700, 800, and
900.

In order to understand this weighting scheme more clearly, let's look at three examples of font
weight assignment. In the first example, assume that the font family Karrank% is an OpenType font
and so already has nine weights already defined. In this case, the numbers are assigned to each
level, and the keywords normal and bold are assigned to the numbers 400 and 700, respectively.

In our second example, consider the font family Zurich, which was discussed near the beginning of
this section. Hypothetically, its variants might be assigned numeric values for font-weight, as

shown in Table 5-1.

Table 5-1. Hypothetical weight assignments for a specific font family

Font face Assigned keyword Assigned number(s)

Zurich Light 100, 200, 300

Zurich Regular normal 400

Zurich Medium 500

Zurich Bold bold 600, 700

Zurich Black 800

Zurich UltraBlack 900

The first three number values are assigned to the lightest weight. The "Regular" face gets the
keyword normal, as expected, and the number weight 400. Since there is a "Medium" font, it's
assigned to the number 500. There is nothing to assign to 600, so it's mapped to the "Bold" font face,
which is also the variant to which 700 and bold are assigned. Finally, 800 and 900 are assigned to

the "Black" and "UltraBlack" variants respectively. Note that this last assignment would happen only
if those faces had the top two weight levels already assigned. Otherwise, the user agent might ignore
them and assign 800 and 900 to the "Bold" face instead, or it might assign them both to one or the

other of the "Black" variants.

Finally, let's consider a stripped-down version of Times. In Table 5-2, there are only two weight
variants: "TimesRegular" and "TimesBold."

Table 5-2. Hypothetical weight assignments for "Times"

Font face Assigned keyword Assigned numbers

TimesRegular normal 100, 200, 300, 400, 500

TimesBold bold 600, 700, 800, 900

The assignment of the keywords normal and bold is straightforward enough, of course. As for the
numbers, 100 through 300 are assigned to the "Regular" face because there isn't a lighter face
available. 400 goes to "Regular" as expected, but what about 500? It is assigned to the "Regular" (or
normal) face because there isn't a "Medium" face available; thus, it is assigned the same as 400. As
for the rest, 700 goes with bold as always, while 800 and 900, lacking a heavier face, are assigned to
the next-lighter face, which is the "Bold" font face. Finally, 600 is assigned to the next-heavier face,

which is of course the "Bold" face.

font-weight is inherited, so if you set a paragraph to be bold:

p.one {font-weight: bold;}

then all of its children will inherit that boldness, as we see in Figure 5-4.

Figure 5-4. Inherited font-weight

This isn't unusual, but the situation gets interesting when you use the last two values we have to
discuss: bolder and lighter. In general terms, these keywords have the effect you'd anticipate:
they make text more or less bold compared to its parent's font weight. First, let's consider bolder.

5.2.2 Getting Bolder

If you set an element to have a weight of bolder, then the user agent first must determine what
font-weight value was inherited from the parent element. It then selects the lowest number, which

corresponds to a font weight darker than what was inherited. If none is available, then the user agent
sets the element's font weight to the next numerical value, unless the value is already 900, in which
case the weight remains at 900. Thus, you might encounter the following situations, illustrated in

Figure 5-5:

p {font-weight: normal;}

p em {font-weight: bolder;} /* results in bold text, evaluates to '700' */

h1 {font-weight: bold;}

h1 b {font-weight: bolder;} /* if no bolder face exists, evaluates to '800' */

div {font-weight: 100;} /* assume 'Light' face exists; see explanation */

div strong {font-weight: bolder;} /* results in normal text, weight '400' */

Figure 5-5. Text trying to be more bold

In the first example, the user agent moves up the weight ladder from normal to bold; in numeric
terms, this is a jump from 400 to 700. In the second example, h1 text is already set to bold. If there
is no bolder face available, then the user agent sets the weight of b text within an h1 to 800, since
that is the next step up from 700 (the numeric equivalent of bold). Since 800 is assigned to the
same font face as 700, there is no visible difference between normal h1 text and boldfaced h1 text,

but the weights are different nonetheless.

In the last example, paragraphs are set to be the lightest possible font weight, which we assume
exists as a "Light" variant. Furthermore, the other faces in this font family are "Regular" and "Bold."
Any em text within a paragraph will evaluate to normal since that is the next-heaviest face within the

font family. However, what if the only faces in the font are "Regular" and "Bold"? In that case, the
declarations would evaluate like this:

/* assume only two faces for this example: 'Regular' and 'Bold' */

p {font-weight: 100;} /* looks the same as 'normal' text */

p span {font-weight: bolder;} /* maps to '700' */

As you can see, the weight 100 is assigned to the normal font face, but the value of font-weight is
still 100. Thus, any span text that is descended from a p element will inherit the value of 100 and
then evaluate to the next-heaviest face, which is the "Bold" face with a numerical weight of 700.

Let's take this one step further and add two more rules, plus some markup, to illustrate how all this
works (see Figure 5-6 for the results):

/* assume only two faces for this example: 'Regular' and 'Bold' */

p {font-weight: 100;} /* looks the same as 'normal' text */

p span {font-weight: 400;} /* so does this */

strong {font-weight: bolder;} /* even bolder than its parent */

strong b {font-weight: bolder;} /*bolder still */

<p>

This paragraph contains elements of increasing weight: there is a

span element that contains a strongly emphasized

element and a boldface element.

</p>

Figure 5-6. Moving up the weight scale

In the last two nested elements, the computed value of font-weight is increased because of the
liberal use of the keyword bolder. If you were to replace the text in the paragraph with numbers
representing the font-weight of each element, you would get the results shown here:

<p>

100 400 700 800 .

</p>

The first two weight increases are large because they represent jumps from 100 to 400 and from 400
to bold (700). From 700, there is no heavier face, so the user agent simply moves the value of font-
weight one notch up the numeric scale (800). Furthermore, if you were to insert a strong element
into the b element, it would come out like this:

<p>

100 400 700 800 900

.

</p>

If there were yet another b element inserted into the innermost strong element, its weight would
also be 900, since font-weight can never be higher than 900. Assuming that there are only two font

faces available, then the text would appear to be either Regular or Bold, as you can see in Figure 5-
7in Figure 5-7:

<p>

regular regular bold bold

 bold .

</p>

Figure 5-7. Visual weight, with descriptors

5.2.3 Lightening Weights

As you might expect, lighter works in just the same way, except it causes the user agent to move

down the weight scale instead of up. With a quick modification of the previous example, you can see
this very clearly:

/* assume only two faces for this example: 'Regular' and 'Bold' */

p {font-weight: 900;} /* as bold as possible, which will look 'bold' */

p span {font-weight: 700;} /* this will also be bold */

strong {font-weight: lighter;} /* lighter than its parent */

b {font-weight: lighter;} /* lighter still */

<p>

900 700 400 300 200

.

</p>

<!-- ...or, to put it another way... -->

<p>

bold bold regular regular

 regular .

</p>

Ignoring the fact that all this would be entirely counterintuitive, what you see in Figure 5-8 is that the
main paragraph text has a weight of 900. When the strong text is set to be lighter, it evaluates to
the next-lighter face, which is the regular face, or 400 (the same as normal) on the numeric scale.
The next step down is to 300, which comes out the same as normal since no lighter faces exist. From
there, the user agent can reduce the weight only one numeric step at a time until it reaches 100

(which it doesn't do in the example). The second paragraph shows which text will be bold and which
will be regular.

Figure 5-8. Making text lighter

 < Day Day Up >

 < Day Day Up >

5.3 Font Size

The methods for determining font size are both very familiar and very different.

font-size

Values

xx-small | x-small | small | medium | large | x-large | xx-large | smaller |
larger | <length> | <percentage> | inherit

Initial value

medium

Applies to

all elements

Inherited

yes

Percentages

calculated with respect to the parent element's font size

Computed value

an absolute length

In a fashion very similar to the font-weight keywords bolder and lighter, the property font-size

has relative-size keywords called larger and smaller. Much as we saw with relative font weights,
these keywords cause the computed value of font-size to move up and down a scale of size values,
which you'll need to understand before you can explore larger and smaller. First, though, we need

to explore how fonts are sized in the first place.

In fact, the actual relation of the font-size property to what you actually see rendered is

determined by the font's designer. This relationship is set as an em square (some call it an em box)
within the font itself. This em square, and thus the font size, doesn't have to refer to any boundaries
established by the characters in a font. Instead, it refers to the distance between baselines when the
font is set without any extra leading (line-height in CSS). It is quite possible for fonts to have

characters that are taller than the default distance between baselines. For that matter, a font might
be defined such that all of its characters are smaller than its em square, as many fonts do. Some
hypothetical examples are shown in Figure 5-9.

Figure 5-9. Font characters and em squares

Thus, the effect of font-size is to provide a size for the em box of a given font. This does not

guarantee that any of the actual characters that are displayed will be this size.

5.3.1 Absolute Sizes

Having established all that, we turn now to the absolute-size keywords. There are seven absolute-
size values for font-size: xx-small, x-small, small, medium, large, x-large, and xx-large.

These are not defined precisely, but are relative to each other, as Figure 5-10 demonstrates:

p.one {font-size: xx-small;}

p.two {font-size: x-small;}

p.three {font-size: small;}

p.four {font-size: medium;}

p.five {font-size: large;}

p.six {font-size: x-large;}

p.seven {font-size: xx-large;}

Figure 5-10. Absolute font sizes

According to the CSS1 specification, the difference (or scaling factor) between one absolute size and
the next should be about 1.5 going up the ladder, or 0.66 going down. Thus, if medium is the same as
10px, then large should be the same as 15px. On the other hand, the scaling factor does not have to

be 1.5; not only might it be different for different user agents, but it was changed to a factor
somewhere between 1.0 and 1.2 in CSS2.

Working from the assumption that medium equals 16px, for different scaling factors, we get the

absolute sizes shown in Table 5-3. (The following values are approximations, of course.)

Table 5-3. Scaling factors translated to pixels

Keyword Scaling: 1.5 Scaling: 1.2

xx-small 5px 9px

x-small 7px 11px

small 11px 13px

medium 16px 16px

large 24px 19px

x-large 36px 23px

Further complicating the situation is the fact that different user agents have assigned the "default"
font size to different absolute keywords. Take the Version 4 browsers as an example: Navigator 4
makes medium the same size as unstyled text, whereas Internet Explorer 4 assumes that small text
is equivalent in size to unstyled text. Despite the fact that the default value for font-style is
supposed to be medium, IE4's behavior may be wrong, but it isn't quite so wrongheaded as it might

first appear.[1] Fortunately, IE6 fixed the problem, at least when the browser is in standards mode,
and treats medium as the default.

Keyword Scaling: 1.5 Scaling: 1.2

xx-large 54px 28px

Further complicating the situation is the fact that different user agents have assigned the "default"
font size to different absolute keywords. Take the Version 4 browsers as an example: Navigator 4
makes medium the same size as unstyled text, whereas Internet Explorer 4 assumes that small text
is equivalent in size to unstyled text. Despite the fact that the default value for font-style is
supposed to be medium, IE4's behavior may be wrong, but it isn't quite so wrongheaded as it might

first appear.[1] Fortunately, IE6 fixed the problem, at least when the browser is in standards mode,
and treats medium as the default.

[1] Note that there are seven absolute-size keywords, just as there are seven font sizes (e.g.,). Since the typical default font size was historically 3, it makes some sense that the third value on

the CSS absolute-size keyword list would be used to indicate a default font size. Since the third keyword turns

out to be small, you get Explorer's behavior.

5.3.2 Relative Sizes

Compared to all this, the keywords larger and smaller are simple to understand: they cause the

size of an element to be shifted up or down the absolute-size scale-relative to their parent
element-using the same scaling factor employed to calculate absolute sizes. In other words, if the
browser used a scaling factor of 1.2 for absolute sizes, then it should use the same factor when
applying relative-size keywords:

p {font-size: medium;}

strong, em {font-size: larger;}

<p>This paragraph element contains a strong-emphasis element

which itself contains an emphasis element that also contains

a strong element.</p>

<p> medium large x-large

xx-large</p>

Unlike the relative values for weight, the relative-size values are not necessarily constrained to the
limits of the absolute-size range. Thus, a font's size can be pushed beyond the sizes for xx-small
and xx-large. For example:

h1 {font-size: xx-large;}

em {font-size: larger;}

xx-large 54px 28px

Further complicating the situation is the fact that different user agents have assigned the "default"
font size to different absolute keywords. Take the Version 4 browsers as an example: Navigator 4
makes medium the same size as unstyled text, whereas Internet Explorer 4 assumes that small text
is equivalent in size to unstyled text. Despite the fact that the default value for font-style is
supposed to be medium, IE4's behavior may be wrong, but it isn't quite so wrongheaded as it might

first appear.[1] Fortunately, IE6 fixed the problem, at least when the browser is in standards mode,
and treats medium as the default.

[1] Note that there are seven absolute-size keywords, just as there are seven font sizes (e.g.,). Since the typical default font size was historically 3, it makes some sense that the third value on

the CSS absolute-size keyword list would be used to indicate a default font size. Since the third keyword turns

out to be small, you get Explorer's behavior.

5.3.2 Relative Sizes

Compared to all this, the keywords larger and smaller are simple to understand: they cause the

size of an element to be shifted up or down the absolute-size scale-relative to their parent
element-using the same scaling factor employed to calculate absolute sizes. In other words, if the
browser used a scaling factor of 1.2 for absolute sizes, then it should use the same factor when
applying relative-size keywords:

p {font-size: medium;}

strong, em {font-size: larger;}

<p>This paragraph element contains a strong-emphasis element

which itself contains an emphasis element that also contains

a strong element.</p>

<p> medium large x-large

xx-large</p>

Unlike the relative values for weight, the relative-size values are not necessarily constrained to the
limits of the absolute-size range. Thus, a font's size can be pushed beyond the sizes for xx-small
and xx-large. For example:

h1 {font-size: xx-large;}

em {font-size: larger;}

<h1>A Heading with Emphasis added</h1>

<p>This paragraph has some emphasis as well.</p>

As you can see in Figure 5-11, the emphasized text in the h1 element is slightly larger than xx-
large. The amount of scaling is left up to the user agent, with the recommended scaling factor of 1.2
being preferred. The em text in the paragraph, of course, is shifted one slot up the absolute-size scale
(large).

Figure 5-11. Relative font sizing at the edges of the absolute sizes

User agents are not required to increase or decrease font size beyond the limits
of the absolute-size keywords.

5.3.3 Percentages and Sizes

In a way, percentage values are very similar to the relative-size keywords. A percentage value is
always computed in terms of whatever size is inherited from an element's parent. Percentages, unlike
the relative-size keywords, permit much finer control over the computed font size. Consider the
following, illustrated in Figure 5-12:

body {font-size: 15px;}

p {font-size: 12px;}

em {font-size: 120%;}

strong {font-size: 135%;}

small, .fnote {font-size: 75%;}

<body>

<p>This paragraph contains both emphasis and strong

emphasis, both of which are larger than their parent element.

The <small>small text</small>, on the other hand, is smaller by a quarter.</p>

<p class="fnote">This is a 'footnote' and is smaller than regular text.</p>

<p> 12px 14.4px 12px 16.2px 12px

<small> 9px </small> 12px </p>

<p class="fnote"> 10.5px </p>

</body>

Figure 5-12. Throwing percentages into the mix

In this example, the exact pixel size values are shown. In practice, a web browser would very likely
round the values off to the nearest whole-number pixel, such as 14px, although advanced user

agents may approximate fractional pixels through anti-aliasing or when printing the document. For
other font-size values, the browser may (or may not) preserve fractions.

Incidentally, CSS defines the length value em to be equivalent to percentage values, in the sense that
1em is the same as 100% when sizing fonts. Thus, the following would yield identical results (assuming

both paragraphs have the same parent element):

p.one {font-size: 166%;}

p.two {font-size: 1.6em;}

When using em measurements, the same principles apply as with percentages, such as the

inheritance of computed sizes, and so forth.

5.3.4 Font Size and Inheritance

Figure 5-12 also demonstrates that, although font-size is inherited in CSS, it is the computed
values that are inherited, not percentages. Thus, the value inherited by the strong element is 12px,
and this value is modified by the declared value 135% to arrive at 16.2px (which will probably be
rounded off to 16px). For the "footnote" paragraph, the percentage is calculated in relation to the
font-size value that's inherited from the body element, which is 15px. Multiplying that value by 75%
yields 10.5px.

As with the relative-size keywords, percentages are effectively cumulative. Thus, the following
markup is displayed as shown in Figure 5-13:

p {font-size: 12px;}

em {font-size: 120%;}

strong {font-size: 135%;}

small {font-size: 75%;}

<p>This paragraph contains bothemphasis and strong

emphasis, both of which are larger than the paragraph text. </p>

<p> 12px 14.4px 19.44px 12px </p>

Figure 5-13. The issues of inheritance

The size value for the strong element shown in Figure 5-13 is computed as follows:

12 px x 120% = 14.4px
14.4px x 135% = 19.44px (possibly rounded to 19px)

There is an alternative scenario, however, in which the final value is slightly different. In this
scenario, the user agent rounds off pixel size, and these rounded values are then inherited normally
by any child elements. Although this behavior would be incorrect according to the specification, let's
assume that the work agent does it.Therefore, you would have:

12px x 120% = 14.4px [14.4px 14px]

14px x 135% = 18.9px [18.9px 19px]

If one assumes that the user agent is rounding off at each step, then the end result of both this
calculation and the previous one is the same: 19 pixels. However, as more and more percentages
are multiplied together, the rounding errors will begin to accumulate.

The problem of runaway scaling can go the other direction, too. Consider for a moment a document
that is nothing but a series of unordered lists, many of them nested inside other lists. Some of these
lists go four nested levels deep. Imagine the effect of the following rule on such a document:

ul {font-size: 80%;}

Assuming a four-level deep nesting, the most deeply nested unordered list would have a computed
font-size value 40.96% the size of the parent of the top-level list. Every nested list would have a

font size 80% as big as its parent list, causing each level to become harder and harder to read. A
similar problem can happen if you have a document that uses nested tables for layout. You would
then write a rule such as:

td {font-size: 0.8em;}

Either way, you're likely to end up with a page that's nearly impossible to read.

5.3.5 Using Length Units

The font-size can be set using any of the length values discussed in detail in Chapter 4. All of the
following font-size declarations should be equivalent:

p.one {font-size: 36pt;} /* assuming 72 dpi, these are all the same thing */

p.two {font-size: 3pc;}

p.three {font-size: 0.5in;}

p.four {font-size: 1.27cm;}

p.five {font-size: 12.7mm;}

The display shown in Figure 5-14 assumes that the user agent knows how many dots per inch are
used in the display medium. Different user agents make different assumptions-some based on the
operating system, some based on preferences settings, and some based on the assumptions of the
programmer who wrote the user agent. However, the five lines should always be the same size. So,
while the result may not exactly match reality (for example, the actual size of p.three may not be

half an inch), the measurements should all be consistent with one another.

Figure 5-14. Various font sizes

There is one more value that is potentially the same as those shown in Figure 5-14, and that's 36px,

which would be the same physical distance if the display medium is 72 pixels-per-inch (ppi). However,
there are very few monitors with that setting anymore. Most are much higher, in the range of 96ppi
to 120ppi. Many very old Macintosh web browsers treat points and pixels as though they are
equivalent, so the values 14pt and 14px may look the same on old Macintoshes. This is not,

however, the case for Windows and other platforms, including Mac OS X, which is one of the primary
reasons why points can be a very difficult measurement to use in document design.

The variations between operating systems are a primary reason why many authors choose to use
pixel values for font sizes. This approach is especially attractive when mixing text and images
together on a web page, since text can (in theory) be set to the same height as graphic elements on
the page by declaring font-size: 11px; or something similar, as illustrated by Figure 5-15.

Figure 5-15. Keeping text and graphics in scale with pixel sizes

Using pixel measurements for font-size is certainly one way to get "consistent" results with font-
size (and, indeed, with any length at all), but there is a major drawback. Internet Explorer for

Windows, up through Version 6.0, does not allow users to easily resize text if it has been set with
pixels. Other browsers, including Mozilla, Netscape 6+, IE5+/Mac, and Opera, all allow the user to
resize text no matter how it's been set. Thus, using pixels to size text is no more a guarantee that it
will stay the same than with any other method. The other approaches shown in this chapter, such as
keywords and percentages, are a much more robust (and user-friendly) way to go, as they can be
used to scale text from the user's default font size.

 < Day Day Up >

 < Day Day Up >

5.4 Styles and Variants

Compared with everything that's gone before, this section is practically a no-brainer. The properties
discussed herein are so straightforward, and the complexities are so minimal, that this will probably
all come as a great relief. First, we'll talk about font-style, and then move on to font-variant

before wrapping up with the font properties.

5.4.1 Fonts with Style

font-style is very simple: it's used to select between normal text, italic text, and oblique text.

That's it! The only complication is in recognizing the difference between italic and oblique text and in
knowing why browsers don't always give you a choice.

font-style

Values

italic | oblique | normal | inherit

Initial value

normal

Applies to

all elements

Inherited

yes

Computed value

as specified

The default value of font-style is, as you can see, normal. This refers to "upright" text, which is

probably best described as "text that is not italic or otherwise slanted." The vast majority of text in
this book is upright, for instance. That leaves only an explanation of the difference between italic
and oblique text. For that, it's easiest to turn to Figure 5-16, which illustrates the differences very

clearly.

Figure 5-16. Italic and oblique text in detail

Basically, italic text is a separate font face, with small changes made to the structure of each letter to
account for the altered appearance. This is especially true of serif fonts, where, in addition to the fact
that the text characters "lean," the serifs may be altered in an italic face. Oblique text, on the other
hand, is simply a slanted version of the normal, upright text. Font faces with labels like "Italic,"
"Cursive," and "Kursiv" are usually mapped to the italic keyword, while oblique can be assigned

faces with labels such as "Oblique," "Slanted," and "Incline."

If you want to make sure that a document uses italic text in familiar ways, you could write a style
sheet like this:

p {font-style: normal;}

em, i {font-style: italic;}

These styles would make paragraphs use an upright font, as usual, and cause the em and i elements

to use an italic font-again, as usual. On the other hand, you might decide that there should be a
subtle difference between em and i:

p {font-style: normal;}

em {font-style: oblique;}

i {font-style: italic;}

If you look closely at Figure 5-17, you'll see there is no apparent difference between the em and i

elements. In practice, not every font is so sophisticated as to have both an italic face and an oblique
face, and even fewer web browsers are sophisticated enough to tell the difference when both faces do
exist.

Figure 5-17. More font styles

If either of these is the case, then there are a few things that can happen. If there is no "Italic" face,
but there is an "Oblique" face, then the latter can be used for the former. If the situation is
reversed-an "Italic" face exists, but there is no defined "Oblique" face-the user agent may not
substitute the former for the latter, according to the specification. Finally, the user agent can simply
generate the oblique face by computing a slanted version of the upright font. In fact, this is what
most often happens in a digital world, where it's fairly simple to slant a font using a simple
computation.

Furthermore, you may find that in some operating systems, a given font that has been declared to be
italic may switch from being italic to oblique depending on the actual size of the font. The display of

Times on a Macintosh running the Classic OS (Mac OS 9), for example, is as shown in Figure 5-18,
and the only difference is a single pixel in size.

Figure 5-18. Same font, same style, different sizes

There isn't much that can be done about this, unfortunately, save better font handling by operating
systems like that found in Mac OS X and Windows XP. Usually, the italic and oblique fonts look
exactly the same in web browsers.

Still, font-style can be useful. For example, it is a common typographic convention that a block

quote should be italicized, but that any specially emphasized text within the quote should be upright.
In order to employ this effect, shown in Figure 5-19, you would use these styles:

blockquote {font-style: italic;}

blockquote em, blockquote i {font-style: normal;}

Figure 5-19. Common typographical conventions through CSS

5.4.2 Font Variations

In addition to sizes and styles, fonts can also have variants. CSS offers a way to address one very
common variant.

font-variant

Values

small-caps | normal | inherit

Initial value

normal

Applies to

all elements

Inherited

yes

Computed value

as specified

As for font-variant, it has but two non-inherit values: the default of normal, which describes
ordinary text, and small-caps, which calls for the use of small-caps text. If you aren't familiar with

such an effect, It Looks Something Like This. Instead of upper- and lowercase letters, a small-caps
font employs uppercase letters of different sizes. Thus, you might see something like that shown in
Figure 5-20:

h1 {font-variant: small-caps;}

h1 code, p {font-variant: normal;}

<h1>The Uses of <code>font-variant</code> On the Web</h1>

<p>

The property <code>font-variant</code> is very interesting...

</p>

Figure 5-20. Small-caps in use

As you may notice, in the display of the h1 element, there is a larger uppercase letter wherever an

uppercase letter appears in the source and a small uppercase letter wherever there is a lowercase
letter in the source. This is very similar to text-transform: uppercase, with the only real difference
being that, here, the uppercase letters are of different sizes. However, the reason that small-caps is

declared using a font property is that some fonts have a specific small-caps face, which a font
property is used to select.

What happens if no such face exists? There are two options provided in the specification. The first is
for the user agent to create a small-caps face by scaling uppercase letters on its own. The second is
simply to make all letters uppercase and the same size, exactly as if the declaration text-
transform: uppercase; had been used instead. This is obviously not an ideal solution, but it is

permitted.

Internet Explorer for Windows took the all-caps route before IE6. Most other
browsers display small-caps text when asked to do so.

 < Day Day Up >

 < Day Day Up >

5.5 Stretching and Adjusting Fonts

There are two font properties that appear in CSS2, but not in CSS2.1. They've been dropped from
CSS2.1 because, despite being in the specification for years, no browser has bothered to implement
either one. The first allows for the horizontal stretching of fonts, and the second allows for intelligent
scaling of substituted fonts when the author's first choice is not available. First, let's look at
stretching.

font-stretch

Values

normal | wider | narrower | ultra-condensed | extra-condensed | condensed |
semi-condensed | semi-expanded | expanded | extra-expanded | ultra-
expanded | inherit

Initial value

normal

Applies to

all elements

Inherited

yes

As you might expect from the value names, this property is used to make a font's characters fatter or
skinnier. It behaves very much like the absolute-size keywords (e.g., xx-large) for the font-size

property, with a range of absolute values and two values that let the author alter a font's stretching
up or down. For example, an author might decide to stress the text in a strongly emphasized element
by stretching the font characters to be wider than their parent element's font characters, as shown in
Figure 5-21:

strong {font-stretch: wider;}

Figure 5-21. Stretching font characters

Figure 5-21 was altered using Photoshop, since web browsers do not support
font-stretch as of this writing.

The similarly unimplemented process of adjusting font size is a little more complicated.

font-size-adjust

Values

<number> | none | inherit

Initial value

none

Applies to

all elements

Inherited

yes

The goal of this property is to preserve legibility when the font used is not the author's first choice.
Because of the differences in font appearance, one font may be legible at a certain size, while
another at the same size is difficult or impossible to read.

The factors that influence a font's legibility are its size and its x-height. The number that results from
dividing the font-size by the x-height is referred to as the aspect value. Fonts with higher aspect

values tend to be legible as the font's size is reduced; conversely, fonts with low aspect values
become illegible more quickly.

A good example of this is to compare the common fonts Verdana and Times. Consider Figure 5-22
and the following markup, which shows both fonts at a font-size of 10px:

p {font-size: 10px;}

p.cl1 {font-family: Verdana, sans-serif;}

p.cl2 {font-family: Times, serif; }

Figure 5-22. Comparing Verdana and Times

The text in Times is much harder to read than the Verdana text. This is partly due to the limitations
of pixel-based display, but it is also because Times simply becomes harder to read at smaller font
sizes.

As it turns out, the ratio of x-height to character size in Verdana is 0.58, whereas in Times it is 0.46.
What you can do in this case is declare the aspect value of Verdana, and the user agent will adjust
the size of the text that's actually used. This is done using the formula:

Declared font-size x (font-size-adjust value ÷ aspect value of available font) = Adjusted
font-size

So in a situation where Times is used instead of Verdana, the adjustment would be as follows:

10px x (0.58 ÷ 0.46) = 12.6px

This would lead to the result shown in Figure 5-23:

p {font: 10px Verdana, sans-serif; font-size-adjust: 0.58;}

p.cl1 {font-family: Times, serif; }

Figure 5-23. Adjusting Times

Figure 5-23 was altered using Photoshop, since nearly all web browsers do not
support font-size-adjust as of this writing.

Of course, in order to allow a user agent to intelligently make size adjustments, you have to know the
aspect value of your first-choice font. There is no way in CSS2 to simply get the value from the font,
and many fonts may not have the information available in the first place.

 < Day Day Up >

 < Day Day Up >

5.6 The font Property

All of these properties are very sophisticated, of course, but using them all could start to get a little
tedious:

h1 {font-family: Verdana, Helvetica, Arial, sans-serif; font-size: 30px;

 font-weight: 900; font-style: italic; font-variant: small-caps;}

h2 {font-family: Verdana, Helvetica, Arial, sans-serif; font-size: 24px;

 font-weight: bold; font-style: italic; font-variant: normal;}

Some of this could be solved by grouping selectors, but wouldn't it be easier to combine everything
into a single property? Enter font, which is the shorthand property for all the other font properties

(and a little more besides).

font

Values

[[<font-style> || <font-variant> || <font-weight>]? <font-size> [/ <line-height>
]? <font-family>] | caption | icon | menu | message-box |small-caption |
status-bar | inherit

Initial value

refer to individual properties

Applies to

all elements

Inherited

yes

Percentages

calculated with respect to the parent element for <font-size> and with respect to
the element's <font-size> for <line-height>

Computed value:

see individual properties (font-style, etc.)

Generally speaking, a font declaration can have any one value from each of the listed font

properties, or else a "system font" value (described in the Section 5.6.3). Therefore, the preceding
example could be shortened as follows:

h1 {font: italic 900 small-caps 30px Verdana, Helvetica, Arial, sans-serif;}

h2 {font: bold normal italic 24px Verdana, Helvetica, Arial, sans-serif;}

and have exactly the same effect (illustrated by Figure 5-24).

Figure 5-24. Typical font rules

I say that the styles "could be" shortened in this way because there are a few other possibilities,
thanks to the relatively loose way in which font can be written. If you look closely at the preceding
example, you'll see that the first three values don't occur in the same order. In the h1 rule, the first
three values are the values for font-style, font-weight, and font-variant, in that order;
whereas in the second, they're ordered font-weight, font-variant, and font-style. There is

nothing wrong here because these three can be written in any order. Furthermore, if any of them has
a value of normal, that can be left out altogether. Therefore, the following rules are equivalent to the

previous example:

h1 {font: italic 900 small-caps 30px Verdana, Helvetica, Arial, sans-serif;}

h2 {font: bold italic 24px Verdana, Helvetica, Arial, sans-serif;}

In this example, the value of normal was left out of the h2 rule, but the effect is exactly the same as

in the preceding example.

It's important to realize, however, that this free-for-all situation applies only to the first three values
of font. The last two are much more strict in their behavior. Not only must font-size and font-
family appear in that order as the last two values in the declaration, but both must always be
present in a font declaration. Period, end of story. If either is left out, then the entire rule will be

invalid and very likely ignored completely by a user agent. Thus, the following rules will get you the
result shown in Figure 5-25:

h1 {font: normal normal italic 30px sans-serif;} /*no problem here */

h2 {font: 1.5em sans-serif;} /* also fine; omitted values set to 'normal' */

h3 {font: sans-serif;} /* INVALID--no 'font-size' provided */

h4 {font: light 14px;} /* INVALID--no 'font-family' provided */

Figure 5-25. The necessity of both size and family

5.6.1 Adding the Line Height

So far, we've treated font as though it has only five values, which isn't quite true. It is also possible
to set the line-height using font, despite that fact that line-height is a text property, not a font
property. It's done as a sort of addition to the font-size value, separated from it by a forward slash
(/):

body {font-size: 12px;}

h2 {font: bold italic 200%/1.2 Verdana, Helvetica, Arial, sans-serif;}

These rules, demonstrated in Figure 5-26, set all h2 elements to be bold and italic (using face for one
of the sans-serif font families), set the font-size to 24px (twice the body's size), and set the line-
height to 30px.

Figure 5-26. Adding line height to the mix

This addition of a value for line-height is entirely optional, just as the first three font values are. If
you do include a line-height, remember that the font-size always comes before line-height,

never after, and the two are always separated by a slash.

This may seem repetitive, but it's one of the most common errors made by CSS authors, so I can't
say it enough times: the required values for font are font-size and font-family, in that order.

Everything else is strictly optional.

line-height is discussed in the next chapter.

5.6.2 Using Shorthands Properly

It is important to remember that font, being a shorthand property, can act in unexpected ways if

you are careless with its use. Consider the following rules, which are illustrated in Figure 5-27:

h1, h2, h3 {font: italic small-caps 250% sans-serif;}

h2 {font: 200% sans-serif;}

h3 {font-size: 150%;}

<h1>This is an h1 element</h1>

<h2>This is an h2 element</h2>

<h3>This is an h3 element</h3>

Figure 5-27. Shorthand changes

Did you notice that the h2 element is neither italicized nor small-capped, and that none of the
elements are boldfaced? This is the correct behavior. When the shorthand property font is used, any

omitted values are reset to their defaults. Thus, the previous example could be written as follows and
still be exactly equivalent:

h1, h2, h3 {font: italic normal small-caps 250% sans-serif;}

h2 {font: normal normal normal 200% sans-serif;}

h3 {font-size: 150%;}

This sets the h2 element's font style and variant to normal, and the font-weight of all three
elements to normal. This is the expected behavior of shorthand properties. The h3 does not suffer
the same fate as the h2 because you used the property font-size, which is not a shorthand

property and therefore affects only its own value.

5.6.3 Using System Fonts

In situations where you want to make a web page "blend in" with the user's operating system, the
system font values of font come in very handy. These are used to take the font size, family, weight,

style, and variant of elements of the operating system, and apply them to an element. The values are
as follows:

caption

The font used for captioned controls, such as buttons

icon

The font used to label icons

menu

The font used in menus-that is, dropdown menus and menu lists

message-box

The font used in dialog boxes

small-caption

The font used for labeling small controls

status-bar

The font used in window status bars

For example, you might want to set the font of a button to be the same as buttons found in the
operating system. For example:

button {font: caption;}

With these values, it is possible to create web-based applications that look very much like
applications native to the user's operating system.

Note that system fonts may only be set as a whole; that is, the font family, size, weight, style, etc.,
are all set together. Therefore, the button text from our previous example will look exactly the same
as button text in the operating system, whether or not the size matches any of the content around
the button. You can, however, alter the individual values once the system font has been set. Thus,
the following rule will make sure the button's font is the same size as its parent element's font:

button {font: caption; font-size: 1em;}

If you call for a system font and no such font exists on the user's machine, the user agent may try to
find an approximation, such as reducing the size of the caption font to arrive at the small-caption

font. If no such approximation is possible, then the user agent should use a default font of its own. If
it can find a system font but can't read all of its values, then it should use the default value. For
example, a user agent may be able to find a status-bar font but not get any information about
whether the font is small-caps. In that case, the user agent will use the value normal for the small-
caps property.

User interface styles are discussed in more detail in Chapter 13.

 < Day Day Up >

 < Day Day Up >

5.7 Font Matching

As we've seen, CSS allows for the matching of font families, weights, and variants. This is all done
through font matching, which is a vaguely complicated procedure. Understanding it is important for
authors who want to help user agents make good font selections when displaying their documents. I
left it for the end of the chapter because it's not really necessary to understand how the font
properties work, and some people will probably want to skip this part and go on to the next chapter.
If you're still interested, here's how font matching works.

The user agent creates, or otherwise accesses, a database of font properties. This database lists
the various CSS properties of all the fonts to which the user agent has access. Typically, this will
be all fonts installed on the machine, although there could be others (for example, the user
agent could have its own built-in fonts). If the user agent encounters two identical fonts, it will
simply ignore one of them.

1.

The user agent takes apart an element to which font properties have been applied and
constructs a list of font properties necessary for the display of that element. Based on that list,
the user agent makes an initial choice of a font family to use in displaying the element. If there
is a complete match, then the user agent can use that font. Otherwise, it needs to do a little
more work.

A font is first matched against the font-style. The keyword italic is matched by any

font that is labeled as either "italic" or "oblique." If neither is available, then the match
fails.

a.

The next match attempt is on font-variant. Any font that is not labeled "small-caps" is
assumed to be normal. A font can be matched to small-caps by any font that is labeled

as "small-caps," by any font that allows the synthesis of a small-caps style, or by any font
where lowercase letters are replaced by uppercase letters.

b.

The next match is to font-weight, which can never fail thanks to the way font-weight is

handled in CSS (explained earlier in the chapter).

c.

Then, font-size is tackled. This must be matched within a certain tolerance, but the

tolerance is left to the user agent to define. Thus, one user agent might allow matching
within a 20% margin of error, whereas another might allow only 10% differences between
the size specified and the size that is actually used.

d.

2.

If there was no font match in Step 2, the user agent looks for alternate fonts within the same
font family. If it finds any, then it repeats Step 2 for that font.

3.

Assuming a generic match has been found, but it doesn't contain everything needed to display a
given element-the font is missing the copyright symbol, for instance-then the user agent goes
back to Step 3, which entails a search for another alternate font and another trip through Step
2.

4.

5.

Finally, if no match has been made and all alternate fonts have been tried, then the user agent
selects the default font for the given generic font family and does the best it can to display the
element correctly.

5.

The whole process is long and tedious, but it helps to understand how user agents pick the fonts they
do. For example, you might specify the use of Times or any other serif font in a document:

body {font-family: Times, serif;}

For each element, the user agent should examine the characters in that element and determine
whether Times can provide characters to match. In most cases, it can do so with no problem.
Assume, however, that a Chinese character has been placed in the middle of a paragraph. Times has
nothing that can match this character, so the user agent has to work around the character or look for
another font that can fulfill the needs of displaying that element. Of course, any Western font is
highly unlikely to contain Chinese characters, but should one exist (let's call it AsiaTimes), the user
agent could use it in the display of that one element-or simply for the single character. Thus, the
whole paragraph might be displayed using AsiaTimes, or everything in the paragraph might be in
Times except for the single Chinese character, which is displayed in AsiaTimes.

5.7.1 Font Face Rules

CSS2 introduced a way to exert much greater control over font matching through an @font-face
rule. Since no web browsers had fully implemented this as of spring 2003, @font-face was removed

from CSS2.1. I will not spend much time on it, as the aspects of this rule are very complicated and
could probably fill a chapter (or a book!) of their own.

There are four ways to arrive at a font to be used in the document. We'll look briefly at each, since
future versions of CSS may use this mechanism, and most SVG renderers at least partially support
the font face matching described in CSS2. If you are in a situation where you need to implement
@font-face, please refer to the CSS2 specification, or whatever the latest version of CSS might be

(such as the CSS3 Web Fonts module); the following descriptions are incomplete at best.

5.7.1.1 Font name matching

To match the font name, the user agent uses an available font that has the same family name as the
requested font. The font's appearance and metrics might not be the same. This is the method
described earlier in this section.

5.7.1.2 Intelligent font matching

In this case, the user agent uses an available font that is the closest match in appearance to the
requested font. The two may not match exactly, but they should be as close as possible.

The information used to match the two fonts includes the kind of font (text or symbol), nature of
serifs, weight, cap height, x-height, ascent, descent, slant, and so on. For example, an author could
request that a certain font be as close as possible to a certain slant by writing:

@font-face {font-style: normal; font-family: "Times"; slope: -5;}

It would then be up to the user agent to find a serif normal (upright) font whose slope was as close to
five degrees to the right as possible, if Times does not fit the bill. There are a great many font aspects
described in CSS2, all of which can be used to drive the matching process in a user agent that
supports them.

5.7.1.3 Font synthesis

It's also possible that a user agent would choose to actually generate, on the fly, a font whose
appearance and metrics match the description given in the @font-face rule. CSS2 has this to say

about the process:

In this case, the user agent creates a font that is not only a close match in appearance, but also
matches the metrics of the requested font. The synthesizing information includes the matching
information and typically requires more accurate values for the parameters than are used for
some matching schemes. In particular, synthesis requires accurate width metrics and character
to glyph substitution and position information if all the layout characteristics of the specified font
are to be preserved.

If this makes sense to you, then you probably don't need my help to explain it. If not, you probably
need never worry about it.

5.7.1.4 Font download

In this approach, the user agent may download a remote font for use in the document. To declare a
font for downloading, you might write something like this:

@font-face {font-family: "Scarborough Fair";

 src: url(http://www.example.com/fonts/ps/scarborough.ps);}

You could then use that font throughout the document.

Even in a user agent that permits font downloading, it may take some time to retrieve the font file
(such files can be quite large), which would delay the rendering of the document, or at least delay the
final rendering.

 < Day Day Up >

 < Day Day Up >

5.8 Summary

Although authors cannot count on a specific font being used in a document, they can very easily
specify generic font families to be used. This particular behavior is very well supported, since any
user agent that didn't let authors (or even readers) assign fonts would quickly find itself out of favor.

As for the other areas of font manipulation, support varies. Changing the size of fonts usually works
well, but 20th-century implementations ranged from frustratingly simplistic to very nearly correct in
this area. The frustrating part for authors is usually not the way in which font sizing is supported, but
instead in how a unit they want to use (points) can yield very different results in different media, or
even different operating systems and user agents. The dangers of using points are many, and using
length units for web design is generally not a good idea. Percentages, em units, and ex units are
usually best for changing font sizes, since these scale very well in all common display environments.

The other frustration is likely to be the continued lack of a mechanism to specify fonts for
downloading and use in a document. This means that authors are still dependent on the fonts a user
has available, and that they cannot predict what appearance that text will take.

Speaking of styling text, there are ways to do so that don't involve fonts, which the next chapter will
address.

 < Day Day Up >

 < Day Day Up >

Chapter 6. Text Properties
Sure, a lot of web design involves picking the right colors and getting the coolest look for your pages,
but when it comes right down to it, you probably spend more of your time worrying about where text
will go and how it will look. Such concerns gave rise to HTML tags such as and <CENTER>,

which give you some measure of control over the appearance and placement of text.

Because text is so important, much of CSS tackles properties that affect it in one way or another.
What is the difference between text and fonts? Simply, text is the content, and fonts are used to
display that content. Using text properties, you can affect the position of text in relation to the rest of
the line, superscript it, underline it, and change the capitalization. You can even simulate, to a limited
degree, the use of the Tab key on a typewriter.

 < Day Day Up >

 < Day Day Up >

6.1 Indentation and Horizontal Alignment

Let's start with a discussion of how you can affect the horizontal positioning of text within a line.
Think of these basic actions as the same types of steps you might take to create a newsletter or write
a report.

6.1.1 Indenting Text

Indenting the first line of a paragraph on a web page is one of the most sought after text-formatting
effects. (Eliminating the blank line between paragraphs, which is discussed in Chapter 7, is a close
second.) Some sites create the illusion of indented text by placing a small transparent image before
the first letter in a paragraph, which shoves over the text. Other sites use the utterly nonstandard
SPACER tag. Thanks to CSS, there's a better way to indent text, called text-indent.

text-indent

Values

<length> | <percentage> | inherit

Initial value

0

Applies to

block-level elements

Inherited

yes

Percentages

refer to the width of the containing block

Computed value

for percentage values, as specified; for length values, the absolute length

Using text-indent, the first line of any element can be indented by a given length-even if that

length is negative. The most common use for this property is, of course, to indent the first line of
paragraphs:

p {text-indent: 3em;}

This rule will cause the first line of any paragraph to be indented three ems, as shown in Figure 6-1.

Figure 6-1. Text indenting

In general, you can apply text-indent to any block-level element. You can't apply it to inline

elements, nor can you use it on replaced elements such as images. However, if you have an image
within the first line of a block-level element, like a paragraph, it will be shifted over with the rest of
the text in the line.

If you want to "indent" the first line of an inline element, you can create the
effect with left padding or margin.

You can also set negative values for text-indent, a technique that leads to a number of interesting

effects. The most common use is a "hanging indent," where the first line hangs out to the left of the
rest of the element:

p {text-indent: -4em;}

Be careful when setting a negative value for text-indent: the first three words ("This is a") may be

chopped off by the left edge of the browser window. In order to avoid display problems, I recommend
you use a margin or some padding to accommodate the negative indentation:

p {text-indent: -4em; padding-left: 4em;}

Negative indents can, however, be used to your advantage. Consider the following example,
demonstrated in Figure 6-2, which adds a floated image to the mix:

p.hang {text-indent: -25px;}

<img src="star.gif" style="width: 60px; height: 60px;

float: left;" alt="An image of a five-pointed star."/>

<p class="hang"> This paragraph has a negatively indented first

line, which overlaps the floated image that precedes the text. Subsequent

lines do not overlap the image, since they are not indented in any way.</p>

Figure 6-2. A floated image and negative text-indenting

By using this simple technique, you can implement all sorts of interesting designs:

div {width: 400px;}

Any unit of length, including percentage values, may be used with text-indent. In the following

case, the percentage refers to the width of the parent element of the element being indented. In
other words, if you set the indent value to 10%, the first line of an affected element will be indented by

10% of its parent element's width, as shown in Figure 6-3:

p {text-indent: 10%;}

<div>

<p>This paragraph is contained inside a DIV, which is 400px wide, so the

first line of the paragraph is indented 40px (400 * 10% = 40). This is

because percentages are computed with respect to the width of the element.</p>

</div>

Figure 6-3. Text-indenting with percentages

Note that this indentation only applies to the first line of an element, even if you insert line breaks.
Because the paragraph is only 200 pixels wide, its first line is indented by 50 pixels (as shown in
Figure 6-4). In this case, 10% is the inherited value for text-indent:

div {width: 500px; text-indent: 10%;}

p {width: 200px;}

<div>

This first line of the DIV is indented by 50 pixels.

<p>

This paragraph is 200px wide, and the first line of the paragraph

is indented 50px. This is because computed values for 'text-indent'

are inherited, instead of the declared values.

</p>

</div>

Figure 6-4. Inherited text-indenting

In versions of CSS prior to 2.1, text-indent always inherited the computed

value, not the declared value.

6.1.2 Horizontal Alignment

Even more basic than text-indent is the property text-align, which affects how the lines of text in

an element are aligned with respect to one another. The first three values are pretty straightforward,
but the fourth and fifth have a few complexities.

text-align

CSS2.1 values

left | center | right | justify | inherit

CSS2 values

left | center | right | justify | <string> | inherit

Initial value

user agent-specific; may also depend on writing direction

Applies to

block-level elements

Inherited

yes

Computed value

as specified

Note

CSS2 included a <string> value that was dropped from CSS2.1 due to a lack of
implementation

The quickest way to understand how these values work is to examine Figure 6-5.

Figure 6-5. Behaviors of the text-align property

Obviously, the values left, right, and center cause the text within elements to be aligned exactly
as described. Since text-align applies only to block-level elements, such as paragraphs, there's no

way to center an anchor within its line without aligning the rest of the line (nor would you want to,
since that would likely cause text overlap).

For Western languages, which are read from left to right, the default value of text-align is left.

The text aligns on the left margin and has a ragged right margin (otherwise known as "left-to-right"
text). Languages such as Hebrew and Arabic default to right since they are read right to left. As
expected, center causes each line of text to be centered within the element.

Although you may be tempted to believe that text-align: center is the same as the <CENTER>
element, it's actually quite different. <CENTER> affected not only text, but also centered whole
elements, such as tables. text-align does not control the alignment of elements, only their inline

content. Figure 6-5 illustrates this clearly. The actual elements are not shifted from one side to the
other. Only the text within them is affected.

Centering block-level or table elements is accomplished by properly setting the
left and right margins on those elements. See Chapter 7 for details.

The last horizontal alignment property is justify, which raises some issues of its own. In justified

text, both ends of a line of text are placed at the inner edge of the parent element, as Figure 6-6
shows. Then, the spacing between words and letters is adjusted so that each line is precisely the
same length. Justified text is common in the print world (for example, in this book), but under CSS, a
few extra considerations come into play.

Figure 6-6. Justified text

The user agent-not CSS-determines how justified text should be stretched out to fill the space
between the left and right edges of the parent. Some browsers, for example, might add extra space
only between words, while others might distribute the extra space between letters. Other user agents
may reduce space on some lines, thus mashing the text together a bit more than usual. All of these
possibilities will affect the appearance of an element, and may even change its height, depending on
how many lines of text result from the user agent's justification choices.

CSS also doesn't specify how hyphenation should be handled.[1] Most justified text uses hyphenation
to break long words across two lines, thus reducing the space between words and improving the
appearance of lines. However, since CSS defines no hyphenation behavior, user agents are unlikely to
perform any automatic hyphenation. As a result, justified text looks much less attractive under CSS
than it does in print, especially when elements become so narrow that only a few words can fit on
each line. You can still use narrow design elements, of course, but be aware of the drawbacks.

[1] Hyphenation is not described in CSS because different languages have different hyphenation rules. Rather
than try to concoct a set of rules that would most likely be incomplete, the specification simply avoids the
problem.

 < Day Day Up >

 < Day Day Up >

6.2 Vertical Alignment

Now that we've covered horizontal alignment, let's move on to vertical alignment. Since the
construction of lines is covered in much more detail in Chapter 7, I'll just stick to a quick overview
here.

6.2.1 The Height of Lines

The property line-height refers to the distance between the baselines of lines of text rather than

the size of the font, and it determines the amount by which the height of each element's box is
increased or decreased. In the simplest cases, specifying line-height is a way to increase (or

decrease) the vertical space between lines of text, but this is a misleadingly simple way of looking at
how line-height works. line-height controls the leading, which is the extra space between lines
of text above and beyond the font's size. In other words, the difference between the value of line-
height and the size of the font is the leading.

line-height

Values

<length> | <percentage> | <number> | normal | inherit

Initial value

normal

Applies to

all elements (but see text regarding replaced and block-level elements)

Inherited

yes

Percentages

relative to the font size of the element

Computed value

for length and percentage values, the absolute value; otherwise, as specified

When applied to a block-level element, line-height defines the minimum distance between text

baselines within that element. Note that it defines a minimum, not an absolute value, and baselines
of text can wind up being pushed further apart than the value of line-height. For replaced
elements, line-height does not have an effect on layout, but it still applies to them. (This subtle

mystery is explained in Chapter 7.)

6.2.1.1 Constructing a line

Every element in a line of text generates a content area , which is determined by the size of the font.
This content area in turn generates an inline box that is, in the absence of any other factors, exactly
equal to the content area. The leading generated by line-height is one of the factors that increases

or decreases the height of each inline box.

To determine the leading for a given element, simply subtract the computed value of font-size from
the computed value of line-height. That value is the total amount of leading. And remember, it can

be a negative number. The leading is then divided in half, and each half-leading is applied to the top
and bottom of the content area. The result is the inline box for that element.

As an example, let's say the font-size (and therefore the content area) is 14 pixels tall, and the
line-height is computed to 18 pixels. The difference (four pixels) is divided in half, and each half is

applied to the top and bottom of the content area. This creates an inline box that is 18 pixels tall, with
2 extra pixels above and below the content area. This sounds like a roundabout way to describe how
line-height works, but there are excellent reasons for the description.

Once all of the inline boxes have been generated for a given line of content, they are then considered
in the construction of the line box. A line box is exactly as tall as needed to enclose the top of the
tallest inline box and the bottom of the lowest inline box. Figure 6-7 shows a diagram of this process.

Figure 6-7. Line box diagram

6.2.1.2 Assigning values to line-height

Let's now consider the possible values of line-height. If you use the default value of normal, the

user agent must calculate the vertical space between lines. Values can vary by user agent, but
they're generally 1.2 times the size of the font, which makes line boxes taller than the value of font-
size for a given element.

Most values are simple length measures (e.g., 18px or 2em). Be aware that even if you use a valid
length measurement, such as 4cm, the browser (or the operating system) may be using an incorrect

metric for real-world measurements, so the line height may not show up as exactly four centimeters
on your monitor. For more details, see Chapter 4.

em, ex, and percentage values are calculated with respect to the font-size of the element. The

markup is relatively straightforward, and the results are shown in Figure 6-8:

body {line-height: 14px; font-size: 13px;}

p.cl1 {line-height: 1.5em;}

p.cl2 {font-size: 10px; line-height: 150%;}

p.cl3 {line-height: 0.33in;}

<p>This paragraph inherits a 'line-height' of 14px from the body, as well as

a 'font-size' of 13px.</p>

<p class="cl1">This paragraph has a 'line-height' of 21px(14 * 1.5), so

it will have slightly more line-height than usual.</p>

<p class="cl2">This paragraph has a 'line-height' of 15px (10 * 150%), so

it will have slightly more line-height than usual.</p>

<p class="cl3">This paragraph has a 'line-height' of 0.33in, so it will have

slightly more line-height than usual.</p>

Figure 6-8. Simple calculations with the line-height property

6.2.1.3 Line height and inheritance

When the line-height is inherited by one block-level element from another, things get a bit trickier.
line-height values inherit from the parent element as computed from the parent, not the child. The

results of the following markup are shown in Figure 6-9. It probably wasn't what the author had in
mind:

body {font-size: 10px;}

div {line-height: 1em;} /* computes to '10px' */

p {font-size: 18px;}

<div>

<p>This paragraph's 'font-size' is 18px, but the inherited 'line-height'

value is only 10px. This may cause the lines of text to overlap each

other by a small amount.</p>

</div>

Figure 6-9. Small line-height, large font-size, slight problem

Why are the lines so close together? Because the computed line-height value of 10px was inherited
by the paragraph from its parent div. One solution to the small line-height problem we just saw is
to set an explicit line-height for every element, but that's not very practical. A better alternative is

to specify a number, which actually sets a scaling factor:

body {font-size: 10px;}

div {line-height: 1;}

p {font-size: 18px;}

When you specify a number, you cause the scaling factor to be an inherited value instead of a
computed value. The number will be applied to the element and all of its child elements, so that each
element has a line-height calculated with respect to its own font-size (see Figure 6-10):

div {line-height: 1.5;}

p {font-size: 18px;}

<div>

<p>This paragraph's 'font-size' is 18px, and since the 'line-height'

set for the parent div is 1.5, the 'line-height' for this paragraph

is 27px (18 * 1.5).</p>

</div>

Figure 6-10. Using line-height factors to overcome inheritance problems

Though it seems like line-height distributes extra space both above and below each line of text, it

actually adds (or subtracts) a certain amount from the top and bottom of an inline element's content
area to create an inline box. Assume that the default font-size of a paragraph is 12pt and consider

the following:

p {line-height: 16pt;}

Since the "inherent" line height of 12-point text is 12 points, the preceding rule will place an extra 4
points of space around each line of text in the paragraph. This extra amount is divided in two, with
half going above each line and the other half below. You now have 16 points between the baselines,
which is an indirect result of how the extra space is apportioned.

If you specify the value inherit, then the element will use the computed value for its parent

element. This isn't really any different than allowing the value to inherit naturally, except in terms of
specificity and cascade resolution. See Chapter 3 for details on these topics.

Now that you have a basic grasp of how lines are constructed, let's talk about vertically aligning
elements relative to the line box.

6.2.2 Vertically Aligning Text

If you've ever used the elements sup and sub (the superscript and subscript elements), or used an
image with markup such as , then you've done some
rudimentary vertical alignment. In CSS, the property vertical-align applies only to inline elements
and replaced elements such as images and form inputs. vertical-align is not an inherited

property.

vertical-align

Values

baseline | sub | super | top | text-top | middle | bottom | text-bottom |
<percentage> | <length> | inherit

Initial value

baseline

Applies to

inline elements and table cells

Inherited

no

Percentages

refer to the value of line-height for the element

Computed value

for percentage and length values, the absolute length; otherwise, as specified

Note

when applied to table cells, only the values baseline, top, middle, and bottom are

recognized

vertical-align accepts any one of eight keywords, a percentage value, or a length value. The
keywords are a mix of the familiar and unfamiliar: baseline (the default value), sub, super, bottom,
text-bottom, middle, top, and text-top. We'll examine how each keyword works in relation to

inline elements.

Remember this: vertical-align does not affect the alignment of content

within a block-level element. You can, however, use it to affect the vertical
alignment of elements within table cells. See Chapter 11 for details.

6.2.2.1 Baseline alignment

vertical-align: baseline forces the baseline of an element to align with the baseline of its parent.

Browsers, for the most part, do this anyway, since you'd obviously expect the bottoms of all text
elements in a line to be aligned.

If a vertically aligned element doesn't have a baseline-that is, if it's an image, a form input, or
another replaced element-then the bottom of the element is aligned with the baseline of its parent,
as Figure 6-11 shows:

img {vertical-align: baseline;}

<p>The image found in this paragraph has its

bottom edge aligned with the baseline of the text in the paragraph.</p>

Figure 6-11. Baseline alignment of an image

This alignment rule is important because it causes some web browsers always to put a replaced
element's bottom edge on the baseline, even if there is no other text in the line. For example, let's
say you have an image in a table cell all by itself. The image may actually be on a baseline, but in
some browsers, the space below the baseline causes a gap to appear beneath the image. Other
browsers will "shrink-wrap" the image with the table cell and no gap will appear. The gap behavior is
correct, according to the CSS Working Group, despite its lack of appeal to most authors.

See my article "Images, Tables, and Mysterious Gaps" at
http://devedge.netscape.com/viewsource/2002/img-table/ for a more detailed
explanation of gap behavior and ways to work around it. Chapter 7 also covers
this aspect of inline layout in more detail.

6.2.2.2 Superscripting and subscripting

The declaration vertical-align: sub causes an element to be subscripted, meaning that its baseline

(or bottom, if it's a replaced element) is lowered with respect to its parent's baseline. The
specification doesn't define the distance the element is lowered, so it may vary depending on the user
agent.

super is the opposite of sub; it raises the element's baseline (or bottom of a replaced element) with

http://devedge.netscape.com/viewsource/2002/img-table/

respect to the parent's baseline. Again, the distance the text is raised depends on the user agent.

Note that the values sub and super do not change the element's font size, so subscripted or

superscripted text will not become smaller (or larger). Instead, any text in the sub- or superscripted
element should be, by default, the same size as text in the parent element, as illustrated by Figure 6-
12:

span.raise {vertical-align: super;}

span.lower {vertical-align: sub;}

<p>This paragraph contains superscripted

and subscripted text.</P>

Figure 6-12. Superscript and subscript alignment

If you wish to make super- or subscripted text smaller than the text of its
parent element, you can do that using the property font-size, which is

covered in Chapter 5.

6.2.2.3 Bottom feeding

vertical-align: bottom aligns the bottom of the element's inline box with the bottom of the line

box. For example, the following markup results in Figure 6-13:

.feeder {vertical-align: bottom;}

<p>This paragraph, as you can see quite clearly, contains

a image and

a image,

and then some text that is not tall.</p>

Figure 6-13. Bottom alignment

The second line of the paragraph in Figure 6-13 contains two inline elements, whose bottom edges
are aligned with each other. They're also below the baseline of the text.

vertical-align: text-bottom refers to the bottom of the text in the line. For the purposes of this

value, replaced elements, or any other kinds of non-text elements, are ignored. Instead, a "default"
text box is considered. This default box is derived from the font-size of the parent element. The

bottom of the aligned element's inline box is then aligned with the bottom of the default text box.
Thus, given the following markup, you get a situation such as that shown in Figure 6-14:

img.tbot {vertical-align: text-bottom;}

<p>Here: a

image, and then a image.</p>

Figure 6-14. Text-bottom alignment

6.2.2.4 Getting on top

Employing vertical-align: top has the opposite effect of bottom. Likewise, vertical-align:
text-top is the reverse of text-bottom. Figure 6-15 shows how the following markup would be

rendered:

.up {vertical-align: top;}

.textup {vertical-align: text-top;}

<p>Here: a tall image, and then

some text that's been vertically aligned.</p>

<p>Here: a image that's been

vertically aligned, and then a

image that's similarly aligned.</p>

Figure 6-15. Aligning with the top and text-top of a line

Of course, the exact position of this alignment will depend on which elements are in the line, how tall
they are, and the size of the parent element's font.

6.2.2.5 In the middle

There's the value middle, which is usually (but not always) applied to images. It does not have the
exact effect you might assume given its name. middle aligns the middle of an inline element's box
with a point that is 0.5ex above the baseline of the parent element, where 1ex is defined relative to
the font-size for the parent element. Figure 6-16 shows this in more detail.

Figure 6-16. Precise detail of middle alignment

Since most user agents treat 1ex as one-half em, middle usually causes the vertical midpoint of an

element to be aligned with a point one-quarter em above the parent's baseline. Don't rely on this
happening, however, since some user agents actually calculate the exact x-height for each element.
(See Chapter 5 for more details on x-height.)

6.2.2.6 Percentages

Percentages don't let you simulate align="middle" for images. Instead, setting a percentage value
for vertical-align raises or lowers the baseline of the element (or the bottom edge of a replaced

element) by the amount declared, with respect to the parent's baseline. (The percentage you specify
is calculated as a percentage of line-height for the element, not its parent.) Positive percentage

values raise the element, and negative values lower it. Depending on how the text is raised or
lowered, it can appear to be placed in adjacent lines, as shown in Figure 6-17, so take care when
using percentage values:

sub {vertical-align: -100%;}

sup {vertical-align: 100%;}

<p>We can either ^{soar to new heights} or, instead,

_{sink into despair...}</p>

Figure 6-17. Percentages and fun effects

Let's consider percentage values in more detail. Assume the following:

<div style="font-size: 14px; line-height: 18px;">

I felt that, if nothing else, I deserved a

raise for my efforts.

</div>

The 50%-aligned span element has its baseline raised nine pixels, which is half of the element's
inherited line-height value of 18px, not seven pixels.

6.2.2.7 Length alignment

Finally, let's consider vertical alignment with a specific length. vertical-align is very
straightforward: it shifts an element up or down by the declared distance. Thus, vertical-align:
5px; will shift an element upwards five pixels from its unaligned placement. Negative length values

shift the element downwards. This simple form of alignment did not exist in CSS1, but it was added in
CSS2.

It's important to realize that vertically aligned text does not become part of another line, nor does it
overlap with text in other lines. Consider Figure 6-18, in which some vertically aligned text appears in
the middle of a paragraph.

Figure 6-18. Vertical alignments can cause lines to get taller

As you can see, any vertically aligned element can affect the height of the line. Recall the description
of a line box, which is exactly as tall as necessary to enclose the top of the tallest inline box and the
bottom of the lowest inline box. This includes inline boxes that have been shifted up or down by
vertical alignment.

 < Day Day Up >

 < Day Day Up >

6.3 Word Spacing and Letter Spacing

Now that we've dealt with alignment, let's look at manipulating word and letter spacing. As usual,
these properties have some unintuitive issues.

6.3.1 Word Spacing

word-spacing

Values

<length> | normal | inherit

Initial value

normal

Applies to

all elements

Inherited

yes

Computed value

for normal, the absolute lenth 0; otherwise, the absolute length

The word-spacing property accepts a positive or negative length. This length is added to the
standard space between words. In effect, word-spacing is used to modify inter-word spacing.
Therefore, the default value of normal is the same as setting a value of zero (0).

If you supply a positive length value, then the space between words will increase. Setting a negative
value for word-spacing brings words closer together:

p.spread {word-spacing: 0.5em;}

p.tight {word-spacing: -0.5em;}

p.base {word-spacing: normal;}

p.norm {word-spacing: 0;}

<p class="spread">The spaces between words in this paragraph will be increased

 by 0.5em.</p>

<p class="tight">The spaces between words in this paragraph will be decreased

 by 0.5em.</p>

<p class="base">The spaces between words in this paragraph will be normal.</p>

<p class="norm">The spaces between words in this paragraph will be normal.</p>

Manipulating these settings has the effect shown in Figure 6-19.

Figure 6-19. Changing the space between words

So far, I haven't actually given you a precise definition of what a "word" is. In the simplest CSS
terms, a "word" is any string of nonwhitespace characters that is surrounded by whitespace of some
kind. This definition has no real semantic meaning-it simply assumes that a document contains
words surrounded by one or more whitespace characters. A CSS-aware user agent cannot be
expected to decide what is a valid word in a given language and what isn't. This definition, such as it
is, means word-spacing is unlikely to work in any languages that employ pictographs, or non-Roman

writing styles. The property allows you to create very unreadable documents, as Figure 6-20 makes
clear. Use word-spacing with care.

Figure 6-20. Really wide word spacing

6.3.2 Letter Spacing

letter-spacing

Values

<length> | normal | inherit

Initial value

normal

Applies to

all elements

Inherited

yes

Computed value

for length values, the absolute length; otherwise, normal

Many of the same issues you encountered with word-spacing also occur with letter-spacing. The
only real difference between the two is that letter-spacing modifies the space between characters,

or letters.

As with the word-spacing property, the permitted values of letter-spacing include any length. The
default keyword is normal (making it the same as letter-spacing: 0). Any length value you enter

will increase or decrease the space between letters by that amount. Figure 6-21 shows the results of
the following markup:

p {letter-spacing: 0;} /* identical to 'normal' */

p.spacious {letter-spacing: 0.25em;}

p.tight {letter-spacing: -0.25em;}

<p>The letters in this paragraph are spaced as normal.</p>

<p class="spacious">The letters in this paragraph are spread out a bit.</p>

<p class="tight">The letters in this paragraph are a bit smashed together.</p>

Figure 6-21. Various kinds of letter spacing

Using letter-spacing to increase emphasis is a time-honored technique. You might write the

following declaration and get an effect like the one shown in Figure 6-22:

strong {letter-spacing: 0.2em;}

<p>This paragraph contains strongly emphasized text

that is spread out for extra emphasis.</p>

Figure 6-22. Using letter-spacing to increase emphasis

6.3.3 Spacing and Alignment

Both word-spacing and letter-spacing may be influenced by the value of the property text-
align. If an element is justified, the spaces between letters and words are altered to fit the text
along the full width of the line. This may in turn alter the spacing declared by the author with word-
spacing or letter-spacing. CSS does not specify how the spacing should be calculated; so user

agents simply fill it in.

As usual, the child of an element inherits the computed value of that element. You cannot define a
scaling factor for word-spacing or letter-spacing to be inherited in place of the computed value
(as is the case with line-height). As a result, you may run into problems such as those shown in

Figure 6-23:

p {letter-spacing: 0.25em; font-size: 20px;}

small {font-size: 50%;}

<p>This spacious paragraph features <small>tiny text that is just

as spacious</small>, even though the author probably wanted the

spacing to be in proportion to the size of the text.</p>

Figure 6-23. Inherited letter spacing

The only way to achieve letter spacing that's in proportion to the size of the text is to set it explicitly,
as follows:

p {letter-spacing: 0.25em;}

small {font-size: 50%; letter-spacing: 0.25em;}

 < Day Day Up >

 < Day Day Up >

6.4 Text Transformation

Now let's look at ways to manipulate the capitalization of text using the property text-transform.

text-transform

Values

uppercase | lowercase | capitalize | none | inherit

Initial value

none

Applies to

all elements

Inherited

yes

Computed value

as specified

The default value none leaves the text alone and uses whatever capitalization exists in the source
document. As their names imply, uppercase and lowercase convert text into all upper- or lowercase
characters. Finally, capitalize capitalizes only the first letter of each word. Figure 6-24 illustrates

each of these settings in a variety of ways:

h1 {text-transform: capitalize;}

strong {text-transform: uppercase;}

p.cummings {text-transform: lowercase;}

p.raw {text-transform: none;}

<h1>The heading-one at the beginninG</h1>

<p>

By default, text is displayed in the capitalization it has in the source

document, but it is possible to change this using

the property 'text-transform'.

</p>

<p class="cummings">

For example, one could Create TEXT such as might have been Written by

the late Poet e.e.cummings.

</p>

<p class="raw">

If you feel the need to Explicitly Declare the transformation of text

to be 'none', that can be done as well.

</p>

Figure 6-24. Various kinds of text transformation

Different user agents may have different ways of deciding where words begin and, as a result, which
letters are capitalized. For example, the text "heading-one" in the h1 element, shown in Figure 6-24,

could be rendered in one of two ways: "Heading-one" or "Heading-One." CSS does not say which is
correct, so either is possible.

You probably also noticed that the last letter in the h1 element in Figure 6-24 is still uppercase. This
is correct: when applying a text-transform of capitalize, CSS only requires user agents to make

sure the first letter of each word is capitalized. They can ignore the rest of the word.

As a property, text-transform may seem minor, but it's very useful if you suddenly decide to
capitalize all your h1 elements. Instead of individually changing the content of all your h1 elements,
you can just use text-transform to make the change for you:

h1 {text-transform: uppercase;}

<h1>This is an H1 element</h1>

The advantages of using text-transform are twofold. First, you need to write only a single rule to
make this change, rather than changing the h1 itself. Second, if you decide later to switch from all

capitals back to initial capitals, the change is even easier, as Figure 6-25 shows:

h1 {text-transform: capitalize;}

<h1>This is an H1 element</h1>

Figure 6-25. Transforming an H1 element

 < Day Day Up >

 < Day Day Up >

6.5 Text Decoration

Next we come to text-decoration, which is a fascinating property that offers a whole truckload of

interesting behaviors.

text-decoration

Values

none | [underline || overline || line-through || blink] | inherit

Initial value

none

Applies to

all elements

Inherited

no

Computed value

as specified

As you might expect, underline causes an element to be underlined, just like the U element in
HTML. overline causes the opposite effect-drawing a line across the top of the text. The value
line-through draws a line straight through the middle of the text, which is also known as
strikethrough text and is equivalent to the S and strike elements in HTML. blink causes the text to
blink on and off, just like the much-maligned blink tag supported by Netscape. Figure 6-26 shows

examples of each of these values:

p.emph {text-decoration: underline;}

p.topper {text-decoration: overline;}

p.old {text-decoration: line-through;}

p.annoy {text-decoration: blink;}

p.plain {text-decoration: none;}

Figure 6-26. Various kinds of text decoration

It's impossible to show the effect of blink in print, of course, but it's easy

enough to imagine (perhaps all too easy). Incidentally, user agents are not
required to support blink, and as of this writing, Internet Explorer never has.

The value none turns off any decoration that might otherwise have been applied to an element.

Usually, undecorated text is the default appearance, but not always. For example, links are usually
underlined by default. If you want to suppress the underlining of hyperlinks, a CSS rule to do so
would be:

a {text-decoration: none;}

If you explicitly turn off link underlining with this sort of rule, the only visual difference between the
anchors and normal text will be their color.

Although I personally don't have a problem with it, many users are annoyed
when they realize you've turned off link underlining. It's a matter of opinion, so
let your own tastes be your guide-but remember, if your link colors aren't
sufficiently different from normal text, users may have a hard time finding
hyperlinks in your documents.

You can also combine decorations in a single rule. If you want all hyperlinks to be both underlined

and overlined, the rule for such an effect is:

a:link, a:visited {text-decoration: underline overline;}

Be careful, though: if you have two different decorations matched to the same element, the value of
the rule that wins out will completely replace the value of the loser. Consider:

h2.stricken {text-decoration: line-through;}

h2 {text-decoration: underline overline;}

Given these rules, any h2 element with a class of stricken will have only a line-through decoration.

The underline and overline decorations are lost, since shorthand values replace one another instead
of accumulating.

6.5.1 Weird Decorations

Now, let's look into the unusual side of text-decoration. The first oddity is that text-decoration

is not inherited. No inheritance implies that any decoration lines drawn with the text-under, over, or
through it-be the same color as the parent element. This is true even if the descendant elements
are a different color, as depicted in Figure 6-27:

p {text-decoration: underline; color: black;}

strong {color: gray;}

<p>This paragraph, which is black and has a black underline, also contains

strongly emphasized text which has the black underline

beneath it as well.</p>

Figure 6-27. Color consistency in underlines

Why is this so? Because the value of text-decoration is not inherited, the strong element assumes
a default value of none. Therefore, the strong element has no underline. Now, there is very clearly a
line under the the strong element, so it seems silly to say that it has none. Nevertheless, it doesn't.
What you see under the strong element is the paragraph's underline, which is effectively "spanning"
the strong element. You can see it more clearly if you alter the styles for the boldface element, like

this:

p {text-decoration: underline; color: black;}

strong {color: gray; text-decoration: none;}

<p>This paragraph, which is black and has a black underline, also contains

strongly emphasized text which has the black underline beneath it as

well.</p>

The result is identical to the one shown in Figure 6-27, since all you've done is to explicitly declare
what was already the case. In other words, there is no way to turn off underlining (or overlining or a
line-through) within an element.

When text-decoration is combined with vertical-align, even stranger things can happen. Figure
6-28 shows one of these oddities. Since the sup element has no decoration of its own, but it is
elevated within an overlined element, the overline cuts through the middle of the sup element:

p {text-decoration: overline; font-size: 12pt;}

sup {vertical-align: 50%; font-size: 12pt;}

Figure 6-28. Correct, although strange, decorative behavior

By now you may be vowing never to use text decorations, thanks to all the problems they could
cause. In fact, I've given you the simplest possible outcomes since we've explored only the way
things should work according to the specification. In reality, some web browsers do turn off
underlining in child elements, even though they aren't supposed to. The reason browsers violate the
specification is simple enough: author expectations. Consider this markup:

p {text-decoration: underline; color: black;}

strong {color: silver; text-decoration: none;}

<p>This paragraph, which is black and has a black underline, also contains

boldfaced text which does not have black underline

beneath it.</p>

Figure 6-29 shows the display in a web browser that has switched off the underlining for the strong

element.

Figure 6-29. How some browsers really behave

The caveat here is that many browsers do follow the specification, and future versions of existing
browsers (or any other user agents) might one day follow the specification precisely. If you depend
on using none to suppress decorations, realize that it may come back to haunt you in the future, or

even cause you problems in the present. Then again, future versions of CSS may include the means
to turn off decorations without using none incorrectly, so maybe there's hope.

There is a way to change the color of a decoration without violating the specification. As you'll recall,
setting a text decoration on an element means that the entire element has the same color
decoration, even if there are child elements of different colors. In order to match the decoration color
with an element, you need to explicitly declare its decoration, as follows:

p {text-decoration: underline; color: black;}

strong {color: silver; text-decoration: underline;}

<p>This paragraph, which is black and has a black underline, also contains

strongly emphasized text which has the black underline

beneath it as well, but whose gray underline overlays the black underline

of its parent.</p>

In Figure 6-30, the strong element is set to be gray and have an underline. The gray underline

visually "overwrites" the parent's black underline, and so the decoration's color matches the color of
the strong element.

Figure 6-30. Overcoming the default behavior of underlines

 < Day Day Up >

 < Day Day Up >

6.6 Text Shadows

CSS2 includes a property for adding drop shadows to text, but this property did not make it into
CSS2.1 because no browser had implemented full support for it by the time CSS2.1 was finished.
When you consider the effort necessary to make a web browser determine the outlines of text in an
element and then compute one or more shadows, all of which would have to blend together without
overlapping the text itself, the lack of drop shadows in the specification is perhaps understandable.

text-shadow

Values

none | [<color> || <length> <length> <length>? ,]* [<color> || <length>
<length> <length>?] | inherit

Initial value

none

Applies to

all elements

Inherited

no

The obvious default is not to have a drop shadow for text. Otherwise, it's theoretically possible to
define one or more shadows. Each shadow is defined by a color and three length values. The color
sets the shadow's color, of course; so it's possible to define green, purple, or even white shadows.

The first two length values determine the offset distance of the shadow from the text, and the
optional third length value defines the "blur radius" for the shadow. To define a green shadow offset
five pixels to the right and half an em down from the text, with no blurring, you would write:

text-shadow: green 5px 0.5em;

Negative lengths cause the shadow to be offset to the left and upward from the original text.

The blur radius is defined as the distance from the shadow's outline to the edge of the blurring effect.
A radius of two pixels would result in blurring that filled the space between the shadow's outline and
the edge of the blurring. The exact blurring method is not defined, so different user agents might
employ different effects. As an example, the following styles might be rendered something like Figure
6-31:

p.cl1 {color: black; text-shadow: silver 2px 2px 2px;}

p.cl2 {color: white; text-shadow: 0 0 4px black;}

p.cl3 {color: black; text-shadow: 1em 1em 5px gray, -1em -1em silver;}

Figure 6-31. Dropping shadows all over

Figure 6-31 was produced using Photoshop, since web browsers do not support
text-shadow as of this writing.

6.6.1 Handling Whitespace

To wrap up this chapter, let's talk about the property white-space, which can greatly impact how

text is actually displayed.

white-space

Values

normal | nowrap | pre | pre-wrap | pre-line | inherit

Initial value

normal

Applies to

all elements (CSS2.1); block-level elements (CSS1 and CSS2)

Inherited

no

Computed value

as specified

Using this property, you can affect how a browser treats the whitespace between words and lines of
text. To a certain extent, XHTML already does this: it collapses any whitespace down to a single
space. So given the following markup, the rendering in a web browser would be to show only one
space between each word and to ignore the linefeed in the elements.

<p>This paragraph has many

 spaces in it.</p>

You can explicitly set this default behavior with the following declaration:

p {white-space: normal;}

This rule tells the browser to do as browsers have always done-discard extra whitespace. Any extra
spaces and carriage returns are completely ignored by the browser.

Should you set white-space to pre, however, the whitespace in an affected element is treated as
though the elements were XHTML pre elements; whitespace is not ignored, as shown in Figure 6-32:

p {white-space: pre;}

<p>This paragraph has many

 spaces in it.</p>

Figure 6-32. Honoring the spaces in markup

With a white-space value of pre, the browser will pay attention to extra spaces and even carriage
returns. In this respect, and in this respect alone, any element can be made to act like a pre

element.

The opposite property is nowrap, which prevents text from wrapping within a block-level element,
except when you use a
 element. Using nowrap in CSS is much like setting a table cell not to
wrap in HTML 4 with <td nowrap>, except the white-space value can be applied to any block-level

element. The effects of the following markup are shown in Figure 6-33:

<p style="white-space: nowrap;">This paragraph is not allowed to wrap,

which means that the only way to end a line is to insert a line-break

element. If no such element is inserted, then the line will go forever,

forcing the user to scroll horizontally to read whatever can't be

initially displayed
in the browser window.</p>

Figure 6-33. Suppressing line wrapping with the white-space property

You can actually use white-space to replace the nowrap attribute on table cells:

td {white-space: nowrap;}

<table><tr>

<td>The contents of this cell are not wrapped.</td>

<td>Neither are the contents of this cell.</td>

<td>Nor this one, or any after it, or any other cell in this table.</td>

<td>CSS prevents any wrapping from happening.</td>

</tr></table>

CSS2.1 introduced the values pre-wrap and pre-line, which were not present in earlier versions of

CSS. The effect of these values is to allow authors to more finely control whitespace handling.

If an element is set to pre-wrap, then text within that element has whitespace sequences preserved

but text lines that are wrapped normally. With this value, line-breaks in the source and those that are
generated are also honored. pre-line is the opposite of pre-wrap and causes whitespace sequences

to collapse as in normal text but honors new lines. For example, consider the following markup, which
is illustrated in Figure 6-34:

<p style="white-space: pre-wrap;">

This paragraph has a great many s p a c e s within its textual

 content, but their preservation will not prevent line

 wrapping or line breaking.

</p>

<p style="white-space: pre-line;">

This paragraph has a great many s p a c e s within its textual

 content, but their collapse will not prevent line

 wrapping or line breaking.

</p>

Figure 6-34. Two different ways to handle whitespace

Table 6-1 summarizes the behaviors of white-space properties.

Table 6-1. white-space properties

Value Whitespace Linefeeds Auto line wrapping

normal Collapsed Ignored Allowed

nowrap Collapsed Ignored Prevented

Value Whitespace Linefeeds Auto line wrapping

pre Preserved Honored Prevented

pre-wrap Preserved Honored Allowed

6.6.2 Text Direction

If you're reading this book in English or any number of other languages, then you're reading the text
left to right and top to bottom, which is the flow direction of English. Not every language runs this
way, though. There are many right-to-left languages such as Hebrew and Arabic, and CSS2
introduced a property to describe their directionality.

direction

Values:

ltr | rtl | inherit

Initial value

ltr

Applies to

all elements

Inherited

yes

Computed value

as specified

The direction property affects the writing direction of text in a block-level element, the direction of

table column layout, the direction in which content horizontally overflows its element box, and the
position of the last line of a fully justified element. For inline elements, direction applies only if the
property unicode-bidi is set to either embed or override. (See later in this section for a description

pre Preserved Honored Prevented

pre-wrap Preserved Honored Allowed

6.6.2 Text Direction

If you're reading this book in English or any number of other languages, then you're reading the text
left to right and top to bottom, which is the flow direction of English. Not every language runs this
way, though. There are many right-to-left languages such as Hebrew and Arabic, and CSS2
introduced a property to describe their directionality.

direction

Values:

ltr | rtl | inherit

Initial value

ltr

Applies to

all elements

Inherited

yes

Computed value

as specified

The direction property affects the writing direction of text in a block-level element, the direction of

table column layout, the direction in which content horizontally overflows its element box, and the
position of the last line of a fully justified element. For inline elements, direction applies only if the
property unicode-bidi is set to either embed or override. (See later in this section for a description

of unicode-bidi.)

Before CSS3, CSS included no provisions in the specification for top-to-bottom
languages. As of this writing, the CSS3 Text Module is a Candidate
Recommendation, and it addresses this point with a new property called
writing-mode.

Although ltr is the default, it is expected that if a browser is displaying right-to-left text, the value
will be changed to rtl. Thus, a browser might carry an internal rule stating something like the

following:

*:lang(ar), *:lang(he) {direction: rtl;}

The real rule would be longer, encompassing all right-to-left languages not just Arabic and Hebrew,
but it serves to illustrate the point. While CSS makes an attempt to address writing direction, Unicode
has a much more robust method for handling directionality. With the property unicode-bidi, CSS

authors can take advantage of some of Unicode's capabilities.

unicode-bidi

Values:

normal | embed | bidi-override | inherit

Initial value

normal

Applies to

all elements

Inherited

no

Computed value

as specified

Here we'll simply quote the value descriptions from the CSS2.1 specification, which do a good job of
capturing the essence of each value:

normal

The element does not open an additional level of embedding with respect to the bidirectional
algorithm. For inline-level elements, implicit reordering works across element boundaries.

embed

If the element is inline-level, this value opens an additional level of embedding with respect to
the bidirectional algorithm. The direction of this embedding level is given by the direction

property. Inside the element, reordering is done implicitly. This corresponds to adding an LRE
(U+202A; for direction: ltr) or an RLE (U+202B; for direction: rtl) at the start of the

element and a PDF (U+202C) at the end of the element.

bidi-override

This creates an override for inline-level elements. For block-level elements, this creates an
override for inline-level descendants not within another block. This means that, inside the
element, reordering is strictly in sequence according to the direction property; the implicit

part of the bidirectional algorithm is ignored. This corresponds to adding an LRO (U+202D; for
direction: ltr) or RLO (U+202E; for direction: rtl) at the start of the element and a PDF

(U+202C) at the end of the element.

 < Day Day Up >

 < Day Day Up >

6.7 Summary

Even without trying to alter the font in use, there are many ways to change the appearance of text.
There are classic effects such as underlining, of course, but CSS also gives you the ability to draw
lines over text or through it, change the amount of space between words and letters, indent the first
line of a paragraph (or other block-level element), align text to the left or right, and much more. You
can even alter the amount of space between lines of text, although this operation is unexpectedly
complicated and covered in detail in Chapter 7.

These behaviors are all relatively well supported or else not supported at all. Full justification of text is
one of the big ones that is not well supported, and most user agents released during the 20th century
exhibited bugs in the text decoration and vertical alignment, as well as line height calculations. On
the other hand, word and letter spacing almost always work correctly when they're supported, and
text indentation has experienced only a few very small bugs. The same is true of the ability to alter
capitalization, which is usually supported correctly.

At a few points in this chapter, I mentioned that the layout of lines was a more complicated process
than presented. The details of that process, and a great deal more, are covered in the next chapter.

 < Day Day Up >

 < Day Day Up >

Chapter 7. Basic Visual Formatting
In the previous chapters, we covered a great deal of practical information on how CSS handles text
and fonts in a document. In this chapter, we look at the theoretical side of visual rendering,
answering many of the questions we skipped over earlier in the interest of addressing how CSS is
implemented.

Why is it necessary to spend an entire chapter on the theoretical underpinnings of visual rendering in
CSS? The answer is that with a model as open and powerful as that contained within CSS, no book
could hope to cover every possible way of combining properties and effects. You will obviously go on
to discover new ways of using CSS for your own document effects.

In the course of exploring CSS, you may encounter seemingly strange behaviors in user agents. With
a thorough grasp of how the visual rendering model works in CSS, you'll be able to determine
whether a behavior is a correct (if unexpected) consequence of the rendering engine CSS defines or
whether you've stumbled across a bug that needs to be reported.

 < Day Day Up >

 < Day Day Up >

7.1 Basic Boxes

CSS assumes that every element generates one or more rectangular boxes, called element boxes.
(Future versions of the specification may allow for nonrectangular boxes, but for now everything is
rectangular.) Each element box has a content area at its core. The content area is surrounded by
optional amounts of padding, borders, and margins. These items are considered optional because
they could all be set to a width of zero, effectively removing them from the element box. An example
content area is shown in Figure 7-1, along with the surrounding regions of padding, border, and
margins.

Figure 7-1. The content area and its surroundings

Each of the margins, borders, and padding can be set using various properties, such as margin-left
or border-bottom. The content's background-a color or tiled image, for example-is also applied to

the padding. The margins are always transparent, allowing the background of any parent elements to
be visible. Padding cannot be a negative value, but margins can. We'll explore the effects of negative
margins later in this chapter.

Borders are generated using defined styles, such as solid or inset, and their colors are set using
the border-color property. If no color is set, then the border takes on the foreground color of the

element's content. For example, if the text of a paragraph is white, then any borders around that
paragraph will be white unless a different border color is explicitly declared by the author. If a border
style has gaps of some type, then the element's background is visible through those gaps. In other
words, the border has the same background as the content and padding. Finally, the width of a
border can never be negative.

The various components of an element box can be affected via a number of
properties, such as width or border-right. Many of these properties will be

used in this chapter, even though we haven't discussed them yet. The actual
property definitions are given in Chapter 8, which builds on the concepts set
forth in this chapter.

You will, however, find differences in how various types of elements are formatted.Block-level
elements are treated differently than inline-level elements, while floated and positioned elements
have their own ways of behaving.

7.1.1 The Containing Block

Every element is laid out with respect to its containing block; in a very real way, the containing block
is the "layout context" for an element. CSS2.1 defines a series of rules for determining an element's
containing block. I'll cover only those rules that pertain to the concepts covered in this chapter and
leave the rest for future chapters.

For an element in the normal, Western-style flow of text, the containing block is formed by the
content edge of the nearest block-level, table cell, or inline-block ancestor box. Consider the following
markup:

<body>

 <div>

 <p>This is a paragraph.</p>

 </div>

</body>

In this very simple markup, the containing block for the p element is the div element, as that is the

closest ancestor element that is block-level, a table cell, or inline-block (in this case, it's a block box).
Similarly, the div's containing block is the body. Thus, the layout of the p is dependent on the layout
of the div, which is in turn dependent on the layout of the body.

You don't need to worry about inline elements since the way they are laid out doesn't depend directly
on containing blocks. We'll talk about them later in the chapter.

7.1.2 A Quick Refresher

Let's quickly review the kinds of elements we'll be discussing, as well as some important terms that
are needed to follow the explanations in this chapter:

Normal flow

This is the left to right, top to bottom rendering of text in Western languages and the familiar
text layout of traditional HTML documents. Note that the flow direction may be changed in non-
Western languages. Most elements are in the normal flow, and the only way for an element to
leave the normal flow is to be floated or positioned (covered in Chapter 10). Remember, the
discussions in this chapter cover only elements in the normal flow.

Nonreplaced element

This is an element whose content is contained within the document. For example, a paragraph

is a nonreplaced element because its textual content is found within the element itself.

Replaced element

This is an element that serves as a placeholder for something else. The classic example of a
replaced element is the img element, which simply points to an image file that is then inserted
into the document's flow at the point where the img element itself is found. Most form
elements are also replaced (e.g., <input type="radio">).

Block-level element

This is an element such as a paragraph, heading, or a div. These elements generate "new

lines" both before and after their boxes when in the normal flow, so that block-level elements
in the normal flow stack vertically, one after another. An element can be made to generate a
block-level box by declaring display: block.

Inline element

This is an element such as strong or span. These elements do not generate "line breaks"

before or after themselves, and they are descendants of a block-level element. An element can
be made to generate an inline-level box by declaring display: inline.

Root element

This is the element at the top of the document tree. In HTML documents, this is the element
html. In XML documents, it can be whatever the language permits.

 < Day Day Up >

 < Day Day Up >

7.2 Block-Level Elements

Block-level elements can behave in sometimes predictable, sometimes surprising ways. The handling
of element placement along the horizontal and vertical axes can differ, for example. In order to fully
understand how block-level elements are handled, you must clearly understand a number of
boundaries and areas. They are shown in detail in Figure 7-2 .

Figure 7-2. The complete box model

In general, the width of an element is defined to be the distance from the left inner edge to the right
inner edge, and the height is the distance from the inner top to the inner bottom. Both of these

properties can be applied to an element.

The various widths, heights, padding, and margins all combine to determine how a document is laid
out. In most cases, the height and width of the document are automatically determined by the
browser and are based on the available display region and other factors. Under CSS, of course, you
can assert more direct control over the way elements are sized and displayed. You can select
different effects for horizontal and vertical layouts, so we'll tackle them separately.

7.2.1 Horizontal Formatting

Horizontal formatting is often more complex than you'd think. Part of the complexity has to do with
how width affects the width of the content area, not the entire visible element box. Consider the

following example:

<p style="width: 200px;">wideness?</p>

This line of code will make the paragraph's content 200 pixels wide. If you gave the element a
background, this would be quite obvious. However, any padding, borders, or margins you specify are
added to the width value. Suppose you do this:

<p style="width: 200px; padding: 10px; margin: 20px;">wideness?</p>

The visible element box is now 220 pixels wide since you've added 10 pixels of padding to the right
and left of the content. The margins will now extend another 20 pixels to both sides for an overall
element box width of 260 pixels.

Understanding the hidden additions to width is critical. Most users think that width refers to the

width of the visible element box, and that if they declare an element to have padding, borders, and a
width, the value they supply for the width will be the distance from the outer left border edge to the
outer right border edge. This is not the case in CSS . Keep it firmly in mind to avoid confusion later.

As of this writing, the Box Model module of CSS3 includes proposals for ways to
let authors choose whether width refers to the content width or the visible box

width.

Almost as simple is the rule that says that the sum of the horizontal components of a block-level
element box in the normal flow always equals the width of the parent. Take two paragraphs within a
div whose margins have been set to be 1em . The content width (the value of width) of the
paragraph, plus its left and right padding, borders, and margins, always add up to the width of the
div 's content area.

Let's say the width of the div is 30em , making the sum total of the content width, padding, borders,
and margins of each paragraph 30em . In Figure 7-3 , the "blank" space around the paragraphs is
actually their margins. If the DIV had any padding, there would be even more blank space, but that

isn't the case here. I'll discuss padding soon.

Figure 7-3. Element boxes are as wide as the width of their parent
element

7.2.1.1 Horizontal properties

The "seven properties" of horizontal formatting are: margin-left , border-left , padding-left ,
width , padding-right , border-right , and margin-right . These properties relate to the

horizontal layout of block-level boxes and are diagrammed in Figure 7-4 .

Figure 7-4. The "seven properties" of horizontal formatting

The values of these seven properties must add up to the width of the element's containing block,
which is usually the value of width for a block element's parent (since block-level elements nearly

always have block-level elements for parents).

Of these seven properties, only three may be set to auto : the width of the element's content and

the left and right margins. The remaining properties must be set either to specific values or default to
a width of zero. Figure 7-5 shows which parts of the box can take a value of auto and which cannot.

Figure 7-5. Horizontal properties that can be set to auto

width must either be set to auto or a nonnegative value of some type. When you do use auto in

horizontal formatting, different effects can occur.

CSS allows browsers to set a minimum value for width ; this is the value below
which a block-level element's width cannot drop. The value of this minimum

can vary between browsers, as it is not defined in the specification.

7.2.1.2 Using auto

If you set width , margin-left , or margin-right to a value of auto , and give the remaining two
properties specific values, then the property that is set to auto determines the length required to
make the element box's width equal to the parent element's width . In other words, let's say the

sum of the seven properties must equal 400 pixels, no padding or borders are set, the right margin
and width are set to 100px , and the left margin is set to auto . The left margin will be 200 pixels

wide:

p {margin-left: auto; margin-right: 100px;

 width: 100px;} /* 'auto' left margin evaluates to 200px */

In a sense, auto can be used to make up the difference between everything else and the required
total. However, what if all three of these properties are set to 100px and none of them are set to
auto ?

In the case where all three properties are set to something other than auto -or, in CSS terminology,
when these formatting properties have been overconstrained -then margin-right is always forced
to be auto . This means that if both margins and the width are set to 100px , then the right margin
will be reset by the user agent to auto . The right margin's width will then be set according to the
rule that one auto value "fills in" the distance needed to make the element's overall width equal that

of its containing block. Figure 7-6 shows the result of the following markup:

p {margin-left: 100px; margin-right: 100px;

 width: 100px;} /* right margin forced to be 200px */

Figure 7-6. Overriding the margin-right setting

Note that margin-right is forced to be auto only for left-to-right languages
such as English. In right-to-left languages, everything is reversed, so margin-
left is forced to be auto , not margin-right .

If both margins are set explicitly, and width is set to auto , then the value of width will be set to

whatever value is needed to reach the required total (which is the content width of the parent
element). The results of the following markup are shown in Figure 7-7 :

p {margin-left: 100px; margin-right: 100px; width: auto;}

Figure 7-7. Automatic width

The case shown in Figure 7-7 is the most common case since it is equivalent to setting the margins
and not declaring anything for the width . The result of the following markup is exactly the same as

that shown in Figure 7-7 :

p {margin-left: 100px; margin-right: 100px;} /* same as before */

7.2.1.3 More than one auto

Now let's see what happens when two of the three properties (width , margin-left , or margin-
right) are set to auto . If both margins are set to auto , as shown in the code below, then they are

set to equal lengths, thus centering the element within its parent, as you can see in Figure 7-8 :

p {width: 100px; margin-left: auto; margin-right: auto;}

Figure 7-8. Setting an explicit width

Setting both margins to equal lengths is the correct way to center elements as opposed to using
text-align . (text-align applies only to the inline content of a block-level element, so setting an
element to have a text-align of center shouldn't center it.)

In practice, only browsers released after February of 1999 correctly handle
auto margin centering, and not all of them get it completely right. Those that
do not handle auto margins correctly behave in inconsistent ways, but the

safest bet is to assume that they will reset both margins to zero.

Another way of sizing elements is to set one of the margins and the width to auto . The margin set to
be auto is reduced to zero:

p {margin-left: auto; margin-right: 100px;

 width: auto;} /* left margin evaluates to 0 */

The width is then set to the value necessary to make the element fill its containing block.

Finally, what happens when all three properties are set to auto ? The answer is simple: both margins
are set to zero, and the width is made as wide as possible. This result is the same as the default

situation, when no values are explicitly declared for margins or the width. In such a case, the margins
default to zero and the width defaults to auto .

Note that since horizontal margins do not collapse, the padding, borders, and margins of a parent
element can affect its children. The effect is indirect in that the margins (and so on) of an element
can induce an offset for child elements. The results of the following markup are shown in Figure 7-9
Figure 7-9 :

div {padding: 30px; background: silver;}

p {margin: 20px; padding: 0; background: white;}

Figure 7-9. Offset is implicit in the parent's margins and padding

7.2.1.4 Negative margins

So far, this probably all seems rather straightforward, and you may be wondering why I said things
could be complicated. There's another side to margins: the negative side. That's right, it's possible to
set negative values for margins. Setting negative margins results in some interesting effects,
assuming that the user agent supports negative margins at all.

According to the CSS specification, user agents are not required to fully support
negative margins. It says: "Negative values for margin properties are allowed,
but there may be implementation-specific limits." As of this writing, there are
few, if any, such limits in current browsers.

Remember that the total of the seven horizontal properties always equals the width of the parent

element. As long as all properties are zero or greater, an element can never be wider than its
parent's content area. However, consider the following markup, depicted in Figure 7-10 :

div {width: 400px; border: 3px solid black;}

p.wide {margin-left: 10px; width: auto; margin-right: -50px; }

Figure 7-10. Wider children through negative margins

Yes indeed, the child element is wider than its parent! This is mathematically correct:

10px + 0 + 0 + 440px + 0 + 0 - 50px = 400px

The 440px is the evaluation of width : auto , which is the number needed to balance out the rest of

the values in the equation. Even though it leads to a child element sticking out of its parent, the
specification hasn't been violated because the values of the seven properties add up to the required
total. It's a semantic dodge, but it's valid behavior.

Now, let's add some borders to the mix:

div {width: 400px; border: 3px solid black;}

p.wide {margin-left: 10px; width: auto; margin-right: -50px;

 border: 3px solid gray;}

The resulting change will be a reduction in the evaluated width of width :

10px + 3px + 0 + 434px + 0 + 3px - 50px = 400px

If you were to introduce padding, then the value of width would drop even more.

Conversely, it's possible to have auto right margins evaluate to negative amounts. If the values of

other properties force the right margin to be negative in order to satisfy the requirement that
elements be no wider than their containing block, then that's what will happen. Consider:

div {width: 400px; border: 3px solid black;}

p.wide {margin-left: 10px; width: 500px; margin-right: auto;

 border: 3px solid gray;}

The equation will work out like this:

10px + 3px + 0 + 500px + 0 + 3px - 116px = 400px

The right margin will evaluate to -116px . Even if you'd given it another value, this would be the case

because of the rule stating that if an element's dimensions are overconstrained, the right margin is
reset to whatever is needed to make the numbers work out correctly. (Except in right-to-left
languages, where the left margin would be overruled.)

Let's consider another example, illustrated in Figure 7-11 , where the left margin is set to be
negative:

div {width: 400px; border: 3px solid black;}

p.wide {margin-left: -50px; width: auto; margin-right: 10px;

 border: 3px solid gray;}

Figure 7-11. Setting a negative left margin

With a negative left margin, not only does the paragraph spill beyond the borders of the div , but it

also spills beyond the edge of the browser window itself!

Remember that padding, borders, and content widths can never be negative.
Only margins can be less than zero.

7.2.1.5 Percentages

When it comes to percentage values for the width, padding, and margins, the same basic rules apply.
It doesn't really matter whether the values are declared with lengths or percentages.

Percentages can be very useful. Suppose you want an element's content to be two-thirds the width of
its containing block, the right and left padding to be 5% each, the left margin to be 5%, and the right
margin to take up the slack. That would be written something like:

<p style="width: 67%; padding-right: 5%; padding-left: 5%; margin-right: auto;

margin-left: 5%;">playing percentages</p>

The right margin would evaluate to 18% (100% - 67% - 5% - 5% - 5%)-the width of the containing
block.

Mixing percentages and length units can be tricky, however. Consider the following example:

<p style="width: 67%; padding-right: 2em; padding-left: 2em; margin-right: auto;

margin-left: 5em;">mixed lengths</p>

In this case, the element's box can be defined like this:

5em + 0 + 2em + 67% + 2em + 0 + auto = containing block width

If you assume that the right margin evaluates to zero, then the containing block must be
27.272727em wide. Any wider than that, and the right margin will evaluate to a positive value. Any

narrower, and the right margin will be a negative value.

The situation gets even more complicated if you start mixing length values, like this:

<p style="width: 67%; padding-right: 15px; padding-left: 10px; margin-right: auto;

margin-left: 5em;">more mixed lengths</p>

And, to make things more complex, borders cannot have percentage widths, only lengths. The
bottom line is, it isn't possible to create a fully flexible element layout based solely on percentages
unless you're willing to avoid using borders.

7.2.1.6 Replaced elements

So far, we've been dealing with the horizontal formatting of nonreplaced block-level elements in the
normal flow of text. Block-level replaced elements are a bit simpler to manage. All of the rules given
for nonreplaced blocks hold true, with one exception: if width is left as auto , then the width of the

element is the content's intrinsic width. The image in the following example will be 20 pixels wide
because that's the width of the original image:

If the actual image were 100 pixels instead, then it would be laid out as 100 pixels wide.

It's possible to override this rule by assigning a specific value to width . Suppose you modify the

previous example to show the same image three times, each with a different width value:

This is illustrated in Figure 7-12 .

Figure 7-12. Changing replaced element widths

Note that the height of the elements also increases. When a replaced element's width is changed
from its intrinsic width, the value of height is scaled to match, unless height has been set to an
explicit value of its own. The reverse is also true: if height is set, but width is left as auto , then the

width is scaled proportionately to the change in height.

Now that you're thinking about height, let's move on to the vertical formatting of block-level normal-
flow elements.

7.2.2 Vertical Formatting

Like horizontal formatting, the vertical formatting of block-level elements has its own set of
interesting behaviors. The default height of an element is determined by its content. Height is also
affected by the width of the content; the skinnier a paragraph becomes, the taller it has to be in
order to contain all of the inline content within it.

In CSS, it is possible to set an explicit height on any block-level element. If you do this, the resulting
behavior depends on several other factors. Assume that the specified height is greater than that
needed to display the content:

<p style="height: 10em;">

In this case, the extra height has a visual effect somewhat like extra padding. But suppose the
height is less than what is needed to display the content:

<p style="height: 3em;">

When that happens, the browser is supposed to provide a means of viewing all content without
increasing the height of the element box. The browser may add a scrollbar to the element, as shown
in Figure 7-13 .

Figure 7-13. Heights that don't match the element's content height

In a case where the content of an element is taller than the height of its box, the actual behavior of a
user agent will depend on the value of (and its support for) the property overflow . This is covered in

Chapter 10 .

Under CSS1, user agents can ignore any value of height other than auto if an element is not a
replaced element (such as an image). In CSS2 and CSS2.1, the value of height cannot be ignored,

except in one specific circumstance involving percentage values. We'll talk about that in a moment.

Just as with width , height defines the content area's height, not the height of the visible element

box. Any padding, borders, or margins on the top or bottom of the element box are added to the
value for height .

7.2.2.1 Vertical properties

As was the case with horizontal formatting, vertical formatting also has seven related properties:
margin-top , border-top , padding-top , height , padding-bottom , border-bottom , and
margin-bottom . These properties are diagrammed in Figure 7-14 .

Figure 7-14. The "seven properties" of vertical formatting

The values of these seven properties must equal the height of the element's containing block. This is
usually the value of height for a block-level element's parent (since block-level elements nearly

always have block-level elements for parents).

Only three of these seven properties may be set to auto : the height of the element's content and

the top and bottom margins. The top and bottom padding and borders must be set to specific values
or else they default to a width of zero (assuming no border-style is declared). If border-style has
been set, then the width of the borders is set to be the vaguely defined value medium . Figure 7-15
provides an illustration for remembering which parts of the box may have a value of auto and which

may not.

Figure 7-15. Vertical properties that can be set to auto

Interestingly, if either margin-top or margin-bottom are set to auto for a block element in the

normal flow, they automatically evaluate to 0 . A value of 0 unfortunately prevents easy vertical

centering of normal-flow elements in their containing blocks. It also means that if you set the top and
bottom margins of an element to auto , they are effectively reset to 0 and removed from the element

box.

The handling of auto top and bottom margins is different for positioned

elements. See Chapter 8 for more details.

height must be set to auto or to a nonnegative value of some type.

7.2.2.2 Percentage heights

You already saw how length-value heights are handled, so let's spend a moment on percentages. If
the height of a block-level, normal-flow element is set to a percentage, then that value is taken as a

percentage of the height of the containing block. Given the following markup, the resulting paragraph
will be 3em tall:

<div style="height: 6em;">

 <p style="height: 50%;">Half as tall</p>

</div>

Since setting the top and bottom margins to auto will give them zero height, the only way to
vertically center the element would be to set them both to 25% .

However, in cases where the height of the containing block is not explicitly declared, percentage
heights are reset to auto . If you changed the previous example so that the height of the div is
auto , the paragraph will now be exactly as tall as the div itself:

<div style="height: auto;">

 <p style="height: 50%;">NOT half as tall; height reset to auto</p>

</div>

These two possibilities are illustrated in Figure 7-16 . (The spaces between the paragraph borders and
the div borders are the top and bottom margins on the paragraphs.)

Figure 7-16. Percentage heights in different circumstances

7.2.2.3 Auto heights

In the simplest case, a block-level, normal-flow element with height : auto is rendered just high
enough to enclose the line boxes of its inline content (including text). auto height sets a border on a

paragraph and assumes no padding-expect the bottom border to go just under the bottom line of
text and the top border to go just above the top line of text.

If an auto -height, block-level, normal-flow element has only block-level children, then its default

height will be the distance from the top of the topmost block-level child's outer border edge to the
bottom of the bottommost block-level child's outer bottom border edge. Therefore, the margins of the
child elements will "stick out" of the element that contains them. (This behavior is explained in the
next section.) However, if the block-level element has either top or bottom padding, or top or bottom
borders, then its height will be the distance from the top of the outer top margin edge of its topmost
child to the outer bottom margin edge of its bottommost child:

<div style="height: auto; background: silver;">

<p style="margin-top: 2em; margin-bottom: 2em;">A paragraph!</p>

</div>

<div style="height: auto; border-top: 1px solid; border-bottom: 1px solid;

background: silver;">

<p style="margin-top: 2em; margin-bottom: 2em;">Another paragraph!</p>

</div>

Both of these behaviors are demonstrated in Figure 7-17 .

Figure 7-17. Auto heights with block-level children

If you changed the borders to padding in the previous example, the effect on the height of the div

would be the same: it would still enclose the paragraph's margins within it.

7.2.2.4 Collapsing vertical margins

One other important aspect of vertical formatting is the collapsing of vertically adjacent margins.
Collapsing behavior applies only to margins. Padding and borders, where they exist, are never
collapsed by anything.

An unordered list, where list items follow one another, is a perfect example of margin collapsing.
Assume that the following is declared for a list that contains five items:

li {margin-top: 10px; margin-bottom: 15px;}

Each list item has a 10-pixel top margin and a 15-pixel bottom margin. When the list is rendered,
however, the distance between adjacent list items is 15 pixels, not 25. This happens because, along
the vertical axis, adjacent margins are collapsed. In other words, the smaller of the two margins is
eliminated in favor of the larger. Figure 7-18 shows the difference between collapsed and uncollapsed
margins.

Figure 7-18. Collapsed versus uncollapsed margins

Correctly implemented user agents collapse vertically adjacent margins, as shown in the first list in
Figure 7-18 , where there are 15-pixel spaces between each list item. The second list shows what
would happen if the user agent didn't collapse margins, resulting in 25-pixel spaces between list
items.

Another word to use, if you don't like "collapse," is "overlap." Although the margins are not really
overlapping, you can visualize what's happening using the following analogy. Imagine that each
element, such as a paragraph, is a small piece of paper with the content of the element written on it.
Around each piece of paper is some amount of clear plastic, which represents the margins. The first
piece of paper (say an h1 piece) is laid down on the canvas. The second (a paragraph) is laid below it

and then slid up until the edge of one of the piece's plastic touches the edge of the other's paper. If
the first piece of paper has half an inch of plastic along its bottom edge, and the second has a third of
an inch along its top, then when they slide together, the first piece's plastic will touch the top edge of
the second piece of paper. The two are now done being placed on the canvas, and the plastic
attached to the pieces is overlapping.

Collapsing also occurs where multiple margins meet, such as at the end of a list. Adding to the earlier
example, let's assume the following rules apply:

ul {margin-bottom: 15px;}

li {margin-top: 10px; margin-bottom: 20px;}

h1 {margin-top: 28px;}

The last item in the list has a bottom margin of 20 pixels, the bottom margin of the ul is 15 pixels, and
the top margin of a succeeding h1 is 28 pixels. So once the margins have been collapsed, the distance
between the end of the li and the beginning of the h1 is 28 pixels, as shown in Figure 7-19 .

Figure 7-19. Collapsing in detail

Now, recall the examples from the previous section, where the introduction of a border or padding on
a containing block would cause the margins of its child elements to be contained within it. You can
see this behavior in operation by adding a border to the ul element in the previous example:

ul {margin-bottom: 15px; border: 1px solid;}

li {margin-top: 10px; margin-bottom: 20px;}

h1 {margin-top: 28px;}

With this change, the bottom margin of the li element is now placed inside its parent element (the
ul). Therefore, the only margin collapsing that takes place is between the ul and the h1 , as

illustrated in Figure 7-20 .

Figure 7-20. Collapsing (or not) with borders added to the mix

7.2.2.5 Negative margins

Negative margins do have an impact on vertical formatting, and they affect how margins are
collapsed. If negative vertical margins are set, then the browser should take the absolute maximum

of both margins. The absolute value of the negative margin is then subtracted from the positive
margin. In other words, the negative is added to the positive, and the resulting value is the distance
between the elements. Figure 7-21 provides two concrete examples.

Figure 7-21. Examples of negative vertical margins

Notice the "pulling" effect of negative top and bottom margins. This is really no different from the way
that negative horizontal margins cause an element to push outside of its parent. Consider:

p.neg {margin-top: -50px; margin-right: 10px;

 margin-left: 10px; margin-bottom: 0;

 border: 3px solid gray;}

<div style="width: 420px; background-color: silver;

 padding: 10px; margin-top: 50px; border: 1px solid;">

<p class="neg">

A paragraph.

</p>

A div.

</div>

As you see in Figure 7-22 , the paragraph has simply been pulled upward by its negative top margin.
Note also that the content of the div that follows the paragraph in the markup has also been pulled

upward 50 pixels.

Figure 7-22. The effects of a negative top margin

The negative bottom margin makes the paragraph look like it's been pulled upward. Compare the
following markup to the situation shown in Figure 7-23 :

p.neg {margin-bottom: -50px; margin-right: 10px;

 margin-left: 10px; margin-top: 0;

 border: 3px solid gray;}

<div style="width: 420px; margin-top: 50px;">

<p class="neg">

A paragraph.

</p>

</div>

<p>

The next paragraph.

</p>

Figure 7-23. The effects of a negative bottom margin

What's really happening in Figure 7-23 is that the elements following the div are placed according to
the location of the bottom of the div . As you can see, the end of the div is actually above the visual
bottom of its child paragraph. The next element after the div is the appropriate distance from the
bottom of the div . This is expected, given the rules you used.

Now let's consider an example where the margins of a list item, an unordered list, and a paragraph
are all collapsed. In this case, the unordered list and paragraph are assigned negative margins:

li {margin-bottom: 20px;}

ul {margin-bottom: -15px;}

h1 {margin-top: -18px;}

The larger of the two negative margins (-18px) is added to the largest positive margin (20px),

yielding 20px - 18px = 2px. Thus, there are only two pixels between the bottom of the list item's
content and the top of the h1 's content, as you can see in Figure 7-24 .

Figure 7-24. Collapsing margins and negative margins, in detail

One area of unresolved behavior is that if elements overlap each other due to negative margins, it's
hard to tell which elements are on top. You may also have noticed that none of the examples in this
section use background colors. If they did, their content might be overwritten by the background
color of a following element. This is expected behavior since browsers usually render elements in
order from beginning to end, and so a normal-flow element that comes later in the document can be
expected to overwrite an earlier element, assuming the two end up overlapping.

7.2.3 List Items

List items have a few special rules of their own. They are typically preceded by a marker, such as a
small dot or a number. This marker isn't actually part of the list item's content area, so effects like
those illustrated in Figure 7-25 are common.

Figure 7-25. The content of list items

CSS1 says very little about the placement and effects of these markers with regard to the layout of a
document. CSS2 introduced properties specifically designed to address this issue, such as marker-
offset . However, a lack of implementations and changes in thinking caused this to be dropped from

CSS2.1, and it is likely that a different way of defining the distance between the content and the
marker will be introduced in future versions of CSS. Therefore, the placement of markers is largely
beyond the control of authors (at least as of this writing).

For a more detailed exploration of lists and how they can be styled, see Chapter
12 .

The marker attached to a list item element can be either outside the content of the list item or
treated as an inline marker at the beginning of the content, depending on the value of the property
list-style-position . If the marker is brought inside, then the list item will interact with its

neighbors exactly like a block-level element, as illustrated in Figure 7-26 .

Figure 7-26. Markers inside and outside the list

If the marker stays outside the content, then it is placed some distance from the left content edge of
the content (in left-to-right languages). No matter how the list's styles are altered, the marker stays
the same distance from the content edge. Occasionally, the markers may be pushed outside of the
list element itself, as you can see in Figure 7-26 .

 < Day Day Up >

 < Day Day Up >

7.3 Inline Elements

After block-level elements, inline elements are the most common. Setting box properties for inline
elements takes us into more interesting territory than we've been so far. Some good examples of
inline elements are the em tag and the a tag, both of which are nonreplaced elements, and images,

which are replaced elements.

Note that none of this applies to table elements. CSS2 introduced new
properties and behaviors for handling tables and table content, and these
elements behave in ways fairly distinct from either block-level or inline
formatting. Table styling is discussed in Chapter 11.

Nonreplaced and replaced elements are treated somewhat differently in the inline context, and we'll
look at each in turn as we explore the construction of inline elements.

7.3.1 Line Layout

First, you need to understand how inline content is laid out. It isn't as simple and straightforward as
block-level elements, which just generate boxes and usually don't allow anything to coexist with
them. By contrast, look inside a block-level element, such as a paragraph. You may well ask, "How
did all those lines of text get there? What controls their arrangement? How can I affect it?"

In order to understand how lines are generated, first consider the case of an element containing one
very long line of text, as shown in Figure 7-27. Note that you've put a border around the line by
wrapping the entire line in a span element and then assigning it a border style:

span {border: 1px dashed black;}

Figure 7-27. A single-line inline element

Figure 7-27 shows the simplest case of an inline element contained by a block-level element. It's no
different in its way than a paragraph with two words in it. The only differences are that, in Figure 7-
27, you have a few dozen words and most paragraphs don't contain an explicit inline element such as
span.

In order to get from this simplified state to something more familiar, all you have to do is determine
how wide the element should be, and then break up the line so that the resulting pieces will fit into
the width of the element. Therefore, we arrive at the state shown in Figure 7-28.

Figure 7-28. A multiple-line inline element

Nothing has really changed. All you did was take the single line and break it into pieces, and then
stack those pieces on top of each other.

In Figure 7-28, the borders for each line of text also happen to coincide with the top and bottom of
each line. This is true only because no padding or margin has been set for the inline text. Notice that
the borders actually overlap each other slightly; for example, the bottom border of the first line is
just below the top border of the second line. This is because the border is actually drawn on the next
pixel (assuming you're using a monitor) to the outside of each line. Since the lines are touching each
other, their borders will overlap as shown in Figure 7-28.

If you alter the span styles to have a background color, the actual placement of the lines becomes

quite clear. Consider Figure 7-29, which contains four paragraphs, each with a different value of
text-align and each having the backgrounds of its lines filled in.

Figure 7-29. Showing lines in different alignments

As you can see, not every line reaches to the edge of its parent paragraph's content area, which has
been denoted with a dotted gray border. For the left-aligned paragraph, the lines are all pushed flush
against the left content edge of the paragraph, and the end of each line happens wherever the line is
broken. The reverse is true for the right-aligned paragraph. For the centered paragraph, the centers
of the lines are aligned with the center of the paragraph. In the last case, where the value of text-
align is justify, each line is forced to be as wide as the paragraph's content area, so that the line's

edges touch the content edges of the paragraph. The difference between the natural length of the
line and the width of the paragraph is made up by altering the spacing between letters and words in
each line. Therefore, the values of letter-spacing and word-spacing can be overridden when text

is justified.

That pretty well covers how lines are generated in the simplest cases. As you're about to see,
however, the inline formatting model is far from simple.

7.3.2 Basic Terms and Concepts

Before we go any further, let's review some basic terms of inline layout, which will be crucial in
navigating the following sections:

Anonymous text

This is any string of characters that is not contained within an inline element. Thus, in the
markup <p> I'm so happy!</p>, the sequences " I'm " and " happy!" are

anonymous text. Note that the spaces are part of the text since a space is a character like any
other.

Em box

This is defined in the given font, otherwise known as the character box. Actual glyphs can be
taller or shorter than their em boxes, as discussed in Chapter 5. In CSS, the value of font-
size determines the height of each em box.

Content area

In nonreplaced elements, the content area can be one of two things, and the CSS2.1
specification allows user agents to choose which one. The content area can be the box
described by the em boxes of every character in the element, strung together, or it can be the
box described by the character glyphs in the element. In this book, I use the em box definition
for simplicity's sake. In replaced elements, the content area is the intrinsic height of the
element plus any margins, borders, or padding.

Leading

The leading is the difference between the values of font-size and line-height. This

difference is actually divided in half and is applied to the top and bottom of the content area.
These additions to the content area are called, not surprisingly, half-leading. Leading is applied
only to nonreplaced elements.

Inline box

This is the box described by the addition of the leading to the content area. For nonreplaced
elements, the height of the inline box of an element will be exactly equal to the value for line-
height. For replaced elements, the height of the inline box of an element will be exactly equal

to the content area since leading is not applied to replaced elements.

Line box

This is the shortest box that bounds the highest and lowest points of the inline boxes that are
found in the line. In other words, the top edge of the line box is placed along the top of the
highest inline box top, and the bottom of the line box is placed along the bottom of the lowest
inline box bottom.

CSS also contains a set of behaviors and useful concepts that fall out of the above list of terms and
definitions:

The content area is analogous to the content box of a block-level element.

The background of an inline element is applied to the content area plus any padding.

Any border on an inline element surrounds the content area plus any padding and border.

Padding, borders, and margins on nonreplaced elements have no vertical effect on inline
elements or the boxes they generate; that is, they do not affect the height of an element's
inline box (and thus the line box that contains the element).

Margins and borders on replaced elements do affect the height of the inline box for that element
and, by implication, the height of the line box for the line that contains the element.

One more thing to note: inline boxes are vertically aligned within the line according to their values for
the property vertical-align. I touched on this point in Chapter 6, and this chapter will explain it in

more depth.

Before moving on, let's look at a step-by-step process for constructing a line box, which you can use
to see how the various pieces of the line fit together to determine its height:

Determine the height of the inline box for each element in the line. This is done by:

Finding the values of font-size and line-height for each inline nonreplaced element

and text that is not part of an inline element and adding them together. The leading is split
and applied to the top and bottom of the em boxes.

a.

Finding the values of height, margin-top, margin-bottom, padding-top, padding-
bottom, border-top-width, and border-top-bottom for each replaced element and

adding them together.

b.

1.

Figure out, for each content area, how much of it is above the baseline for the overall line and
how much of it is below the baseline. This is not an easy task: you must know the position of
the baseline for each element and piece of anonymous text, and the baseline of the line itself,
and then line them all up. In addition, the bottom edge of a replaced element sits on the
baseline for the overall line.

2.

Determine the vertical offset of any elements that have been given a value for vertical-
align. This will tell you how far up or down that element's inline box will be moved and will

change how much of the element is above or below the baseline.

3.

Now that you know where all of the inline boxes have come to rest, calculate the final line box4.

height. To do so, just add the distance between the baseline and the highest inline box top to
the distance between the baseline and the lowest inline box bottom.

4.

Let's consider the whole process in detail, which is key to intelligently styling inline content.

7.3.3 Inline Formatting

As we discussed in Chapter 6, all elements have a line-height. This value greatly influences the

way inline elements are displayed, so let's give it due attention.

First, let's establish how the height of a line is determined. A line's height (or the height of the line
box) is determined by the height of its constituent elements and other content, such as text. It's
important to understand that line-height actually affects inline elements and other inline content,
not block-level elements-at least, not directly. You can set a line-height value for a block-level

element, but the value will have visual impact only if it's applied to inline content within that block-
level element. Consider the following empty paragraph, for example:

<p style="line-height: 0.25em;"></p>

Without content, the paragraph won't have anything to display-you won't see anything. The fact
that this paragraph has a line-height of any value-be it 0.25em or 25in-makes no difference

without some content to create a line box.

You can certainly set a line-height value for a block-level element and have that apply to all of the

content within the block, whether or not the content is contained in any inline elements. In a certain
sense, then, each line of text contained within a block-level element is its own inline element,
whether or not it's surrounded by tags. If you like, picture a fictional tag sequence like this:

<p>

<line>This is a paragraph with a number of</line>

<line>lines of text which make up the</line>

<line>contents.</line>

</p>

Even though the line tags don't actually exist, the paragraph behaves as if they did-each line of
text inherits styles from the paragraph. Therefore, you only bother to create line-height rules for
block-level elements so you don't have to explicitly declare a line-height for all of their inline

elements, fictional or otherwise.

The fictional line element actually clarifies the behavior that results from setting line-height on a
block-level element. According to the CSS specification, declaring line-height on a block-level

element sets a minimum line box height for the content of that block-level element. Thus, declaring
p.spacious {line-height: 24pt;} means that the minimum heights for each line box is 24 points.

Technically, content can inherit this line height only if an inline element does so. Most text isn't
contained by an inline element. Therefore, if you pretend that each line is contained by the fictional
line element, the model works out very nicely.

7.3.4 Inline Nonreplaced Elements

Building on your formatting knowledge, let's move on to the construction of lines that contain only
nonreplaced elements (or anonymous text). Then, you'll be in a good position to understand the
differences between nonreplaced and replaced elements in inline layout.

7.3.4.1 Building the boxes

First, for an inline nonreplaced element or piece of anonymous text, the value of font-size
determines the height of the content area. If an inline element has a font-size of 15px, then the

content area's height is 15 pixels because all of the em boxes in the element are 15 pixels tall, as
illustrated in Figure 7-30.

Figure 7-30. em boxes determine content area height

The next thing to consider is the value of line-height for the element, and the difference between it
and the value of font-size. If an inline nonreplaced element has a font-size of 15px and a line-
height of 21px, then the difference is 6 pixels. The user agent splits the six pixels in half and applies

half to the top and half to the bottom of the content area, which yields the inline box. This process is
illustrated in Figure 7-31.

Figure 7-31. Content area plus leading equals inline box

Let's assume that the following is true:

<p style="font-size: 12px; line-height: 12px;">

This is text, some of which is emphasized, plus other text

which is <strong style="font-size: 24px;">strongly emphasized

and which is

larger than the surrounding text.

</p>

In this example, most of the text has a font-size of 12px, while the text in one inline nonreplaced
element has a size of 24px. However, all of the text has a line-height of 12px since line-height is
an inherited property. Therefore, the strong element's line-height is also 12px.

Thus, for each piece of text where both the font-size and line-height are 12px, the content
height does not change (since the difference between 12px and 12px is zero), so the inline box is 12
pixels high. For the strong text, however, the difference between line-height and font-size is -
12px. This is divided in half to determine the half-leading (-6px), and the half-leading is added to

both the top and bottom of the content height to arrive at an inline box. Since you're adding a
negative number in both cases, the inline box ends up being 12 pixels tall. The 12-pixel inline box is
centered vertically within the 24-pixel content height of the element, so the inline box is actually
smaller than the content area.

So far, it sounds like you've done the same thing to each bit of text, and all the inline boxes are the
same size, but that's not quite true. The inline boxes in the second line, although they're the same
size, don't actually line up because the text is all baseline-aligned (see Figure 7-32).

Figure 7-32. Inline boxes within a line

Since inline boxes determine the height of the overall line box, their placement with respect to each
other is critical. The line box is defined as the distance from the top of the highest inline box in the
line to the bottom of the lowest inline box, and the top of each line box butts up against the bottom
of the line box for the preceding line. The result shown in Figure 7-32 gives you the paragraph shown
in Figure 7-33.

Figure 7-33. Line boxes within a paragraph

As you can see in Figure 7-33, the middle line is taller than the other two, but it
still isn't big enough to contain all of the text within it. The anonymous text's
inline box determines the bottom of the line box, while the top of the strong

element's inline box sets the top of the line box. Because that inline box's top is
inside the element's content area, the contents of the element spill outside the
line box, and actually overlap other line boxes. The result is that the lines of
text look irregular. Later in the chapter, we'll explore ways to cope with this
behavior and methods for achieving consistent baseline spacing.

7.3.4.2 Vertical alignment

If you change the vertical alignment of the inline boxes, the same height determination principles
apply. Suppose that you give the strong element a vertical alignment of 4px:

<p style="font-size: 12px; line-height: 12px;">

This is text, some of which is emphasized, plus other text

that is <strong style="font-size: 24px; vertical-align: 4px;">strongly

emphasized and that is

larger than the surrounding text.

</p>

That small change raises the element four pixels, which pushes up both its content area and its inline
box. Because the strong element's inline box top was already the highest in the line, this change in

vertical alignment also pushes the top of the line box upward by four pixels, as shown in Figure 7-34.

Figure 7-34. Vertical alignment affects line box height

Let's consider another situation. Here, you have another inline element in the same line as the
strong text, and its alignment is other than the baseline:

<p style="font-size: 12px; line-height: 12px;">

this is text, some of which is emphasized, plus other text

that is <strong style="font-size: 24px;">strong

and tall and that is

larger than the surrounding text.

</p>

Now you have the same result as in your earlier example, where the middle line box is taller than the
other line boxes. However, notice how the "tall" text is aligned in Figure 7-35.

Figure 7-35. Aligning an inline element to the line box

In this case, the top of the "tall" text's inline box is aligned with the top of the line box. Since the
"tall" text has equal values for font-size and line-height, the content height and inline box are

the same. However, consider this:

<p style="font-size: 12px; line-height: 12px;">

This is text, some of which is emphasized, plus other text

that is <strong style="font-size: 24px;">strong

and tall

and that is

larger than the surrounding text.

</p>

Since the line-height for the "tall" text is less than its font-size, the inline box for that element is

smaller than its content area. This fact changes the placement of the text itself since the top of its
inline box must be aligned with the top of the line box for its line. Thus, you get the result shown in
Figure 7-36.

Figure 7-36. Text protruding from the line box (again)

On the other hand, you could set the "tall" text to have a line-height that is actually bigger than its
font-size. For example:

<p style="font-size: 12px; line-height: 12px;">

This is text, some of which is emphasized, plus other text

that is <strong style="font-size: 24px;">strong

and tall

and that is

larger than the surrounding text.

</p>

Since you've given the "tall" text a line-height of 18px, the difference between line-height and
font-size is 6 pixels. The half-leading of 3 pixels is added to the content area and results in an inline

box that is 18 pixels tall. The top of this inline box aligns with the top of the line box. Similarly, the
value bottom will align the bottom of an inline element's inline box with the bottom of the line box.

In the terms we've been using in this chapter, the effects of the assorted keyword values of
vertical-align are:

top

Aligns the top of the element's inline box with the top of the containing line box.

bottom

Aligns the bottom of the element's inline box with the bottom of the containing line box.

text-top

Aligns the top of the element's inline box with the top of the parent's content area.

text-bottom

Aligns the bottom of the element's inline box with the bottom of the parent's content area.

middle

Aligns the vertical midpoint of the element's inline box with a point one-half ex above the
baseline of the parent.

super

Moves the content area and inline box of the element upward. The distance is not specified and
may vary by user agent.

sub

The same as super, except the element is moved downward instead of upward.

<percentage>

Shifts the element up or down the distance defined by taking the declared percentage of the
element's value for line-height.

These values are explained in more detail in Chapter 6.

7.3.4.3 Managing the line-height

In previous sections, you saw that changing the line-height of an inline element can cause text

from one line to overlap another. In each case, though, the changes were made to individual
elements. So how can you affect the line-height of elements in a more general way in order to

keep content from overlapping?

One way to do this is to use the em unit in conjunction with an element whose font-size has

changed. For example:

p {font-size: 14px; line-height: 1em;}

big {font-size: 250%; line-height: 1em;}

<p>

Not only does this paragraph have "normal" text, but it also

contains a line in which <big>some big text </big>is found.

This large text helps illustrate our point.

</p>

By setting a line-height for the big element, you increase the overall height of the line box,
providing enough room to display the big element without overlapping any other text and without
changing the line-height of all lines in the paragraph. You use a value of 1em so that the line-
height for the big element will be set to the same size as big's font-size. Remember, line-
height is set in relation to the font-size of the element itself, not the parent element. The results

are shown in Figure 7-37.

Figure 7-37. Assigning the line-height property to inline elements

Note that the following styles can produce the same result as in Figure 7-37:

p {font-size: 14px; line-height: 1;}

big {font-size: 250%;}

Unless line-height values are inherited as scaling factors, both the p and big elements would have
a line-height of 1. Thus, the height of the inline box would match the height of the content area,

just as in Figure 7-37.

Make sure you really understand the previous sections because things will get trickier when you try to
add borders. Let's say you want to put 5-pixel borders around any hyperlink:

a:link {border: 5px solid blue;}

If you don't set a large enough line-height to accommodate the border, it will be in danger of
overwriting other lines. You could increase the size of the inline box for unvisited links using line-
height, as you did for the big element in the earlier example; in this case, you'd just need to make
the value of line-height 10 pixels larger than the value of font-size for those links. However, that

could be difficult if you don't actually know the size of the font in pixels.

Another solution is to increase the line-height of the paragraph. This will affect every line in the

entire element, not just the line in which the bordered hyperlink appears:

p {font-size: 14px; line-height: 24px;}

a:link {border: 5px solid blue;}

Because there is extra space added above and below each line, the border around the hyperlink
doesn't impinge on any other line, as you can see in Figure 7-38.

Figure 7-38. Increasing line-height to leave room for inline borders

This approach works here, of course, because all of the text is the same size. If there were other
elements in the line that changed the height of the line box, your border situation might also change.
Consider the following:

p {font-size: 14px; line-height: 24px;}

a:link {border: 5px solid blue;}

big {font-size: 150%; line-height: 1.5em;}

Given these rules, the height of the inline box of a big element within a paragraph will be 31.5 pixels

(14 x 1.5 x 1.5), and that will also be the height of the line box. In order to keep baseline spacing
consistent, you must make the p element's line-height equal to or greater than 32px.

Baselines and Line Heights

The actual height of each line box depends on the way its component elements line up
with each other. This alignment tends to depend very much on where the baseline falls
within each element (or piece of anonymous text) because that location determines how
their inline boxes are arranged. The placement of the baseline within each em box is
different for every font. This information is built into the font files and cannot be altered by
any means other than directly editing the font files.

Thus, consistent baseline spacing tends to be more of an art than a science. If you declare
all of your font sizes and line heights using a single unit, such as ems, then you have a
reliable chance of consistent baseline spacing. If you mix units, however, that feat
becomes a great deal more difficult, if not impossible. As of this writing, there are
proposals for properties that would let authors enforce consistent baseline spacing
regardless of the inline content, which would greatly simplify certain aspects of online
typography.

7.3.4.4 Scaling line heights

The best way to set line-height, as it turns out, is to use a raw number as the value. This method

is the best because the number becomes the scaling factor, and that factor is an inherited, not a
computed, value. Let's say you want the line-height of all elements in a document to be one-and-
one-half times their font-size. You would declare:

body {line-height: 1.5;}

This scaling factor of 1.5 is passed down from element to element, and, at each level, the factor is
used as a multiplier of the font-size of each element. Therefore, the following markup would be

displayed as shown in Figure 7-39:

p {font-size: 15px; line-height: 1.5;}

small {font-size: 66%;}

big {font-size: 200%;}

<p>This paragraph has a line-height of 1.5 times its font-size. In addition,

any elements within it <small>such as this small element</small> also have

line-heights 1.5 times their font-size...and that includes <big>this big

element right here</big>. By using a scaling factor, line-heights scale

to match the font-size of any element.</p>

Figure 7-39. Using a scaling factor for line-height

In this example, the line height for the small element turns out to be 15px, and for the big element,
it's 45px. (These numbers may seem excessive, but they're in keeping with the overall page design.)
Of course, if you don't want your big text to generate too much extra leading, you can give it a
line-height value, which will override the inherited scaling factor:

p {font-size: 15px; line-height: 1.5;}

small {font-size: 66%;}

big {font-size: 200%; line-height: 1em;}

Another solution-possibly the simplest of all-is to set the styles such that lines are no taller than
absolutely necessary to hold their content. This is where you might use a line-height of 1.0. This
value will multiply itself by every font-size to get the same value as the font-size of every

element. Thus, for every element, the inline box will be the same as the content area, which will
mean the absolute minimum size necessary is used to contain the content area of each element.

Most fonts still display a little bit of space between the lines of character glyphs
because characters are usually smaller than their em boxes.

7.3.4.5 Adding box properties

As you're aware from previous discussions, padding, margins, and borders may all be applied to
inline nonreplaced elements. These aspects of the inline element do not influence the height of the
line box at all. If you were to apply some borders to a span element without any margins or padding,

you'd get results such as those shown in Figure 7-40.

Figure 7-40. Inline borders and line-box layout

The border edge of inline elements is controlled by the font-size, not the line-height. In other
words, if a span element has a font-size of 12px and a line-height of 36px, its content area is
12px high, and the border will surround that content area.

Alternatively, you can assign padding to the inline element, which will push the borders away from

the text itself:

span {border: 1px solid black; padding: 4px;}

Note that this padding does not alter the actual shape of the content height, and so it will not affect
the height of the inline box for this element. Similarly, adding borders to an inline element will not
affect the way line boxes are generated and laid out, as illustrated in Figure 7-41.

Figure 7-41. Padding and borders do not alter line height

As for margins, they do not, practically speaking, apply to the top and bottom of a non-inline
replaced element, as they don't affect the height of the line box. The ends of the element are another
story.

CSS2.1 actually makes margin placement explicit: it defines margin-top and
margin-bottom as applying to all elements except inline nonreplaced elements,

instead of simply saying that user agents should ignore top and bottom
margins.

Recall the idea that an inline element is basically laid out as a single line and then broken up into
pieces. So, if you apply margins to an inline element, those margins will appear at its beginning and
end: these are the left and right margins, respectively. Padding also appears at the edges. Thus,
although padding and margins (and borders) do not affect line heights, they can still affect the layout
of an element's content by pushing text away from its ends. In fact, negative left and right margins
can pull text closer to the inline element, or even cause overlap, as Figure 7-42 shows.

Figure 7-42. Padding and margins on the ends of an inline element

Think of an inline element as a strip of paper with some plastic surrounding it. Displaying the inline
element on multiple lines is like cutting up the strip into smaller strips. However, no extra plastic is
added to each smaller strip. The only plastic is that which was on the strip to begin with, so it
appears only at the beginning and end of the original ends of the paper strip (the inline element).

So, what happens when an inline element has a background and enough padding to cause the lines'
backgrounds to overlap? Take the following situation as an example:

p {font-size: 15px; line-height: 1em;}

p span {background: #999; padding-top: 10px; padding-bottom: 10px;}

All of the text within the span element will have a content area 15 pixels tall, and you've applied 10

pixels of padding to the top and bottom of each content area. The extra pixels won't increase the
height of the line box, which would be fine, except there is a background color. Thus, you get the
result shown in Figure 7-43.

Figure 7-43. Overlapping inline backgrounds

CSS 2.1 explicitly states that the line boxes are drawn in document order: "This will cause the borders
on subsequent lines to paint over the borders and text of previous lines." The same principle applies
to backgrounds as well, as Figure 7-43 shows you. CSS2, on the other hand, allowed user agents "to
`clip' the border and padding areas (i.e., not render them)." Therefore, the results may depend
greatly on which specification the user agent follows.

Glyphs Versus Content Area

Even in cases where you try to keep inline nonreplaced element backgrounds from
overlapping, it can still happen, depending on which font is in use. The problem lies in the
difference between a font's em box and its character glyphs. Most fonts, as it turns out,
don't have em boxes whose heights match the character glyphs.

That may sound very abstract, but it has practical consequences. In CSS2.1, we find the
following: "The height of the content area should be based on the font, but this
specification does not specify how. A user agent may...use the em box or the maximum
ascender and descender of the font. (The latter would ensure that glyphs with parts above
or below the em box still fall within the content area, but leads to differently sized boxes
for different fonts.)"

In other words, the "painting area" of an inline nonreplaced element is left to the user
agent. If a user agent takes the em box to be the height of the content area, then the
background of an inline nonreplaced element will be equal to the height of the em box
(which is the value of font-size). If a user agent uses the maximum ascender and

descender of the font, then the background may be taller or shorter than the em box.
Therefore, you could give an inline nonreplaced element a line-height of 1em and still

have its background overlap the content of other lines.

There is no way to prevent this overlap in CSS2 or CSS2.1, but there are properties
proposed for CSS3 that would let the author control the behavior of the user agent. Until
these properties are widely implemented, truly precise typography will not be possible with
CSS.

7.3.5 Inline Replaced Elements

Inline replaced elements, such as images, are assumed to have an intrinsic height and width; for
example, an image will be a certain number of pixels high and wide. Therefore, a replaced element

with an intrinsic height can cause a line box to become taller than normal. This does not change the
value of line-height for any element in the line, including the replaced element itself. Instead, the

line box is simply made tall enough to accommodate the replaced element, plus any box properties.
In other words, the entirety of the replaced element-content, margins, borders, and padding-is
used to define the element's inline box. The following styles lead to one such example, as shown in
Figure 7-44:

p {font-size: 15px; line-height: 18px;}

img {height: 30px; margin: 0; padding: 0; border: none;}

Figure 7-44. Replaced elements can increase the height of the line box but
not the value of line-height

Despite all the blank space, the effective value of line-height has not changed, either for the
paragraph or the image itself. line-height simply has no effect on the image's inline box. Because

the image in Figure 7-44 has no padding, margins, or borders, its inline box is equivalent to its
content area, which is, in this case, 30 pixels tall.

Nonetheless, an inline replaced element still has a value for line-height. Why? In the most common

case, it needs the value in order to correctly position the element if it's been vertically aligned. Recall
that, for example, percentage values for vertical-align are calculated with respect to an element's
line-height. Thus:

p {font-size: 15px; line-height: 18px;}

img {vertical-align: 50%;}

<p>The image in this sentence <imgsrc="test.gif" alt="test image">

will be raised 9 pixels.</p>

The inherited value of line-height causes the image to be raised nine pixels instead of some other
number. Without a value for line-height, it wouldn't be possible to perform percentage-value

vertical alignments. The height of the image itself has no relevance when it comes to vertical
alignment: the value of line-height is all that matters.

However, for other replaced elements, it might be important to pass on a line-height value to

descendant elements within that replaced element. An example would be an SVG image, which uses
CSS to style any text found within the image.

7.3.5.1 Adding box properties

After everything else, applying margins, borders, and padding to inline replaced elements almost
seems simple.

Padding and borders are applied to replaced elements as usual; padding inserts space around the
actual content and the border surrounds the padding. What's unusual about the process is that these
two things actually influence the height of the line box because they are part of the inline box of an
inline replaced element (unlike inline nonreplaced elements). Consider Figure 7-45, which results
from the following styles:

img {height: 20px; width: 20px;}

img.one {margin: 0; padding: 0; border: 1px dotted;}

img.two {margin: 5px; padding: 3px; border: 1px solid;}

Figure 7-45. Adding padding, borders, and margins to an inline replaced
element increases its inline box

Note that the first line box is made tall enough to contain the image, whereas the second is tall
enough to contain the image, its padding, and its border.

Margins are also contained within the line box, but they have their own wrinkles. Setting a positive
margin is no mystery; it will simply make the inline box of the replaced element taller. Setting
negative margins, meanwhile, has a similar effect: it decreases the size of the replaced element's
inline box. This is illustrated in Figure 7-46, where you can see that a negative top margin is pulling
down the line above the image:

img.two {margin-top: -10px;}

Figure 7-46. The effect of negative margins on inline replaced elements

Negative margins operate the same way on block-level elements, of course. In this case, the
negative margins make the replaced element's inline box smaller than ordinary. Negative margins
are the only way to cause inline replaced elements to bleed into other lines.

7.3.5.2 Replaced elements and the baseline

You may have noticed by now that, by default, inline replaced elements sit on the baseline. If you
add bottom padding, a margin, or a border to the replaced element, then the content area will move
upward. Replaced elements do not actually have baselines of their own, so the next best thing is to

align the bottom of their inline boxes with the baseline. Thus, it is actually the bottom outer margin
edge that is aligned with the baseline, as illustrated in Figure 7-47.

Figure 7-47. Inline replaced elements sit on the baseline

This baseline alignment leads to an unexpected (and unwelcome) consequence: an image placed in a
table cell all by itself should make the table cell tall enough to contain the line box containing the
image. The resizing occurs even if there is no actual text, not even whitespace, in the table cell with
the image. Therefore, the common sliced-image and spacer-GIF designs of years past can fall apart
quite dramatically in modern browsers. Consider the simplest case:

td {font-size: 12px;}

<td></td>

Under the CSS inline formatting model, the table cell will be 12 pixels tall, with the image sitting on the
baseline of the cell. So there might be three pixels of space below the image, and eight above it,
although the exact distances would depend on the font family used and the placement of its baseline.
This behavior is not confined to images inside table cells; it will also happen in any situation where an
inline replaced element is the sole descendant of a block-level or table-cell element. For example, an
image inside a div will also sit on the baseline.

As of this writing, many browsers actually ignore this CSS inline formatting
model, but Gecko-based browsers act as the text describes when rendering
XHTML and strict HTML documents. See my article "Images, Tables, and
Mysterious Gaps" at http://devedge.netscape.com/viewsource/2002/img-
table/ for more information.

The most common workaround for such circumstances is simply to make spacer images block-level,
so that they do not generate a line box. For example:

td {font-size: 12px;}

img.block {display: block;}

<td></td>

Another possible fix would be to make the font-size and line-height of the enclosing table cell
1px, which would make the line box only as tall as the 1-pixel image within it.

http://devedge.netscape.com/viewsource/2002/img-

Here's another interesting effect of inline replaced elements sitting on the baseline: if you apply a
negative bottom margin, the element will actually get pulled downward because the bottom of its
inline box will be higher than the bottom of its content area. Thus, the following rule would have the
result shown in Figure 7-48:

p img {margin-bottom: -10px;}

Figure 7-48. Pulling inline replaced elements down with a negative bottom
margin

This can easily cause a replaced element to bleed into following lines of text, as Figure 7-48 shows.

Some browsers simply place the bottom of the content area on the baseline
and ignore any negative bottom margin.

Inline with History

The CSS inline formatting model may seem needlessly complex and, in some ways, even
contrary to author expectations. Unfortunately, the complexity is the result of creating a
style language that is both backward-compatible with pre-CSS web browsers and also
leaves the door open for future expansion into more sophisticated territory-an awkward
blend of past and present. It's also the result of making some sensible decisions that avoid
one undesirable effect while causing another.

For example, the "spreading apart" of lines of text by image and vertically aligned text
owes its roots to the way Mosaic 1.0 behaved. In that browser, any image in a paragraph
would simply push open enough space to contain the image. That's a good behavior, since
it prevents images from overlapping text in other lines. So when CSS introduced ways to
style text and inline elements, its authors endeavored to create a model that did not (by
default) cause inline images to overlap other lines of text. However, the same model also
meant that a superscript element (sup), for example, would likely also push apart lines of

text.

Such effects annoy some authors who want their baselines to be an exact distance apart
and no further, but consider the alternative. If line-height forced baselines to be exactly

a specified distance apart, you'd easily end up with inline replaced and vertically shifted
elements that overlap other lines of text-which would also annoy authors. Fortunately,
CSS offers enough power to create your desired effect in one way or another, and the
future of CSS holds even more potential.

 < Day Day Up >

 < Day Day Up >

7.4 Altering Element Display

As I mentioned briefly in Chapter 1 , you can affect the way a user agent displays by setting a value for
the property display . Now that we've taken a close look at visual formatting, let's revisit the display

property and discuss two more of its values using concepts from this chapter.

display

Values

none | inline | block | inline-block | list-item | run-in | table | inline-
table | table-row-group | table-header-group | table-footer-group | table-
row | table-column-group | table-column | table-cell | table-caption |
inherit

Initial value

inline

Applies to

all elements

Inherited

no

Computed value

varies for floated, positioned, and root elements (see CSS2.1, section 9.7);
otherwise, as specified

Note

the values compact and marker appeared in CSS2 but were dropped from CSS2.1

due to a lack of widespread support

We'll ignore the table-related values, since they get covered in Chapter 11 , and we'll also ignore the
value list-item since we deal with lists in detail in Chapter 12 . We've spent quite some time
discussing block and inline elements, but let's spend a moment talking about how altering an
element's display role can alter layout before we look at inline-block and run-in .

7.4.1 Changing Roles

When it comes to styling a document, it's obviously handy to be able to change the display role of an
element. For example, suppose you have a series of links in a div that you'd like to lay out as a

vertical sidebar:

<div id="navigation">

WidgetCo HomeProducts

ServicesWidgety Fun!

SupportAbout Us

Contact

</div>

You could put all the links into table cells, or wrap each one in its own div -or you could just make

them all block-level elements, like this:

div#navigation a {display: block;}

This will make every a element within the navigation div a block-level element. If you add on a few

more styles, you could have a result like that shown in Figure 7-49 .

Figure 7-49. Changing the display role from inline to block

Changing display roles can be useful in cases where you want non-CSS browsers to get the navigation
links as inline elements but to lay out the same links as block-level elements. With the links as blocks,
you can style them as you would div elements, with the advantage that the entire element box

becomes part of the link. Thus, if a user's mouse pointer hovers anywhere in the element box, he can
then click the link.

You may also want to take elements and make them inline. Suppose you have an unordered list of

names:

<ul id="rollcall">

Bob C.

Marcio G.

Eric M.

Kat M.

Tristan N.

Arun R.

Doron R.

Susie W.

Given this markup, say you want to make the names into a series of inline names with vertical bars
between them (and on each end of the list). The only way to do so is to change their display role. The
following rules will have the effect shown in Figure 7-50 :

#rollcall li {display: inline; border-right: 1px solid; padding: 0 0.33em;}

#rollcall li:first-child {border-left: 1px solid;}

Figure 7-50. Changing the display role from list-item to inline

There are plenty of other ways to use display to your advantage in design. Be creative and see what

you can invent!

Be careful to note, however, that you are changing the display role of elements-not changing their
inherent nature. In other words, causing a paragraph to generate an inline-level box does not turn that
paragraph into an inline element. In XHTML, for example, some elements are block while others are
inline. (Still others are "flow" elements, but we're ignoring them for the moment.) An inline element
can be a descendant of a block element, but the reverse is not true. Thus, while a link can be placed
inside a paragraph, a link cannot be wrapped around a paragraph. This will hold true no matter how
you style the elements in question. Consider the following markup:

<p style="display: inline;">this is wrong!</p>

The markup will not validate because the block element (p) is nested inside an inline element (a). The

changing of display roles does nothing to change this. display has its name because it affects how the

element is displayed, not what kind of element it is.

7.4.2 Inline-Block Elements

As befits the hybrid look of the value name inline-block , inline-block elements are indeed a hybrid

of block-level and inline elements. This display value is new in CSS2.1.

An inline-block element relates to other elements and content as an inline box. In other words, it's laid
out in a line of text just as an image would be, and, in fact, inline-block elements are formatted within
a line as a replaced element. This means the bottom of the inline-block element will rest on the
baseline of the text line by default and will not line-break within itself.

Inside the inline-block element, the content is formatted as though the element were block-level. The
properties width and height apply to it, as they do to any block-level or inline replaced element, and

those properties will increase the height of the line if they are taller than the surrounding content.

Let's consider some example markup that will help make this clearer:

<div id="one">

This text is the content of a block-level level element. Within this

block-level element is another block-level element. <p>Look, it's a block-level

paragraph.</p> Here's the rest of the DIV, which is still block-level.

</div>

<div id="two">

This text is the content of a block-level level element. Within this

block-level element is an inline element. <p>Look, it's an inline

paragraph.</p> Here's the rest of the DIV, which is still block-level.

</div>

<div id="three">

This text is the content of a block-level level element. Within this

block-level element is an inline-block element. <p>Look, it's an inline-block

paragraph.</p> Here's the rest of the DIV, which is still block-level.

</div>

To this markup, we apply the following rules:

div {margin: 1em 0; border: 1px solid;}

p {border: 1px dotted;}

div#one p {display: block; width: 6em; text-align: center;}

div#two p {display: inline; width: 6em; text-align: center;}

div#three p {display: inline-block; width: 6em; text-align: center;}

The result of this style sheet is depicted in Figure 7-51 .

Figure 7-51. The behavior of an inline-block element

Notice that in the second div , the inline paragraph is formatted as normal inline content, which
means width and text-align get ignored (since they do not apply to inline elements). For the third
div , however, the inline-block paragraph honors both properties, since it is formatted as a block-level

element. That paragraph also forces its line of text to be much taller, since it affects line height as
though it were a replaced element.

If an inline-block element's width is not defined or explicitly declared auto , the element box will

shrink to fit the content. That is, the element box is exactly as wide as necessary to hold the content,
and no wider. Inline boxes act the same way, although they can break across lines of text, just as
inline-block elements cannot. Thus, the following rule, when applied to the previous markup example:

 div#three p {display: inline-block; height: 2em;}

will create a tall box that's just wide enough to enclose the content, as shown in Figure 7-52 .

Figure 7-52. Auto-sizing of an inline-block element

Inline-block elements can be useful if, for example, you have a set of five hyperlinks that you want to
be equal width within a toolbar. To make them all 20% the width of their parent element, but still leave
them inline, declare:

#navbar a {display: inline-block; width: 20%;}

7.4.3 Run-in Elements

CSS2 introduced the value run-in , another interesting block/inline hybrid that can make some block-

level elements an inline part of a following element. This ability is useful for certain heading effects that
are quite common in print typography, where a heading will appear as part of a paragraph of text.

In CSS, you can make an element run-in simply by changing its display value and by making the

next element box block-level. Note that I'm talking here about boxes , not the element themselves. In
other words, it doesn't matter if an element is block or inline. All that matters is the box that element
generates. A strong element set to display : block generates a block-level box; a paragraph set to
display : inline generates an inline box.

So, to rephrase this: if an element generates a run-in box, and a block box follows that box, then the
run-in element will be an inline box at the beginning of the block box. For example:

<h3 style="display: run-in; border: 1px dotted; font-size: 125%;

 font-weight: bold;">Run-in Elements</h3>

<p style="border-top: 1px solid black; padding-top: 0.5em;">

Another interesting block/inline hybrid is the value <code>run-in</code>, introduced

in CSS2, which has the ability to take block-level elements and make them an inline

part of a following element. This is useful for certain heading effects that are

quite common in print typography, where a heading will appear as part of a paragraph

of text.

</p>

Since the element following the h3 generates a block-level box, the h3 element will be turned into an
inline element at the beginning of the p element's content, as illustrated in Figure 7-53 .

Figure 7-53. Making a heading run-in

Note how the borders of the two elements are placed. The effect of using run-in in this situation is

exactly the same as if you'd used this markup instead:

<p style="border-top: 1px solid black; padding-top: 0.5em;">

Run-in

Elements Another interesting block/inline hybrid is the value <code>run-in</

code>, introduced in CSS2, which has the ability to take block-level elements and

make them an inline part of a following element. This is useful for certain heading

effects that are quite common in print typography, where a heading will appear as

part of a paragraph of text.

</p>

However, there is a slight difference between run-in boxes and the markup example. Even though run-
in boxes are formatted as inline boxes within another element, they still inherit properties from their
parent element in the document, not the element into which they're placed. Let's extend our example
to include an enclosing div and some color:

<div style="color: silver;">

<h3 style="display: run-in; border: 1px dotted; font-size: 125%;

 font-weight: bold;">Run-in Elements</h3>

<p style="border-top: 1px solid black; padding-top: 0.5em; color: black;">

Another interesting block/inline hybrid is the value <code>run-in</code>, introduced

in CSS2, which has the ability to take block-level elements and make them an inline

part of a following element.

In this situation, the h3 will be silver, not black, as illustrated in Figure 7-54 . That's because it inherits

the color value from its parent element before it gets inserted into the paragraph.

Figure 7-54. Run-in elements inherit from their source parents

The important thing to remember is that run-in will work only if the box after the run-in box is block-

level. If it is not, then the run-in box itself will be made block-level. Thus, given the following markup,
the h3 will remain or even become block-level, since the display value for the table element is
(oddly enough) table :

<h3 style="display: run-in;">Prices</h3>

<table>

<tr><th>Apples</th><td>$0.59</td></tr>

<tr><th>Peaches</th><td>$0.79</td></tr>

<tr><th>Pumpkin</th><td>$1.29</td></tr>

<tr><th>Pie</th><td>$6.99</td></tr>

</table>

It's unlikely that an author would ever apply the value run-in to a naturally inline element, but if this
happens, the element will most likely generate a block-level box. For example, the em element in the

following markup would become block-level because a block-level box does not follow it:

<p>

This is a really odd thing to do, but you could do it

if you were so inclined.

</p>

At the time of this writing, very few contemporary browsers offer support for
run-in .

7.4.3.1 Computed values

The computed value of display can change if an element is floated or positioned. It can also change
when declared for the root element. In fact, the values display , position , and float interact in

interesting ways.

If an element is absolutely positioned, the value of float is set to none . For either floated or

absolutely positioned elements, the computed value is determined by the declared value, as shown in
Table 7-1 .

Table 7-1. Computed display values

Declared value
Computed

value

inline-table table

inline , run-in , table-row-group , table-column , table-column-group ,
table-header-group , table-footer-group , table-row , table-cell , table-
caption , inline-block

block

All others As specified

In the case of the root element, declaring either of the values inline-table or table results in a
computed value of table , whereas declaring none results in the same computed value. All other
display values are computed to be block .

 < Day Day Up >

 < Day Day Up >

7.5 Summary

Although some aspects of the CSS formatting model may seem counterintuitive at first, they begin to
make sense the more one works with them. In many cases, rules that seem nonsensical or even
idiotic turn out to exist in order to prevent bizarre or otherwise undesirable document displays. Block-
level elements are in many ways easy to understand, and affecting their layout is typically a simple
task. Inline elements, on the other hand, can be trickier to manage, as a number of factors come into
play, not least of which is whether the element is replaced or nonreplaced. Now that we've
established the underpinnings of document layout, let's turn our attention to seeing how the various
layout properties are used. This effort will span several chapters, and we'll start with the most
common box properties: padding, borders, and margins.

 < Day Day Up >

 < Day Day Up >

Chapter 8. Padding, Borders, and Margins
If you're like the vast majority of web designers, your pages all use tables for layout. You design
them this way because, of course, tables can be used to create sidebars and to set up a complicated
structure for an entire page's appearance. You might even use tables for simpler tasks, like putting
text in a colored box with a border. When you think about it, though, you shouldn't need a table for
such simple tasks. If you want only a paragraph with a red border and a yellow background,
shouldn't creating it be easier than wrapping a single-cell table around it?

The authors of CSS felt it should, indeed, be easier, so they devoted a great deal of attention to
allowing you to define borders for paragraphs, headings, divs, anchors, images-darned near

everything a web page can contain. These borders can set an element apart from others, accentuate
its appearance, mark certain kinds of data as having been changed, or any number of other things.

CSS also lets you define regions around an element that control how the border is placed in relation
to the content and how close other elements can get to that border. Between the content of an
element and its border, we find the padding of an element, and beyond the border, the margins.
These properties affect how the entire document is laid out, of course, but more importantly, they
very deeply affect the appearance of a given element.

 < Day Day Up >

 < Day Day Up >

8.1 Basic Element Boxes

As we discussed in Chapter 7, all document elements generate a rectangular box called the element
box, which describes the amount of space that an element occupies in the layout of the document.
Therefore, each box influences the position and size of other element boxes. For example, if the first
element box in the document is an inch tall, then the next box will begin at least an inch below the
top of the document. If the first element box is changed and made to be two inches tall, every
following element box will shift downward an inch, and the second element box will begin at least two
inches below the top of the document, as shown in Figure 8-1.

Figure 8-1. How one element affects all elements

By default, a visually rendered document is composed of a number of rectangular boxes that are
distributed such that they don't overlap each other. Also, within certain constraints, these boxes take
up as little space as possible, while still maintaining a sufficient separation to make clear which
content belongs to which element.

Boxes can overlap if they have been manually positioned, and visual overlap
can occur if negative margins are used on normal-flow elements.

In order to fully understand how margins, padding, and borders are handled, you must clearly
understand the box model (also explained in the previous chapter). For reference, I'll include the box
model diagram from the last chapter (see Figure 8-2).

Figure 8-2. The CSS box model

8.1.1 Width and Height

As Figure 8-2 illustrates, the width of an element is defined to be the distance from the left inner
edge to the right inner edge, and the height is the distance from the inner top to the inner bottom.

width

Values

<length> | <percentage> | auto | inherit

Initial value

auto

Applies to

block-level and replaced elements

Inherited

no

Percentages:

refer to the width of the containing block

Computed value:

for auto and percentage values, as specified; otherwise, an absolute length, unless
the property does not apply to the element (then auto)

height

Values

<length> | auto | inherit

Initial value

auto

Applies to

block-level and replaced elements

Inherited

no

Percentages

calculated with respect to the height of the containing block

Computed value

for auto and percentage values, as specified; otherwise, an absolute length, unless
the property does not apply to the element (then auto)

One important note about these two properties: they don't apply to inline nonreplaced elements. For
example, if you try to declare a height and width for a hyperlink, CSS-conformant browsers must

ignore those declarations. Assume that the following rule applies:

a:link {color: red; background: silver; height: 15px; width: 60px;}

You'll end up with red links on a silver background whose height and width are determined by the
content of the links. They will not be 15 pixels tall by 60 pixels wide.

In the course of this chapter, we'll keep the discussion simple by assuming that the height of an
element is always calculated automatically. If an element is eight lines long, and each line is an eighth
of an inch tall, then the height of the element is one inch. If it's 10 lines tall, then the height is 1.25
inches. In either case, the height is determined by the content of the element, not by the author. It's
rarely the case that elements in the normal flow have a set height.

Historical Problems

Prior to Version 6, Internet Explorer for Windows did not act as CSS demands with regard
to width and height. The two major differences are:

IE/Win took width and height to define the dimensions of the visible element box,
not the content of the element box. If you defined an element to have a width of
400px, then IE6 would make the distance from the left outer border edge to the right
outer border edge 400 pixels. In other words, IE/Win used width to describe the

total of the element's content area, left and right padding, and left and right border.
CSS3 includes proposals to let the author decide what width and height mean.

IE/Win applied width and height to inline nonreplaced elements. For example, if you
applied width and height to a hyperlink, it would be drawn according to the supplied

values.

Both of these behaviors were fixed in IE6, but only in "standards" mode. If IE6 renders a
document in "quirks" mode, it will still use the previously described behaviors.

8.1.2 Margins Versus Padding

Element boxes provide only small amounts of space between elements. There are three ways to
generate additional space around elements: you can add padding, margins, or a combination of
padding and margins. Under certain circumstances, the choice doesn't really matter. If an element
has a background, however, your choice is already made, because the background will extend into
the padding but not the margin.

Thus, the amount of padding and margin you assign to a given element will influence where the
background of the element will end. If you set background colors for the elements involved, as
illustrated in Figure 8-3, the difference becomes clear. The elements with padding have extra
background, as it were, whereas those with margins do not.

Figure 8-3. Paragraphs with different margins and padding, with
backgrounds to illustrate the differences

In the end, deciding how to set margins and padding is up to the designer, who has to balance the
various possibilities against the intended effect and pick the best alternative. In order to be able to
make these choices, of course, it helps to know which properties you can use.

 < Day Day Up >

 < Day Day Up >

8.2 Margins

The separation between most normal-flow elements occurs because of element margins. Setting a
margin creates extra "blank space" around an element. "Blank space" generally refers to an area in
which other elements cannot also exist and in which the parent element's background is visible. For
example, Figure 8-4 shows the difference between two paragraphs without any margins, and the
same two paragraphs with some margins.

Figure 8-4. Paragraphs with, and without, margins

The simplest way to set a margin is by using the property margin.

margin

Values

[<length> | <percentage> | auto]{1,4} | inherit

Initial value

not defined

Applies to

all elements

Inherited

no

Percentages:

refer to the width of the containing block

Computed value:

see individual properties

The effects of setting auto margins were discussed in detail in Chapter 7, so we will not repeat the

discussion here. Besides, it's more common to set length values for margins. Suppose you want to
set a quarter-inch margin on h1 elements, as illustrated in Figure 8-5. (A background color has been

added so you can clearly see the edges of the content area.)

h1 {margin: 0.25in; background-color: silver;}

Figure 8-5. Setting a margin for h1 elements

This sets a quarter-inch of blank space on each side of an h1 element. In Figure 8-5, dashed lines

represent the blank space, but the lines are purely illustrative and would not actually appear in a web
browser.

margin can accept any length of measure, whether in pixels, inches, millimeters, or ems. However,
the default value for margin is effectively 0 (zero), so if you don't declare a value, by default, no

margin should appear.

In practice, however, browsers come with preassigned styles for many elements, and margins are no
exception. For example, in CSS-enabled browsers, margins generate the "blank line" above and
below each paragraph element. Therefore, if you don't declare margins for the p element, the

browser may apply some margins on its own-so even if you don't declare margins for an element,
some might appear. Whatever you declare will override the default styles, of course.

Finally, it's possible to set a percentage value for margin. The details of this value type will be

discussed in Section 8.2.2.

8.2.1 Length Values and Margins

As stated before, any length value can be used in setting the margins of an element. It's simple
enough, for example, to apply a 10-pixel whitespace around paragraph elements. The following rule
gives paragraphs a silver background and a 10-pixel margin, as shown in Figure 8-6:

p {background-color: silver; margin: 10px;}

Figure 8-6. Comparative paragraphs

(Again, the background color helps show the content area, and the dashed lines are for illustrative
purposes only.) As Figure 8-6 demonstrates, 10 pixels of space have been added to each side of the
content area. The result is somewhat similar to using the hspace and vspace attributes in HTML. In
fact, you can use margin to set extra space around an image. Let's say you want one em of space

surrounding all images:

img {margin: 1em;}

That's all it takes.

At times, you might desire a different amount of space on each side of an element. That's simple as
well. If you want all h1 elements to have a top margin of 10 pixels, a right margin of 20 pixels, a

bottom margin of 15 pixels, and a left margin of 5 pixels, here's all you need:

h1 {margin: 10px 20px 15px 5px;}

The order of the values is important, and follows this pattern:

margin: top right bottom left

A good way to remember this pattern is to keep in mind that the four values go clockwise around the
element, starting from the top. The values are always applied in this order, so to get the effect you
want, you have to arrange the values correctly.

An easy way to remember the order in which sides must be declared, other
than thinking of it as being clockwise from the top, is to keep in mind that
getting the sides in the correct order helps you avoid "TRouBLe"-that is,
TRBL, for "Top Right Bottom Left."

It's also possible to mix up the types of length value you use. You aren't restricted to using a single
length type in a given rule, as shown here:

h2 {margin: 14px 5em 0.1in 3ex;} /* value variety! */

Figure 8-7 shows you, with a little extra annotation, the results of this declaration.

Figure 8-7. Mixed-value margins

8.2.2 Percentages and Margins

As I mentioned earlier, it's possible to set percentage values for the margins of an element.
Percentages are computed in relation to the width of the parent element, so they change if the
parent element's width changes in some way. For example, assume the following, which is illustrated
in Figure 8-8:

p {margin: 10%;}

<div style="width: 200px; border: 1px dotted;">

<p>This paragraph is contained within a DIV that has a width of 200 pixels,

so its margin will be 10% of the width of the paragraph's parent (the DIV).

Given the declared width of 200 pixels, the margin will be 20 pixels on

all sides.</p>

</div>

<div style="width: 100px; border: 1px dotted;">

<p>This paragraph is contained within a DIV with a width of 100 pixels,

so its margin will still be 10% of the width of the paragraph's parent.

There will, therefore, be half as much margin on this paragraph as that

on the first paragraph.</p>

</div>

Figure 8-8. Parent widths and percentages

By contrast, consider the case of elements without a declared width. In such cases, the overall width
of the element box (including margins) is dependent on the width of the parent element. This leads

to the possibility of "fluid" pages, where the margins of elements enlarge or reduce to match the
actual size of the parent element (or display canvas). If you style a document so that its elements
use percentage margins, then as the user changes the width of a browser window, the margins will
expand or shrink to fit. The design choice is up to you.

You may have noticed something odd about the paragraphs in Figure 8-8. Not only did their side
margins change according to the width of their parent elements, but so did their top and bottom
margins. That's the desired behavior in CSS. Refer back to the property definition, and you'll see that
percentage values are defined to be relative to the width of the parent element. This applies to the
top and bottom margins as well as to the left and right. Thus, given the following styles and markup,
the top margin of the paragraph will be 50px:

div p {margin-top: 10%;}

<div style="width: 500px;">

<p>This is a paragraph, and its top margin is 10% the width of its parent

element.</p>

</div>

If the width of the div changes, the top margin of the paragraph will, too. Seem strange? Consider

that most elements in the normal flow are (as we are assuming) as tall as necessary to contain their
descendant elements, including margins. If an element's top and bottom margins were a percentage
of the parent, an infinite loop could result where the parent's height was increased to accomodate the
top and bottom margins, which would then have to increase to match the new height, and so on.
Rather than simply ignore percentages for top and bottom margins, the specification authors decided
to make it relate to the width of the parent, which does not change based on the width of its
descendants.

The treatment of percentage values for top and bottom margins is different for
positioned elements; see Chapter 10 for more details.

It's also possible to mix percentages with length values. Thus, to set h1 elements to have top and

bottom margins of one-half em, and side margins that are 10% the width of the browser window, you
can declare the following, illustrated in Figure 8-9:

h1 {margin: 0.5em 10% 0.5em 10%;}

Figure 8-9. Mixed margins

Here, although the top and bottom margins will stay constant in any situation, the side margins will
change based on the width of the browser window. Of course, we're assuming that all h1 elements
are children of the body element and that body is as wide as the browser window. Plainly stated, the
side margins of h1 elements will be 10% the width of the h1's parent element.

Let's revisit that rule for a moment:

h1 {margin: 0.5em 10% 0.5em 10%;}

Seems a little redundant, doesn't it? After all, you have to type in the same pair of values twice.
Fortunately, CSS offers an easy way to avoid this.

8.2.3 Replicating Values

Sometimes, the values you're entering for margin get a little repetitive:

p {margin: 0.25em 1em 0.25em 1em;}

You don't have to keep typing in pairs of numbers like this, though. Instead of the preceding rule, try
this:

p {margin: 0.25em 1em;}

These two values are enough to take the place of four. But how? CSS defines a few rules to
accommodate fewer than four values for margin. These are:

If the value for left is missing, use the value provided for right.

If the value for bottom is missing, use the value provided for top.

If the value for right is missing, use the value provided for top.

If you prefer a more visual approach, take a look at the diagram shown in Figure 8-10.

Figure 8-10. Value replication pattern

In other words, if three values are given for margin, the fourth (left) is copied from the second

(right). If two values are given, the fourth is copied from the second, and the third (bottom) from

the first (top). Finally, if only one value is given, all the other sides copy that value.

This simple mechanism allows authors to supply only as many values as necessary, as shown here:

h1 {margin: 0.25em 0 0.5em;} /* same as '0.25em 0 0.5em 0' */

h2 {margin: 0.15em 0.2em;} /* same as '0.15em 0.2em 0.15em 0.2em' */

p {margin: 0.5em 10px;} /* same as '0.5em 10px 0.5em 10px' */

p.close {margin: 0.1em;} /* same as '0.1em 0.1em 0.1em 0.1em' */

The method presents a small drawback, which you're bound to eventually encounter. Suppose you
want to set the top and left margins for h1 elements to be 10 pixels, and the bottom and right

margins to be 20 pixels. In that case, you have to write the following:

h1 {margin: 10px 20px 20px 10px;} /* can't be any shorter */

You get what you want, but it takes a while to get it all in. Unfortunately, there is no way to cut down
on the number of values needed in such a circumstance. Let's take another example, one where you
want all of the margins to be auto-except for the left margin, which should be 3em:

h2 {margin: auto auto auto 3em;}

Again, you get the effect you want. The problem is that typing auto gets a little tedious. All you want

to do is affect the margin on one side of the element, which leads us to the next topic.

8.2.4 Single-Side Margin Properties

Fortunately, there's a way to assign a value to the margin on a single side of an element. Let's say
you only want to set the left margin of h2 elements to be 3em. Instead of using the typing-intensive
margin, you could take this approach:

h2 {margin-left: 3em;}

margin-left is one of four properties devoted to setting the margins on each of the four sides of an

element box. Their names should come as little surprise.

margin-top, margin-right, margin-bottom, margin-left

Values

<length> | <percentage> | auto | inherit

Initial value

0

Applies to

all elements

Inherited

no

Percentages:

refer to the width of the containing block

Computed value

for percentages, as specified; otherwise, the absolute length

Using any one of these properties lets you set a margin on that side only, without directly affecting
any of the other margins.

It's possible to use more than one of these single-side properties in a single rule; for example:

h2 {margin-left: 3em; margin-bottom: 2em;

 margin-right: 0; margin-top: 0;

 background: silver;}

As you can see in Figure 8-11, the margins are set as you want them. Of course, in this case, it might
have been easier to use margin after all:

h2 {margin: 0 0 2em 3em;}

Figure 8-11. More than one single-side margin

Whether you use single-side properties or shorthand, you'll get the same result. In general, once
you're trying to set margins for more than one side, it's easier to simply use margin. From the

standpoint of your document's display, however, it doesn't really matter which approach you use, so
choose whichever is easiest for you.

8.2.5 Negative and Collapsed Margins

As was discussed in detail in Chapter 7, it's possible to set negative margins for an element. This can
cause the element's box to stick out of its parent or to overlap other elements without violating the
box model. Consider these rules, which are illustrated in Figure 8-12:

div {border: 1px dotted gray; margin: 1em;}

p {margin: 1em; border: 1px dashed silver;}

p.one {margin: 0 -1em;}

p.two {margin: -1em 0;}

Figure 8-12. Negative margins in action

In the first case, the math works out such that the paragraph's computed width plus its right and left
margins are exactly equal to the width of the parent div. So, the paragraph ends up two ems wider

than the parent element without actually being "wider" (from a mathematical point of view). In the
second case, the negative top and bottom margins effectively reduce the computed height of the
element and move its top and bottom outer edges inward, which is how it ends up overlapping the
paragraphs before and after it.

Combining negative and positive margins is actually very useful. For example, you can make a
paragraph "punch out" of a parent element by being creative with positive and negative margins, or
you can create a Mondrian effect with several overlapping or randomly placed boxes, as shown in
Figure 8-13:

div {background: silver; border: 1px solid;}

p {margin: 1em;}

p.punch {background: white; margin: 1em -1px 1em 25%;

 border: 1px solid; border-right: none; text-align: center;}

p.mond {background: #333; color: white; margin: 1em 3em -3em -3em;}

Figure 8-13. Punching out of a parent

Thanks to the negative bottom margin for the "mond" paragraph, the bottom of its parent element is
pulled upward, allowing the paragraph to stick out of the bottom of its parent.

Speaking of top and bottom margins, it's also important to remember that vertically adjacent
margins in the normal flow will collapse, a topic we covered in the previous chapter. Margin collapsing
is at work in practically every document you style. For example, here's a simple rule:

p {margin: 15px 0;}

This will cause one paragraph to follow another with 15 pixels of "margin space" between them. If
margins didn't collapse, there would be 30 pixels of space between two adjacent paragraphs, but that
behavior wouldn't be what authors expect.

This does, however, mean that you need to be careful about how you style margins. Most likely,
you'll want to close up the space between a heading and the following paragraph. Because
paragraphs in HTML documents have a top margin, it isn't enough to set the bottom margin for the
heading as zero; you must also eliminate the top margin of the paragraph. This is simple to do with
CSS2's adjacent-sibling selector:

h2 {margin-bottom: 0;}

h2 + p {margin-top: 0;}

Unfortunately, browser support for adjacent-sibling selectors is (as of this writing) limited enough that
most users will see a 1-em space between the heading and a following paragraph. You can still get
the desired effect without using CSS2 selectors, but you'll have to be a little tricky:

h2 {margin-bottom: 0;}

p {margin: 0 0 1em;}

This will actually remove a top margin from all paragraphs, but since they also all have 1em bottom

margins, the desired interparagraph separation will hold, as shown in Figure 8-14.

Figure 8-14. Intelligently setting margins

This works because the usual 1-em separation between paragraphs is a result of margin collapsing.
Thus, if you take away one of those margins-the top margin, in this case-the visual result will be
the same as if you'd left the margin in place.

8.2.6 Margins and Inline Elements

Margins can also be applied to inline elements, although the effects are a little different. Let's say you
want to set top and bottom margins on strongly emphasized text:

strong {margin-top: 25px; margin-bottom: 50px;}

This is allowed in the specification, but since you're applying the margins to an inline nonreplaced
element, it will have absolutely no effect on the line height. Since margins are effectively transparent,
the above declaration will have no visual effect whatsoever. This happens because margins on inline
nonreplaced elements don't change the line height of an element.

The only properties that can change the distance between lines containing only
text are line-height, font-size, and vertical-align, as described in

Chapter 7.

The above facts are true only for the top and bottom sides of inline nonreplaced elements; the left
and right sides are a different story altogether. We'll start by considering the simple case of a small
inline nonreplaced element within a single line. Here, if you set values for the left or right margin,
they will be visible, as Figure 8-15 makes clear (so to speak):

strong {margin-left: 25px; background: silver;}

Figure 8-15. An inline nonreplaced element with a left margin

Note the extra space between the end of the word just before the inline nonreplaced element and the
edge of the inline element's background. You can add that extra space to both ends of the inline if
you want:

strong {margin: 25px; background: silver;}

As expected, Figure 8-16 shows a little extra space on the right and left sides of the inline element,
and no extra space above or below it.

Figure 8-16. An inline nonreplaced element with a 25-pixel margin

Now, when an inline nonreplaced element stretches across multiple lines, the situation changes a bit.
Figure 8-17 shows what happens when an inline nonreplaced element with a margin is displayed
across multiple lines:

strong {margin: 25px; background: silver;}

Figure 8-17. An inline nonreplaced element with a 25-pixel margin
displayed across two lines of text

The left margin is applied to the beginning of the element and the right margin to the end of it.
Margins are not applied to the right and left side of each line. Also, you can see that, if not for the
margins, the line may have broken after "text" instead of after "strongly emphasized." Margins only
affect line-breaking by changing the point at which the element's content begins within a line.

The situation gets even more interesting when we apply negative margins to inline nonreplaced
elements. The top and bottom of the element aren't affected, and neither are the heights of lines, but
the left and right ends of the element can overlap other content, as depicted in Figure 8-18:

strong {margin: -25px; background: silver;}

Figure 8-18. An inline nonreplaced element with a negative margin

Replaced elements represent yet another story: margins set for them do affect the height of a line,
either increasing or reducing it depending on the value for the top and bottom margin. The left and
right margins of an inline replaced element act the same as for a nonreplaced element. Figure 8-19
shows a series of different effects on layout from margins set on inline replaced elements.

Figure 8-19. Inline replaced elements with differing margin values

Historical Margin Problems

As useful as margins are, a number of problems can arise with their use-all of them
centered around Navigator 4.x, unsurprisingly.

The first hitch is that Navigator 4.x added margin rules to its default margins instead of
replacing its default values. For example, consider:

h1 {margin-bottom: 0;}

p {margin-top: 0;}

NN4.x will display the elements with the usual blank space between them because it's
adding the zero values to its own default margins. If you want to overcome this space,
you can always use negative margins, such as setting a -1em top margin on the

paragraph. The problem with this solution is that it won't work universally. A CSS-
conformant browser will then overlap the text, since it replaces the top margin of the
paragraph.

The problem gets worse, unfortunately. If you apply margins to inline elements, your
layout will more or less shatter. NN4.x assumes that a margin on any element, inline or
not, refers to the left edge of the browser window. This is utterly, completely wrong.
Unfortunately, if you have a lot of NN4.x visitors, the use of margins on inline elements is a
very risky proposition and not one to be taken lightly. Fortunately, it's easy to hide CSS
from NN4.x, so that you can style your documents without worrying about NN4.x messing
them up.

 < Day Day Up >

 < Day Day Up >

8.3 Borders

Inside the margins of an element are its borders. The border of an element is simply one or more
lines that surround the content and padding of an element. Thus, the background of the element will
stop at the outer border edge, since the background does not extend into the margins, and the
border is just inside the margin.

Every border has three aspects: its width, or thickness; its style, or appearance; and its color. The
default value for the width of a border is medium, which is not explicitly defined but usually works out

to be two pixels. Despite this, the reason you don't usually see borders is that the default style is
none, which prevents them from existing. If a border has no style, then it may as well not exist, so it

doesn't. (This lack of existence can also reset the width value, but we'll get to that in a little while.)

Finally, the default border color is the foreground color of the element itself. If no color has been
declared for the border, then it will be the same color as the text of the element. If, on the other
hand, an element has no text-let's say it has a table that contains only images-the border color for
that table will be the text color of its parent element (thanks to the fact that color is inherited). That
element is likely to be body, div, or another table. Thus, if a table has a border, and the body is its

parent, given this rule:

body {color: purple;}

by default, the border around the table will be purple (assuming the user agent doesn't set a color

for tables). Of course, to get that border to appear, you have to do a little work first.

8.3.1 Borders and Backgrounds

The CSS specification strongly implies that the background of an element extends to the outside edge
of the border, since it talks about the borders being drawn "on top of the background of the
element." This is important because some borders are "intermittent"-for example, dotted and
dashed borders-and the element's background should appear in the spaces between the visible
portions of the border.

When CSS2 was released, it said that the background extends only into the padding, not the borders.
This was later corrected, and CSS2.1 explicitly states that the element's background is the
background of the content, padding, and border areas. Most browsers are in agreement with the
CSS2.1 definition, although some older browsers may act differently. Background color issues are
discussed in more detail in Chapter 9.

8.3.2 Borders with Style

We'll start with border styles, which are the most important aspect of a border-not because they
control the appearance of the border (although they certainly do that) but because without a style,

there wouldn't be any border at all.

border-style

Values

[none | hidden | dotted | dashed | solid | double | groove | ridge | inset |
outset]{1,4} | inherit

Initial value

not defined for shorthand properties

Applies to

all elements

Inherited

no

Computed value

see individual properties (border-top-style, etc.)

Note

HTML user agents are only required to support solid and none; the rest of the
values (except for hidden) may be interpreted as solid

CSS defines 10 distinct non-inherit styles for the property border-style, including the default
value of none. The styles are demonstrated in Figure 8-20.

Figure 8-20. Border styles

The style value hidden is equivalent to none, except when applied to tables, where it's used for

border-conflict resolution. (See Chapter 11 for more details.)

The most unpredictable border style is double. It's defined such that the width of the two lines, plus
the width of the space between them, is equal to the value of border-width (discussed in the next

section). However, the CSS specification doesn't say whether one of the lines should be thicker than
the other, or if they should be the same width, or if the space should be thicker or thinner than the
lines. All of these things are left up to the user agent to decide, and the author has no way to
influence the decision.

All the borders shown in Figure 8-20 are based on a color value of gray, which makes all of the

visual effects easier to see. The look of a border style is always based in some way on the color of the
border, although the exact method may vary between user agents. For example, Figure 8-21
illustrates two different ways of rendering an inset border.

Figure 8-21. Two valid ways of rendering inset

So let's assume you want to define a border style for images that are inside any unvisited hyperlink.
You might make them outset, so they have a "raised button" look, as depicted in Figure 8-22:

a:link img {border-style: outset;}

Figure 8-22. Applying an outset border to a hyperlinked image

Again, the color of the border is based on the element's value for color, which in this circumstance is

likely to be blue (although we can't really show that in print). This is because the image is contained
with a hyperlink, and the foreground color of hyperlinks is usually blue. If you so desired, you could
change that color to silver, like this:

a:link img {border-style: outset; color: silver;}

The border will now be based on the light grayish silver, since that's now the foreground color of

the image-even though the image doesn't actually use it, it's still passed on to the border. We'll talk
about another way to change border colors later in this chapter.

8.3.2.1 Multiple styles

It's possible to define more than one style for a given border. For example:

p.aside {border-style: solid dashed dotted solid;}

The result is a paragraph with a solid top border, a dashed right border, a dotted bottom border, and
a solid left border.

Again we see the top-right-bottom-left order of values, just as we saw in our discussion of setting
different margins with multiple values. All the same rules about value replication apply to border
styles, just as they did with margins and padding. Thus, the following two statements would have the
same effect, as depicted in Figure 8-23:

p.new1 {border-style: solid dashed none;}

p.new2 {border-style: solid dashed none dashed;}

Figure 8-23. Equivalent style rules

8.3.2.2 Single-side styles

There may be times when you want to set border styles for just one side of an element box, rather
than all four. That's where the single-side border style properties come in.

border-top-style, border-right-style, border-bottom-style, border-
left-style

Values

none | hidden | dotted | dashed | solid | double | groove | ridge | inset |
outset | inherit

Initial value

none

Applies to

all elements

Inherited

no

Computed value

as specified

Single-side border style properties are fairly self-explanatory. If you want to change the style for the
bottom border, for example, you use border-bottom-style.

It's not uncommon to see border used in conjunction with a single-side property. Suppose you want

to set a solid border on three sides of a heading, but not have a left border, as shown in Figure 8-24.

Figure 8-24. Removing the left border

There are two ways to accomplish this, each one equivalent to the other:

h1 {border-style: solid solid solid none;}

 /* the above is the same as the below */

h1 {border-style: solid; border-left-style: none;}

What's important to remember is that if you're going to use the second approach, you have to place
the single-side property after the shorthand, as is usually the case with shorthands. This is because
border-style: solid is actually a declaration of border-style: solid solid solid solid. If you
put border-style-left: none before the border-style declaration, the shorthand's value will
override the single-side value none.

You may have noticed that your border examples so far have used borders of exactly the same
width. This is because you didn't define a width, so it defaulted to a certain value. Next, you'll find out
about that default, and much more.

8.3.3 Border Widths

Once you've assigned a border a style, the next step is to give it some width, using the property
border-width.

border-width

Values

[thin | medium | thick | <length>]{1,4} | inherit

Initial value

not defined for shorthand properties

Applies to

all elements

Inherited

no

Computed value

see individual properties (border-top-style, etc.)

You can also use one of its cousin properties.

border-top-width, border-right-width, border-bottom-width,
border-left-width

Values

thin | medium | thick | <length> | inherit

Initial value

medium

Applies to

all elements

Inherited

no

Computed value

absolute length; 0 if the style of the border is none or hidden

Each of these properties is used to set the width on a specific border side, of course, just as with the
margin properties.

As of CSS2.1, border widths cannot be given percentage values.

There are four ways to assign width to a border: you can give it a length value such as 4px or 0.1em
or use one of three keywords. These keywords are thin, medium (the default value), and thick.

These keywords don't necessarily correspond to any particular width but are simply defined in
relation to one another. According to the specification, thick is always wider than medium, which is in
turn always wider than thin.

However, the exact widths are not defined, so one user agent could set them to be equivalent to 5px,
3px, and 2px, while another sets them to be 3px, 2px, and 1px. No matter what width the user agent

uses for each keyword, it will be the same throughout the document, regardless of where the border
occurs. So, if medium is the same as 2px, then a medium-width border will always be two pixels wide,
whether the border surrounds an h1 or a p element. Figure 8-25 illustrates one way to handle these

three keywords, as well as how they relate to each other and to the content they surround.

Figure 8-25. The relation of border-width keywords to each other

Let's suppose a paragraph has margins, a background color, and a border style set:

p {margin: 5px; background-color: silver;

 border-style: solid;}

The border's width is, by default, medium. You can change that easily enough:

p {margin: 5px; background-color: silver;

 border-style: solid; border-width: thick;}

Of course, border widths can be taken to fairly ridiculous extremes, such as setting 50-pixel borders,
as depicted in Figure 8-26:

p {margin: 5px; background-color: silver;

 border-style: solid; border-width: 50px;}

Figure 8-26. Really wide borders

It's also possible to set widths for individual sides, using two familiar methods. The first is to use any
of the specific properties mentioned at the beginning of the section, such as border-bottom-width.
The other way is to use value replication in border-width, which is illustrated in Figure 8-27:

h1 {border-style: dotted; border-width: thin 0;}

p {border-style: solid; border-width: 15px 2px 7px 4px;}

Figure 8-27. Value replication and uneven border widths

8.3.3.1 No border at all

So far, we've talked only about using a visible border style such as solid or outset. Let's consider
what happens when you set border-style to none:

p {margin: 5px; border-style: none; border-width: 20px;}

Even though the border's width is 20px, the style is set to none. In this case, not only does the

border's style vanish, so does its width. The border simply ceases to be. Why?

If you'll remember, the terminology used earlier in the chapter was that a border with a style of none

does not exist. Those words were chosen very carefully because they help explain what's going on
here. Since the border doesn't exist, it can't have any width, so the width is automatically set to 0

(zero), no matter what you try to define. After all, if a drinking glass is empty, you can't really
describe it as being half-full of nothing. You can discuss the depth of a glass's contents only if it has
actual contents. In the same way, talking about the width of a border makes sense only in the
context of a border that exists.

This is important to keep in mind because it's a common mistake to forget to declare a border style.
This leads to all kinds of author frustration because, at first glance, the styles appear correct. Given

the following rule, though, no h1 element will have a border of any kind, let alone one that's 20 pixels

wide:

h1 {border-width: 20px;}

Since the default value of border-style is none, failure to declare a style is exactly the same as
declaring border-style: none. Therefore, if you want a border to appear, you need to declare a

border style.

8.3.4 Border Colors

Compared to the other aspects of borders, setting the color is pretty easy. CSS uses the single
property border-color, which can accept up to four color values at one time.

border-color

Values

[<color> | transparent]{1,4} | inherit

Initial value

not defined for shorthand properties

Applies to

all elements

Inherited

no

Computed value

see individual properties (border-top-color, etc.)

If there are less than four values, value replication takes effect. So if you want h1 elements to have
thin black top and bottom borders with thick gray side borders, and medium gray borders around p

elements, the following markup will suffice, with the result shown in Figure 8-28:

h1 {border-style: solid; border-width: thin thick; border-color: black gray;}

p {border-style: solid; border-color: gray;}

Figure 8-28. Borders have many aspects

A single color value will be applied to all four sides, of course, as with the paragraph in the previous
example. On the other hand, if you supply four color values, you can get a different color on each
side. Any type of color value can be used, from named colors to hexadecimal and RGB values:

p {border-style: solid; border-width: thick;

 border-color: black rgb(25%,25%,25%) #808080 silver;}

As I mentioned earlier in the chapter, if you don't declare a color, the default color is the foreground
color of the element. Thus, the following declaration will be displayed as shown in Figure 8-29:

p.shade1 {border-style: solid; border-width: thick; color: gray;}

p.shade2 {border-style: solid; border-width: thick; color: gray;

 border-color: black;}

Figure 8-29. Border colors based on the element's foreground and the
value of the border-color property

The result is that the first paragraph has a gray border, having taken the value gray from the

foreground color of the paragraph The second paragraph, however, has a black border because that
color was explicitly assigned using border-color.

There are single-side border color properties as well. They work in much the same way as the single-
side properties for style and width. One way to give headings a solid black border with a solid gray
right border is as follows:

h1 {border-style: solid; border-color: black; border-right-color: gray;}

border-top-color, border-right-color, border-bottom-color,
border-left-color

Values

<color> | transparent | inherit

Initial value

the value of color for the element

Applies to

all elements

Inherited

no

Computed value

if no value is specified, use the computed value of the property color for the same

element; otherwise, as specified

8.3.4.1 Transparent borders

As you remember, if a border has no style, then it has no width. There are, however, situations
where you'll want to create an invisible border. This is where the border color value transparent

(introduced in CSS2) comes in. This value is used to create an invisible border that has width.

Let's say you want a set of three links to have borders that are invisible by default, but look inset
when the link is hovered. You can accomplish this by making the borders transparent in the
nonhovered case:

a:link, a:visited {border-style: solid; border-width: 5px;

 border-color: transparent;}

a:hover {border-color: gray;}

This will have the effect shown in Figure 8-30.

Figure 8-30. Using transparent borders

In a sense, transparent lets you use borders as if they were extra padding, with the additional

benefit of being able to make them visible should you so choose. They act as padding because the
background of the element extends into the border area, assuming there is a visible background.

Support for transparent is not present in IE/Win. It will instead base the
border color on the element's color value.

8.3.5 Shorthand Border Properties

Unfortunately, shorthand properties such as border-color and border-style aren't always as
helpful as you'd think. For example, you might want to apply a thick, gray, solid border to all h1

elements, but only along the bottom. If you limit yourself to the properties we've discussed so far,
you'll have a hard time applying such a border. Here are two examples:

h1 {border-bottom-width: thick; /* option #1 */

 border-bottom-style: solid;

 border-bottom-color: gray;}

h1 {border-width: 0 0 thick; /* option #2 */

 border-style: none none solid;

 border-color: gray;}

Neither is really convenient, given all the typing involved. Fortunately, a better solution is available:

h1 {border-bottom: thick solid gray;}

This will apply the values to the bottom border alone, as shown in Figure 8-31, leaving the others to
their defaults. Since the default border style is none, no borders appear on the other three sides of

the element.

Figure 8-31. Setting a bottom border with a shorthand property

As you may have already guessed, there are a total of four such shorthand properties.

border-top, border-right, border-bottom, border-left

Values

[<border-width> || <border-style> || <border-color>] | inherit

Initial value

not defined for shorthand properties

Applies to

all elements

Inherited

no

Computed value

see individual properties (border-width, etc.)

It's possible to use these properties to create some complex borders, such as those shown in Figure
8-32:

h1 {border-left: 3px solid gray;

 border-right: black 0.25em dotted;

 border-top: thick silver inset;

 border-bottom: double rgb(33%,33%,33%) 10px;}

Figure 8-32. Very complex borders

As you can see, the order of the actual values doesn't really matter. The following three rules will
yield exactly the same border effect:

h1 {border-bottom: 3px solid gray;}

h2 {border-bottom: solid gray 3px;}

h3 {border-bottom: 3px gray solid;}

You can also leave out some values and let their defaults kick in, like this:

h3 {color: gray; border-bottom: 3px solid;}

Since no border color is declared, the default value (the element's foreground) is applied instead. Just
remember that if you leave out a border style, the default value of none will prevent your border

from existing.

By contrast, if you set only a style, you will still get a border. Let's say you simply want a top border
style of dashed and you're willing to let the width default to medium and the color be the same as the

text of the element itself. All you need in such a case is the following markup (shown in Figure 8-33):

p.roof {border-top: dashed;}

Figure 8-33. Dashing across the top of an element

Another thing to note is that since each of these "border-side" properties apply only to a specific side,
there isn't any possibility of value replication-it wouldn't make any sense. There can be only one of
each type of value: that is, only one width value, only one color value, and only one border style. So
don't try to declare more than one value type:

h3 {border-top: thin thick solid purple;} /* two width values--WRONG */

In such a case, the entire statement will be invalid and a user agent would ignore it altogether.

8.3.6 Global Borders

Now, we come to the shortest shorthand border property of all: border.

border

Values

[<border-width> || <border-style> || <border-color>] | inherit

Initial value

refer to individual properties

Applies to

all elements

Inherited

no

Computed value

as specified

This property has the advantage of being very compact, although that brevity introduces a few
limitations. Before we worry about that, let's see how border works. If you want all h1 elements to

have a thick, silver border, it's very simple. This declaration would be displayed as shown in Figure 8-
34:

h1 {border: thick silver solid;}

Figure 8-34. A really short border declaration

The values are applied to all four sides. This is certainly preferable to the next-best alternative, which
would be:

h1 {border-top: thick silver solid;

 border-bottom: thick silver solid;

 border-right: thick silver solid;

 border-left: thick silver solid;} /* same as previous example */

The drawback with border is that you can define only "global" styles, widths, and colors. In other
words, the values you supply for border will apply to all four sides equally. If you want the borders to

be different for a single element, you'll need to use some of the other border properties. Of course,
it's possible to turn the cascade to your advantage:

H1 {border: thick silver solid;

 border-left-width: 20px;}

The second rule overrides the width value for the left border assigned by the first rule, thus replacing
thick with 20px, as you can see in Figure 8-35.

Figure 8-35. Using the cascade to one's advantage

You still need to take the usual precautions with shorthand properties: if you omit a value, the default
will be filled in automatically. This can have unintended effects. Consider the following:

h4 {border-style: dashed solid double;}

h4 {border: medium green;}

Here, you've failed to assign a border-style in the second rule, which means that the default value of
none will be used, and no h4 elements will have any border at all.

8.3.7 Borders and Inline Elements

Dealing with borders and inline elements should sound pretty familiar since the rules are largely the
same as those that cover margins and inline elements, as well as material covered in Chapter 7. Still,

I'll briefly touch on the topic again.

First, no matter how thick you make your borders on inline elements, the line height of the element
won't change. Let's set top and bottom borders on boldfaced text:

strong {border-top: 10px solid gray; border-bottom: 5px solid silver;}

Once more, this syntax is allowed in the specification, but it will have absolutely no effect on the line
height. However, since borders are visible, they'll be drawn-as you can see for yourself in Figure 8-
36.

Figure 8-36. Borders on inline nonreplaced elements

The borders have to go somewhere. That's where they went.

Again, all of this is true only for the top and bottom sides of inline elements; the left and right sides
are a different story. If you apply a left or right border, not only will they be visible, but they'll
displace the text around them, as you can see in Figure 8-37:

strong {border-left: 25px double gray; background: silver;}

Figure 8-37. An inline nonreplaced element with a left border

With borders, just as with margins, the browser's calculations for line-breaking are not directly
affected by any box properties set for inline elements. The only effect is that the space taken up by
the borders may shift portions of the line over a bit, which may in turn change which word is at the
end of the line.

There are very few compatibility problems with CSS borders. The most
distressing is the fact that Navigator 4.x won't draw a border around the
padding area of a block-level element but instead inserts some space between
the padding and the border. Speaking of Navigator 4.x, it is extremely
dangerous to set borders-or any other box properties-on inline elements.
This is as true for borders as it is for margins, and for much the same reasons
(noted earlier in the chapter).

 < Day Day Up >

 < Day Day Up >

8.4 Padding

Between the borders and the content area, we find the padding of the element box. It is no surprise
that the simplest property used to affect this area is called padding.

padding

Values

[<length> | <percentage>]{1,4} | inherit

Initial value

not defined for shorthand elements

Applies to

all elements

Inherited

no

Percentages:

refer to the width of the containing block

Computed value

see individual properties (padding-top, etc.)

Note

padding can never be negative

As you can see, this property accepts any length value, or a percentage value. So if you want all h1

elements to have 10 pixels of padding on all sides, it's this easy:

h1 {padding: 10px; background-color: silver;}

On the other hand, you might want h1 elements to have uneven padding and h2 elements to have

regular padding:

h1 {padding: 10px 0.25em 3ex 3cm;} /* uneven padding */

h2 {padding: 0.5em 2em;} /* values replicate to the bottom and left sides */

It's a little tough to see the padding if that's all you add, though, so let's include a background color,
as shown in Figure 8-38:

h1 {padding: 10px 0.25em 3ex 3cm; background: gray;}

h2 {padding: 0.5em 2em; background: silver;}

Figure 8-38. Uneven padding with background colors

As Figure 8-38 illustrates, the background of an element extends into the padding. As we discussed
before, it also extends to the outer edge of the border, but the background has to go through the
padding before it even gets to the border.

By default, elements have no padding. The separation between paragraphs, for example, has
traditionally been enforced with margins alone. It's also the case that, without padding, a border on
an element will come very close to the content of the element itself. Thus, when putting a border on
an element, it's usually a good idea to add some padding as well, as Figure 8-39 illustrates.

Figure 8-39. The effect of padding on bordered block-level elements

Even if you aren't using borders, padding can behave in unique ways. Consider the following rules:

p {margin: 1em 0; padding: 1em 0;}

p.one, p.three {background: gray;}

p.two, p.four {background: silver;}

p.three, p.four {margin: 0;}

Here we have a situation where all four paragraphs will have 1em top and bottom padding, and two
out of four have 1em top and bottom margins. The results of this style sheet are shown in Figure 8-

40.

Figure 8-40. Differences between padding and margins

The first two paragraphs have their padding and are separated by one em of space since their
margins collapse. The second and third paragraphs are also separated by one em of space because of
the bottom margin on the second paragraph. The third and fourth paragraphs are not separated
because they have no margins. Note the distance between the content area of the last two
paragraphs, however: it's two ems because padding does not collapse. The differing background
colors show where one ends and the other begins.

Therefore, using padding to separate the content areas of elements can be trickier than using
margins, although it's not without its rewards. For example, to keep paragraphs the traditional "one
blank line" apart with padding, you'd have to write:

p {margin: 0; padding: 0.5em 0;}

The half-em top and bottom padding of each paragraph butt up against each other and total an em of
separation. Why would you bother to do this? Because then you could insert separation borders
between the paragraphs, should you so choose, and side borders will touch to form the appearance
of a solid line. Both these effects are illustrated in Figure 8-41:

p {margin: 0; padding: 0.5em 0; border-bottom: 1px solid gray;

 border-left: 3px double black;}

Figure 8-41. Using padding instead of margins

8.4.1 Percentage Values and Padding

As I mentioned earlier, it's possible to set percentage values for the padding of an element. As with
margins, percentage padding values are computed in relation to the width of the parent element, so
they can change if the parent element's width changes in some way. For example, assume the
following, which is illustrated in Figure 8-42:

p {padding: 10%; background-color: silver;}

<div style="width: 200px;">

<p>This paragraph is contained within a DIV that has a width of 200 pixels,

so its padding will be 10% of the width of the paragraph's parent element.

Given the declared width of 200 pixels, the padding will be 20 pixels on

all sides.</p>

</div>

<div style="width: 100px;">

<p>This paragraph is contained within a DIV with a width of 100 pixels,

so its padding will still be 10% of the width of the paragraph's parent.

There will, therefore, be half as much padding on this paragraph as that

on the first paragraph.</p>

</div>

Figure 8-42. Padding, percentages, and the widths of parent

Note that the top and bottom padding are consistent with the right and left padding; in other words,
the percentage of top and bottom padding is calculated with respect to the element's width, not its
height. You've seen this before, of course-in Section 8.2, in case you don't remember-but it is
worth reviewing again, just to see how it operates.

8.4.2 Single-Side Padding

You guessed it: there are properties that let you set the padding on a single side of the box, without
affecting the others.

padding-top, padding-right, padding-bottom, padding-left

Values

<length> | <percentage> | inherit

Initial value

0

Applies to

all elements

Inherited

no

Percentages

refer to the width of the containing block

Computed value

for percentage values, as specified; for length values, the absolute length

Note

padding can never be negative

These properties operate as you'd expect. For example, the following two rules will give the same
amount of padding:

h1 {padding: 0 0 0 0.25in;}

h2 {padding-left: 0.25in;}

8.4.3 Padding and Inline Elements

There is one major difference between margins and padding when it comes to inline elements. Let's
start with right and left padding, by way of illustration. Here, if you set values for the left or right
padding, they will be visible, as Figure 8-43 makes apparent:

strong {padding-left: 10px; padding-right: 10px; background: silver;}

Figure 8-43. Padding on an inline nonreplaced element

Note the extra space background that appears on either end of the inline nonreplaced element.
There's your padding. As with margins, the left padding is applied to the beginning of the element,
and the right padding to the end of it; however, padding is not applied to the right and left side of
each line. The same holds true for replaced elements as well, although of course such elements don't
break across lines.

In theory, an inline nonreplaced element with a background color and padding could have a
background that extends above and below the element:

strong {padding-top: 0.5em; background-color: silver;}

Figure 8-44 gives you an idea of what this might look like.

Figure 8-44. More padding on an inline nonreplaced element

The line height isn't changed, of course, but since padding does extend the background, it should be
visible, right? Right. It is visible, and it ends up overlapping the lines that come before-that's the
expected result.

8.4.4 Padding and Replaced Elements

This may come as a surprise, but it is possible to apply padding to replaced elements, although there
are still limitations at the time of this writing.

The most surprising case is that you can apply padding to an image, like this:

img {background: silver; padding: 1em;}

Regardless of whether the replaced element is block-level or inline, the padding will surround its
content, and the background color will fill into that padding, as shown in Figure 8-45. You can also
see in Figure 8-45 that padding will push an element's border away from its content.

Figure 8-45. Padding replaced elements

As of CSS2.1, however, there was some confusion over what to do about styling form elements such
as input. It is not entirely clear where the padding of a checkbox resides, for example. Therefore, as

of this writing, some browsers-such as Mozilla- ignore padding (and other forms of styling) for form
elements. There is hope that a CSS specification will emerge that describes form-element styling in
the future.

The other possible limitation is that many older browsers did not apply padding to images, including
IE5 for Windows.

 < Day Day Up >

 < Day Day Up >

8.5 Summary

The ability to apply margins, borders, and padding to any element is one of the things that sets CSS
so far above traditional web markup. In the past, enclosing a heading in a colored, bordered box
meant wrapping the heading in a table, which is a really bloated and awful way to create so simple an
effect. It is this sort of power that makes CSS so compelling.

 < Day Day Up >

 < Day Day Up >

Chapter 9. Colors and Backgrounds
Remember the first time you changed the colors of a web page? Instead of the old black text on a
gray background with blue links, all of a sudden you could use any combination of colors you
desired-perhaps light blue text on a black background with lime green hyperlinks. From there, it was
just a short hop to colored text and, eventually, even to multiple colors for the text in a page, thanks
to . Once you could add background images, too, just about anything became

possible, or so it seemed. CSS takes color and backgrounds even further, letting you apply many
different colors and backgrounds to a single page, and all without a single FONT or TABLE tag.

 < Day Day Up >

 < Day Day Up >

9.1 Colors

When you're designing a page, you need to plan it out before you start. That's generally true in any
case, but with colors, it's even more so. If you're going to make all hyperlinks yellow, will that clash
with the background color in any part of your document? If you use too many colors, will the user be
too overwhelmed (hint: Yes)? If you change the default hyperlink colors, will users still be able to
figure out where your links are? (For example, if you make both regular text and hyperlink text the
same color, it will be much harder to spot links-in fact, almost impossible if the links aren't
underlined.)

Despite the added planning, the ability to change the colors of elements is something almost every
author will want to use, probably quite often. Used properly, colors can really strengthen the
presentation of a document. As an example, let's say you have a design where all h1 elements should
be green, most h2 elements should be blue, and all hyperlinks should be dark red. In some cases,
you'll want h2 elements to be dark blue, however, because they're associated with different types of
information. The simplest way to handle this is to assign a class to each h2 that needs to be dark blue

and declare the following:

h1 {color: green;}

h2 {color: blue;}

h2.dkblue {color: navy;}

a {color: maroon;} /* a good dark red color */

However, it's actually better to pick class names that are descriptive of the type
of information contained within, not of the visual effect you're trying to achieve.
For example, let's say that you want dark blue to be applied to all h2 elements
that are subsection headings. It's preferable to pick a class name like subsec or
even sub-section, which have the advantage of actually meaning something,

and, more importantly, they're independent of any presentational concepts.
After all, you might decide later to make all subsection titles dark red instead of
dark blue, and the statement h2.dkblue {color: maroon;} is a little silly.

From this simple example, you can see that it's generally better to plan ahead when you're using
styles, so you can use all of the tools at your disposal. For example, suppose you add a navigational
bar to the page in the preceding example. Within this bar, hyperlinks should be yellow, not dark red.
If the bar is marked with an ID of navbar, then you need to add only this rule:

#navbar a {color: yellow;}

This will change the color of hyperlinks within the navigation bar, without affecting other hyperlinks
throughout the document.

There is really only one type of color in CSS, and that's a plain, solid color. If you set the color of a
document to be red, then the text will be the same shade of red. HTML works the same way, of
course. When you declared <BODY LINK="blue" VLINK="blue"> back in the HTML 3.2 days, you

expected that all hyperlinks would be the same shade of blue, no matter where they were in the
document.

Don't change that thinking when you're using CSS. If you use CSS to set the color of all hyperlinks
(both visited and unvisited) to be blue, then that's what they'll be. In the same way, if you use styles
to set the background of the body to be green, then the entire body background will be the same

shade of green.

In CSS, you can set both the foreground and background colors of any element, from the body down

to emphasis and hyperlink elements, and almost everything in between-list items, entire lists,
headings, table cells, and even (in a limited fashion) images. In order to understand how this works,
though, it's important to understand what's in the foreground of an element and what isn't.

Let's start with the foreground itself; generally speaking, it's the text of an element, although the
foreground also includes the borders around the element. Thus, there are two ways to directly affect
the foreground color of an element: by using the color property and by setting the border colors

using one of a number of border properties, as discussed in the previous chapter.

 < Day Day Up >

 < Day Day Up >

9.2 Foreground Colors

The easiest way to set the foreground color of an element is with the property color.

color

Values

<color> | inherit

Initial value

user agent-specific

Applies to

all elements

Inherited

yes

Computed value

as specified

This property accepts as a value any valid color type, as discussed in Chapter 4, such as #FFCC00 or
rgb(100%,80%,0%), as well as the system-color keywords described in Chapter 13.

For nonreplaced elements, color sets the color of the text in the element, as illustrated in Figure 9-

1:

<p style="color: gray;">This paragraph has a gray foreground.</p>

<p>This paragraph has the default foreground.</p>

Figure 9-1. Declared color versus default color

In Figure 9-1, the default foreground color is black. That doesn't have to be the
case since users might have set their browsers (or other user agents) to use a
different foreground (text) color. If the default text were set to green, the
second paragraph in the preceding example would be green, not black-but the
first paragraph would still be gray.

You need not restrict yourself to such simple operations, of course. There are plenty of ways to use
color. You might have some paragraphs that contain text warning the user of a potential problem. In
order to make this text stand out more than usual, you might decide to color it red. Simply apply a
class of warn to each paragraph that contains warning text (<p class="warn">) and the following

rule:

p.warn {color: red;}

In the same document, you might decide that any unvisited links within a warning paragraph should
be green:

p.warn {color: red;}

p.warn a:link {color: green;}

Then you change your mind, deciding that warning text should be dark gray and that links in such
text should be medium gray. The preceding rules need only be changed to reflect the new values, as
illustrated in Figure 9-2:

p.warn {color: #666;}

p.warn a:link {color: #AAA;}

Figure 9-2. Changing colors

Another use for color is to draw attention to certain types of text. For example, boldfaced text is
already fairly obvious, but you could give it a different color to make it stand out even further-let's
say, maroon:

b, strong {color: maroon;}

Then you decide that you want all table cells with a class of highlight to contain light yellow text:

td.highlight {color: #FF9;}

Of course, if you don't set a background color for any of your text, you run the risk that a user's
setup won't combine well with your own. For example, if a user has set his browser's background to
be a pale yellow, like #FFC, then the previous rule would generate light yellow text on a pale yellow

background. It's therefore generally a good idea to set foreground and background colors together.
(We'll talk about background colors later in the chapter.)

Watch out for color usage in Navigator 4, which replaces values for color that

it doesn't recognize. The replacements aren't exactly random, but they're
certainly not pretty. For example, invalidValue comes out as a dark blue, and
inherit, a valid CSS2 value, will come out as a really awful shade of yellow-
green. In other circumstances, transparent backgrounds will come out as

black.

9.2.1 Replacing Attributes

There are many uses for color, the most basic of which is to replace the HTML 3.2 BODY attributes
TEXT, LINK, ALINK, and VLINK. With the anchor pseudo-classes, color can replace these BODY

attributes outright. The first line in the following example can be rewritten with the subsequent CSS,
and it will have the result depicted in Figure 9-3:

<body text="black" link="#808080" alink="silver" vlink="#333333">

body {color: black;} /* replacement css */

a:link {color: #808080;}

a:active {color: silver;}

a:visited {color: #333333;}

Figure 9-3. Replacing BODY attributes with CSS

While this may seem like a lot of extra typing, consider two things. First, this is a major improvement
over the old method of BODY attributes, in which you could make changes only at the document level.

Back then, if you wanted some links to be medium gray and others to be a relatively dark gray, you
couldn't do it with the BODY attributes. Instead, you'd have to use on every

single anchor that needed to be relatively dark. Not so with CSS; now, you can just add a class to all

anchors that need a shade of gray and modify your styles accordingly:

body {color: black;}

a:link {color: #808080;} /* medium gray */

a.external:link {color: silver;}

a:active {color: silver;}

a:visited {color: #333;} /* a very dark gray */

This sets all anchors with a class of external to be silver instead of medium gray. They'll still be a

dark gray once they've been visited, unless you add a special rule for that as well:

body {color: black;}

a:link {color: #808080;} /* medium gray */

a.external:link {color: #666;}

a:active {color: silver;}

a:visited {color: #333;} /* a very dark gray */

a.external:visited {color: black;}

This will make all external links medium gray before they're visited and black once they've been
visited, while all other links will be dark gray when visited and medium gray when unvisited.

9.2.2 Affecting Borders

The value of color can also affect the borders around an element. Let's assume you've declared

these styles, which have the result shown in Figure 9-4:

p.aside {color: gray; border-style: solid;}

Figure 9-4. Border colors are taken from the content's color

The element <p class="aside"> has gray text and a gray medium-width solid border. This is

because the foreground color is applied to the borders by default. The basic way to override this is
with the property border-color:

p.aside {color: gray; border-style: solid; border-color: black;}

This will make the text gray, but the borders will be black in color. Any value set for border-color
will always override the value of color.

The borders, incidentally, allow you to affect the foreground color of images. Since images are
already composed of colors, you can't really affect them using color, but you can change the color of
any border that appears around the image. This can be done using either color or border-color.
Therefore, the following rules will have the same visual effect on images of class type1 and type2, as

shown in Figure 9-5:

img.type1 {color: gray; border-style: solid;}

img.type2 {border-color: gray; border-style: solid;}

Figure 9-5. Setting the border color for images

9.2.3 Affecting Form Elements

Setting a value for color should (in theory, anyway) apply to form elements. Declaring select

elements to have dark gray text should be as simple as this:

select {color: rgb(33%,33%,33%);}

This might also set the color of the borders around the edge of the select element, or it might not.

It all depends on the user agent and its default styles.

You could also set the foreground color of input elements, although, as you can see in Figure 9-6,

doing so would apply that color to all inputs, from text to radio button to checkbox inputs:

select {color: rgb(33%,33%,33%);}

input {color: gray;}

Figure 9-6. Changing form element foregrounds

Note in Figure 9-6 that the text color next to the checkboxes is still black. This is because you've
assigned styles only to elements like input and select, not normal paragraph (or other) text.

CSS1 offered no way to distinguish between different types of input elements. So, if you wanted

checkboxes to be a different color than radio buttons, you had to assign them classes in order to get
the desired result:

input.radio {color: #666;}

input.check {color: #CCC;}

<input type="radio" name="r2" value="a" class="radio">

<input type="checkbox" name="c3" value="one" class="check">

In CSS2 and later, it's a little easier to distinguish between different elements based on which
attributes they have, thanks to attribute selectors:

input[type="radio"] {color: #333;}

input[type="checkbox"] {color: #666;}

<input type="radio" name="r2" value="a ">

<input type="checkbox" name="c3" value="one ">

Attribute selectors allow you to dispense with the classes altogether, at least in this instance.
Unfortunately, many user agents don't support attribute selectors, so the use of classes may be
necessary for a while.

Navigator 4 won't apply colors to form elements, but setting the colors for form
elements works in Internet Explorer 4 and 5, and Opera 3.5+. However, many
versions of other browsers don't allow form-element styling either, due to
uncertainty over how they should be styled.

9.2.4 Inheriting Color

As the definition of color indicates, the property is inherited. This makes sense since if you declare p
{color: gray;}, you probably expect that any text within that paragraph will also be gray, even if

it's emphasized or boldfaced or whatever. Of course, if you want such elements to be different colors,
that's easy enough, as illustrated in Figure 9-7:

em {color: gray;}

p {color: black;}

Figure 9-7. Different colors for different elements

Since color is inherited, it's theoretically possible to set all of the ordinary text in a document to a
color, such as red, by declaring body {color: red;}. This should make all text that is not otherwise

styled (such as anchors, which have their own color styles) red. However, it's still possible to find
browsers that have predefined colors for things like tables, which prevent body colors from inheriting
into table cells. In such browsers, since a color value is defined by the browser for table elements,

the browser's value will take precedence over the inherited value. This is annoying and unnecessary,
but, luckily, it's simple to overcome (usually) by using selectors that list various table elements. For
example, in order to make all your table content red along with your document's body, try this:

body, table, td, th {color: red;}

This will generally solve the problem. Note that using such selectors is unnecessary with most
modern browsers, which have long since fixed inheritance bugs that plagued them in earlier versions.

 < Day Day Up >

 < Day Day Up >

9.3 Backgrounds

The background area of an element consists of all of the space behind the foreground out to the
outer edge of the borders; thus, the content box and the padding are all part of an element's
background, which and the borders are drawn on top of the background.

CSS lets you apply a solid color or create moderately sophisticated effects using background images,
and its capabilities in this area far outstrip those of HTML.

9.3.1 Background Color

It's possible to declare a color for the background of an element, in a fashion very similar to setting
the foreground color. For this, you use the property background-color, which accepts

(unsurprisingly) any valid color or a keyword that makes the background transparent.

background-color

Values

<color> | transparent | inherit

Initial value

transparent

Applies to

all elements

Inherited

no

Computed value

as specified

If you want the color to extend out a little bit from the text in the element, simply add some padding
to the mix, as illustrated in Figure 9-8:

p {background-color: gray; padding: 10px;}

Figure 9-8. Backgrounds and padding

You can set a background color for just about any element, from body all the way down to inline
elements such as em and a. background-color is not inherited. Its default value is transparent,

which makes sense: if an element doesn't have a defined color, then its background should be
transparent so that the background of its ancestor elements will be visible.

One way to picture the inheritance situation is to imagine a clear plastic sign mounted to a textured
wall. The wall is still visible through the sign, but this is not the background of the sign, it's the
background of the wall (in CSS terms, anyway). Similarly, if you set the canvas to have a
background, it can be seen through all of the elements in the document that don't have their own
backgrounds. They don't inherit the background; it is visible through them. This may seem like an
irrelevant distinction, but as you'll see in the section on background images, it's actually a critical
difference.

Most of the time, you'll have no reason to use the keyword transparent since that's the default

value. On occasion, though, it can be useful. Imagine that a user has set his browser to make all links
have a white background. When you design your page, you set anchors to have a white foreground,
and you don't want a background on those anchors. In order to make sure your design choice
prevails, you would declare:

a {color: white; background-color: transparent;}

If you left out the background color, your white foreground would combine with the user's white
background to yield totally unreadable links. This is an unlikely example, but it's still possible.

The potential combination of author and reader styles is the reason why a CSS
validator will generate warnings such as, "You have no background-color with
your color." It's trying to remind you that author-user color interaction can
occur, and your rule has not taken this possibility into account. Warnings do not
mean your styles are invalid: only errors prevent validation.

9.3.1.1 Historical issues

So, setting a background color is a pretty simple thing-except for one small warning: Navigator 4
gets the placement of background colors completely wrong. Instead of applying the background color
to the entire content box and padding, the color appears only behind the text itself, as shown in
Figure 9-9.

Figure 9-9. Navigator 4.x's incorrect behavior

Let me reiterate: this behavior is totally wrong. To counteract it, you must set a border on the
element, which you can then set to be the same color as the background color of your document:

body {background: silver;}

p {background-color: gray; padding: 0.1px; border: 1px solid silver;}

Note that you must set a border-style for this technique to work. It doesn't matter whether you
use that specific property or simply a value of the border property.

Of course, by doing this, you're setting a border on the element, and that border will show up in
other user agents as well. To top things off, Navigator doesn't handle padding very well, so the
previous example would result in a small amount of blank space between the content box and the
borders. Thankfully, newer browsers don't suffer from such problems.

9.3.1.2 Special effects

Simply by combining color and background-color, you can create some useful effects:

h1 {color: white; background-color: rgb(20%,20%,20%);

 font-family: Arial, sans-serif;}

This example is shown in Figure 9-10.

Figure 9-10. A nifty effect for H1 elements

Of course, there are as many color combinations as there are colors, but I can't show all of them
here-being stuck in a grayscale as we are. Still, I'll try to give you some idea of what you can do.

This style sheet is a little more complicated, as illustrated by Figure 9-11:

body {color: black; background-color: white;}

h1, h2 {color: yellow; background-color: rgb(0,51,0);}

p {color: #555;}

a:link {color: black; background-color: silver;}

a:visited {color: gray; background-color: white;}

Figure 9-11. The results of a more complicated style sheet

This is just the tiniest beginning of what's possible, of course. By all means, try some examples of
your own!

9.3.2 Background Images

Having covered the basics of foreground and background colors, we turn now to the subject of
background images. In HTML 3.2, it was possible to associate an image with the background of the
document by using the BODY attribute BACKGROUND:

<BODY BACKGROUND="bg23.gif">

This caused a user agent to load the file bg23.gif and then "tile" it in the document background,

repeating it in both the horizontal and vertical directions to fill up the entire background of the
document. This effect can be duplicated in CSS, but CSS can do a great deal more than simple tiling
of background images. We'll start with the basics and then work our way up.

9.3.2.1 Using an image

In order to get an image into the background in the first place, use the property background-image.

background-image

Values

<uri> | none | inherit

Initial value

none

Applies to

all elements

Inherited

no

Computed value

absolute URI

The default value of none means about what you'd expect: no image is placed in the background. If

you want a background image, you must give this property a URL value:

body {background-image: url(bg23.gif);}

Due to the default values of other background properties, this will cause the image bg23.gif to be
tiled in the document's background, as shown in Figure 9-12. As you'll discover shortly, though, tiling
isn't the only option.

Figure 9-12. Applying a background image in CSS

It's usually a good idea to specify a background color to go along with your
background image; we'll come back to that concept a little later in the chapter.

You can apply a background image to any element, block-level or inline. Most backgrounds are
applied to body elements, of course, but there's no need to stop there:

p.starry {background-image: url(http://www.site.web/pix/stars.gif);

 color: white;}

a.grid {background-image: url(smallgrid.gif);}

<p class="starry">It's the end of autumn, which means the stars will be

brighter than ever! Join us for

a fabulous evening of planets, stars, nebulae, and more...

As you can see in Figure 9-13, you've applied a background to a single paragraph and no other part
of the document. You can customize even further, such as placing background images on inline
elements like hyperlinks, also depicted in Figure 9-13. Of course, if you want to be able to see the
tiling pattern, the image will probably need to be pretty small. After all, individual letters aren't that
large!

Figure 9-13. Applying background images to block and inline elements

There are a number of ways to employ specific background images. You might place an image in the
background of strong elements in order to make them stand out more. You could fill in the

background of headings with a wavy pattern or with little dots. You can even fill in the cells of tables
with patterns to make them distinct from the rest of the page, as shown in Figure 9-14:

td.nav {background-image: url(darkgrid.gif);}

Figure 9-14. Setting a background image for a table cell

You could even, in theory, apply images to the background of replaced elements such as textareas
and select lists, although not every user agent is good at handling that sort of thing.

Just like background-color, background-image is not inherited-in fact, none of the background

properties are inherited. Remember also that when specifying the URL of a background image, it falls
under the usual restrictions and caveats for url values: a relative URL should be interpreted with

respect to the style sheet, but Navigator 4.x doesn't do this correctly, so absolute URLs may be a
better answer.

9.3.2.2 Why backgrounds aren't inherited

Earlier, I specifically noted that backgrounds are not inherited. Background images demonstrate why
inherited backgrounds would be a bad thing. Imagine a situation where backgrounds were inherited,
and you applied a background image to the body. That image would be used for the background of

every element in the document, with each element doing its own tiling, as shown in Figure 9-15.

Figure 9-15. What inherited backgrounds would do to layout

Note how the pattern restarted at the top left of every element, including the links. This isn't what
most authors would want, and so this is why background properties are not inherited. If you do want
this particular effect for some reason, you can make it happen with a rule like this:

* {background-image: url(yinyang.gif);}

Alternatively, you could use the value inherit like this:

body {background-image: url(yinyang.gif);}

* {background-image: inherit;}

9.3.2.3 Good background practices

Images are laid on top of whatever background color you specify. If you're completely tiling GIF,
JPEG, or other opaque image types, this fact doesn't really make a difference, since a fully tiled
image will fill up the document background, leaving nowhere for the color to "peek through," so to
speak. However, image formats with an alpha channel, such as PNG, can be partially or wholly
transparent, and this will cause the image to be combined with the background color. In addition, if
the image fails to load for some reason, then the user agent will use the background color specified in
place of the image. Consider how the "starry paragraph" example would look if the background image
failed to load, as in Figure 9-16.

Figure 9-16. The consequences of a missing background image

Figure 9-16 demonstrates why it's always a good idea to specify a background color when using a
background image, so that you'll at least get a legible result:

p.starry {background-image: url(http://www.site.web/pix/stars.gif);

 background-color: black; color: white;}

a.grid {background-image: url(smallgrid.gif);}

<p class="starry">It's the end of autumn, which means the stars will be

brighter than ever! Join us for

a fabulous evening of planets, stars, nebulae, and more...

This will fill in a flat black background if the "starry" image can't be rendered for some reason.
Besides, if you have the image do something other than fully tile across the entire background of the
document, you'll need a color to cover the parts that the image doesn't. Speaking of which....

9.3.3 Repeats with Direction

In the old days, if you wanted some kind of "sidebar" background, you had to create a very short, but
incredibly wide, image to place in the background. At one time, a favorite size for these images was
10 pixels tall by 1,500 pixels wide. Most of that image would be blank space, of course; only the left
100 or so pixels contain the "sidebar" image. The rest of the image was basically wasted.

Wouldn't it be much more efficient to create a sidebar image that's 10 pixels tall and 100 pixels wide,
with no wasted blank space, and then repeat it only in the vertical direction? This would certainly
make your design job a little easier, and your users' download times a lot faster. Enter background-
repeat.

background-repeat

Values

repeat | repeat-x | repeat-y | no-repeat | inherit

Initial value

no-repeat

Applies to

all elements

Inherited

no

Computed value

as specified

As you might guess, repeat causes the image to tile in both the horizontal and vertical directions,
just as background images have always done in the past. repeat-x and repeat-y cause the image
to be repeated in the horizontal or vertical directions, respectively, and no-repeat prevents the

image from tiling in any direction.

By default, the background image will start from the top left corner of an element. (We'll see how to
change this later in the chapter.) Therefore, the following rules will have the effect shown in Figure 9-
17:

body {background-image: url(yinyang.gif);

 background-repeat: repeat-y;}

Figure 9-17. Tiling the background image vertically

(I've left out a background color in order to keep the rule short, but remember to include a
background color any time you have a background image.)

Let's assume, though, that you want the image to repeat across the top of the document. Rather
than creating a special image with a whole lot of blank space underneath, you can simply make a
small change to your rule:

body {background-image: url(yinyang.gif);

 background-repeat: repeat-y;}

As Figure 9-18 shows, the image is simply repeated along the x-axis (that is, horizontally) from its
starting position-in this case, the top left corner of the browser window.

Figure 9-18. Tiling horizontally

Finally, you may not want to repeat the background image at all. In this case, you use the value no-
repeat:

body {background-image: url(yinyang.gif);

 background-repeat: no-repeat;}

This value may not seem terribly useful, given that the above declaration would just drop a small

image into the top left corner of the document, but let's try it again with a much bigger symbol, as
shown in Figure 9-19:

body {background-image: url(bigyinyang.gif);

 background-repeat: no-repeat;}

Figure 9-19. Placing a single large background image

The ability to control the repeat direction dramatically expands the range of possible effects. For
example, let's say you want a triple border on the left side of each h1 element in your document. You
can take that concept further and decide to set a wavy border along the top of each h2 element. The

image is colored in such a way that it blends with the background color and produces the wavy effect
shown in Figure 9-20:

h1 {background-image: url(triplebor.gif); background-repeat: repeat-y;}

h2 {background-image: url(wavybord.gif); background-repeat: repeat-x;

 background-color: #CCC;}

Figure 9-20. Bordering elements with background images

Simply by choosing the appropriate image for the job, and employing it in some creative ways, you
can set up some very interesting effects. And that isn't the end of what's possible. Now that you
know how to constrain a background image's repetition, how about moving it around in the
background area?

9.3.4 Background Positioning

Thanks to background-repeat, it's possible to place a large image in the background of a document

and then keep it from repeating. Let's add to that and actually change the image's position in the
background.

background-position

Values

[[<percentage> | <length> | left | center | right] [<percentage>] | <length> |
top | center | bottom]?] || [[left | center | right] || [top | center | bottom]]
| inherit

Initial value

0% 0%

Applies to

block-level and replaced elements

Inherited

no

Percentages:

refer to the corresponding point on both the element and the origin image (see
explanation in Section 9.3.4.2 later in this chapter)

Computed value

the absolute length offsets, if <length> is specified; otherwise, percentage values

For example, you could center a background image in the body element, with the result depicted in

Figure 9-21:

body {background-image: url(bigyinyang.gif);

 background-repeat: no-repeat;

 background-position: center;}

Figure 9-21. Centering a single background image

You've actually placed a single image in the background and then prevented it from being repeated
with the value no-repeat. Every background that includes an image starts with a single image that is
then repeated (or not) according to the value of background-repeat. This starting point is called the

origin image.

The placement of the origin image is accomplished with background-position, and there are several
ways to supply values for this property. First off, there are the keywords top, bottom, left, right,
and center. Usually, these appear in pairs, but (as the previous example shows) this is not always
true. Then there are length values, such as 50px or 2cm, and finally, percentage values. Each type of

value has a slightly different effect on the placement of the background image.

I should mention one more thing, and that's the context in which background images are placed.
CSS2 and CSS2.1 state that background-position is used to place the origin image with respect to

the padding edge of the element. In other words, the image placement context is the inner border
edge, even though the background area extends to the outer border edge. Not every browser places
images properly: some place the origin image with respect to the outer border edge instead of the
inner border edge. In any situation where there is no border, the effect is identical either way.

For those interested in how CSS has changed over the years, CSS1 defined
placement relative to the content area.

Despite image placement context, a fully tiled background image would indeed fill in the border area's
background because a tiled image goes in all four directions. We'll talk about this in more detail later.
First, you need to find out how the origin image can be positioned within the element.

9.3.4.1 Keywords

The image placement keywords are easiest to understand. They have the effects you'd expect from
their names; for example, top right would cause the origin image to be placed in the top right

corner of the element's padding area. Let's go back to the small yin-yang symbol:

p {background-image: url(yinyang.gif);

 background-repeat: no-repeat;

 background-position: top right;}

This will place a nonrepeated origin image in the top right corner of each paragraph's padding.
Incidentally, the result, shown in Figure 9-22, would be exactly the same if the position were declared
as right top. Position keywords can appear in any order (according to the specification), as long as

there are no more than two of them-one for the horizontal and one for the vertical.

Figure 9-22. Placing the background image in the top right corner of
paragraphs

The Netscape 6.x family has a bug that causes it to ignore a rule if the
background-position keywords are in a particular order. To avoid tripping the

bug, make sure your keywords give the horizontal placement first and then the
vertical. Thus, write left center instead of center left.

If only one keyword appears, then the other is assumed to be center. Table 9-1 shows equivalent

keyword statements.

Table 9-1. Position keyword equivalents

Single keyword Equivalent keywords

center center center

top top centercenter top

bottom bottom centercenter bottom

right center rightright center

left center leftleft center

So if you want an image to appear in the top center of every paragraph, you need only declare:

p {background-image: url(yinyang.gif);

 background-repeat: no-repeat;

 background-position: top;}

9.3.4.2 Percentage values

Percentage values are closely related to the keywords, although they behave in a more sophisticated
way. Let's say that you want to center an origin image within its element by using percentage values.
That's easy enough:

p {background-image: url(bigyinyang.gif);

 background-repeat: no-repeat;

 background-position: 50% 50%;}

This causes the origin image to be placed such that its center is aligned with the center of its
element. In other words, the percentage values apply to both the element and the origin image.

In order to understand what I mean, let's examine the process in closer detail. When you center an
origin image in an element, the point in the image that can be described as 50% 50% (the center) is

lined up with the point in the element that can be described the same way. If the image is placed at
0% 0%, its top left corner is placed in the top left corner of the padding area of the element. 100% 100%

causes the origin image's bottom right corner to go into the bottom right corner of the padding area:

p {background-image: url(oransqr.gif);

 background-repeat: no-repeat;

 padding: 5px; border: 1px dotted gray;}

p.c1 {background-position: 0% 0%;}

p.c2 {background-position: 50% 50%;}

p.c3 {background-position: 100% 100%;}

p.c4 {background-position: 0% 100%;}

p.c5 {background-position: 100% 0%;}

Figure 9-23 illustrates these rules.

Figure 9-23. Various percentage positions

Thus, if you want to place a single origin image a third of the way across the element and two-thirds
of the way down, your declaration would be:

p {background-image: url(bigyinyang.gif);

 background-repeat: no-repeat;

 background-position: 33% 66%;}

With these rules, the point in the origin image that is one-third across and two-thirds down from the
top left corner of the image will be aligned with the point that is farthest from the top left corner of
the containing element. Note that the horizontal value always comes first with percentage values. If
you were to switch the percentages in the preceding example, the image would be placed two-thirds
of the way across the element and one-third of the way down.

If you supply only one percentage value, the single value supplied is taken to be the horizontal value,
and the vertical is assumed to be 50%. This is similar to keywords, where if only one keyword is
given, the other is assumed to be center. For example:

p {background-image: url(yinyang.gif);

 background-repeat: no-repeat;

 background-position: 25%;}

The origin image is placed one-quarter of the way across the element's content area and padding
area, and halfway down it, as depicted in Figure 9-24.

Figure 9-24. Declaring only one percentage value means the vertical
position evaluates to 50%

Table 9-2 gives a breakdown of keyword and percentage equivalencies.

Table 9-2. Positional equivalents

Single keyword Equivalent keywords Equivalent percentages

center center center 50% 50%50%

top top centercenter top 50% 0%

bottom bottom centercenter bottom 50% 100%

right center rightright center 100% 50%100%

left center leftleft center 0% 50%0%

 top leftleft top 0% 0%

 top rightright top 100% 0%

 bottom rightright bottom 100% 100%

 bottom leftleft bottom 0% 100%

In case you were wondering, the default values for background-position are 0% 0%, which is
functionally the same as top left. This is why, unless you set different values for the position,

background images always start tiling from the top left corner of the element's padding area.

9.3.4.3 Length values

Finally, we turn to length values for positioning. When you supply lengths for the position of the origin
image, they are interpreted as offsets from the top left corner of the element's padding area. The
offset point is the top left corner of the origin image; thus, if you set the values 20px 30px, the top

left corner of the origin image will be 20 pixels to the right of, and 30 pixels below, the top left corner
of the element's padding area, as shown in Figure 9-25:

p {background-image: url(yinyang.gif);

 background-repeat: no-repeat;

 background-position: 20px 30px;

 border: 1px dotted gray;}

Figure 9-25. Offsetting the background image using length measures

This is quite different than percentage values because the offset is simply from one top left corner to
another. In other words, the top left corner of the origin image lines up with the point specified in the
background-position declaration. You can combine length and percentage values, though, to get a

sort of "best of both worlds" effect. Let's say you need to have a background image that is all the way
to the right side of an element and 10 pixels down from the top, as illustrated in Figure 9-26. As
always, the horizontal value comes first:

p {background-image: url(bg23.gif);

 background-repeat: no-repeat;

 background-position: 100% 10px;

 border: 1px dotted gray;}

Figure 9-26. Mixing percentages and length values

In versions of CSS prior to 2.1, you could not mix keywords with other values.
Thus, top 75% was not valid, and if you used a keyword, you were stuck using

only keywords. CSS2.1 changed to allow this in order to make authoring easier
and also because typical browsers had already allowed it.

If you're using lengths or percentages, you can use negative values to pull the origin image outside of
the element's background area. Consider the example with the very large yin-yang symbol for a
background. At one point, you centered it, but what if you only want part of it visible in the top left
corner of the element's padding area? No problem, at least in theory.

First, assume that the origin image is 300 pixels tall by 300 pixels wide. Then, assume that only the
bottom right third of it should be visible. You can get the desired effect (shown in Figure 9-27) like
this:

p {background-image: url(bigyinyang.gif);

 background-repeat: no-repeat;

 background-position: -200px -200px;

 border: 1px dotted gray;}

Figure 9-27. Using negative length values to position the origin image

Or, say you want just the right half of it to be visible and centered within the element:

p {background-image: url(bigyinyang.gif);

 background-repeat: no-repeat;

 background-position: -150px 50%;

 border: 1px dotted gray;}

Negative percentages are also possible in theory, although there are two issues involved. The first is
the limitations of user agents, which may not recognize negative values for background-position.

The other is that negative percentages are somewhat interesting to calculate. The origin image and
the element are likely to be very different sizes, for one thing, and that can lead to unexpected
effects. Consider, for example, the situation created by the following rule and illustrated in Figure 9-
28:

p {background-image: url(pix/bigyinyang.gif);

 background-repeat: no-repeat;

 background-position: -10% -10%;

 border: 1px dotted gray;

 width: 500px;}

Figure 9-28. Varying effects of negative percentage values

The rule calls for the point outside the origin image defined by -10% -10% to be aligned with a similar

point for each paragraph. The image is 300 x 300 pixels, so we know its alignment point can be
described as 30 pixels above the top of the image, and 30 pixels to the left of its left edge (effectively
-30px and -30px). The paragraph elements are all the same width (500px), so the horizontal

alignment point is 50 pixels to the left of the left edge of their padding areas. This means that each
origin image's left edge will be 20 pixels to the left of the left padding edge of the paragraphs. This is
because the -30px alignment point of the images lines up with the -50px point for the paragraphs.

The difference between the two is 20 pixels.

The paragraphs are of differing heights, however, so the vertical alignment point changes for each
paragraph. If a paragraph is 300 pixels high, to pick a semi-random example, then the top of the
origin image will line up exactly with the top of the element's padding area, because both will have
vertical alignment points of -30px. If a paragraph is 50 pixels tall, then its alignment point would be -
5px and the top of the origin image will actually be 25 pixels below the top of the padding area.

The same issues can arise with positive percentage values-imagine what would happen if you
aligned an origin image to the bottom of an element shorter than the image-so this isn't to say that
you shouldn't use negative values. It's just a reminder that there are, as always, issues to consider.

Throughout this section, every example has had a repeat value of no-repeat. The reason for this is

simple: with only a single background image, it's much easier to see how positioning affects the
placement of the first background image. You don't have to prevent the background image from
repeating, though:

p {background-image: url(bigyinyang.gif);

 background-position: -150px 50%;

 border: 1px dotted gray;}

So, with the background repeating, you can see from Figure 9-29 that the tiling pattern starts with

the position specified by background-position.

Figure 9-29. Use of the background-position property sets the origin of the
tiling pattern

This illustrates once more the concept of the origin image, which is very important to understanding
the next section.

9.3.5 Repeats with Direction (Revisited)

In the previous section on repetition, we explored the values repeat-x, repeat-y, and repeat, and

how they affect the tiling of background images. In each case, however, the tiling pattern always
started from the top left corner of the containing element (e.g., p). This isn't a requirement, of
course; as we've seen, the default values for background-position are 0% 0%. So, unless you

change the position of the origin image, that's where the tiling starts. Now that you know how to
change the position of the origin image, though, you need to figure out how user agents will handle
the situation.

It will be easier to show an example and then explain it. Consider the following markup, which is
illustrated in Figure 9-30:

p {background-image: url(yinyang.gif);

 background-position: center;

 border: 1px dotted gray;}

p.c1 {background-repeat: repeat-y;}

p.c2 {background-repeat: repeat-x;}

Figure 9-30. Centering the origin image and repeating it

So there you have it: stripes running through the center of the elements. It may look wrong, but it
isn't.

The examples shown in Figure 9-30 are correct because the origin image has been placed in the
center of the first p element and then tiled along the y-axis in both directions-in other words, both

up and down. For the second paragraph, the images are repeated to the right and left.

Therefore, setting a large image in the center of the p and then letting it fully repeat will cause it to
tile in all four directions: up, down, left, and right. The only difference background-position makes

is in where the tiling starts. Figure 9-31 shows the difference between tiling from the center of an
element and from its top left corner.

Figure 9-31. The difference between centering a repeat and starting it
from the top left

Note the differences along the edges of the element. When the background repeats from the center,
as in the first paragraph, the grid of yin-yang symbols is centered within the element, resulting in
consistent "clipping" along the edges. In the second paragraph, the tiling begins at the top left corner
of the padding area, so the clipping is not consistent. The variations may seem subtle, but it's likely
that you'll need to use both approaches at some point in your design career.

In case you're wondering, there is no way to control the repeat any more than we've already
discussed. There is no repeat-left, for example, although such a value could be added in some

future version of CSS. For now, you get full tiling, horizontal tiling, vertical tiling, or no tiling at all.

9.3.6 Getting Attached

So, now you can place the origin image for the background anywhere in the background of an
element, and you can control (to a degree) how it tiles. As you may already have realized, though,
placing an image in the center of the body element may mean, given a sufficiently long document,

that the background image won't be initially visible to the reader. After all, a browser provides only a
window onto the document. If the document is too long to be displayed in the window, then the user

can scroll back and forth through the document. The center could be two or three "screens" below
the beginning of the document, or just far enough down to push most of the origin image beyond the
bottom of the browser window.

Furthermore, even if you assume that the origin image is initially visible, it always scrolls with the
document-it'll vanish every time a user scrolls beyond the image's location. Never fear: there is a
way to prevent this scrolling.

background-attachment

Values

scroll | fixed | inherit

Initial value

scroll

Applies to

all elements

Inherited

no

Computed value

as specified

Using the property background-attachment, you can declare the origin image to be fixed with

respect to the viewing area and therefore immune to the effects of scrolling:

body {background-image: url(bigyinyang.gif);

 background-repeat: no-repeat;

 background-position: center;

 background-attachment: fixed;}

Doing this has two immediate effects, as you can see from Figure 9-32. The first is that the origin
image does not scroll along with the document. The second is that the placement of the origin image
is determined by the size of the viewing area, not the size (or placement within the viewing area) of
the element that contains it.

Figure 9-32. Nailing the background in place

In a web browser, the viewing area can change as the user resizes the browser's window. This will
cause the background's origin image to shift position as the window changes size. Figure 9-33 depicts
several views of the same document. So, in a certain sense, the image isn't fixed in place, but it will
remain fixed as long as the viewing area isn't resized.

Figure 9-33. The centering continues to hold

There is only one other value for background-attachment, and that's the default value scroll. As

you'd expect, this causes the background to scroll along with the rest of the document when viewed
in a web browser, and it doesn't necessarily change the origin image's position as the window is
resized. If the document width is fixed (perhaps by assigning an explicit width to the body element),

then resizing the viewing area won't affect the placement of a scroll-attachment origin image at all.

9.3.6.1 Interesting effects

In technical terms, when a background image has been fixed, it is positioned with respect to the

viewing area, not the element that contains it. However, the background will be visible only within its
containing element. This leads to a rather interesting consequence.

Let's say you have a document with a tiled background that actually looks like it's tiled, and an h1
element with the same pattern, only in a different color. Both the body and h1 elements are set to
have fixed backgrounds, resulting in something like Figure 9-34:

body {background-image: url(grid1.gif); background-repeat: repeat;

 background-attachment: fixed;}

h1 {background-image: url(grid2.gif); background-repeat: repeat;

 background-attachment: fixed;}

Figure 9-34. Perfect alignment of backgrounds

How is this perfect alignment possible? Remember, when a background is fixed, the origin element

is positioned with respect to the viewport. Thus, both background patterns begin tiling from the top
left corner of the viewport, not the individual elements. For the body, you can see the entire repeat
pattern. For the h1, however, the only place you can see its background is in the padding and
content of the h1 itself. Since both background images are the same size, and they have precisely

the same origin, they appear to "line up," as shown in Figure 9-34.

This capability can be used to create some very sophisticated effects. One of the most famous
examples is the "complexspiral distorted" demonstration
(http://www.meyerweb.com/eric/css/edge/complexspiral/glassy.html), which is shown in Figure 9-
35.

Figure 9-35. The complexspiral distorted

http://www.meyerweb.com/eric/css/edge/complexspiral/glassy.html

The visual effects are caused by assigning different fixed-attachment background images to non-body

elements. The entire demo is driven by one HTML document, four JPEG images, and a style sheet.
Because all four images are positioned in the top-left corner of the browser window, but are visible
only where they intersect with their elements, the images effectively interleave to create the illusion
of translucent rippled glass.

Internet Explorer for Windows, up through Version 6, does not properly handle
fixed-attachment backgrounds on non-body elements. In other words, you get
the expected effect for a fixed body background, but not for other elements.

This wrecks the alignment effects seen in Figure 9-34 and Figure 9-35.

It is also the case that in paged media, such as printouts, every page generates its own viewport.
Therefore, a fixed-attachment background should appear on every page of the printout. This could be
used for effects such as watermarking all the pages in a document, for example. The problems are
twofold: there is no way to force background images to print with CSS, and not all browsers properly
handle the printing of fixed-attachment backgrounds.

9.3.7 Bringing It All Together

Just as with the font properties, the background properties can all be brought together in a single
shorthand property: background. This property can take a single value from each of the other

background properties, in literally any order.

background

Values

[<background-color> || <background-image> || <background-repeat> ||
<background-attachment> || <background-position>] | inherit

Initial value

refer to individual properties

Applies to

all elements

Inherited

no

Percentages

values are allowed for <background-position>

Computed value

see individual properties

Therefore, the following statements are all equivalent and will have the effect shown in Figure 9-36:

body {background-color: white; background-image: url(yinyang.gif);

 background-position: top left; background-repeat: repeat-y;

 background-attachment: fixed;}

body {background: white url(yinyang.gif) top left repeat-y fixed;}

body {background: fixed url(yinyang.gif) white top left repeat-y;}

body {background: url(yinyang.gif) white repeat-y fixed top left;}

Figure 9-36. Using shorthand

Actually, there is one slight restriction to how the values are ordered in background, which is that if
you have two values for background-position, they must appear together and, if they are length or

percentage values, they must be in the order horizontal first, then vertical. This probably isn't a
surprise, but it is important to remember.

As is the case for shorthand properties, if you leave out any values, the defaults for the relevant
properties are filled in automatically. Thus, the following two are equivalent:

body {background: white url(yinyang.gif;}

body {background: white url(yinyang.gif) top left repeat scroll;}

Even better, there are no required values for background-as long as you have at least one value

present, you can omit all the rest. Therefore, it's possible to set just the background color using the
shorthand property, which is a very common practice:

body {background: white;}

This is perfectly legal, and in some ways preferred, given the reduced number of keystrokes. In
addition, it has the effect of setting all of the other background properties to their defaults, which
means that background-image will be set to none. This helps ensure readability by preventing other

rules (in, for example, the reader style sheet) from setting an image in the background.

Any of the following rules are also legal, as illustrated in Figure 9-37:

body {background: url(yinyang.gif) bottom left repeat-y;}

h1 {background: silver;}

h2 {background: url(h2bg.gif) center repeat-x;}

p {background: url(parabg.gif);}

Figure 9-37. Applying many backgrounds to one document

Note the absence of an image on two of the paragraphs. This is because the styles for type1 and
type2 paragraphs do not include the URL of a background image. Thus, the value of background-
image is reset to its default value none for those two elements.

In older browsers, such as the early versions of Navigator 4, the background

property was supported while many of the individual properties, such as
background-color, were not.

One final reminder: background is a shorthand property, and, as such, its default values can

obliterate previously assigned values for a given element. For example:

h1, h2 {background: gray url(thetrees.jpg) center repeat-x;}

h2 {background: silver;}

Given these rules, h1 elements will be styled according to the first rule. h2 elements will be styled

according to the second, which means they'll just have a flat silver background. No image will be
applied to h2 backgrounds, let alone centered and repeated horizontally. It is more likely that the

author meant to do this:

h1, h2 {background: gray url(trees.jpg) center repeat-x;}

h2 {background-color: silver;}

This lets the background color be changed without wiping out all the other values.

 < Day Day Up >

 < Day Day Up >

9.4 Summary

Setting colors and backgrounds on elements gives authors a great deal of power. The advantage of
CSS over traditional methods is that colors and backgrounds can be applied to any element in a
document-not just table cells, for example, or anything enclosed in a FONT tag. Despite a few bugs in

some implementations, such as Navigator 4's reluctance to apply a background to the entire content
area of an element, backgrounds are very widely used properties. Their popularity isn't too hard to
understand, either, since color is one easy way to distinguish the look of one page from another.

CSS allows for a great deal more in the way of element styling, however: borders that can be placed
on any element, extra margins and padding, and even a way to "float" elements other than images.
We'll get into these concepts in the next chapter.

 < Day Day Up >

 < Day Day Up >

Chapter 10. Floating and Positioning
Sure, CSS makes content look good with font changes, backgrounds, and all the rest, but what about
accomplishing basic layout tasks? Enter floating and positioning. These are the tools by which you
can set up columnar layout, overlap one piece of layout with another, and generally accomplish
everything that so many tables have been used for over the years.

The idea behind positioning is fairly simple. It allows you to define exactly where element boxes will
appear relative to where they would ordinarily be-or relative to a parent element, or another
element, or even to the browser window itself. The power of this feature is both obvious and
surprising. It shouldn't shock you to learn that user agents support this element of CSS2 better than
many others.

Floating, on the other hand, first came to us in CSS1, based on a capability that had been added by
Netscape early in the Web's life. Floating is not exactly positioning, but it certainly isn't normal-flow
layout either. We'll see exactly what this means later in the chapter.

 < Day Day Up >

 < Day Day Up >

10.1 Floating

You are almost certainly acquainted with the concept of floated elements. Ever since Netscape 1, it
has been possible to float images by declaring, for instance, .

This causes an image to float to the right and allows other content (such as text) to "flow around" the
image. The name "floating," in fact, comes from the document "Extensions to HTML 2.0," which
stated:

The additions to your ALIGN options need a lot of explanation. First, the values "left" and
"right". Images with those alignments are an entirely new floating image type.

In the past, it was only possible to float images and, in some browsers, tables. CSS, on the other
hand, lets you float any element, from images to paragraphs to lists. In CSS, this behavior is
accomplished using the property float.

float

Values

left | right | none | inherit

Initial value

none

Applies to

all elements

Inherited

no

Computed value

as specified

For example, to float an image to the left, you could use this markup:

As Figure 10-1 makes clear, the image "floats" to the left side of the browser window and the text
flows around it. This is just what you should expect.

Figure 10-1. A floating image

However, when floating elements in CSS, some interesting issues come up.

10.1.1 Floated Elements

Keep a few things in mind with regard to floating elements. In the first place, a floated element is, in
some ways, removed from the normal flow of the document, although it still affects the layout. In a
manner utterly unique within CSS, floated elements exist almost on their own plane, yet they still
have influence over the rest of the document.

This influence derives from the fact that when an element is floated, other content "flows around" it.
This is familiar behavior with floated images, but the same is true if you float a paragraph, for
example. In Figure 10-2, you can see this effect quite clearly, thanks to the margin added to the
floated paragraph:

p.aside {float: right; width: 15em; margin: 0 1em 1em; padding: 0.25em;

 border: 1px solid;}

Figure 10-2. A floating paragraph

One of the first interesting things to notice about floated elements is that margins around floated

elements do not collapse. If you float an image with 20-pixel margins, there will be at least 20 pixels
of space around that image. If other elements adjacent to the image-and that means adjacent
horizontally and vertically-also have margins, those margins will not collapse with the margins on
the floated image, as you can see in Figure 10-3:

p img {float: left; margin: 25px;}

Figure 10-3. Floating images with margins

To resurrect the paper-and-plastic analogy from Chapter 7, the plastic margins around an image
never overlap the plastic surrounding other floated elements.

If you do float a nonreplaced element, you must declare a width for that element. Otherwise,

according to the CSS specification, the element's width will tend toward zero. Thus, a floated
paragraph could literally be one character wide, assuming one character is the browser's minimum
value for width. If you fail to declare a width value for your floated elements, you could end up with

something like Figure 10-4. (It's unlikely, granted, but still possible.)

Figure 10-4. Floated text without an explicit width

10.1.1.1 No floating at all

There is one other value for float besides left and right. float: none is used to prevent an

element from floating at all.

This might seem a little silly, since the easiest way to keep an element from floating is to simply
avoid declaring a float, right? Well, first of all, the default value of float is none. In other words, the

value has to exist in order for normal, nonfloating behavior to be possible; without it, all elements
would float in one way or another.

Second, you might want to override a certain style from an imported style sheet. Imagine that you're
using a server-wide style sheet that floats images. On one particular page, you don't want those
images to float. Rather than writing a whole new style sheet, you could simply place img {float:
none;} in your document's embedded style sheet. Beyond this type of circumstance, though, there
really isn't much call to actually use float: none.

10.1.2 Floating: The Details

Before we start digging into details of floating, it's important to establish the concept of a containing
block. A floated element's containing block is the nearest block-level ancestor element. Therefore, in
the following markup, the floated element's containing block is the paragraph element that contains
it:

<h1>Test</h1>

<p>

This is paragraph text, but you knew that. Within the content of this

paragraph is an image that's been floated.

The containing block for the floated image is the paragraph.

</p>

We'll return to the concept of containing blocks when we discuss positioning
later in this chapter.

Furthermore, a floated element generates a block box, regardless of the kind of element it is. Thus, if
you float a link, even though the element is inline and would ordinarily generate an inline box, it
generates a block box when floated. It will be laid out and act as if it was, for example, a div. This is
not unlike declaring display: block for the floated element, although it is not necessary to do so.

A series of specific rules govern the placement of a floated element, so let's cover those before
digging into applied behavior. These rules are vaguely similar to those that govern the evaluation of
margins and widths and have the same initial appearance of common sense. They are as follows:

1.

The left (or right) outer edge of a floated element may not be to the left (or right) of the inner
edge of its containing block.

This is straightforward enough. The outer left edge of a left-floated element can only go as far
left as the inner left edge of its containing block; similarly, the furthest right a right-floated
element may go is its containg block's inner right edge, as shown in Figure 10-5. (In this and
subsequent figures, the circled numbers show the position where the markup element actually
appears in relation to the source, and the numbered boxes show the position and size of the
floated visible element.)

1.

Figure 10-5. Floating to the left (or right)

The left (or right) outer edge of a floated element must be to the right (or left) of the right (left)
outer edge of a left-floating (or right-floating) element that occurs earlier in the document's
source, unless the top of the later element is below the bottom of the former.

This rule prevents floated elements from "overwriting" each other. If an element is floated to
the left, and another floated element is already there, the latter element will be placed against
the outer right edge of the previously floated element. If, however, a floated element's top is
below the bottom of all earlier floated images, then it can float all the way to the inner left edge
of the parent. Some examples of this are shown in Figure 10-6.

The advantage of this rule is that all your floated content will be visible since you don't have to
worry about one floated element obscuring another. This makes floating a fairly safe thing to
do. The situation is markedly different when using positioning, where it is very easy to cause
elements to overwrite one another.

2.

Figure 10-6. Keeping floats from overlapping

The right outer edge of a left-floating element may not be to the right of the left outer edge of
any right-floating element to its right. The left outer edge of a right-floating element may not be
to the left of the right outer edge of any left-floating element to its left.

This rule prevents floated elements from overlapping each other. Let's say you have a body that

is 500-pixels wide, and its sole content is two images that are 300-pixels wide. The first is floated
to the right, and the second is floated to the left. This rule prevents the second image from
overlapping the first by 100-pixels. Instead, it is forced down until its top is below the bottom of
the right-floating image, as depicted in Figure 10-7.

3.

Figure 10-7. More overlap prevention

A floating element's top may not be higher than the inner top of its parent. If a floating element
is between two collapsing margins, then the floated element is placed as though it had a block-
level parent element between the two elements.

The first part of this rule is quite simple and keeps floating elements from floating all the way to
the top of the document. The correct behavior is illustrated in Figure 10-8. The second part of
this rule fine-tunes the alignment in situations-for example, when the middle of three
paragraphs is floated. In that case, the floated paragraph is floated as if it had a block-level

4.

parent element (say, a div). This prevents the floated paragraph from moving up to the top of

whatever common parent the three paragraphs share.

Figure 10-8. Unlike balloons, floated elements can't float upward

A floating element's top may not be higher than the top of any earlier floating or block-level
element.

Similar to Rule 4, Rule 5 keeps floated elements from floating all the way to the top of their
parent elements. It is also impossible for a floated element's top to be any higher than the top
of a floated element that occurs earlier. Figure 10-9 is an example of this; here, you can see
that since the second float was forced to be below the first one, the third float's top is even with
the top of the second float, not the first.

5.

Figure 10-9. Keeping floats below their predecessors

A floating element's top may not be higher than the top of any line box that contains a box
generated by an element that comes earlier in the document source.

Similar to Rules 4 and 5, this rule further limits the upward floating of an element by preventing
it from being above the top of a line containing content that precedes the floated element. Let's
say that, right in the middle of a paragraph, there is a floated image. The highest the top of that
image may be placed is the top of the line box from which the image originates. As you can see

6.

in Figure 10-10, this keeps images from floating too far upward.

Figure 10-10. Keeping floats level with their context

A left (or right) floating element that has another floating element to its left (right) may not
have its right outer edge to the right (left) of its containing block's right (left) edge.

In other words, a floating element cannot stick out beyond the edge of its containing element,
unless it's too wide to fit on its own. This prevents a situation where a succeeding number of
floated elements could appear in a horizontal line and far exceed the edges of the containing
block. Instead, a float that would otherwise stick out of its containing block by appearing next to
another one will be floated down to a point below any previous floats, as illustrated by Figure
10-11 (in the figure, the floats start on the next line in order to more clearly illustrate the
principle at work here). This rule first appeared in CSS2, to correct its omission in CSS1.

7.

Figure 10-11. If there isn't room, floats get pushed to a new "line"

A floating element must be placed as high as possible.

Rule 8 is, of course, subject to the restrictions introduced by the previous seven rules.
Historically, browsers aligned the top of a floated element with the top of the line box after the

8.

one in which the image's tag appears. Rule 8, however, implies that its top should be even with
the top of the same line box as that in which its tag appears, assuming there is enough room.
The theoretically correct behaviors are shown in Figure 10-12.

8.

Figure 10-12. Given the other constraints, go as high as possible

Unfortunately, since there is no precisely defined meaning for "as high as
possible" (which could mean, and in fact has been argued to mean, "as high as
conveniently possible"), you cannot rely on consistent behavior even among
browsers that are considered CSS1-conformant. Some browsers will follow
historical practice and float the image down into the next line, while others will
float the image into the current line if there is room to do so.

A left-floating element must be put as far to the left as possible, and a right-floating element as
far to the right as possible. A higher position is preferred to one that is further to the right or
left.

Again, this rule is subject to restrictions introduced in the preceding rules. There are similar
caveats here as in Rule 8, although they are not quite so fuzzy. As you can see from Figure 10-
13, it is pretty easy to tell when an element has gone as far as possible to the right or left.

9.

Figure 10-13. Get as far to the left (or right) as possible

10.1.3 Applied Behavior

There are a number of interesting consequences that fall out of the rules we've just seen, both
because of what they say and what they don't say. The first thing to discuss is what happens when
the floated element is taller than its parent element.

This happens quite often, as a matter of fact. Take the example of a short document, composed of no
more than a few paragraphs and h3 elements, where the first paragraph contains a floated image.
Further, this floated image has a margin of five pixels (5px). You would expect the document to be

rendered as shown in Figure 10-14.

Figure 10-14. Expected floating behavior

Nothing there is unusual, of course, but Figure 10-15 shows what happens when you set the first
paragraph to have a background.

Figure 10-15. Backgrounds and floated elements

There is nothing different about the second example, except for the visible background. As you can
see, the floated image sticks out of the bottom of its parent element. Of course, it did so in the first
example, but it was less obvious there because you couldn't see the background. The floating rules
we discussed earlier address only the left, right, and top edges of floats and their parents. The
deliberate omission of bottom edges requires the behavior in Figure 10-15.

In practice, some browsers do not do this correctly. Instead, they will increase
the height of a parent element so that the floated element is contained within
it, even though this results in a great deal of extra blank space within the
parent element.

CSS2.1 clarified one aspect of floated-element behavior, which is that a floated element will expand to
contain any floated descendants. (Previous versions of CSS were unclear about what should happen.)
Thus, you could contain a float within its parent element by floating the parent, as in this example:

<div style="float: left; width: 100%;">

 The 'div' will stretch around the floated image

 because the 'div' has been floated.

</div>

On a related note, consider backgrounds and their relationship to floated elements that occur earlier
in the document, which is illustrated in Figure 10-16.

Figure 10-16. Element backgrounds "slide under" floated elements

Because the floated element is both within and outside of the flow, this sort of thing is bound to
happen. What's going on? The content of the heading is being "displaced" by the floated element.
However, the heading's element width is still as wide as its parent element. Therefore, its content
area spans the width of the parent and so does the background. The actual content doesn't flow all
the way across its own content area so that it can avoid being obscured behind the floating element.

10.1.3.1 Negative margins

Interestingly, negative margins can cause floated elements to move outside of their parent elements.
This seems to be in direct contradiction to the rules explained earlier, but it isn't. In the same way
that elements can appear to be wider than their parents through negative margins, floated elements
can appear to protrude out of their parents.

Let's consider a floated image that is floated to the left, and that has left and top margins of -15px.
This image is placed inside a div that has no padding, borders, or margins. The result is shown in

Figure 10-17.

Figure 10-17. Floating with negative margins

Contrary to appearances, this does not violate the restrictions on floated elements being placed
outside their parent elements.

Here's the technicality that permits this behavior: a close reading of the rules in the previous section
will show that the outer edges of a floating element must be within the element's parent. However,
negative margins can place the floated element's content such that it effectively overlaps its own
outer edge, as detailed in Figure 10-18.

Figure 10-18. The details of floating up and left with negative margins

The math situation works out something like this: assume the top inner edge of the div is at the pixel

position 100. The browser, in order to figure out where the top inner edge of the floated element
should be, will do this: 100px + (-15px) margin + 0 padding = 85px. Thus, the top inner edge of the

floated element should be at pixel position 85; even though this is higher than the top inner edge of
the float's parent element, the math works out such that the specification isn't violated. A similar line
of reasoning explains how the left inner edge of the floated element can be placed to the left of the
left inner edge of its parent.

Many of you may have an overwhelming desire to cry "Foul!" right about now. Personally, I don't
blame you. It seems completely wrong to allow the top inner edge to be higher than the top outer
edge, for example, but with a negative top margin, that's exactly what you get-just as negative
margins on normal, nonfloated elements can make them visually wider than their parents. The same

is true on all four sides of a floated element's box: set the margins to be negative, and the content
will overrun the outer edge without technically violating the specification.

There is one important question here: what happens to the document display when an element is
floated out of its parent element by using negative margins? For example, an image could be floated
so far up that it intrudes into a paragraph that has already been displayed by the user agent. In such
a case, it's up to the user agent to decide whether the document should be reflowed. The CSS1 and
CSS2 specifications explicitly state that user agents are not required to reflow previous content to
accommodate things that happen later in the document. In other words, if an image is floated up into
a previous paragraph, it may simply overwrite whatever was already there. On the other hand, the
user agent may handle the situation by flowing content around the float. Either way, it's probably a
bad idea to count on a particular behavior, which makes the utility of negative margins on floats
somewhat limited. Hanging floats are probably fairly safe, but trying to push an element upward on
the page is generally a bad idea.

There is one other way for a floated element to exceed its parent's inner left and right edges, and
that's when the floated element is wider than its parent. In that case, the floated element will simply
overflow the right or left inner edge-depending on which way the element is floated-in its best
attempt to display itself correctly. This will lead to a result like that shown in Figure 10-19.

Figure 10-19. Floating an element that is wider than its parent

10.1.4 Floats, Content, and Overlapping

An even more interesting question is this: what happens when a float overlaps content in the normal
flow? This can happen if, for example, a float has a negative margin on the side where content is
flowing past (e.g., a negative left margin on a right-floating element). You've already seen what
happens to the borders and backgrounds of block-level elements. What about inline elements?

CSS1 and CSS2 were not completely clear about the expected behavior in such cases. CSS2.1
clarified the subject with explicit rules. These state that:

An inline box that overlaps with a float has its borders, background, and content all rendered
"on top" of the float.

A block box that overlaps with a float has its borders and background rendered "behind" the
float, whereas its content is rendered "on top" of the float.

To illustrate these rules, consider the following situation:

<p class="box">

This paragraph, unremarkable in most ways, does contain an inline element.

This inline contains some strongly emphasized text, which is

so marked to make an important point. The rest of the element's

content is normal anonymous inline content.

</p>

<p>

This is a second paragraph. There's nothing remarkable about it, really.

Please move along.

</p>

<h2 id="jump-up">A Heading!</h2>

To that markup, apply the following styles, with the result seen in Figure 10-20:

img.sideline {float: left; margin: 10px -15px 10px 10px;}

p.box {border: 1px solid gray; padding: 0.5em;}

p.box strong {border: 3px double black; background: silver; padding: 2px;}

h2#jump-up {margin-top: -15px; background: silver;}

Figure 10-20. Layout behavior when overlapping floats

The inline element (strong) completely overlaps the floated image-background, border, content,

and all. The block elements, on the other hand, have only their content appear on top of the float.
Their backgrounds and borders are placed behind the float.

The described overlapping behavior is independent of the document source
order. It does not matter if an element comes before or after a float: the same
behaviors still apply.

10.1.5 Clearing

We've talked quite a bit about floating behavior, so there's only one more thing to discuss before we
turn to positioning. You won't always want your content to flow past a floated element-in some
cases, you'll specifically want to prevent it. If you have a document that is grouped into sections, you
might not want the floated elements from one section hanging down into the next. In that case,
you'd want to set the first element of each section to prohibit floating elements from appearing next
to it. If the first element might otherwise be placed next to a floated element, it will be pushed down
until it appears below the floated image, and all subsequent content will appear after that, as shown
in Figure 10-21.

Figure 10-21. Displaying an element in the clear

This is done with clear.

clear

Values

left | right | both | none

Initial value

none

Applies to

block-level elements

Inherited

no

Computed value

as specified

For example, to make sure all h3 elements are not placed to the right of left-floating elements, you
would declare h3 {clear: left;}. This can be translated as "make sure that the left side of an h3 is
clear of floating images," and is equivalent to the HTML construct <br clear="left">. The following
rule uses clear to prevent h3 elements from flowing past floated elements to the left side:

h3 {clear: left;}

While this will push the h3 past any left-floating elements, it will allow floated elements to appear on
the right side of h3 elements, as shown in Figure 10-22.

Figure 10-22. Clear to the left, but not the right

In order to avoid this sort of thing, and to make sure that h3 elements do not coexist on a line with
any floated elements, you use the value both:

h3 {clear: both;}

Understandably enough, this value prevents coexistence with floated elements on both sides of the
cleared element, as demonstrated in Figure 10-23.

Figure 10-23. Clear on both sides

If, on the other hand, we were only worried about h3 elements being pushed down past floated
elements to their right, then you'd use h3 {clear: right;}.

Finally, there's clear: none, which allows elements to float to either side of an element. As with
float: none, this value mostly exists to allow for normal document behavior, in which elements will
permit floated elements to both sides. none can be used to override other styles, of course, as shown
in Figure 10-24. Despite the document-wide rule that h3 elements will not permit floated elements to
either side, one h3 in particular has been set so that it does permit floated elements on either side:

h3 {clear: both;}

<h3 style="clear: none;">What's With All The Latin?</h3>

Figure 10-24. Not clear at all

In CSS1 and CSS2, clear worked by increasing the top margin of an element so that it ended up

below a floated element, so any margin width set for the top of a cleared element was effectively
ignored. That is, instead of being 1.5em, for example, it would be increased to 10em, or 25px, or
7.133in, or however much was needed to move the element down far enough so that the content

area is below the bottom edge of a floated element.

In CSS2.1, clearance was introduced. Clearance is extra spacing added above an element's top
margin in order to push it past any floated elements. This means that the top margin of a cleared
element does not change when an element is cleared. It's downward movement is caused by the
clearance instead. Pay close attention to the placement of the heading's border in Figure 10-25,
which results from the following:

img.sider {float: left; margin: 0;}

h3 {border: 1px solid gray; clear: left; margin-top: 15px;}

<h3>Why Doubt Salmon?</h3>

Figure 10-25. Clearing and its effect on margins

There is no separation between the top border of the h3 and the bottom border of the floated image
because 25 pixels of clearance were added above the 15-pixel top margin in order to push the h3's
top border edge just past the bottom edge of the float. This will be the case unless the h3's top
margin calculates to 40 pixels or more, in which case the h3 will naturally place itself below the float
and the clear value will be irrelevant.

In most cases, of course, you can't know how far an element needs to be cleared. The way to make
sure a cleared element has some space between its top and the bottom of a float is to put a bottom
margin on the float itself. Therefore, if you want there to be at least 15 pixels of space below the float
in the previous example, you would change the CSS like this:

img.sider {float: left; margin: 0 0 15px;}

h3 {border: 1px solid gray; clear: left;}

The floated element's bottom margin increases the size of the float box, and thus the point past
which cleared elements must be pushed. This is because, as you've seen before, the margin edges of
a floated element define the edges of the floated box.

 < Day Day Up >

 < Day Day Up >

10.2 Positioning

The idea behind positioning is fairly simple. It allows you to define exactly where element boxes will
appear relative to where they would ordinarily be-or relative to a parent element, another element,
or even to the browser window itself.

10.2.1 Basic Concepts

Before we delve into the various kinds of positioning, it's a good idea to look at what types exist and
how they differ. We'll also need to define some basic ideas that are fundamental to understanding
how positioning works.

10.2.1.1 Types of positioning

You can choose one of four different types of positioning, which affect how the element's box is
generated, by using the position property.

position

Values

static | relative | absolute | fixed | inherit

Initial value

static

Applies to

all elements

Inherited

no

Computed value

as specified

The values of position have the following meanings:

static

The element's box is generated as normal. Block-level elements generate a rectangular box
that is part of the document's flow, and inline-level boxes cause the creation of one or more
line boxes that are flowed within their parent element.

relative

The element's box is offset by some distance. The element retains the shape it would have had
were it not positioned, and the space that the element would ordinarily have occupied is
preserved.

absolute

The element's box is completely removed from the flow of the document and positioned with
respect to its containing block, which may be another element in the document or the initial
containing block (described in the next section). Whatever space the element might have
occupied in the normal document flow is closed up, as though the element did not exist. The
positioned element generates a block-level box, regardless of the type of box it would have
generated if it were in the normal flow.

fixed

The element's box behaves as though it was set to absolute, but its containing block is the

viewport itself.

Don't worry so much about the details right now, as we'll look at each of these kinds of positioning
later in the chapter. Before we do that, we need to discuss containing blocks.

10.2.1.2 The containing block

We discussed containing blocks in relation to floats earlier in the chapter. In that case, a float's
containing block was defined to be the nearest block-level ancestor element. With positioning, the

situation is not quite so simple. CSS2.1 defines the following behaviors:

The containing block of the "root element" (also called the initial containing block) is established
by the user agent. In HTML, the root element is the html element, although some browsers use
body. In most browsers, the initial containing block is a rectangle the size of the viewport.

For a non-root element whose position value is relative or static, the containing block is

formed by the content edge of the nearest block-level, table cell, or inline-block ancestor box.

For non-root elements that have a position value of absolute, the containing block is set to
the nearest ancestor (of any kind) that has a position value other than static. This happens

as follows:

If the ancestor is block-level, the containing block is set to be that element's padding
edge; in other words, the area that would be bounded by a border.

If the ancestor is inline-level, the containing block is set to the content edge of the
ancestor. In left-to-right languages, the top and left of the containing block are the top
and left content edges of the first box in the ancestor, and the bottom and right edges are
the bottom and right content edges of the last box. In right-to-left languages, the right
edge of the containing block corresponds to the right content edge of the first box, and the
left is taken from the last box. The top and bottom are the same.

If there are no ancestors, then the element's containing block is defined to be the initial
containing block.

An important point: elements can be positioned outside of their containing block. This is very similar
to the way in which floated elements can use negative margins to float outside of their parent's
content area. It also suggests that the term "containing block" should really be "positioning context,"
but since the specification uses "containing block," so will I. (I do try to minimize confusion. Really!)

10.2.1.3 Offset properties

Three of the positioning schemes described in the previous section- relative, absolute, and
fixed-use four distinct properties to describe the offset of a positioned element's sides with respect

to its containing block. These four properties, which you will refer to as the offset properties, are a
big part of what makes positioning work.

top, right, bottom, left

Values

<length> | <percentage> | auto | inherit

Initial value

auto

Applies to

positioned elements (that is, elements for which the value of position is something
other than static)

Inherited

no

Percentages

refer to the height of the containing block for top and bottom and the width of the
containing block for right and left

Computed value

for relatively positioned elements, see Note; for static elements, auto; for length

values, the corresponding absolute length; for percentage values, the specified
value; otherwise, auto

Note

the computed values depend on a series of factors; see individual entries in
Appendix A for examples

These properties describe an offset from the nearest side of the containing block (thus the term

offset). For example, top describes how far the top margin edge of the positioned element should be
placed from the top of its containing block. In the case of top, positive values move the top margin

edge of the positioned element downward, while negative values move it above the top of its
containing block. Similarly, left describes how far to the right (for positive values) or left (for

negative values) the left margin edge of the positioned element is from the left edge of the containing
block. Positive values will shift the margin edge of the positioned element to the right, and negative
values will move it to the left.

Another way to look at it is that positive values cause inward offsets, moving the edges toward the
center of the containing block, and negative values cause outward offsets.

The original CSS2 specification actually says that the content edges are offset,
not margin edges, but this was inconsistent with other parts of CSS2. The
mistake was corrected in later errata and in CSS2.1. IE/Win uses the content
edge for width calculations, but the padding edge for height, oddly enough. The
padding edge is used by all other actively developed browsers (as of this
writing).

The implication of offsetting the margin edges of a positioned element is that everything about an
element-margins, borders, padding, and content-is moved in the process of positioning the
element. Thus, it is possible to set margins, borders, and padding for a positioned element; these will
be preserved and kept with the positioned element, and they will be contained within the area
defined by the offset properties.

It is important to remember that the offset properties define offset from the analogous side (e.g.,
left defines the offset from the left side) of the containing block, not from the upper-left corner of

the containing block. This is why, for example, one way to fill up the lower-right corner of a
containing block is to use these values:

top: 50%; bottom: 0; left: 50%; right: 0;

In this example, the outer left edge of the positioned element is placed halfway across the containing
block. This is its offset from the left edge of the containing block. The outer right edge of the
positioned element, however, is not offset from the right edge of the containing block, so the two are
coincident. Similar reasoning holds true for the top and bottom of the positioned element: the outer
top edge is placed halfway down the containing block, but the outer bottom edge is not moved up
from the bottom. This leads to what's shown in Figure 10-26.

Figure 10-26. Filling the lower-right quarter of the containing block

What's depicted in Figure 10-26, and in most of the examples in this chapter, is
based around absolute positioning. Since absolute positioning is the simplest
scheme in which to demonstrate how top, right, bottom, and left work, we'll

stick to that for now.

Note that the positioned element has a slightly different background color. In Figure 10-26, it has no
margins, but if it did, they would create blank space between the borders and the offset edges. This
would make the positioned element appear as though it did not completely fill the lower-right quarter
of the containing block. In truth, it would fill the area, but it wouldn't be immediately apparent to the
eye. Thus, the following two sets of styles would have approximately the same visual appearance,
assuming that the containing block is 100em high by 100em wide:

top: 50%; bottom: 0; left: 50%; right: 0; margin: 10em;

top: 60%; bottom: 10%; left: 60%; right: 10%; margin: 0;

Again, the similarity would be visual only in nature.

By using negative values, it is possible to position an element outside its containing block. For
example, the following values will lead to the result shown in Figure 10-27:

top: -5em; bottom: 50%; left: 75%; right: -3em;

Figure 10-27. Positioning an element outside its containing block

In addition to length and percentage values, the offset properties can also be set to auto, which is
the default value. There is no single behavior for auto; it changes based on the type of positioning
used. We'll explore how auto works later in the chapter, as we consider each of the positioning types

in turn.

10.2.2 Width and Height

There will be many cases when, having determined where you're going to position an element, you
will want to declare how wide and how high that element should be. In addition, there will likely be

conditions where you'll want to limit how high or wide a positioned element gets, not to mention
cases where you want the browser to go ahead and automatically calculate the width, height, or
both.

10.2.2.1 Setting width and height

If you want to give your positioned element a specific width, then the obvious property to turn to is
width. Similarly, height will let you declare a specific height for a positioned element.

Although it is sometimes important to set the width and height of an element, it is not always
necessary when positioning elements. For example, if the placement of the four sides of the element
is described using top, right, bottom, and left, then the height and width of the element are

implicitly determined by the offsets. Assume that you want an absolutely positioned element to fill the
left half of its containing block, from top to bottom. You could use these values, with the result
depicted in Figure 10-28:

top: 0; bottom: 0; left: 0; right: 50%;

Figure 10-28. Positioning and sizing an element using only the offset
properties

Since the default value of both width and height is auto, the result shown in Figure 10-28 is exactly

the same as if you had used these values:

top: 0; bottom: 0; left: 0; right: 50%; width: 50%; height: 100%;

The presence of width and height in this example add nothing to the layout of the element.

Of course, if you were to add padding, a border, or a margin to the element, then the presence of
explicit values for height and width do make a difference:

top: 0; bottom: 0; left: 0; right: 50%; width: 50%; height: 100%;

 padding: 2em;

This will give you a positioned element that extends out of its containing block, as shown in Figure
10-29.

Figure 10-29. Positioning an element partially outside its containing block

This happens because, as we've seen in earlier chapters, the padding is added to the content area,
and the content area's size is determined by the values of height and width. In order to get the

padding you want and still have the element fit into its containing block, you would either remove the
height and width declarations, or else explicitly set them both to auto.

10.2.2.2 Limiting width and height

Should it become necessary or desirable, you can place limits on an element's width by using the
following CSS2 properties, which I'll refer to as the min-max properties. An element's content area
can be defined to have a minimum dimension using min-width and min-height.

min-width, min-height

Values

<length> | <percentage> | inherit

Initial value

0

Applies to

all elements except nonreplaced inline elements and table elements

Inherited

no

Percentages

refer to the width of the containing block

Computed value

for percentages, as specified; for length values, the absolute length; otherwise,
none

Similarly, an element's dimensions can be limited using the properties max-width and max-height.

max-width, max-height

Values

<length> | <percentage> | none | inherit

Initial value

none

Applies to

all elements except nonreplaced inline elements and table elements

Inherited

no

Percentages

refer to the height of the containing block

Computed value

for percentages, as specified; for length values, the absolute length; otherwise,
none

The names of these properties make them fairly self-explanatory. What's less obvious at first, but
makes sense once you think about it, is that values for all these properties cannot be negative.

min-height, min-width, max-height, and max-width are all unsupported by

Internet Explorer for Windows. However, you can use JavaScript to graft
support onto these clients. See
http://www.doxdesk.com/software/js/minmax.html for details.

The following styles will force the positioned element to be at least 10em wide by 20em tall, as
illustrated in Figure 10-30:

top: 10%; bottom: 20%; left: 50%; right: 10%;

 min-width: 10em; min-height: 20em;

Figure 10-30. Setting a minimum and maximum height for a positioned
element

This isn't a very robust solution since it forces the element to be at least a certain size regardless of
the size of its containing block. Here's a better one:

top: 10%; bottom: auto; left: 50%; right: 10%; height: auto;

 min-width: 15em;

Here you have a case where the element should be 40% as wide as the containing block but can
never be less than 15em wide. You've also changed the bottom and height so that they're

automatically determined. This will let the element be as tall as necessary to display its content, no
matter how narrow it gets (never less than 15em, of course!).

http://www.doxdesk.com/software/js/minmax.html

We'll look at the role auto plays in the height and width of positioned

elements in the next section.

You can turn this around to keep elements from getting too wide or tall by using max-width and max-
height. Let's consider a situation where, for some reason, you want an element to have three-

quarters the width of its containing block but to stop getting wider when it hits 400 pixels. The
appropriate styles are:

left: 0%; right: auto; width: 75%; max-width: 400px;

One great advantage of the min-max properties is that they let you mix units with relative safety.
You can use percentage-based sizes while setting length-based limits, or vice versa.

It's worth mentioning that these min-max properties can be very useful in conjunction with floated
elements as well. For example, you can allow a floated element's width to be relative to the width of
its parent element (which is its containing block), while also making sure that the float's width never
goes below 10em. The reverse approach is also possible:

p.aside {float: left; width: 40em; max-width: 40%;}

This will set the float to be 40em wide, unless that would be more than 40% the width of the

containing block, in which case the float will be narrowed.

We'll return to the subject of element sizing when discussing each type of
positioning.

10.2.3 Content Overflow and Clipping

If the content of an element is too much for the element's size, it will be in danger of overflowing the
element itself. There are a few alternatives in such situations, and CSS2 lets you select between
them. It also allows you to define a clipping region to determine the area of the element outside of
which these sorts of things become an issue.

10.2.3.1 Overflow

So let's say that you have, for whatever reason, an element that has been pinned to a specific size,
and the content doesn't fit. You can take control of the situation with the overflow property.

overflow

Values

visible | hidden | scroll | auto | inherit

Initial value

visible

Applies to

block-level and replaced elements

Inherited

no

Computed value

as specified

The default value of visible means that the element's content may be visible outside the element's

box. Typically, this would lead to the content simply running outside its own element box but not
altering the shape of that box. The following markup would result in Figure 10-31:

div#sidebar {position: absolute; top: 0; left: 0; width: 25%; height: 7em;

 background: #BBB; overflow: visible;}

Figure 10-31. Content visibly overflowing the element box

If overflow is set to scroll, the element's content is clipped-that is, cannot be seen-at the edges

of the element box, but there is some way to make the extra content available to the user. In a web
browser, this could mean a scrollbar (or set of them) or another method of accessing the content
without altering the shape of the element itself. One possibility is depicted in Figure 10-32, which
could result from the following markup:

div#sidebar {position: absolute; top: 0; left: 0; width: 15%; height: 7em;

 overflow: scroll;}

Figure 10-32. Overflowing content made available via a scroll mechanism

If scroll is used, the panning mechanisms (e.g., scrollbars) should always be rendered. To quote

the specification, "this avoids any problem with scrollbars appearing or disappearing in a dynamic
environment." Thus, even if the element has sufficient space to display all of its content, the
scrollbars should still appear. In addition, when printing a page or otherwise displaying the document
in a print medium, the content may be displayed as though the value of overflow were declared to
be visible.

If overflow is set to hidden, the element's content is clipped at the edges of the element box, but no

scrolling interface should be provided to make the content outside the clipping region accessible to
the user. Consider the following markup:

div#sidebar {position: absolute; top: 0; left: 0; width: 15%; height: 7em;

 overflow: hidden;}

In such an instance, the clipped content would not be accessible to the user. This would lead to a
situation like that illustrated in Figure 10-33.

Figure 10-33. Clipping content at the edges of the content area

Finally, there is overflow: auto. This allows user agents to determine which behavior to use,

although they are encouraged to provide a scrolling mechanism when necessary. This is a potentially
useful way to use overflow since user agents could interpret it to mean "provide scrollbars only when
needed." (They may not, but they certainly could and probably should.)

10.2.3.2 Content clipping

In situations where the content of an absolutely positioned element overflows its element box, and
overflow has been set such that the content should be clipped, it is possible to alter the shape of the
clipping region by using the property clip.

clip

Values

rect(top, right, bottom, left) | auto | inherit

Initial value

auto

Applies to

absolutely positioned elements (in CSS2, clip applied to block-level and replaced

elements)

Inherited

no

Computed value

for a rectangle, a set of four computed lengths representing the edges of the
clipping rectangle; otherwise, as specified

The default value, auto, means that the contents of the element should not be clipped. The other

possibility is to define a clipping shape that is relative to the element's content area. This does not

alter the shape of the content area, but instead alters the area in which content may be rendered.

While the only clipping shape available in CSS2 is a rectangle, the specification
does offer the possibility of other shapes being included in future specifications.

This is done with the shape value rect(top, right, bottom, left). You could specify no change in

the clipping region like this:

clip: rect(0, auto, auto, 0);

The syntax of rect is an interesting case. Technically, it can be rect(top, right, bottom,

left)-note the commas-but the CSS2 specification contains examples both with and without

commas and defines it as accepting both versions. This text will stick to the comma version mostly
because it makes things easier to read, and because it's what is preferred in CSS2.1.

It is extremely important to note that the values for rect(...) are not side-offsets. They are,

instead, distances from the upper-left corner of the element (or the upper-right, in right-to-left
languages). Thus, a clipping rectangle that encloses a square 20 pixels by 20 pixels in the upper-left
corner of the element would be defined as:

rect(0, 20px, 20px, 0)

The only values permitted with rect(...) are length values and auto, which is the same as setting

the clipping edge to the appropriate content edge. Thus, the following two statements mean the
same thing:

clip: rect(auto, auto, 10px, 1em);

clip: rect(0, 0, 10px, 1em);

Because all the offsets in clip are from the top left corner, and percentages are not permitted, it is

practically impossible to create a "centered" clipping area unless you know the dimensions of the
element itself. Consider:

div#sidebar {position: absolute; top: 0; bottom: 50%; right: 50%; left: 0;

 clip: rect(1em,4em,6em,1em);}

Since there is no way to know how many ems tall or wide the element will be, there is no way to
define a clipping rectangle-which ends one em to the right, or one em below-the content area of
the element. The only way to know this is to set the height and width of the element itself:

div#sidebar {position: absolute; top: 0; left: 0; width: 5em; height: 7em;

 clip: rect(1em,4em,6em,1em);}

This would cause a result something like that shown in Figure 10-34, where a dashed line has been
added to illustrate the edges of the clipping region. This line would not actually appear in a user agent
attempting to render the document.

Figure 10-34. Setting the clipping region for overflowing content

It is possible to set negative lengths, though, which will expand the clipping area outside the
element's box. If you want to push the clipping area up and left by a quarter-inch, it would be done
with the following styles (illustrated in Figure 10-35):

clip: rect(-0.25in, auto, auto, -0.25in);

Figure 10-35. Extending the clipping region outside the element box

This doesn't do much good, as you can see. The clipping rectangle extends up and to the left, but
since there isn't any content there, it doesn't make much difference.

On the other hand, it might be okay to go beyond the bottom and right edges, but not the top or left.
Figure 10-36 shows the results of these styles (and remember, the dashed lines are only for
illustrative purposes!):

div#sidebar {position: absolute; top: 0; left: 0; width: 5em; height: 7em;

 clip: rect(0,6em,9em,0);}

Figure 10-36. Extending the clipping region below and to the right of the
element box

This extends the area in which content can be seen. However, it doesn't change the flow of the
content, so the only visual effect is that more content can be seen below the element. The text does
not flow out to the right because the width of its line boxes is still constrained by the width of the
positioned element. If there had been an image wider than the positioned element, or preformatted
text with a long line, this might have been visible to the right of the positioned element, up to the
point where the clipping rectangle ends.

The syntax of rect(...) is, as you may have already realized, rather unusual when compared to the

rest of CSS. It is based on an early draft of the positioning section, which used the top-left-offset
scheme. Internet Explorer implemented this before CSS2 was made a full Recommendation, and so
came into conflict with a last-minute change that made rect(...) use side-offsets, just like the rest

of CSS2. This was done, reasonably enough, to make positioning consistent with itself.

By then, however, it was too late: there was an implementation in the marketplace, and rather than
force Microsoft to change the browser and thus potentially break existing pages, the standard was
changed to reflect implementation. Unfortunately, as we saw before, this means that it is impossible
to set a consistent clipping rectangle in situations where the height and width are not precisely
defined.

Further compounding the problem is that rect(...) accepts only length units and auto. The addition
of percentage units as valid rect(...) values would go a long way toward improving things, and

hopefully a future version of CSS will add this capability.

The long and convoluted history of clip means that, in current browsers, it

acts in inconsistent ways and cannot be relied upon in any cross-browser
environment.

10.2.4 Element Visibility

In addition to all the clipping and overflowing, you can also control the visibility of an entire element.

visibility

Values

visible | hidden | collapse | inherit

Initial value

visible

Applies to

all elements

Inherited

yes

Computed value

as specified

This one is pretty easy. If an element is set to have visibility: visible, then it is, of course,

visible.

If an element is set to visibility: hidden, it is made "invisible" (to use the wording in the

specification). In its invisible state, the element still affects the document's layout as though it were
visible. In other words, the element is still there, you just can't see it. Note the difference between
this and display: none. In the latter case, the element is not displayed and is also removed from the

document altogether so that it doesn't have any effect on document layout. Figure 10-37 shows a
document in which a paragraph has been set to hidden, based on the following styles and markup:

em.trans {visibility: hidden; border: 3px solid gray; background: silver;

 margin: 2em; padding: 1em;}

<p>

This is a paragraph that should be visible. Lorem ipsum, dolor sit amet,

<em class="trans">consectetuer adipiscing elit, sed diam nonummy nibh

euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.

</p>

Figure 10-37. Making elements invisible without suppressing their element
boxes

Everything visible about a hidden element-such as content, background, and borders-will be made
invisible. Note that the space is still there because the element is still part of the document's layout.
You just can't see it.

Note too that it's possible to set the descendant element of a hidden element to be visible. This

would cause the element to appear wherever it normally would, despite the fact that the ancestor
(and possibly its siblings) is invisible. In order to do so, you would need to explicitly declare the
descendant element visible, since visibility is inherited:

p.clear {visibility: hidden;}

p.clear em {visibility: visible;}

As for visbility: collapse, this value is used in CSS table rendering, which is covered in the next
chapter. According to the CSS2 specification, collapse has the same meaning as hidden if it is used

on non-table elements.

10.2.5 Absolute Positioning

Since most of the examples and figures in the previous sections are examples of absolute positioning,
you're already halfway to an understanding of how it works. Most of what remains are the details of
what happens when absolute positioning is invoked.

10.2.5.1 Containing blocks and absolutely positioned elements

When an element is positioned absolutely, it is completely removed from the document flow. It is
then positioned with respect to its containing block, and its edges are placed using the offset
properties (top, left, etc.). The positioned element does not flow around the content of other

elements, nor does their content flow around the positioned element. This implies that an absolutely
positioned element may overlap other elements or be overlapped by them. (You'll see how you can
affect the overlapping order later in the chapter.)

The containing block for an absolutely positioned element is the nearest ancestor element that has a

position value other than static. It is common for an author to pick an element that will serve as
the containing block for the absolutely positioned element and give it a position of relative with

no offsets:

p.contain {position: relative;}

Consider the example in Figure 10-38, which is an illustration of the following:

p {margin: 2em;}

p.contain {position: relative;} /* establish a containing block*/

b {position: absolute; top: auto; right: 0; bottom: 0; left: auto;

 width: 8em; height: 5em; border: 1px solid gray;}

<body>

<p>

This paragraph does not establish a containing block for any of its

descendant elements that are absolutely positioned. Therefore, the absolutely

positioned boldface element it contains will be positioned with

respect to the initial containing block.

</p>

<p class="contain">

Thanks to 'position: relative', this paragraph establishes a containing

block for any of its descendant elements that are absolutely positioned.

Since there is such an element-- that is to say, a boldfaced element

that is absolutely positioned, placed with respect to its containing

block (the paragraph), it will appear within the element box generated

by the paragraph.

</p>

</body>

Figure 10-38. Using relative positioning to define containing blocks

The b elements in both paragraphs have been absolutely positioned. The difference is in the
containing block used for each one. The b element in the first paragraph is positioned with respect to
the initial containing block because all of its ancestor elements have a position of static. The
second paragraph, though, has been set to position: relative, so it establishes a containing block

for its descendants.

You've probably noted that in the second paragraph, the positioned element overlaps some of the
text content of the paragraph. There is no way to avoid this, short of positioning the b element
outside of the paragraph (by using a negative value for right or one of the other offset properties)

or by specifying a padding for the paragraph that is wide enough to accommodate the positioned
element. Also, since the b element has a transparent background, the paragraph's text shows

through the positioned element. The only way to avoid this is to set a background for the positioned
element, or else move it out of the paragraph entirely.

You will sometimes want to ensure that the body element establishes a containing block for all its
descendants, rather than allowing the user agent to pick an initial containing block. This is as simple
as declaring:

body {position: relative;}

In such a document, you could drop in an absolutely positioned paragraph, as follows, and get a
result like that shown in Figure 10-39:

<p style="position: absolute; top: 0; right: 25%; left: 25%; bottom: auto;

 width: 50%; height: auto; background: silver;">...</p>

Figure 10-39. Positioning an element whose containing block is the root
element

The paragraph is now positioned at the very beginning of the document, half as wide as the
document's width and overwriting the first few elements.

An important point to highlight is that when an element is absolutely positioned, it also establishes a
containing block for its descendant elements. For example, you could absolutely position an element
and then absolutely position one of its children, as shown in Figure 10-40, which was generated using
the following styles and basic markup:

div {position: relative; width: 100%; height: 10em;

 border: 1px solid; background: #EEE;}

div.a {position: absolute; top: 0; right: 0; width: 15em; height: 100%;

 margin-left: auto; background: #CCC;}

div.b {position: absolute; bottom: 0; left: 0; width: 10em; height: 50%;

 margin-top: auto; background: #AAA;}

<div>

 <div class="a">absolutely positioned element A

 <div class="b">absolutely positioned element B</div>

 </div>

 containing block

</div>

Figure 10-40. Absolutely positioned elements establish containing blocks

Remember that if the document is scrolled, the positioned elements will scroll right along with it. This
is true of all absolutely positioned elements that are not descendants of fixed-position elements. It

happens because, eventually, the elements are positioned in relation to something that's part of the
normal flow. For example, if you absolutely position a table, and its containing block is the initial
containing block, then it will scroll because the initial containing block is part of the normal flow.
Similarly, even if you set up absolutely positioned elements nested four levels deep, the "outermost"
of these elements is still positioned with respect to the initial containing block. Thus, it will scroll along
with the initial containing block, and all its descendants will go along for the ride.

If you want to position elements so that they're placed relative to the viewport
and don't scroll along with the rest of the document, keep reading. The
upcoming section on fixed positioning has the answers you seek.

10.2.5.2 Placement and sizing of absolutely positioned elements

It may seem odd to combine the concepts of placement and sizing, but it's a necessity with
absolutely positioned elements because the specification binds them very closely together. This is not
such a strange pairing upon reflection. Consider what happens if an element is positioned using all
four offset properties, like so:

#masthead h1 {position: absolute; top: 1em; left: 1em; right: 25%; bottom: 10px;

 margin: 0; padding: 0; background: silver;}

Here, the height and width of the h1's element box is determined by the placement of its outer

margin edges, as shown in Figure 10-41.

Figure 10-41. Determining the height of an element based on the offset
properties

If the containing block were made taller, then the h1 would also become taller; if the containing block
is narrowed, then the h1 would become narrower. If you were to add margins or padding to the h1,
then that would have further effects on the calculated height and width of the h1.

But what if you do all that and then also try to set an explicit height and width:

#masthead h1 {position: absolute; top: 0; left: 1em; right: 10%; bottom: 0;

 margin: 0; padding: 0; height: 1em; width: 50%; background: silver;}

Something has to give because it's incredibly unlikely that all those values will be accurate. In fact,
the containing block would have to be exactly two-and-a-half times as wide as the h1's computed
value for font-size for all of the shown values to be accurate. Any other width would mean at least

one value is wrong and has to be ignored. Figuring out which one depends on a number of factors,
and the factors change depending on whether an element is replaced or nonreplaced.

For that matter, consider the following:

#masthead h1 {position: absolute; top: auto; left: auto;}

What should the result be? As it happens, the answer is not "reset the values to zero." We'll see the
actual answer in the next section.

10.2.5.3 Auto-edges

When absolutely positioning an element, there is a special behavior that applies when any of the
offset properties other than bottom are set to auto. Let's take top as an example. Consider the

following:

<p>

When we consider the effect of positioning, it quickly becomes clear that authors

can do a great deal of damage to layout, just as they can do very interesting

things.[4]

This is usually the case with useful technologies: the sword always has

at least two edges, both of them sharp.

</p>

What should happen? For left, it's easy: the left edge of the element should be placed against the
left edge of its containing block (which you can assume to be the initial containing block). For top,

however, something much more interesting happens. The top of the positioned element should line
up with the place where its top would have been if it were not positioned at all. In other words,
imagine where the span would have been placed if its position value were static; this is its static

position-where its top edge should be calculated to sit. CSS2.1 has this to say:

...the term "static position" (of an element) refers, roughly, to the position an element would
have had in the normal flow. More precisely, the static position for "top" is the distance from the
top edge of the containing block to the top margin edge of a hypothetical box that would have
been the first box of the element if its "position" property had been "static". The value is
negative if the hypothetical box is above the containing block.

Therefore, you should get the result shown in Figure 10-42.

Figure 10-42. Absolutely positioning an element consistently with its
"static" position

The "[4]" sits just outside the paragraph's content because the initial containing block's left edge is to
the left of the paragraph's left edge.

The same basic rules hold true for left and right being set to auto. In those cases, the left (or

right) edge of a positioned element lines up with the spot where the edge would have been placed if
the element weren't positioned. So let's modify our previous example so that both top and left are
set to auto:

<p>

When we consider the effect of positioning, it quickly becomes clear that authors

can do a great deal of damage to layout, just as they can do very interesting

things.[4]

This is usually the case with useful technologies: the sword always has

at least two edges, both of them sharp.

</p>

This would have the result shown in Figure 10-43.

Figure 10-43. Absolutely positioning an element consistently with its
"static" position

The "[4]" now sits right where it would have were it not positioned. Note that, since it is positioned, its
normal-flow space is closed up. This causes the positioned element to overlap with the normal-flow
content.

It should be noted that CSS2 and CSS2.1 both state that in cases such as these,
"...user agents are free to make a guess at its probable [static] position."
Current browsers do a fairly decent job of treating auto values for top and
left as intended and of placing the element consistent with the place it would

have been in the normal flow.

This auto-placement works only in certain situations, generally wherever there are few constraints on
the other dimensions of a positioned element. Our previous example could be auto-placed because it

had no constraints on its height or width, as well as no constraints on the placement of the bottom
and right edges. But suppose, for some reason, there had been such constraints? Consider:

<p>

When we consider the effect of positioning, it quickly becomes clear that authors

can do a great deal of damage to layout, just as they can do very interesting

things.<span style="position: absolute; top: auto; left: auto; right: 0;

bottom: 0; height: 2em; width: 5em;">[4] This is usually the case with

useful technologies: the sword always has at least two edges, both of them sharp.

</p>

It is not possible to satisfy all of those values. Determining what happens is the subject of the next
section.

10.2.5.4 Placing and sizing nonreplaced elements

In general, the size and placement of an element depends on its containing block. The values of its
various properties (width, right, padding-left, and so on) affect the situation, but the foundation

is the containing block.

Consider the width and horizontal placement of a positioned element. It can be represented as an
equation which states that left + margin-left + border-left-width + padding-left + width +
padding-right + border-right-width + margin-right + right = the width of the containing

block.

This calculation is fairly reasonable. It's basically the equation that determines how block-level
elements in the normal flow are sized, except it adds left and right to the mix. So how do all these

interact? There are a series of rules to work through.

First, if left, width, and right are all set to auto, then you get the result seen in the previous

section: the left edge is placed at its static position, assuming a left-to-right language. In right-to-left
languages, the right edge is placed at its static position. The width of the element is set to be "shrink

to fit," which means the element's content area is made only as wide as necessary to contain the
content. This is rather like the way table cells behave. The non-static-position property (right in left-
to-right languages, left in right-to-left) is set to take up the remaining distance. For example:

<div style="position: relative; width: 25em; border: 1px dotted;">

An absolutely positioned element can have its content

<span style="position: absolute; top: 0; left: 0; right: auto; width: auto;

 background: silver;">shrink-wrapped

thanks to the way positioning rules work.

</div>

This has the result shown in Figure 10-44.

Figure 10-44. The "shrink-to-fit" behavior of absolutely positioned
elements

The top of the element is placed against the top of its containing block (the div, in this case) and the

width of the element is just as much as is needed to contain the content. The remaining distance
from the right edge of the element to the right edge of the containing block becomes the computed
value of right.

Now suppose that only the left and right margins are set to auto, not left, width, and right, as in

this example:

<div style="position: relative; width: 25em; border: 1px dotted;">

An absolutely positioned element can have its content

<span style="position: absolute; top: 0; left: 1em; right: 1em; width: 10em;

 margin: 0 auto; background: silver;">shrink-wrapped

thanks to the way positioning rules work.

</div>

What happens here is that the left and right margins, which are both auto, are set to be equal. This

will effectively center the element, as shown in Figure 10-45.

Figure 10-45. Horizontally centering an absolutely positioned element with
auto margins

This is basically the same as auto-margin centering in the normal flow. So let's make the margins
something other than auto:

<div style="position: relative; width: 25em; border: 1px dotted;">

An absolutely positioned element can have its content

<span style="position: absolute; top: 0; left: 1em; right: 1em; width: 10em;

 margin-left: 1em; margin-right: 1em; background: silver;">shrink-wrapped

thanks to the way positioning rules work.

</div>

Now you have a problem. The positioned span's properties add up to only 14em, whereas the

containing block is 25em wide. That's an 11-em deficit you have to make up somewhere.

The rules state that, in this case, the user agent ignores the value for right (in left-to-right
languages; otherwise, it ignores left) and solves for it. In other words, the result will be the same as

if you'd declared:

<span style="position: absolute; top: 0; left: 1em; right: 15em; width: 10em;

 margin-left: 1em; margin-right: 1em; background: silver;">shrink-wrapped

This has the result shown in Figure 10-46.

Figure 10-46. Ignoring the value for right in an overconstrained situation

If one of the margins had been left as auto, then that would have been changed instead. Suppose

you change the styles to state:

<span style="position: absolute; top: 0; left: 1em; right: 1em; width: 10em;

 margin-left: 1em; margin-right: auto; background: silver;">shrink-wrapped

The visual result would be the same as that in Figure 10-46, only it would be attained by computing
the right margin to 14em instead of overriding the value assigned to the property right. If, on the
other hand, you made the left margin auto, then it would be reset, as illustrated in Figure 10-47:

<span style="position: absolute; top: 0; left: 1em; right: 1em; width: 10em;

 margin-left: auto; margin-right: 1em; background: silver;">shrink-wrapped

Figure 10-47. Ignoring the value for margin-right in an overconstrained
situation

In general, if only one of the properties is set to auto, then it will be modified to satisfy the equation

given earlier in the section. Given the following styles, the element's width would expand to whatever
size is needed instead of "shrink-wrapping" the content:

<span style="position: absolute; top: 0; left: 1em; right: 1em; width: auto;

 margin-left: 1em; margin-right: 1em; background: silver;">shrink-wrapped

So far we've really only examined behavior along the horizontal axis, but very similar rules hold true
along the vertical axis. If you take the previous discussion and rotate it 90 degrees, as it were, you
get almost the same behavior. For example, the following markup results in Figure 10-48:

<div style="position: relative; width: 30em; height: 10em;

 border: 1px solid;">

<div style="position: absolute; left: 0; width: 30%; background: #CCC;

 top: 0;">

element A

</div>

<div style="position: absolute; left: 35%; width: 30%; background: #AAA;

 top: 0; height: 50%;">

element B

</div>

<div style="position: absolute; left: 70%; width: 30%; background: #CCC;

 height: 50%; bottom: 0;">

element C

</div>

</div>

Figure 10-48. Vertical layout behavior for absolutely positioned elements

In the first case, the height of the element was shrink-wrapped to the content. In the second, the
unspecified property (bottom) was set to make up the distance between the bottom of the positioned
element and the bottom of its containing block. In the third case, it was top that was unspecified and

therefore made up the difference.

For that matter, auto-margins can lead to vertical centering. Given the following styles, the
absolutely positioned div will be vertically centered within its containing block, as shown in Figure

10-49:

<div style="position: relative; width: 10em; height: 10em;

 border: 1px solid;">

<div style="position: absolute; left: 0; width: 100%; background: #CCC;

 top: 0; height: 5em; bottom: 0; margin: auto 0;">

element D

</div>

</div>

Figure 10-49. Vertically centering an absolutely positioned element with
auto margins

There are two small variations to point out. In horizontal layout, either right or left can be placed
according to the static position if their values are auto. In vertical layout, only top can take on the
static position; bottom, for whatever reason, cannot.

As of this writing, no version of Internet Explorer supported the vertical-
centering behavior of auto top and bottom margins on absolutely positioned

elements.

Also, if an absolutely positioned element's size is overconstrained in the vertical direction, bottom is
ignored. Thus, in the following situation, the declared value of bottom would be overridden by the
calculated value of 5em:

<div style="position: relative; width: 10em; height: 10em;

 border: 1px solid;">

<div style="position: absolute; left: 0; width: 100%; background: #CCC;

 top: 0; height: 5em; bottom: 0; margin: 0;">

element D

</div>

</div>

There is no provision for top to be ignored if the properties are overconstrained.

10.2.5.5 Placing and sizing replaced elements

Positioning rules are different for nonreplaced elements than they are for replaced elements. This is
because replaced elements have an intrinsic height and width, and therefore are not altered unless
explicitly changed by the author. Thus, there is no concept of "shrink to fit" in the positioning of
replaced elements.

The behaviors that go into placing and sizing replaced elements is most easily expressed by a series
of rules to be taken one after the other. These state:

If width is set to auto, the used value of width is determined by the intrinsic width of the

element's content. Thus, if the width of an image is 50 pixels, then the used value is calculated
to be 50px. If width is explicitly declared (that is, something like 100px or 50%), then the width

is set to that value.

1.

If left has the value auto in a left-to-right language, replace auto with the static position. In
right-to-left languages, replace an auto value for right with the static position.

2.

If either left or right is still auto (in other words, it hasn't been replaced in a previous step),
replace any auto on margin-left or margin-right with 0.

3.

If, at this point, both margin-left and margin-right are still defined to be auto, set them to

be equal, thus centering the element in its containing block.

4.

After all that, if there is only one auto value left, change it to equal the remainder of the

equation.

5.

This leads to the same basic behaviors we saw with absolutely positioned nonreplaced elements, as
long as you assume that there is an explicit width for the nonreplaced element. Therefore, the
following two elements will have the same width and placement, assuming the image's intrinsic width
is 100 pixels (see Figure 10-50):

<div style="position: relative; width: 300px;">

 <img src="frown.gif" alt="a frowny face"

 style="position: absolute; top: 0; left: 50px; margin: 0;">

 <div style="position: absolute; top: 0; left: 50px;

 width: 100px; height: 100px; margin: 0;">

 it's a div!

 </div>

</div>

Figure 10-50. Absolutely positioning a replaced element

As with nonreplaced elements, if the values are overconstrained, the user agent is supposed to ignore
the value for right in left-to-right languages and left in right-to-left languages. Thus, in the
following example, the declared value for right is overridden with a computed value of 50px:

<div style="position: relative; width: 300px;">

 <img src="frown.gif" alt="a frowny face"

 style="position: absolute; top: 0; left: 50px; right: 125px; width: 200px;

 margin: 0;">

</div>

Similarly, layout along the vertical axis is governed by a series of rules that state:

If height is set to auto, the computed value of height is determined by the intrinsic height of
the element's content. Thus, the height of an image 50 pixels tall is computed to be 50px. If
height is explicitly declared (that is, something like 100px or 50%) then the height is set to that

value.

1.

If top has the value auto, replace it with the replaced element's static position.2.

If bottom has a value of auto, replace any auto value on margin-top or margin-bottom with 0.3.

If, at this point, both margin-top and margin-bottom are still defined to be auto, set them to

be equal, thus centering the element in its containing block.

4.

After all that, if there is only one auto value left, change it to equal the remainder of the

equation.

5.

As with nonreplaced elements, if the values are overconstrained, then the user agent is supposed to
ignore the value for bottom.

Thus, the following markup would have the results shown in Figure 10-51:

<div style="position: relative; height: 200px; width: 200px; border: 1px solid;">

<img src="one.gif" alt="one" width="25" height="25"

 style="position: absolute;

 top: 0; left: 0; margin: 0;">

<img src="two.gif" alt="two" width="25" height="25"

 style="position: absolute;

 top: 0; left: 60px; margin: 10px 0; bottom: 4377px;">

<img src="three.gif" alt=" three" width="25" height="25"

 style="position: absolute;

 left: 0; width: 100px; margin: 10px; bottom: 0;">

<img src="four.gif" alt=" four" width="25" height="25"

 style="position: absolute;

 top: 0; height: 100px; right: 0; width: 50px;">

<img src="five.gif" alt="five" width="25" height="25"

 style="position: absolute;

 top: 0; left: 0; bottom: 0; right: 0; margin: auto;">

</div>

Figure 10-51. Stretching replaced elements through positioning

10.2.5.6 Placement on the z-axis

With all of the positioning going on, there will inevitably be a situation where two elements will try to
exist in the same place, visually speaking. Obviously, one of them will have to overlap the other-but
how does one control which element comes out "on top"? This is where the property z-index comes

in.

z-index

Values

<integer> | auto | inherit

Initial value

auto

Applies to

positioned elements

Inherited

no

Computed value

as specified

z-index lets you alter the way in which elements overlap each other. It takes its name from the

coordinate system in which side-to-side is the x-axis and top-to-bottom is the y-axis. In such a case,
the third axis-that which runs from front to back, or if you prefer, further away from the user-is
termed the z-axis. Thus, elements are given values along this axis and are represented using z-
index. Figure 10-52 illustrates this system.

Figure 10-52. A conceptual view of z-index stacking

In this coordinate system, an element with a high z-index value is closer to the reader than those
with lower z-index values. This will cause the high-value element to overlap the others, as illustrated

in Figure 10-53, which is a "head-on" view of Figure 10-52. This is referred to as stacking.

Figure 10-53. How the elements are stacked

Any integer can be used as a value for z-index, including negative numbers. Assigning an element a
negative z-index will move it further away from the reader; that is, it will be moved lower in the

stack. Consider the following styles, illustrated in Figure 10-54:

p#first {position: absolute; top: 0; left: 0;

 width: 20%; height: 10em; z-index: 8;}

p#second {position: absolute; top: 0; left: 10%;

 width: 30%; height: 5em; z-index: 4;}

p#third {position: absolute; top: 15%; left: 5%;

 width: 15%; height: 10em; z-index: 1;}

p#fourth {position: absolute; top: 10%; left: 15%;

 width: 40%; height: 10em; z-index: 0;}

Figure 10-54. Stacked elements can overlap each other

Each of the elements is positioned according to its styles, but the usual order of stacking is altered by
the z-index values. Assuming the paragraphs were in numeric order, then a reasonable stacking
order would have been, from lowest to highest, p#first, p#second, p#third, p#fourth. This would
have put p#first behind the other three elements and p#fourth in front of the others. Now, thanks
to z-index, the stacking order is under your control.

As the previous example demonstrates, there is no particular need to have the z-index values be

contiguous. You can assign any integer of any size. If you want to be fairly certain that an element
stayed in front of everything else, you might use a rule along the lines of z-index: 100000. This
would work as expected in most cases-although if you ever declared another element's z-index to
be 100001 (or higher), it would appear in front.

Once you assign an element a value for z-axis (other than auto), that element establishes its own

local stacking context. This means that all of the element's descendants have their own stacking
order, relative to the ancestor element. This is very similar to the way that elements establish new
containing blocks. Given the following styles, you would see something like Figure 10-55:

p {border: 1px solid; background: #DDD; margin: 0;}

b {background: #808080;}

em {background: #BBB;}

#one {position: absolute; top: 0; left: 0; width: 50%; height: 10em;

 z-index: 10;}

#two {position: absolute; top: 5em; left: 25%; width: 50%; height: 10em;

 z-index: 7;}

#three {position: absolute; top: 11em; left: 0; width: 50%; height: 10em;

 z-index: 1;}

#one b {position: absolute; right: -5em; top: 4em; width: 20em;

 z-index: -404;}

#two b {position: absolute; right: -3em; top: auto;

 z-index: 36;}

#two em {position: absolute; bottom: -0.75em; left: 7em; right: -2em;

 z-index: -42;}

#three b {position: absolute; left: 3em; top: 3.5em; width: 25em;

 z-index: 23;}

Figure 10-55. Positioned elements establish local stacking contexts

Note where the b and em elements fall in the stacking order. Each of them is correctly positioned with
respect to its parent element, of course. However, pay close attention to the children of p#two. While
the b element is in front of its parent, and the em is behind, both of them are in front of p#three! This
is because the z-index values of 36 and -42 are relative to p#two but not to the document in
general. In a sense, p#two and all of its children share a z-index of 7, while having their own mini-z-

index within the context of p#two.

Put another way, it's as though the b element has a z-index of 7,36 while the em's value is 7,-42.

These are merely implied conceptual values; they don't conform to anything in the specification.
However, such a system helps to illustrate how the overall stacking order is determined. Consider:

p#one 10

p#one b 10,-404

p#two b 7,36

p#two 7

p#two em 7,-42

p#three b 1,23

p#three 1

This conceptual framework precisely describes the order in which these elements would be stacked.
While the descendants of an element can be above or below that element in the stacking order, they
are all grouped together with their ancestor.

It is also the case that an element that establishes a stacking context for its descendants is placed at
the 0 position of that context's z-axis. Thus, you could extend the framework to say:

p#one 10,0

p#one b 10,-404

p#two b 7,36

p#two 7,0

p#two em 7,-42

p#three b 1,23

p#three 1,0

There remains one more value to examine. The specification has this to say about the default value,
auto:

The stack level of the generated box in the current stacking context is the same as its parent's
box. The box does not establish a new local stacking context. (CSS2.1: 9.9.1)

Thus, any element with z-index: auto can be treated as though it is set to z-index: 0. Now,
however, you may wonder what happens to elements with a negative z-index value that are part of

the initial containing block's stacking context. For example, ask yourself what should happen given
the following:

<body>

 <p style="position: absolute; z-index: -1;">Where am I?</p>

</body>

Given the rules of stacking, the body element should be at the same stacking as its parent's box, so
take that to be 0. It does not establish a new stacking context, so the absolutely positioned p
element is placed in the same stacking context as the body element (that of the initial containing
block). In other words, the paragraph is placed behind the body element. If the body has a

nontransparent background, the paragraph will disappear.

That was a possible result in CSS2, at any rate. In CSS2.1, the stacking rules have been changed so
that an element can never be stacked below the background of its stacking context. In other words,
consider the case where the body element establishes a containing block for its descendants (if it

were relatively positioned, for example). An absolutely positioned element that is descended from the
body element can never be stacked below the body's background, although it can be stacked below
the body's content.

As of this writing, Mozilla and related browsers completely hide the paragraph even if you set both
the body and html elements to have transparent backgrounds. This happens in error. Other user
agents, like Internet Explorer, place the paragraph above the body's background even if it has one.
According to CSS2.1, that's the correct behavior. The upshot is that negative z-index values can

lead to unpredictable results, so use them with caution.

10.2.6 Fixed Positioning

As implied in the previous section, fixed positioning is just like absolute positioning, except the
containing block of a fixed element is the viewport. In this case, the element is totally removed from
the document's flow and does not have a position relative to any part of the document.

Fixed positioning can be exploited in a number of interesting ways. First off, it's possible to create
frame-style interfaces using fixed positioning. Consider Figure 10-56, which shows a very common
layout scheme.

Figure 10-56. Emulating frames with fixed positioning

This could be done using the following styles:

div#header {position: fixed; top: 0; bottom: 80%; left: 20%; right: 0;

 background: gray;}

div#sidebar {position: fixed; top: 0; bottom: 0; left: 0; right: 80%;

 background: silver;}

This will fix the header and sidebar to the top and side of the viewport, where they will remain
regardless of how the document is scrolled. The drawback here, though, is that the rest of the
document will be overlapped by the fixed elements. Therefore, the rest of the content should
probably be contained in its own div and employ the following:

div#main {position: absolute; top: 20%; bottom: 0; left: 20%; right: 0;

 overflow: scroll; background: white;}

It would even be possible to create small gaps between the three positioned divs by adding some

appropriate margins, demonstrated in Figure 10-57:

body {background: black; color: silver;} /* colors for safety's sake */

div#header {position: fixed; top: 0; bottom: 80%; left: 20%; right: 0;

 background: gray; margin-bottom: 2px; color: yellow;}

div#sidebar {position: fixed; top: 0; bottom: 0; left: 0; right: 80%;

 background: silver; margin-right: 2px; color: maroon;}

div#main {position: absolute; top: 20%; bottom: 0; left: 20%; right: 0;

 overflow: auto; background: white; color: black;}

Figure 10-57. Separating the "frames" with margins

Given such a case, a tiled image could be applied to the body background. This image would show

through the gaps created by the margins, which could certainly be widened if the author saw fit.

Another use for fixed positioning is to place a "persistent" element on the screen, like a short list of
links. You could create a persistent footer with copyright and other information as follows:

div#footer {position: fixed; bottom: 0; width: 100%; height: auto;}

This would place the footer at the bottom of the viewport and leave it there no matter how much the
document is scrolled.

The major drawback of fixed positioning is that Internet Explorer for Windows doesn't support it.
There are workarounds that use JavaScript to introduce some support in IE/Win, but they are not
always acceptable to authors because the display is much less smooth than full fixed-position support
should be. Another possibility is to absolutely position the element in IE/Win but use fixed positioning
in more advanced browsers, although this will not work for all layouts.

One such JavaScript fix for IE/Win can be found at
http://www.doxdesk.com/software/js/fixed.html; another is located at
http://www.quirksmode.org. You can also read about emulating fixed
positioning in IE/Win without JavaScript at http://css-discuss.incutio.com/?
page=EmulatingFixedPositoning.[1]

[1] Yes, the spelling of "positioning" is incorrect, but that's the way the language
crumbles. The page is still a good source of information.

10.2.7 Relative Positioning

The simplest of the positioning schemes to understand is relative positioning. In this scheme, a
positioned element is shifted by use of the offset properties. However, this can have some interesting
consequences.

On the surface, it seems simple enough. Suppose you want to shift an image up and to the left.
Figure 10-58 shows you the result of these styles:

img {position: relative; top: -20px; left: -20px;}

Figure 10-58. A relatively positioned element

All you've done here is offset the image's top edge 20 pixels upward and offset the left edge 20 pixels
to the left. However, notice the blank space where the image would have been, had it not been
positioned. This happened because when an element is relatively positioned, it's shifted from its
normal place, but the space it would have occupied doesn't disappear. Consider the results of the
following styles, which are depicted in Figure 10-59:

em {position: relative; top: 8em; color: gray;}

Figure 10-59. A relatively positioned element

As you can see, the paragraph has some blank space in it. This is where the em element would have
been, and the layout of the em element in its new position exactly mirrors the space it left behind.

http://www.doxdesk.com/software/js/fixed.html
http://www.quirksmode.org
http://css-discuss.incutio.com/?

Of course, it's also possible to shift a relatively positioned element to overlap other content. For
example, the following styles and markup are illustrated in Figure 10-60:

img.slide {position: relative; left: 30px;}

<p>

In this paragraph, we will find that there is an image that has been pushed to

the right. It will therefore

overlap content nearby, assuming that it is not the last element in its line box.

</p>

Figure 10-60. Relatively positioned elements can overlap other content

As we saw in previous sections, when you relatively position an element, it immediately establishes a
new containing block for any of its children. This containing block corresponds to the place where the
element has been positioned.

There is one interesting wrinkle to relative positioning. What happens when a relatively positioned
element is overconstrained? For example:

strong {position: relative; top: 10px; bottom: 20px;}

Here you have values that call for two very different behaviors. If you consider only top: 10px, then
the element should be shifted downward 10 pixels, but bottom: 20px clearly calls for the element to

be shifted upward 20 pixels.

The original CSS2 specification does not say what should happen in this case. CSS2.1 states that
when it comes to overconstrained relative positioning, one value is reset to be the negative of the
other. Thus, bottom would always equal -top. This means that the previous example would be

treated as though it had been:

strong {position: relative; top: 10px; bottom: -10px;}

Thus, the strong element will be shifted downward 10 pixels. The specification also makes allowances
for writing directions. In relative positioning, right always equals -left in left-to-right languages,
but in right-to-left languages, this is reversed: left would always equal -right.

 < Day Day Up >

 < Day Day Up >

10.3 Summary

Floating and positioning are very compelling features of CSS. They're also likely to be an exercise in
frustration if you're careless in how you use them. Element overlapping, stacking order, size, and
placement all have to be considered carefully when elements are positioned, and floated elements'
relation to the normal flow must also be taken into account. Creating layouts using floating and
positioning can thus take some adjustment, but the rewards are well worth the price.

While it's true that a great deal of layout can thus be freed from tables, there are still reasons to use
tables on the Web, such as presenting stock quotes or sports scores, among other purposes. In the
next chapter, we'll examine how CSS has grown to address the question of table layout.

 < Day Day Up >

 < Day Day Up >

Chapter 11. Table Layout
You may have glanced at the title of this chapter and wondered, "Table layout? Isn't that exactly
what we're trying to avoid doing?" Indeed so, but this chapter is not about using tables for layout.
Instead, it's about the ways that tables themselves are laid out within CSS, which is a far more
complicated affair than it might first appear. That's why the subject gets its own chapter.

Tables are unique, compared to the rest of document layout. As of CSS2.1, tables alone possess the
unique ability to associate element sizes with other elements-all the cells in a row have the same
height, for example, no matter how much or how little content each individual cell might contain. The
same is true for the widths of cells that share a column. There is no other situation in layout where
elements from different parts of the document tree influence each others' sizing and layout in so
direct a way.

As we'll see, this uniqueness is purchased at the expense of a great many behaviors and rules that
apply to tables, and only tables. In the course of the chapter, we'll look at how tables are visually
assembled, two different ways to draw cell borders, and the mechanisms that drive the height and
width of tables and their internal elements.

 < Day Day Up >

 < Day Day Up >

11.1 Table Formatting

Before you can start to worry about how cell borders are drawn and tables sized, you need to delve
into the fundamental ways in which tables are assembled, and the ways that elements within the
table are related to each other. This is what is referred to as table formatting, and it is quite

distinct from table layout: the latter is possible only after the former has been completed.

11.1.1 Visually Arranging a Table

The first thing to understand is how CSS defines the arranging of tables. While this knowledge may
seem a bit basic, it's key to understanding how best to style tables.

CSS draws a distinction between table elements and internal table elements. In CSS, internal table
elements generate rectangular boxes that have content, padding, and borders, but do not have
margins. Therefore, it is not possible to define the separation between cells by giving them margins.
A CSS-conformant browser will ignore any attempts to apply margins to cells, rows, or any other
internal table element (with the exception of captions, which are discussed later in the chapter).

There are six rules for arranging tables. The basis of these rules is a "grid cell," which is one area
between the grid lines on which a table is drawn. Consider Figure 11-1, in which two tables are
shown along with their grid cells, which are indicated by the dashed lines drawn over the tables.

Figure 11-1. Grid cells form the basis of table layout

In a simple two-by-two table, such as the left-hand table shown in Figure 11-1, the grid cells
correspond to the cells. In a more complicated table, like the right-hand one in Figure 11-1, the
edges of the grid cells correspond to the cell borders of all the cells in the table, and cut through
those cells that span rows or columns.

These grid cells are largely theoretical constructs, and they cannot be styled or even accessed
through the document object model. They simply serve as a way to describe how tables are
assembled for styling.

11.1.1.1 Table arrangement rules

Each row box encompasses a single row of grid cells. All of the row boxes in a table fill the table
from top to bottom in the order they occur in the source document (with the exception of any
table header or table footer row boxes, which come at the beginning and end of the table,
respectively). Thus, the table contains as many grid rows as there are row elements.

A row group's box encompasses the same grid cells as the row boxes it contains.

A column box encompasses one or more columns of grid cells. All the column boxes are placed
next to each other in the order they occur. The first column box is on the left for left-to-right
languages, and on the right for right-to-left languages.

A column group's box encompasses the same grid cells as the column boxes that it contains.

Although cells may span several rows or columns, CSS does not define how this happens. It is
instead left to the document language to define spanning. Each spanned cell is a rectangular
box one or more grid cells wide and high. The top row of this rectangle is in the row that is
parent to the cell. The cell's rectangle must be as far to the left as possible in left-to-right
languages, but it may not overlap any other cell box. It must also be to the right of all cells in
the same row that are earlier in the source document in a left-to-right language. In right-to-left
languages, a spanned cell must be as far to the right as possible without overlapping other cells,
and must be to the left of all cells in the same row that follow it in the document source.

A cell's box cannot extend beyond the last row box of a table or row group. If the table
structure would cause this condition, the cell must be shortened until it fits within the table or
row group that encloses it.

The CSS specification discourages, but does not prohibit, the positioning of
table cells and other internal table elements. Positioning a row that contains
row-spanning cells, for example, could dramatically alter the layout of the table
by removing the row from the table entirely, and thus removing the spanned
cells from consideration in the layout of other rows.

By definition, grid cells are rectangular, but they do not all have to be the same size. All the grid cells
in a given grid column will be the same width, and all the grid cells in a grid row will be the same
height, but the height of one grid row may be different than that of another grid row. Similarly, grid
columns may be of different widths.

With those basic rules in mind, a question may arise: how, exactly, do you know which elements are
cells and which are not? We'll find out in the next section.

11.1.2 Table Display Values

In HTML, it's easy to know which elements are parts of tables because the handling of elements like
tr and td is built into browsers. In XML, on the other hand, there is no way to intrinsically know
which elements might be part of a table. This is where a whole collection of values for display come

into play.

display

Values

none | inline | block | inline-block | list-item | run-in | table | inline-
table | table-row-group | table-header-group | table-footer-group | table-
row | table-column-group | table-column | table-cell | table-caption |
inherit

Initial value

inline

Applies to

all elements

Inherited

no

Computed value

varies for floated, positioned, and root elements (see CSS2.1, section 9.7);
otherwise, as specified

Note

the values compact and marker appeared in CSS2 but were dropped from CSS2.1

due to a lack of widespread support

In this chapter, we'll stick to the table-related values, as the others (block, inline, inline-block,
run-in, and list-item) are discussed in other chapters. The table-related values can be

summarized as follows:

table

This value specifies that an element defines a block-level table. Thus, it defines a rectangular
block that generates a block box. The corresponding HTML element is, not surprisingly, table.

inline-table

This value specifies that an element defines an inline-level table. This means the element
defines a rectangular block that generates an inline box. The closest non-table analogue is the
value inline-block. The closest HTML element is table, although, by default, HTML tables are

not inline.

table-row

This value specifies that an element is a row of cells. The corresponding HTML element is the
tr element.

table-row-group

This value specifies that an element groups one or more rows. The corresponding HTML value
is tbody.

table-header-group

This value is very much like table-row-group, except that for visual formatting, the header

row group is always displayed before all other rows and row groups and after any top captions.
In print, if a table requires multiple pages to print, a user agent may repeat header rows at the
top of each page. The specification does not define what happens if you assign table-header-
group to multiple elements. A header group can contain multiple rows. The HTML equivalent is
thead.

table-footer-group

This value is very much like table-header-group, except that the footer row group is always

displayed after all other rows and row groups and before any bottom captions. In print, if a
table requires multiple pages to print, a user agent may repeat footer rows at the bottom of
each page. The specification does not define what happens if you assign table-footer-group
to multiple elements. This is equivalent to the HTML element tfoot.

table-column

This value declares that an element describes a column of cells. In CSS terms, elements with

this display value are not visually rendered, as if they had the value none. Their existence is

largely for the purposes of helping to define the presentation of cells within the column. The
HTML equivalent is the col element.

table-column-group

This value declares that an element groups one or more columns. Like table-column
elements, table-column-group elements are not rendered, but the value is useful for defining
presentation for elements within the column group. The HTML equivalent is the colgroup

element.

table-cell

This value specifies that an element represents a single cell in a table. The HTML elements th
and td are both examples of table-cell elements.

table-caption

This value defines a table's caption. CSS does not define what should happen if multiple
elements have the value caption, but it does explicitly warn, "...authors should not put more

than one element with `display: caption' inside a table or inline-table element."

You can get a quick summary of the general effects of these values by taking an excerpt from the
example HTML 4.0 style sheet given in Appendix C:

table {display: table;}

tr {display: table-row;}

thead {display: table-header-group;}

tbody {display: table-row-group;}

tfoot {display: table-footer-group;}

col {display: table-column;}

colgroup {display: table-column-group;}

td, th {display: table-cell;}

caption {display: table-caption;}

In XML, where elements will not have display semantics by default, these values become quite useful.
Consider the following markup:

<scores>

 <headers>

 <label>Team</label>

 <label>Score</label>

 </headers>

 <game sport="MLB" league="NL">

 <team>

 <name>Reds</name>

 <score>8</score>

 </team>

 <team>

 <name>Cubs</name>

 <score>5</score>

 </team>

 </game>

</scores>

This could be formatted in a tabular fashion using the following styles:

scores {display: table;}

headers {display: table-header-group;}

game {display: table-row-group;}

team {display: table-row;}

label, name, score {display: table-cell;}

The various cells could then be styled as necessary-e.g., boldfacing the label elements and right-

aligning the scores.

While it's theoretically possible to assign table-related display values to any

HTML element, Internet Explorer does not support this capability.

11.1.2.1 Row primacy

CSS defines its table model as "row primacy." In other words, the model assumes that authors will
create markup languages where rows are explicitly declared. Columns, on the other hand, are
derived from the layout of the rows of cells. Thus, the first column is comprised of all the first cells in
each row, the second column of the second cells, and so forth.

Row primacy is not a major issue in HTML, where the markup language is already row-oriented. In
XML, it has more of an impact because it constrains the way in which authors can define table
markup. Because of the row-oriented nature of the CSS table model, a markup language in which
columns are the basis of table layout is not really possible (assuming that the intent is to use CSS to
present such documents).

The row primacy of the CSS model will also be seen throughout the rest of the chapter as we explore
the details of table presentation.

11.1.2.2 Columns

Although the CSS table model is row-oriented, columns do still play a part in layout. A cell can belong
to both contexts (row and column), even if they are descended from row elements in the document
source. In CSS, however, columns and column groups can accept only four styles: border,
background, width, and visibility.

In addition, each of these four properties has special rules that apply only in the columnar context:

border

Borders can be set for columns and column groups only if the property border-collapse has
the value collapse. In such circumstances, column and column-group borders participate in

the collapsing algorithm that sets the border styles at each cell edge. (See Section 11.2.2 later
in this chapter.)

background

The background of a column or column group will be visible only in cells where both the cell and
its row have transparent backgrounds. (See Section 11.1.4 later in this chapter.)

width

The width property defines the minimum width of the column or column group. The content of

cells within the column (or group) may force the column to become wider.

visibility

If the value of visibility for a column or column group is collapse, then none of the cells in

the column (or group) are rendered. Cells that span from the collapsed column into other
columns are clipped, as are cells that span from other columns into the hidden column.
Furthermore, the overall width of the table is reduced by the width the column would have
taken up. A declaration of any value for visibility other than hidden for a column or column

group is ignored.

11.1.3 Anonymous Table Objects

There is the possibility that a markup language might not contain enough elements to fully represent
tables as they are defined in CSS, or that an author will forget to include all the necessary elements.
For example, consider this XHTML:

<table>

 <td>Name:</td>

 <td><input type="text"></td>

</table>

You might glance at this markup and assume that it defines a two-cell table of a single row, but
structurally, there is no element defining a row (because the tr is missing).

To cover such possibilities, CSS defines a mechanism for inserting "missing" table components as
anonymous objects. For a basic example of how this works, let's revisit our missing-row XHTML
example. In CSS terms, what effectively happens is that an anonymous table-row object is inserted
between the table element and its descendant table cells:

<table>

 [anonymous table-row object begins]

 <td>Name:</td>

 <td><input type="text"></td>

 [anonymous table-row object ends]

</table>

A visual representation of this process is given in Figure 11-2.

Figure 11-2. Anonymous object generation in table formatting

Seven different kinds of anonymous-object insertions can occur in the CSS table model. These seven

rules are, like inheritance and specificity, an example of a mechanism that attempts to impose
intuitive sense on the way CSS behaves.

11.1.3.1 Object insertion rules

If a table-cell element's parent is not a table-row element, then an anonymous table-row
object is inserted between the table-cell element and its parent. The inserted object will
include all consecutive siblings of the table-cell element. Consider the following styles and

markup:

1.

system {display: table;}

name, moons {display: table-cell;}

<system>

 <name>Mercury</name>

 <moons>0</moons>

</system>

The anonymous table-row object is inserted between the cell elements and the system
element, and it encloses both the name and system elements.

The same holds true even if the parent element is a table-row-group. To extend the

example, assume that the following applies:

system {display: table;}

planet {display: table-row-group;}

name, moons {display: table-cell;}

<system>

 <planet>

 <name>Mercury</name>

 <moons>0</moons>

 </planet>

 <planet>

 <name>Venus</name>

 <moons>0</moons>

 </planet>

</system>

In this example, both sets of cells will be enclosed in an anonymous table-row object that
is inserted between them and the planet elements.

If a table-row element's parent is not a table, inline-table, or table-row-group element,
then an anonymous table element is inserted between the table-row element and its parent.
The inserted object will include all consecutive siblings of the table-row element. Consider the

following styles and markup:

2.

docbody {display: block;}

planet {display: table-row;}

<docbody>

 <planet>

 <name>Mercury</name>

 <moons>0</moons>

 </planet>

 <planet>

 <name>Venus</name>

 <moons>0</moons>

 </planet>

</docbody>

Because the display value of the planet elements' parent is block, the anonymous
table object is inserted between the planet elements and the docbody element. This
object will enclose both planet elements because they are consecutive siblings.

If a table-column element's parent is not a table, inline-table, or table-column-group3.

element, then an anonymous table element is inserted between the table-column element
and its parent. This is much the same as the table-row rule just discussed, except for its

column-oriented nature.

3.

If the parent element of a table-row-group, table-header-group, table-footer-group,
table-column-group, or table-caption element is not a table element, then an anonymous
table object is inserted between the element and its parent.

4.

If a child element of a table or inline-table element is not a table-row-group, table-
header-group, table-footer-group, table-row, or table-caption element, then an
anonymous table-row object is inserted between the table element and its child element. This
anonymous object spans all of the consecutive siblings of the child element that are not table-
row-group, table-header-group, table-footer-group, table-row, or table-caption

elements. Consider the following markup and styles:

5.

system {display: table;}

planet {display: table-row;}

name, moons {display: table-cell;}

<system>

 <planet>

 <name>Mercury</name>

 <moons>0</moons>

 </planet>

 <name>Venus</name>

 <moons>0</moons>

</system>

Here, a single anonymous table-row object will be inserted between the system element
and the second set of name and moons elements. The planet element is not enclosed by
the anonymous object because its display is table-row.

If a child element of a table-row-group, table-header-group, or table-footer-group
element is not a table-row element, then an anonymous table-row object is inserted between

the element and its child element. This anonymous object spans all of the consecutive siblings of
the child element that are not table-row objects themselves. Consider the following markup

and styles:

6.

system {display: table;}

planet {display: table-row-group;}

name, moons {display: table-cell;}

<system>

 <planet>

 <name>Mercury</name>

 <moons>0</moons>

 </planet>

 <name>Venus</name>

 <moons>0</moons>

</system>

In this case, each set of name and moons elements will be enclosed in an anonymous
table-row element. For the second set, the insertion happens in accord with Rule 5. For
the first set, the anonymous object is inserted between the planet element and its
children because the planet element is a table-row-group element.

If a child element of a table-row element is not a table-cell element, then an anonymous
table-cell object is inserted between the element and its child element. This anonymous
object encloses all consecutive siblings of the child element that are not table-cell elements

themselves. Consider the following markup and styles:

7.

system {display: table;}

planet {display: table-row;}

name, moons {display: table-cell;}

<system>

 <planet>

 <name>Mercury</name>

 <num>0</num>

 </planet>

</system>

Because the element num does not have a table-related display value, an anonymous

table-cell object is inserted between the planet element and the num element.

This behavior also extends to the encapsulation of anonymous inline boxes. Suppose that
the num element was not included:

<system>

 <planet>

 <name>Mercury</name>

 0

 </planet>

</system>

The 0 would still be enclosed in an anonymous table-cell object. To further illustrate this

point, here is an example adapted from the CSS specification:

example {display: table-cell;}

row {display: table-row;}

hi {font-weight: 900;}

<example>

 <row>This is the <hi>top</hi> row.</row>

 <row>This is the <hi>bottom</hi> row.</row>

</example>

Within each row element, the text fragments and hi element are enclosed in an
anonymous table-cell object.

11.1.4 Table Layers

For the assembly of a table's presentation, CSS defines six individual "layers" on which the various
aspects of a table are placed. Figure 11-3 shows these layers.

Figure 11-3. The formatting layers used in table presentation

Basically, the styles for each aspect of the table are drawn on their individual layers. Thus, if the
table element has a green background and a 1-pixel black border, then those styles are drawn on

the lowest layer. Any styles for the column groups are drawn on the next layer up, the columns
themselves on the layer above that, and so on. The top layer, which corresponds to the table cells, is
drawn last.

For the most part, this is simply a logical process; after all, if you declare a background color for table
cells, you would want that drawn over the background for the table element. The most important

point revealed by Figure 11-3 is that column styles come below row styles, so a row's background will
overwrite a column's background.

It is important to remember that, by default, all elements have transparent backgrounds. Thus, in
the following markup, the table element's background will be visible "through" cells, rows, columns,

and so forth that do not have a background of their own, as illustrated in Figure 11-4:

<table style="background: #888;">

 <tr>

 <td>hey</td>

 <td style="background: #CCC;">there</td>

 </tr>

<tr>

 <td>what's</td>

 <td>up?</td>

 </tr>

<tr style="background: #AAA;">

 <td>tiger</td>

 <td style="background: #CCC;">lilly</td>

 </tr>

</table>

Figure 11-4. Seeing the background of table-formatting layers through
other layers

11.1.5 Captions

A table caption is about what you'd expect: a short bit of text that describes the nature of the table's
contents. A chart of stock quotes for the fourth quarter of 2003, therefore, might have a caption
element whose contents read "Q4 2003 Stock Performance." With the property caption-side, you

can place this element either above or below the table, regardless of where the caption appears in
the table's structure. (In HTML, the caption element can appear only after the opening table

element, but other languages may have different rules.)

caption-side

Values

top | bottom

Initial value

top

Applies to

elements with the display value table-caption

Inherited

no

Computed value

as specified

Note

the values left and right appeared in CSS2 but were dropped from CSS2.1 due to

a lack of widespread support

Captions are a bit odd, at least in visual terms. The CSS specification states that a caption is
formatted as if it were a block box placed immediately before (or after) the table's box, with a couple
of exceptions. The first is that the caption can still inherit values from the table, and the second is
that a user agent ignores a caption's box when considering what to do with a run-in element that
precedes the table. Therefore, a run-in element that comes before a table will not run into a top
caption, nor into the table, but will instead be treated as if its display value were block.

A simple example should suffice to illustrate most of the important aspects of caption presentation.
Consider the following, illustrated in Figure 11-5:

caption {background: gray; margin: 1em 0;

 caption-side: top;}

table {color: white; background: black; margin: 0.5em 0;}

Figure 11-5. Styling captions and tables

The text in the caption element inherits the color value white from the table, while the caption

gets its own background. The separation between the table's outer border edge and the caption's
outer margin edge is one em, as the top margin of the table and bottom margin of the caption have
collapsed, as described in Chapter 7. Finally, the width of the caption is based on the content width of
the table element, which is considered to be the containing block of the caption. These same results
would occur if you change the value of caption-side to bottom, except that the caption would be

placed after the table's box, and collapsing would occur between the top margin of the caption and
the bottom margin of the table.

For the most part, captions are styled just like any block-level element; they can be padded, have
borders, be given backgrounds, and so on. For example, if you need to change the horizontal
alignment of text within the caption, you use the property text-align. Thus, to right-align the

caption in the previous example, you would write:

caption {background: gray; margin: 1em 0;

 caption-side: top; text-align: right;}

 < Day Day Up >

 < Day Day Up >

11.2 Table Cell Borders

There are actually two quite distinct border models in CSS. The separated border model takes effect
when cells are separated from each other in layout terms. The other option is the collapsed border
model, in which there is no visual separation between cells, and cell borders merge, or collapse, with
each other. This latter is the default model.

An author can choose between the two models with the property border-collapse.

border-collapse

Values

collapse | separate | inherit

Initial value

separate

Applies to

elements with the display value table or table-inline

Inherited

yes

Computed value

as specified

Note:

in CSS2, the default was collapse

The whole point of this property is to offer the author a way to determine which border model the
user agent will employ. If the value collapse is in effect, then the collapsing borders model is used.
If the value is separate, then the separated borders model is used. We'll look at the latter model

first, since it's actually much simpler to describe.

11.2.1 Separated Cell Borders

In this model, every cell in the table is separated from the other cells by some distance, and the
borders of cells do not collapse into each other. Thus, given the following styles and markup, you
would see the result shown in Figure 11-6:

table {border-collapse: separate;}

td {border: 3px double black; padding: 3px;}

<table cellspacing="0">

 <tr>

 <td>cell one</td>

 <td>cell two</td>

 </tr>

 <tr>

 <td>cell three</td>

 <td>cell four</td>

 </tr>

</table>

Figure 11-6. Separated (and thus separate) cell borders

Note that the cell borders touch but remain distinct from one another. The three lines between cells
are actually the two double borders sitting right next to each other.

The HTML attribute cellspacing was included in the example above in order to make sure the cells

had no separation between them, but its presence is likely a bit troubling. After all, if you can define

that borders be separate, then there ought to be a way to use CSS to alter the spacing between cells.
Fortunately, there is.

11.2.1.1 Border spacing

There may be situations where you want the table cell borders to be separated by some distance.
This can be easily accomplished with the property border-spacing, which provides a more powerful
replacement for the HTML attribute cellspacing.

border-spacing

Values

<length> <length>? | inherit

Initial value

0

Applies to

elements with the display value table or table-inline

Inherited

yes

Computed value

two absolute lengths

Note

property is ignored unless border-collapse value is separate

Either one or two lengths can be given for the value of this property. If you want all your cells
separated by a single pixel, then border-spacing: 1px; would suffice. If, on the other hand, you

want cells to be separated by one pixel horizontally and five pixels vertically, you'd write border-
spacing: 1px 5px;. If two lengths are supplied, the first is always the horizontal separation, and the

second is always the vertical.

The spacing values are also applied between the borders of cells along the outside of a table and the
padding on the table element itself. Given the following styles, you would get the result shown in
Figure 11-7:

table {border-collapse: separate; padding: 10px;

 border: 2px solid black;}

td {border-spacing: 3px 5px; border: 1px solid gray;}

td#squeeze {border-width: 5px;}

Figure 11-7. Border spacing effects between cells and their enclosing table

In Figure 11-7, there is a space 3 pixels wide between the borders of any two horizontally adjacent
cells, and there are 13 pixels of space between the borders of the right- and left-most cells and the
right and left borders of the table element. Similarly, the borders of vertically adjacent cells are 5

pixels apart, and the borders of the cells in the top and bottom rows are 15 pixels from the top and
bottom borders of the table, respectively. The separation between cell borders is constant throughout
the table, regardless of the border widths of the cells themselves.

In the separated border model, borders cannot be set for rows, row groups, columns, and column
groups. Any border properties declared for such elements must be ignored by a CSS-conformant user
agent.

11.2.1.2 Handling empty cells

Because every cell is, in a visual sense, distinct from all the other cells in the table, what do you do
with cells that are empty (i.e., have no content)? You have two choices, which are reflected in the
values of the empty-cells property.

empty-cells

Values

show | hide | inherit

Initial value

show

Applies to

elements with the display value table-cell

Inherited

yes

Computed value

as specified

Note

property is ignored unless border-collapse value is separate

If empty-cells is set to show, then the borders and background of an empty cell will be drawn, just
as with table cells that have content. If the value is hide, then no part of the cell is drawn, just as if
the cell were set to visibility: hidden.

If a cell contains any content, it cannot be considered empty. "Content," in this case, includes not
only text, images, form elements, and so on, but also the nonbreaking space entity () and any

other whitespace except the CR (carriage-return), LF (linefeed), tab, and space characters. If all the
cells in a row are empty, and all have an empty-cells value of hide, then the entire row is treated
as if the row element were set to display: none.

As of this writing, empty-cells is not fully supported by Internet Explorer.

11.2.2 Collapsing Cell Borders

While the collapsing cell model largely describes how HTML tables have always been laid out when
they don't have any cell spacing, it is quite a bit more complicated than the separated borders model.
There are also some rules that set collapsing cell borders apart from the separated borders model.
These are:

Table elements cannot have any padding, although they can have margins. Thus, there is never
separation between the border around the outside of the table and its outermost cells.

Borders can be applied to cells, rows, row groups, columns, and column groups. The table
element itself can, as always, have a border.

There is never any separation between cell borders. In fact, borders collapse into each other
where they adjoin, so that only one of the collapsing borders is actually drawn. This is
somewhat akin to margin collapsing, where the largest margin wins. When cell borders collapse,
the "most interesting" border wins.

Once they are collapsed, the borders between cells are centered on the hypothetical grid lines
between the cells.

We'll explore the last two points in more detail in the next two sections.

11.2.2.1 Collapsing border layout

In order to better understand how the collapsing-borders model works, let's look at the layout of a
single table row, as shown in Figure 11-8.

Figure 11-8. The layout of a table row using the collapsing-borders model

For each cell, the padding and content width of the cell is inside the borders, as expected. For the
borders between cells, half of the border is to one side of the grid line between two cells, and the
other half is to the other side. In each case, only a single border is drawn along each cell edge. You
might think that half of each cell's border is drawn to each side of the grid line, but that's not what
happens.

For example, assume that the solid borders on the middle cell are green and the solid borders on the
outer two cells are red. The borders on the right and left sides of the middle cell (which collapse with
the adjacent borders of the outer cells) will be all green, or all red, depending on which border wins
out. We'll discuss how to tell which one wins in the next section.

You may have noticed that the outer borders protrude past the table's width. This is because, in this
model, half the table's borders are included in the width. The other half sticks out beyond that
distance, sitting in the margin itself. This might seem a bit weird, but that's how the model is defined
to work.

The specification includes a layout formula that I'll reproduce here for the benefit of those who enjoy
such things:

row width = (0.5 * border-width0) + padding-left1 + width1 + padding-right1 +

 border-width1 + padding-left2 +...+ padding-rightn + (0.5 * border-widthn)

Each border-widthi refers to the border between cell i and the next cell; thus, border-width3

refers to the border between the third and fourth cells. The value n stands for the total number of
cells in the row. There is a slight exception to this mechanism. When beginning the layout of a
collapsed-border table, the user agent computes an initial left and right border for the table itself. It
does this by examining the left border of the first cell in the first row of the table and by taking half of
that border's width as the table's initial left border width. The user agent then examines the right
border of the last cell in the first row and uses half that width to set the table's initial right border
width. For any row after the first, if the left or right border is wider than the initial border widths, it
sticks out into the margin area of the table.

In cases where a border is an odd number of display elements (pixels, printer dots, etc.) wide, the
user agent is left to decide what to do about centering the border on the grid line. It might shift the

border so that it is slightly off-center, round up or down to an even number of display elements, or
anything else that seems reasonable.

11.2.2.2 Border collapsing

When two or more borders are adjacent, they collapse into each other. In fact, they don't collapse so
much as fight it out to see which of them will gain supremacy over the others. There are some strict
rules governing which borders will win and which will not:

If one of the collapsing borders has a border-style of hidden, it takes precedence over all

other collapsing borders. All borders at this location are hidden.

If one of the collapsing borders has a border-style of none, it takes the lowest priority. There
will be no border drawn at this location unless all of the colliding borders have a value of none.
Note that none is the default value for border-style.

If at least one of the collapsing borders has a value other than none or hidden, then narrow

borders lose out to wider ones. If more than one of the collapsing borders have the same width,
then the border style is taken in the following order, from most to least preferred: double,
solid, dashed, dotted, ridge, outset, groove, inset. Thus, if two borders with the same
width are collapsing, and one is dashed while the other is outset, the border at that location

will be dashed.

If collapsing borders have the same style and width, but differ in color, then the color used is
taken from an element in the following list, from most preferred to least: cell, row, row group,
column, column group, table. Thus, if the borders of a cell and a column (identical in every way
except color) collapse, then the cell's border color (and style and width) will be used. If the
collapsing borders come from the same type of element, such as two row borders with the same
style and width but different colors, then the behavior is not defined. The user agent decides
what to do in such cases.

The following styles and markup, presented in Figure 11-9, help illustrate each of the four rules:

table {border-collapse: collapse;

 border: 3px outset gray;}

td {border: 1px solid gray; padding: 0.5em;}

#r2c1, #r2c2 {border-style: hidden;}

#r1c1, #r1c4 {border-width: 5px;}

#r2c4 {border-style: double; border-width: 3px;}

#r3c4 {border-style: dotted; border-width: 2px;}

#r4c1 {border-bottom-style: hidden;}

#r4c3 {border-top: 13px solid silver;}

<table>

<tr>

<td id="r1c1">1-1</td><td id="r1c2">1-2</td>

<td id="r1c3">1-3</td><td id="r1c4">1-4</td>

</tr>

<tr>

<td id="r2c1">2-1</td><td id="r2c2">2-2</td>

<td id="r2c3">2-3</td><td id="r2c4">2-4</td>

</tr>

<tr>

<td id="r3c1">3-1</td><td id="r3c2">3-2</td>

<td id="r3c3">3-3</td><td id="r3c4">3-4</td>

</tr>

<tr>

<td id="r4c1">4-1</td><td id="r4c2">4-2</td>

<td id="r4c3">4-3</td><td id="r4c4">4-4</td>

</tr>

</table>

Figure 11-9. Manipulating border widths, styles, and colors leads to some
unusual results

Let's consider what happened for each of the cells, in turn:

For cells 1-1 and 1-4, the 5-pixel borders were wider than any of their adjacent borders, so they
won out not only over adjoining cell borders, but over the border of the table itself. The only
exception is the bottom of cell 1-1, which was suppressed.

The bottom border on cell 1-1 was suppressed because cells 2-1 and 2-2, with their explicitly
hidden borders, completely remove any borders from the edge of the cells. Again, the table's
border lost out (on the left edge of cell 2-1) to a cell's border. The bottom border of cell 4-1 was
also hidden, and so it prevented any border from appearing below the cell.

The 3-pixel double border of cell 2-4 was overridden on top by the 5-pixel solid border of cell 1-
4. 2-4's border, in turn, overrode the border between itself and cell 2-3 because it was both
wider and "more interesting," and it overrode the border between itself and cell 3-4, even
though both are the same width, because 2-4's double style is defined to be "more interesting"
than 3-4's dotted border.

The 13-pixel bottom silver border of cell 3-3 not only overrode the top border of cell 4-3, but it
also affected the layout of content within both cells and the rows that contain both cells.

For cells along the outer edge of the table that aren't specially styled, their 1-pixel solid borders
are overridden by the 3-pixel outset border on the table element itself.

This is, in fact, about as complicated as it sounds, although the behaviors are largely intuitive and
make a little more sense with practice. It's worth noting, though, that the basic Netscape 1-era HTML
table presentation can be captured with a fairly simple set of rules, described here and illustrated by
Figure 11-10:

table {border-collapse: collapse; border: 2px outset gray;}

td {border: 1px inset gray;}

Figure 11-10. Reproducing old-school table presentation

 < Day Day Up >

 < Day Day Up >

11.3 Table Sizing

Now that we've dug into the guts of table formatting and cell border appearance, we have the pieces
we need to understand the sizing of tables and their internal elements. When it comes to determining
table width, there are two different approaches: fixed-width layout and automatic-width layout.
Heights are calculated automatically no matter what width algorithms are used.

11.3.1 Width

Since there are two different ways to figure out the width of a table, it's only logical that there be a
way to declare which should be used for a given table. Authors can use the property table-layout to

select between the two kinds of table width calculation.

table-layout

Values

auto | fixed | inherit

Initial value

auto

Applies to

elements with the display value table or inline-table

Inherited

yes

Computed value

as specified

While the two models can have different results in laying out a specific table, the more fundamental
difference between the two is that of speed. With a fixed-width table layout, the user agent can
calculate the layout of the table more quickly than is possible in the automatic-width model.

11.3.1.1 Fixed layout

The main reason the fixed-layout model is so fast is that its layout does not depend on the contents
of table cells. Instead, it's driven by the width values of the table, columns, and cells within that

table.

The fixed-layout model works in the following simple steps:

Any column element whose width property has a value other than auto sets the width for that

column.

1.

If a column has an auto width, but the cell in the first row of the table within that column has a
width other than auto, then the cell sets the width for that column. If the cell spans multiple

columns, then the width is divided between the columns.

2.

Any columns that are still auto-sized are sized so that their widths are as equal as possible.3.

At that point, the width of the table is set to be either the value of width for the table or the sum of

the column widths, whichever is greater. If the table turns out to be wider than its columns, then the
difference is divided by the number of columns and added to each of them.

This approach is fast because all of the column widths are defined by the first row of the table. The
cells in any rows that come after the first are sized according to the column widths that were defined
by the first row. The cells in those following rows do not change column widths, which means that
any width value assigned to those cells will be ignored. In cases where a cell's content does not fit
into its cell, the overflow value for the cell determines whether the cell contents are clipped, visible,

or generate a scrollbar.

Let's consider the following styles and markup, which are illustrated in Figure 11-11:

table {table-layout: fixed; width: 400px;

 border-collapse: collapse;}

td {border: 1px solid;}

col#c1 {width: 200px;}

#r1c2 {width: 75px;}

#r2c3 {width: 500px;}

<table>

<colgroup>

<col id="c1"><col id="c2"><col id="c3"><col id="c4">

</colgroup>

<tr>

<td id="r1c1">1-1</td><td id="r1c2">1-2</td>

<td id="r1c3">1-3</td><td id="r1c4">1-4</td>

</tr>

<tr>

<td id="r2c1">2-1</td><td id="r2c2">2-2</td>

<td id="r2c3">2-3</td><td id="r2c4">2-4</td>

</tr>

<tr>

<td id="r3c1">3-1</td><td id="r3c2">3-2</td>

<td id="r3c3">3-3</td><td id="r3c4">3-4</td>

</tr>

<tr>

<td id="r4c1">4-1</td><td id="r4c2">4-2</td>

<td id="r4c3">4-3</td><td id="r4c4">4-4</td>

</tr>

</table>

Figure 11-11. Fixed-width table layout

As you can see in Figure 11-11, the first column is 200 pixels wide, which happens to be half the 400-
pixel width of the table. The second column is 75 pixels wide because the first-row cell within that

column has been assigned an explicit width. The third and fourth columns are each 61 pixels wide.
Why? Because the sum of the column widths for the first and second columns (275px), plus the
various borders between columns (3px), equals 278 pixels. 400 minus 278 is 122, and that divided in
half is 61, so that's how many pixels wide the third and fourth columns will be. What about the 500-
pixel width for #r2c3? It's ignored because that cell isn't in the first row of the table.

Note that it is not absolutely necessary that the table have an explicit width to make use of the fixed-
width layout model, although it definitely helps. For example, given the following, a user agent could
calculate a width for the table that is 50 pixels narrower than the parent element's width. It would

then use that calculated width in the fixed-layout algorithm:

table {table-layout: fixed; margin: 0 25px;

 width: auto;}

This is not required, however. User agents are also permitted to lay out any table with an auto value
for width using the automatic-width layout model.

11.3.1.2 Automatic layout

The automatic-layout model, while not as fast as fixed layout, is probably much more familiar to you
because it's substantially the same model that HTML tables have used for years. In most current user
agents, use of this model will be triggered by a table having a width of auto, regardless of the value
of table-layout, although this is not assured.

The reason automatic layout is slower is that the table cannot be laid out until the user agent has
looked at all of the content of the table. That is, it requires that the user agent lay out the entire table
each time it gets a new cell. This generally requires the user agent to perform some calculations and
then go back through the table to perform a second set of calculations. The content has to be fully
examined because, as with HTML tables, the table's layout is dependent on the content in all the cells.
If there is a 400-pixel-wide image in a cell in the last row, then it will force all of the cells above it
(those in the same column) to be 400 pixels wide. Thus, the width of every cell has to be calculated,
and adjustments must be made (possibly triggering another round of content-width calculations)
before the table can be laid out.

The details of the model can be expressed in the following steps:

For each cell in a column, calculate both the minimum and maximum cell width.

Determine the minimum width required to display the content. In determining this
minimum content width, the content can flow to any number of lines, but it may not stick
out of the cell's box. If the cell has a width value that is larger than the minimum possible
width, then the minimum cell width is set to the value of width. If the cell's width value is
auto, then the minimum cell width is set to the minimum content width.

a.

For the maximum width, determine the width required to display the content without any
line breaking other than that forced by explicit line breaking (e.g., the
 element). That

value is the maximum cell width.

b.

1.

For each column, calculate both the minimum and maximum column width.

a.

2.

The column's minimum width is determined by the largest minimum cell width of the cells
within the column. If the column has been given an explicit width value that is larger than

any of the minimum cell widths within the column, then the minimum column width is set
to the value of width.

a.

For the maximum width, take the largest maximum cell width of the cells within the
column. If the column has been given an explicit width value that is larger than any of the

maximum cell widths within the column, then the maximum column width is set to the
value of width. These two behaviors recreate the traditional HTML table behavior of

forcibly expanding any column to be as wide as its widest cell.

b.

2.

In cases where a cell spans more than one column, then the sum of the minimum column
widths must be equal to the minimum cell width for the spanning cell. Similarly, the sum of the
maximum column widths has to equal the spanning cell's maximum width. User agents should
divide any changes in column widths equally among the spanned columns.

3.

In addition, the user agent must take into account that when a column width has a percentage value
for its width, the percentage is calculated in relation to the width of the table-even though it doesn't

yet know what that will be! It instead has to hang on to the percentage value and use it in the next
part of the algorithm.

At this point, the user agent will have figured how wide or narrow each column can be. With that
information in hand, it can then proceed to actually figuring out the width of the table. This happens
as follows:

If the computed width of the table is not auto, then the computed table width is compared to

the sum of all the column widths plus any borders and cell spacing. (Columns with percentage
widths are likely calculated at this time.) The larger of the two is the final width of the table. If
the table's computed width is larger than the sum of the column widths, borders, and cell
spacing, then all columns are increased in width by an equal amount until they all fit into the
table.

1.

If the computed width of the table is auto, then the final width of the table is determined by

adding up the column widths, borders, and cell spacing. This means that the table will be only
as wide as needed to display its content, just as with traditional HTML tables. Any columns with
percentage widths use that percentage as a constraint-but one that a user agent does not
have to satisfy.

2.

Once the last step is completed, then, and only then, can the user agent actually lay out the table.

The following styles and markup, presented in Figure 11-12, help illustrate how this process works:

table {table-layout: auto; width: auto;

 border-collapse: collapse;}

td {border: 1px solid;}

col#c3 {width: 25%;}

#r1c2 {width: 40%;}

#r2c2 {width: 50px;}

#r2c3 {width: 35px;}

#r4c1 {width: 100px;}

#r4c4 {width: 1px;}

<table>

<colgroup>

<col id="c1"><col id="c2"><col id="c3"><col id="c4">

</colgroup>

<tr>

<td id="r1c1">1-1</td><td id="r1c2">1-2</td>

<td id="r1c3">1-3</td><td id="r1c4">1-4</td>

</tr>

<tr>

<td id="r2c1">2-1</td><td id="r2c2">2-2</td>

<td id="r2c3">2-3</td><td id="r2c4">2-4</td>

</tr>

<tr>

<td id="r3c1">3-1</td><td id="r3c2">3-2</td>

<td id="r3c3">3-3</td><td id="r3c4">3-4</td>

</tr>

<tr>

<td id="r4c1">4-1</td><td id="r4c2">4-2</td>

<td id="r4c3">4-3</td><td id="r4c4">4-4</td>

</tr>

</table>

Figure 11-12. Automatic table layout

Let's consider what happened for each of the columns, in turn:

For the first column, the only explicit cell or column width is that of cell 4-1, which was given a
width of 100px. Because the content is so short, the minimum and maximum column width
becomes 100px. (If there were a cell in the column with several sentences of text, it would have

increased the maximum column width to whatever width necessary to display all of the text
without line-breaking.)

For the second column, two widths were declared: cell 1-2 was given a width of 40%, and cell 2-
2 was given a width of 50px. The minimum width of this column is 50px, and the maximum

width is 40% of the final table width.

For the third column, only cell 3-3 had an explicit width (35px), but the column itself was given a
width of 25%. Therefore, the minimum column width is 35px, and the maximum width is 25%

the final table width.

For the fourth column, only cell 4-4 was given an explicit width, that of 1px. This is smaller than

the minimum content width, so both the minimum and maximum column widths are equal to the
minimum content width of the cells. This turns out to be a computed 25 pixels.

The user agent now knows that the four columns have minimum and maximum widths as follows:

min 100px / max 100px1.

min 50px / max 40%2.

min 35px / max 25%3.

min 25px / max 25px4.

Thus, the table's minimum width is the sum of all the column minima plus the borders, which totals
215 pixels. The table's maximum width is 130px + 65%, which works out to be 371.42857143 pixels
(given that 130px represents 35% of the overall table width). Let's assume this to be, after rounding
the fractional number off to 371 pixels, the width value user agents will actually use. Thus, the second
column will be 148 pixels wide, and the third column will be 93 pixels wide. It is not required that user
agents actually use the maximum value; they may choose another course of action.

Of course, this was (although it may not seem like it) a very simple and straightforward example: all
of the content was basically the same width, and most of the declared widths were pixel lengths. In a
situation where a table contains spacer GIFs, paragraphs of text, form elements, and so forth, the
process of figuring out the table's layout is likely to be a great deal lengthier.

11.3.2 Height

After all of the effort that was expended in figuring out the width of the table, you might well wonder
how much more complicated height calculation will be. Actually, in CSS terms, it's pretty simple,
although browser developers probably don't think so.

The easiest situation to describe is one in which the height is explicitly set via the height property. In
such cases, the height of the table is defined by the value of height. This means that a table may be

taller or shorter than the sum of its row heights. In such cases, the CSS2.1 specification explicitly
refuses to define what should happen, instead noting that the issue may be resolved in future
versions of CSS. A user agent could expand or shrink a table's rows to match its height, or implement
a scrollbar to get to overflowing rows, or neither, or something completely different. It's up to each
user agent to decide.

If the height of the table is auto, then its height is the sum of the heights of all the rows within the

table, plus any borders and cell spacing. To determine the height of each row, the user agent goes
through a process similar to that used to find the widths of columns. It calculates a minimum and
maximum height for the contents of each cell and then uses these to derive a minimum and
maximum height for the row. After having done this for all the rows, the user agent figures out what
each row's height should be, stacks them all on top of each other, and uses that calculation to
determine the table's height. It's a lot like inline layout, only with less certainty in how things should
be done.

In addition to what to do about tables with explicit heights and how to treat row heights within them,
you can add the following to the list of things CSS2.1 does not define:

The effect of a percentage height for table cells.

The effect of a percentage height for table rows and row groups.

How a row-spanning cell affects the heights of the rows that are spanned, except that the rows
have to contain the spanning cell.

As you can see, height calculations in tables are largely left up to user agents to figure out. Historical
evidence would suggest that this will lead to each user agent doing something different, so you
should probably avoid setting heights as much as possible.

11.3.3 Alignment

In a rather interesting turn of events, alignment of content within cells is a lot better defined than cell
and row heights. This is true even for vertical alignment, which could quite easily affect the height of
a row.

Horizontal alignment is the simplest. To align content within a cell, you use the text-align property.

In effect, the cell is treated as a block-level box and all of the content within it is aligned as per the
text-align value. (For details on text-align, see Chapter 6.)

To vertically align content in a table cell, vertical-align is the relevant property. It uses many of

the same values that are used for vertically aligning inline content, but the meanings of those values
change when applied to a table cell. To summarize the three simplest cases:

top

The top of the cell's content is aligned with the top of its row; in the case of row-spanning cells,
the top of the cell's content is aligned with the top of the first row it spans.

bottom

The bottom of the cell's content is aligned with the bottom of its row; in the case of row-
spanning cells, the bottom of the cell's content is aligned with the bottom of the last row it
spans.

middle

The middle of the cell's content is aligned with the middle of its row; in the case of row-
spanning cells, the middle of the cell's content is aligned with the middle of all the rows it
spans.

These are illustrated in Figure 11-13, which uses the following styles and markup:

table {table-layout: auto; width: 20em;

 border-collapse: separate; border-spacing: 3px;}

td {border: 1px solid; background: silver;

 padding: 0;}

div {border: 1px dashed gray; background: white;}

#r1c1 {vertical-align: top; height: 10em;}

#r1c2 {vertical-align: middle;}

#r1c3 {vertical-align: bottom;}

<table>

<tr>

<td id="r1c1">

<div>

The contents of this cell are top-aligned.

</div>

</td>

<td id="r1c2">

<div>

The contents of this cell are middle-aligned.

</div>

</td>

<td id="r1c3">

<div>

The contents of this cell are bottom-aligned.

</div>

</td>

</tr>

</table>

Figure 11-13. Vertical alignment of cell contents

In each case, the alignment is carried out by automatically increasing the padding of the cell itself to
achieve the desired effect. In the first cell in Figure 11-13, the bottom padding of the cell has been
changed to equal the difference between the height of the cell's box and the height of the content
within the cell. For the second cell, the top and bottom padding of the cell have been reset to be
equal, thus vertically centering the content of the cell. In the last cell, the cell's top padding has been
altered.

The fourth possible value alignment is baseline, and it's a little more complicated that the first

three:

baseline

The baseline of the cell is aligned with the baseline of its row; in the case of row-spanning cells,
the baseline of the cell is aligned with the baseline of the first row it spans.

It's easiest to provide an illustration (see Figure 11-14) and then discuss what's happening.

Figure 11-14. Baseline alignment of cell contents

A row's baseline is defined by the lowest initial cell baseline (that is, the baseline of the first line of
text) out of all its cells. Thus, in Figure 11-14, the row's baseline was defined by the third cell, which
has the lowest initial baseline. The first two cells then have a baseline of their first line of text aligned
with the row's baseline.

As with top, middle, and bottom alignment, the placement of baseline-aligned cell content is
accomplished by altering the top and bottom padding of the cells. In cases where none of the cells in
a row are baseline-aligned, the row does not even have a baseline-it doesn't really need one.

The detailed process for aligning cell contents within a row is as follows:

If any of the cells is baseline-aligned, then the row's baseline is determined and the content of
the baseline-aligned cells is placed.

1.

Any top-aligned cell has its content placed. The row now has a provisional height, which is
defined by the lowest cell bottom of the cells that have already had their content placed.

2.

If any remaining cells are middle- or bottom-aligned, and the content height is taller than the
provisional row height, the height of the row is increased to enclose the tallest of those cells.

3.

All remaining cells have their content placed. In any cell whose contents are shorter than the
row height, the cell's padding is increased in order to match the height of the row.

4.

The vertical-align values sub, super, text-top, and text-bottom are ignored when applied to

table cells. Thus, the following rule would have the same result as that shown in Figure 11-14:

th {vertical-align: text-top;}

 < Day Day Up >

 < Day Day Up >

11.4 Summary

Even if you're quite familiar with table layout from years of table-and-spacer design, it turns out that
the mechanisms driving such layout are rather complicated and not at all deterministic. Thanks to the
legacy of HTML table construction, the CSS table model is row-centric, but it does, thankfully,
accommodate columns and limited column styling. Thanks to new abilities to affect cell alignment and
table width, you now have even more tools for presenting tables in a pleasing way.

The ability to apply table-related display value to arbitrary elements opens the door to creating
table-like layouts using HTML elements such as div, or in XML languages where any element could

be used to describe layout components. As of this writing, most browsers other than Internet
Explorer support the application of table-related display values to arbitrary elements. Even in its

current form, CSS makes presentation more sophisticated, as does the subject of the next chapter:
generated content.

 < Day Day Up >

 < Day Day Up >

Chapter 12. Lists and Generated Content
In the realm of CSS layout, lists are an interesting case. The items in a list are simply block boxes,
but with an extra bit that doesn't really participate in the document layout hanging off to one side.
With an ordered list, that extra bit contains a series of increasing numbers (or letters) that are
calculated and mostly formatted by the user agent, not the author. Taking a cue from the document
structure, the user agent generates the numbers and their basic presentation.

None of this content-generation could be described in CSS1 terms-and, therefore, it couldn't be
controlled-but CSS2 introduced features that allow list-item numbering to be described. As a result,
CSS now lets you, the author, define your own counting patterns and formats, and associate those
counters with any element, not just ordered list items. Furthermore, this basic mechanism makes it
possible to insert other kinds of content, including text strings, attribute values, or even external
resources into a document. Thus, it becomes possible to use CSS to insert link icons, editorial
symbols, and more into a design without having to create extra markup.

To see how all these list options fit together, we'll explore basic list styling before moving on to
examine the generation of content and counters.

 < Day Day Up >

 < Day Day Up >

12.1 Lists

In a sense, almost anything that isn't narrative text can be considered a list. The U.S. Census, the
Solar System, my family tree, a restaurant menu, all the friends you've ever had-all can be
represented as a list, or perhaps as a list of lists. These many variations make lists fairly important,
which is why it's something of a shame that list styling in CSS isn't more sophisticated.

The simplest (and best-supported) way to affect a list's styles is to change its marker type. The
marker of a list item is, for example, the "bullet" shown next to each item in an unordered list. In an
ordered list, the marker could be a letter, number, or a symbol from some other counting system.
You can even replace the markers with images. All of these are accomplished using the different list-
style properties.

12.1.1 Types of Lists

In order to change the type of marker used for a list's items, you use the property list-style-
type.

list-style-type

CSS2.1 values

disc | circle | square | decimal | decimal-leading-zero | upper-alpha |
lower-alpha | upper-roman | lower-roman | none | inherit

CSS2 values

disc | circle | square | decimal | decimal-leading-zero | upper-alpha
|lower-alpha | upper-roman | lower-roman | lower-greek | hebrew | armenian |
georgian | cjk-ideographic | hiragana | katakana | hiragana-iroha | none |
inherit

Initial value

disc

Applies to

elements whose display value is list-item

Inherited

yes

Computed value

as specified

That's quite a few keywords, I know; many of them were introduced in CSS2 but were then dropped
in CSS2.1. Table 12-1 lists the keywords that exist in CSS2.1.

Table 12-1. Keywords of the list-style-type property in CSS2.1

Keyword Effect

disc Uses a disc (usually a filled circle) for list-item markers

circle Uses a circle (usually open) for markers

square Uses a square (filled or open) for markers

decimal 1, 2, 3, 4, 5, . . .

decimal-leading-zero 01, 02, 03, 04, 05, . . .

upper-alpha A, B, C, D, E, . . .

lower-alpha a, b, c, d, e, . . .

upper-roman I, II, III, IV, V, . . .

lower-roman i, ii, iii, iv, v, . . .

none Uses no marker

Table 12-2 lists those keywords that were introduced in CSS2 but do not appear in CSS2.1.

Table 12-2. Keywords of the list-style-type property in CSS2

Keyword Effect

lower-greek Lowercase classical Greek symbols

hebrew Traditional Hebrew numbering

armenian Traditional Armenian numbering

georgian Traditional Georgian numbering

cjk-ideographic Ideographic numbering

katakana Japanese numbering (A, I, U, E, O...)

katakana-iroha Japanese numbering (I, RO, HA, NI, HO...)

hiragana Japanese numbering (a, i, u, e, o...)

hiragana-iroha Japanese numbering (i, ro, ha, ni, ho...)

A user agent should treat any value it does not recognize as decimal.

The list-style-type property, as well all other list-related properties, can be applied only to an
element that has a display of list-item, but CSS doesn't distinguish between ordered and

unordered list items. Thus, you might be able to set an ordered list to use discs instead of numbers.
In fact, the default value of list-style-type is disc, so you might theorize that without explicit

declarations to the contrary, all lists (ordered or unordered) will use discs as the marker for each
item. This would be logical, but, as it turns out, it's up to the user agent to decide. Even if the user
agent doesn't have a predefined rule such as ol {list-style-type: decimal;}, it may prohibit

ordered markers from being applied to unordered lists, and vice versa. You can't count on this, so be
careful.

For the CSS2 values such as hebrew and georgian, the CSS2 specification doesn't specify exactly

how these counting systems work, nor how user agents should deal with them. This uncertainty
resulted in a lack of widespread implementation, which is why the values in Table 12-2 do not appear
in CSS2.1.

If you want to suppress the display of markers altogether, then none is the value you seek. none

causes the user agent to refrain from putting anything where the marker would ordinarily be,
although it does not interrupt the counting in ordered lists. Thus, the following markup would have
the result shown in Figure 12-1:

ol li {list-style-type: decimal;}

li.off {list-style-type: none;}

Item the first

<li class="off">Item the second

Item the third

<li class="off">Item the fourth

Item the fifth

Figure 12-1. Switching off list-item markers

list-style-type is inherited, so if you want to have different styles of markers in nested lists, you'll

likely need to define them individually. You may also have to explicitly declare styles for nested lists
because the user agent's style sheet may already have defined them. For example, assume that a
user agent has the following styles defined:

ul {list-style-type: disc;}

ul ul {list-style-type: circle;}

ul ul ul {list-style-type: square;}

If this is the case (and it's likely that it will be), you will have to declare your own styles to overcome
the user agent's styles. Inheritance won't be enough in such a case.

12.1.2 List Item Images

Sometimes, a regular marker just won't do. You might prefer to use an image for each marker, which
is possible with the property list-style-image.

list-style-image

Values

<uri> | none | inherit

Initial value

none

Applies to

elements whose display value is list-item

Inherited

yes

Computed value:

for <uri> values, the absolute URI; otherwise, none

Here's how it works:

ul li {list-style-image: url(ohio.gif);}

Yes, it's really that simple. One simple url value, and you're putting images in for markers, as you

can see in Figure 12-2.

Figure 12-2. Using images as markers

Of course, you should exercise care in the images you use, as the example shown in Figure 12-3
makes painfully clear:

ul li {list-style-image: url(big-ohio.gif);}

Figure 12-3. Using really big images as markers

It's generally a good idea to provide a fallback marker type. Do this just in case your image doesn't
load, gets corrupted, or is in a format that some user agents can't display. Therefore, you should
always define a backup list-style-type for the list:

ul li {list-style-image: url(ohio.png); list-style-type: square;}

The other thing you can do with list-style-image is set it to the default value of none. This is good
practice because list-style-image is inherited so any nested lists will pick up the image as the

marker, unless you prevent that from happening:

ul {list-style-image: url(ohio.gif); list-style-type: square;}

ul ul {list-style-image: none;}

Since the nested list inherits the item type square but has been set to use no image for its markers,

squares are used for the markers in the nested list, as shown in Figure 12-4.

Figure 12-4. Switching off image markers in sublists

Remember that the above scenario might not occur in the real world: a user
agent may have already defined a list-style-type for ul ul, so the value of
square won't be inherited after all. Your browser may vary.

12.1.3 List-Marker Positions

There is one other thing you can do to influence the appearance of list items under CSS2.1, and
that's decide whether the marker appears outside or inside the content of the list item. This is
accomplished with list-style-position.

list-style-position

Values

inside | outside | inherit

Initial value

outside

Applies to

elements whose display value is list-item

Inherited

yes

Computed value:

as specified

If a marker's position is set to outside (the default), it will appear the way list items always have on

the Web. Should you desire a slightly different appearance, though, you can pull the marker in
toward the content by setting the value to be inside. This causes the marker to be placed "inside"

the list item's content. The exact way this happens is undefined, but Figure 12-5 shows one
possibility:

li.first {list-style-position: inside;}

li.second {list-style-position: outside;}

Figure 12-5. Placing the markers inside and outside list items

12.1.4 List Styles in Shorthand

For brevity's sake, you can combine the three list-style properties into a convenient single property:
list-style.

list-style

Values

[<list-style-type> || <list-style-image> || <list-style-position>] | inherit

Initial value

refer to individual properties

Applies to

elements whose display value is list-item

Inherited

yes

Computed value:

see individual properties

For example:

li {list-style: url(ohio.gif) square inside;}

As you can see in Figure 12-6, all three values are applied to the list items.

Figure 12-6. Bringing it all together

The values for list-style can be listed in any order, and any of them can be omitted. As long as

one is present, the rest will fill in their default values. For instance, the following two rules will have
the same visual effect:

li.norm {list-style: url(img42.gif);}

li.odd {list-style: url(img42.gif) disc outside;} /* the same thing */

They will also override any previous rules in the same way. For example:

li {list-style-type: square;}

li.norm {list-style: url(img42.gif);}

li.odd {list-style: url(img42.gif) disc outside;} /* the same thing */

The result will be the same as that seen in Figure 12-6 because the implied list-style-type value
of disc for the rule li.norm will override the previous declared value of square, just as the explicit
value of disc overrides it in rule li.odd.

12.1.5 List Layout

Now that we've looked at the basics of styling list markers, let's consider how lists are laid out in
various browsers. We'll start with a set of three list items devoid of any markers and not yet placed
within a list, as shown in Figure 12-7.

Figure 12-7. Three list items

The border around the list items shows them to be, essentially, like a block-level element. Indeed,
the value list-item is defined to generate a block box. Now let's add markers, as illustrated in

Figure 12-8.

Figure 12-8. Markers are added

The distance between the marker and the list item's content is not defined by CSS, and CSS2.1 does
not provide a way to affect that distance. Interestingly, CSS2 does, which is a subject briefly covered
in the sidebar List-Marker Positioning.

With the markers outside the list items' content, they don't affect the layout of other elements, nor
do they really even affect the layout of the list items themselves. They just hang a certain distance
from the edge of the content, and wherever the content edge goes, the marker will follow. The
behavior of the marker works much as though the marker were absolutely positioned in relation to
the list-item content, something like position: absolute; left: -1.5em;. When the marker is

inside, it acts like an inline element at the beginning of the content.

Just to be different, if for no other good reason, Internet Explorer for Windows extends the content
area of the list items to enclose the bullets, as illustrated in Figure 12-9. This does not change the
overall situation with list styling, although it can make a difference in situations where authors apply
borders to list items.

Figure 12-9. List borders and bullets in IE/Win

So far, you have yet to add an actual list container; in other words, there is neither a ul nor an ol

element represented in the figures. You can add one to the mix, as shown in Figure 12-10 (it's
represented by a dashed border).

Figure 12-10. Adding a list element

Like the list items, the list element is a block box, one that encompasses its descendant elements. As
you can see, however, the markers are not only placed outside the list item contents, but also
outside the content area of the list element. The usual "indentation" you expect from lists has not yet
been specified.

Most browsers, as of this writing, accomplish the indentation of list items by setting either padding or
margins for the containing list element. For example, the user agent might apply a rule such as this
one:

ul, ol {margin-left: 40px;}

This is the rule employed by Internet Explorer and Opera (see Figure 12-10). Most Gecko-based
browsers, on the other hand, use a rule like this:

ul, ol {padding-left: 40px;}

Neither is incorrect, but the discrepancy can lead to problems if you want to eliminate the indentation
of the list items. Figure 12-11 shows the difference between the two approaches.

Figure 12-11. Margins and padding as indentation devices

The distance of 40px is a relic of early web browsers, which indented lists by a
pixel amount. A better value would be something like 2.5em, since this would

scale the indentation along with changes in the text size.

For authors who want to change the indentation distance of lists, I strongly recommend that you
specify both padding and margins. This will lead to cross-browser compatibility. For example, if you
want to use padding to indent a list, use this rule:

ul {margin-left: 0; padding-left: 1em;}

If you prefer margins, write something like this instead:

ul {margin-left: 1em; padding-left: 0;}

In either case, remember that the markers will be placed relative to the contents of the list items,
and may therefore "hang" outside the main text of a document, or even beyond the edge of the
browser window.

List-Marker Positioning

A feature many authors request is the ability to control the space between a marker and
the content of a list item. CSS2 defined ways to do this, including a property called
marker-offset and a display value of marker. Implementation experience since showed

this to be a clumsy approach, and these features were removed in CSS2.1

As of this writing, the current working draft of the CSS3 Lists module defines a new and
more compact way to affect marker placement, which is the ::marker pseudo-element.

Assuming that the module does not change before becoming a full Recommendation, you
may someday be able to write rules such as li::marker {margin-right: 0.125em;} in

order to get markers snug up against the content of list items without actually bringing
them inside.

 < Day Day Up >

 < Day Day Up >

12.2 Generated Content

CSS2 and CSS2.1 include a new feature called generated content. This is content that is created by
the browser but is not represented either by markup or content.

For example, list markers are generated content. There is nothing in the markup of a list item that
directly represents the markers, and you, the author, do not have to write the markers into your
document's content. The browser simply generates the appropriate marker automatically. For
unordered lists, the marker is a "bullet" of some kind, whether circle, disc, or square. In ordered lists,
it's a counter that increments by one for each successive list item.

In order to understand how you can affect list markers and customize the counting of ordered lists
(or anything else!), you must first look at more basic generated content.

As of this writing, no version of Internet Explorer supports generated content.

12.2.1 Inserting Generated Content

To insert generated content into the document, use the :before and :after pseudo-elements. These

place generated content before or after the content of an element by way of the content property
(described in the next section).

For example, you might want to precede every hyperlink with the text "(link)" to mark them for
printing. This would be done with a rule like the following, which has the effect shown in Figure 12-
12:

a[href]:before {content: "(link)";}

Figure 12-12. Generating text content

Note that there isn't a space between the generated content and the element content. This is
because the value of content in the previous example doesn't include a space. You could modify the
declaration as follows to make sure there's a space between generated and actual content:

a[href]:before {content: "(link) ";}

It's a small difference but an important one.

In a similar manner, you might choose to insert a small icon at the end of links to PDF documents.
The rule to accomplish this would look something like:

a.pdf-doc:after {content: url(pdf-doc-icon.gif);}

Suppose you want to further style such links by placing a border around them. This would be done
with a second rule:

a.pdf-doc {border: 1px solid gray;}

The result of these two rules is illustrated in Figure 12-13.

Figure 12-13. Generating icons

Notice how the link border extends around the generated content, just as the link underline extended
under the "(link)" text in Figure 12-12. This happens because generated content is placed inside the
element box of the element. As of CSS2.1, there isn't a way to place generated content outside the
element box, other than list markers.

You might think that positioning would do the trick, except CSS2 and CSS2.1 specifically prohibit the
floating or positioning of :before and :after content. List-style properties, along with table

properties, are similarly prohibited. In addition, the following restrictions apply:

If the subject of a :before or :after selector is a block-level element, then the property
display can accept only the values none, inline, block, and marker. Any other value is
treated as block.

If the subject of a :before or :after selector is an inline-level element, then the property
display can accept only the values none and inline. Any other value is treated as inline.

For example, consider:

em:after {content: " (!) "; display: block;}

Since em is an inline element, the generated content cannot be made block-level. The value block is
therefore reset to inline. In this next example, however, the generated content is made block-level

because the target element is also block-level:

h1:before {content: "New Section"; display: block; color: gray;}

The result is illustrated in Figure 12-14.

Figure 12-14. Generating block-level content

One interesting aspect of generated content is that it inherits values from the element to which it's
been attached. Thus, given the following rules, the generated text will be green, the same as the
content of the paragraphs:

p {color: green;}

p:before {content: "::: ";}

If you don't want the generated text to be green, but purple instead, a simple declaration will suffice:

p:before {content: "::: "; color: purple;}

Such value inheritance happens only with inherited properties, of course. This is worth noting
because it bears on how certain effects must be approached. Consider:

h1 {border-top: 3px solid black; padding-top: 0.25em;}

h1:before {content: "New Section"; display: block; color: gray;

 border-bottom: 1px dotted black; margin-bottom: 0.5em;}

Since the generated content is placed inside the element box of the h1, it will be placed under the top

border of the element. It would also be placed within any padding, as shown in Figure 12-15.

Figure 12-15. Taking placement into account

The bottom margin of the generated content, which has been made block-level, pushes the actual
content of the element downward by half an em. In every sense, the effect of the generated content
in this example is to break up the h1 element into two pieces: the generated-content box and the
actual content box. This happens because the generated content has display: block. If you were to
change it to display: inline, the effect would be as shown in Figure 12-16:

h1 {border-top: 3px solid black; padding-top: 0.25em;}

h1:before {content: "New Section"; display: inline; color: gray;

 border-bottom: 1px dotted black; margin-bottom: 0.5em;}

Figure 12-16. Changing the generated content to be inline

Note how the borders are placed and how the top padding is still honored. So is the bottom margin
on the generated content, but since the generated content is now inline and margins don't affect line

height, the margin has no visible effect.

With the basics of generating content established, let's take a closer look at the way the actual
generated content is specified.

12.2.2 Specifying Content

If you're going to generate content, you need a way to describe the content to be generated. As
you've already seen, this is handled with the content property, but there's a great deal more to this

property than you've seen thus far.

content

Values

normal | [<string> | <uri> | <counter> | attr(<identifier>) | open-quote |
close-quote | no-open-quote | no-close-quote]+ | inherit

Initial value

normal

Applies to

:before and :after pseudo-elements

Inherited

no

Computed value:

for <uri> values, an absolute URI; for attribute references, the resulting string;
otherwise, as specified

You've already seen string and URI values in action, and counters will be covered later in this
chapter. Let's talk about strings and URIs in a little more detail before we take a look at the attr()

and quote values.

String values are presented literally, even if they contain what would otherwise be markup of some
kind. Therefore, the following rule would be inserted verbatim into the document, as shown in Figure
12-17:

h2:before {content: "¶ "; color: gray;}

Figure 12-17. Strings are displayed verbatim

This means that if you want a newline (return) as part of your generated content, your can't use

. Instead, you use the string \A, which is the CSS way of representing a newline (based on the
Unicode linefeed character, which is hexadecimal position A). Conversely, if you have a long string
value and feel the need to break it up over multiple lines, you escape out the linefeeds with the \

character. These are both demonstrated by the following rule and illustrated in Figure 12-18:

h2:before {content: "We insert this text before all H2 elements because \

it is a good idea to show how these things work. It may be a bit long \

but the point should be clearly made. "; color: gray;}

Figure 12-18. Inserting and suppressing newlines

You can also use escapes to refer to hexadecimal Unicode values, such as \00AB.

As of this writing, support for inserting escaped content such as \A and \00AB

is not very widespread, even among those browsers that support some
generated content.

With URI values, you simply point to an external resource (an image, movie, sound clip, or anything
else the user agent supports), which is then inserted into the document in the appropriate place. If
the user agent can't support the resource you point it to for any reason-say, you try to insert an
SVG image into a browser that doesn't understand SVG, or try to insert a movie into a document
when it's being printed-then the user agent is required to ignore the resource completely, and
nothing will be inserted.

12.2.2.1 Inserting attribute values

There are situations where you might want to take the value of an element's attribute and make it a
part of the document display. To pick a simple example, you can place the value of every link's href

attribute immediately after the links, like this:

a[href] {content: attr(href);}

Again, this leads to the problem of the generated content running smack into the actual content. To
solve this, you'll add some string values to the declaration, with the result shown in Figure 12-19:

a[href] {content: " [" attr(href) "]";}

Figure 12-19. Inserting URLs

This can be useful for print style sheets, as an example. Any attribute value can be inserted as
generated content: alt text, class or id values-anything. An author might choose to make the

citation information explicit for a block quote, like this:

blockquote:after {content: "(" attr(cite) ")"; display: block;

 text-align: right; font-style: italic;}

For that matter, a more complicated rule might reveal the text- and link-color values for a legacy
document:

body:before {content: "Text: " attr(text) " | Link: " attr(link)

 " | Visited: " attr(vlink) " | Active: " attr(alink);

 display: block; padding: 0.33em;

 border: 1px solid black; text-align: center;}

Note that if an attribute doesn't exist, an empty string is put in its place. This is what happens in
Figure 12-20, in which the previous example is applied to a document whose body element has no
alink attribute.

Figure 12-20. Missing attributes are skipped

The text "Active: " (including the trailing space) is inserted into the document, as you can see, but
there is nothing following it. This is convenient in situations where you want to insert the value of an
attribute only when it exists.

CSS2.x defines the returned value of an attribute reference as an unparsed
string. Therefore, if the value of an attribute contains markup or character
entities, they will be displayed verbatim.

12.2.2.2 Generated quotes

A specialized form of generated content is the quotation mark, and CSS2.x provides a powerful way
to manage both quotes and their nesting behavior. This is possible thanks to the pairing of content
values like open-quote and the property quotes.

quotes

Values

[<string> <string>]+ | none | inherit

Initial value

user agent-dependent

Applies to

all elements

Inherited

yes

Computed value

as specified

In studying the value syntax, we find that other than the keywords none and inherit, the only valid

value is one or more pairs of strings. The first string of the pair defines the open-quote symbol, and
the second defines the close-quote symbol. Therefore, of the following two declarations, only the first
is valid:

quotes: '"' "'"; /* valid */

quotes: '"'; /* NOT VALID */

The first rule also illustrates one way to put string quotes around the strings themselves. The double
quotation marks are surrounded by single quotation marks, and vice versa.

Let's look at a simple example. Suppose you're creating an XML format to store a list of favorite
quotations. Here's one entry in the list:

<quotation>

 <quote>I hate quotations.</quote>

 <quotee>Ralph Waldo Emerson</quotee>

</quotation>

In order to present the data in a useful way, you could employ the following rules, with the result
shown in Figure 12-21:

quotation: display: block;}

quote {quotes: '"' '"';}

quote:before {content: open-quote;}

quote:after {content: close-quote;}

quotee:before {content: " (";}

quotee:after {content: ")";}

Figure 12-21. Inserting quotes and other content

The values open-quote and close-quote are used to insert whatever quoting symbols are

appropriate (since different languages have different quotation marks). They use the value of quotes
to determine how they should work. Thus, the quotation begins and ends with a double quotation
mark.

If you want to use "curly quotes" instead of the plain vertical-line quotation marks, as is common in
most print media, the quote rule would read:

quote {quotes: '\201C' '\201D';}

This uses the hexadecimal Unicode positions for the "curly quote" symbols and, if applied to the
previous quotation, would surround Mr. Emerson's quote with curly quotes instead of the straight
quotes in Figure 12-21.

With quotes, you can define quotation patterns to as many nesting levels as you like. In English, for

example, a common practice is to start out with a double quotation mark, and a quotation nested

inside the first one gets single quotation marks. This can be recreated with "curly" quotation marks
using the following rules:

quotation: display: block;}

quote {quotes: '\201C' '\201D' '\2018' '\2019';}

quote:before, q:before{content: open-quote;}

quote:after, q:before {content: close-quote;}

When applied to the following markup, these rules will have the effect shown in Figure 12-22:

<quotation>

 <quote> In the beginning, there was nothing. And God said: <q>Let there

 be light!</q> And there was still nothing, but you could see it.</quote>

</quotation>

Figure 12-22. Nested curly quotes

In a case where the nested level of quotation marks is greater than the number of defined pairs, the
last pair is reused for the deeper levels. Thus, if you had applied the following rule to the markup
shown in Figure 12-22, the inner quote would have had double quotation marks, the same as the
outer quote:

quote {quotes: '\201C' '\201D';}

Generated quotes make possible one other common typographic effect. In situations where there are
several paragraphs of quoted text, the close-quote of each paragraph is often omitted; only the

opening quote marks are shown, with the exception of the last paragraph. This can be recreated
using the no-close-quote value:

blockquote {quotes: '"' '"' "'" "'" '"' '"';}

blockquote p:before {content: open-quote;}

blockquote p:after {content: no-close-quote;}

This will start each paragraph with a double quotation mark but no closing mark. This is true of the
last paragraph as well, so if you need to add on a closing quote mark, then you'd need to class the
final paragraph and declare a close-quote for its :after content.

The importance of this value is that it decrements the quotation nesting level without actually
generating a symbol. This is why each paragraph starts with a double quotation mark, instead of
alternating between double and single marks until the third paragraph is reached. no-close-quote

closes the quotation nesting at the end of each paragraph, and thus every paragraph starts at the
same nesting level.

This is important because, as the CSS2.1 specification notes, "Quoting depth is independent of the
nesting of the source document or the formatting structure." In other words, when you start a
quotation level, it persists across elements until a close-quote is encountered, and quote nesting

level is decremented.

For the sake of completeness, there is a no-open-quote keyword, which has a symmetrical effect to
no-close-quote. This keyword increments the quotation nesting level by one but does not generate

a symbol.

12.2.3 Counters

We're all familiar with counters; for example, the markers of the list items in ordered lists are
counters. In CSS1, there was no way to affect these counters, largely because there was no need:
HTML defined its own counting behaviors for ordered lists, and that was that. With the rise of XML, it's
now important to provide a method by which counters can be defined. CSS2 was not content to
simply provide for the kind of simple counting found in HTML, however. Two properties and two
content values make it possible to define almost any counting format, including subsection counters

employing multiple styles, such as "VII.2.c."

12.2.3.1 Resetting and incrementing

The basis of creating counters is the ability to set both the starting point for a counter and to
increment it by some amount. The former is handled by the property counter-reset.

counter-reset

Values

[<identifier> <integer>?]+ | none | inherit

Initial value

user agent-dependent

Applies to

all elements

Inherited

no

Computed value

as specified

A counter identifier is simply a label created by the author. For example, you might name your
subsection counter subsection, subsec, ss, or bob. The simple act of resetting (or incrementing) an
identifier is sufficient to call it into being. In the following rule, the counter chapter is defined as it is

reset:

h1 {counter-reset: chapter;}

By default, a counter is reset to zero. If you want to reset to a different number, you can declare the
number following the identifier:

h1#ch4 {counter-reset: chapter 4;}

You can also reset multiple identifiers all at once in identifier-integer pairs. If you leave out an
integer, then it's taken to be zero:

h1 {counter-reset: chapter 4 section -1 subsec figure 1;}

 /* 'subsec' is reset to 0 */

As you can see from the previous example, negative values are permitted. It would be perfectly legal
to set a counter to -32768 and count up from there.

CSS does not define what user agents should do with negative counter values
in nonnumeric counting styles. For example, there is no defined behavior for
what to do if a counter's value is -5 but its display style is upper-alpha.

To count up, of course, you'll need a property to indicate that an element increments a counter.
Otherwise, the counter would remain stuck at whatever value it had been given with a counter-
reset declaration. The property in question is, not surprisingly, counter-increment.

counter-increment

Values

[<identifier> <integer>?]+ | none | inherit

Initial value

user agent-dependent

Applies to

all elements

Inherited

no

Computed value

as specified

Like counter-reset, counter-increment accepts identifier-integer pairs, and the integer portion of

these pairs can be zero or negative as well as positive. The difference is that if an integer is omitted
from a pair in counter-increment, it defaults to 1, not 0.

As an example, here's how a user agent might define counters to recreate the traditional 1, 2, 3
counting of ordered lists:

ol {counter-reset: ordered;} /* defaults to 0 */

ol li {counter-increment: ordered;} /* defaults to 1 */

On the other hand, an author might want to count backward from zero so that the list items use a
rising negative system. This would require only a small edit:

ol {counter-reset: ordered;} /* defaults to 0 */

ol li {counter-increment: ordered -1;}

The counting of lists would then be -1, -2, -3 and so on. If you replaced the integer -1 with -2, then

lists would count -2, -4, -6 and so on.

12.2.3.2 Using counters

In order to actually display the counters, though, you need to use the content property in

conjunction with one of the counter-related values. To see how this works, let's use an XML-based
ordered list like this:

<list type="ordered">

 <item>First item</item>

 <item>Item two</item>

 <item>The third item</item>

</list>

By applying the following rules to XML employing this structure, you would get the result shown in
Figure 12-23:

list[type="ordered"] {counter-reset: ordered;} /* defaults to 0 */

list[type="ordered"] item {display: block;}

list[type="ordered"] item:before {counter-increment: ordered;

 content: counter(ordered) ". "; margin: 0.25em 0;}

Figure 12-23. Counting the items

Note that the generated content is, as usual, placed as inline content at the beginning of the
associated element. Thus, the effect is similar to an HTML list with list-style-position: inside;

declared.

Note also that the item elements are ordinary elements generating block-level boxes, which means
that counters are not restricted only to elements with a display of list-item. In fact, any element

can make use of a counter. Consider the following rules:

h1:before {counter-reset: section subsec;

 counter-increment: chapter;

 content: counter(chapter) ". ";}

h2:before {counter-reset: subsec;

 counter-increment: section;

 content: counter(chapter)"." counter(section) ". ";}

h3:before {counter-increment: subsec;

 content: counter(chapter) "." counter(section) "." counter(subsec) ". ";}

These rules would have the effect shown in Figure 12-24.

Figure 12-24. Adding counters to headings

Figure 12-24 illustrates some important points about counter resetting and incrementing. Notice how
the h1 element uses the counter chapter, which defaults to zero and has a "1." before the element's

text. This is because, when a counter is incremented and used by the same element, the
incrementation happens before the counter is displayed. In a similar way, if a counter is reset and
shown in the same element, the reset happens before the counter is displayed. Consider:

h1:before, h2:before, h3:before {

 content: counter(chapter) "." counter(section) "." counter(subsec) ". ";}

h1 {counter-reset: section subsec;

 counter-increment: chapter;}

The first h1 element in the document would be preceded by the text "1.0.0. " because the counters
section and subsec were reset, but not incremented. This means that if you want the first displayed
instance of an incremented counter to be 0, then you need to reset that counter to -1, as follows:

body {counter-reset: chapter -1;}

h1:before {counter-increment: chapter; content: counter(chapter) ". ";}

It's possible to do some interesting things with counters. Consider the following XML:

<code type="BASIC">

 <line>PRINT "Hello world!"</line>

 <line>REM This what the kids are calling a "comment"</line>

 <line>GOTO 10</line>

</code>

You can recreate the traditional format of a BASIC program listing with the following rules:

code[type="BASIC"] {counter-reset: linenum; font-family: monospace;}

code[type="BASIC"] line {display: block;}

code[type="BASIC"] line:before {counter-increment: linenum;

 content: counter(linenum 10) ": ";}

It's also possible to define a list style for each counter as part of the counter() format. This is done
by adding a comma-separated list-style-type keyword after the counter's identifier. Modifying the

heading-counter example as follows is illustrated in Figure 12-25:

h1:before {counter-reset: section subsec;

 counter-increment: chapter;

 content: counter(chapter,upper-alpha) ". ";}

h2:before {counter-reset: subsec;

 counter-increment: section;

 content: counter(chapter,upper-alpha)"." counter(section) ". ";}

h3:before {counter-increment: subsec;

 content: counter(chapter,upper-alpha) "." counter(section) "."

 counter(subsec,lower-roman) ". ";}

Figure 12-25. Changing counter styles

Notice that the counter section was not given a style keyword, and so it defaulted to the decimal
counting style. You can even set counters to use the styles disc, circle, square, and none if you so

desire.

One interesting point to note is that elements with a display of none do not increment counters,
even if the rule seems to indicate otherwise. In contrast, elements with a visibility of hidden do

increment counters:

.suppress {counter-increment: cntr; display: none;}

 /* 'cntr' is NOT incremented */

.invisible {counter-increment: cntr; visibility: hidden;}

 /* 'cntr' IS incremented */

12.2.3.3 Counters and scope

So far, we've seen how to string multiple counters together in order to create section-and-subsection
counting. This is often something authors desire for nested ordered lists as well, but it would quickly
become clumsy to try to create enough counters to cover deep nesting levels. Just to get it working
for five-level-deep nested lists would require a bunch of rules like this:

ol ol ol ol ol li:before {counter-increment: ord1 ord2 ord3 ord4 ord5;

 content: counter(ord1) "." counter(ord2) "." counter(ord3) "."

 counter(ord4) "." counter(ord5) ".";}

Imagine writing enough rules to cover nesting up to 50 levels! (I'm not saying you should nest
ordered lists 50 deep. Just follow along for the moment.)

Fortunately, CSS2.x described the concept of scope when it comes to counters. Stated simply, every
level of nesting creates a new scope for any given counter. Scope is what makes it possible for the
following rules to cover nested-list counting in the usual HTML way:

ol {counter-reset: ordered;}

ol li:before {counter-increment: ordered;

 content: counter(ordered) ". ";}

These rules will all make ordered lists, even those nested inside others, start counting from 1 and
increment each item by one-exactly how it's been done in HTML from the beginning.

This works because, at each level of nesting, a new instance of the counter ordered is created. So,
for the first ordered list, an instance of ordered is created. Then, for every list nested inside the first

one, another new instance is created, and the counting starts anew with each list.

However, you want ordered lists to counter so that each level of nesting creates a new counter
appended to the old: 1, 1.1, 1.2, 1.2.1, 1.2.2, 1.3, 2, 2.1, and so on. This can't be done with
counter(), but it can be done with counters(). What a difference an "s" makes.

To create the nested-counter style shown in Figure 12-26, you need these rules:

ol {counter-reset: ordered;}

ol li:before {counter-increment: ordered;

 content: counters(ordered,".") " - ";}

Figure 12-26. Nested counters

Basically, the keyword counters(ordered,".") takes the ordered counter from each scope and

displays it with a period appended, and strings together all of the scoped counters for a given
element. Thus, an item in a third-level-nested list would be prefaced with the ordered value for the

outermost list's scope, the scope of the list between the outer and current list, and the current list's
scope, with each of those followed by a period. The rest of the content value causes a space,

hyphen, and space to be added after all of those counters.

As with counter(), you can define a list style for nested counters, but the same style applies to all

of the counters. Thus, if you changed your previous CSS to read as follows, the list items in Figure
12-26 would all use lowercase letters for the counters instead of numbers:

ol li:before {counter-increment: ordered;

 content: counters(ordered,".",lower-alpha) ": ";}

 < Day Day Up >

 < Day Day Up >

12.3 Summary

Even though list styling isn't as sophisticated as we might like, and browser support for generated
content is somewhat spotty (as of this writing, anyway), the ability to style lists is still highly useful.
One relatively common use is to take a list of links, remove the markers and indentation, and thus
create a navigation sidebar. The combination of simple markup and flexible layout is difficult to resist.
With the anticipated enhancements to list styling in CSS3, I expect that lists will become more and
more useful.

For now, in situations where a markup language doesn't have intrinsic list elements, generated
content can be an enormous help-say, for inserting content such as icons to point to certain types of
links (PDF files, Word documents, or even just links to another web site). Generated content also
makes it easy to print out link URLs, and its ability to insert and format quotation marks leads to true
typographic joy. It's safe to say that the usefulness of generated content is limited only by your
imagination. Even better, thanks to counters, you can now associate ordering information to
elements that are not typically lists, such as headings or code blocks. Now, if you want to support
such features with design that mimics the appearance of the user's operating system, read on. The
next chapter will discuss ways to use system colors and fonts in CSS design.

 < Day Day Up >

 < Day Day Up >

Chapter 13. User Interface Styles
The vast majority of CSS is concerned with styling documents, but it turns out that CSS offers a
passel of useful interface-styling tools-for more than just documents. For example, Mozilla
developers created its browser's interface (and that of many Mozilla clones) using a language called
XUL. XUL employs CSS and CSS-like declarations to present the navigation buttons, sidebar tabs,
dialog boxes, status boxes, and other pieces of the chrome itself.

Similarly, you can reuse aspects of the user's default environment to style a document's fonts and
colors; it's even possible to exert influence over focus highlighting and the mouse cursor. CSS2's
interface capabilities can make the user's experience more enjoyable-or more confusing, if you
aren't careful.

 < Day Day Up >

 < Day Day Up >

13.1 System Fonts and Colors

There may be times when you want your document to mimic the user's computing environment as
closely as possible. An obvious example is if you're creating web-based applications, where the goal is
to make the web component seem like a part of the user's operating system. While CSS2 doesn't
make it possible to reuse every last aspect of the operating system's appearance in your documents,
you can choose from a wide variety of colors and a short list of fonts.

13.1.1 System Fonts

Let's say you've created an element that functions as a button (via JavaScript, for example), and you
want it to look just like a button in the user's computing environment. By doing so, you make the
control more usable by meeting the user's expectations of how a control should look.

To accomplish the given example, simply write a rule like this:

a.widget {font: caption;}

This will set the font of any a element with a class of widget to use the same font family, size,

weight, style, and variant as the text found in captioned controls, such as a button.

CSS2 defines six system font keywords. These are described in the following list:

caption

The font styles used for captioned controls such, as buttons and drop-downs

icon

The font styles used to label operating system icons, such as hard drives, folders, and files

menu

The font styles used for text in drop-down menus and menu lists

message-box

The font styles used to present text in dialog boxes

small-caption

The font styles used for labeling small captioned controls

status-bar

The font styles used for text in window status bars

It's important to realize that these values can be used only with the font property and are their own

form of shorthand. For example, let's assume that a user's operating system shows icon labels as
10-pixel Geneva with no boldfacing, italicizing, or small-caps effects. This means that the following
three rules are all equivalent, and would have the result shown in Figure 13-1:

body {font: icon;}

body {font: 10px Geneva;}

body {

 font-weight: normal;

 font-style: normal;

 font-variant: normal;

 font-size: 10px;

 font-family: Geneva;

}

Figure 13-1. Making text look like an icon label

So a simple value like icon actually embodies a whole lot of other values. This is fairly unique in CSS,

and it makes working with these values just a little more complex than usual.

As an example, suppose you want to use the same font styling as icon labels, but you want the font
to be boldfaced even if icon labels are not boldfaced on a user's system. You'd need a rule with the
declarations in the order shown:

body {font: icon; font-weight: bold;}

By writing the declarations in this order, you cause the user agent to set the body element's font to

match icon labels with the first declaration, and then modify the weight of that font with the second.
If the order were reversed, then the font declaration's value would override the font-weight value

from the second declaration, and the boldfacing would be lost. This is similar to the way shorthand
properties (like font itself) must be handled.

You may be wondering about the lack of a generic font family, since it's usually recommended that
the author write something like Geneva, sans-serif; (in case a user's browser doesn't support the

specified font). CSS won't let you "tack on" a generic font family, but in this case, it isn't needed. If
the user agent manages to extract the font family used to display something in the computing
environment, then it's a pretty safe bet the same font is available for the browser to use.

If the requested system font style is not available or can't be determined, the user agent is allowed
to guess at an appropriate set of font styles. For example, small-caption might be approximated by
taking the styles for caption and reducing the font's size. If no such guess can be made, then the

user agent should use a "user agent default font" instead.

13.1.2 System Colors

As of this writing, the working draft of the CSS3 Color module deprecates the
system color keywords in favor of the new property appearance. Similarly,

CSS2.1 deprecates these keywords in anticipation of changes in CSS3. Authors
are strongly encouraged not to use the system colors as they are not likely to
appear in future versions of CSS. This information is included because some
currently available browsers do support system colors.

If you want to reuse the colors specified in the user's operating system, CSS2 defines a series of
system color keywords. These are values that can be used in any circumstance where a <color>

value is allowed. For example, you could match the background of an element with the user's
desktop color by declaring:

div#test {background-color: Background;}

Thus, for example, you could give a document the system's default text and background color like
this:

body {color: WindowText; background: Window;}

Such customization increases the odds that the user will be able to read the document, since he has
presumably configured his operating system to be usable. (If not, he deserves whatever he gets!)

There are 28 system color keywords in total, although CSS does not explicitly define them. Instead,
there are some generic (and very short) descriptions of each keyword's meaning. The following list
describes all 28 keywords. In cases where there is a direct analogue with the options in the
"Appearance" tab of the Display control panel in Windows 2000, it is noted parenthetically after the
description.

ActiveBorder

The color applied to the outside border of an active window (the first color in "Active Windows
Border").

ActiveCaption

The background color of the caption of the currently active window (the first color in "Active
Title Bar").

AppWorkspace

The background color used in an application that allows multiple documents- e.g., the
background color "behind" the open documents in Microsoft Word (the first color in "Application
Background").

Background

The background color for the desktop (the first color in "Desktop").

ButtonFace

The color used on the "face" of a three-dimensional button.

ButtonHighlight

The highlight color found on the edges of three-dimensional display elements that face away
from the virtual light source. Thus, if the virtual light source is located in the upper left, this
would be the highlight color used on the right and bottom edges of the display element.

ButtonShadow

The shadow color for three-dimensional display elements.

ButtonText

The color of text found on push buttons (the font color in "3D Objects").

CaptionText

The color of text found in captions, the size box, and the symbol in a scrollbar arrow box (the
font color in "Active Title Bar").

GrayText

The grayed (disabled) text. This keyword is interpreted as #000 if the current display driver

does not support a solid gray color.

Highlight

The color of item(s) selected in a control (the first color in "Selected Items").

HighlightText

The text color of item(s) selected in a control (the font color in "Selected Items").

InactiveBorder

The color applied to the outside border of an inactive window (the first color in "Inactive
Window Border").

InactiveCaption

The background color of the caption of an inactive window (the first color in "Inactive Title
Bar").

InactiveCaptionText

The color of text in an inactive caption (the font color in "Inactive Title Bar").

InfoBackground

The background color in tooltips (the first color in "ToolTip").

InfoText

The text color in tooltips (the font color in "ToolTip").

Menu

The color of a menu's background (the first color in "Menu").

MenuText

The color of text found in menus (the font color in "Menu").

Scrollbar

The "gray area" of a scrollbar.

ThreeDDarkShadow

The same color as a dark shadow found on three-dimensional display elements.

ThreeDFace

The same color as the face of three-dimensional display elements.

ThreeDHighlight

The color of highlights found on three-dimensional display elements.

ThreeDLightShadow

The light color found on three-dimensional display elements (for edges facing the light source).

ThreeDShadow

The dark shadow found on three-dimensional display elements.

Window

The color in the background of a window (the first color in "Window").

WindowFrame

The color applied to the frame of a window.

WindowText

The color of text in windows (the font color in "Window").

CSS2 defines the system color keywords to be case-insensitive but recommends using the mixed
capitalization shown in the previous list. Doing so makes the color names more readable. As you can
see, ThreeDLightShadow is easier to understand at a glance than threedlightshadow.

An obvious drawback of the vague nature of the system color keywords is that different user agents
may interpret the keywords in different ways, even if the user agents are running in the same
operating system. Therefore, don't rely absolutely on consistent results when using these keywords.
For example, avoiding text that reads "Look for the text whose color matches your desktop" is a bad
idea, since the user may have placed a desktop graphic (or "wallpaper") over the default desktop
color.

 < Day Day Up >

 < Day Day Up >

13.2 Cursors

Another important part of the user interface is the cursor (referred to in the CSS specification as the
"pointing device"), which is controlled by a device such as a mouse, trackpad, graphic tablet, or even
an optical-reading system. The cursor is useful for providing interaction feedback in most web
browsers; an obvious example is that the cursor changes to a small hand with an extended index
finger whenever it crosses over a hyperlink.

13.2.1 Changing the Cursor

CSS2 lets you change the cursor icon, which means that it's much easier to create web-based
applications that function in a manner similar to desktop applications in the operating system. For
example, a link to help files might cause the cursor to turn into a "help" icon such as a question
mark, as shown in Figure 13-2.

Figure 13-2. Changing the cursor's icon

This is accomplished with the property cursor.

cursor

Values

[[<uri>,]* [auto | default | pointer | crosshair | move | e-resize | ne-resize
| nw-resize | n-resize | se-resize | sw-resize | s-resize | w-resize| text |
wait | help | progress]] | inherit

Initial value

auto

Applies to

all elements

Inherited

yes

Computed value

for <uri> values, an absolute value; otherwise, as specified

The default value, auto, simply means that the user agent should determine the cursor icon most
appropriate for the current context. This is not the same as default, which forces the icon to be the

operating system's default cursor. The default cursor is usually an arrow, but it does not have to
be-it depends on the current computing environment.

13.2.1.1 Pointing and selection cursors

The value pointer changes the cursor icon to be the same as when the user moves the cursor over

a hyperlink. You can even describe this behavior for HTML documents:

a[href] {cursor: pointer;}

With cursor, any element can be defined to change the icon as though it were a link. This can be

very confusing to the user, so I don't recommend doing it often. On the other hand (so to speak),
cursor makes it much easier to create interactive, script-driven screen widgets out of non-link

elements and then change the icon appropriately, as illustrated by Figure 13-3.

Figure 13-3. Indicating an element's interactivity

Internet Explorer for Windows before IE6 did not recognize pointer, but
instead used the value hand to invoke the "pointing hand" icon. IE6 recognizes

both values.

The other cursor icon very common to web browsing is the text icon, which appears in situations

where the user is able to select text. This is typically an "I-bar" icon, and serves as a visual cue that
the user can drag-select the content under the cursor. Figure 13-4 shows a text icon at the end of
some text that's already been selected.

Figure 13-4. Selectable text and the text cursor

Another way to indicate interactivity is to use the value crosshair, which changes the cursor icon

into, well, a crosshair symbol. This is typically a pair of short lines at a 90-degree angle to each other,
one vertical and the other horizontal, looking rather like a plus (+) sign. However, a crosshair could

also resemble a multiplication sign (or a lowercase "x") or even an icon resembling the display inside
a rifle scope. Crosshairs are usually used with screen-capture programs, and they can be useful in
situations where the user is expected to know exactly which pixel is being clicked.

13.2.1.2 Movement cursors

In many circumstances, the value move will yield a result similar to crosshair. move is used in

situations where the author needs to indicate that a screen element can be moved, and it is often
rendered like a thick crosshair with arrowheads on the ends of the lines. It may also be rendered as a
"gripping hand" whose fingers start out open and then curl when the user clicks and holds the mouse
button. Two possible move renderings are shown in Figure 13-5.

Figure 13-5. Differing icons for move

Then there are the various cursor values related to move: e-resize, ne-resize, and so on.

Windows and most graphical Unix shell users will recognize these as the icons that appear when the
mouse cursor is placed over the side or corner edges of a window. For example, placing the cursor
over the right side of the window will bring up an e-resize cursor, indicating that the user can drag

the right side of the window back and forth to change the window size. Putting the cursor over the
lower-left corner invokes the sw-resize cursor icon. There are many different ways to render these

icons; Figure 13-6 shows a few of the possibilities.

Figure 13-6. A selection of "resize" cursors

13.2.1.3 Waiting and progressing

Both wait and progress indicate that the program is busy doing something. However, they're not
identical: wait means the user should wait until the program isn't as busy, while progress indicates

that the user should feel free to continue interacting with the program, even though it's busy. On
most operating systems, wait is either a watch (possibly with spinning hands) or an hourglass
(possibly turning itself over every so often). progress is typically represented as a spinning "beach

ball" or an arrow with a small hourglass off to one side. Figure 13-7 shows some of these icons.

Figure 13-7. Waiting versus progressing

The value progress was introduced in CSS2.1.

13.2.1.4 Providing help

In situations where the author wants to indicate that the user can get some form of help, the value
help is the answer. Two very common renderings of help are a question mark and an arrow with a
small question mark next to it. help can be very useful if you have classed certain links that point to

more information or to information that will help the user understand the web page better. For
example:

a.help {cursor: help;}

You can also use help to indicate that an element has "extra" information, such as acronym elements
with title attributes. In many user agents, leaving the cursor over a titled acronym will cause the
user agent to show the contents of the title attribute in a "tooltip." However, users who move the

cursor around quickly, or who have slow computers, may not realize the extra information is there if
the cursor didn't change. For such users, the following rule could be useful, and will lead to a result
like that shown in Figure 13-8:

acronym[title] {cursor: help; border-bottom: 1px dotted gray;}

Figure 13-8. Showing that help (in the form of more information) is
available

13.2.1.5 Graphic cursors

Last, but most intriguing, is the ability to call for a customized cursor. This is done using a URL value:

a.external {cursor: url(globe.cur), pointer;}

With this rule, the user agent is asked to load the file globe.cur and use it as the cursor icon, as
illustrated in Figure 13-9.

Figure 13-9. Using a custom graphic cursor

Of course, the user agent has to support the file format used to store globe.cur. If it does not, then it
will fall back to the value pointer. Note that in the cursor syntax definition, any URL must be
followed by a comma and one of the generic keywords. This is different than the property font-
family, where you can call for a specific family and not provide any fallbacks. In effect, cursor

requires fallbacks for any graphical cursors you might try to employ.

You can even specify multiple cursor files before the fallback keyword. For example, you might create
the same basic cursor in several formats and include them all in a rule, hoping a user agent will
support at least one of them:

a.external {cursor: url(globe.svg#globe), url(globe.cur), url(globe.png),

 url(globe.gif), url(globe.xbm), pointer;}

The user agent will go through the different URLs until it finds a file it can use for the cursor icon. If
the user agent can't find anything it supports, it will fall back to the keyword.

You can actually implement animated cursors if a user agent supports animated
graphic files for cursor replacements. IE6, for example, supports this ability with
.ani files.

 < Day Day Up >

 < Day Day Up >

13.3 Outlines

CSS2 introduces a last major piece of user interface styling: outlines. An outline is sort of a like a
border, but there are two very important differences. First, outlines do not participate in the flow of
the document like borders do, and thus don't trigger document reflow as they appear and disappear.
If you give an element a 50-pixel outline, the outline will very likely overlap other elements. Second,
outlines can be nonrectangular-but don't start leaping for joy just yet. This does not mean that you
can create circular outlines. Instead, it means that an outline on an inline element may not act like a
border would on that same element. With an outline, a user agent is allowed to "merge" the pieces of
the outline to create a single continuous, but nonrectangular, shape. Figure 13-10 shows an example.

Figure 13-10. Outlines can have irregular shapes

User agents are not required to support nonrectangular outlines. They could instead format outlines
on inline nonreplaced elements the same way they do borders. A conforming user agent must,
however, make sure that outlines do not take up layout space.

There is one other basic way in which outlines and borders differ: they aren't the same thing, and so
they can both exist on the same element. This can lead to some interesting effects, such as that
illustrated in Figure 13-11.

Figure 13-11. The coexistence of borders and outlines

In the CSS2 specification, there is the following sentence: "The outline may be drawn starting just
outside the border edge." Note the word may in that sentence. User agents are encouraged to do as
the sentence suggests, but it isn't a requirement. A user agent could decide to draw borders inside
the inner border edge or at some small distance from the border. As of this writing, all browsers that
support outlines draw them just outside the outer border edge, so, thankfully, there is consistency.

Outlines are considered to be part of user interface styling because they are most often used to
indicate the current focus. If a user is using keyboard navigation to jump from link to link, then the
link that is currently in focus will usually get an outline. In Internet Explorer for Windows, an outline
is applied to any link that has been selected by the user ("clicked," if she's using a mouse). Other
browsers apply outlines to text inputs that have the keyboard focus, thus giving a cue regarding
where input will go if the user starts typing.

As you'll see, outlines are styled a lot like borders, but there are some key differences besides the
ones previously mentioned. We'll just skip quickly over the similarities and spend time looking at the
differences.

13.3.1 Setting an Outline's Style

The most basic aspect of an outline, like a border, is its style, which is set using outline-style.

outline-style

Values

none | dotted | dashed | solid | double | groove | ridge | inset | outset |
inherit

Initial value

none

Applies to

all elements

Inherited

no

Computed value

as specified

The list of style keywords is largely the same as the keywords for border styles, and the visual effects
are the same. There is an omission: hidden is not a valid outline style, and user agents are required
to effectively treat it as none. This actually makes sense, given that outlines don't affect layout even

when they're visible.

The other difference between outlines and borders is that you can specify only one keyword for an
outline-style value (compared with up to four keywords for borders). The practical effect is that

outlines must have the same outline style all the way around an element, whether they're
rectangular or not. This is probably just as well, since trying to figure out how to apply different styles
to the same nonrectangular outline would be a pain.

13.3.2 Outline Width

Once you've brought an outline into being by giving it a style, it's a good idea to use outline-width

to define (you guessed it) the outline's width.

outline-width

Values

thin | medium | thick | <length> | inherit

Initial value

medium

Applies to

all elements

Inherited

no

Computed value

absolute length; 0 if the style of the border is none or hidden

The list of keywords should look very familiar to anyone who's set a border width. The only real
difference between outline-width and border-width is that, as with the style, you can declare only

a single width for the entire outline. Thus, only one keyword is permitted in a value.

13.3.3 Coloring an Outline

Since you can set style and width, it makes sense that outline-color exists to let you give the

outline a color.

outline-color

Values

<color> | invert | inherit

Initial value

invert (or user agent-specific; see text)

Applies to

all elements

Inherited

no

Computed value

as specified

Herein lies the most intriguing difference between borders and outlines: the keyword invert, which

is the default value. An inverting outline means that a color inversion is performed for the pixels
where the outline exists. See Figure 13-12.

Figure 13-12. Inverting color with an outline

The process of color-inverting pixels "behind" the outline ensures that no matter what appears behind
the outline, it will be visible. If a user agent can't support color inversion for some reason, then it
should use instead the computed value of color for the element.

The ability to invert pixels on screen is very interesting, especially since there's no theoretical limit on
the width of an outline. So you could, should you choose, use an outline to invert large portions of
your document. This isn't really the purpose of outlines, but Figure 13-13 shows one such result
anyway.

Figure 13-13. Massive inversion

Of course, if you'd rather define a specific color for your outline, just use any valid color value. The
results of the following declarations should be obvious enough:

outline-color: red;

outline-color: #000;

outline-color: rgb(50%,50%,50%);

The potential drawback here is the possibility that an outline color could closely match the colors of
the pixels around it, in which case the user won't be able to see it. This is why invert was defined.

As with outline styles and widths, you can define only one color for the entire outline.

13.3.4 Bringing It All Together

Like border for borders, outline is the shorthand property that allows you to set the style, width,

and color of an outline all at once.

outline

Values

[<outline-color> || <outline-style> || <outline-width>] | inherit

Initial value

not defined for shorthand properties

Applies to

all elements

Inherited

no

Computed value

see individual properties (outline-color, etc.)

As with other shorthands, outline brings together several properties into a compact notation. It's

subject to the same behaviors as other shorthand notations, which override previously defined
values. Therefore, in the following example, the outline will use the color keyword invert since it's

implied by the second declaration:

a:focus {outline-color: red; outline: thick solid;}

Because a given outline must be of a uniform style, width, and color, outline is the only shorthand
property related to outlines. There are no properties such as outline-top or outline-right.

In cases where you want to simulate an inversion border, you can set an outline with a length value

for its width, and set the element's margin to an equal or greater width. Since the outline is drawn
"on top" of the margin, it will fill in some of that space, as illustrated in Figure 13-14:

div#callbox {outline: 5px solid invert; margin: 5px;}

input:focus {outline: 1em double gray;}

Figure 13-14. Different outlines

As I mentioned earlier, outlines do not participate in the document's flow. This prevents forced reflow
in cases like link-focus outlines, which will move from link to link as the focus changes. If an author
uses borders to indicate the focus, then the document layout may shift or jump around. Outlines can
yield the same effects borders allow, but without the jumpiness.

In order to accomplish this, outlines are by definition drawn above the rest of the element's box.
Since outlines cannot overlap visible portions of their element's box in CSS2, but can overlap only the
margins (which are transparent), this is not a big issue. If a future version of CSS allows outlines to
move inward to overlap the borders or other visible portions of the element box, then the placement
of outlines will become more important.

The one area of unfortunate vagueness in CSS2 is that it explicitly avoids defining the behaviors of two
outlines overlapping each other and what happens to outlines on elements that are partially obscured
by other elements. You can combine both of these in a single example:

div#one {outline: 1em solid invert;}

div#two {outline: 1em solid invert; margin: -2em -2em 0 2em;

 background: white;}

Now suppose div#two immediately follows div#one in a document. It will overlap the first div, and
its background will overlap portions of the first div's outline. I haven't included a figure to go along

with this code block because the CSS2 specification doesn't provide any ideas about what would
happen. Should the first div's outline be visible, overlapping the background and contents of the
second div? There will also be places where the two inversion outlines intersect; what should happen

there? Are the pixels double-inverted, and thus restored to their original state? Or should the pixels
be inverted once and then left unchanged? We don't know. Any illustration here would be neither
right nor wrong, but simply a possible outcome-and not necessarily the one user agents end up
implementing or the one a future version of CSS defines.

 < Day Day Up >

 < Day Day Up >

13.4 Summary

Thanks to user interface styles, it's possible for an author to make a document look more like the
user's computing environment, especially with a creative use of system color and fonts. By reusing
things with which the user is already familiar, a document can seem more familiar from the outset,
and thus friendlier to the user.

Another way to make the user's life a little easier is to create style sheets that are targeted at media
other than their monitors. This would include styles intended specifically for printing, aural (spoken)
access of a web page, and even for a projection-screen environment. We'll cover all of those in the
next chapter.

 < Day Day Up >

 < Day Day Up >

Chapter 14. Non-Screen Media
Not everyone who accesses the Web can see the effects we've discussed in this book. Some 1.1
million people in the United States are blind, and, obviously, they have a very different experience of
the Web than sighted persons.

Happily, CSS is not silent on the matter of non-visual access. CSS2 included the ability to apply styles
in non-screen media. While the Web has seen most of its evolution take place on monitors-that is to
say, in a visual medium-CSS2 can be used in non-visual media, assuming that the user agent has
proper support.

The advantages of designing documents that are at once visually and non-visually usable should not
be dismissed. If you can take one document and use different, medium-specific style sheets to
restyle it for screen, print, and aural rendering, you can save yourself a whole lot of trouble. For
example, you would have no need to link to "printer-friendly" versions of a page. Instead of creating
totally different markup structures, one for screen and another for print, you can make your site
more efficient by reusing the same document.

For that matter, it's possible to take a single HTML document that contains the outline of a slideshow
and style it for easy reading on a screen, for clean and readable printouts, as a slideshow, and in a
manner that a screen reader can translate. In the course of this chapter, we'll look at ways to do the
latter three (since the rest of the book concerns itself with screen presentation).

 < Day Day Up >

 < Day Day Up >

14.1 Designating Medium-Specific Style Sheets

You can restrict any kind of style sheet to a specific medium, thanks to the mechanisms defined in
HTML and CSS. For HTML-based style sheets, you can impose medium restrictions through the media
attribute. This works the same for both the link and style elements:

<link rel="stylesheet" type="text/css" media="print"

 href="article-print.css">

<style type="text/css" media="projection">

body {font-family: sans-serif;}

</style>

The media attribute can accept a single medium value or a comma-separated list of values. Thus, to

link in a style sheet that should be used in only the screen and projection media, you would write:

<link rel="stylesheet" type="text/css" media="screen, projection"

 href="visual.css">

In a style sheet itself, you can also impose medium restrictions on @import rules:

@import url(visual.css) screen, projection;

@import (article-print.css) print;

Remember that if you don't add medium information to a style sheet, it will be applied in all media.
Therefore, if you want one set of styles to apply only on screen, and another to apply only in print,
then you need to add medium information to both style sheets. For example:

<link rel="stylesheet" type="text/css" media="screen"

 href="article-screen.css">

<link rel="stylesheet" type="text/css" media="print"

 href="article-print.css">

If you were to remove the media attribute from the first link element in the preceding example, the

rules found in the style sheet article-screen.css would be applied in all media, including print,
projection, handheld, and everything else.

CSS2 also defines syntax for @media blocks. This lets you define styles for multiple media within the

same style sheet. Consider this basic example:

<style type="text/css">

body {background: white; color: black;}

@media screen {

 body {font-family: sans-serif;}

 h1 {margin-top: 1em;}

}

@media print {

 body {font-family: serif;}

 h1 {margin-top: 2em; border-bottom: 1px solid silver;}

}

</style>

Here you see that in all media, the body element is given a white background and a black foreground.
Then a block of rules is provided for the screen medium alone, followed by another block of rules
that applies only in the print medium.

@media blocks can be any size, containing any number of rules. In situations where authors may
have control over a single style sheet, @media blocks may be the only way to define medium-specific

styles. This is also the case in situations where CSS is used to style a document using an XML
language that does not contain a media attribute or its equivalent.

 < Day Day Up >

 < Day Day Up >

14.2 Paged Media

In CSS terms, a paged medium is any medium where a document's presentation is handled as a
series of discrete "pages." This is different than the screen, which is a continuous medium:
documents are presented as a single, scrollable "page." An analog example of a continuous medium
is a papyrus scroll. Printed material, such as books, magazines, and laser printouts, are all paged
media. So too are slideshows, where a series of slides are shown one at a time. Each slide is a "page"
in CSS terms.

14.2.1 Print Styles

Even in the "paperless future," the most commonly encountered paged medium is a printout of some
document-a web page, a word-processing document, a spreadsheet, or something else that has
been committed to the thin wafers of a dead tree. Authors can do a number of things to make
printouts of their documents more pleasing for the user, from affecting page-breaking to creating
styles meant specifically for print.

Note that print styles would also be applied to document display in a "print preview" mode. Thus, it's
possible in some circumstances to see print styles on a monitor.

14.2.1.1 Differences between screen and print

Beyond the obvious physical differences, there are a number of stylistic differences between screen
and print design. The most basic involves font choices. Most designers will tell you that sans-serif
fonts are best suited for screen design, but serif fonts are more readable in print. Thus, you might set
up a print style sheet that uses Times instead of Verdana for the text in your document.

Another major difference involves font sizing. If you've spent any time at all doing web design, you've
probably heard again and again (and again) that points are a horrible choice for font sizing on the
Web. This is basically true, especially if you want your text to be consistently sized between browsers
and operating systems. However, print design is not web design any more than web design is print
design. Using points, or even centimeters or picas, is perfectly okay in print design because printing
devices know the physical size of their output area. If a printer has been loaded with 8.5 x 11 inch
paper, then it knows it has a printing area that will fit within the edges of a piece of paper. It also
knows how many dots there are in an inch, since it knows the dots-per-inch (dpi) it's capable of
generating. This means that it can cope with physical-world length units like points.

Therefore, many a print style sheet has started with:

body {font: 12pt "Times New Roman", "TimesNR", Times, serif;}

It's so traditional, it just might bring a tear of joy to the eye of a graphic artist reading over your
shoulder. But make sure he understands that points are acceptable only because of the nature of the
print medium-they're still not good for web design.

Alternatively, the lack of backgrounds in most printouts might bring a tear of frustration to that
designer's eye. In order to save users ink, most web browsers are pre-configured not to print
background colors and images. If the user wants to see those backgrounds in the printout, he has to
change an option somewhere in the preferences. CSS can't do anything to force the printing of
backgrounds. However, you can use a print style sheet to make backgrounds unnecessary. For
example, you might include this rule in your print style sheet:

* {color: black !important; background: white !important;}

This will ensure that all of your elements will print out as black text and remove any backgrounds you
might have assigned in an all-medium style sheet. Since this is how most users' printers will render
the page anyway, you're better off setting up your print styles along the same lines. It also makes
sure that if you have a web design that puts yellow text on a dark gray background, a user with a
color printer won't get yellow text on a white piece of paper.

CSS2.x does not include a mechanism for picking a style sheet based on the
user's output device. Thus, all printers will use the print style sheets you define.
The CSS3 Media Queries module defines ways to send a different style sheet to
color printers than to grayscale printers, but as of this writing, support for
media queries is basically nonexistent.

One other difference between paged media and continuous media is that multicolumn layouts are
even harder to use in paged media. Suppose you have an article where the text has been formatted
as two columns. In a printout, the left side of each page will contain the first column, and the right
side the second. This would force the user to read the left side of every page, then go back to the
beginning of the printout and read the right side of every page. This is annoying enough on the Web,
but on paper it's much worse.

The obvious solution is to use CSS for laying out your two columns (by floating them, perhaps) and
then writing a print style sheet that restores the content to a single column. Thus, you might write
something like this for the screen style sheet:

div#leftcol {float: left; width: 45%;}

div#rightcol {float: right; width: 45%;}

Then in your print style sheet, you would write:

div#leftcol, div#rightcol {float: none; width: auto;}

If CSS had a way to do multicolumn flowed layout, none of this would be necessary. Sadly, although
proposals have circulated for years, there is nothing as of this writing.

We could spend an entire chapter on the details of print design, but that really isn't the purpose of
this book. Let's start exploring the details of paged-media CSS and leave the design discussions for
another book.

14.2.1.2 Defining the page size

In much the same way as it defines the element box, CSS2 defines a page box that describes the
components of a page. A page box is composed of basically two regions:

The page area, which is the portion of the page where the content is laid out. This is roughly
analogous to the content area of a normal element box, to the extent that the edges of the
page area act as the initial containing block for layout within a page. (See Chapter 7 for details
on containing blocks.)

The margin area, which surrounds the page area.

The page box model is illustrated in Figure 14-1.

Figure 14-1. The page box

In CSS2, it was possible to define the size of the page box as well as the margins. In CSS2.1, authors
can set only the size of the margin area. In both cases, the @page rule is the method by which

settings are made. Here's a simple example:

@page {size: 7.5in 10in; margin: 0.5in;}

This is a CSS2 rule, as it uses the property size, which was not included in CSS2.1 due to a lack of

implementation support.

size

Values

<length>{1,2} | auto | portrait | landscape | inherit

Initial value

auto

Applies to

the page area

Inherited

no

This property is used to define the size of the page area. The value landscape is meant to cause the
layout to be rotated 90-degrees, whereas portrait is the normal orientation for Western-language

printing. Thus, an author could cause a document to be printed "sideways" by declaring:

@page {size: landscape;}

size is not part of CSS2.1, which means that, as of its writing, no two interoperable implementations
of size are known to exist. So browser support is likely to be poor. CSS2.1 does include the ability to

style the margin area of the page box, which is likely to work a bit more reliably. If you want to make
sure that only a small bit at the center of every 8.5 x 11 inch page would print, you could write:

@page {margin: 3.75in;}

This would leave a printing area 1-inch wide by 3.5-inches tall.

What's really interesting about the page box is that it doesn't have any relationship to fonts, so you
can't use the length units em and ex to describe either the margin area or the page area. Only

percentages and "ruler" units like inches, centimeters, or points are permitted in this context.

14.2.1.3 Selecting page types

CSS2 offers the ability to create different page types using named @page rules. Let's say you have a

document on astronomy that is several pages long, and in the middle of it, there is a fairly wide table
containing a list of the physical characteristics of all the moons of Saturn. You want to print out the
text in portrait mode, but the table needs to be landscape. Here's how you'd start:

@page normal {size: portrait; margin: 1in;}

@page rotate {size: landscape; margin: 0.5in;}

Now you just need to apply these page types as needed. The table of Saturn's moons has an id of
moon-data, so you write the following rules:

body {page: normal;}

table#moon-data {page: rotate;}

This would cause the table to be printed landscape, but the rest of the document to be in portrait
orientation. The property page, another outcast in CSS2.1, is what makes this possible.

page

Values

<identifier> | inherit

Initial value

auto

Applies to

block-level elements

Inherited

yes

As you can see from looking at the value definition, the whole reason page exists is to let you assign

named page types to various elements in your document.

There are more generic page types that you can address through special pseudo-classes, and even
better, this is something that is defined in both CSS2 and CSS2.1. :first lets you apply special styles

to the first page in the document. For example, you might want to give the first page a larger top

margin than other pages. Here's how:

@page {margin: 3cm;}

@page :first {margin-top: 6cm;}

This will yield a 3-centimeter margin on all pages, with the exception of a 6-centimeter top margin on
the first page. The effect will be something like that shown in Figure 14-2.

Figure 14-2. Specially styling the first page

In addition to styling the first page, you can also style left and right pages, emulating the pages to
the left and right of a book's spine. You can style these differently using :left and :right. For

example:

@page :left {margin-left: 3cm; margin-right: 5cm;}

@page :right {margin-left: 5cm; margin-right: 3cm;}

These rules will have the effect of putting larger margins "between" the content of the left and right
pages, on the sides where the spine of a book would be. This is a common practice when pages are
to be bound together into a book of some type. You can see the result of the previous rules in Figure
14-3.

Figure 14-3. Styling left and right pages differently

14.2.1.4 Page-breaking

In a paged medium, it's a good idea to exert some influence over how page breaks are placed. You
can affect page breaking using the properties page-break-before and page-break-after, both of

which accept the same set of values.

page-break-before, page-break-after

Values

auto | always | avoid | left | right | inherit

Initial value

auto

Applies to

nonfloated block-level elements with a position value of relative or static

Inherited

no

Computed value

as specified

The default value of auto simply means that a page break is not forced to come before or after an
element. This is the same as any normal printout. always causes a page break to be placed before

(or after) the styled element.

For example, assume you have a situation where the page title is an h1 element, and the section
titles are all h2 elements. You might want a page break right before the beginning of each section of

a document and after the document title. This would result in the following rules, illustrated in Figure
14-4:

h1 {page-break-after: always;}

h2 {page-break-before: always;}

Figure 14-4. Inserting page breaks

If you want the document title to be centered in its page, of course, you would add rules to that
effect. Since you don't, you just get a very straightforward rendering of each page.

The values left and right operate in the same manner as always, except they further define the

type of page on which printing can resume. Consider the following:

h2 {page-break-before: left;}

This will force every h2 element to be preceded by enough page breaks so that the h2 will be printed

at the top of a left page-that is, a page surface that would appear to the left of a spine if the output
were bound. In double-sided printing, this would mean printing on the "back" of a piece of paper.

So let's assume that, in printing, the element just before an h2 is printed on a right page. The
previous rule would cause a single page break to be inserted before the h2, thus pushing it to the
next page. If the next h2 is preceded by an element on a left page, however, the h2 would be

preceded by two page breaks, thus placing it at the top of the next left page. The right page between
the two would be intentionally left blank. The value right has the same basic effect, except it forces

an element to be printed at the top of a right page, preceded by either one or two page breaks.

The companion to always is avoid, which directs the user agent to do its best to avoid placing a page

break either before or after an element. To extend the previous example, suppose you have
subsections whose titles are h3 elements. You want to keep these titles together with the text that
follows them, so you want to avoid a page break following an h3 whenever possible:

h3 {page-break-after: avoid;}

Note, though, that the value is called avoid, not never. There is no way to absolutely guarantee that

a page break will never be inserted before or after a given element. Consider the following:

img {height: 9.5in; width: 8in; page-break-before: avoid;}

h4 {page-break-after: avoid;}

h4 + img {height: 10.5in;}

Now, suppose further that you have a situation where an h4 is placed between two images, and its

height calculates to be half an inch. Each image will have to be printed on a separate page, but there
are only two places the h4 can go: at the bottom of the page holding the first element, or on the

page after it. If it's placed after the first image, then it has to be followed by a page break, since
there's no room for the second image to follow it, as shown in Figure 14-5.

Figure 14-5. Necessary page breaking

On the other hand, if the h4 is placed on a new page following the first image, then there won't be
room on that same page for the second image. So, again, there will be a page break after the h4.

And, in either case, at least one image, if not both, will be preceded by a page break. There's only so
much the user agent can do, given a situation like this one.

Obviously, situations such as these are rare, but they can happen-for example, in a case where a
document contains nothing but tables preceded by headings. There may be cases where tables print
in such a way that they force a heading element to be followed by a page break, even though the
author requested such break placement be avoided.

The same sorts of issues can arise with the other page-break property, page-break-inside. Its

possible values are more limited than those of its cousins.

page-break-inside

Values

auto | avoid | inherit

Initial value

auto

Applies to

nonfloated block-level elements with a position value of relative or static

Inherited

yes

Computed value

as specified

With page-break-inside, you pretty much have one option other than the default: you can request
that a user agent try to avoid placing page breaks within an element. If you have a series of "aside"

divisions, and you don't want them broken across two pages, you could declare:

div#aside {page-break-inside: avoid;}

Again, this is a suggestion more than an actual rule. If an aside turns out to be longer than a page,
obviously the user agent can't help but place a page break inside the element.

14.2.1.5 Orphans and widows

In an effort to provide finer influence over page-breaking, CSS2 defines two properties common to
both traditional print typography and desktop publishing: widows and orphans.

widows, orphans

Values

<integer> | inherit

Initial value

2

Applies to

block-level elements

Inherited

yes

Computed value

as specified

These properties have similar aims but approach them from different angles. The value of widows

defines the minimum number of line boxes found in an element that can be placed at the top of a
page without forcing a page break to come before the element. orphans has the same effect in

reverse: it gives the minimum number of line boxes that can appear at the bottom of a page without
forcing a page break before the element.

Let's take widows as an example. Suppose you declare:

p {widows: 4;}

This means that any paragraph can have no fewer than four line boxes appear at the top of a page.
If the layout of the document would lead to fewer line boxes, then the entire paragraph is placed at
the top of the page. Consider the situation shown in Figure 14-6. Cover up the top part of the figure
with your hand, so only the second page is visible. Notice that there are two line boxes there, from
the end of a paragraph that started on the previous page. Given the default widows value of 2, this is
an acceptable rendering. However, if the value were 3 or higher, the entire paragraph would appear

at the top of the second page as a single block. This would require that a page break be inserted
before the paragraph in question.

Figure 14-6. Counting the widows

Refer back to Figure 14-6, and this time cover up the second page with your hand. Notice the four
line boxes at the bottom of the page, at the beginning of the last paragraph. This is fine as long as
the value of orphans is 4 or less. If it were 5 or higher, then the paragraph would again be preceded

by a page break and be laid out as a single block at the top of the second page.

Of course, both orphans and widows must be satisfied. If an author declared the following, then most

paragraphs would be without an interior page break:

p {widows: 30; orphans: 30;}

It would take a pretty lengthy paragraph to allow an interior page break given those values. Of
course, if the intent is to prevent interior breaking, then that intent would be better expressed as:

p {page-break-inside: avoid;}

14.2.1.6 Page-breaking behavior

Because CSS2 allows for some odd page-breaking styles, it defines a set of behaviors regarding
allowed page breaks and "best" page breaks. These behaviors serve to guide user agents in how they
should handle page-breaking in various circumstances.

There are really only two generic places where page breaks are permitted. The first of these is
between two block-level boxes. If a page break falls between two block boxes, then the margin-
bottom value of the element before the page break is reset to 0, as is the margin-top of the element

following the page break. However, there are two rules that affect whether a page break can fall
between two element boxes:

If the value of page-break-after for the first element-or the value of page-break-before for
the second element-is always, left, or right, then a page break will be placed between the
elements. This is true regardless of the value for the other element, even if it's avoid. (This is a

forced page break.)

If the value of the first element's page-break-after value is auto, and the same is true for the
second element's page-break-before value, and they do not share an ancestor element whose
page-break-inside value is not avoid, then a page break may be placed between them.

Figure 14-7 illustrates all the possible page-break placements between elements in a hypothetical
document. Forced page breaks are represented as a filled square, whereas potential (unforced) page
breaks are shown as an open square.

Figure 14-7. Potential page-break placement between block boxes

Second, page breaks are allowed between two line boxes inside a block-level box. This, too, is
governed by a pair of rules:

A page break may appear between two line boxes only if the number of line boxes between the
start of the element and the line box before the page break would be less than the value of
orphans for the element. Similarly, a page break can be placed only where the number of line

boxes between the line box after the page break and the end of the element is less than the
value of widows.

A page break can be placed between line boxes if the value of page-break-inside for the
element is not avoid.

In both cases, the second of the two rules controlling page-break placement is ignored if no page-
break placement can satisfy all the rules. Thus, given a situation where an element has been given
page-break-inside: avoid but the element is longer than a full page, a page break will be permitted

inside the element, between two line boxes. In other words, the second rule regarding page-break
placement between line boxes is ignored.

If ignoring the second rule in each pair of rules still does not yield good page-break placement, then
other rules can also be ignored. In such a situation, the user agent is likely to ignore all page-break
property values and proceed as if they were all auto, although this approach is not defined (or

required) by the CSS specification.

In addition to the previously explored rules, CSS2 defines a set of "best" page-breaking behaviors:

Break as few times as possible.

Make all pages that don't end with a forced break appear to have about the same height.

Avoid breaking inside a block that has a border.

Avoid breaking inside a table.

Avoid breaking inside a floated element.

These recommendations aren't required of user agents, but they offer logical guidance that should
lead to ideal page-breaking behaviors.

14.2.1.7 Repeated elements

A very common desire in paged media is the ability to have a "running head." This is an element that
appears on every page, such as the document's title or the author's name. This is possible in CSS2 by
using a fixed-position element. For example:

div#runhead {position: fixed; top: 0; right: 0;}

This will place any div with an id of runhead at the top right corner of every page box when the

document is output to a paged medium. The same rule would place the element in the top right
corner of the viewport in a continuous medium, such as a web browser. Any element positioned in
this way will appear on every page. It is not possible to "copy" an element to become a repeated
element. Thus, given the following, the h1 element will appear as a running head on every page,

including the first one:

h1 {position: fixed; top: 0; width: 100%; text-align: center;

 font-size: 80%; border-bottom: 1px solid gray;}

The drawback is that the h1 element, being positioned on the first page, cannot be printed as

anything except the running head.

14.2.1.8 Elements outside the page

All this talk of positioning elements in a paged medium leads to an interesting question: what
happens if an element is positioned outside the page box? You don't even need positioning to create
such a situation. Think about a pre element that contains a line with 411 characters. This is likely to

be wider than any standard piece of paper, and so the element will be wider than the page box. What
will happen then?

As it turns out, CSS2 doesn't say exactly what user agents should do, so it's up to each to come up
with a solution. For a very wide pre element, the user agent might simply clip the element to the

page box and throw away the rest of the content. It could also generate extra pages to display the
"leftover" part of the element.

There are a few general recommendations for handling content outside the page box, and two that
are really important. First, content should be allowed to protrude slightly from a page box in order to
allow "bleeding." This implies that no extra page would be generated for the portions of such content
that exceed the page box.

Second, user agents are cautioned not to generate large numbers of empty pages for the sole
purpose of honoring positioning information. Consider:

h1 {position: absolute; top: 1500in;}

Assuming that the page boxes are 10 inches high, the user agent would have to precede an h1 with

150 page breaks (and thus 150 blank pages) just to honor that rule. Instead, a user agent might
choose to skip the blank pages and just output the last one, which actually contains the h1 element.

The other two recommendations state that user agents should not position elements in strange
places just to avoid rendering them, and that content placed outside a page box can be rendered in
any of a number of ways. (Some elements of CSS are useful and intriguing, but some seem to
cheerily state the obvious.)

14.2.2 Projection Styles

Aside from printed pages, the other common paged medium is projection, which describes
information that's being projected onto a large screen, suitable for viewing by a large crowd.
Microsoft PowerPoint is one of the most well-known projection-medium editors today.

As of this writing, only one user agent supports projection-medium CSS: Opera for Windows. This
capability is called "OperaShow," and it allows authors to take any HTML document and turn it into a
slideshow. We'll take a look at the basics of this capability, since it may appear in other user agents
in the future.

14.2.2.1 Setting up slides

If you're taking a single document and breaking it up into a series of slides, you need a way to define
the boundaries between each slide. This is done using the page-break properties. Whether you use
page-break-before or page-break-after will depend largely on how your document is constructed.

As an example, consider the HTML document shown in Figure 14-8. There is a series of h2 elements,

each followed by an unordered list. This forms the "outline view" for your slideshow.

Figure 14-8. A slideshow outline using simple HTML

Now all you need to do is break up the document into slides. Since every slide starts with an h2

element, you can simply declare:

h2 {page-break-before: always;}

This will ensure that every page (that is, every slide) will start with an h2 element. Since the title of
each slide is represented by an h2, this is just fine: every slide will have an h2 as its first element.

You can see the rendering of the third slide in Figure 14-9.

Figure 14-9. A slide

Of course, the slide looks pretty plain because you've done nothing to make it look good; you've
simply defined where page breaks are to be inserted.

Given the outline as it's currently set up, you could also have defined slide boundaries by inserting
page breaks after the lists, instead of before the h2 elements:

ul {page-break-after: always;}

This method would work just fine, as long as your outline never includes nested lists. If there is a
chance of having unordered lists nested within the "top-level" lists, then you'd either need to go back
to putting page breaks before h2 elements, or else add a second rule to prevent page-breaking:

ul {page-break-after: always;}

ul ul {page-break-after: auto;}

14.2.2.2 Positioning elements

When you position elements, their initial containing block will be the page box in which they are
placed. Thus, if you want the title of every slide to actually appear on the bottom of the slide, you
would write something like:

h2 {page-break-before: always; position: absolute; bottom: 0; right: 0;}

This would place any h2 element at the bottom right corner of the page box (slide) in which it

appears. Of course, it's possible to position elements with respect to other elements instead of the
page box. See Chapter 10 for details on positioning.

A fixed-position element, on the other hand, will appear in every page box in the slideshow, just as in
the print medium. This means that you can take a single element, like the document title, and put it
on every slide, like this:

h1 {position: fixed; top: 0; right: 0; font-size: 80%;}

This technique can be used to create running footers, graphical sidebars for every slide, and so on.

14.2.2.3 Considerations for projection

It's often said that web designs should be flexible and able to adapt to any resolution-and that's
certainly true in most cases. However, projection styling is not web styling, so it often makes sense

for a projection style sheet to be created with a specific resolution in mind. As an example, most
projectors (as of this writing) default to a resolution of 1024 x 768. If you know you'll be projecting at
that size, it makes sense to set up your CSS for that exact size. Font sizing, element placement, and
so forth can all be tuned to create the best visual experience for the target resolution.

For that matter, you might create different style sheets for different resolutions: one for 800 x 600,
another for 1024 x 768, and a third for 1280 x 1024, just to cover the most common bases. Figure
14-10 shows a slide at 1024 x 768.

Figure 14-10. A fully styled slide

Another thing to bear in mind is that projected documents are generally more readable for the
audience if they employ high-contrast colors. This is particularly true since some projector bulbs
aren't as bright as others, and dimmer bulbs call for even higher contrast. This also highlights (no
pun intended) the fact that you have even less of a guarantee of color fidelity in projection situations
than in normal web design (and that's not saying much).

 < Day Day Up >

 < Day Day Up >

14.3 Aural Styles

Users who cannot see won't, obviously, benefit from the visual styling that most of CSS enables. For
these users, what matters is not the drop shadows or rounded corners, but the actual textual content
of the page-which must be rendered audibly if they are to understand it. The blind are not the only
user demographic that can benefit from aural rendering of web content. A user agent embedded in a
car, for example, might use aural styles to enliven the reading of web content such as driving
directions or even the driver's email.

In order to meet the needs of these users, CSS2 introduced a section describing aural styles. As of
this writing, there are two user agents that support, at least to some degree, aural styles:
Emacspeak and Fonix SpeakThis. In spite of this, CSS2.1 effectively deprecates the media type aural

and all of the properties associated with it. The current specification includes a note to the effect that
future versions of CSS are likely to use the media type speech to represent spoken renderings of

documents, but it does not describe any details.

Due to this odd confluence of emerging implementation and deprecation, we will only briefly look at
the properties of aural style sheets.

14.3.1 Speaking

At the most basic level, you must determine whether a given element's content should be rendered
aurally at all. In aural style sheets, this is handled with the property speak.

speak

Values

normal | none | spell-out | inherit

Initial value

normal

Applies to

all elements

Inherited

yes

Computed value

as specified

The default value, normal, is used to indicate that an element's content should be spoken. If an
element's content should not be spoken for some reason, then the value none is used. Even though
an element's aural rendering may be suppressed using none, you may override the value on

descendant elements, which would thus be rendered. In the following example, the text "Navigation:"
would not be rendered aurally, but the text "Home" would be:

<div style="speak: none;">

Navigation:

Home

</div>

If an element and its descendants must be prevented from rendering aurally, use display: none
instead. In this example, none of the content of the div will be rendered aurally (or in any other

medium, for that matter):

<div style="display: none;">

Navigation:

Home

</div>

The third value of speak is spell-out, which will most likely be used in conjunction with acronyms or

other content that should be spelled out. For example, the following fragment of markup would be
rendered aurally as T-E-D-S, or "tee eee dee ess":

<acronym style="speak: spell-out;" title="Technology Evangelism and

 Developer Support">TEDS</acronym>

14.3.1.1 Punctuation and numbers

There are two other properties that affect the way in which element content is rendered aurally. The
first affects the rendering of punctuation and is called (appropriately enough) speak-punctuation.

speak-punctuation

Values

code | none | inherit

Initial value

none

Applies to

all elements

Inherited

yes

Computed value

as specified

Given the default value of none, punctuation is rendered aurally as pauses of appropriate lengths,

although CSS does not define these lengths. To pick an example, the pause representing a period
(and thus the end of a sentence) might be twice as long as the pause representing a comma. Pause
lengths are likely to be language-dependent.

With the value code, punctuation is actually rendered aurally. Thus, the following example would be

rendered as, "avast comma ye scalawags exclamation point":

<p style="speak-punctuation: code;">Avast, ye scalawags!</p>

To use another example, the following fragment might be rendered aurally as, "a left bracket href
right bracket left curly brace color colon red semicolon right curly brace":

<code style="speak-punctuation: code;">a[href] {color: red;}</code>

Similar to affecting punctuation rendering, speak-numeral defines the method of speaking numbers.

speak-numeral

Values

digits | continuous | inherit

Initial value

continuous

Applies to

all elements

Inherited

yes

Computed value

as specified

The default value continuous means that the number is spoken as a whole number, whereas digits

causes numbers to be read individually. Consider:

<p style="speak-numeral: continuous;">23</p>

<p style="speak-numeral: digits;">23</p>

The aural rendering of the first paragraph would be "twenty-three," whereas the second paragraph
would be rendered as "two three." Numeric renderings are, as with punctuation, language-dependent
but undefined.

14.3.1.2 Speaking table headers

In the aural rendering of a table, it can be easy to lose track of what the cell data actually means. If
you're on the 9th row of a 12-row table, and the 6th cell in that row is "21.77," what are the odds
you'll remember what the 6th column represents? Will you even remember to what the numbers in

this row relate? Table headers provide this information and are easy to check visually. To solve this
problem in the aural medium, CSS2 introduced speak-header.

speak-header

Values

once | always | inherit

Initial value

once

Applies to

elements containing table header information

Inherited

yes

Computed value

as specified

By default, a user agent will render the content of a table header only once, when the cell is
encountered. The other alternative is to always render the table header information when a cell
relating to that header is rendered.

Let's consider the following simple table as an example:

<table id="colors">

<caption>Favorite Color</caption>

<tr id="headers">

<th>Jim</th><th>Joe</th><th>Jane</th>

</tr>

<tr>

<td>red</td><td>green</td><td>blue</td>

<td>

</tr>

</table>

Without any styles applied, the aural rendering of this table would be, "Favorite Color Jim Joe Jane
red green blue." You can probably figure out what all that means, but imagine a table containing the
favorite colors of 10 or 20 people. Now, suppose you apply the following styles to this table:

#colors {speak-header: always;}

#headers {speak: none;}

The aural rendering of the table should then be, "Favorite Color Jim red Joe green Jane blue." This is
much easier to understand, and it will continue to be no matter how large the table might grow.

Note that the document language itself defines the method of determining an
element's role as a table header. Markup languages may also have ways to
associate header information with elements or groups of elements-for
example, the attributes scope and axis in HTML4.

14.3.1.3 Speech rate

In addition to ways to affect the style of speech, CSS also offers speech-rate, which is used to set

the speed with which content is aurally rendered.

speech-rate

Values

<number> | x-slow | slow | medium | fast | x-fast | faster | slower | inherit

Initial value

medium

Applies to

all elements

Inherited

yes

Computed value

an absolute number

The values are defined as follows:

<number>

Specifies the speaking rate in words per minute. This is likely to vary by language, since some
languages are spoken more quickly than others.

x-slow

Equivalent to 80 words per minute.

slow

Equivalent to 120 words per minute

medium

Equivalent to 180-200 words per minute.

fast

Equivalent to 300 words per minute.

x-fast

Equivalent to 500 words per minute.

faster

Increases the current speech rate by 40 words per minute.

slower

Decreases the current speech rate by 40 words per minute.

Here are two examples of extreme changes in speech rate:

*.duh {speech-rate: x-slow;}

div#disclaimer {speech-rate: x-fast;}

CSS does not define how the speech rate is altered. A user agent could draw out each word, stretch
out the pauses between words, or both.

14.3.2 Volume

In an aural medium, one of the most important aspects of presentation is the volume of the sound
produced by the user agent. Enter the aptly named property, volume.

volume

Values

<number> | <percentage> | silent | x-soft | soft | medium | loud | x-loud |
inherit

Initial value

medium

Applies to

all elements

Inherited

yes

Computed value

an absolute number

The values are defined as follows:

<number>

Provides a numeric representation of the volume. 0 corresponds to the minimum audible
volume, which is not the same as being silent; 100 corresponds to the maximum comfortable

volume.

<percentage>

Calculated as a percentage of the inherited value.

silent

No sound is produced, which is different than the numeric value 0. This is the aural equivalent
of visibility: hidden.

x-soft

Equivalent to the numeric value 0.

soft

Equivalent to the numeric value 25.

medium

Equivalent to the numeric value 50.

loud

Equivalent to the numeric value 75.

x-loud

Equivalent to the numeric value 100.

It's important to note that the volume value (say that five times fast!) defines the median volume,
not the precise volume of every sound produced. Thus, the content of an element with volume: 50;

may well be rendered with sounds that go above and below that level, especially if the voice is highly
inflected or has a dynamic range of sounds.

The numeric range is likely to be user-configured, since only an individual user can determine his
minimum audible volume level (0) and maximum comfortable volume level (100). As an example, a

user might decide that the minimum audible volume is a 34dB tone, and the maximum comfortable
volume is an 84dB tone. This means there is a 50dB range between 0 and 100, and each increase of
one in the value will mean a half-dB increase in the median volume. In other words, volume: soft;

would translate to a median volume of 46.5dB.

Percentage values have an effect analogous to their effect in font-size: they increase or decrease

the value based on the parent element's value. For example:

div.marine {volume: 60;}

big {volume: 125%;}

<div class="marine">

When I say jump, I mean <big>rabbit</big>, you maggots!

</div>

Given the audio range described before, the content of the div element here would be spoken with a
median volume of 64dB. The exception is the big element, which is 125% the parent's value of 60.
This is computed as 75, which is equivalent to 71.5dB.

If a percentage value would place an element's computed numeric value outside the range of 0
through 100, the value is clipped to the nearest value. Suppose you were to change the previous

styles to read:

div.marine {volume: 60;}

big {volume: 200%;}

This would cause the big element's volume value to be computed as 120; this would then be clipped
to 100, which corresponds in this case to a median volume of 84dB.

The advantage of defining volume in this way is that it permits the same style sheet to serve in

different environments. For example, the settings for 0 and 100 will be different in a library than they

will be in a car, but the values will effectively correspond to the same intended auditory effects in
each setting.

14.3.3 Giving Voice

To this point, we've talked about ways to affect the aural presentation, but what we've left out is a
way to choose the voice used to aurally render content. Like font-family, CSS defines a property
called voice-family.

voice-family

Values

[[<specific-voice> | <generic-voice>],]* [<specific-voice> | <generic-voice>] |
inherit

Initial value

user agent-dependent

Applies to

all elements

Inherited

yes

Computed value

as specified

As with font-family, voice-family allows the author to supply a comma-separated list of voices

that can be used in the rendering of an element's content. The user agent looks for the first voice in
the list and uses it if the voice is available. If not, the user agent looks for the next voice in the list,
and so on, until it either finds a specific voice or runs out of specified voices.

Thanks to the way the value syntax is defined, you can provide a number of specific or generic
families in any order. Therefore, you can end your value with a specific family instead of a generic
one. For example:

h1 {voice-family: Mark, male, Joe;}

CSS2.x does not define generic family values, but mentions that male, female, and child are all

possible. Therefore, you might style the elements of an XML document as follows:

rosen {voice-family: Gary, Scott, male;}

guild {voice-family: Tim, Jim, male;}

claud {voice-family: Donald, Ian, male;}

gertr {voice-family: Joanna, Susan, female;}

albert {voice-family: Bobby, Paulie, child;}

The actual voice chosen to render a given element will affect the way the user perceives that
element, since some voices will be pitched higher or lower than others, or may be more or less
monotonic. CSS provides ways to affect these aspects of a voice as well.

14.3.4 Altering the Voice

Once you've gotten the user agent to use a particular voice in the aural rendering of the content, you
might want to alter some of its aspects. For example, a voice might sound right, except it's pitched
too high for your liking. Another voice might be a little too "dynamic" but otherwise meet your needs.
CSS defines properties to affect all of the vocal aspects.

14.3.4.1 Changing the pitch

Obviously, different voices have different pitches. To pick the most basic of examples, male voices
average around 120Hz, whereas female voices average in the vicinity of 210Hz. Thus, every voice
family will have its own default pitch. CSS allows authors to alter this pitch using the property pitch.

pitch

Values

<frequency> | x-low | low | medium | high | x-high | inherit

Initial value

medium

Applies to

all elements

Inherited

yes

Computed value

the absolute frequency value

There is no explicit definition of the keywords x-low through x-high, so the most that can be said

about them is that each one will be a higher pitch than the one before it. This is similar to the way
the font-size keywords xx-small through xx-large are not precisely defined, but each must be

larger than the one before it.

Frequency values are a different matter. If you define an explicit pitch frequency, then the voice will
be altered so that its average pitch matches the value you supply. For example:

h1 {pitch: 150Hz;}

The effects can be dramatic if an unexpected voice is used. Let's consider an example where an
element is given two voice-family possibilities and a pitch frequency:

h1 {voice-family: Jethro, Susie; pitch: 100Hz;}

For the purposes of this example, assume that the default pitch of "Jethro" is 110Hz, and the default
pitch for "Susie" is 200Hz. If "Jethro" gets picked, then h1 elements will be read with the voice pitched

slightly lower than normal. If "Jethro" isn't available and "Susie" is used instead, there will be an

enormous, and potentially bizarre, change from the voice's default.

Regardless of what pitch is used in an element's rendering, you can influence the dynamic range of
the pitch by using the property pitch-range.

pitch-range

Values

<number> | inherit

Initial value

50

Applies to

all elements

Inherited

yes

Computed value

as specified

The purpose of pitch-range is to raise or lower the inflection in a given voice. The lower the pitch

range, the closer all pitches will be to the average, resulting in a monotonic voice. The default value,
50, yields "normal" inflections. Values higher than that will increase the degree of "animation" in the

voice.

14.3.4.2 Stress and richness

A companion property to pitch-range is stress, which is intended to help authors minimize or

exaggerate the stress patterns in a language.

stress

Values

<number> | inherit

Initial value

50

Applies to

all elements

Inherited

yes

Computed value

as specified

Every human language has, to some degree, stress patterns. In English, for example, sentences have
different parts that call for different stress. The previous sentence might look something like this:

<sentence>

 <primary>In English,</primary>

 <tertiary>for example,</tertiary>

 <secondary>sentences have different parts that call for

different stress.</secondary>

</sentence>

A style sheet defining stress levels for each portion of the sentence might say:

primary {stress: 65;}

secondary {stress: 50;}

tertiary {stress: 33;}

This leads to a decrease in stress for the less important parts of a sentence, and a greater stress on
the parts that are considered more important. stress values are language-dependent, so the same

value may lead to different stress levels and patterns. CSS does not define such differences (which
probably doesn't surprise you by now).

Similar in many ways to stress is richness.

richness

Values

<number> | inherit

Initial value

50

Applies to

all elements

Inherited

yes

Computed value

as specified

The higher a voice's richness value, the greater its "brightness" and the more it will "carry" in a

room. Lower values will lead to a softer, more "mellifluous" voice (to quote the CSS2 specification).
Thus, an actor's soliloquy might be given richness: 80; and a sotto voce aside might get richness:
25;.

14.3.5 Pauses and Cues

In visual design, it's possible to draw extra attention to an element by giving it extra margins to
separate it from everything else or by adding borders. This causes the eye to be drawn toward these
elements. In aural presentation, the closest equivalent is the ability to insert pauses and audible cues
around an element.

14.3.5.1 Pauses

All spoken language relies on pauses of some form. The short gaps between words, phrases, and
sentences are as critical to understanding the meaning as the words themselves. In a sense, pauses
are like the auditory equivalent of margins, in that both serve to separate the element from its
surrounding content. In CSS, three properties can be used to insert pauses into a document: pause-
before, pause-after, and pause.

pause-before, pause-after

Values

<time> | <percentage> | inherit

Initial value

0

Apply to

all elements

Inherited

no

Computed value

the absolute time value

With the <time> value format, you can express the length of a pause in either seconds or

milliseconds. For example, let's say you want a full two-second pause after an h1 element. Either of

the following rules would have that effect:

h1 {pause-after: 2s;}

h1 {pause-after: 2000ms;} /* the same length of time as '2s' */

Percentages are a little trickier, as they are calculated in relation to a measure-implied value of
speech-rate. No, really! Let's see how this works. First, consider the following:

h1 {speech-rate: 180;}

This means any h1 element will be aurally rendered at about three words per second. Now consider:

h1 {speech-rate: 180; pause-before: 200%;}

The percentage is calculated based on the average word length. In this case, a word will take 333.33
milliseconds to speak, so 200% of that is 666.66 milliseconds. Put another way, there will be a pause
before each h1 of about two-thirds of a second. If you alter the rule so the speech-rate value is 120,

the pause will be a full second long.

The shorthand pause brings together pause-before and pause-after.

pause

Values

[[<time> | <percentage>]{1,2}] | inherit

Initial value

0

Applies to

all elements

Inherited

no

Computed value

see individual properties (pause-before, etc.)

If you supply only one value, then it's taken as the pause value both before and after an element. If
you supply two values, then the first one is the pause before the element, and the second one is the
pause after. Thus, the following rules are all equivalent:

pre {pause: 1s;}

pre {pause: 1s 1s;}

pre {pause-before: 1s; pause-after: 1s;}

14.3.5.2 Cues

If pauses aren't enough to call attention to an element, you can insert audio cues before and after it,
which are the auditory equivalent of borders. Like the pause properties, there are three cue
properties: cue-before, cue-after, and cue.

cue-before, cue-after

Values

<uri> | none | inherit

Initial value

none

Applies to

all elements

Inherited

no

Computed value

for <uri> values, the absolute URI; otherwise, none

By supplying the URI of an audio resource, the user agent is directed to load that resource and play it
before (or after) an element. Suppose you want to precede each unvisited hyperlink in a document
with a chime, and every visited link with a beep. The rules would look something like this:

a:link {cue-before: url(chime.mp3);}

a:visited {cue-before: url(beep.wav);}

The shorthand property cue acts as you'd expect.

cue

Values

[<cue-before> || <cue-after>] | inherit

Initial value

none

Applies to

all elements

Inherited

no

Computed value

see individual properties (cue-before, etc.)

As with pause, supplying a single value for cue means that value will be used for both the before and

after cues. Two values means the first is used for the before cue, and the second is used for the after
cue. Therefore, the following rules are all equivalent:

a[href] {cue: url(ping.mp3);}

a[href] {cue: url(ping.mp3) url(ping.mp3);}

a[href] {cue-before: url(ping.mp3); cue-after: url(ping.mp3);}

14.3.5.3 Pauses, cues, and generated content

Both pauses and cues are played "outside" any generated content. Consider:

h1 {cue: url(trumpet.mp3);}

h1:before {content: "Behold! ";}

h1:after {content: ". Verily!";}

<h1>The Beginning</h1>

The audio rendering of this element would be, roughly, "(trumpets) Behold! The Beginning. Verily!
(trumpets)."

CSS does not specify whether pauses go "outside" cues or vice versa, so the behavior of auditory
user agents in this regard cannot be predicted.

14.3.6 Background Sounds

Visual elements can have backgrounds, so it's only fair that audible elements should be able to have
backgrounds as well. In the aural medium, this is accomplished by playing a sound while the element
is being spoken. The property used to accomplish this is play-during.

play-during

Values

<uri> | [mix || repeat]? | auto | none | inherit

Initial value

auto

Applies to

all elements

Inherited

no

Computed value

for <uri> values, the absolute URI; otherwise, as specified

The simplest example is playing a single sound at the beginning of an element's aural rendering:

h1 {play-during: url(trumpets.mp3);}

Given this rule, any h1 element would be spoken while the sound file trumpets.mp3 plays at the

same time. The sound file is played once. If it is shorter than the time it takes to speak the element's
contents, then it stops before the element is finished. If it is longer than the necessary time, then the
sound stops once all of the element's content has been spoken.

If you want a sound to repeat throughout the entire speaking of an element, add the keyword
repeat. This is the auditory equivalent of background-repeat: repeat:

div.ocean {play-during: url(wave.wav) repeat;}

Like visible backgrounds, background sounds do not composite by default. Consider the following
situation:

a:link {play-during: url(chains.mp3) repeat;}

em {play-during: url(bass.mp3) repeat;}

This is a really great site!

What will happen is that chains.mp3 will play repetitively behind the text of the link, except for the
text of the em element. For that text, the chains will not be heard, but instead bass.mp3 will be

heard. The parent's background sound is not heard, just as its background would not be seen behind
the em element if both elements had visible backgrounds.

If you want to combine the two, the keyword mix comes into play:

a:link {play-during: url(chains.mp3) repeat;}

em {play-during: url(bass.mp3) repeat mix;}

Now chains.mp3 will be heard behind all of the link text, including the text in the em element. For

that element, both chains.mp3 and bass.mp3 will be heard mixed together.

The analogy with visible backgrounds breaks down with the value none. This keyword cuts off all

background sounds, including any that may belong to any ancestor elements. Thus, given the
following rules, the em text will have no background sounds at all-neither bass.mp3 nor chains.mp3

will be heard:

a:link {play-during: url(chains.mp3) repeat;}

em {play-during: none;}

This is a really great site!

14.3.7 Positioning Sounds

When only one person is speaking, the sound emanates from one point in space, unless of course
that person is moving around. In a conversation involving multiple people, the sound of each voice
will come from a different point in space.

With the availability of high-end audio systems and 3D sound, it should be possible to position sounds
within that space. CSS2.x defines two properties to accomplish this, one of which defines the angle of
a sound's source on a horizontal plane, and the second of which defines the source's angle on a
vertical plane. The placement of sounds along the horizontal plane is handled using azimuth.

azimuth

Values

<angle> | [[left-side | far-left | left | center-left | center | center-
right | right | far-right | right-side] || behind] | leftwards | rightwards |
inherit

Initial value

center

Applies to

all elements

Inherited

yes

Computed value

normalized angle

Angle values can come in three units: deg (degrees), grad (grads), and rad (radians). The possible
ranges for these unit types are 0-360deg, 0-400grad, and 0-6.2831853rad. Negative values are
permitted, but they are recalculated as positive values. For example, -45deg is equivalent to 315deg
(360-45), and -50rad would be the same as 350rad.

Most of the keywords are simply equivalents of angle values. These are shown in Table 14-1, using
degrees as the angle value of choice, and illustrated visually in Figure 14-11. The last column of Table
14-1 shows the equivalents of the keywords in the first column being used in conjunction with
behind.

Table 14-1. azimuth keyword and angle equivalents

Keyword Angle Behind

center 0 180deg -180deg

center-right 20deg -340deg 160deg -200deg

right 40deg -320deg 140deg -220deg

far-right 60deg -300deg 120deg -240deg

right-side 90deg -270deg 90deg -270deg

center-left 340deg -20deg 200deg -160deg

left 320deg -40deg 220deg -140deg

far-left 300deg -60deg 200deg -120deg

left-side 270deg -90deg 270deg -90deg

Figure 14-11. The horizontal plane, seen from above

Note that the keyword behind cannot be combined with an angle value. It can

be used only in conjunction with one of the keywords listed in Table 14-1.

There are two keywords in addition to those listed in Table 14-1: leftwards and rightwards. The
effect of the former is to subtract 20deg from the current angle value of azimuth, and the latter adds
20deg to the value. For example:

body {azimuth: right-side;} /* equivalent to 90deg */

h1 {azimuth: leftwards;}

The computed angle value of azimuth for the h1 element is 70deg. Now consider the following

situation:

body {azimuth: behind;} /* equivalent to 180deg */

h1 {azimuth: leftwards;} /* computes to 160deg */

The effect of leftwards, given these rules, will be to make the sound move to the right, not the left.
It's strange, but that's how CSS2 is written. Similarly, using rightwards in the previous example
would cause the h1 element's sound source to move 20 degrees to the right.

Much like azimuth, only simpler, is elevation, which places sounds in the vertical plane.

elevation

Values

<angle> | below | level | above | higher | lower | inherit

Initial value

level

Applies to

all elements

Inherited

yes

Computed value

normalized angle

Like azimuth, elevation accepts degree, grad, and radian angles. The three angle-equivalent
keywords are above (90 degrees), level (0), and below (-90 degrees). These are illustrated in

Figure 14-12.

Figure 14-12. The vertical plane, seen from the right side

The relative-placement keywords, higher and lower, either add or subtract 10 degrees from the
current elevation angle. Therefore, in the following example, h1 elements that are children of the
body will be placed 10 degrees above the horizontal plane:

body {elevation: level;} /* equivalent to 0 */

body > h1 {elevation: higher;}

14.3.7.1 Combining azimuth with elevation

When values for azimuth and elevation are taken together, they define a point in an imaginary

sphere whose center is the user. Figure 14-13 illustrates this sphere, along with some cardinal points
and the values that would place sounds in those positions.

Figure 14-13. Three-dimensional aural space

Imagine that as you sit in a chair, there is a point halfway between straight ahead and your right,
and halfway between the horizon and the zenith. This point could be described as azimuth: 45deg;
elevation: 45deg;. Now imagine a sound source at the same elevation but located halfway between

your left and a point directly behind you. This source could be described in any of the following ways:

azimuth: -135deg; elevation: 45deg;

azimuth: 215deg; elevation: 45deg;

azimuth: left behind; elevation: 45deg;

It is entirely possible that positioned sounds would be of assistance to a user in separating cues from
other audio sources, or to create positionally separate special material:

a[href] {cue: url(ping.wav); azimuth: behind; elevation: 30deg;}

voices.onhigh {play-during: url(choir.mp3); elevation: above;}

 < Day Day Up >

 < Day Day Up >

14.4 Summary

Although the first stage of the Web's development was primarily visual in nature, the need to provide
web content in other media led to the introduction of medium-specific styling in CSS. The ability to
take the same document and customize its presentation in a manner best suited to different output
media is deeply powerful. Although the most common use for this power will be to create "printer-
friendly" styles for documents, we've also seen how projection styles can be used to create
slideshows with Opera.

While aural styles would be very useful for blind users, as of this writing, there are only two programs
that support even a fragment of this portion of CSS, and the media type aural defined in CSS2.x will
not be carried forward to future versions of CSS. Instead, the media type speech has been set aside

for future work in auditory rendering of documents.

 < Day Day Up >

 < Day Day Up >

Appendix A. Property Reference
Section A.1. Visual Media

Section A.2. Tables

Section A.3. Paged Media

Section A.4. Dropped from CSS2.1

Section A.5. Visual Styles

Section A.6. Paged Media

Section A.7. Aural Styles

 < Day Day Up >

 < Day Day Up >

A.1 Visual Media

background

This is a shorthand method to express all of the individual background properties within a single
declaration. Use of this property is generally encouraged over the individual properties as it has a
slightly better support profile in older browsers and doesn't take as long to type.

Values:

[<background-color> || <background-image> || <background-repeat> || <background-
attachment> || <background-position>] | inherit

Initial value:

refer to individual properties

Applies to:

all elements

Inherited:

no

Percentages:

values are allowed for <background-position>

Computed value:

see individual properties

background-attachment

This property defines whether the background image scrolls along with the element when the
document is scrolled. This can be used to create "aligned" backgrounds; see Chapter 9 for more
details.

Values:

scroll | fixed | inherit

Initial value:

scroll

Applies to:

all elements

Inherited:

no

Computed value:

as specified

background-color

This sets a solid color for the background of the element. This color fills the content, padding, and
border areas of the element, extending to the outer edge of the element's border. Borders that have
transparent sections, such as dashed borders, will show the background through the transparent
sections.

Values:

<color> | transparent | inherit

Initial value:

transparent

Applies to:

all elements

Inherited:

no

Computed value:

as specified

background-image

Places an image in the background of the element. Depending on the value of background-repeat,

the image may tile infinitely, along one axis, or not at all. The initial background image (the origin
image) is placed according to the value of background-position.

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

absolute URI

background-position

This property sets the position of the background's origin image (as defined by background-image);

this is the point from which any background repetition will occur.

Values:

[[<percentage> | <length> | left | center | right] [<percentage>] | <length> | top | center |
bottom]?] | [[left | center | right] || [top | center | bottom]] | inherit

Initial value:

0% 0%

Applies to:

block-level and replaced elements

Inherited:

no

Percentages:

refer to the corresponding point on both the element and the origin image

Computed value:

the absolute length offsets, if <length> is specified; otherwise, percentage values

background-repeat

This defines the tiling pattern for the background image. Note that the axis-related repeat values
actually cause repetition in both directions along the relevant axis. The repetition begins from the
origin image, which is defined the value of background-image and is placed according to the value of

background-position.

Values:

repeat | repeat-x | repeat-y | no-repeat | inherit

Initial value:

no-repeat

Applies to:

all elements

Inherited:

no

Computed value:

as specified

border

This is a shorthand property that defines the width, color, and style of an element's border. Note that
while none of the values are actually required, omitting a border style will result in no border being
applied because the default border style is none.

Values:

[<border-width> || <border-style> || <border-color>] | inherit

Initial value:

refer to individual properties

Applies to:

all elements

Inherited:

no

Computed value:

as specified

border-bottom

This shorthand property defines the width, color, and style of the bottom border of an element. As
with border, omission of a border style will result in no border appearing.

Values:

[<border-width> || <border-style> || <border-color>] | inherit

Initial value:

not defined for shorthand properties

Applies to:

all elements

Inherited:

no

Computed value:

see individual properties (border-width, etc.)

border-bottom-color

This property sets the color for the visible portions of the bottom border of an element. Only a solid
color can be defined, and the border's style must be something other than none or hidden for any

visible border to appear.

Values:

<color> | transparent | inherit

Initial value:

the value of color for the element

Applies to:

all elements

Inherited:

no

Computed value:

if no value is specified, use the computed value of the property color for the same element;

otherwise, as specified

border-bottom-style

This defines the style for the bottom border of an element. The value must be something other than
none for any border to appear. In CSS1, HTML user agents were only required to support solid and
none.

Values:

none | hidden | dotted | dashed | solid | double | groove | ridge | inset | outset | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

as specified

border-bottom-width

This sets the width for the bottom border of an element, which will take effect only if the border's
style is something other than none. If the border style is none, then the border width is effectively
reset to 0. Negative length values are not permitted.

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

all elements

Inherited:

no

Computed value:

absolute length; 0 if the style of the border is none or hidden

border-color

This shorthand property sets the color for the visible portions of the overall border of an element or
sets a different color for each of the four sides. Remember that a border's style must be something
other than none or hidden for any visible border to appear.

Values:

[<color> | transparent]{1,4} | inherit

Initial value:

not defined for shorthand properties

Applies to:

all elements

Inherited:

no

Computed value:

see individual properties (border-top-color, etc.)

border-left

This shorthand property defines the width, color, and style of the left border of an element. As with
border, omission of a border style will result in no border appearing.

Values:

[<border-width> || <border-style> || <border-color>] | inherit

Initial value:

not defined for shorthand properties

Applies to:

all elements

Inherited:

no

Computed value:

see individual properties (border-width, etc.)

border-left-color

This property sets the color for the visible portions of the left border of an element. Only a solid color
can be defined, and the border's style must be something other than none or hidden for any visible

border to appear.

Values:

<color> | transparent | inherit

Initial value:

the value of color for the element

Applies to:

all elements

Inherited:

no

Computed value:

if no value is specified, use the computed value of the property color for the same element;

otherwise, as specified

border-left-style

This defines the style for the left border of an element. The value must be something other than none
for any border to appear. In CSS1, HTML user agents were only required to support solid and none.

Values:

none | hidden | dotted | dashed | solid | double | groove | ridge | inset | outset | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

as specified

border-left-width

This sets the width for the left border of an element, which will take effect only if the border's style is
something other than none. If the border style is none, then the border width is effectively reset to 0.

Negative length values are not permitted.

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

all elements

Inherited:

no

Computed value:

absolute length; 0 if the style of the border is none or hidden

border-right

This shorthand property defines the width, color, and style of the right border of an element. As with
border, omission of a border style will result in no border appearing.

Values:

[<border-width> || <border-style> || <border-color>] | inherit

Initial value:

not defined for shorthand properties

Applies to:

all elements

Inherited:

no

Computed value:

see individual properties (border-width, etc.)

border-right-color

This property sets the color for the visible portions of the right border of an element. Only a solid
color can be defined, and the border's style must be something other than none or hidden for any

visible border to appear.

Values:

<color> | transparent | inherit

Initial value:

the value of color for the element

Applies to:

all elements

Inherited:

no

Computed value:

if no value is specified, use the computed value of the property color for the same element;

otherwise, as specified

border-right-style

This defines the style for the right border of an element. The value must be something other than
none for any border to appear. In CSS1, HTML user agents were only required to support solid and
none.

Values:

none | hidden | dotted | dashed | solid | double | groove | ridge | inset | outset | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

as specified

border-right-width

This sets the width for the right border of an element, which will only take effect if the border's style
is something other than none. If the border style is none, then the border width is effectively reset to
0. Negative length values are not permitted.

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

all elements

Inherited:

no

Computed value:

absolute length; 0 if the style of the border is none or hidden

border-style

This shorthand property can be used to set the styles for the overall border of an element, or for
each side individually. The value of any border must be something other than none for the border to
appear. In CSS1, HTML user agents were only required to support solid and none.

Values:

[none | hidden | dotted | dashed | solid | double | groove | ridge | inset | outset]{1,4} |
inherit

Initial value:

not defined for shorthand properties

Applies to:

all elements

Inherited:

no

Computed value:

see individual properties (border-top-style, etc.)

Note:

HTML user agents are only required to support solid and none; the rest of the values (except for
hidden) may be interpreted as solid

border-top

This shorthand property defines the width, color, and style of the top border of an element. As with
border, omission of a border style will result in no border appearing.

Values:

[<border-width> || <border-style> || <border-color>] | inherit

Initial value:

not defined for shorthand properties

Applies to:

all elements

Inherited:

no

Computed value:

see individual properties (border-width, etc.)

border-top-color

This property sets the color for the visible portions of the top border of an element. Only a solid color
can be defined, and the border's style must be something other than none or hidden for any visible

border to appear.

Values:

<color> | transparent | inherit

Initial value:

the value of color for the element

Applies to:

all elements

Inherited:

no

Computed value:

if no value is specified, use the computed value of the property color for the same element;

otherwise, as specified

border-top-style

This defines the style for the top border of an element. The value must be something other than none
for any border to appear. In CSS1, HTML user agents were only required to support solid and none.

Values:

none | hidden | dotted | dashed | solid | double | groove | ridge | inset | outset | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

as specified

border-top-width

This sets the width for the top border of an element, which will only take effect if the border's style is
something other than none. If the style is none, then the width is effectively reset to 0. Negative

length values are not permitted.

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

all elements

Inherited:

no

Computed value:

absolute length; 0 if the style of the border is none or hidden

border-width

This shorthand property can be used to set the width for the overall border of an element or for each
side individually. The width will take effect for a given border only if the border's style is something
other than none. If the border style is none, then the border width is effectively reset to 0. Negative

length values are not permitted.

Values:

[thin | medium | thick | <length>]{1,4} | inherit

Initial value:

not defined for shorthand properties

Applies to:

all elements

Inherited:

no

Computed value:

see individual properties (border-top-style, etc.)

bottom

This property defines the offset between the bottom outer margin edge of a positioned element and
the bottom edge of its containing block.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

positioned elements (that is, elements for which the value of position is something other than
static)

Inherited:

no

Percentages:

refer to the height of the containing block

Computed value:

for relatively positioned elements, see note; for static elements, auto; for length values, the
corresponding absolute length; for percentage values, the specified value; otherwise, auto

Note:

for relatively positioned elements, if both bottom and top are auto, their computed values are both
0; if one of them is auto, it becomes the negative of the other; if neither is auto, bottom will become
the negative of the value of top

clear

This defines the sides of an element on which no floating elements may appear. In CSS1 and CSS2,
this is accomplished by automatically increasing the top margin of the cleared element. In CSS2.1,
clearance space is added above the element's top margin, but the margin itself is not altered. In
either case, the end result is that the element's top outer border edge is just below the bottom outer
margin edge of a floated element on the declared side.

Values:

left | right | both | none

Initial value:

none

Applies to:

block-level elements

Inherited:

no

Computed value:

as specified

clip

This is used to define a clipping rectangle inside of which the content of an absolutely positioned
element is visible. Content outside this clipping area is treated according to the value of overflow.

The clipping area can be smaller or larger than the content area of the element.

Values:

rect(top, right, bottom, left) | auto | inherit

Initial value:

auto

Applies to:

absolutely positioned elements (in CSS2, clip applied to block-level and replaced elements)

Inherited:

no

Computed value:

for a rectangle, a set of four computed lengths representing the edges of the clipping rectangle;
otherwise, as specified

color

This property sets the foreground color of an element, which in HTML rendering means the text of an
element; raster images are not affected by color. This is also the color applied to any borders of the

element, unless overridden by border-color or one of the other border color properties (border-
top-color, etc.).

Values:

<color> | inherit

Initial value:

user agent-specific

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

content

This is the property used to define the generated content placed before or after an element. By
default, this is likely to be inline content, but the type of box the content creates can be controlled
using the property display.

Values:

normal | [<string> | <uri> | <counter> | attr(<identifier>) | open-quote | close-quote | no-
open-quote | no-close-quote]+ | inherit

Initial value:

normal

Applies to:

:before and :after pseudo-elements

Inherited:

no

Computed value:

for <uri> values, an absolute URI; for attribute references, the resulting string; otherwise, as
specified

counter-increment

With this property, counters can be incremented (or decremented) by any value, positive or
negative. If no <integer> is supplied, it defaults to 1.

Values:

[<identifier> <integer>?]+ | none | inherit

Initial value:

user agent-dependent

Applies to:

all elements

Inherited:

no

Computed value:

as specified

counter-reset

With this property, counters can be reset (or set for the first time) to any value, positive or negative.
If no <integer> is supplied, it defaults to 0.

Values:

[<identifier> <integer>?]+ | none | inherit

Initial value:

user agent-dependent

Applies to:

all elements

Inherited:

no

Computed value:

as specified

cursor

This defines the cursor shape to be used when a mouse pointer is placed within the boundary of an
element (although CSS2.1 does not define which edge creates this boundary).

Values:

[[<uri>,]* [auto | default | pointer | crosshair | move | e-resize | ne-resize | nw-resize |
n-resize | se-resize | sw-resize | s-resize | w-resize| text | wait | help | progress]] |
inherit

Initial value:

auto

Applies to:

all elements

Inherited:

yes

Computed value:

for <uri> values, an absolute URI; otherwise, as specified

direction

This property specifies the base writing direction of blocks and the direction of embeddings and
overrides for the Unicode bidirectional algorithm. User agents that do not support bidirectional text
are permitted to ignore this property.

Values:

ltr | rtl | inherit

Initial value:

ltr

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

display

This is used to define the kind of display box an element generates during layout. Gratuitous use of
display with a document type such as HTML can be dangerous, as it upsets the display hierarchy
already defined in HTML. In the case of XML, which has no such built-in hierarchy, display is

indispensable.

Values:

none | inline | block | inline-block | list-item | run-in | table | inline-table | table-row-
group | table-header-group | table-footer-group | table-row | table-column-group | table-
column | table-cell | table-caption | inherit

Initial value:

inline

Applies to:

all elements

Inherited:

no

Computed value:

varies for floated, positioned, and root elements (see CSS2.1, section 9.7); otherwise, as specified

Note:

the values compact and marker appeared in CSS2 but were dropped from CSS2.1 due to a lack of

widespread support

float

This defines the direction in which an element is floated. This has traditionally been applied to images
in order to let text flow around them, but in CSS, any element may be floated. A floated element will
generate a block-level box no matter what kind of element it may be. Floated nonreplaced elements
should be given an explicit width, as they may otherwise tend to become as narrow as possible.

Values:

left | right | none | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

as specified

font

This is a shorthand property used to set two or more aspects of an element's font all at once. It can
also be used to set the element's font to match an aspect of the user's computing environment using
keywords such as icon. Note that if these keywords are not used, the minimum font value must

include the font size and family.

Values:

[[<font-style> || <font-variant> || <font-weight>]? <font-size> [/ <line-height>]? <font-
family>] | caption | icon | menu | message-box | small-caption | status-bar | inherit

Initial value:

refer to individual properties

Applies to:

all elements

Inherited:

yes

Percentages:

calculated with respect to the parent element for <font-size> and with respect to the element's
<font-size> for <line-height>

Computed value:

see individual properties (font-style, etc.)

font-family

This defines a font family to be used in the display of an element's text. Note that use of a specific
font family (e.g., Geneva) is wholly dependent on that family being available on a user's machine; no
font downloading is implied by this property. Therefore, the use of generic family names as a last
fallback is strongly encouraged.

Values:

[[<family-name> | <generic-family>],]* [<family-name> | <generic-family>] | inherit

Initial value:

user agent-specific

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

font-size

This sets the size of the font for an element. Note that this actually sets the height of the character
boxes in the font; the actual character glyphs may be taller or shorter than these boxes (usually
shorter). Each keyword must be larger than the next lowest keyword and smaller than the next
biggest keyword. Negative length and percentage values are not permitted.

Values:

xx-small | x-small | small | medium | large | x-large | xx-large | smaller | larger | <length>
| <percentage> | inherit

Initial value:

medium

Applies to:

all elements

Inherited:

yes

Percentages:

calculated with respect to the parent element's font size

Computed value:

an absolute length

font-style

This sets the font to use an italic, oblique, or normal font face. Italic text is generally defined as a
separate face within the font family. It is theoretically possible for a user agent to compute a slanted
font face from the normal face.

Values:

italic | oblique | normal | inherit

Initial value:

normal

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

font-variant

This property is basically used to define small-caps text. It is theoretically possible for a user agent to
compute a small-caps font face from the normal face.

Values:

small-caps | normal | inherit

Initial value:

normal

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

font-weight

This property sets the font weight used in rendering an element's text. The numeric value 400 is
equivalent to the keyword normal, and 700 is equivalent to bold. Each numeric value must be at

least as light as the next lowest number and at least as heavy as the next highest number.

Values:

normal | bold | bolder | lighter | 100 | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | inherit

Initial value:

normal

Applies to:

all elements

Inherited:

yes

Computed value:

one of the numeric values (100, etc.), or one of the numeric values plus one of the relative values
(bolder or lighter)

height

This defines the height of an element's content area, outside of which padding, borders, and margins
are added. This property is ignored for inline nonreplaced elements. Negative length and percentage
values are not permitted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

block-level and replaced elements

Inherited:

no

Percentages:

calculated with respect to the height of the containing block

Computed value:

for auto and percentage values, as specified; otherwise, an absolute length, unless the property does
not apply to the element (then auto)

left

This property defines the offset between the left outer margin edge of a positioned element and the
left edge of its containing block.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

positioned elements (that is, elements for which the value of position is something other than
static)

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for relatively positioned elements, see note; for static elements, auto; for length values, the
corresponding absolute length; for percentage values, the specified value; otherwise, auto

Note:

for relatively positioned elements, the computed value of left always equals right

letter-spacing

This defines the amount of whitespace to be inserted between the character boxes of text. Since
character glyphs are typically narrower than their character boxes, length values create a modifier to
the usual spacing between letters. Thus, normal is synonymous with 0. Negative length values are

permitted and will cause letters to bunch closer together.

Values:

<length> | normal | inherit

Initial value:

normal

Applies to:

all elements

Inherited:

yes

Computed value:

for length values, the absolute length; otherwise, normal

line-height

This property influences the layout of line boxes. When applied to a block-level element, it defines the
minimum distance between baselines within that element, but not the maximum. The difference
between the computed values of line-height and font-size (called "leading" in CSS) is split in half

and added to the top and bottom of each piece of content in a line of text. The shortest box that can
enclose all those pieces of content is the line box. A raw number value assigns a scaling factor, which
is inherited instead of a computed value. Negative values are not permitted.

Values:

<length> | <percentage> | <number> | normal | inherit

Initial value:

normal

Applies to:

all elements (but see text regarding replaced and block-level elements)

Inherited:

yes

Percentages:

relative to the font size of the element

Computed value:

for length and percentage values, the absolute value; otherwise, as specified

list-style

This is a shorthand property that condenses all the other list-style properties. As it applies to any
element that has a display of list-item, it will apply only to li elements in ordinary HTML and
XHTML, although it can be applied to any element and inherited by list-item elements.

Values:

[<list-style-type> || <list-style-image> || <list-style-position>] | inherit

Initial value:

refer to individual properties

Applies to:

elements whose display value is list-item

Inherited:

yes

Computed value:

see individual properties

list-style-image

This specifies an image to be used as the marker on an ordered or unordered list item. The
placement of the image with respect to the content of the list item can be broadly controlled using
list-style-position.

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

elements whose display value is list-item

Inherited:

yes

Computed value:s:

for <uri> values, the absolute URI; otherwise, none

list-style-position

This property is used to declare the position of the list marker with respect to the content of the list
item. Outside markers are placed some distance from the border edge of the list item, but the
distance is not defined in CSS. Inside markers are treated as though they were an inline element
inserted at the beginning of the list item's content.

Values:

inside | outside | inherit

Initial value:

outside

Applies to:

elements whose display value is list-item

Inherited:

yes

Computed value:

as specified

list-style-type

This is used to declare the type of marker system to be used in the presentation of a list.

CSS2.1values:

disc | circle | square | decimal | decimal-leading-zero | upper-alpha | lower-alpha | upper-
roman | lower-roman | none | inherit

CSS2 values:

disc | circle | square | decimal | decimal-leading-zero | upper-alpha | lower-alpha | upper-
roman | lower-roman | lower-greek | hebrew | armenian | georgian | cjk-ideographic |
hiragana | katakana | hiragana-iroha | none | inherit

Initial value:

disc

Applies to:

elements whose display value is list-item

Inherited:

yes

Computed value:

as specified

margin

This shorthand property sets the width of the overall margin for an element or sets the widths of
each individual side margin. Vertically adjacent margins of block-level elements are collapsed,
whereas inline elements effectively do not take top and bottom margins. The left and right margins of
inline elements do not collapse, nor do margins on floated elements. Negative margin values are
permitted, but caution is warranted.

Values:

[<length> | <percentage> | auto]{1,4} | inherit

Initial value:

not defined

Applies to:

all elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

see individual properties

margin-bottom

This sets the width of the bottom margin for an element. Negative values are permitted, but caution
is warranted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

all elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for percentages, as specified; for length values, the absolute length

margin-left

This sets the width of the left margin for an element. Negative values are permitted, but caution is
warranted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

all elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for percentages, as specified; for length values, the absolute length

margin-right

This sets the width of the right margin for an element. Negative values are permitted, but caution is
warranted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

all elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for percentages, as specified; for length values, the absolute length

margin-top

This sets the width of the top margin for an element. Negative values are permitted, but caution is
warranted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

0

Applies to:

all elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for percentages, as specified; for length values, the absolute length

max-height

The value of this property sets a maximum constraint on the height of the element. Thus, the
element can be shorter than the specified value, but not taller. Negative values are not permitted.

Values:

<length> | <percentage> | none | inherit

Initial value:

none

Applies to:

all elements except inline nonreplaced elements and table elements

Inherited:

no

Percentages:

refer to the height of the containing block

Computed value:

for percentages, as specified; for length values, the absolute length; otherwise, none

max-width

The value of this property sets a maximum constraint on the width of the element. Thus, the element
can be narrower than the specified value, but not wider. Negative values are not permitted.

Values:

<length> | <percentage> | none | inherit

Initial value:

none

Applies to:

all elements except inline nonreplaced elements and table elements

Inherited:

no

Percentages:

refer to the height of the containing block

Computed value:

for percentages, as specified; for length values, the absolute length; otherwise, none

min-height

The value of this property sets a minimum constraint on the height of the element. Thus, the element
can be taller than the specified value, but not shorter. Negative values are not permitted.

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

all elements except inline nonreplaced elements and table elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for percentages, as specified; for length values, the absolute length

min-width

The value of this property sets a minimum constraint on the width of the element. Thus, the element
can be wider than the specified value, but not narrower. Negative values are not permitted.

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

all elements except inline nonreplaced elements and table elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for percentages, as specified; for length values, the absolute length; otherwise, none

outline

This shorthand property is used to set the overall outline for an element. Outlines can be of irregular
shape, and they do not change or otherwise affect the placement of elements.

Values:

[<outline-color> || <outline-style> || <outline-width>] | inherit

Initial value:

not defined for shorthand properties

Applies to:

all elements

Inherited:

no

Computed value:

see individual properties (outline-color, etc.)

outline-color

This property sets the color for the visible portions of the overall outline of an element. Remember
that an outline's style must be something other than none for any visible border to appear.

Values:

<color> | invert | inherit

Initial value:

invert (or user agent-specific; see text)

Applies to:

all elements

Inherited:

no

Computed value:

as specified

outline-style

This property is used to set the style for the overall border of an element. The style must be
something other than none for any outline to appear.

Values:

none | dotted | dashed | solid | double | groove | ridge | inset | outset | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

as specified

outline-width

This property sets the width for the overall outline of an element. The width will take effect only for a
given outline if the outline's style is something other than none. If the style is none, then the width is
effectively reset to 0. Negative length values are not permitted.

Values:

thin | medium | thick | <length> | inherit

Initial value:

medium

Applies to:

all elements

Inherited:

no

Computed value:

absolute length; 0 if the style of the border is none or hidden

overflow

This defines what happens to content that overflows the content area of an element. For the value
scroll, user agents are supposed to provide a scrolling mechanism whether or not it is actually
needed; thus, for example, scrollbars would appear even if all content is able to fit within the element
box.

Values:

visible | hidden | scroll | auto | inherit

Initial value:

visible

Applies to:

block-level and replaced elements

Inherited:

no

Computed value:

as specified

padding

This shorthand property sets the width of the overall padding for an element or sets the widths of
each individual side padding. Padding set on inline nonreplaced elements does not affect line-height
calculations; therefore, such an element with both padding and a background may visibly extend into
other lines and potentially overlap other content. The background of the element will extend
throughout the padding. Negative padding values are not permitted.

Values:

[<length> | <percentage>]{1,4} | inherit

Initial value:

not defined for shorthand elements

Applies to:

all elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

see individual properties (padding-top, etc.)

Note:

padding can never be negative

padding-bottom

This property sets the width of the bottom padding for an element. Bottom padding set on inline
nonreplaced elements does not affect line-height calculations; therefore, such an element with both
bottom padding and a background may visibly extend into other lines and potentially overlap other
content. Negative padding values are not permitted.

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

all elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for percentage values, as specified; for length values, the absolute length

Note:

padding can never be negative

padding-left

This property sets the width of the left padding for an element. Left padding set for an inline
nonreplaced element will appear only on the left edge of the first inline box generated by the
element. Negative padding values are not permitted.

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

all elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for percentage values, as specified; for length values, the absolute length

Note:

padding can never be negative

padding-right

This property sets the width of the right padding for an element. Right padding set for an inline
nonreplaced element will appear only on the right edge of the last inline box generated by the
element. Negative padding values are not permitted.

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

all elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for percentage values, as specified; for length values, the absolute length

Note:

padding can never be negative

padding-top

This property sets the width of the top padding for an element. Top padding set on inline nonreplaced
elements does not affect line-height calculations; therefore, such an element with both top padding
and a background may visibly extend into other lines and potentially overlap other content. Negative
padding values are not permitted.

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

all elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for percentage values, as specified; for length values, the absolute length

Note:

padding can never be negative

position

This defines the positioning scheme used to lay out an element. Any element may be positioned,
although elements positioned with absolute or fixed will generate a block-level box no matter what

kind of element they are. An element that is relatively positioned is offset from its default placement
in the normal flow.

Values:

static | relative | absolute | fixed | inherit

Initial value:

static

Applies to:

all elements

Inherited:

no

Computed value:

as specified

quotes

This property is used to determine the quotation pattern used with quotes and nested quotes. The
actual quote marks are inserted via the property content.

Values:

[<string> <string>]+ | none | inherit

Initial value:

user agent-dependent

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

right

This property defines the offset between the right outer margin edge of a positioned element and the
right edge of its containing block.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

positioned elements (that is, elements for which the value of position is something other than
static)

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for relatively positioned elements, see note; for static elements, auto; for length values, the
corresponding absolute length; for percentage values, the specified value; otherwise, auto

Note:

for relatively positioned elements, the computed value of left always equals right

text-align

This property sets the horizontal alignment of text within a block-level element by defining the point
to which line boxes are aligned. The value justify is supported by allowing user agents to

programmatically adjust the letter and word spacing of the line's content; results may vary by user
agent.

CSS2.1values:

left | center | right | justify | inherit

CSS2 values:

left | center | right | justify | <string> | inherit

Initial value:

user agent-specific; may also depend on writing direction

Applies to:

block-level elements

Inherited:

yes

Computed value:

as specified

Note:

CSS2 included a <string> value that was dropped from CSS2.1 due to a lack of widespread support

text-decoration

This property allows certain text effects such as underlining. These decorations will "span"
descendant elements that do not have decorations of their own. User agents are not required to
support blink.

Values:

none | [underline || overline || line-through || blink] | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

as specified

text-indent

Used to define the indentation of the first line of content in a block-level element. This is most often
used to create a "tab" effect. Negative values are permitted and cause "outdent" (or "hanging
indent") effects.

Values:

<length> | <percentage> | inherit

Initial value:

0

Applies to:

block-level elements

Inherited:

yes

Percentages:

refer to the width of the containg block

Computed value:

for percentage values, as specified; for length values, the absolute length

text-transform

This property changes the case of letters in an element, regardless of the case of the text in the
document source. The determination of which letters are to be capitalized by the value capitalize is

not precisely defined, as it depends on user agents knowing how to recognize a "word."

Values:

uppercase | lowercase | capitalize | none | inherit

Initial value:

none

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

top

This property defines the offset between the top outer margin edge of a positioned element and the
top edge of its containing block.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

positioned elements (that is, elements for which the value of position is something other than
static)

Inherited:

no

Percentages:

refer to the height of the containing block

Computed value:

for relatively positioned elements, see note; for static elements, auto; for length values, the
corresponding absolute length; for percentage values, the specified value; otherwise, auto

Note:

for relatively positioned elements, if both top and bottom are auto, their computed values are both
0; if one of them is auto, it becomes the negative of the other; if neither is auto, bottom will become
the negative of the value of top

unicode-bidi

Allows the author to generate levels of embedding within the Unicode embedding algorithm. User
agents that do not support bidirectional text are permitted to ignore this property.

Values:

normal | embed | bidi-override | inherit

Initial value:

normal

Applies to:

all elements

Inherited:

no

Computed value:

as specified

vertical-align

This defines the vertical alignment of an inline element's baseline with respect to the baseline of the
line in which it resides. Negative length and percentage values are permitted, and they lower the
element instead of raising it. In table cells, this property sets the alignment of the content of the cell
within the cell box.

Values:

baseline | sub | super | top | text-top | middle | bottom | text-bottom | <percentage> |
<length> | inherit

Initial value:

baseline

Applies to:

inline elements and table cells

Inherited:

no

Percentages:

refer to the value of line-height for the element

Computed value:

for percentage and length values, the absolute length; otherwise, as specified

Note:

when applied to table cells, only the values baseline, top, middle, and bottom are recognized

visibility

This specifies whether the element box generated by an element is rendered. This means authors can
have the element take up the space it would ordinarily take up but be completely invisible. The value
collapse is used in tables to remove columns or rows from the table's layout.

Values:

visible | hidden | collapse | inherit

Initial value:

inherit

Applies to:

all elements

Inherited:

no

Computed value:

as specified

white-space

This declares how whitespace within an element is handled during layout. The values pre-wrap and
pre-line were added in CSS2.1.

Values:

normal | nowrap | pre | pre-wrap | pre-line | inherit

Initial value:

normal

Applies to:

all elements (CSS2.1); block-level elements (CSS1 and CSS2)

Inherited:

no

Computed value:

as specified

width

This defines the width of an element's content area, outside of which padding, borders, and margins
are added. This property is ignored for inline nonreplaced elements. Negative length and percentage
values are not permitted.

Values:

<length> | <percentage> | auto | inherit

Initial value:

auto

Applies to:

block-level and replaced elements

Inherited:

no

Percentages:

refer to the width of the containing block

Computed value:

for auto and percentage values, as specified; otherwise, an absolute length, unless the property does
not apply to the element (then auto)

word-spacing

This defines the amount of whitespace to be inserted between words in an element. For the purposes
of this property, a "word" is defined to be a string of characters surrounded by whitespace. Length
values create a modifier to the usual spacing between words; thus, normal is synonymous with 0.

Negative length values are permitted and will cause words to bunch closer together.

Values:

<length> | normal | inherit

Initial value:

normal

Applies to:

all elements

Inherited:

yes

Computed value:

for normal, the absolute length 0; otherwise, the absolute length

z-index

This property sets the placement of a positioned element along the z-axis, which is defined to be the
axis that extends perpendicular to the display area. Positive numbers are closer to the user, and
negative numbers are further away.

Values:

<integer> | auto | inherit

Initial value:

auto

Applies to:

positioned elements

Inherited:

no

Computed value:

as specified

 < Day Day Up >

 < Day Day Up >

A.2 Tables

border-collapse

This property is used to define the layout model used in laying out the borders in a table-i.e., those
applied to cells, rows, and so forth. Although the property applies only to tables, it is inherited by all
the elements within the table.

Values:

collapse | separate | inherit

Initial value:

separate

Applies to:

elements with the display value table or table-inline

Inherited:

yes

Computed value:

as specified

Note:

in CSS2, the default value was collapse

border-spacing

This specifies the distance between cell borders in the separated borders model. The first of the two
length values is the horizontal separation, and the second is the vertical. This property is ignored
unless border-collapse is set to separate. Although the property only applies to tables, it is

inherited by all of the elements within the table.

Values:

<length> <length>? | inherit

Initial value:

0

Applies to:

elements with the display value table or table-inline

Inherited:

yes

Computed value:

two absolute lengths

Note:

property is ignored unless border-collapse value is separate

caption-side

This specifies the placement of a table caption with respect to the table box. The caption is rendered
as though it were a block-level element placed just before (or after) the table.

Values:

top | bottom

Initial value:

top

Applies to:

elements with the display value table-caption

Inherited:

no

Computed value:

as specified

Note:

the values left and right appeared in CSS2 but were dropped from CSS2.1 due to a lack of

widespread support

empty-cells

This defines the presentation of table cells that contain no content. If shown, the cell's borders and
background are drawn. This property is ignored unless border-collapse is set to separate.

Values:

show | hide | inherit

Initial value:

show

Applies to:

elements with the display value table-cell

Inherited:

yes

Computed value:

as specified

Note:

property is ignored unless border-collapse value is separate

table-layout

This property is used to specify which layout algorithm is used to lay out a table. The fixed layout
algorithm is faster but less flexible, while the automatic algorithm is slower but more reflective of
traditional HTML tables.

Values:

auto | fixed | inherit

Initial value:

auto

Applies to:

elements with the display value table or inline-table

Inherited:

yes

Computed value:

as specified

 < Day Day Up >

 < Day Day Up >

A.3 Paged Media

orphans

This specifies the minimum number of text lines within the element that can be left at the bottom of a
page. This can affect the placement of page breaks within the element.

Values:

<integer> | inherit

Initial value:

2

Applies to:

block-level elements

Inherited:

yes

Computed value:

as specified

page-break-after

This declares whether page breaks should be placed after an element. While it is possible to force
breaks with always, it is not possible to guarantee prevention; the best an author can do is ask the
user agent to avoid inserting a page break if possible.

Values:

auto | always | avoid | left | right | inherit

Initial value:

auto

Applies to:

nonfloated block-level elements with a position value of relative or static

Inherited:

no

Computed value:

as specified

page-break-before

Declares whether page breaks should be placed before an element. While it is possible to force breaks
with always, it is not possible to guarantee prevention; the best an author can do is ask the user
agent to avoid inserting a page break if possible.

Values:

auto | always | avoid | left | right | inherit

Initial value:

auto

Applies to:

nonfloated block-level elements with a position value of relative or static

Inherited:

no

Computed value:

as specified

page-break-inside

This declares whether page breaks should be placed inside an element. Because an element might be
taller than a page box, it is not possible to guarantee prevention; the best an author can do is ask
the user agent to avoid inserting a page break if possible.

Values:

auto | avoid | inherit

Initial value:

auto

Applies to:

nonfloated block-level elements with a position value of relative or static

Inherited:

yes

Computed value:

as specified

widows

This specifies the minimum number of text lines within the element that can be left at the top of a

page. This can affect the placement of page breaks within the element.

Values:

<integer> | inherit

Initial value:

2

Applies to:

block-level elements

Inherited:

yes

Computed value:

as specified

 < Day Day Up >

 < Day Day Up >

A.4 Dropped from CSS2.1

The following properties appeared in CSS2 but were dropped from CSS2.1 due to a lack of
widespread support. They do not have computed value information since computed values were first
explicitly defined in CSS2.1.

 < Day Day Up >

 < Day Day Up >

A.5 Visual Styles

font-size-adjust

The aim of this property is to allow authors to trigger font scaling such that substitute fonts will not
look too wildly different than the font the author wanted to use, even if the substituted font has a
different x-height. Note that this property does not appear in CSS2.1.

Values:

<number> | none | inherit

Initial value:

none

Applies to:

all elements

Inherited:

yes

font-stretch

With this property, the character glyphs in a given font can be made wider or narrower, ideally by
selected condensed or expanded faces from the font's family. Note that this property does not appear
in CSS2.1.

Values:

normal | wider | narrower | ultra-condensed | extra-condensed | condensed | semi-condensed

| semi-expanded | expanded | extra-expanded | ultra-expanded | inherit

Initial value:

normal

Applies to:

all elements

Inherited:

yes

marker-offset

This property specifies the distance between the nearest border edge of a marker box and its
associated element box.

Values:

<length> | auto | inherit

Initial value:

auto

Applies to:

elements with a display value of marker

Inherited:

no

Note:

this property has been made obsolete as of CSS2.1 and will likely not appear in CSS3, with the same

holding true for the display value of marker; as of this writing, it appears that other mechanisms

will be used to achieve these effects

text-shadow

This permits the assignments of one or more "shadows" to the text in an element. The first two
length values in a shadow definition set horizontal and vertical offsets, respectively, from the
element's text. The third length defines a blurring radius. Note that this property does not appear in
CSS2.1.

Values:

none | [<color> || <length> <length> <length>? ,]* [<color> || <length> <length> <length>?] |
inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

 < Day Day Up >

 < Day Day Up >

A.6 Paged Media

marks

This property defines whether "cross marks" (otherwise known as register marks or registration
marks) should be placed outside the content area but within the printable area of the canvas. The
exact placement and rendering of the marks is not defined. Note that this value does not appear in
CSS2.1.

Values:

[crop || cross] | none | inherit

Initial value:

none

Applies to:

page context

Inherited:

N/A

page

This property, in conjunction with size, specifies a particular page type to be used in the printing of

an element. Note that this property does not appear in CSS2.1.

Values:

<identifier> | inherit

Initial value:

auto

Applies to:

block-level elements

Inherited:

yes

size

With this property, authors can declare the size and orientation of the page box used in the printing
of an element. It can be used in conjunction with page, although this is not always necessary. Note

that this property does not appear in CSS2.1.

Values:

<length>{1,2} | auto | portrait | landscape | inherit

Initial value:

auto

Applies to:

the page area

Inherited:

no

 < Day Day Up >

 < Day Day Up >

A.7 Aural Styles

azimuth

This property sets the angle along the horizontal plane (otherwise known as the horizon) from which
a sound should seem to emanate. This is used in conjunction with elevation to place the sound at a

point on a hypothetical sphere with the user at its center.

Values:

<angle> | [[left-side | far-left | left | center-left | center | center-right | right | far-
right | right-side] || behind] | leftwards | rightwards | inherit

Initial value:

center

Applies to:

all elements

Inherited:

yes

Computed value:

normalized angle

cue

This is a shorthand property that allows an author to define cues that precede and follow the audio
rendering of an element's content. A "cue" is something like an auditory icon.

Values:

[<cue-before> || <cue-after>] | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

see individual properties (cue-before, etc.)

cue-after

This property allows an author to define a cue that follows the audio rendering of an element's
content.

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

for <uri> values, the absolute URI; otherwise, none

cue-before

This property allows an author to define a cue that precedes the audio rendering of an element's
content.

Values:

<uri> | none | inherit

Initial value:

none

Applies to:

all elements

Inherited:

no

Computed value:

for <uri> values, the absolute URI; otherwise, none

elevation

This property sets the angle above or below the horizontal plane (otherwise known as the horizon)
from which a sound should seem to emanate. This is used in conjunction with azimuth to place the

sound at a point on a hypothetical sphere with the user at its center.

Values:

<angle> | below | level | above | higher | lower | inherit

Initial value:

level

Applies to:

all elements

Inherited:

yes

Computed value:

normalized angle

pause

This is a shorthand property that allows an author to define pauses that precede and follow the audio
rendering of an element's content. A "pause" is an interval in which no content is audibly rendered,
although background sounds may still be audible.

Values:

[[<time> | <percentage>]{1,2}] | inherit

Initial value:

0

Applies to:

all elements

Inherited:

no

Computed value:

see individual properties (pause-before, etc.)

pause-after

This property allows an author to define the length of a pause that follows the audio rendering of an
element's content.

Values:

<time> | <percentage> | inherit

Initial value:s:

0

Applies to:

all elements

Inherited:

no

Computed value:

the absolute time value

pause-before

This property allows an author to define the length of a pause that precedes the audio rendering of
an element's content.

Values:

<time> | <percentage> | inherit

Initial value:s:

0

Applies to:

all elements

Inherited:

no

Computed value:

the absolute time value

pitch

Specifies the average pitch (frequency) of the speaking voice used to audibly render the element's
content. The average pitch of a voice will depend greatly on the voice family.

Values:

<frequency> | x-low | low | medium | high | x-high | inherit

Initial value:

medium

Applies to:

all elements

Inherited:

yes

Computed value:

the absolute frequency value

pitch-range

This property specifies the variation in average pitch used by the speaking voice, while audibly
rendering the element's content. The higher the variation, the more "animated" the voice will sound.

Values:

<number> | inherit

Initial value:

50

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

play-during

This provides a sound to be played "in the background" while the element's contents are audibly
rendered. The sound can be mixed with other background sounds (set using play-during on an

ancestor element), or it can replace other sounds for the duration of the element's audio rendering.

Values:

<uri> | [mix || repeat]? | auto | none | inherit

Initial value:

auto

Applies to:

all elements

Inherited:

no

Computed value:

for <uri> values, the absolute URI; otherwise, as specified

richness

This property sets the "brightness" of the speaking voice used when audibly rendering the element's
content. The brighter the voice, the more it will "carry."

Values:

<number> | inherit

Initial value:

50

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

speak

This determines how an element's contents will be audibly rendered, or indeed if they will be
rendered at all. The value spell-out is typically used for acronyms and abbreviations, such as W3C
or CSS. If the value is none, then the element is skipped (it takes no time to be audibly rendered).

Values:

normal | none | spell-out | inherit

Initial value:

normal

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

speak-header

This specifies whether the content of table headers is spoken before every cell associated with those
headers, or only when the header associated with a cell is different than the header associated with
the previously rendered cell.

Values:

once | always | inherit

Initial value:

once

Applies to:

elements containing table header information

Inherited:

yes

Computed value:

as specified

speak-numeral

This property determines how numbers are spoken during audible rendering.

Values:

digits | continuous | inherit

Initial value:

continuous

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

speak-punctuation

This property determines how punctuation is spoken during audible rendering. The value code causes

punctuation symbols to be rendered literally.

Values:

code | none | inherit

Initial value:

none

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

speech-rate

This sets the average rate at which words are spoken when an element's content is audibly rendered.

Values:

<number> | x-slow | slow | medium | fast | x-fast | faster | slower | inherit

Initial value:

medium

Applies to:

all elements

Inherited:

yes

Computed value:

an absolute number

stress

This property affects the height of peaks in the intonation of a speaking voice. These peaks are in
turn generated by stress marks within a language.

Values:

<number> | inherit

Initial value:

50

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

voice-family

This property is used to define a list of voice families that can be used in the audio rendering of an
element's content, and is comparable to font-family. The permitted generic voices are male,
female, and child.

Values:

[[<specific-voice> | <generic-voice>],]* [<specific-voice> | <generic-voice>] | inherit

Initial value:

user agent-dependent

Applies to:

all elements

Inherited:

yes

Computed value:

as specified

volume

This sets the median volume level for the waveform of the audibly rendered content. Thus, a
waveform with large peaks and valleys may go well above or below the volume level set with this
property. Note that 0 is not the same as silent.

Values:

<number> | <percentage> | silent | x-soft | soft | medium | loud | x-loud | inherit

Initial value:

medium

Applies to:

all elements

Inherited:

yes

Computed value:

an absolute number

 < Day Day Up >

 < Day Day Up >

Appendix B. Selector, Pseudo-Class,
andPseudo-Element Reference

Section B.1. Selectors

Section B.2. Pseudo-Classes and Pseudo-Elements

 < Day Day Up >

 < Day Day Up >

B.1 Selectors

B.1.1 Universal Selector

This selector matches any element name in the document's language. If a rule does not have an
explicit selector, then the universal selector is inferred.

Pattern: *

Examples:

* {color: red;}

div * p {color: blue;}

B.1.2 Type Selector

This selector matches the name of an element in the document's language. Every instance of the
element name is matched. (CSS1 referred to these as element selectors.)

Pattern: element1

Examples:

body {background: #FFF;}

p {font-size: 1em;}

B.1.3 Descendant Selector

This allows the author to select an element based on its status as a descendant of another element.
The matched element can be a child, grandchild, great-grandchild, etc., of the ancestor element.
(CSS1 referred to these as contextual selectors.)

Pattern: element1 element2

Examples:

body h1 {font-size: 200%;}

table tr td div ul li {color: purple;}

B.1.4 Child Selector

This type of selector is used to match an element based on its status as a child of another element.
This is more restrictive than a descendant element, since only a child will be matched.

Pattern: element1 > element2

Examples:

div > p {color: cyan;}

ul > li {font-weight: bold;}

B.1.5 Adjacent Sibling Selector

This allows the author to select an element that is the following adjacent sibling of another element.
Any text between the two elements is ignored; only elements and their positions in the document
tree are considered.

Pattern: element1 + element2

Examples:

table + p {margin-top: 2.5em;}

h1 + * {margin-top: 0;}

B.1.6 Class Selector

In languages that permit it, such as HTML, SVG, and MathML, a class selector using "dot notation"
can be used to select elements that have a class containing a specific value or values. The name of
the class value must immediately follow the dot. Multiple class values can be "chained" together. If no
element name precedes the dot, then the selector matches all elements containing that class value.

Patterns: element1.classname element1.classname1.classname2

Examples:

p.urgent {color: red;}

a.external {font-style: italic;}

.example {background: olive;}

B.1.7 ID Selector

In languages that permit it, such as HTML, an ID selector using "hash notation" can be used to select
elements that have an ID containing a specific value or values. The name of the ID value must
immediately follow the octothorpe (#). If no element name precedes the octothorpe, then the

selector matches all elements containing that ID value.

Pattern: element1#idname

Examples:

h1#page-title {font-size: 250%;}

body#home {background: silver;}

#example {background: lime;}

B.1.8 Simple Attribute Selector

This allows authors to select any element based on the presence of an attribute, regardless of the
attribute's value.

Pattern: element1[attr]

Examples:

a[rel] {border-bottom: 3px double gray;}

p[class] {border: 1px dotted silver;}

B.1.9 Exact Attribute Value Selector

This allows authors to select any element based on the precise complete value of an attribute.

Pattern: element1[attr="value"]

Examples:

a[rel="Home"] {font-weight: bold;}

p[class="urgent"] {color: red;;}

B.1.10 Partial Attribute Value Selector

This allows authors to select any element based on a portion of the space-separated value of an
attribute. Note that [class~="value"] is equivalent to .value (see above).

Pattern: element1[attr~="value"]

Examples:

a[rel~="friend"] {text-transform: uppercase;}

p[class~="warning"] {background: yellow;}

B.1.11 Language Attribute Selector

This allows authors to select any element with a lang attribute whose value is a hyphen-separated

list of values, starting with the value provided in the selector.

Pattern: element1[lang|="lc"]

Examples:

html[lang|="en"] {color: gray;}

 < Day Day Up >

 < Day Day Up >

B.2 Pseudo-Classes and Pseudo-Elements

B.2.1 :active

This applies to an element during the period in which it is being activated. The most common
example of this is clicking on a hyperlink in an HTML document: during the time that the mouse
button is being held down, the link is active. There are other ways to activate elements, and other
elements can in theory be activated, although CSS doesn't define this.

Type: pseudo-class

Applies to: an element that is being activated

Examples:

a:active {color: red;}

*:active {background: blue;}

B.2.2 :after

This allows the author to insert generated content at the end of an element's content. By default, the
pseudo-element is inline, but this can be changed using the property display.

Type: pseudo-element

Generates: a pseudo-element containing generated content placed after the content in the element

Examples:

a.external:after {content: " " url(/icons/globe.gif);)

p:after {content: " | ";}

B.2.3 :before

This allows the author to insert generated content at the beginning of an element's content. By
default, the pseudo-element is inline, but this can be changed using the property display.

Type: pseudo-element

Generates: a pseudo-element containing generated content placed before the content in the element

Examples:

a[href]:before {content: "[LINK] ";)

p:before {content: attr(class);}

B.2.4 :first-child

With this pseudo-class, an element is matched only when it is the first child of another element. For
example, p:first-child will select any p element that is the first child of some other element. It

does not, as is commonly assumed, select whatever element is the first child of a paragraph; for
that, an author would write p > *:first-child.

Type: pseudo-class

Applies to: any element that is the first child of another element

Examples:

body *:first-child {font-weight: bold;}

p:first-child {font-size: 125%;}

B.2.5 :first-letter

This is used to style the first letter of an element. Any leading punctuation should be styled along with
the first letter. Some languages have letter combinations that should be treated as a single character,
and a user agent may apply the first letter style to both. Prior to CSS2.1, :first-letter could be

attached only to block-level elements. CSS2.1 expands its scope to include all elements. There is a
limited set of properties that can apply to a first letter.

Type: pseudo-element

Generates: a pseudo-element that contains the first letter of an element

Examples:

h1:first-letter {font-size: 166%;}

a:first-letter {text-decoration: underline;}

B.2.6 :first-line

This is used to style the first line of text in an element, no matter how many or few words may
appear in that line. :first-line can be attached only to block-level elements. There is a limited set

of properties that can apply to a first line.

Type: pseudo-element

Generates: a pseudo-element that contains the first formatted line of an element

Examples:

p.lead:first-letter {font-weight: bold;}

B.2.7 :focus

This applies to an element during the period in which it has focus. One example from HTML is an
input box that has the text-input cursor within it; that is, when the user starts typing, text will be
entered into that box. Other elements, such as hyperlinks, can also have focus, although CSS does
not define which elements have focus.

Type: pseudo-class

Applies to: an element that has focus

Examples:

a:focus {outline: 1px dotted red;}

input:focus {background: yellow;}

B.2.8 :hover

This applies to an element during the period in which it is being "hovered." Hovering is defined as the
user designating an element without activating it. The most common example of this is moving the
mouse pointer inside the boundaries of a hyperlink in an HTML document. Other elements can in
theory be hovered, although CSS doesn't define which ones.

Type: pseudo-class

Applies to: an element that is in a hovered state

Examples:

a[href]:hover {text-decoration: underline;}

p:hover {background: yellow;}

B.2.9 :lang

This matches elements based on their human language encoding. Such language information must be
contained within or otherwise associated with the document; it cannot be assigned from CSS. The
handling of :lang is the same as for |= attribute selectors.

Type: pseudo-class

Applies to: any element with associated language-encoding information

Examples:

html:lang(en) {background: silver;}

*:lang(fr) {quotes: '« ' ' »';}

B.2.10 :link

This applies to a link to a URI that has not been visited; that is, the URI to which the link points does
not appear in the user agent's history. This state is mutually exclusive with the :visited state.

Type: pseudo-class

Applies to: a link to another resource that has not been visited

Examples:

a:link {color: blue;}

*:link {text-decoration: underline;}

B.2.11 :visited

This applies to a link to a URI that has been visited; that is, the URI to which the link points appears
in the user agent's history. This state is mutually exclusive with the :link state.

Type: pseudo-class

Applies to: a link to another resource that has already been visited

Examples:

a:visited {color: purple;}

*:visited {color: gray;}

 < Day Day Up >

 < Day Day Up >

Appendix C. Sample HTML 4 Style Sheet
The following style sheet is adapted from Appendix C of the CSS2 specification. There are two
important things to note. The first is that while CSS2.1 says that "developers are encouraged to use
[this] as a default style sheet in their implementations," this isn't always possible. For example, there
is a rule that states:

ol, ul, dir, menu, dd

 {margin-left: 40px;}

This describes the legacy indenting of lists to a distance of 40 pixels, and it uses a left margin to do it.
However, some browsers have used a 40-pixel left padding instead of a margin, believing this to be a
better solution. (See Chapter 12 for details.) Therefore, you cannot rely on this as the exact default
style sheet for any given user agent. It is provided more for illustrative purposes and as a learning
tool.

The second thing to note is that not all HTML elements are fully described in this style sheet because
CSS is not yet detailed enough to completely and accurately describe them. The classic examples are
form elements, such as submit buttons, which are replaced elements but have their own special
formatting needs. Submit buttons are replaced elements, and thus the bottom edge of their box
should align with the baseline. Authors, however, are likely to expect the text inside the button to
align with the baseline of other text in the same line. This is a reasonable expectation, but CSS does
not (as of this writing) have the ability to describe such behavior; therefore, the most that is said
about such elements is the following rule:

button, textarea, input, object, select, img {

 display:inline-block;}

The rest of the formatting of such elements is left to the user agent.

With these caveats in mind, here is the style sheet (with some slight reformatting) found in the CSS2
specification. Any changes other than reformatting are noted in comments.

address, blockquote, body, dd, div, dl, dt, fieldset, form,

frame, frameset, h1, h2, h3, h4, h5, h6, noframes,

ol, p, ul, center, dir, hr, menu, pre {

 display: block;}

li {display: list-item;}

head {display: none;}

table {display: table;}

tr {display: table-row;}

thead {display: table-header-group;}

tbody {display: table-row-group;}

tfoot {display: table-footer-group;}

col {display: table-column;}

colgroup {display: table-column-group;}

td, th {display: table-cell;}

caption {display: table-caption;}

th {font-weight: bolder; text-align: center;}

caption {text-align: center;}

body {padding: 8px; line-height: 1.12em;}

h1 {font-size: 2em; margin: .67em 0;}

h2 {font-size: 1.5em; margin: .75em 0;}

h3 {font-size: 1.17em; margin: .83em 0;}

h4, p, blockquote, ul, fieldset, form, ol, dl, dir, menu {

 margin: 1.12em 0;}

h5 {font-size: .83em; margin: 1.5em 0;}

h6 {font-size: .75em; margin: 1.67em 0;}

h1, h2, h3, h4, h5, h6, b, strong {

 font-weight: bolder;}

blockquote {margin-left: 40px; margin-right: 40px;}

i, cite, em, var, address {

 font-style: italic;}

pre, tt, code, kbd, samp {

 font-family: monospace;}

pre {white-space: pre;}

button, textarea, input, object, select, img {

 display:inline-block;}

big {font-size: 1.17em;}

small, sub, sup {font-size: .83em;}

sub {vertical-align: sub;}

sup {vertical-align: super;}

s, strike, del {text-decoration: line-through;}

hr {border: 1px inset;}

ol, ul, dir, menu, dd {

 margin-left: 40px;}

ol {list-style-type: decimal;}

ol ul, ul ol, ul ul, ol ol {

 margin-top: 0; margin-bottom: 0;}

u, ins {text-decoration: underline;}

br:before {content: "\A";}

center {text-align: center;}

abbr, acronym {font-variant: small-caps; letter-spacing: 0.1em;}

:link,:visited {text-decoration: underline;}

:focus {outline: thin dotted invert;}

/* Begin bidirectionality settings (do not change) */

BDO[DIR="ltr"] {direction: ltr; unicode-bidi: bidi-override;}

BDO[DIR="rtl"] {direction: rtl; unicode-bidi: bidi-override;}

*[DIR="ltr"] {direction: ltr; unicode-bidi: embed;}

*[DIR="rtl"] {direction: rtl; unicode-bidi: embed;}

@media print {

 h1 {page-break-before: always;}

 h1, h2, h3, h4, h5, h6 {

 page-break-after: avoid;}

 ul, ol, dl {page-break-before: avoid;}

@media aural { /* changed from 'speech' which was not defined in CSS2 */

 h1, h2, h3, h4, h5, h6 {

 voice-family: paul, male; stress: 20; richness: 90;}

 h1 {pitch: x-low; pitch-range: 90;}

 h2 {pitch: x-low; pitch-range: 80;}

 h3 {pitch: low; pitch-range: 70;}

 h4 {pitch: medium; pitch-range: 60;}

 h5 {pitch: medium; pitch-range: 50;}

 h6 {pitch: medium; pitch-range: 40;}

 li, dt, dd {pitch: medium; richness: 60;}

 dt {stress: 80;}

 pre, code, tt {pitch: medium; pitch-range: 0; stress: 0; richness: 80;}

 em {pitch: medium; pitch-range: 60; stress: 60; richness: 50;}

 strong {pitch: medium; pitch-range: 60; stress: 90; richness: 90;}

 dfn {pitch: high; pitch-range: 60; stress: 60;}

 s, strike {richness: 0;}

 i {pitch: medium; pitch-range: 60; stress: 60; richness: 50;}

 b {pitch: medium; pitch-range: 60; stress: 90; richness: 90;}

 u {richness: 0;}

 a:link {voice-family: harry, male;}

 a:visited {voice-family: betty, female;}

 a:active {voice-family: betty, female; pitch-range: 80; pitch: x-high;}

}

 < Day Day Up >

 < Day Day Up >

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animals on the cover of Cascading Style Sheets: The Definitive Guide, Second Edition are salmon
(salmonidae), which is a family of fish consisting of many different species. Two of the most common
salmon are the Pacific salmon and the Atlantic salmon.

Pacific salmon live in the northern Pacific Ocean off the coasts of North America and Asia. There are
five subspecies of Pacific salmon, with an average weight of ten to thirty pounds. Pacific salmon are
born in the fall in freshwater stream gravel beds where they incubate through the winter and emerge
as inch-long fish. They live for a year or two in streams or lakes and then head downstream to the
ocean. There they live for a few years, before heading back upstream to their exact place of birth to
spawn and then die.

Atlantic salmon live in the northern Atlantic Ocean off the coasts of North America and Europe. There
are many subspecies of Atlantic salmon, including the trout and the char. Their average weight is ten
to twenty pounds. The Atlantic salmon family has a similar life cycle to its Pacific cousins, from
freshwater gravel beds to the sea. A major difference between the two, however, is that the Atlantic
salmon does not die after spawning; it can return to the ocean and then return to the stream to
spawn again, usually two or three times.

Salmon, in general, are graceful, silver-colored fish with spots on their backs and fins. Their diet
consists of plankton, insect larvae, shrimp, and smaller fish. Their unusually keen sense of smell is
thought to be what helps them navigate from the ocean back to the exact spot of their birth,
upstream past many obstacles. Some species of salmon remain landlocked, living their entire lives in
freshwater.

Salmon are an important part of the ecosystem, as their decaying bodies provide fertilizer for
streambeds. Their numbers have been dwindling over the years, however. Factors in the declining
salmon population include habitat destruction, fishing, dams that block spawning paths, acid rain,
droughts, floods, and pollution.

Marlowe Shaeffer was the production editor and copyeditor for Cascading Style Sheets: The Definitive
Guide, Second Edition. Matt Hutchinson was the proofreader. Reg Aubry and Claire Cloutier provided
quality control. Angela Howard wrote the index.

Ellie Volckhausen designed the cover of this book, based on a series design by Edie Freedman. The
cover image is a 19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the
cover layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Julie Hawks to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano and Jessamyn Read using Macromedia FreeHand 9
and Adobe Photoshop 6. The tip and warning icons were drawn by Christopher Bing. This colophon

was written by Nicole Arigo.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

!important declaration 2nd 3rd 4th 5th

" (double quotes)

 in font-family declaration

 in generated content 2nd

"I-bar" icon [See text selection cursor]

"Images, Tables, and Mysterious Gaps" article 2nd

(pound sign)

 in hexadecimal color notation

 in ID selectors

% (percentage sign) in property value

> (greater-than symbol) in child selectors

' (single quotes)

 in font-family declaration

 in generated content 2nd

* (asterisk)

 as universal selector 2nd 3rd

 in property syntax

+ (plus sign)

 in adjacent-sibling selectors

 in property syntax

, (comma)

 in property syntax

 in selectors

. (period) in class selectors

.ani file extension

.css filename extension

.cur file extension

/ (slash)

 between font size and line height

 in property syntax 2nd

: (colon)

 between property and value

 in pseudo-class or pseudo-element selectors

::marker pseudo-element

:active pseudo-class 2nd 3rd

:after pseudo-element 2nd 3rd

:before pseudo-element 2nd 3rd

:first pseudo-class

:first-child pseudo-class 2nd

:first-letter pseudo-element 2nd 3rd

:first-line pseudo-element 2nd 3rd

:focus pseudo-class 2nd

:hover pseudo-class 2nd

:lang pseudo-class 2nd

:left pseudo-class

:link pseudo-class 2nd 3rd 4th

:right pseudo-class

:visited pseudo-class 2nd 3rd

; (semicolon) following declarations 2nd

? (question mark)

 cursor

 in property syntax

@font-face rule

@import directive 2nd 3rd

@media blocks

@page rule

 setting page size and margins

 setting page types

[] (brackets)

 in attribute selectors

 in property syntax

\A, representing newline

{} (curly braces) in property syntax

| (vertical bar)

 in attribute selector

 in property syntax

|| (vertical double bar) in property syntax

~ (tilde) in attribute selectors

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

\A, representing newline

a element [See links]

absolute length units

absolute positioning 2nd

 containing blocks and 2nd

 height and width affecting 2nd

 nonreplaced elements

 overlapping elements

 replaced elements

 scrolling and

 stacking context and order for

 on z-axis

absolute URL

ActiveBorder system color

ActiveCaption system color

adjacent-sibling combinator

adjacent-sibling selectors 2nd

align attribute, img element

alignment

 horizontal

 justified 2nd

 of baseline

 of cell content

 of middle of element

 spacing and

 superscripting and subscripting

 to baseline

 to bottom of line box

 to bottom of text

 to top of line box

 to top of text

 vertical 2nd

alink attribute, body element

 :active pseudo-class and

 replacing using color property

alt attribute, attribute selectors used with

alternate style sheets

ancestors of elements

<> (angle brackets) in property syntax

angle brackets (<>) in property syntax

angle values

animated cursors

AppWorkspace system color

aspect value of font

asterisk (*)

 as universal selector 2nd 3rd

 in property syntax

attribute selectors 2nd 3rd

 applying to multiple attributes 2nd

 exact-value attribute selectors 2nd

 for form elements

 partial-value attribute selectors 2nd

 particular attribute selectors

 simple attribute selectors 2nd

 specificity of 2nd

attribute values, as generated content

audio rendering of content [See aural styles]

aural media type 2nd

aural styles

 background sounds for 2nd

 cues in speech 2nd 3rd 4th

 pauses in speech 2nd 3rd 4th 5th

 positioning sounds for 2nd 3rd

 specifying content to be spoken 2nd 3rd 4th 5th

 specifying media type for

 speech rate for 2nd

 units used with

 voice used for 2nd 3rd 4th 5th 6th

 volume for 2nd

author as origin 2nd

azimuth property 2nd 3rd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

background

 colors for 2nd 3rd 4th

 design issues regarding

 extending into padding 2nd 3rd

 extending to borders 2nd 3rd

 floated elements and

 for columns and column groups

 for empty table cells

 of content area

 overlapping, for inline nonreplaced elements

 print styles not including

background attribute, body element

background images 2nd 3rd

 attaching to viewing area 2nd

 inheritance and

 origin image

 positioning 2nd

 preventing scrolling of

 scrolling

 special effects with

 specifying

 tiling 2nd 3rd 4th 5th

background property 2nd

background sounds 2nd

Background system color

background-attachment property 2nd

background-color property 2nd [See also background property] 3rd 4th

 combining with background-image property

background-image property 2nd [See also background property] 3rd

 combining with background-color property

background-position property 2nd [See also background property] 3rd

 default values for

 keyword values for

 length values for

 negative values for

 percentage values for

background-repeat property 2nd [See also background property] 3rd 4th

\ (backslash) escaping linefeeds

backslash (\) escaping linefeeds

backward accessibility for older browsers

ball spinning, cursor

basefont element

baselines

 aligning elements using 2nd

 line height and

 replaced elements and

bidirectional text

bleeding outside page box

blinking text

block boxes

 for floated elements

 for list items 2nd

 for positioned elements

 for table captions

 for tables

 forcing with display property 2nd

 overlapping floated elements

 page breaks between

 run-in elements and

block, containing [See containing block]

block-level elements 2nd 3rd [See also inline-block elements]

 boundaries of

 converting to inline-level elements

 generated content as

 horizontal formatting of

 vertical formatting of

blocks, @media

blur radius for text shadow

body element

 alink attribute

 as containing block for positioned elements

 as root element

 background attribute

 color attributes replaced with color property

 inheritance of background styles

 link and vlink attributes

bold text used in this book 2nd [See also font weights]

border property 2nd 3rd

border-bottom property 2nd 3rd

border-bottom-color property 2nd

border-bottom-style property 2nd

border-bottom-width property 2nd

border-collapse property 2nd

border-color property 2nd [See also border property]3rd 4th 5th

border-left property 2nd 3rd

border-left-color property 2nd

border-left-style property 2nd

border-left-width property 2nd

border-right property 2nd 3rd

border-right-color property 2nd

border-right-style property 2nd

border-right-width property 2nd

border-spacing property 2nd

border-style property 2nd 3rd [See also border property]4th

border-top property 2nd 3rd

border-top-color property 2nd

border-top-style property 2nd

border-top-width property 2nd

border-width property 2nd [See also border property]3rd

borders 2nd 3rd 4th 5th [See also outlines]

 as foreground of element

 background extending to 2nd 3rd

 color of

 affected by color property

 default 2nd 3rd

 setting 2nd

 setting separately for each side 2nd 3rd 4th

 enabling existence of 2nd

 for columns and column groups

 for empty table cells

 for inline replaced elements

 for inline-level elements 2nd

 for table cells

 collapsed 2nd 3rd

 separated 2nd

 spacing between 2nd

 hiding

 padding and

 positioning and

 sides of

 setting all the same

 setting separately 2nd 3rd 4th 5th

 style of

 setting 2nd 3rd

 setting separately for each side 2nd 3rd 4th 5th

 transparent

 width of

 setting 2nd 3rd

 setting separately for each side 2nd 3rd 4th 5th

bottom alignment

bottom property 2nd

boxes [See also block boxes; element boxes; inline boxes]

 cell boxes

 column boxes

 dialog boxes

 em boxes (em squares)

 line boxes 2nd 3rd

 construction of

 height of 2nd

 inline replaced elements and

 page breaks and

 page boxes 2nd

 row boxes

braces ({}) in property syntax

brackets ([])

 in attribute selectors

 in property syntax

Braille media type

breaks

 generated by block-level elements

 page breaks 2nd 3rd 4th

browsers [See also user agents]

 as screen-medium user agents

 attribute selectors 2nd

 background property

 bugs in CSS support

 clipping

 color names

 CSS support

 escaped content

 floated element placement

 font face rules not implemented by

 form element colors

 generated content

 indentation of list items

 inheritance support

 list-style-type defaults

 nonrectangular outlines

 older versions of

 backward accessibility and

 case sensitivity of class and ID selectors

 outline placement

 padding for images

 pixel preference settings in

 printing fixed-attachment backgrounds

 projection media support

 run-in elements

 stretching and adjusting fonts not implemented

 text decorations

 text shadows not implemented

 transparent borders

 z-axis positioning

bugs

 borders drawn away from padding in Navigator 4

 coverage of, in this book

 default font size in Internet Explorer

 fixed-attachment backgrounds on non-body elements handled incorrectly

 height and width applied incorrectly in Internet Explorer

 multiple class selector handling in Internet Explorer

 styles not inherited into tables

ButtonFace system color

ButtonHighlight system color

buttons

 system colors for

 system font for

ButtonShadow system color

ButtonText system color

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

capitalization of text 2nd

caption system font 2nd

caption-side property 2nd

captioned controls, system font for

captions for tables

 placement of 2nd

 specifying

CaptionText system color

carriage returns

 in generated content

 white-space property and

cascade rules 2nd

Cascading Style Sheets (CSS) [See also cascade rules; selectors; style rules; style sheets]

 browser support for

 features of

 future of

 history of

 unique features of CSS2 and CSS2.1 [See CSS2 CSS2.1]

 versions covered in this book

case of text 2nd

case sensitivity, of class and ID selectors

cell boxes

cell phones, web-enabled, media type for

cells

 alignment of content in

 borders for

 collapsed 2nd 3rd

 separated 2nd

 spacing between 2nd

 empty 2nd

 grid cells

 images in, with gaps

 layer for

 positioning

 spanning

 specifying

 vertically aligning elements in

cellspacing attribute

center element 2nd

centering text 2nd

centimeters (cm) length units

child combinator

child elements 2nd 3rd

child selectors 2nd

class attribute

class selectors 2nd

 attribute selectors substituting for 2nd

 case sensitivity of

 combining with pseudo-classes

 languages supporting 2nd

 multiple

 specificity value of

 when to use

clear property 2nd

clip property 2nd

cm (centimeters) length units

col element

colgroup element

colon (:)

 between property and value

 in pseudo-class or pseudo-element selectors

color inversion for outlines 2nd

color property 2nd

 affecting borders

 affecting form elements

 combining with background-color property

 inheritance and

color values

 equivalents table of

 named colors 2nd

 RGB colors

 web-safe colors

colors

 background

 border

 design issues regarding

 foreground 2nd

 inheritance and

 outline 2nd 3rd

 projection styles

 replacing body attributes for

 system colors

 text decorations 2nd

column boxes

column groups

 background for

 borders for

 layer for

 specifying

 visibility of

 width of

columns, table

 background for

 borders for

 derived from rows

 layer for

 specifying

 visibility of

 width of

columns, text, print styles for

combinator

 in adjacent-sibling selectors

 in child selectors

 in descendant selectors

 specificity value of

comma (,)

 in property syntax

 in selectors

comments 2nd

complexspiral distored demonstration

contact information for this book

containing block

 absolute positioning and

 height of, affecting positioning

 of floated elements

 positioning and

content area 2nd 3rd [See also generated content; page area; text]

 background of

 clipping 2nd

 for inline nonreplaced elements

 glyphs and

 height of 2nd 3rd 4th

 margins of

 overflowing 2nd

 width of 2nd 3rd

content edge

content property 2nd

 counters used with

 quotation-related values of

contextual selectors [See descendant selectors]

continuous medium

controls, small captioned, system font for

conventions used in this book

counter-increment property 2nd

counter-reset property 2nd

counters for ordered lists

 defining for multiple levels

 displaying

 incrementing 2nd 3rd

 negative values for 2nd

 resetting 2nd 3rd

 scope of

 styles for

crop marks (cross marks)

crosshair cursor 2nd

CSS [See Cascading Style Sheets]

CSS comments

CSS2

 @font-face rule

 @page rules

 attribute selectors 2nd

 clip property, elements applied to

 collapse value for visibility

 downloadable fonts

 drop shadows for text

 font-size-adjust property

 font-stretch property

 list item numbering

 list styles

 marker-offset property 2nd

 marks property

 min-max properties

 offsetting margin edges

 page box size

 page property 2nd

 reference pixel recommendation

 run-in elements

 scaling factor

 size property 2nd

 speak-header property

 specificity of inline style declarations

 specificity of pseudo-elements

 stretching and adjusting fonts

 table captions positioned to right or left side

 text-shadow property

 transparent border color

 units for aural styles

 universal selector

CSS2.1

 :first-letter pseudo-element, scope of

 background, area covered by

 block and inline elements

 cascade rules

 color names

 combining pseudo-classes

 containing block, rules for determining 2nd

 content area definition

 dynamic pseudo-classes

 floated elements

 expanding to contain floated descendants

 overlapping content in normal flow

 generated content

 height of content area in relation to font

 important rules

 inherit keyword

 inline-block elements

 list styles

 list-style-position property

 margin placement

 offsetting margin edges

 overconstrained relative positioning

 pre-wrap and pre-line for white-space property

 primacy of inline style declarations

 progress value for cursor property

 pseudo-classes for links

 pseudo-elements

 real numbers, definition of

 reference pixel recommendation

 specificity of inline style declarations

 specificity of pseudo-elements

 static position

cue property 2nd

cue-after property 2nd

cue-before property 2nd

cues in speech 2nd 3rd

curly braces ({}) in property syntax

cursive fonts

cursor property 2nd

cursors 2nd

 animated

 ball spinning cursor

 changing

 crosshair cursor 2nd

 customized

 help cursor

 hourglass cursor

 movement cursors

 over side or corner edges of window

 pointing cursor

 progress cursor

 text selection cursor

 waiting cursor

 watch cursor

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

declaration block 2nd

declarations 2nd [See also properties]3rd 4th

deg (degrees) units

descendant selectors 2nd 3rd

descendants of elements 2nd [See also inheritance]

devices, style sheets specific to

dialog boxes, system font for

direction of flow [See flow]

direction property

display property 2nd 3rd

 value for lists

 values for element display roles

 values for generated content

 values for tables

document style sheets [See embedded style sheets]

Document Type Definition (DTD)

documents

 aural rendering of [See aural styles]

 embedding style sheet in

 file size reduced by CSS

 height of

 hierarchy of elements in

 linking multiple style sheets to

 linking style sheets to 2nd

 multiple, linking style sheets to

 presentation of

 cascade rules and

 centralization of

 CSS features for

 HTML elements for

 printing [See print styles]

 slideshow presentation of [See projection styles]

 structured, benefits of

 URLs not relative to

 width of

double quotes (")

 in font-family declaration

 in generated content 2nd

drop shadows for text

drop-down controls, system font for

DTD [See Document Type Definition]

dynamic pseudo-classes

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

element boxes 2nd [See also borders; outlines]3rd

 breaks before and after [See block-level elements]

 for inline nonreplaced elements

 height of 2nd 3rd 4th

 margins of 2nd 3rd 4th 5th 6th 7th

 outlines of 2nd 3rd 4th

 overlapping

 padding of 2nd

 specifying type of 2nd

 width of 2nd 3rd 4th 5th

 within a line of text [See inline-level elements]

element selectors 2nd 3rd

elements 2nd [See also specific elements and tags]

 activated, pseudo-class for 2nd

 ancestors of

 background of [See background background images]

 block-level elements [See block-level elements]

 child elements 2nd 3rd

 containing block of

 converting between inline- and block-level elements

 deprecated in XHTML

 descendants of

 DTD defining

 first letter of, pseudo-element for 2nd 3rd

 first line of, pseudo-element for 2nd 3rd

 floating [See floated elements]

 flow direction of 2nd 3rd

 foreground colors 2nd

 foreground of

 height of 2nd 3rd 4th

 hierarchy of

 hovered, pseudo-class for

 in focus, pseudo-class for

 inline-block elements

 inline-level [See inline-level elements]

 input focus on, pseudo-class for

 inserting content before and after, pseudo-elements for

 mouse hovering over, pseudo-class for

 nonreplaced elements 2nd

 overlapping

 parent elements

 persistent, fixed positioning for

 replaced elements

 root element

 run-in elements

 siblings of

 static position of

 visibility of 2nd

 width of 2nd

elevation property 2nd

em (em-height) length units 2nd

em box [See em square]

em square

Emacspeak 2nd

embedded style sheets

embossed media type

empty-cells property 2nd

ex (x-height) length units 2nd

exact-value attribute selectors 2nd

example style sheet

Extensible Markup Language [See XML]

external style sheets 2nd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

fantasy fonts

filename extension

 for animated graphics

 for graphic cursors

 for style sheets

fixed positioning 2nd

fixed-width fonts [See monospace fonts]

float property 2nd

floated elements

 background and

 block boxes generated for

 containing blocks and

 direction of float 2nd

 disabling

 expanding to contain floated descendants

 generated content prohibited as

 height for

 margins of

 negative margins and

 nonreplaced elements

 overlapped by block boxes

 overlapped by inline boxes

 overlapping each other

 overwriting each other

 overwriting previous content 2nd

 placed outside parent element

 placement rules for

 preventing placement next to specific elements 2nd

 taller than parent element

 wider than parent element

 width for

flow

 bidirectional

 normal flow

 outlines not included in

 specifying direction of

Fonix SpeakThis

font download method, @font-face rule

font element

font face

font families

 cursive fonts

 fantasy fonts

 generic

 monospace

 sans-serif fonts

 serif fonts

 specifying 2nd

font name matching method, @font-face rule

font property 2nd

 omitted values, behavior of

 slash (/) separating keywords of

 system fonts, specifying 2nd

font size

 adjusting based on aspect value 2nd

 determination of, using em square

 font matching and

 for inline nonreplaced elements

 for print design

 inheritance and

 specifying

font synthesis method, @font-face rule

@font-face rule

font-family property 2nd [See also font property]3rd

 quotation marks in

 specifying alternate font families with

 specifying generic font families with 2nd

 specifying multiple font families with

 specifying specific font family with

font-size property 2nd [See also font property]3rd

 absolute-size keywords for

 font matching and

 for inline nonreplaced elements

 length units for

 percentage values for

 relative-size keywords for

 scaling factor used with

font-size-adjust property 2nd

font-stretch property 2nd

font-style property 2nd [See also font property]3rd 4th

font-variant property 2nd [See also font property]3rd 4th

font-weight property 2nd [See also font property]3rd

 bold keyword, mapping of

 bolder keyword, mapping of

 font matching and

 lighter keyword, mapping of

 normal keyword, mapping of

 numeric values, mapping of

fonts [See also text]

 aspect value of

 availability of 2nd

 downloading

 em (em-height) value of

 ex (x-height) value of

 for print design

 for screen design

 leading and 2nd

 line height and

 matching available fonts to specified fonts

 proportional

 setting all values of

 setting family of

 setting size of

 setting style of 2nd

 setting variants of 2nd

 setting weight of 2nd

 stretching 2nd

 system fonts 2nd

 used in this book

footers, table

foreground colors 2nd

form elements [See also replaced elements]

 attribute selectors for

 color of

 padding for

form inputs, aligning vertically

forward slash (/)

 between font size and line height

 in property syntax 2nd

frames, fixed positioning as substitute for

frequency values

functional RGB notation

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

generated content

 attribute values as

 audio pauses and cues used with

 borders and

 counters for ordered lists

 floating prohibited for

 inheritance and

 positioning prohibited for

 pseudo-elements for

 quotation marks as

 specifying content for 2nd

 specifying location of

 string values as

 URI values as

generic font families 2nd

glyphs, content area and 2nd [See also fonts]

grad (grads) units

GrayText system color

greater-than symbol (>) in child selectors

grid cells 2nd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

handheld media type

hanging indents

hash mark [See pound sign]

headers, table 2nd

height property 2nd 3rd 4th [See also max-height property; min-height property] 5th

 percentage values for

 positioned elements and

 setting to auto 2nd

 tables and

help cursor

hertz (Hz) units

hexadecimal color notation

Highlight system color

HighlightText system color

horizontal alignment

 of table cell content

 of text

horizontal formatting, of block-level elements

hourglass cursor

href attribute, link tag

HTML [See also specific elements and tags]

 deprecated elements in

 element selectors for

 file size reduced by CSS

 future of

 history of

 presentational elements in

 sample style sheet for

 structural elements of

 XML replacing

<!-- --> HTML comments

html element

 as root element 2nd

 inheritance of background styles

hyperlinks [See links]

Hypertext Markup Language [See HTML]

hyphenation

 capitalization and

 justified text using

Hz (hertz) units

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

icon system font 2nd

icons

 system font for 2nd

 used in this book

id attribute

ID selectors 2nd

 attribute selectors substituting for 2nd 3rd

 case sensitivity of

 combining with pseudo-classes

 languages supporting 2nd

 specificity of 2nd

 uniqueness of

images [See also replaced elements]

 aligning vertically

 as background [See background images]

 as cursors

 as generated content 2nd

 floating using HTML

 for list item markers 2nd

 in links, border style for

 in table cell, gaps around

 indents affecting

 padding for

img element, align attribute

@import directive 2nd 3rd

important rules 2nd 3rd

in (inches) length units

InactiveBorder system color

InactiveCaption system color

InactiveCaptionText system color

inches (in) length units

indenting text

InfoBackground system color

InfoText system color

inherit keyword

inheritance [See also cascade rules; specificity] 2nd 3rd

 bugs in browser implementation of

 exceptions to

 inherit keyword

 line height and

 specificity and

 text decoration and

initial containing block [See root element]

inline boxes 2nd 3rd

 for inline-level tables

 forcing with display property 2nd

 overlapping floated element

inline styles 2nd 3rd

inline-block elements 2nd [See also run-in elements]

inline-level elements 2nd 3rd [See also inline-block elements]

 aligning vertically

 borders for 2nd

 converting to block-level elements

 generated content as

 history of formatting of

 line height of

 margins for 2nd

 nonreplaced

 formatting of

 height and width of

 overlapping backgrounds of

 padding for 2nd

 replaced, formatting of

 spreading lines of text apart

 tables as

integers

intelligent font matching method, @font-face rule

internal table elements

 margins not existing for

 positioning

Internet Explorer

 :first-child pseudo-class not supported

 adjacent-sibling selectors not supported

 assigning table-related display values to HTML elements not supported

 attribute selector not supported

 child selectors not supported

 combined pseudo-classes not supported

 content area extended to enclose list item markers

 default font size

 dynamic pseudo-class support

 empty-cells property

 fixed positioning not supported

 fixed-attachment backgrounds on non-body elements

 generated content not supported

 height and width implementation

 min-max properties not supported

 multiple class selectors and

 placement of @import directive and

italic text

 as font style

 used in this book

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JavaScript

 for fixed positioning

 min-max properties support

justified alignment

 spacing and

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

keyword values 2nd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

landscape orientation

language

 attribute selectors

 pseudo-class for 2nd

leading 2nd

left property 2nd 3rd

length units

 absolute length units

 relative length units

letter-spacing property 2nd 3rd

letters, spacing between [See also content; glyphs; text] 2nd 3rd 4th

line boxes 2nd 3rd

 aligning elements with 2nd

 construction of

 height of 2nd

 inline replaced elements and

 page breaks and

line-height property 2nd

 baselines and

 for block-level elements

 for inline replaced elements 2nd

 for inline-level elements 2nd 3rd 4th

 scaling factor for

 setting with font property

line-through text 2nd

linefeeds

 in generated content

 white-space property and

lines of text

 construction of

 height of 2nd 3rd 4th

 spread apart by inline-level elements

link attribute, body element 2nd

link tag

links

 borders visible only when hovered

 displaying as block elements

 displaying horizontally with equal widths

 height and width of

 images in, border style for

 inserting icons at end of

 not visited, pseudo-class for 2nd

 pointing cursor for

 preceding with generated content

 pseudo-classes for

 suppressing underlining of

 visited, pseudo-class for 2nd

list-style property 2nd

list-style-image property 2nd

list-style-position property 2nd 3rd

list-style-type property 2nd

lists

 counters for ordered lists

 formatting of list items

 indentation of list items

 layout of

 markers for list items

 as generated content

 images as 2nd 3rd 4th

 inheritance and 2nd

 position of 2nd 3rd 4th 5th 6th

 types of 2nd 3rd 4th

 types of

lowercase text

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

margin area for page boxes

margin property 2nd

 length values for

 negative values for

 percentage values for

 replicating values in

margin-bottom property 2nd [See also margin property]3rd 4th

 collapsing margins with

 negative values for 2nd

 setting to auto

margin-left property 2nd [See also margin property]3rd 4th

 negative values for 2nd

 percentage values for

 setting to auto

margin-right property 2nd [See also margin property]3rd 4th

 negative values for 2nd

 percentage values for

 setting to auto

margin-top property 2nd [See also margin property]3rd 4th

 collapsing margins with

 negative values for 2nd

 setting to auto

margins 2nd 3rd

 background of

 collapsing 2nd

 for inline-level elements 2nd 3rd

 for page boxes

 increased by clear property

 internal table elements not including

 negative values for 2nd 3rd

 of element boxes 2nd

 of floated elements 2nd

 positioning and

 setting all margins

 setting separately for each side 2nd 3rd 4th 5th

marker-offset property 2nd

markers for list items

 as generated content

 formatting of

 images as 2nd 3rd 4th

 inheritance and 2nd

 position of 2nd 3rd 4th 5th 6th

 types of 2nd 3rd 4th

marks property

max-height property 2nd

max-width property 2nd

media attribute, link tag 2nd

medium-specific style sheets [See also aural styles; print styles; projection styles]

 @import restrictions for

 @media blocks in

 based on specific device, not supported

 specifying

megahertz (mHz)

Menu system color

menu system font 2nd

MenuText system color

message-box system font 2nd

mHz (megahertz) units

Microsoft Internet Explorer [See Internet Explorer]

middle alignment

millimeters (mm) length units

milliseconds (ms) units

min-height property 2nd

min-width property 2nd

mm (millimeters) length units

Mondrian effect

monitor

 media type for

 pixel dimensions of

monospace fonts

movement cursors

ms (milliseconds) units

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

named color values 2nd

Navigator 4

 borders drawn away from padding

 color replacements

 form element colors

 URLs relative to document, not style sheet

Netscape Navigator [See Navigator 4]

newlines

 in generated content

 white-space property and

none keyword

nonreplaced elements 2nd

 absolute positioning of

 floated

 inline

 formatting of

 height and width of

 margins for

 padding for

normal flow

numbers

 as property values

 speaking 2nd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

O'Reilly & Associates, Inc., contact information for

oblique text, as font style

octothorpe [See pound sign]

offset properties 2nd

operating system icons, system font for

order of non-CSS presentational hints

order of style rules 2nd

origin image 2nd

origin of style rules 2nd

orphans property 2nd 3rd

outline property 2nd

outline-color property 2nd [See also outline property]3rd

outline-style property 2nd [See also outline property]3rd

outline-width property 2nd [See also outline property]3rd

outlines 2nd [See also borders]3rd

 color of 2nd 3rd

 obscured by other elements

 overlapping

 style of 2nd 3rd

 width of 2nd 3rd

overflow property 2nd

overlined text 2nd

overriding rules [See cascade rules]

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

padding 2nd 3rd 4th

 background extending to 2nd 3rd

 background of

 for inline replaced elements

 for inline-level elements 2nd

 for replaced elements

 indenting inline-level elements with

 negative indentation and

 of element boxes

 positioning and

 setting for a single side

 setting separately for each side 2nd 3rd 4th

 transparent borders acting as

padding property 2nd

padding-bottom property 2nd 3rd

padding-left property 2nd 3rd 4th

padding-right property 2nd 3rd 4th

padding-top property 2nd 3rd

page area

page boxes 2nd

page breaks 2nd 3rd 4th

page property 2nd

page-break-after property 2nd 3rd 4th

page-break-before property 2nd 3rd 4th

page-break-inside property 2nd 3rd 4th

paged media 2nd [See also print styles; projection styles]

parent elements

partial-value attribute selectors 2nd

particular attribute selectors

pause property 2nd

pause-after property 2nd

pause-before property 2nd

pauses in speech 2nd 3rd 4th

pc (picas) length units

PDAs, media type for

percentage values

period (.) in class selectors

persistent elements, fixed positioning for

persistent style sheets

personal digital assistants, media type for

picas (pc) length units

pitch property 2nd

pitch-range property 2nd

pixels

 absolute lengths and

 as relative length unit

 length of

 monitor dimensions in

play-during property 2nd

plus sign (+) [See also crosshair cursor]

 in adjacent-sibling selectors

 in property syntax

pointing cursor

pointing device [See cursors]

points (pt) length units

portrait orientation

position property 2nd

positioning 2nd 3rd

 absolute 2nd

 clipping content with 2nd

 containing blocks in relation to 2nd

 fixed 2nd

 generated content prohibited from

 height of positioned element

 of background images

 of internal table elements

 of list item markers 2nd 3rd 4th 5th 6th 7th

 offset properties for 2nd 3rd 4th 5th

 outside containing block 2nd

 overflowing content with

 relative 2nd

 static

 visibility of elements and

 width of positioned element

 z-axis placement for 2nd

pound sign (#)

 in hexadecimal color notation

 in ID selectors

preferred style sheets

presentational elements [See also style sheets]

 cascade rules for

 centralization of

 CSS features for

 deprecated in XHTML

 in HTML

print media type

print styles

 crop marks (cross marks) for

 designing

 elements outside the page, handling

 multiple page types for 2nd

 orphans, handling

 page breaks in 2nd 3rd 4th

 page orientation for

 page size for 2nd 3rd

 repeated elements in

 specifying media type for

 widows, handling

printers, teletype, media type for

progress cursor

projection media type

projection styles

 colors for

 design considerations

 positioning elements in

 resolution and

 slide breaks for

 specifying media type for

properties [See also style rules; specific properties] 2nd 3rd

 angles as values of

 colors as values of

 frequencies as value of

 keywords as values of

 length units for values of

 numbers as values of

 percentages as values of

 syntax conventions used in this book

 time as value of

 URLs as values of

 value of 2nd

proportional fonts

pseudo-class selectors

pseudo-classes

 combining in one selector

 dynamic, resulting from user behavior

 for element being activated 2nd 3rd

 for element being hovered 2nd

 for element in focus 2nd

 for first child element 2nd

 for first page in document

 for language 2nd

 for links 2nd 3rd 4th 5th

 order of, in selector

 requiring document to be redrawn

 specificity value of

pseudo-element selectors

pseudo-elements

 for first letter of element 2nd 3rd

 for first line of element 2nd 3rd

 for inserting content before and after elements 2nd 3rd 4th

 placement of

 specificity value of

pt (points) length units

punctuation, speaking 2nd

px (pixels) length units 2nd 3rd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

question mark (?)

 cursor

 in property syntax

quotation marks

 as generated content 2nd

 in font-family declaration

quotes property 2nd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

rad (radians) units

reader as origin 2nd

reader style sheets

reals

register marks (registration marks)

rel attribute, link tag 2nd

relative length units

relative positioning 2nd 3rd

relative URL

replaced elements

 absolute positioning of

 baselines and

 horizontal formatting of

 inline

 formatting of

 margins for

 padding for

resolution [See also pixels]

 absolute units of measurement and

 projection styles and

 relative units of measurement and

RGB colors

richness property 2nd

right property 2nd 3rd

root element 2nd 3rd

row boxes

row groups

 layer for

 specifying

row primacy model

rows

 explicitly declared

 layer for

 specifying

rules [See style rules]

run-in elements 2nd [See also inline-block elements]

running head

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

s (seconds) units

s element

sample style sheet

sans-serif fonts

scaling factor

 for font sizes

 for line height

screen [See monitor pixels]

screen media type

screen readers, media type for [See aural media type]

Scrollbar system color

scrolling

 absolute positioning and

 of background

seconds (s) units

selection cursor

selectors 2nd [See also style rules]

 adjacent-sibling selectors 2nd

 attribute selectors 2nd 3rd 4th 5th 6th

 child selectors 2nd

 class selectors 2nd 3rd

 descendant selectors 2nd

 element selectors 2nd

 grouping 2nd

 ID selectors 2nd

 pseudo-class selectors

 pseudo-element selectors

 specificity of

 universal selector 2nd

semicolon (;) following declarations 2nd

serif fonts

serifs

shadows for text

siblings of elements

simple attribute selectors 2nd

single quotes (')

 in font-family declaration

 in generated content 2nd

size property 2nd 3rd

slash (/)

 between font size and line height

 in property syntax 2nd

slideshows, style sheets for [See projection styles]

small caps text, as font variant 2nd

small-caption system font 2nd

sounds [See aural styles]

spacing [See leading letter-space property white-space property word-space property]

speak property 2nd

speak-header property 2nd

speak-numeral property 2nd

speak-punctuation property 2nd

speaking content [See aural styles]

specificity

 calculating

 cascade rule for 2nd

 of attribute selectors 2nd

 of class selectors

 of combinator

 of element selectors

 of grouped selectors

 of ID selectors 2nd

 of important rules

 of inherited values

 of inline styles

 of multiple rules

 of non-CSS presentational hints

 of pseudo-classes

 of pseudo-elements

 of universal selector 2nd

 resolving ties between [See cascade rules]

speech media type

speech synthesizers, media type for [See aural media type]

speech-rate property 2nd

square brackets ([])

 in attribute selectors

 in property syntax

stacking context, for absolute positioning

static position of element

static positioning 2nd

status bars, system font for

status-bar system font 2nd

stress property 2nd

strike element

strikethru text 2nd

structured documents

style attribute 2nd

style element 2nd

style rules 2nd 3rd [See also properties; selectors]

 aural [See aural styles]

 important rules 2nd 3rd

 inline 2nd

 multiple, specificity of

 order of, in cascade rules 2nd

 origin of 2nd

 paged [See print styles projection styles]

 parts of

 weight of 2nd

style sheets

 alternate style sheets

 comments in

 embedding in document

 example of

 external style sheets 2nd

 filename extension for

 linking to documents 2nd

 linking to multiple documents

 media determining application of

 multiple, linking to document

 persistent style sheets

 preferred style sheets

 reader style sheets

 URLs relative to

styles [See style rules]

styling features of CSS

subscripting

superscripting

syntax conventions used in this book

system colors

system fonts 2nd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

table captions [See captions for tables]

table cells [See cells]

table columns [See columns, table]

table element

 internal table elements

 layer for

table footers [See footers, table]

table headers [See headers, table]

table rows [See rows]

table-layout property 2nd

tables 2nd [See also cells; columns, table; rows]

 anonymous table objects

 arrangement rules for

 automatic layout for 2nd

 block-level

 captions for 2nd 3rd

 fixed-layout model for 2nd

 footers for

 grid cells for

 headers for

 headers for, spoken 2nd

 height of

 hidden borders and

 inline-level

 layers of

 missing components of

 row primacy model for

 specifying elements for

 width of

tags [See elements specific elements and tags]

tbody element

td element

teletype printers, media type for

television, media type for

text [See also fonts]

 aligning horizontally 2nd

 aligning vertically 2nd 3rd

 blinking 2nd

 capitalization of 2nd

 carriage returns in

 case of 2nd

 centering 2nd

 color of 2nd

 content area of

 drop shadows for

 hyphenation of

 indenting 2nd

 inline box for

 justifying

 leading

 letter spacing of 2nd

 line height of

 linefeeds in

 overlining 2nd 3rd

 shadows for

 spacing between words

 strikethru 2nd 3rd

 underlining 2nd 3rd

 whitespace between words and lines

 word spacing of 2nd

 wrapping

text attribute, body element, replacing using color property

text selection cursor

text-align property 2nd

 compared to margin-left and margin-right

 for cell content

 for table captions

 spacing and

text-bottom alignment

text-decoration property 2nd

text-indent property 2nd

text-shadow property 2nd

text-top alignment

text-transform property 2nd

tfoot element

th element

thead element

ThreeDDarkShadow system color

ThreeDFace system color

ThreeDHighlight system color

ThreeDLightShadow system color

ThreeDShadow system color

tilde (~) in attribute selectors

tiling of background images 2nd 3rd 4th 5th

time values

title attribute

 attribute selectors used with

 link tag 2nd

toolbars, displaying links across horizontally

tooltips, attribute selectors used with

top alignment

top property 2nd 3rd

tr element

transparent borders

tty media type

tv media type

type attribute, link tag

type selectors [See element selectors]

typographical conventions used in this book

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

u element

underline keyword

underlined text 2nd

unicode-bidi property

Uniform Resource Identifier [See URI]

Uniform Resource Locator [See URL]

units

 for aural styles

 for length values

universal selector 2nd

 in class selectors 2nd

 in ID selectors

 specificity of 2nd

uppercase text

URI (Uniform Resource Identifier), specifying

URL (Uniform Resource Locator)

 relative to style sheet

 specifying

user agents 2nd [See also browsers]

 as origin of declarations 2nd

 default styles of

 Emacspeak 2nd

 Fonix SpeakThis

 weight of declarations and

user interface

 colors for

 cursors

 fonts for

 outlines

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

value of property 2nd

 angles as

 colors as

 frequencies as

 keywords as

 length units for

 numbers as

 percentages as

 time as

 URLs as

vertical alignment

 of inline nonreplaced elements

 of table cell content

 of text 2nd

vertical bar (|)

 in attribute selector

 in property syntax

vertical double bar (||) in property syntax

vertical formatting, of block-level elements

vertical-align property 2nd 3rd

 for table cell content

 text-decoration and

visibility of elements 2nd

visibility property 2nd

vlink attribute, body element 2nd

voice used for speaking 2nd 3rd 4th

voice-family property 2nd

volume of speech 2nd

volume property 2nd

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

W3C [See World Wide Web Consortium]

waiting cursor

watch cursor

web browsers [See browsers]

web sites

 for this book

 O'Reilly & Associates, Inc.

Web, history of

web-enabled cell phones, media type for

web-safe colors

weight of style rules 2nd

white-space property 2nd

whitespace, handling

widows property 2nd 3rd

width property 2nd 3rd [See also max-width property; min-width property; table-layout property] 4th

 affect of negative margins on

 columns and column groups

 percentage values for

 positioned elements and

 replaced elements and

 setting to auto

wildcard [See universal selector]

Window system color

WindowFrame system color

WindowText system color

word-spacing property 2nd 3rd

words, spacing between 2nd [See also content; text]3rd 4th

World Wide Web [See Web]

World Wide Web Consortium (W3C), HTML elements deprecated by

wrapping text

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

XHTML, deprecated elements in 2nd

XML

 element selectors for

 replacing HTML

 < Day Day Up >

 < Day Day Up >

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

z-axis, absolute positioning on 2nd

z-index property 2nd

 < Day Day Up >

	Cascading Style Sheets, 2nd Edition
	Table of Contents
	Copyright
	Dedication
	Foreword
	Preface
	Conventions Used in This Book
	Property Conventions
	How to Contact Us
	Acknowledgments

	Chapter 1. CSS and Documents
	1.1 The Web's Fall from Grace
	1.2 CSS to the Rescue
	1.3 Elements
	1.4 Bringing CSS and XHTML Together
	1.5 Summary

	Chapter 2. Selectors
	2.1 Basic Rules
	2.2 Grouping
	2.3 Class and ID Selectors
	2.4 Attribute Selectors
	2.5 Using Document Structure
	2.6 Pseudo-Classes and Pseudo-Elements
	2.7 Summary

	Chapter 3. Structure and the Cascade
	3.1 Specificity
	3.2 Inheritance
	3.3 The Cascade
	3.4 Summary

	Chapter 4. Values and Units
	4.1 Numbers
	4.2 Percentages
	4.3 Color
	4.4 Length Units
	4.5 URLs
	4.6 CSS2 Units
	4.7 Summary

	Chapter 5. Fonts
	5.1 Font Families
	5.2 Font Weights
	5.3 Font Size
	5.4 Styles and Variants
	5.5 Stretching and Adjusting Fonts
	5.6 The font Property
	5.7 Font Matching
	5.8 Summary

	Chapter 6. Text Properties
	6.1 Indentation and Horizontal Alignment
	6.2 Vertical Alignment
	6.3 Word Spacing and Letter Spacing
	6.4 Text Transformation
	6.5 Text Decoration
	6.6 Text Shadows
	6.7 Summary

	Chapter 7. Basic Visual Formatting
	7.1 Basic Boxes
	7.2 Block-Level Elements
	7.3 Inline Elements
	7.4 Altering Element Display
	7.5 Summary

	Chapter 8. Padding, Borders, and Margins
	8.1 Basic Element Boxes
	8.2 Margins
	8.3 Borders
	8.4 Padding
	8.5 Summary

	Chapter 9. Colors and Backgrounds
	9.1 Colors
	9.2 Foreground Colors
	9.3 Backgrounds
	9.4 Summary

	Chapter 10. Floating and Positioning
	10.1 Floating
	10.2 Positioning
	10.3 Summary

	Chapter 11. Table Layout
	11.1 Table Formatting
	11.2 Table Cell Borders
	11.3 Table Sizing
	11.4 Summary

	Chapter 12. Lists and Generated Content
	12.1 Lists
	12.2 Generated Content
	12.3 Summary

	Chapter 13. User Interface Styles
	13.1 System Fonts and Colors
	13.2 Cursors
	13.3 Outlines
	13.4 Summary

	Chapter 14. Non-Screen Media
	14.1 Designating Medium-Specific Style Sheets
	14.2 Paged Media
	14.3 Aural Styles
	14.4 Summary

	Appendix A. Property Reference
	A.1 Visual Media
	A.2 Tables
	A.3 Paged Media
	A.4 Dropped from CSS2.1
	A.5 Visual Styles
	A.6 Paged Media
	A.7 Aural Styles

	Appendix B. Selector, Pseudo-Class, andPseudo-Element Reference
	B.1 Selectors
	B.2 Pseudo-Classes and Pseudo-Elements

	Appendix C. Sample HTML 4 Style Sheet
	Colophon
	index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Z

