
ASP.NET Cookbook, 2nd Edition

By Michael A. Kittel, Geoffrey T. LeBlond

...

Publisher: O'Reilly

Pub Date: December 2005

Print ISBN-10: 0-596-10064-7

Print ISBN-13: 978-0-59-610064-3

Pages: 1014

Table of Contents | Index

Completely revised for ASP.NET 2.0, this new edition of the best-selling ASP.NET Cookbook has
everything you need to go from beginning to advanced Windows-based web site development using
Microsoft's popular Visual Studio 2005 and ASP.NET 2.0 developer tools. Written for the impatient
professional, ASP.NET 2.0 Cookbook contains more than 125 recipes for solving common and not-
so-common problems you are likely to encounter when building ASP.NET-based web applications.

The recipes in this book, which run the gamut from simple coding techniques to more
comprehensive development strategies, are presented in the popular Problem-Solution-Discussion
format of the O'Reilly Cookbook series. As with the first edition, every solution is coded in both C#
and Visual Basic 2005.

Among the additions and revisions to this new edition are:

Three new chapters, including 25 new recipes for Master and Content pages, Personalization
using Profiles and Themes, Custom Web Parts, and more

New code for every solution, rewritten to take advantage of features and techniques new to
ASP.NET 2.0 and available for download

The ASP.NET 2.0 Cookbook continues to provide the most comprehensive coverage you'll find
anywhere of:

Tabular controls, including the new GridView control

Data validation, including the new ASP.NET 2.0 validation controls, as well as techniques for
performing your own validation programmatically

User and custom controls

Error handling, performance tuning, and caching

Whether you're new to ASP.NET or an experienced Microsoft developer, with ASP.NET 2.0
Cookbook, deliverance from a long day (or night) at your computer could be just one recipe away.

ASP.NET Cookbook, 2nd Edition

By Michael A. Kittel, Geoffrey T. LeBlond

...

Publisher: O'Reilly

Pub Date: December 2005

Print ISBN-10: 0-596-10064-7

Print ISBN-13: 978-0-59-610064-3

Pages: 1014

Table of Contents | Index

 Copyright

 Preface

 Chapter 1. Master Pages

 1.0 Introduction

 Recipe 1.2. Generating a Quick Master/Content Page Arrangement

 Recipe 1.3. Extending a Master Page's Content to Include Content for Other Application Pages

 Recipe 1.4. Changing Which Master Page Is Used Without Modifying All Affected Application Pages

 Recipe 1.5. Setting the Master Page at Runtime

 Chapter 2. Tabular Data

 Introduction

 Recipe 2.2. Selecting the Right Tabular Control

 Recipe 2.3. Generating a Quick-and-Dirty Tabular Display

 Recipe 2.4. Enhancing the Output of a Tabular Display

 Recipe 2.5. Displaying Data from an XML File

 Recipe 2.6. Displaying an Array as a Group of Checkboxes

 Recipe 2.7. Displaying Data from a Hashtable

 Recipe 2.8. Adding Next/Previous Navigation to a DataGrid

 Recipe 2.9. Adding First/Last Navigation to a DataGrid

 Recipe 2.10. Adding Direct Page Navigation to a DataGrid

 Recipe 2.11. Sorting Data in Ascending/Descending Order Within a DataGrid

 Recipe 2.12. Combining Sorting and Paging in a DataGrid

 Recipe 2.13. Paging Through a Record-Heavy DataGrid

 Recipe 2.14. Editing Data Within a DataGrid

 Recipe 2.15. Navigating and Sorting Within a GridView

 Recipe 2.16. Updating a GridView Without Refreshing the Whole Page

 Recipe 2.17. Editing Data in a GridView

 Recipe 2.18. Inserting a Row Within a GridView

 Recipe 2.19. Formatting Columnar Data in a GridView

 Recipe 2.20. Allowing Selection Anywhere Within a GridView

 Recipe 2.21. Adding a Delete Confirmation Pop-Up

 Recipe 2.22. Displaying a Pop-Up Details Window

 Recipe 2.23. Adding a Totals Row to a GridView

 Chapter 3. Validation

 3.0 Introduction

 Recipe 3.2. Requiring That Data Be Entered in a Field

 Recipe 3.3. Requiring Data to Be in a Range

 Recipe 3.4. Requiring That Two Data Input Fields Match

 Recipe 3.5. Requiring Data to Match a Predefined Pattern

 Recipe 3.6. Requiring That a Drop-Down List Selection Be Made

 Recipe 3.7. Requiring Data to Match a Database Entry

 Recipe 3.8. Using Validation Groups to Support Login and New User Registration Within a Single Form

 Recipe 3.9. Performing Validation Programmatically to Execute Your Own Application-Specific Logic

 Chapter 4. Forms

 4.0 Introduction

 Recipe 4.2. Setting the Default Button to Submit a Form

 Recipe 4.3. Submitting a Form to a Different Page

 Recipe 4.4. Simulating Multipage Forms Problem

 Recipe 4.5. Setting the Initial Focus to a Specific Control Problem

 Recipe 4.6. Setting the Focus to a Control with a Validation Error

 Chapter 5. User Controls

 5.0 Introduction

 Recipe 5.2. Sharing a Page Header on Multiple Pages

 Recipe 5.3. Creating a Customizable Navigation Bar

 Recipe 5.4. Reusing Code-Behind Classes

 Recipe 5.5. Communicating Between User Controls

 Recipe 5.6. Adding User Controls Dynamically

 Chapter 6. Custom Controls

 6.0 Introduction

 Recipe 6.2. Combining HTML Controls in a Single Custom Control

 Recipe 6.3. Creating a Custom Control with Attributes

 Recipe 6.4. Creating a Custom Control with State

 Recipe 6.5. Using the Control State with Custom Controls

 Recipe 6.6. Customizing an ASP.NET TextBox Server Control

 Chapter 7. Maintaining State

 7.0 Introduction

 Recipe 7.2. Maintaining Information Needed by All Users of an Application

 Recipe 7.3. Maintaining Information About a User Throughout a Session

 Recipe 7.4. Preserving Information Between Postbacks

 Recipe 7.5. Preserving Information Across Multiple Requests for a Page

 Chapter 8. Error Handling

 8.0 Introduction

 Recipe 8.2. Handling Errors at the Method Level

 Recipe 8.3. Handling Errors at the Page Level

 Recipe 8.4. Handling Errors at the Application Level

 Recipe 8.5. Displaying User-Friendly Error Messages

 Chapter 9. Security

 9.0 Introduction

 Recipe 9.2. Restricting Access to All Application Pages

 Recipe 9.3. Restricting Access to Selected Application Pages

 Recipe 9.4. Restricting Access to Application Pages by Role

 Recipe 9.5. Using Windows Authentication

 Recipe 9.6. Using Membership and Roles

 Chapter 10. Profiles and Themes

 10.0 Introduction

 Recipe 10.2. Using Profiles

 Recipe 10.3. Inheriting a Profile

 Recipe 10.4. Using and Migrating Anonymous Profiles

 Recipe 10.5. Managing User Profiles

 Recipe 10.6. Using Themes

 Recipe 10.7. User-Personalized Themes

 Chapter 11. Web Parts

 11.0 Introduction

 Recipe 11.2. Using Server Controls and User Controls as Web Parts

 Recipe 11.3. Creating a Reusable Web Parts Catalog

 Recipe 11.4. Creating a Custom Web Part

 Recipe 11.5. Communicating Between Web Parts

 Recipe 11.6. Persisting Personalized Web Part Properties

 Chapter 12. Configuration

 12.0 Introduction

 Recipe 12.2. Overriding Default HTTP Runtime Parameters in web.config

 Recipe 12.3. Adding Custom Application Settings in web.config

 Recipe 12.4. Displaying Custom Error Messages

 Recipe 12.5. Maintaining Session State Across Multiple Web Servers

 Recipe 12.6. Accessing Other web.config Configuration Elements

 Recipe 12.7. Adding Your Own Configuration Elements to web.config

 Recipe 12.8. Encrypting web.config Sections

 Chapter 13. Tracing and Debugging

 13.0 Introduction

 Recipe 13.2. Uncovering Page-Level Problems

 Recipe 13.3. Uncovering Application-Wide Problems

 Recipe 13.4. Pinpointing the Cause of an Exception

 Recipe 13.5. Uncovering Problems Within Web Application Components

 Recipe 13.6. Uncovering Problems Within Dual-Use Components

 Recipe 13.7. Writing Trace Data to the Event Log with Controllable Levels

 Recipe 13.8. Sending Trace Data via Email with Controllable Levels

 Recipe 13.9. Using a Breakpoint to Stop Execution of an Application When a Condition Is Met

 Chapter 14. Web Services

 14.0 Introduction

 Recipe 14.2. Creating a Web Service

 Recipe 14.3. Consuming a Web Service

 Recipe 14.4. Creating a Web Service That Returns a Custom Object

 Recipe 14.5. Setting the URL of a Web Service at Runtime

 Chapter 15. Dynamic Images

 15.0 Introduction

 Recipe 15.2. Drawing Button Images on the Fly

 Recipe 15.3. Creating Bar Charts on the Fly

 Recipe 15.4. Displaying Images Stored in a Database

 Recipe 15.5. Displaying Thumbnail Images

 Chapter 16. Caching

 16.0 Introduction

 Recipe 16.2. Caching Pages

 Recipe 16.3. Caching Pages Based on Query String Parameter Values

 Recipe 16.4. Caching Pages Based on Browser Type and Version

 Recipe 16.5. Caching Pages Based on Developer-Defined Custom Strings

 Recipe 16.6. Caching Pages Based on Database Dependencies

 Recipe 16.7. Caching User Controls

 Recipe 16.8. Caching Application Data

 Recipe 16.9. Caching Application Data Based on Database Dependencies

 Recipe 16.10. Caching Data Sources

 Chapter 17. Internationalization

 17.0 Introduction

 Recipe 17.2. Localizing Request/Response Encoding

 Recipe 17.3. Providing Multiple Language Support

 Recipe 17.4. Using Global Resources and Overriding Currency Formatting

 Chapter 18. File Operations

 18.0 Introduction

 Recipe 18.2. Downloading a File from the Web Server

 Recipe 18.3. Uploading a File to the Web Server

 Recipe 18.4. Processing an Uploaded File Without Storing It on the Filesystem

 Recipe 18.5. Storing the Contents of an Uploaded File in a Database

 Chapter 19. Performance

 19.0 Introduction

 Recipe 19.2. Reducing Page Size by Selectively Disabling the ViewState

 Recipe 19.3. Speeding Up String Concatenation with a StringBuilder

 Recipe 19.4. Speeding Up Read-Only Data Access

 Recipe 19.5. Speeding Up Data Access to a SQL Server Database Using the SQL Provider

 Chapter 20. HTTP Handlers

 20.0 Introduction

 Recipe 20.2. Creating a Reusable Image Handler

 Recipe 20.3. Creating a File Download Handler

 Chapter 21. Assorted Tips

 21.0 Introduction

 Recipe 21.2. Accessing HTTP-Specific Information from Within a Class

 Recipe 21.3. Executing External Applications

 Recipe 21.4. Transforming XML to HTML

 Recipe 21.5. Determining the User's Browser Type

 Recipe 21.6. Dynamically Creating Browser-Specific Stylesheets

 Recipe 21.7. Saving and Reusing HTML Output

 Recipe 21.8. Sending Mail

 Recipe 21.9. Dynamic Menus

 Recipe 21.10. Adding Breadcrumbs

 About the Authors

 Colophon

 Index

Copyright © 2006, 2004 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn

Developmental Editor: David Clark

Production Editor: Matt Hutchinson

Production Services: GEX, Inc.

Cover Designer: Emma Colby

Interior Designer: David Futato

Printing History:

August 2004: First Edition.

December 2005: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Cookbook series designations, ASP.NET 2.0 Cookbook, Second Edition, the
image of a thorny woodcock, and related trade dress are trademarks of O'Reilly Media, Inc.

Microsoft, MSDN, the .NET logo, Visual Basic, Visual C++, Visual Studio, and Windows are registered
trademarks of Microsoft Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-10064-7

[M]

Preface

What This Book Is About

This book is a collection of ASP.NET 2.0 recipes that aims to help you quickly and efficiently solve
many of the day-to-day problems you face when developing web applications with the .NET platform.
Our recipes run the gamut from simple coding techniques to more comprehensive development
strategies that the most experienced ASP.NET programmers will savor. Revised and updated for
ASP.NET 2.0, the ASP.NET 2.0 Cookbook is your ultimate ASP.NET 2.0 code sourcebook.

This book is tailored to ASP.NET 2.0. Thus, the vast majority of the code will not
run in the ASP.NET 1.x environment. If you're working with ASP.NET 1.x,
consider instead O'Reilly's ASP.NET Cookbook (the first edition of this book).

More than a compilation of tips and tricks, the ASP.NET 2.0 Cookbook solves realworld programming
problems and is rooted in our experience as professional programmers who have designed and built
richly functional web-based projects for various corporate clients. We think we know the kinds of
problems that you face, and we aim to help you solve them.

The ASP.NET 2.0 Cookbook contains dozens of code examples, ranging from relatively simple 10-
liners to comprehensive, multipage solutions. Without solid and complete working examples, it's
difficult to make an informed decision about whether an approach is the right one or whether you
should be looking elsewhere. We are convinced that reading good example code is the best path to
understanding any development platform, so we've included lots of it and commented our listings to
help you follow the logic.

The ASP.NET 2.0 Cookbook is written in classic O'Reilly Cookbook style to focus directly on problems
you face today or are likely to face in the future. Using a problem-and-solution format, we make it
easy for you to skim for a near match to your particular problem. We have pared down the headings
to a bare minimum so you can assess if a recipe is pertinent.

Many of us occasionally browse through cookbooks looking for new recipe ideas or exploring the
nuances of a culinary style. Similarly, we hope you find this book sufficiently interesting to browse,
because in many respects, it is as much about software techniques and methodology as it is about
ASP.NET. For example, we offer a full course of error-handling recipes because we believe the topic is
important to our audience and there isn't enough information about it in general circulation. We could
have restricted our discussion to page-level error handling, but that seems inadequate to us. Instead,
we prefer to help you deal with error handling at the application level, a more difficult subject but
ultimately more useful to serious developers. We have done the heavy lifting on this and many other
important subjects so that you don't have to.

Code reuse is central among the techniques that serious developers consider important, and we've

gone to some lengths to illustrate its application in ASP.NET. For example, Chapter 5 includes a recipe
that shows how to reuse a code-behind class with another .aspx file to provide a different user
interface. This is done without any additional coding. As another example, Chapter 4 includes a recipe
that sets the focus to a specific control when a page is first loaded, something that could have been
accomplished by including some JavaScript in the page's HTML. However, we take a different track by
programmatically generating JavaScript client-side code. The reason stems from the type of
development work we do, where we are constantly under the gun to quickly generate high-quality
code, the ultimate in "short-order cooking." Thus, we are constantly looking for ways to reuse code.
By creating a forms library, complete with custom classes that can programmatically generate Java-
Script, we are able to build custom forms with a few calls to the library. It's an approach that has
proven highly successful for us, and we felt it was important to provide you with a glimpse of it. This
is just one of many "reuse-oriented" approaches you'll find in this book.

Who This Book Is For

This book is for journeyman programmers who know the basics of ASP.NET. That said, we're
confident that if you are a novice ASP.NET programmer, you will find a home here provided you have
done some ASP.NET and either VB or C# programming and are willing to invest time in closely
studying our code.

Because this book is not a complete reference for ASP.NET 2.0, it is unlikely to appeal to you if you
have merely dabbled in ASP.NET up to this point. You will be better served by first reading a general
introduction to ASP.NET programming, such as Programming ASP.NET 2.0, by Jesse Liberty and Dan
Hurwitz (O'Reilly), where topics are dosed out in measured spoonfuls. After you have mastered the
basics, you'll be ready to read this book. We encourage you to look to a general reference or to the
MSDN Library when you have routine questions about ASP.NET.

The generous feedback we have received on the first edition of the book tells us that many readers
have found the ASP.NET Cookbook to be a great way to learn ASP.NET. Some have even
recommended that aspiring ASP.NET developers should read it from cover to cover. We are delighted
that some readers have used the book this way, but we anticipate that most will reach for this edition
only when they need to solve a development problem, so we have organized it for this purpose. Still,
we hope you find, as others have, that after months of such use, the book is looking a bit tattered
but your ASP.NET code is looking quite good.

How This Book Is Organized

This book is organized into 21 chapters, each of which focuses on a distinct ASP.NET 2.0 topic area.

Chapter 1, Master Pages

Master pages are designed to help reduce the replication of identical HTML in your application
pages, and the recipes in this chapter show how to make the most of them. The first recipe
shows you how to create a quick master/content page arrangement to familiarize you with the
approach for using master pages. Next, we cover how to extend a master page's content to
include content for other application pages, which is useful when you want your application's

login page to appear in one style and the pages that follow it to appear another. The third
recipe shows you how to change to another master page without having to edit all of the pages
in an application, a common scenario when reuse is important to your application. The last
recipe describes how to set the master page programmatically, which can be important when
you want to change the application's appearance at runtime. Besides showing you some useful
techniques for using master pages, these recipes provide the consistent appearance for all the
recipes in the book.

Chapter 2, Tabular Data

In its simplest form, displaying tabular data is easy in ASP.NET 2.0: drop in an ASP.NET grid
control, connect to the database, and bind it to the control. This is simple enough but it doesn't
take long before you realize that the default appearance and behavior of the control is lacking.
Indeed, you may even find that the control you've chosen is too bulky, slow, or confusing when
it comes to adding to or modifying its behavior. This chapter helps you make a well-informed
decision about which control to use and then provides you with some recipes to solve common
development problems as you adapt the control to your liking. Special emphasis is given to
ASP.NET 2.0's new GridView control, for which we provide several recipes and discussions on
the latest ASP.NET 2.0 techniques.

Chapter 3, Validation

This chapter provides recipes that perform a number of data validation tasks, such as ensuring
that the data a user enters is within a defined range or conform to a specific data type. Other
validation recipes show how to ensure that the data entered by the user matches a specific
pattern or an entry in a database. You'll learn how to ensure that the user selects an entry in a
drop-down list.

Validation groups are new to ASP.NET 2.0, and the last two recipes in the chapter shows you
have to take advantage of them. The first shows the basics, and the second goes into more
depth by showing you how to handle the validation under programmatic control, which is useful
when you want to perform your own nonstandard validation, such as when you want to check a
new user's registration against a database.

Chapter 4, Forms

The solutions in this chapter provide a series of nonobvious solutions for working with forms.
For example, rather than requiring that the user always click a Submit button to send the
information on a form to the server, you'll learn how to support the Enter key as well. Another
recipe shows how to submit a form to a page different from the current page, which is handy
when you want, for example, to have one page that collects form data and a second page that
processes the data. Still another shows how to create what appears from the user's
perspective as a multipage form but which is actually a single page that uses the Wizard control
new to 2.0a useful technique when you want to keep all of your code in one cohesive unit. Next,
you'll learn how to set the focus to a specific control when a page is first loaded, an easy
solution for JavaScript but one that is more complicated (and more useful) when you focus on
code reuse. Finally, you'll learn how to set the focus to the first control on your form that has a
validation error.

Chapter 5, User Controls

User controls are a way of encapsulating other controls and code into reusable packages. This
chapter shows some ways to use these time- and work-savers to share the same header
across multiple pages, display a navigation bar that appears customized on each page by
setting properties, and reuse identical code-behind classes within different pages while
changing the user presentation in the process. Another recipe shows how to communicate
between user controls using event delegates, a handy technique, for example, when you want
an action taken with one control to affect multiple other controls. The final recipe in this
chapter shows how to programmatically load a user control at runtime, which allows you to
customize web page content based on a user's selection.

Chapter 6, Custom Controls

The recipes in this chapter center on custom controls, for which you can build your own user
interface and add your own backend functionality through the methods, properties, and events
that you implement for the controls. For instance, one recipe shows how to combine two or
more controls into a single custom control. Another recipe shows how to create a custom
control that has HTML-style attributes, which can be handy for customizing the control when it
is used in a page. A recipe for creating a custom control maintains state between postbacks,
like the server controls in ASP.NET. Another recipe shows how to customize an ASP.NET
TextBox server control to allow only numeric input.

Chapter 7, Maintaining State

The recipes in this chapter are all about maintaining state at the application, session, and page
levels, all for the purpose of improving the user's experience. For instance, one recipe shows
you how to maintain information needed by all users of an application by placing it in the
Application object. Another shows how to maintain information about a user throughout a
session, the advantage here being that you avoid accessing the database each time the data is
needed. Another recipe shows how to preserve small amounts of information on a page
between postbacks, which is useful when a page has multiple states and it needs to remember
the current state value between postbacks to display properly. Another recipe shows you how
to persist complex object information between requests for a page, a useful technique when
the page is complex and you don't want to use a database to preserve the information.

Chapter 8, Error Handling

This chapter covers error handling at different levels of detail. For example, one recipe shows
how to provide robust error handling in methods by taking the best advantage of .NET
structured exception handling for dealing with errors. A page-level error-handling recipe shows
you how to trap any error that occurs on a page and then, using a page-level event handler,
redirect the user to another page that displays information about the problem. Another recipe
shows how to handle errors at the application level to log the error information and perform a
redirect to a common error page. The final recipe shows how to log detailed messages for
debugging, while displaying friendly messages to the user.

Chapter 9, Security

Security can be handled in different ways and at different levels in ASP.NET, and this chapter
provides recipes that delve into some of the most common solutions. For instance, the first two
recipes show you how to use Forms authentication to restrict access to all or only some pages
of an application. Another recipe shows you how to restrict access to pages by the user's role.
One recipe shows you how to use Windows authentication, which is useful when all users have
accounts on your LAN. The final recipe in the chapter shows you how to use ASP.NET 2.0's
Membership and Role providers to secure your web site without having to write any code.

Chapter 10, Profiles and Themes

ASP.NET 2.0 has a host of new profile features that are this chapter's recipe subjects. The first
recipe shows you how to include user profile data in your application without having to write
any code to persist it. The second recipe shows you how to inherit a profile, which is useful
when you want to use the same profile definition in multiple applications. The next recipe
shows you how to store profile information for users who are not logged in to your application
and how to create a mechanism to remove user profile data periodically that is no longer being
used.

Themes are another important feature that is supported in ASP.NET 2.0. The penultimate
recipe in the chapter shows you how to create an ASP.NET 2.0 theme and how to store a
selected theme in a profile. The last recipe shows you how to manage user-personalized
themes.

Chapter 11, Web Parts

Web parts are the new building blocks of personalization in ASP.NET 2.0, and this chapter will
take you a long way down the learning curve in using them in your applications. We start with
a recipe that shows you how to use ASP.NET server and user controls as web parts, which is
the equivalent of "hello world" for web parts. Creating a reusable web parts catalog is the
subject of the next recipe. Creating such a catalog provides you with the ability to have a user
control that is a list of controls reused on many pages of an application without having to
declare the controls in each page. Creating a custom web part is the subject of the third recipe,
which is useful when you need some functionality for your web parts that you cannot get with
user controls or standard ASP.NET server controls, such as building your web part into a
separate assembly for sharing with other applications. Another recipe shows you how to
communicate between web parts, which is handy, for example, when one web part needs to
act as a filter for another web part. Persisting personalized web part property settings is the
subject of the last recipe in the chapter, which is beneficial when you have created a web part
with custom properties and you want the property data to be persisted along with the other
web part personalization data, so that they are available the next time a user revisits a page.

Chapter 12, Configuration

The recipes in this chapter deal with how to configure your applications. For instance, one
recipe shows you how to change the default HTTP runtime settings in web.config, as a way to
familiarize yourself with this file, its contents, and its purpose. Another recipe shows you how
to add your own custom application settings to web.config (by adding an <appSettings>
element). Still another shows you how to display custom error messages by adding a
<customErrors> element to web.config. Configuring your application to maintain session state
across multiple web servers is the focus of another recipe; this is useful because it shows you

how to share session state across a load-balanced web farm or web garden. Another recipe
shows you how to read configuration data from something other than the <appSettings>
element of web.config (by using the WebConfigurationManager), a useful technique when you
need it but, surprisingly, one that is not covered anywhere in the ASP.NET documentation. The
chapter's final recipe covers how to add your own configuration elements to web.config, which
is valuable when the predefined configuration elements provided by ASP.NET are not enough.

Chapter 13, Tracing and Debugging

The recipes in this chapter will help you ensure that your applications work as anticipated in
their first release, through effective use of testing and debugging. For example, one recipe
shows you how to identify the source of page-level problems, such as a slowly performing
page. Another shows you how to use tracing to identify application-wide problems without
having to modify every page or disrupt output. Still another shows you how to dynamically turn
on page tracing to pinpoint the cause of an exception error. Identifying problems within web
application components is addressed by another recipe. A follow-up recipe shows you how to
identify problems within dual use (non-web-specific) components, which requires a slightly
different approach to avoid breaking the component when it is used outside ASP.NET
applications. The final few recipes deal with writing trace data to the event log with controllable
levels, sending trace data via email with controllable levels, and using a breakpoint to peer into
an application when a condition is met.

Chapter 14, Web Services

XML web services are a marquee feature of .NET, and the recipes in this chapter will help you
create and consume them. You will find a recipe for creating a web service that returns a
custom object, a handy approach when none of the .NET data types meets your needs.
Another recipe shows you how to control the URL of a web service at runtime.

Chapter 15, Dynamic Images

When working with a creative design team, you may run into the situation where a design uses
images for buttons but the button labels need to be dynamic. A recipe in this chapter will show
you how to deal with this situation with aplomb by drawing button images on the fly. Another
recipe shows you how to create bar charts on the fly from dynamic data. Displaying images
stored in a database is the focus of another recipe, which shows you how to read an image
from the database and then stream it to the browser. The final recipe in the chapter shows you
how to display a page of images in thumbnail format.

Chapter 16, Caching

ASP.NET provides the ability to cache the output of pages or portions of pages in memory to
reduce latency and make your applications more responsive. If pages are completely static, it's
a simple decision to cache them. But if the pages change as a function of query string values or
are dynamically created from a database, the decision to cache is not so straightforward. The
recipes in this chapter will help you sort through these issues. An additional recipe delves into
caching pages based on the browser type and version. A follow-up recipe discusses how to
cache pages based on your own custom strings, which gives you, for example, the ability to
cache a page based on the browser type: the major version (integer portion of the version

number) and the minor version (the decimal portion of the version number). You will find a
recipe that shows you how to cache pages based on database dependencies, which is important
when the data on a page is retrieved from a database. Two additional recipes show you how to
cache user controls and application data. The penultimate recipe in the chapter shows you how
to cache application data based on database dependencies, and the last recipe deals with how
to cache data sources.

Chapter 17, Internationalization

The recipes in this chapter show you the basics of how to internationalize your applications. For
instance, the first recipe shows you the necessary web.config settings to inform the browser of
the character set to use when rendering the application's pages. Another recipe shows you how
to support multiple languages in an application without having to develop multiple versions of
pages. The final recipe shows you how to override currency formatting, which can be handy,
for example, when you want all the text displayed in the user's language but currency values
displayed in a specific format, such as U.S. dollars.

Chapter 18, File Operations

The recipes in this chapter focus on how to download files from and upload files to the web
server. One recipe shows you how to process an uploaded file immediately without storing it on
the filesystem, which is handy when you want to avoid the potential pitfalls of uploaded files
having the same name or filling the hard drive, or when dealing with the security aspects of
allowing ASP.NET write privileges on the local filesystem. The final recipe in the chapter shows
you how to store the contents of an uploaded file in a database, which is a useful approach
when you want to upload a file to the web server but process it later.

Chapter 19, Performance

You will find that performance is a running theme throughout the course of this book.
Nevertheless, there are a handful of topics in ASP.NET for which performance warrants
seperate discussion. For instance, as discussed in one recipe, you can often reduce a page's
size (and improve the page's performance) by disabling the ViewState for the page or for a set
of controls on the page. Another recipe deals with the oft-mentioned topic of using a
StringBuilder object instead of the classic string concatenation operators (& or +) to accelerate
string concatenation. The difference in this recipe is that we give you some tangible measures
to help you understand how important this approach is and when you can do without it.
Another recipe illustrates how to get the best performance out of your application when you are
using read-only data access. Another recipe shows you how to use SQL Server Managed
Provider to get the best performance when accessing SQL Server data. Again, we give you
some tangible measures, and the results are amazing.

Chapter 20, HTTP Handlers

An HTTP handler is a class that handles requests for a given resource or resource type. For
instance, ASP.NET has built-in HTTP handlers that process requests for .aspx, .asmx, .ascx,
.cs, .vb, and other file types. This chapter provides recipes for creating your own custom HTTP
handler, which is a useful approach anytime you want to handle an HTTP request for a resource
on your own. For example, one recipe retrieves image data from a database and sends the

image data to a browser. A second recipe shows how to create a file download handler.

Chapter 21, Assorted Tips

This chapter contains a handful of recipes that do not fit conveniently into other chapters of the
book. There are recipes for accessing HTTP-specific information in classes, executing external
applications, transforming XML to HTML, determining the user's browser type, dynamically
creating browser-specific stylesheets, saving and reusing HTML output, and sending mail.

Topics Not Covered

Though the ASP.NET 2.0 Cookbook's coverage is wide-ranging, there are many topics we don't cover.
For instance, we won't teach you the basics of XML. (Many other books do a fine job of it, including
O'Reilly's XML in a Nutshell.) Rather, we use XML in many examples throughout the book and assume
you know the basics. Likewise, we apply a similar standard when discussing the fundamentals of
object-oriented development and other base-level programming topics.

In a similar vein, we avoid interesting topics that are useless in solving day-to-day development
problems. For example, we omitted Passport authentication. Though interesting, the use of Passport
authentication is not widespread. Indeed, we have cast away more ideas than we can name because
they seemed somehow "off target" for our audience.

Many .NET-related topics are interesting from a programmer's point of view but are not pertinent to
ASP.NET 2.0. For instance, working with the .NET process model is a career topic, but a
programmer's ability to control it through ASP.NET 2.0 is limited. As a practical matter, topics of this
kind didn't make the cut.

Finally, because our main focus is ASP.NET 2.0, we do not delve into the details of using Visual Studio
2005. For the most part, we assume you know the basics of Visual Studio and will only mention
something about how to use Visual Studio when we think it is obscure or pertinent.

Sample Source Code

The full source code for the recipes in this book can be found at
http://www.dominiondigital.com/AspNetCookbook2/. Samples are provided in VB.NET and C# along
with working versions of all the recipes that involve code. The web site will give you all the details on
how to download the source code.

Sample Database, Scripts, and Connection Strings

The database used for all samples is a SQL Server 2000 database. It can be found at
http://www.dominiondigital.com/AspNetCookbook2/.

As you browse the different sample programs throughout the book, you will see our preferred
method of data access is OLE DB. From our experience of writing applications for corporate clients,

http://www.dominiondigital.com/AspNetCookbook2/
http://www.dominiondigital.com/AspNetCookbook2/

we have learned that many projects start out using SQL Server but migrate to other database
servers, such as Oracle or DB2, during the life of the project. By using OLE DB for data access, we
gain the necessary layer of abstraction to switch database platforms easily when and if we need to,
without having to change the underlying source code. Nevertheless, when you know that SQL Server
will be your database platform for the long run, you will want to use SQL Provider to improve its
performance, and Recipe 19.4 will show you how.

The connection string used in the samples throughout the book is shown next. It designates the
server as localhost, the database as ASPNetCookbook2, the database user as ASPNetCookbook_User,
and the password for the user as work. You will need to change these parameters to conform to your
database installation.

 Provider=SQLOLEDB;Data Source=localhost;
 Initial Catalog=ASPNetCookbook2;
 UID=ASPNetCookbook_User;
 PWD=w0rk"

Conventions Used in This Book

Throughout this book, we've used the following typographic conventions:

Italic

This character style is used for emphasis as well as for online items and email addresses. It
also indicates the following elements: commands, file extensions, filenames, directory or folder
names, and UNC pathnames.

Constant width

This character style in body text indicates language constructs, such as the names of
keywords, constants, variables, attributes, objects, methods, events, controls, and HTML or
XML tags.

Constant width bold

This character style is used to call your attention to lines of source code that are especially
pertinent in a recipe.

Constant width italic

This character style indicates replaceable variables in examples. When a variable appears in
this style it is a signal to you that the variable needs to be replaced by contents of your own
choosing.

Indicates a VB code snippet.

Indicates a C# code snippet.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book doesn't require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "ASP.NET 2.0 Cookbook, Second Edition, by Michael A. Kittel and
Geoffrey T. LeBlond. Copyright 2006 O'Reilly Media, Inc., 0-596-10064-7."

If you feel your use of code examples falls outside fair use or the permission given here, feel free to
contact us at permissions@oreilly.com.

Comments and Questions

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/aspnetckbk22

http://www.oreilly.com/catalog/aspnetckbk22

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

Acknowledgments

The authors would like to acknowledge our editors at O'Reilly. First, we remain indebted to Ron
Petrusha for giving us the opportunity to write the first edition of this book. We wish to thank John
Osborn in recognition of the fact that this edition bears the mark of his extraordinary work on the
first edition. For this edition, we would especially like to thank David Clark for making our job so
much easier and for his precision and clarity.

We would like to thank our technical editors: Thomas Lewis and Jason Alexander.

We would like to acknowledge the management team at Dominion Digital, Inc., for their ongoing
support and their willingness to host the web site for the book.

Finally, we would like to dedicate this book to our children. Michael to Lisa and Julie. Geoff to Claire
and Beau.

http://www.oreilly.com
http://safari.oreilly.com

Chapter 1. Master Pages

1.0 Introduction

Most applications use a common HTML design for the majority of their pages, and in the past,
developers have conceived many techniques to reduce the replication of the identical HTML in the
application pages. However, none of those techniques met the primary goals of providing the HTML in
one place or made it easy for non-technical personnel to edit the HTML.

ASP.NET 2.0 provides a new approach with master pages that comes close to meeting these primary
goals. Master pages contain all of the common HTML, server controls, and code that would normally
be replicated in some fashion in the application pages. You place one or more content placeholders in
the master to reserve the space for page-specific content. Content pages provide the content specific
to the page and need only reference the desired master page. When a user requests a content page,
ASP.NET merges the output of the master page with the output of the content page, resulting in a
page that combines the master page layout with the output of the content page.

This chapter provides four recipes for master pages. These include a quick master/content recipe to
familiarize you with the technique. Next, we show how to extend a master page's content to include
content for other application pages, which you might want to do, for example, when you want your
login page to have one appearance and the pages that follow it to build on that appearance. The third
recipe describes how to set the master page for pages within a folder structure without having to set
the master page for each content page explicitly. This is handy when you want to use the same
master page for the majority of your content pages but change to another master page as needed
without having to edit all of the pages in the application. The last recipe describes how to set the
master page programmatically, which provides the ability to change how the application appears at
runtime; this approach is useful when you want to change the appearance of the rendered pages
based on the season or client branding of some sort.

In addition to showing you some useful techniques for using master pages, the recipes found in this
chapter serve to provide the consistent appearance for all the recipes in the book. In particular, you
will see that we use Recipe 1.1's ASPNetCookbookVB.master master page in all the recipes in the
book, saving us from having to repeat considerable HTML formatting in all the recipes, something that
we were unable to do in the previous edition of this book, which focused on ASP.NET 1.x.

Recipe 1.2. Generating a Quick Master/Content Page
Arrangement

Problem

You want to generate a master/content page arrangement quickly to explore the approach used for master
pages.

Solution

Create a .master file that contains the common HTML for your pages and then create an .aspx file that
contains the page-specific content.

Create a new master page by following these steps:

Select your web site in the Solution Explorer.1.

Right-click and select Add New Item from the context menu.2.

Select Master Page from the Add New Item dialog.3.

In the .master file of the master page:

Add the HTML that is common for your application pages.1.

Add an asp:ContentPlaceHolder control for each portion of the page that will have page-specific
content.

2.

Set the ID attribute to a unique identifier.3.

In the .aspx file:

Set the MasterPageFile attribute of the @Page directive to the name of the .master file.1.

Add an asp:Content control for each asp:ContentPlaceHolder control in the .master file.2.

Set the ContentPlaceHolderID attribute of the asp:Content to the ID of the corresponding
asp:ContentPlaceHolder in the .master file.

3.

Add the page-specific content to the asp:Content controls.4.

4.

Figure 1-1 shows the output of the master/content page in our example. Example 1-1 shows the .master file,
and Example 1-2 shows the .aspx file of our example.

Figure 1-1. Quick master page example output

Discussion

Implementing a basic master/content page arrangement requires no coding. The .master file consists of an
<%@ Master…%> directive at the top of the page instead of an <%@ Page…%> directive and the common
HTML (and server controls if required). In addition, it contains one or more asp:ContentPlaceHolder controls
that reserve the space for the page-specific content. At a minimum, the ID and Runat attributes must be set,
with the ID attribute being set to a unique identifier.

 <asp:ContentPlaceHolder ID="PageBody" Runat="server" />

Optionally, the asp:ContentPlaceHolder control can contain default content that is displayed if a content
page does not provide any content for the placeholder.

 <asp:ContentPlaceHolder ID="PageBody" Runat="server" >
 <div align="center">

 <h4>Default Content Displayed When No Content Is Provided In
 Content Pages</h4>
 </div>
 </asp:ContentPlaceHolder>

At a minimum, the .aspx file for the content page contains the @ Page directive with the MasterPageFile
attribute set to the name of the master page that will provide the template for the content page and an
asp:Content control that contains the page-specific content.

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 Title="CH01 Quick Master/Content Example" %>
 <asp:Content ID="Content1" ContentPlaceHolderID="PageBody" Runat="Server">
 …
 </asp:Content>

The ContentPlaceHolderID attribute of the asp:Content control must be set to the ID of an
asp:ContentPlaceHolder control in the master page. Setting the ID in this manner identifies which
placeholder the content is placed in. Connecting the asp:Content control to the asp:ContentPlaceHolder
control in this manner provides the ability to have multiple placeholders in a master page.

The .aspx files for pages that are linked to master pages do not contain the HTML,
head, or body elements. In addition, they are not allowed to have any content outside
of the asp:Content controls in the page. Placing any content outside of the
asp:Content control results in a parse error when the page is compiled.

In a master/content page arrangement, the page title element is located in the .master file. To provide the
ability to set the title for content pages, the @ Page directive of the .aspx file has a Title attribute. Setting
the value of the Title attribute in the @ Page directive results in the title of the rendered page being set to
the title specified.

See Also

Recipe 1.2

Example 1-1. Quick master/content page (.master)

<%@ Master Language="VB"
 AutoEventWireup="false" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">
 <title>ASP.NET Cookbook 2nd Edition</title>
 <link rel="Stylesheet" href="css/ASPNetCookbook.css" alt="ASPNETCookbook"/>
</head>
<body>
 <form id="form1" runat="server">
 <div align="center" class="header">

 </div>
 <div>
 <asp:ContentPlaceHolder ID="PageBody" Runat="server" >
<div align="center">

 <h4>Default Content Displayed When No Content Is Provided
 In Content Pages</h4>
 </div>
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

Example 1-2. Quick master/content page (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 Title="CH01 Quick Master/Content Example" %>
<asp:Content ID="Content1" ContentPlaceHolderID="PageBody" Runat="Server">
 <div align="center" class="pageHeading">
 Quick Master and Content Page (VB)
 </div>

 <p align="center">The content for your pages is placed here.</p>
</asp:Content>

Recipe 1.3. Extending a Master Page's Content to Include
Content for Other Application Pages

Problem

You have a master page that provides the basic content for some of your pages but you would like to
extend the master page to include additional content for other pages. You might want to do this, for
example, when you want the login page of your application to appear one way and the pages that
follow it to appear in another way that builds on the appearance of the login page.

Solution

Nest master pages as outlined here. Create the base master page that contains the minimum content
used by content pages and then create the content pages that require the content of the base master
page. Next, create another master page that references the base master page and adds additional
content required for other pages. Now, create content pages that require the content of master
pages and reference the second master page.

In the .master file of the base master page:

Add the HTML that is common for your application pages.1.

Add an asp:ContentPlaceHolder control for each portion of the page that will have page-specific
content.

2.

Set the ID attributes to unique identifiers.3.

In the .aspx file of the pages that will use the base master page:

Set the MasterPageFile attribute of the @ Page directive to the name of the .master file of the
base master page.

1.

Add an asp:Content control for each asp:ContentPlaceHolder control in the .master file of the
base master page.

2.

Set the ContentPlaceHolderID attribute of the asp:Content to the ID of the corresponding
asp:ContentPlaceHolder in the master page.

3.

Add the page-specific content to the asp:Content controls.4.

In the .master file of the second master page:

1.

Set the MasterPageFile attribute of the @ Master directive to the name of the .master file of the
base master page.

1.

Add the additional HTML that is common for the second type of application pages.2.

Add an asp:ContentPlaceHolder control for each portion of the page that will have page-specific
content.

3.

Set the ID attribute to a unique identifier.4.

In the .aspx file of the pages that will use the second master page:

Set the MasterPageFile attribute of the @ Page directive to the name of the second .master file.1.

Add an asp:Content control for each asp:ContentPlaceHolder control in the .master file.2.

Set the ContentPlaceHolderID attribute of the asp:Content to the ID of the corresponding
asp:ContentPlaceHolder in the second master page.

3.

Add the page-specific content to the asp:Content controls.4.

Figure 1-2 shows the output of the page that uses the nested master page in our example. The base
master page and a sample content page that uses the master page are shown in Examples 1-1 and
1-2 in Recipe 1.1. Example 1-3 shows the .master file, and Example 1-4 shows the .aspx file of this
example.

Figure 1-2. Nested master page example output

Discussion

In many web applications, the content of the pages is a function of the location within the application.
A login page, for example, may contain only a header and the required controls for inputting the login
credentials and a button to initiate the login. Pages displayed after login may contain the same
header as the login page plus navigational sections under the header and potentially along the left

side of the pages. You can use master pages to support this structure and define the HTML only once.

In this example, we use the master page defined in Recipe 1.1 as the base master page for nesting. It
contains a header that will be used for all pages.

In the second master page, we have added a menu to the left side of the page and another
asp:ContentPlaceHolder for the page-specific content that will be to the right of the menu. Figure 1-3
shows the hierarchy of the nested master pages in this example.

Figure 1-3. Hierarchy of nested master pages

Content pages that need only a header will reference the base master page (ASPNet-
CookbookVB.master) and provide the content for the PageBody asp:ContentPlace-Holder control.
Content pages that need a header and the left menu will reference the second master page
(CH01NestedMasterPageVB.master) and will provide content for the
ContentBodyasp:ContentPlaceHolder control.

You can edit simple master pages in the Visual Studio 2005 designer, which
provides a WYSIWYG environment. Nested master pages cannot be edited in
the designer, however. They must be edited in Source mode. Attempting to
access the designer for nested master pages or content pages that use a
nested master results in an error with a message indicating the nested master
pages cannot be edited in the designer.

Master pages can be as simple or complex as your application dictates. They can include any number
of content placeholders and can be nested to any level that meets the needs of your application.

See Also

Recipe 1.1

Example 1-3. Nested master page (.master)

<%@ Master Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false" %>
<asp:Content ID="Content1" ContentPlaceHolderID="PageBody" Runat="Server">
 <table class="pageBody">
 <tr>
 <td class="leftMenu">
 <ul class="menuList">
 <li class="menuListItem">Online Examples
 <li class="menuListItem">Buy The Book
 <li class="menuListItem">The Authors
 <li class="menuListItem">Errata
 <li class="menuListItem">Feedback

 </td>
 <td class="contentBody">
 <asp:contentplaceholder id="ContentBody" runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 1-4. Nested master page (.aspx)

<%@ Page Language="VB" MasterPageFile="~/CH01NestedMasterPageVB.master"
 AutoEventWireup="false"
 title="Nested Master Content Page" %>
<asp:Content ID="Content1" ContentPlaceHolderID="ContentBody" Runat="Server" >
 <div align="center" class="pageHeading">
 Nested Master Pages (VB)
 </div>

 The content for individual pages is placed here.
</asp:Content>

Recipe 1.4. Changing Which Master Page Is Used Without
Modifying All Affected Application Pages

Problem

You want to use the same master page for all pages in a section of your application, but you want the ability
to change which master page is used without having to modify all of the affected pages, something you
cannot do with the more traditional master/content page approaches described in the previous recipes in this
chapter.

Solution

Implicitly assign a master page to a content page as follows:

Create a new folder within your application.1.

Create the master page your application will be using.2.

Place all pages that will be using the master page in the folder.3.

Create a web.config file that contains a <pages> element with the masterPageFile attribute set to the
name of the .master file and place it in the folder.

4.

Example 1-5 shows the web.config file used to set the master page implicitly, and Examples 1-6 and 1-7
show the .master and .aspx files for our example.

Discussion

In some applications, it is desirable to use the same master page for a large number of content pages and, at
the same time, to be able to change to another master page without having to edit all of the pages in the
application. ASP.NET 2.0 provides the ability to assign the master page implicitly to content pages by using
the new masterPageFile attribute of the <pages> element in the web.config file. Setting the masterPageFile
attribute to the name of a .master file assigns the master page to all content pages in the folder where the
web.config file is located. This assigns the master page to all content pages in all subfolders unless another
web.config file in a subfolder overrides the setting.

ASP.NET provides a lot of flexibility when using this approach. Any content page can still explicitly set the
MasterPageFile attribute in the @ Page directive, as described in Recipe 1.1, which will override the setting in
the web.config file. This is convenient when you have a small number of pages that need to be handled
differently; however, this can become confusing when the assignment of a master page is changed in the
web.config file and the developer is expecting it to affect all pages.

Implicitly assigning a master page using this approach will not work for nested master
pages. If a nested master page is included without explicitly setting the
MasterPageFile attribute of the @ Master directive, you will get an error indicating that
content controls are only allowed in pages that reference a master page.

In our example, we have created a new folder and placed in it the web.config file shown in Example 1-5 along
with the .master and .aspx files shown in Example 1-6 and Example 1-7 . The primary difference between
this example and the example shown in Recipe 1.1 is the removal of the MasterPageFile attribute from the @
Page directive of the content page and the presence of the web.config file.

Using this approach can cause problems referencing images and stylesheets. This is
particularly an issue if a master page uses images, is located in the root directory, and
is then used in a subfolder. The page is rendered using the path to the subfolder
resulting in the URL for images pointing to the subfolder. If the images exist only in
the root folder, the images referenced by the master page will not be displayed.

See Also

Recipes 1.1 and 1.2

Example 1-5. web.config file for implicitly assigning a master page to a content
page

<?xml version="1.0" ?>
<configuration>
 <system.web>
 <pages masterPageFile="~/CH01AttachMaster/ASPNetCookbookVB.master" />
 </system.web>
</configuration>

Example 1-6. Implicitly assigning a master page to a content page (.master)

<%@ Master Language="VB"
 AutoEventWireup="false" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">
 <title>ASP.NET Cookbook 2nd Edition</title>
 <link rel="Stylesheet" href="../css/ASPNetCookbook.css" />
</head>
<body>
 <form id="form1" runat="server">
 <div align="center" class="header">

 </div>
 <div>
 <asp:ContentPlaceHolder ID="PageBody" Runat="server" >
<div align="center">

 <h4>Default Content Displayed When No Content Is Provided In
 Content Pages</h4>
 </div>
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

Example 1-7. Implicitly assigning a master page to a content page (.aspx)

<%@ Page Language="VB"
 AutoEventWireup="false"
 title="Attaching Master Pages Using Web.Config" %>
<asp:Content ID="Content1" ContentPlaceHolderID="PageBody" Runat="Server">
 <div align="center" class="pageHeading">
 Attaching Master Pages Using Web.Config (VB)
 </div>

 <p align="center">The content for your pages is placed here.</p>
</asp:Content>

Recipe 1.5. Setting the Master Page at Runtime

Problem

You have an application where you need to change the assignment of the master pages used at
runtime.

Solution

Create the desired master/content pages as described in Recipes 1.1 and 1.2. In the Page_ PreInit
event handler of code-behind for the content pages, set the Page.MasterPageFile property to the
name of the desired .master file.

Example 1-8 shows the .aspx file, and Examples 1-9 and 1-10 show the VB and C# code-behind files
for our application.

Discussion

Many applications need the ability to change the appearance of the rendered pages as a function of
many factors such as a different look for the seasons or for client branding. Using master pages and
changing the assigned master page at runtime can meet the requirements of these applications.

With ASP.NET 2.0, the Page class has a new MasterPageFile property that can be set at runtime to
change the master page used to render the content page. The MasterPageFile property must be set
before ASP.NET begins processing the page. The Page_PreInit event occurs immediately before the
page processing occurs and is the last opportunity to change the master page that will be used to
render the page.

Setting the MasterPageFile property at any point in the page processing after
the Page_PreInit event results in an exception being thrown, indicating the
MasterPageFile property cannot be set after the Page_PreInit event.

The Page class has a new read-only Master property that can be used to access the MasterPage
object. Through the MasterPage object, you can access any public properties or methods of the
master page. If you have added public properties or methods to your master pages that you need to
access in your content pages, you will need to cast the MasterPage object to the class type of your
master page as shown below for a pageHeading property.

 CType(Page.Master, ASPNetCookbookVB_master).pageHeading = "Test Heading"

 ((ASPNetCookbookCS_master)Page.Master).pageHeading = "Test Heading";

In our example, we have stored the name of the master page that will be set at runtime in the
web.config as shown below. In your application, you might want to obtain the master page
information from a database or any other data store that your application needs:

 <appSettings>
 <add key="runtimeMasterPage" value="CH01MasterPage1VB.master" />
 </appSettings>

 <appSettings>
 <add key="runtimeMasterPage" value="CH01MasterPage1CS.master" />
 </appSettings>

In the Page_PreInit event handler, we read the master page name from the web.config file and set
the MasterPageFile property:

 Private Sub Page_PreInit(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreInit
 Dim masterPage As String

 'get name of master page from web.config
 masterPage = ConfigurationManager.AppSettings("runtimeMasterPage")

 'set the master page to be used with this page
 Page.MasterPageFile = masterPage
 End Sub 'Page_PreInit

 private void Page_PreInit(Object sender,
 System.EventArgs e)
 {
 String masterPage = null;

 //get name of master page from web.config
 masterPage = ConfigurationSettings.AppSettings["runtimeMasterPage"];

 //set the master page to be used with this page
 Page.MasterPageFile = masterPage;
 } //Page_PreInit

See Also

Recipes 1.1 and 1.2

Example 1-8. Setting the master page at runtime (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH01SetMasterPageAtRuntimeVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH01SetMasterPageAtRuntimeVB"
 title="Set Master Page At Runtime" %>
<asp:Content ContentPlaceHolderID="PageBody" Runat="Server">
 <div align="center" class="pageHeading">
 Set Master Page At Runtime (VB)
 </div>

 <p align="center">The content for your pages is placed here.</p>
</asp:Content>

Example 1-9. Setting the master page at runtime (.vb)

Option Explicit On
Option Strict On
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH01SetMasterPageAtRuntimeVB.aspx
 ''' </summary>
 Partial Class CH01SetMasterPageAtRuntimeVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handle for the page preinit
 ''' event. It is responsible for setting the master page file
 ''' using a setting is the app settings section of web.config
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>

 Private Sub Page_PreInit(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreInit
 Dim masterPage As String

 'get name of master page from web.config
 masterPage = ConfigurationManager.AppSettings("runtimeMasterPage")

 'set the master page to be used with this page
 Page.MasterPageFile = masterPage
 End Sub 'Page_PreInit
 End Class 'CH01SetMasterPageAtRuntimeVB
End Namespace

Example 1-10. Setting the master page at runtime (.cs)

using System;
using System.Configuration;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH01SetMasterPageAtRuntimeCS.aspx
 /// </summary>
 public partial class CH01SetMasterPageAtRuntimeCS : System.Web.UI.Page
 {

 ///***
 /// <summary>
 /// This routine provides the event handle for the page preinit
 /// event. It is responsible for setting the master page file
 /// using a setting is the app settings section of web.config
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 private void Page_PreInit(Object sender,
 System.EventArgs e)
 {
 String masterPage = null;

 //get name of master page from web.config
 masterPage = ConfigurationSettings.AppSettings["runtimeMasterPage"];

 //set the master page to be used with this page
 Page.MasterPageFile = masterPage;
 } //Page_PreInit

 } // CH01SetMasterPageAtRuntimeCS
}

Chapter 2. Tabular Data
Introduction

Recipe 2.2. Selecting the Right Tabular Control

Recipe 2.3. Generating a Quick-and-Dirty Tabular Display

Recipe 2.4. Enhancing the Output of a Tabular Display

Recipe 2.5. Displaying Data from an XML File

Recipe 2.6. Displaying an Array as a Group of Checkboxes

Recipe 2.7. Displaying Data from a Hashtable

Recipe 2.8. Adding Next/Previous Navigation to a DataGrid

Recipe 2.9. Adding First/Last Navigation to a DataGrid

Recipe 2.10. Adding Direct Page Navigation to a DataGrid

Recipe 2.11. Sorting Data in Ascending/Descending Order Within a DataGrid

Recipe 2.12. Combining Sorting and Paging in a DataGrid

Recipe 2.13. Paging Through a Record-Heavy DataGrid

Recipe 2.14. Editing Data Within a DataGrid

Recipe 2.15. Navigating and Sorting Within a GridView

Recipe 2.16. Updating a GridView Without Refreshing the Whole Page

Recipe 2.17. Editing Data in a GridView

Recipe 2.18. Inserting a Row Within a GridView

Recipe 2.19. Formatting Columnar Data in a GridView

Recipe 2.20. Allowing Selection Anywhere Within a GridView

Recipe 2.21. Adding a Delete Confirmation Pop-Up

Recipe 2.22. Displaying a Pop-Up Details Window

Recipe 2.23. Adding a Totals Row to a GridView

Introduction

When it comes to displaying tabular data, ASP.NET can save you a lot of time, provided you play your
cards right. If you want to display data from a database in a table and you're not concerned about
performance or your ability to control the arrangement of the data items within the display, you can
whip up something with the GridView control in minutes using a few lines of code. Alternatively, if
you're more inclined to control the tabular display, you can shape and mold the template-driven
Repeater and DataList controls beyond recognition and still not step far outside a well-trodden path.
But like everything else in ASP.NET, you have to know where to start and what the trade-offs are.
For instance, it's helpful to know how and when the GridView control begins to fall short of the mark.
That knowledge will save you the trouble of having to retrace your steps later to implement another
tabular control altogether, something we've had to do ourselves at an inopportune moment during a
hot project. The recipes in this chapter ought to get you well down the curve with displaying your
tabular data and prevent you having to revisit some of our same mistakes.

For readers of the first edition of the ASP.NET Cookbook, you should know that we have revised this
chapter to incorporate the latest enhancements to ASP.NET 2.0, including, for example, updating all
the code to leverage the latest techniques as well as adding several strategies for taking best
advantage of the new GridView control.

While on the subject of the GridView control, you might also have the impression that the new
GridView control is the all-in-one solution for displaying tabular data. We do not hold with this view;
for one thing, the server processing required to build the applicable output is large and may not
always be the best approach for your application. What's more, the GridView does not afford the
flexibility that its predecessors, particularly the DataGrid, offer in terms of controlling custom paging.
The GridView is a useful new control. But, lest you apply GridView too broadly to your code, it helps
to know its strengths and limitations as we will lay out in the chapter's first recipe.

Recipe 2.2. Selecting the Right Tabular Control

Problem

You want to use an ASP.NET control to display some data in a tabular format.

Solution

Use a Repeater, DataList, DataGrid, or GridView control. Always choose the smallest and fastest
control that meets your needs, which invariably will be influenced by other criteria as in these
examples:

If you need a quick and easy solution

Use a GridView.

If you need a lightweight read-only tabular display

Use a Repeater.

If you need your solution to be small and fast

Use a Repeater (lightest) or DataList (lighter).

If you want to use a template to customize the appearance of the display

Choose a Repeater or DataList.

If you want to select rows or edit the contents of a data table

Choose a DataList, a DataGrid, or a GridView.

If you want built-in support to sort your data by column or paginate its display

Choose a GridView.

If you want to use custom pagination

Choose a DataGrid.

Discussion

ASP.NET provides four excellent options for displaying tabular data: Repeater, DataList, DataGrid,
and GridView. Each comes with trade-offs. For instance, the GridView control is versatile, but you can
pay a price in terms of performance. On the flip side, the Repeater control is lighter weight but is for
read-only display; if you later decide you need to edit your data, you will have to rework your code to
use the DataList, DataGrid, or GridView control instead (unless, of course, you want to embark on
your own custom coding odyssey).

The impact on performance is because ASP.NET creates a control for every element of a DataGrid
and GridView control, even white space, which is built as a Literal control. Each of these controls is
responsible for rendering the appropriate HTML output. The DataGrid and the GridView are,
therefore, the heavyweights of the grid control group because of the server processing required to
build the applicable output. The DataList is lighter and the Repeater lighter still.

Table 2-1 summarizes the built-in features supported by the tabular controls and only includes
controls that support data binding. (A standard Table control is not included because it does not
inherently support data binding though individual controls placed in a table can be data bound.) With
custom code, there are almost no limits to what you can do to modify the behavior of these controls.

Table 2-1. Comparative summary of native tabular control features

Feature
Repeater
control

DataList
control

DataGrid
control

GridView
control

Default appearance
None
(template-
driven)

Table Table Table

Automatically generates columns from
the data source

No No Yes Yes

Header can be customized Yes Yes Yes Yes

Data row can be customized Yes Yes Yes Yes

Supports alternating row customization Yes Yes Yes Yes

Supports customizable row separator Yes Yes No Yes

Footer can be customized Yes Yes Yes Yes

Supports pagination No No Yes Yes

Supports custom paging No No Yes No

Supports sorting No No Yes Yes

Supports editing contents No Yes Yes Yes

Feature
Repeater
control

DataList
control

DataGrid
control

GridView
control

Supports selecting a single row No Yes Yes Yes

Supports selecting multiple rows No No No No

Supports arranging data items
horizontally or vertically (from left-to-
right or top-to-bottom)

No Yes No No

Supports sorting and paging using
asynchronous callbacks (see Recipe
2.15)

No No No Yes

Performance issues aside, you must consider other aspects when choosing a tabular control. As a
rule, the DataGrid and GridView work well for a quick-and-dirty tabular display (see Recipe 2.2) and
for other situations in which you think you'll be reasonably satisfied with its default appearance and
behavior. Indeed, because the DataGrid and GridView are so versatile, this chapter provides many
recipes for modifying and adapting them. However, if you anticipate needing a lot of flexibility in
controlling the organization and layout of the tabular display or you do not need to edit or paginate
the data, you may want to consider using the DataList or Repeater instead. For example, Recipe 2.3
shows how you can use templates to organize and enhance the output of a tabular display. Take a
look at that recipe's output (Figure 2-2) to see what we're driving at. Some upfront planning in this
respect can save you considerable time and effort down the road.

Supports selecting a single row No Yes Yes Yes

Supports selecting multiple rows No No No No

Supports arranging data items
horizontally or vertically (from left-to-
right or top-to-bottom)

No Yes No No

Supports sorting and paging using
asynchronous callbacks (see Recipe
2.15)

No No No Yes

Performance issues aside, you must consider other aspects when choosing a tabular control. As a
rule, the DataGrid and GridView work well for a quick-and-dirty tabular display (see Recipe 2.2) and
for other situations in which you think you'll be reasonably satisfied with its default appearance and
behavior. Indeed, because the DataGrid and GridView are so versatile, this chapter provides many
recipes for modifying and adapting them. However, if you anticipate needing a lot of flexibility in
controlling the organization and layout of the tabular display or you do not need to edit or paginate
the data, you may want to consider using the DataList or Repeater instead. For example, Recipe 2.3
shows how you can use templates to organize and enhance the output of a tabular display. Take a
look at that recipe's output (Figure 2-2) to see what we're driving at. Some upfront planning in this
respect can save you considerable time and effort down the road.

Recipe 2.3. Generating a Quick-and-Dirty Tabular Display

Problem

You want to display data from a database in a table, and you're not overly concerned about
performance or your ability to control the arrangement of the data items within the display.

Solution

Use a GridView control and bind the data to it.

In the .aspx file, add the GridView control responsible for displaying the data.

In the code-behind class for the page, use the .NET language of your choice to:

Create a SqlDataSource.1.

Set the ConnectionString, DataSourceMode, ProviderName, and SelectCommand properties of the
SqlDataSource.

2.

Assign the data source to the GridView control and bind it.3.

Figure 2-1 shows the appearance of a typical GridView in a browser. Examples 2-1 through 2-3 show
the .aspx and VB and C# code-behind files for the application that produces this result.

Figure 2-1. Quick-and-dirty GridView output

Discussion

Implementing a simple GridView requires little coding. You must first add a GridView control to the
.aspx file for your application and set a few of its attributes, as shown in Example 2-1. The GridView
control has many attributes you can use to control the creation of a GridView object, but only three
are required for this example: the id, runat, and AutoGenerateColumns attributes. The id and runat
attributes are required by all server controls. When the AutoGenerateColumns attribute is set to true,
it causes the GridView to create the required columns automatically along with their headings from
the data source.

The code required to read and bind the data to the GridView goes into the code-behind class
associated with the .aspx file as shown in Examples 2-2 (VB) and 2-3 (C#). In our example, this code
is placed in the Page_Load method for convenience of illustration. It creates a SqlDataSource, sets the
properties to define the source of the data and the SELECT command to retrieve the data from the
database, and binds the data source to the GridView control. When the DataBind method of the
GridView method is executed, the data source opens a connection to the database, retrieves the
data, closes the connection to the database, and then binds the data to the GridView.

Setting the AutoGenerateColumns attribute of a DataGrid to true is a simple way to format your data,
but it has two drawbacks. First, using the attribute causes a column to be created for every column
specified in the Select statement, so you should be careful to include only the data you want to see
in the GridView in the statement. In other words, use the SELECT * statement with caution. Second,
the columns you SELECT will be given the same names as the columns in the database. You can get
around this problem by using the AS clause in your SELECT statement to rename the columns when
the data is read into the data reader.

See Also

Recipes 2.14, 2.16, 2.17, and 2.18. For more information on the GridView control and SqlDataSource,
look in the MSDN Library.

Example 2-1. Quick-and-dirty DataGrid (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02QuickAndDirtyGridViewVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02QuickAndDirtyGridViewVB"
 Title=" Quick and Dirty GridView" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Quick and Dirty GridView With Data From Database (VB)
 </div>
 <asp:GridView ID="gvQuick" Runat="Server"
 AutoGenerateColumns="true"
 BorderColor="#000080"
 BorderWidth="2px"
 HorizontalAlign="Center"
 Width="90%" >
 </asp:GridView>
</asp:Content>

Example 2-2. Quick-and-dirty DataGrid code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02QuickAndDirtyGridViewVB.aspx
 ''' </summary>
 Partial Class CH02QuickAndDirtyGridViewVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.

 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dSource As SqlDataSource = Nothing

 If (Not Page.IsPostBack) Then
 'configure the data source to get the data from the database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataReader
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT Title, ISBN, Publisher " & _
 "FROM Book " & _
 "ORDER BY Title"

 'set the source of the data for the gridview control and bind it
 gvQuick.DataSource = dSource
 gvQuick.DataBind()
 End If
 End Sub 'Page_Load
 End Class 'CH02 QuickAndDirtyGridViewVB
End Namespace

Example 2-3. Quick-and-dirty DataGrid code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02QuickAndDirtyGridViewCS.aspx
 /// </summary>
 public partial class CH02QuickAndDirtyGridViewCS : System.Web.UI.Page
{
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>

 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 SqlDataSource dSource = null;

 if (!Page.IsPostBack)
 {
 // configure the data source to get the data from the database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataReader;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, ISBN, Publisher " +
 "FROM Book " +
 "ORDER BY Title";

 // set the source of the data for the gridview control and bind it
 gvQuick.DataSource = dSource;
 gvQuick.DataBind();
 }
 } // Page_Load
 } // CH02QuickAndDirtyGridViewCS
}

Recipe 2.4. Enhancing the Output of a Tabular Display

Problem

You need to display data from a database in a way that lets you organize and enhance the output
beyond the confines of the DataGrid or GridView control's default tabular display. Selecting and
editing the data are unimportant as is navigating through the data.

Solution

Use a Repeater control with templates and then bind the data to the control.

In the .aspx file, add a Repeater control and the associated templates for displaying the data.

In the code-behind class for the page, use the .NET language of your choice to:

Create a SqlDataSource.1.

Set the ConnectionString, DataSourceMode, ProviderName, and SelectCommand properties of the
SqlDataSource.

2.

Assign the data source to the Repeater control and bind it.3.

Figure 2-2 shows the appearance of a typical Repeater in a browser. Examples 2-4, 2-5 through 2-6
show the .aspx and code-behind files for an application that produces this result.

Figure 2-2. Using templates with Repeater control display output

Discussion

When your primary aim is to organize and enhance the output beyond the confines of the DataGrid
and GridView control's default tabular display, the Repeater control is a good choice because, unlike a
DataGrid or GridView, it has associated templates that allow you to use almost any HTML to format
the displayed data. It has the advantage of being relatively lightweight and easy to use. When using
Repeater, however, you should know about a handful of nuances that can make life easier and, in
one instance, enhance performance.

Example 2-4 shows one of the most common approaches to using the Repeater control, which is to
place the asp:Repeater element in a table and use its HeaderTemplate, ItemTemplate, and
AlternatingItemTemplate attributes to format the displayed data as rows in the table.

A HeaderTemplate is used to define the header row of the table. In this example, the header is
straight HTML with a single table row and three columns.

An ItemTemplate formats the even-numbered rows of data, and an AlternatingItemTemplate formats
the odd-numbered rows. For both templates, a single row in the table is defined with the same three
columns defined in the header template. In each of the three columns, data-binding statements
(described later) define the data to be placed in each of the columns. The only differences between
ItemTemplate and AlternatingItemTemplate are the stylesheet classes used to output the rows. If
you do not need to output the data using alternating styles, omit the AlternatingItemTemplate
attribute.

The data from the database is bound to the cells in the templates using the Eval method. The Title
field is placed in the first column, the ISBN field is placed in the second column, and the Publisher
field is placed in the third column:

 Eval("Title")
 Eval("ISBN")
 Eval("Publisher")

 <table width="90%" align="center"
 class="tableWithBorder"
 style="border-collapse:collapse;">

In Version 1.x, the data-bind statements had the following form:

 <%# DataBinder.Eval(Container.DataItem, <expression> %>

In Version 2.0, the syntax has been simplified to the following form:

 <%# Eval(<expression>) %>

If the header is pure HTML with no data binding required, removing the
HeaderTemplate attribute and placing the header HTML before the asp:Repeater
tag will be more efficient. By moving the header outside of the asp:Repeater
tag, the creation of several server-side controls is eliminated, which reduces the
time required to render the page and improves performance.

 <table width="90%" border="2" align="center"
 bordercolor="#000080" bgcolor="#FFFFE0"
 style="border-style:solid;border-collapse:collapse;">

 <thead bgcolor="#000080" class="TableHeader">
 <tr>
 <th align="center">Title</th>
 <th align="center">ISBN</th>
 <th align="center">Publisher</th>
 </tr>
 </thead>

The Page_Load method in the code-behind, shown in Examples 2-5 (VB) and 2-6 (C#), creates a
SqlDataSource, sets the properties to define the source of the data and the select command to
retrieve the data from the database, and binds the data source to the GridView control.

See Also

Recipe 2.6 for another example of using a template with a tabular control

More About the Eval Method

Recipe 2.3 uses the Eval method to bind data from the database to cells in the
templates, as in:

 <%#Eval("Title") %>

The advantage of this approach is its simple syntax. However, because the Eval method
uses late-bound reflection to parse and evaluate a data-binding expression (in this case,
it's a simple string), there's a performance penalty associated with it.

 <%#CType(Container.DataItem,DbDataRecord).Item("Title")%>

 <%# ((DbDataRecord)Container.DataItem)["Title"] %>

For this syntax to work, explicit casting is required. When casting to DbDataRecord, add
the following page-level directive to the beginning of your .aspx file:

 <%@ Import namespace="System.Data.Common" %>

Example 2-4. Templates with Repeater control (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02TemplatesWithRepeaterVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02TemplatesWithRepeaterVB"
 Title="Templates with Repeater" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Templates With Repeater (VB)
 </div>

 <!-- Create a table within the cell to provide localized
 customization for the book list -->
 <table width="90%" align="center"
 class="tableWithBorder"
 style="border-collapse:collapse;">
 <asp:Repeater ID="repBooks" Runat="server">
 <HeaderTemplate>
 <thead class="tableHeader">
 <tr>
 <th align="center">
 Title</th>
 <th align="center">
 ISBN</th>
 <th align="center">
 Publisher</th>
 </tr>
 </thead>
 </HeaderTemplate>
 <ItemTemplate>
 <tr class="tableCellNormal">
 <td>
 <%#Eval("Title")%>
 </td>
 <td align="center">
 <%#Eval("ISBN")%>
 </td>
 <td align="center">
 <%#Eval("Publisher")%>
 </td>
 </tr>
 </ItemTemplate>
 <AlternatingItemTemplate>
 <tr class="tableCellAlternating">
 <td>
 <%#Eval("Title")%>
 </td>
 <td align="center">
 <%# Eval("ISBN") %>
 </td>
 <td align="center">
 <%#Eval("Publisher")%>
 </td>
 </tr>
 </AlternatingItemTemplate>
 </asp:Repeater>
 </table>
</asp:Content>

Example 2-5. Templates with Repeater control code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02TemplatesWithRepeaterVB.aspx
 ''' </summary>
 Partial Class CH02TemplatesWithRepeaterVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dSource As SqlDataSource = Nothing

 If (Not Page.IsPostBack) Then
 'configure the data source to get the data from the database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataReader
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT Title, ISBN, Publisher " & _
 "FROM Book " & _
 "ORDER BY Title"

 'set the source of the data for the repeater control and bind it
 repBooks.DataSource = dSource
 repBooks.DataBind()
 End If
 End Sub 'Page_Load
 End Class 'CH02TemplatesWithRepeaterVB
End Namespace

Example 2-6. Templates with Repeater control code-behind (.cs)

using System;
using System.Configuration;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02TemplatesWithRepeaterCS.aspx
 /// </summary>
 public partial class CH02TemplatesWithRepeaterCS : System.Web.UI.Page
 {

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 SqlDataSource dSource = null;

 if (!Page.IsPostBack)
 {

 //configure the data source to get the data from the database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataReader;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, ISBN, Publisher " +
 "FROM Book " +
 "ORDER BY Title";

 //set the source of the data for the repeater control and bind it
 repBooks.DataSource = dSource;
 repBooks.DataBind();
 }
 } // Page_Load
 } // CH02TemplatesWithRepeaterCS
}

Recipe 2.5. Displaying Data from an XML File

Problem

You want a quick and convenient way to display data from an XML file.

Solution

Use a DataGrid control and the ReadXml method of the DataSet class.

In the .aspx file, add a DataGrid control for displaying the data.

In the code-behind class for the page, use the .NET language of your choice to:

Read the data from the XML file using the ReadXml method of the DataSet class.1.

Bind the DataSet to the DataGrid control.2.

Figure 2-3 shows the appearance of a typical DataGrid in a browser. Example 2-7 shows the XML
used for the recipe. Examples 2-8, 2-9 through 2-10 show the .aspx and code-behind files for an
application that produces this result.

Figure 2-3. DataGrid with XML data output

Discussion

The Page_Load method in the code-behind, shown in Examples 2-9 (VB) and 2-10 (C#), reads the
data from the XML file using the ReadXml method of the DataSet class and then binds the DataSet to
the DataGrid control.

Datasets are designed to support hierarchical data and can contain multiple tables of data. Because
of this support, when data is loaded into the dataset, it is loaded into a Tables collection. In this
example, a single node in the XML is called Book. The DataSet will automatically load the XML data
into a table named Book. When binding the data to the DataGrid, you must reference the desired
table if the DataSet contains more than one table. Reference the table by name instead of by index
because the index value can change if the structure of the data changes.

The DataGrid control is one of the more flexible controls provided with ASP.NET. It outputs a
complete HTML table with the bound data displayed in its cells. When used with a rich data source,
such as a data reader, a DataTable, or a DataSet, the DataGrid can automatically generate columns
for the data, complete with column headers (see Recipe 2.2 for an example using a GridView but in
which you can easily substitute a DataGrid instead). Unfortunately, its default appearance and
automatic behavior rarely meet the needs of a project. In this section, we discuss some ways to
make changing the default appearance and behavior a little easier, especially as it relates to
displaying XML data.

First, provide more flexibility for your graphical design team to achieve the desired appearance by
defining an asp:DataGrid with HeaderStyle, ItemStyle, AlternatingItemStyle, and Columns
elements, as shown in Example 2-8.

In this example, we use the BorderColor and the BorderWidth attributes of the asp:DataGrid element
to define the color and width of the border around the table generated by the DataGrid. The
AutoGenerateColumns attribute is set to False to allow us to define the columns that will be displayed
in the grid. If this attribute is set to true, the DataGrid will automatically generate columns as a
function of the data bound to the grid.

In some cases, it is valid to have the AutoGenerateColumns attribute set to true
and, as described in this recipe, define columns that will be displayed in the
grid. This combined approach can be useful if you want to add another column
to the ones automatically generated. When improperly done, it can result in
duplicate columns.

The HeaderStyle element and its attributes are used to define the appearance of the grid header. The
ItemStyle element and its attributes are used to define the appearance of the even-numbered rows
in the grid. The AlternatingItemStyle element and its attributes are used to define the appearance
of the odd-numbered rows in the grid. If you do not need to output the data using alternating styles,
then omit the AlternatingItemStyle element.

The Columns element is used to define the columns in the grid, their headings, and the data fields
bound to each of the columns. For each column appearing in the grid, an asp:BoundColumn element
must be included. At a minimum, each asp:BoundColumn element must define the HeaderTitle
attribute and the DataField attribute. The HeaderTitle attribute is set to the label for the column.
The DataField attribute is set to the name of the data field in the dataset whose data is to be bound
to the column. In addition, many other attributes can be included to define alignment, fonts,
stylesheet classes, and the like as required to achieve the desired appearance.

See Also

Recipe 2.2

Example 2-7. XML data used for example

<Root>
 <Book>
 <BookID>1</BookID>
 <Title>Access Cookbook</Title>
 <ISBN>0-596-00084-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>2</BookID>
 <Title>ASP.NET Cookbook</Title>
 <ISBN>0-596-00378-1</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>3</BookID>
 <Title>Perl Cookbook</Title>
 <ISBN>1-565-92243-3</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>

 <BookID>4</BookID>
 <Title>Java Cookbook</Title>
 <ISBN>0-596-00170-3</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>5</BookID>
 <Title>JavaScript Application Cookbook</Title>
 <ISBN>1-565-92577-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>6</BookID>
 <Title>VB .Net Language in a Nutshell</Title>
 <ISBN>0-596-00092-8</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>7</BookID>
 <Title>Programming Visual Basic .Net</Title>
 <ISBN>0-596-00093-6</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>8</BookID>
 <Title>Programming C#</Title>
 <ISBN>0-596-00117-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>9</BookID>
 <Title>.Net Framework Essentials</Title>
 <ISBN>0-596-00165-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>10</BookID>
 <Title>COM and .Net Component Services</Title>
 <ISBN>0-596-00103-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
</Root>

Example 2-8. DataGrid with XML data (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02DataGridWithXMLVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02DataGridWithXMLVB"
 Title="Datagrid With XML" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 DataGrid Using Data From XML (VB)
 </div>
 <asp:DataGrid ID="dgBooks" Runat="server"
 BorderColor="#000080" BorderWidth="2px"
 AutoGenerateColumns="False"
 Width="90%" HorizontalAlign="Center" >
 <HeaderStyle HorizontalAlign="Center"
 CssClass="tableHeader" />
 <ItemStyle CssClass="tableCellNormal" />
 <AlternatingItemStyle CssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundColumn HeaderText="Title"
 DataField="Title" />
 <asp:BoundColumn HeaderText="ISBN"
 DataField="ISBN"
 ItemStyle-HorizontalAlign="Center" />
 <asp:BoundColumn HeaderText="Publisher"
 DataField="Publisher"
 ItemStyle-HorizontalAlign="Center" />
 </Columns>
 </asp:DataGrid>
</asp:Content>

Example 2-9. DataGrid with XML data code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02DataGridWithXMLVB.aspx
 ''' </summary>
 Partial Class CH02DataGridWithXMLVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Const BOOK_TABLE As String = "Book"

 Dim dSet As DataSet = Nothing
 Dim xmlFilename As String

 If (Not Page.IsPostBack) Then
 'get fully qualified path to the "books" xml document located
 'in the xml directory
 xmlFilename = Server.MapPath("xml") & "\books.xml"

 'create a dataset and load the books xml document into it
 dSet = New DataSet
 dSet.ReadXml(xmlFilename)

 'bind the dataset to the datagrid
 dgBooks.DataSource = dSet.Tables(BOOK_TABLE)
 dgBooks.DataBind()

 End If
 End Sub 'Page_Load
 End Class 'CH02DataGridWithXMLVB
End Namespace

Example 2-10. DataGrid with XML data code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02DataGridWithXMLCS.aspx
 /// </summary>
 public partial class CH02DataGridWithXMLCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 const String BOOK_TABLE = "Book";

 DataSet dSet = null;
 String xmlFilename;

 if (!Page.IsPostBack)
 {
 // get fully qualified path to the "books" xml document located
 // in the xml directory
 xmlFilename = Server.MapPath("xml") + "\\books.xml";

 // create a dataset and load the books xml document into it
 dSet = new DataSet();
 dSet.ReadXml(xmlFilename);

 // bind the dataset to the datagrid
 dgBooks.DataSource = dSet.Tables[BOOK_TABLE];
 dgBooks.DataBind();

 }
 } // Page_Load
 } // CH02DataGridWithXMLCS
}

Recipe 2.6. Displaying an Array as a Group of
Checkboxes

Problem

You have data in an array that needs to be displayed as a group of checkboxes.

Solution

Use a CheckBoxList control and bind the array to it.

Add a CheckBoxList control to the .aspx file.

In the code-behind class for the page, bind the array to the CheckBoxList control.

Figure 2-4 shows the appearance of a typical CheckBoxList in a browser, with a couple of checkboxes
preselected. Examples 2-11, 2-12 through 2-13 show the .aspx and code-behind files for an
application that produces this result.

Figure 2-4. CheckBoxList with array data output

Discussion

The CheckBoxList control simplifies the job of generating a list of checkboxes. Here's a rundown of
some of the attributes that control the checkbox display. In the example that we developed for this
recipe, we have placed a CheckBoxList control in a Table cell to control its position on the form as

shown in Example 2-11.

The RepeatColumns attribute of the CheckBoxList control is used to set the number of columns in
which the checkboxes are to be displayed.

The RepeatDirection attribute is set to Horizontal, which displays the checkboxes in rows from left
to right and then top to bottom. This attribute can also be set to Vertical to display the checkboxes
in columns from top to bottom and then left to right.

The RepeatLayout attribute is set to Table, which causes the CheckBoxList control to output an HTML
table that contains the checkboxes. Using Table ensures the checkboxes are aligned vertically. This
attribute can be set to Flow, which causes the CheckBoxList control to output a element for
the checkboxes with
 elements, thus placing the checkboxes in rows. In this case, unless all of
your data is the same size, the checkboxes will not be aligned vertically.

The CssClass attribute controls the format of the text displayed with the checkboxes, and the width
attribute sets the width of the generated HTML table.

The styles attribute can be used to format the data in any manner supported
by inline HTML styles. If you're considering using inline styles though,
remember that some older browsers do not fully support them.

If you need a list of radio buttons instead of checkboxes, substitute
RadioButtonList for CheckBoxList in the .aspx file.

The Page_Load method in the code-behind, shown in Examples 2-12 (VB) and 2-13 (C#), builds the
array of data by declaring an ArrayList and adding the text for the checkboxes to the ArrayList. It
then sets the source of the data to the ArrayList and performs a data bind.

The ArrayList class provides a convenient, lightweight container for data that is to be bound to list
controls. An ArrayList is almost identical to the built-in Array type but adds automatic size
management that makes it easier to use.

To preselect a single checkbox, set the SelectedIndex property of the CheckBoxList control to the
index of the item that is to be preselected. If multiple checkboxes need to be preselected, use the
FindByText (or FindByValue) method of the Items collection in the CheckBoxList control to find the
appropriate item(s), and then set the Selected property to true, as shown in Examples 2-12 (VB)
and 2-13 (C#).

See Also

The ArrayList class in the MSDN Library

Example 2-11. CheckBoxList with array data (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02CheckboxListWithArrayVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02CheckboxListWithArrayVB"
 Title="Checkbox List With Array" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 CheckBoxList With Array (VB)
 </div>
 <div style="margin-left:50px">
 <asp:CheckBoxList id="cbBooks" runat="server"
 RepeatColumns="2"
 RepeatDirection="Horizontal"
 RepeatLayout="Table"
 CssClass="MenuItem"
 TextAlign="Right"
 width="100%" />
 </div>
</asp:Content>

Example 2-12. CheckBoxList with array data code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02CheckboxListWithArrayVB.aspx
 ''' </summary>
 Partial Class CH02CheckboxListWithArrayVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load
 Dim values As ArrayList

 If (Not Page.IsPostBack) Then
 'build array of data to bind to checkboxlist
 values = New ArrayList
 values.Add("Access Cookbook")
 values.Add("ASP.NET Cookbook")
 values.Add("Perl Cookbook")
 values.Add("Java Cookbook")
 values.Add("VB .Net Language in a Nutshell")
 values.Add("Programming Visual Basic .Net")
 values.Add("Programming C#")
 values.Add(".Net Framework Essentials")
 values.Add("COM and .Net Component Services")

 'bind the data to the checkboxlist
 cbBooks.DataSource = values
 cbBooks.DataBind()

 'preselect several books
 cbBooks.Items.FindByText("ASP.NET Cookbook").Selected = True
 cbBooks.Items.FindByText("Programming C#").Selected = True
 End If
 End Sub 'Page_Load
 End Class 'CH02CheckboxListWithArrayVB
End Namespace

Example 2-13. CheckBoxList with array data code-behind (.cs)

using System;
using System.Collections;
using System.Configuration;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02CheckboxListWithArrayCS.aspx
 /// </summary>
 public partial class CH02CheckboxListWithArrayCS : System.Web.UI.Page
 {
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>

 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 ArrayList values;

 if (!Page.IsPostBack)
 {

 // build array of data to bind to checkboxlist
 values = new ArrayList();
 values.Add("Access Cookbook");
 values.Add("ASP.NET Cookbook");
 values.Add("Perl Cookbook");
 values.Add("Java Cookbook");
 values.Add("VB .Net Language in a Nutshell");
 values.Add("Programming Visual Basic .Net");
 values.Add("Programming C#");
 values.Add(".Net Framework Essentials");
 values.Add("COM and .Net Component Services");

 // bind the data to the checkboxlist
 cbBooks.DataSource = values;
 cbBooks.DataBind();
 // preselect several books
 cbBooks.Items.FindByText("ASP.NET Cookbook").Selected = true;
 cbBooks.Items.FindByText("Programming C#").Selected = true;
 }
 } // Page_Load
 } // CH02CheckboxListWithArrayCS
}

Recipe 2.7. Displaying Data from a Hashtable

Problem

You have data in a Hashtable , a class that provides the ability to store a collection of key/value
pairs, and you want to display the data in a columnar table.

Solution

Use a DataList control and bind the Hashtable to it.

Add a DataList control to the .aspx file, being careful to place it in a Table cell to control its position
on the form.

In the code-behind class for the page, use the .NET language of your choice to:

Define the Hashtable as the data source for the DataList control.1.

Set the control's key and value.2.

Bind the Hashtable to the DataList control.3.

Figure 2-5 shows the appearance of a typical DataList within a browser that has been bound to a
Hashtable filled with, in our case, book data. Examples 2-14 , 2-15 through 2-16 show the .aspx and
code-behind files for an application that produces this result.

Discussion

The DataList control can display almost any data type in various ways using its available templates
and styles. Templates are available for the header, footer, items, alternating items, separators,
selected items, and edit items to define and organize the data to output. Styles are available for each
of the templates to define how the content appears.

In this example, an asp:DataList control is placed in a Table cell to control its position on the form, as
shown in Example 2-14 . The RepeatColumns attribute of the control defines the number of columns
that should be output, which in this case is 4.

Figure 2-5. DataList with Hashtable data output

The RepeatDirection attribute indicates that the data should be output horizontally, which displays
the data in rows from left to right and then top to bottom. The RepeatLayout attribute indicates the
data should be output in an HTML table, which provides the greatest flexibility in arranging the data
items.

The HeaderTemplate element defines a simple line of text to be used as a header for the data list. The
HeaderTemplate can contain any HTML and ASP.NET controls.

The HeaderStyle element defines the positioning of the header as well as the stylesheet class used to
define the text formatting. A large number of style attributes are available to format the header data.

The ItemTemplate element defines an HTML table that contains an image and text describing the
image. A table controls the positioning of the data items.

The ItemStyle element defines the positioning of the items output using the ItemTemplate . In this
example, only horizontal and vertical positioning are defined, but many styles are available.

The Page_Load method of the code-behind, shown in Examples 2-15 (VB) and 2-16 (C#), uses a
Hashtable as the container for the data to bind to the DataList . A Hashtable provides the ability to
store a collection of key/value pairs. This is the equivalent of a two-column table, which provides a
lightweight container for data when only two items are required per row, such as in this example.

This example builds the Hashtable of data by declaring a Hashtable object and adding the key/value
pairs to the Hashtable . It then sets the source of the data to the Hashtable object, defines the key
field (the key in the Hashtable) and the data member (the value in the Hashtable), and performs a
data bind.

See Also

The DataList class and the HashTable class in the MSDN Library

Example 2-14. DataList with Hashtable data (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02DataListWithHashtableVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02DataListWithHashtableVB"
 Title="DataList With Hashtable" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 DataList With Data From Hashtable (VB)
 </div>
 <asp:DataList id="dlBooks" runat="server"
 RepeatColumns="4"
 RepeatDirection="Horizontal"
 RepeatLayout="Table"
 Caption="Several Books Available From O'Reilly & Associates, Inc.">
 <HeaderStyle HorizontalAlign="Center"
 CssClass="BlackPageHeading" />
 <ItemStyle HorizontalAlign="Center" VerticalAlign="Top" />
 <ItemTemplate>
 <table align="center">
 <tr>
 <td align="center">
 <img src="<%#Eval("Value")%>"
 height="145" >
 alt="BookImage"/>
 </td>
 </tr>
 <tr>
 <td align="center">
 <%#Eval("Key")%>
 </td>
 </tr>
 </table>
 </ItemTemplate>
 </asp:DataList>
</asp:Content>

Example 2-15. DataList with Hashtable data code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02DataListWithHashtableVB.aspx
 ''' </summary>
 Partial Class CH02DataListWithHashtableVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim values As Hashtable

 If (Not Page.IsPostBack) Then
 'build HashTable with the names of the books as the key and the
 'relative path to the cover image as the value
 values = New Hashtable
 values.Add(".Net Framework Essentials", _
 "images/books/DotNetFrameworkEssentials.gif")
 values.Add("Access Cookbook", _
 "images/books/AccessCookbook.gif")
 values.Add("ASP.NET Cookbook", _
 "images/books/ASPNetCookbook.gif")
 values.Add("Java Cookbook", _
 "images/books/JavaCookbook.gif")
 values.Add("JavaScript Application Cookbook", _
 "images/books/JavaScriptCookbook.gif")
 values.Add("Programming C#", _
 "images/books/ProgrammingCSharp.gif")
 values.Add("Programming Visual Basic .Net", _
 "images/books/ProgrammingVBDotNet.gif")
 values.Add("VB .Net Language in a Nutshell", _
 "images/books/VBDotNetInANutshell.gif")

 'define the data source, key, value, and bind to the Hashtable
 dlBooks.DataSource = values
 dlBooks.DataKeyField = "Key"
 dlBooks.DataMember = "Value"
 dlBooks.DataBind()
 End If
 End Sub 'Page_Load
 End Class 'CH02DataListWithHashtableVB
End Namespace

Example 2-16. DataList with Hashtable data code-behind (.cs)

using System;
using System.Collections;
using System.Configuration;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02DataListWithHashtableCS.aspx
 /// </summary>
 public partial class CH02DataListWithHashtableCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 Hashtable values;

 if (!Page.IsPostBack)
 {
 // build HashTable with the names of the books as the key and the
 // relative path to the cover image as the value
 values = new Hashtable();
 values.Add(".Net Framework Essentials",
 "images/books/DotNetFrameworkEssentials.gif");
 values.Add("Access Cookbook",
 "images/books/AccessCookbook.gif");
 values.Add("ASP.NET Cookbook",
 "images/books/ASPNetCookbook.gif");
 values.Add("Java Cookbook",

 "images/books/JavaCookbook.gif");
 values.Add("JavaScript Application Cookbook",
 "images/books/JavaScriptCookbook.gif");
 values.Add("Programming C#",
 "images/books/ProgrammingCSharp.gif");
 values.Add("Programming Visual Basic .Net",
 "images/books/ProgrammingVBDotNet.gif");
 values.Add("VB .Net Language in a Nutshell",
 "images/books/VBDotNetInANutshell.gif");

 // define the data source, key, value, and bind to the Hashtable
 dlBooks.DataSource = values;
 dlBooks.DataKeyField = "Key";
 dlBooks.DataMember = "Value";
 dlBooks.DataBind();
 }
 } // Page_Load
 } // CH02DataListWithHashtableCS
}

Recipe 2.8. Adding Next/Previous Navigation to a
DataGrid

Problem

You need to display data from a database in a table; the database has more rows than can fit on a
single page, so you want to use next/previous buttons for navigation.

Solution

Use a DataGrid control, enable its built-in pagination features, and then bind the data to it.

Add a DataGrid control to the .aspx file, and use its AllowPaging and other related attributes to
enable pagination.

In the code-behind class for the page, use the .NET language of your choice to:

Create a routine that binds a DataSet to the DataGrid in the usual fashion.1.

Create an event handler that performs the page navigation, for example, one that handles the
PageIndexChanged event for the DataGrid and rebinds the data.

2.

Figure 2-6 shows the appearance of a typical DataGrid within a browser with next/previous
navigation. Examples 2-17, 2-18 through 2-19 show the .aspx and code-behind files for an
application that produces this result.

Figure 2-6. DataGrid with next/previous navigation output

Discussion

The DataGrid control includes the ability to perform pagination of the data that is displayed in the
grid; using the built-in pagination requires little code. Pagination is enabled and configured by the
attributes of the DataGrid element:

 AllowPaging="True"
 PageSize="5"
 PagerStyle-Mode="NextPrev"
 PagerStyle-Position="Bottom"
 PagerStyle-HorizontalAlign="Center"
 PagerStyle-NextPageText="Next"
 PagerStyle-PrevPageText="Prev"

Setting the AllowPaging attribute to TRue enables paging for the DataGrid, and the PageSize attribute
defines the number of rows that will be displayed in a single page. Setting the PageStyle-Mode
attribute to NextPrev enables the output of the Next/Prev controls (see Recipe 2.9 for other uses of
this attribute).

The remaining attributes define how the pagination controls look. PagerStyle-Position defines the
location of the Next/Prev controls. Valid values include Bottom, Top, and TopAndBottom. PagerStyle-
HorizontalAlign defines the horizontal positioning of the Next/Prev controls. Valid values include
Left, Center, Right, and NotSet. NotSet is effectively the same as Left because Left is the default.

PagerStyle-NextPageText defines the text to output for the next page navigation control, and
PagerStyle-PrevPageText defines the text to output for the previous page navigation.

The PagerStyle-NextPageText and PagerStyle-PrevPageText attribute values
can include HTML to format the text of the controls. Almost any HTML can be
used, including image tags. If you change the values of the two text attributes,
the Next/Prev controls will be output as shown in Figure 2-7.

 PagerStyle-NextPageText=
 ""
 PagerStyle-PrevPageText=
 "">

Figure 2-7. DataGrid output using image tags for next/previous controls

The bindData routine, shown in the code-behind in Examples 2-18 (VB) and 2-19 (C#), performs the
data binding. This routine provides the typical binding of a dataset to the DataGrid. No additional
code is required in this routine to support the default pagination.

The SqlDataSource and ObjectDataSource data source controls provided in
ASP.NET 2.0 cannot be used with a DataGrid when paging is implemented. The
DataGrid requires its data source to implement ICollection to support paging.
The ICollection interface is not implemented by the new data source controls.
Using a data source control with a DataGrid when pagination is implemented
will result in an exception such as the following being thrown:

AllowCustomPaging must be TRue and VirtualItemCount must be set for a
DataGrid with ID "dgBooks" when AllowPaging is set to true and the
selected data source does not implement ICollection.

The dgBooks_PageIndexChanged event handler provides the code required to perform the page

navigation. The new page number to display is passed in the event arguments (e). The
CurrentPageIndex property of the DataGrid must be set to the passed value, and the data must be
rebound to the DataGrid.

The default pagination code shown in this recipe can be inefficient when used
with data containing a large number of rows. By default, all of the data for a
query is returned and used to populate the DataSet. When the query returns a
small set of data (fewer than 100 rows and a small number of columns), the
pagination shown in this recipe is adequate for most applications. If your query
returns a million rows, the performance of your application will be unacceptable.
See Recipe 2.12 for a more efficient approach to the pagination of large
datasets.

Event Handlers

The method used to connect event handlers to events in Version 1.x of ASP.NET was
implemented in different ways for VB and C#. VB required two additions to your code to
handle an event. First, the control that had events to handle needed to be declared in the
code-behind class using the WithEvents keyword as shown here:

 Protected WithEvents dgBooks As DataGrid

Second, the method used to handle an event needed to have the Handles keyword added
to the end of the method and include the control and event to be handled. This informed
the compiler to add the code required to "wire" the event to the method.

 Private Sub dgBooks_PageIndexChanged(ByVal source As Object,
 ByVal e As DataGridPageChangedEventArgs)
 Handles dgBooks.PageIndexChanged

In C#, events were connected to methods by explicitly creating a new event handler of
the required type and "wiring" it to the desired control's event:

 this.dgBooks.PageIndexChanged +=
 new DataGridPageChangedEventHandler (this.dgBooks_PageIndexChanged);

Version 2.0 of ASP.NET has implemented a simpler and more consistent method of
connecting event handlers to events. Server controls now have new attributes to define

the server-side event handlers to be called when a specific event occurs. For example,
the DataGrid has an OnPageIndexChanged attribute used in this recipe to connect the
OnPageIndexChanged event to the dgBooks_PageIndexChanged event handler in the code-
behind class:

 <asp:DataGrid
 id="dgBooks"
 runat="server"

 …

 OnPageIndexChanged="dgBooks_PageIndexChanged" >

 …

 </asp:DataGrid>

To provide backward compatibility, the approach used in Version 1.x can be used in
Version 2.0.

See Also

Recipes 2.8, 2.9, and 2.12 for other examples of pagination

Example 2-17. DataGrid with next/previous navigation (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02DatagridWithNextPrevNavVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02DatagridWithNextPrevNavVB1"
 Title="Datagrid With Text For Next/Prev Navigation" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 DataGrid Using Text For Next/Previous Navigation (VB)
 </div>
 <asp:DataGrid
 id="dgBooks"
 runat="server"
 BorderColor="000080"
 BorderWidth="2px"
 AutoGenerateColumns="False"
 HorizontalAlign="Center"
 Width="90%"
 AllowPaging="True"

 PageSize="5"
 PagerStyle-Mode="NextPrev"
 PagerStyle-Position="Bottom"
 PagerStyle-HorizontalAlign="Center"
 PagerStyle-NextPageText="Next"
 PagerStyle-PrevPageText="Prev"
 OnPageIndexChanged="dgBooks_PageIndexChanged" >
 <HeaderStyle HorizontalAlign="Center"
 CssClass="tableHeader" />
 <ItemStyle cssClass="tableCellNormal" />
 <AlternatingItemStyle cssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundColumn HeaderText="Title" DataField="Title" />
 <asp:BoundColumn HeaderText="ISBN" DataField="ISBN"
 ItemStyle-HorizontalAlign="Center" />
 <asp:BoundColumn HeaderText="Publisher" DataField="Publisher"
 ItemStyle-HorizontalAlign="Center" />
 </Columns>
 </asp:DataGrid>
</asp:Content>

Example 2-18. DataGrid with next/previous navigation code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02DatagridWithNextPrevNavVB1.aspx
 ''' </summary>
 Partial Class CH02DatagridWithNextPrevNavVB1
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 If (Not Page.IsPostBack) Then
 bindData()
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page index changed
 ''' event of the datagrid. It is responsible for setting the page index
 ''' from the passed arguments and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="source">Set to the source of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub dgBooks_PageIndexChanged(ByVal source As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs)
 'set new page index and rebind the data
 dgBooks.CurrentPageIndex = e.NewPageIndex
 bindData()
 End Sub 'dgBooks_PageIndexChanged

 '''***
 ''' <summary>
 ''' This routine queries the database for the data to displayed and binds
 ''' it to the datagrid
 ''' </summary>
 Private Sub bindData()
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dSet As DataSet = Nothing
 Dim strConnection As String
 Dim strSQL As String
 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 strSQL = "SELECT Title, ISBN, Publisher " & _
 "FROM Book " & _
 "ORDER BY Title"
 da = New OleDbDataAdapter(strSQL, dbConn)
 dSet = New DataSet
 da.Fill(dSet)

 'set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dSet
 dgBooks.DataBind()

 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'bindData
 End Class 'CH02DatagridWithNextPrevNavVB1
End Namespace

Example 2-19. DataGrid with next/previous navigation code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02DatagridWithNextPrevNavCS1.aspx
 /// </summary>
 public partial class CH02DatagridWithNextPrevNavCS1 : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 bindData();
 }
 } // Page_Load
 ///***
 /// <summary>
 /// This routine provides the event handler for the page index changed
 /// event of the datagrid. It is responsible for setting the page index
 /// from the passed arguments and rebinding the data.
 /// </summary>
 ///
 /// <param name="source">Set to the source of the event</param>

 /// <param name="e">Set to the event arguments</param>
 protected void dgBooks_PageIndexChanged(Object source,
 System.Web.UI.WebControls.DataGridPageChangedEventArgs e)
 {
 // set new page index and rebind the data
 dgBooks.CurrentPageIndex = e.NewPageIndex;
 bindData();
 } // dgBooks_PageIndexChanged

 ///***
 /// <summary>
 /// This routine queries the database for the data to displayed and binds
 /// it to the datagrid
 /// </summary>
 private void bindData()
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataSet dSet = null;
 String strConnection;
 String strSQL;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 strSQL = "SELECT Title, ISBN, Publisher " +
 "FROM Book " +
 "ORDER BY Title";
 da = new OleDbDataAdapter(strSQL, dbConn);
 dSet = new DataSet();
 da.Fill(dSet);

 // set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dSet;
 dgBooks.DataBind();
 }

 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 }

 } // bindData
 } // CH02DatagridWithNextPrevNavCS1
 }

Recipe 2.9. Adding First/Last Navigation to a DataGrid

Problem

You need to display data from a database in a table, but the database has more rows than will fit on
a single page, and you want to use first/last buttons along with next/previous buttons for navigation.

Solution

Use a DataGrid control, add first/last and next/previous buttons (with event handlers for each one),
and then bind the data to it.

In the .aspx file:

Add a DataGrid control to the .aspx file.1.

Add a row below the DataGrid with first/last and next/previous buttons for navigation.2.

In the code-behind class for the page, use the .NET language of your choice to:

Create a routine that binds a dataset to the DataGrid in the usual fashion.1.

For each of the four buttons, create an event handler to handle the button's click event, perform
the requisite page navigation, and rebind the data.

2.

Figure 2-8 shows the appearance of a typical DataGrid within a browser with first/last and
next/previous buttons for navigation. Examples 2-20, 2-21 through 2-22 show the .aspx and code-
behind files for an application that produces this result.

Figure 2-8. DataGrid with first/last and next/previous navigation output

Discussion

The main theme of this recipe is to provide an alternative to the DataGrid control's default pagination
controls and, at the same time, handle the custom paging. Setting the PagerStyle-Visible attribute
to False makes the pager invisible in a DataGrid control, allowing you to implement your own user
interface for the pagination controls. (The pager is the element on the DataGrid control that allows
you to link to other pages when paging is enabled.) When the pager is invisible, some appearance-
related attributes for the pager are not required and can be eliminated, specifically PagerStyle-
Position, PagerStyle-HorizontalAlign, PagerStyle-NextPageText, and PagerStyle-PrevPageText.
Adding a row below the DataGrid to hold the four navigation buttons (Next, Prev, First, and Last) is a
key ingredient.

In the application we have developed for this recipe, we added four event handler routines to the
code-behind to handle the click events for the four buttons, a handy strategy for your application as
well. The event handlers alter the current page index for the grid (CurrentPageIndex), as appropriate,
and rebind the data.

To improve performance, the event handlers check to see if the page needs
changing and rebinding prior to changing the current page index value. For
example, the btnPrev_ServerClick handler checks to see if CurrentPageIndex is
greater than zero before subtracting one from it.

To improve performance still further, you could add the following code to the
end of the bindData method to disable the appropriate buttons when no action
would be taken on the server callfor example, disabling the First and Prev
buttons when the first page is displayed. This would avoid an unnecessary trip
to the server.

 Dim pageIndex as Integer = dgBooks.CurrentPageIndex
 If (pageIndex = 0) Then
 btnFirst.Disabled = True
 Else
 btnFirst.Disabled = False
 End If

 If (pageIndex = dgBooks.PageCount - 1) then
 btnLast.Disabled = True
 Else
 btnLast.Disabled = False
 End If

See Also

Recipe 2.7 and the sidebar "Event Handlers" in Recipe 2.7

Example 2-20. DataGrid with first/last and next/previous navigation
(.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02DatagridWithFirstLastNavVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02DatagridWithFirstLastNavVB"
 Title="Datagrid With First/Last and Next/Prev Navigation" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 DataGrid With First/Last and Next/Previous Navigation (VB)
 </div>
 <asp:DataGrid ID="dgBooks" Runat="server"
 BorderColor="#000080"
 BorderWidth="2px"
 AutoGenerateColumns="False"
 Width="90%"
 HorizontalAlign="Center"
 AllowPaging="True"
 PageSize="5"
 PagerStyle-Visible="False">
 <HeaderStyle HorizontalAlign="Center"
 CssClass="tableHeader" />
 <ItemStyle CssClass="tableCellNormal" />
 <AlternatingItemStyle CssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundColumn HeaderText="Title"
 DataField="Title" />
 <asp:BoundColumn HeaderText="ISBN"
 DataField="ISBN"
 ItemStyle-HorizontalAlign="Center" />
 <asp:BoundColumn HeaderText="Publisher"
 DataField="Publisher"
 ItemStyle-HorizontalAlign="Center" />

 </Columns>
 </asp:DataGrid>

 <table width="40%" border="0" align="center">
 <tr>
 <td align="center">
 <input id="btnFirst" runat="server" type="button"
 value="First"
 onserverclick="btnFirst_ServerClick">
 </td>
 <td align="center">
 <input id="btnPrev" runat="server" type="button"
 value="Prev"
 onserverclick="btnPrev_ServerClick">
 </td>
 <td align="center">
 <input id="btnNext" runat="server" type="button"
 value="Next"
 onserverclick="btnNext_ServerClick">
 </td>
 <td align="center">
 <input id="Last" runat="server" type="button"
 value="Last"
 onserverclick="btnLast_ServerClick">
 </td>
 </tr>
 </table>
</asp:Content>

Example 2-21. DataGrid with first/last and next/previous navigation
code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02DatagridWithFirstLastNavVB.aspx
 ''' </summary>
 Partial Class CH02DatagridWithFirstLastNavVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Not Page.IsPostBack) Then
 bindData()
 End If
 End Sub 'Page_Load
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the first button click
 ''' event. It is responsible for setting the page index to the first
 ''' page and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnFirst_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'set new page index and rebind the data
 If (dgBooks.CurrentPageIndex > 0) Then
 dgBooks.CurrentPageIndex = 0
 bindData()
 End If
 End Sub 'btnFirst_ServerClick

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the previous button click
 ''' event. It is responsible for setting the page index to the previous
 ''' page and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnPrev_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'set new page index and rebind the data
 If (dgBooks.CurrentPageIndex > 0) Then
 dgBooks.CurrentPageIndex -= 1
 bindData()
 End If
 End Sub 'btnPrev_ServerClick

 '''***
 ''' <summary>

 ''' This routine provides the event handler for the next button click
 ''' event. It is responsible for setting the page index to the next
 ''' page and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnNext_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'set new page index and rebind the data
 If (dgBooks.CurrentPageIndex < dgBooks.PageCount - 1) Then
 dgBooks.CurrentPageIndex += 1
 bindData()
 End If
 End Sub 'btnNext_ServerClick
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the last button click
 ''' event. It is responsible for setting the page index to the last
 ''' page and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnLast_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'set new page index and rebind the data
 If (dgBooks.CurrentPageIndex < dgBooks.PageCount - 1) Then
 dgBooks.CurrentPageIndex = dgBooks.PageCount - 1
 bindData()
 End If
 End Sub 'btnLast_ServerClick

 '''***
 ''' <summary>
 ''' This routine queries the database for the data to displayed and binds
 ''' it to the datagrid
 ''' </summary>
 Private Sub bindData()
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dSet As DataSet = Nothing
 Dim strConnection As String
 Dim strSQL As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 strSQL = "SELECT Title, ISBN, Publisher " & _
 "FROM Book " & _
 "ORDER BY Title"
 da = New OleDbDataAdapter(strSQL, dbConn)
 dSet = New DataSet
 da.Fill(dSet)

 'set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dSet
 dgBooks.DataBind()
 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'bindData
 End Class 'CH02DatagridWithFirstLastNavVB
End Namespace

Example 2-22. DataGrid with first/last and next/previous navigation
code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02DatagridWithFirstLastNavCS.aspx
 /// </summary>
 public partial class CH02DatagridWithFirstLastNavCS : System.Web.UI.Page
 {
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)

 {
 bindData();
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the first button click
 /// event. It is responsible for setting the page index to the first
 /// page and rebinding the data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnFirst_ServerClick(Object sender,
 System.EventArgs e)
 {
 // set new page index and rebind the data
 if (dgBooks.CurrentPageIndex > 0)
 {
 dgBooks.CurrentPageIndex = 0;
 bindData();
 }
 } // btnFirst_ServerClick
 ///***
 /// <summary>
 /// This routine provides the event handler for the previous button click
 /// event. It is responsible for setting the page index to the previous
 /// page and rebinding the data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnPrev_ServerClick(Object sender,
 System.EventArgs e)
 {
 // set new page index and rebind the data
 if (dgBooks.CurrentPageIndex > 0)
 {
 dgBooks.CurrentPageIndex -= 1;
 bindData();
 }
 } // btnPrev_ServerClick
 ///***
 /// <summary>
 /// This routine provides the event handler for the next button click
 /// event. It is responsible for setting the page index to the next
 /// page and rebinding the data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>

 protected void btnNext_ServerClick(Object sender,
 System.EventArgs e)
 {
 // set new page index and rebind the data
 if (dgBooks.CurrentPageIndex < dgBooks.PageCount - 1)
 {
 dgBooks.CurrentPageIndex += 1;
 bindData();
 }
 } // btnNext_ServerClick

 ///***
 /// <summary>
 /// This routine provides the event handler for the last button click
 /// event. It is responsible for setting the page index to the last
 /// page and rebinding the data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnLast_ServerClick(Object sender,
 System.EventArgs e)
 {
 // set new page index and rebind the data
 if (dgBooks.CurrentPageIndex < dgBooks.PageCount - 1)
 {
 dgBooks.CurrentPageIndex = dgBooks.PageCount - 1;
 bindData();
 }
 } // btnLast_ServerClick
 ///***
 /// <summary>
 /// This routine queries the database for the data to displayed and binds
 /// it to the datagrid
 /// </summary>
 private void bindData()
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataSet dSet = null;
 String strConnection;
 String strSQL;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 strSQL = "SELECT Title, ISBN, Publisher " +
 "FROM Book " +
 "ORDER BY Title";
 da = new OleDbDataAdapter(strSQL, dbConn);
 dSet = new DataSet();
 da.Fill(dSet);

 // set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dSet;
 dgBooks.DataBind();
 }
 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 }
 } // bindData
 } // CH02DatagridWithFirstLastNavCS
}

Recipe 2.10. Adding Direct Page Navigation to a DataGrid

Problem

You need to display data in a table, but the database that stores it has more rows than can fit on a
single page, and you want to allow the user to select the page to display.

Solution

The simplest solution is to use a DataGrid control and its PagerStyle-Mode and PagerStyle-
PageButton attributes to enable page selection. This approach produces output like that shown in
Figure 2-9. To create an application that employs this approach, start by implementing Recipe 2.7
with the changes to the DataGrid tag shown here:

 PagerStyle-Mode="NumericPages"
 PagerStyle-PageButtonCount="5"

Figure 2-9. Output of simple solution to DataGrid direct paging

A more flexible solution is to hide the pager provided by the DataGrid control and implement your
own user interface for the pagination controls. This approach allows the user, for example, to input a
page number in a text box and then click a button to display the data as shown in Figure 2-10.
Examples 2-23, 2-24 through 2-25 show the .aspx and code-behind files for an application that

produces this result.

Figure 2-10. Custom direct page navigation with a DataGrid output

Discussion

In the simple solution, setting the PagerStyle-Mode attribute to NumericPages causes the DataGrid to
be rendered with page number buttons for navigating through the grid. The PagerStyle-ButtonCount
attribute defines the number of "page buttons" that are output. If more pages are available than can
be displayed, an ellipsis (…) is displayed at the end(s) of the page buttons containing additional
pages. As shown in Figure 2-9, additional pages of data are available beyond Section 1.3. Clicking on
the ellipsis will update the data in the DataGrid and display the next block of available pages for
navigation. In our example, clicking on the ellipsis will cause Section 1.3.3 to be displayed in the
DataGrid and Section 1.3.3, Section 1.3.4, Section 1.4, Section 1.4.2Section 1.4.4 will be available
for direct navigation.

The more flexible solution enables paging in the grid but, with the code shown next, hides the pager
provided by the DataGrid. Enabling pagination is required to have the DataGrid provide the
infrastructure needed to perform the paging. Hiding the pager provides you with the ability to
implement your own user interface for the pagination controls.

 AllowPaging="True"
 PageSize="5"
 PagerStyle-Visible="False">

The pagination controls provided in our example consist of a label to display the current page
information, a text box to allow the user to enter the desired page number, and a button to initiate
the page change. These controls are placed below the DataGrid in a row of the table containing the
grid.

Like many of the previous examples in this chapter, the code-behind's bindData method queries the
database to fill a DataSet. Additionally, with the following code, it updates the label used to display
the "page x of y" information and to prompt the user to enter a page number.

 lblPager.Text = "Displaying Page " & _
 CStr(dgBooks.CurrentPageIndex + 1) & " of " & _
 CStr(dgBooks.PageCount) & _
 ", Enter Desired Page Number:"

 lblPager.Text = "Displaying Page " +
 Convert.ToString(dgBooks.CurrentPageIndex + 1) +
 " of " + Convert.ToString(dgBooks.PageCount) +
 ", Enter Desired Page Number:";

The btnDisplayPage_Click method in the code-behind provides the server-side event handler for the
button click event. This method retrieves from the text box the page number entered by the user and
decrements it by 1, sets the CurrentPageIndex for the DataGrid, and rebinds the data. The page
number must be decremented by 1 because the DataGrid pages are zero-based.

The pagination controls we provide here are simple. Almost any user interface can be constructed
using HTML and tied into the DataGrid pagination functionality.

Production code should include validation of the page number entered by the
user. This can be implemented using a RangeValidator control as described in
Recipe 3.2.

See Also

Recipes 2.7 and 2.8 for implementing first/last and next/previous page navigation

Example 2-23. Custom direct page navigation with a DataGrid (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02DatagridWithDirectPageNavVB2.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02DatagridWithDirectPageNavVB2"
 Title="DataGrid With Direct Page Navigation 2" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 DataGrid Using Custom Direct Page Navigation (VB)
 </div>
 <asp:DataGrid ID="dgBooks" Runat="server"
 BorderColor="#000080" BorderWidth="2px"
 AutoGenerateColumns="False"
 Width="90%"
 HorizontalAlign="center"
 AllowPaging="True"
 PageSize="5"
 PagerStyle-Visible="False">
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <ItemStyle CssClass="tableCellNormal" />
 <AlternatingItemStyle CssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundColumn HeaderText="Title"
 DataField="Title" />
 <asp:BoundColumn HeaderText="ISBN"
 DataField="ISBN"
 ItemStyle-HorizontalAlign="Center" />
 <asp:BoundColumn HeaderText="Publisher"
 DataField="Publisher"
 ItemStyle-HorizontalAlign="Center" />
 </Columns>
 </asp:DataGrid>

 <table width="70%" border="0" align="center">
 <tr>
 <td>
 <asp:Label ID="lblPager" Runat="server" CssClass="pagerText" />
 </td>
 <td>
 <asp:TextBox ID="txtNewPageNumber" Runat="server" Width="40" />
 </td>
 <td>
 <asp:Button ID="btnDisplayPage" Runat="server"
 Text="Update" OnClick="btnDisplayPage_Click" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 2-24. Custom direct page navigation with a DataGrid code-behind
(.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02DatagridWithDirectPageNavVB2.aspx
 ''' </summary>
 Partial Class CH02DatagridWithDirectPageNavVB2
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Not Page.IsPostBack) Then
 bindData()
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the display page button
 ''' click event of the datagrid. It is responsible for setting the page
 ''' index to the entered page and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnDisplayPage_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 'set new page index and rebind the data
 'NOTE: The page numbers used by the datagrid control are 0 based
 ' so adjust the user enter page number to be 0 based
 dgBooks.CurrentPageIndex = CInt(txtNewPageNumber.Text) - 1
 bindData()
 End Sub 'btnDisplayPage_Click

 '''***
 ''' <summary>
 ''' This routine queries the database for the data to displayed and binds
 ''' it to the datagrid
 ''' </summary>
 Private Sub bindData()

 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dSet As DataSet = Nothing
 Dim strConnection As String
 Dim strSQL As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 strSQL = "SELECT Title, ISBN, Publisher " & _
 "FROM Book " & _
 "ORDER BY Title"

da = New OleDbDataAdapter(strSQL, dbConn)
 dSet = New DataSet
 da.Fill(dSet)

 'set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dSet
 dgBooks.DataBind()

 'update label on custom pager to show current page and total pages
 lblPager.Text = "Displaying Page " & _
 CStr(dgBooks.CurrentPageIndex + 1) & " of " & _
 CStr(dgBooks.PageCount) & _
 ", Enter Desired Page Number:"

 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'bindData
 End Class 'CH02DatagridWithDirectPageNavVB2
End Namespace

Example 2-25. Custom direct page navigation with a DataGrid code-behind
(.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 ///***
 /// <summary>
 /// This class provides the code behind for
 /// CH02DatagridWithDirectPageNavCS2.aspx
 /// </summary>
 public partial class CH02DatagridWithDirectPageNavCS2 : System.Web.UI.Page
 {
 ///**
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 bindData();
 }
 } // Page_Load

 ///**
 /// <summary>
 /// This routine provides the event handler for the display page button
 /// click event of the datagrid. It is responsible for setting the page
 /// index to the entered page and rebinding the data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnDisplayPage_Click(Object sender,
 System.EventArgs e)
 {
 // set new page index and rebind the data
 // NOTE: The page numbers used by the datagrid control are 0 based

 // so adjust the user enter page number to be 0 based
 dgBooks.CurrentPageIndex = Convert.ToInt32(txtNewPageNumber.Text) - 1;
 bindData();
 } // btnDisplayPage_Click

 ///**
 /// <summary>
 /// This routine queries the database for the data to displayed and binds
 /// it to the datagrid
 /// </summary>
 private void bindData()
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataSet dSet = null;
 String strConnection;
 String strSQL;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 strSQL = "SELECT Title, ISBN, Publisher " +
 "FROM Book " +
 "ORDER BY Title";

 da = new OleDbDataAdapter(strSQL, dbConn);
 dSet = new DataSet();
 da.Fill(dSet);
 // set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dSet;
 dgBooks.DataBind();

 //update label on custom pager to show current page and total pages
 lblPager.Text = "Displaying Page " +
 Convert.ToString(dgBooks.CurrentPageIndex + 1) +
 " of " + Convert.ToString(dgBooks.PageCount) +
 ", Enter Desired Page Number:";
 }

 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();

 }
 }
 } // bindData
 } // CH02DatagridWithDirectPageNavCS2
}

Recipe 2.11. Sorting Data in Ascending/Descending Order
Within a DataGrid

Problem

You are displaying a table of data in a DataGrid , and you want to let the user sort the data and
change the sort order by clicking on the column headers.

Solution

Enable the DataGrid control's sorting features, and add custom coding to support the sorting along
with an indication of the current sort column and order.

In the .aspx file, enable the DataGrid control's sorting features.

In the code-behind class for the page, use the .NET language of your choice to:

Create a data-binding method (bindData in our example) that does the following:

Generates the SQL statement required to get the data from the database with an ORDER BY
clause based on the value of the sortExpression parameter

a.

Fills a DataTable with the ordered data from the databaseb.

Outputs an image indicating the sort column and sort order beside the current sort column
heading

c.

1.

Call the data-binding method from the Page_Load method (to support the initial display of the
grid) and from the event that is fired when the user clicks on a column header (the
dgBooks_SortCommand event in our example).

2.

Figure 2-11 shows the appearance of a typical DataGrid sorted by title in ascending order, the
information in the first column. Examples 2-26 , 2-27 through 2-28 show the .aspx and code-behind
files for an example application that produces this result.

Figure 2-11. DataGrid with ascending/descending sorting output

Discussion

The DataGrid control provides the basic plumbing required to support sorting. It will generate the
links for the column headers to raise the SortCommand server-side event when a column header is
clicked. The DataGrid does not provide the code required to perform the actual sorting, but very little
code is required to complete that job.

To enable sorting, the AllowSorting attribute of the DataGrid element must be set to true . In
addition, the SortExpression attribute of the BoundColumn element must be set to the expression that
will be used in your code to perform the sorting. This would normally be set to the name of the
database column displayed in the DataGrid column; however, it can be set to any value required by
your code to perform the sorting.

Your code will need to perform the actual sorting. For example, the application that we developed for
this recipe supports sorting in a centralized manner by using sortExpression and sortOrder
parameters with its bindData method. The parameters are used in the ORDER BY clause of the SQL
statement.

Your code will need to perform the sorting in ascending and descending order as well as visually
indicating the sort order, which requires a bit of coding. This is driven by needing to know the current
sort column and the sort order to determine what needs to be done when the user clicks a column
header. From here on, it's useful to examine our example application to see how we've juggled these
needs.

We've added an enumeration and several constants to the top of the code-behind class shown in
Examples 2-27 (VB) and 2-28 (C#). The enuSortOrder enumeration defines the available sort orders
used to store and compare sort order data. The sortExpression and columnTitle arrays are used to
define the sort expression and column title for each column in the DataGrid . As their names imply,
the VS_CURRENT_SORT_EXPRESSION and VS_CURRENT_SORT_ORDER constants define the names of variables
stored in the ViewState to track the current sort expression and order between page submittals.

In our example application, the Page_Load method performs two operations. First, the view state
variables used to store the current sort expression and sort order (VS_CURRENT_SORT_EXPRESSION and
VS_CURRENT_SORT_ORDER) are set to their default values. For this example, the title column is sorted in
ascending order by default. Second, the bindData method is called to pass the current sort
expression and sort order.

Two features of the bindData method are worth special note. First, the SQL statement used to query
the database includes an ORDER BY clause that reflects the current sort order.

Second, the bindData method loops through each column in the grid, determines which column is the
sort column, and marks the sort order for the column. The sort column is determined by comparing
the current sort expression passed to the bindData method with the sort expression for each of the
columns. The sort expression for the one column that matches the current sort expression is the sort
column. After finding the sort column, the sort order is checked to determine whether the ascending
or descending image should be output in the header for the sort column. Finally, the header text is
set to the title for the column, and when relevant, the HTML image tag used to indicate the sort order
is set. For columns that are not the current sort column, the image-related HTML is set to an empty
string.

When the user clicks a column header in the grid, the dgBooks_SortCommand method is called and that
method determines the changes that need to be made prior to rebinding the data. The first step is to
get the current sort expression and sort order from the view state, as shown here:

 currentSortExpression = CStr(viewstate(VS_CURRENT_SORT_EXPRESSION))
 currentSortOrder = CType(viewstate(VS_CURRENT_SORT_ORDER), enuSortOrder)

 currentSortExpression = (String)(this.ViewState[VS_CURRENT_SORT_EXPRESSION]);
 currentSortOrder = (enuSortOrder)(this.ViewState[VS_CURRENT_SORT_ORDER]);

After getting the current information, we determine if a column other than the current sort column
has been clicked. If so, the clicked column is set as the new sort column, and the sort order is set to
ascending. If not, we need to change the sort order of the original column.

After determining the sort expression and sort order, the view state is updated to reflect what will be
the current information once the page is rendered.

Finally, the data is rebound to the grid by calling the bindData method with the new sort information.

When working with this recipe's sample application, the following code must be
placed before the DataBind statement. As a general rule, changes of this sort made
to a DataGrid control placed after data binding may not be displayed as intended.

 Dim col As DataGridColumn

 …

 For index = 0 To dgBooks.Columns.Count - 1
 col = dgBooks.Columns(index)

 'check to see if this is the sort column
 If (col.SortExpression = sortExpression) Then
 'this is the sort column so determine whether the ascending or
 'descending image needs to be included
 If (sortOrder = enuSortOrder.soAscending) Then
 collmage = " "
 Else
 collmage = " "
 End if
 Else
 'This is not the sort column so include no image html
 collmage = ""
 End If 'If (col.SortExpression = sortExpression)

 'set the title for the column
 col.HeaderText = columnTitle(index) & collmage
 Next index

 for (index = 0; index < dgBooks.Columns.Count; index++)
 {
 col = dgBooks.Columns[index];
 // check to see if this is the sort column
 if (col.SortExpression == sortExpression)
 {
 // this is the sort column so determine whether the ascending or
 // descending image needs to be included
 if (sortOrder == enuSortOrder.soAscending)
 {
 collmage = " ";
 }
 else
 {
 collmage = " ";
 }
 }
 else

 {
 // This is not the sort column so include no image html
 collmage = "";
 } // if (col.SortExpression == sortExpression)

 // set the title for the column
 col.HeaderText = columnTitle[index] + collmage;
 } // for index

Example 2-26. DataGrid with ascending/descending sorting (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02DatagridAscDescSortingVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02DatagridAscDescSortingVB"
 Title="DataGrid With Ascend/Descend Sorting " %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 DataGrid With Ascend/Descend Sorting (VB)
 </div>
 <asp:DataGrid id="dgBooks" runat="server"
 BorderColor="#000080"
 BorderWidth="2px"
 HorizontalAlign="Center"
 AutoGenerateColumns="False"
 Width="90%"
 AllowSorting="True"
 OnSortCommand="dgBooks_SortCommand" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <ItemStyle cssClass="tableCellNormal" />
 <AlternatingItemStyle cssClass="tableCellAlternating" />

 <Columns>
 <asp:BoundColumn DataField="Title"
 SortExpression="Title" />
 <asp:BoundColumn DataField="ISBN"
 ItemStyle-HorizontalAlign="Center"
 SortExpression="ISBN" />
 <asp:BoundColumn DataField="Publisher"
 ItemStyle-HorizontalAlign="Center"
 SortExpression="Publisher" />
 </Columns>
 </asp:DataGrid>
</asp:Content>

Example 2-27. DataGrid with ascending/descending sorting code-behind
(.vb)

Option Explicit
On Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02DatagridAscDescSortingVB.aspx
 ''' </summary>
 Partial Class CH02DatagridAscDescSortingVB
 Inherits System.Web.UI.Page

 'the following enumeration is used to define the sort orders
 Private Enum enuSortOrder
 soAscending = 0
 soDescending = 1
 End Enum

 'strings to use for the sort expressions and column title
 'separate arrays are used to support the sort expression and titles
 'being different
 Private ReadOnly sortExpression() As String = {"Title", "ISBN", "Publisher"}
 Private ReadOnly columnTitle() As String = {"Title", "ISBN", "Publisher"}

 'the names of the variables placed in the viewstate
 Private Const VS_CURRENT_SORT_EXPRESSION As String = "currentSortExpression"
 Private Const VS_CURRENT_SORT_ORDER As String = "currentSortOrder"

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim defaultSortExpression As String
 Dim defaultSortOrder As enuSortOrder

 If (Not Page.IsPostBack) Then
 'sort by title, ascending as the default

 defaultSortExpression = sortExpression(0)
 defaultSortOrder = enuSortOrder.soAscending

 'store current sort expression and order in the viewstate then
 'bind data to the DataGrid
 ViewState(VS_CURRENT_SORT_EXPRESSION) = defaultSortExpression
 ViewState(VS_CURRENT_SORT_ORDER) = defaultSortOrder
 bindData(defaultSortExpression, _
 defaultSortOrder)
 End If
 End Sub 'Page_Load

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the datagrid sort event.
 ''' It is responsible re-binding the data to the datagrid by the selected
 ''' column.
 ''' </summary>
 '''
 ''' <param name="source">Set to the source of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub dgBooks_SortCommand(ByVal source As Object, _
 ByVal e As DataGridSortCommandEventArgs)

 Dim newSortExpression As String
 Dim currentSortExpression As String
 Dim currentSortOrder As enuSortOrder

 'get the current sort expression and order from the viewstate
 currentSortExpression = CStr(ViewState(VS_CURRENT_SORT_EXPRESSION))
 currentSortOrder = CType(ViewState(VS_CURRENT_SORT_ORDER), enuSortOrder)

 'check to see if this is a new column or the sort order
 'of the current column needs to be changed.
 newSortExpression = e.SortExpression
 If (newSortExpression = currentSortExpression) Then
 'sort column is the same so change the sort order
 If (currentSortOrder = enuSortOrder.soAscending) Then
 currentSortOrder = enuSortOrder.soDescending
 Else
 currentSortOrder = enuSortOrder.soAscending
 End If
 Else
 'sort column is different so set the new column with ascending
 'sort order
 currentSortExpression = newSortExpression
 currentSortOrder = enuSortOrder.soAscending
 End If

 'update the view state with the new sort information
 ViewState(VS_CURRENT_SORT_EXPRESSION) = currentSortExpression
 ViewState(VS_CURRENT_SORT_ORDER) = currentSortOrder

 'rebind the data in the datagrid
 bindData(currentSortExpression, _
 currentSortOrder)
 End Sub 'dgBooks_SortCommand

 '''***
 ''' <summary>
 ''' This routine queries the database for the data to displayed and binds
 ''' it to the datagrid
 ''' </summary>
 '''
 ''' <param name="sortExpression">Set to the sort expression to use for
 ''' sorting the data</param>
 ''' <param name="sortOrder">Set to the requried sort order</param>
 Private Sub bindData(ByVal sortExpression As String, _
 ByVal sortOrder As enuSortOrder)
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dTable As DataTable = Nothing
 Dim strConnection As String
 Dim strSQL As String
 Dim index As Integer
 Dim col As DataGridColumn = Nothing
 Dim colImage As String
 Dim strSortOrder As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 If (sortOrder = enuSortOrder.soAscending) Then
 strSortOrder = " ASC"
 Else
 strSortOrder = " DESC"
 End If

 strSQL = "SELECT Title, ISBN, Publisher " & _
 "FROM Book " & _
 "ORDER BY " & sortExpression & _
 strSortOrder

 da = New OleDbDataAdapter(strSQL, dbConn)
 dTable = New DataTable
 da.Fill(dTable)

 'loop through the columns in the datagrid updating the heading to

 'mark which column is the sort column and the sort order
 For index = 0 To dgBooks.Columns.Count - 1
 col = dgBooks.Columns(index)

 'check to see if this is the sort column
 If (col.SortExpression = sortExpression) Then
 'this is the sort column so determine whether the ascending or
 'descending image needs to be included
 If (sortOrder = enuSortOrder.soAscending) Then
 colImage = " "
 Else
 colImage = " "
 End If
 Else
 'This is not the sort column so include no image html
 colImage = ""
 End If 'If (col.SortExpression = sortExpression)

 'set the title for the column
 col.HeaderText = columnTitle(index) & colImage
 Next index

 'set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dTable
 dgBooks.DataBind()

 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'bindData
 End Class 'CH02DatagridAscDescSortingVB
End Namespace

Example 2-28. DataGrid with ascending/descending sorting code-behind
(.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>

 /// This class provides the code behind for
 /// CH02DatagridAscDescSortingCS.aspx
 /// </summary>
 public partial class CH02DatagridAscDescSortingCS : System.Web.UI.Page
 {
 // the following enumeration is used to define the sort orders
 private enum enuSortOrder
 {
 soAscending = 0,
 soDescending = 1
 }

 // strings to use for the sort expressions and column title
 // separate arrays are used to support the sort expression and titles
 // being different
 static readonly String[] sortExpression =
 new String[] { "Title", "ISBN", "Publisher" };
 static readonly String[] columnTitle =
 new String[] { "Title", "ISBN", "Publisher" };

 // the names of the variables placed in the viewstate
 static readonly String VS_CURRENT_SORT_EXPRESSION = "currentSortExpression";
 static readonly String VS_CURRENT_SORT_ORDER = "currentSortOrder";

 ///**
 /// <summary>
 /// This routine provides the event handler for the page load event. It
 /// is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 private void Page_Load(object sender, System.EventArgs e)
 {
 String defaultSortExpression;
 enuSortOrder defaultSortOrder;

 if (!Page.IsPostBack)
 {
 // sort by title, ascending as the default
 defaultSortExpression = sortExpression[0];
 defaultSortOrder = enuSortOrder.soAscending;

 // bind data to the DataGrid
 this.ViewState.Add(VS_CURRENT_SORT_EXPRESSION, defaultSortExpression);
 this.ViewState.Add(VS_CURRENT_SORT_ORDER, defaultSortOrder);
 bindData(defaultSortExpression,
 defaultSortOrder);
 }
 } // Page_Load

 ///**

 /// <summary>
 /// This routine provides the event handler for the datagrid sort event.
 /// It is responsible re-binding the data to the datagrid by the selected
 /// column.
 /// </summary>
 ///
 /// <param name="source">Set to the source of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void dgBooks_SortCommand(Object source,
 System.Web.UI.WebControls.DataGridSortCommandEventArgs e)
 {
 String newSortExpression = null;
 String currentSortExpression = null;

 enuSortOrder currentSortOrder;

 // get the current sort expression and order from the viewstate
 currentSortExpression =
 (String)(this.ViewState[VS_CURRENT_SORT_EXPRESSION]);
 currentSortOrder =
 (enuSortOrder)(this.ViewState[VS_CURRENT_SORT_ORDER]);

 // check to see if this is a new column or the sort order
 // of the current column needs to be changed.
 newSortExpression = e.SortExpression;
 if (newSortExpression.Equals(currentSortExpression))
 {
 // sort column is the same so change the sort order
 if (currentSortOrder == enuSortOrder.soAscending)
 {
 currentSortOrder = enuSortOrder.soDescending;
 }
 else
 {
 currentSortOrder = enuSortOrder.soAscending;
 }
 }
 else
 {
 // sort column is different so set the new column with ascending
 // sort order
 currentSortExpression = newSortExpression;
 currentSortOrder = enuSortOrder.soAscending;
 }

 // update the view state with the new sort information
 this.ViewState.Add(VS_CURRENT_SORT_EXPRESSION, currentSortExpression);
 this.ViewState.Add(VS_CURRENT_SORT_ORDER, currentSortOrder);

 // rebind the data in the datagrid
 bindData(currentSortExpression,
 currentSortOrder);

 } // dgBooks_SortCommand

 ///**
 /// <summary>
 /// This routine queries the database for the data to displayed and binds
 /// it to the datagrid
 /// </summary>
 ///
 /// <param name="sortExpression">Set to the sort expression to use for
 /// sorting the data</param>
 /// <param name="sortOrder">Set to the requried sort order</param>
 private void bindData(String sortExpression,
 enuSortOrder sortOrder)
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataTable dTable = null;
 String strConnection = null;
 String strSQL = null;
 int index = 0;
 DataGridColumn col = null;
 String colImage = null;
 String strSortOrder = null;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 if (sortOrder == enuSortOrder.soAscending)
 {
 strSortOrder = " ASC";
 }
 else
 {
 strSortOrder = " DESC";
 }

 strSQL = "SELECT Title, ISBN, Publisher " +
 "FROM Book " +
 "ORDER BY " + sortExpression +
 strSortOrder;

 da = new OleDbDataAdapter(strSQL, dbConn);
 dTable = new DataTable();
 da.Fill(dTable);

 // loop through the columns in the datagrid updating the heading to
 // mark which column is the sort column and the sort order
 for (index = 0; index < dgBooks.Columns.Count; index++)
 {
 col = dgBooks.Columns[index];
 // check to see if this is the sort column
 if (col.SortExpression == sortExpression)
 {
 // this is the sort column so determine whether the ascending or
 // descending image needs to be included
 if (sortOrder == enuSortOrder.soAscending)
 {
 colImage = " ";
 }
 else
 {
 colImage = " ";
 }
 }
 else
 {
 // This is not the sort column so include no image html
 colImage = "";
 } // if (col.SortExpression == sortExpression)

 // set the title for the column
 col.HeaderText = columnTitle[index] + colImage;
 } // for index

 // set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dTable;
 dgBooks.DataBind();
 } // try

 finally
 {
 //clean up
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // bindData
 } // CH02DatagridAscDescSortingCS
}

Recipe 2.12. Combining Sorting and Paging in a DataGrid

Problem

You are implementing a DataGrid with sorting and pagination, and you are having trouble making the
two features work together.

Solution

Enable the sorting features of the DataGrid control, and add custom code to support the sorting along
with an indication of the current sort column and order (see Recipe 2.10 for details). Next, with
pagination enabled, add a small amount of custom code to track the sort column and order so they
can be maintained between client round trips and used any time rebinding is required. Figure 2-12
shows a typical DataGrid with this solution implemented. Examples 2-29 , 2-30 through 2-31 show the
.aspx file and code-behind files for an application that produces this output.

Figure 2-12. Combining sorting and paging in a DataGrid output

Discussion

Getting sorting and paging to work at the same time is a notorious problem with a DataGrid . The key
to making it all work is to track the sort column and order so they can be used any time rebinding is
required, whether because of a page change or a sort command. Likewise, it is useful to put the sort
column and order data in the view state so they are properly maintained between client round trips.

The DataGrid provides the basic plumbing for sorting and paging the data displayed in the grid. The
DataGrid provides a property (CurrentPageIndex) that is always available to indicate which page is to
be displayed. Unfortunately, the DataGrid provides no information regarding the sort column or

order, forcing the programmer to track this information outside of the DataGrid so it will be available
when performing pagination operations.

The application we've developed for this recipe should give you a good idea of how to handle sorting
and paging simultaneously. It tracks the sort column and order so the proper data can be bound to
the DataGrid any time rebinding is required, for example, when the user clicks on a row header to
resort a column or selects a page from the DataGrid control's built-in navigation control. Refer to
Recipes 2.9 and 2.10 for more detailed discussions of the various nuances of this recipe.

See Also

Recipes 2.9 and 2.10

Example 2-29. Combining sorting and paging in a DataGrid (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02DatagridWithSortingAndPagingVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02DatagridWithSortingAndPagingVB"
 Title="DataGrid With Sorting And Paging" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 DataGrid With Sorting And Paging (VB)
 </div>
 <asp:DataGrid
 id="dgBooks"
 runat="server"
 BorderColor="#000080"
 BorderWidth="2px"
 AutoGenerateColumns="False"
 width="90%"
 HorizontalAlign="Center"
 AllowSorting="True"
 AllowPaging="True"
 PageSize="5"
 PagerStyle-Mode="NumericPages"
 PagerStyle-PageButtonCount="5"
 PagerStyle-Position="Bottom"
 PagerStyle-HorizontalAlign="Center"
 PagerStyle-NextPageText="Next"
 PagerStyle-PrevPageText="Prev"
 PagerStyle-CssClass="pagerText"
 OnPageIndexChanged="dgBooks_PageIndexChanged"
 OnSortCommand="dgBooks_SortCommand" >

 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <ItemStyle cssClass="tableCellNormal" />
 <AlternatingItemStyle cssClass="tableCellAlternating" />
 <Columns>

 <asp:BoundColumn DataField="Title"
 SortExpression="Title" />
 <asp:BoundColumn DataField="ISBN"
 ItemStyle-HorizontalAlign="Center"
 SortExpression="ISBN" />
 <asp:BoundColumn DataField="Publisher"
 ItemStyle-HorizontalAlign="Center"
 SortExpression="Publisher" />

 </Columns>
 </asp:DataGrid>
</asp:Content>

Example 2-30. Combining sorting and paging in a DataGrid code-behind
(.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02DatagridWithSortingAndPagingVB.aspx
 ''' </summary>
 Partial Class CH02DatagridWithSortingAndPagingVB
 Inherits System.Web.UI.Page

 'the following enumeration is used to define the sort orders
 Private Enum enuSortOrder
 soAscending = 0
 soDescending = 1
 End Enum

 'strings to use for the sort expressions and column title
 'separate arrays are used to support the sort expression and titles
 'being different
 Private ReadOnly sortExpression() As String = {"Title", "ISBN", "Publisher"}
 Private ReadOnly columnTitle() As String = {"Title", "ISBN", "Publisher"}

 'the names of the variables placed in the viewstate
 Private Const VS_CURRENT_SORT_EXPRESSION As String = "currentSortExpression"
 Private Const VS_CURRENT_SORT_ORDER As String = "currentSortOrder"

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim defaultSortExpression As String
 Dim defaultSortOrder As enuSortOrder

 If (Not Page.IsPostBack) Then
 'sort by title, ascending as the default
 defaultSortExpression = sortExpression(0)
 defaultSortOrder = enuSortOrder.soAscending

 'store current sort expression and order in the viewstate then
 'bind data to the DataGrid
 ViewState(VS_CURRENT_SORT_EXPRESSION) = defaultSortExpression
 ViewState(VS_CURRENT_SORT_ORDER) = defaultSortOrder
 bindData(defaultSortExpression, _
 defaultSortOrder)
 End If
 End Sub 'Page_Load

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the datagrid sort event.
 ''' It is responsible re-binding the data to the datagrid by the selected
 ''' column.
 ''' </summary>
 '''
 ''' <param name="source">Set to the source of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub dgBooks_SortCommand(ByVal source As Object, _
 ByVal e As DataGridSortCommandEventArgs)
 Dim newSortExpression As String
 Dim currentSortExpression As String
 Dim currentSortOrder As enuSortOrder

 'get the current sort expression and order from the viewstate
 currentSortExpression = CStr(ViewState(VS_CURRENT_SORT_EXPRESSION))
 currentSortOrder = CType(ViewState(VS_CURRENT_SORT_ORDER), enuSortOrder)

 'check to see if this is a new column or the sort oder
 'of the current column needs to be changed.
 newSortExpression = e.SortExpression
 If (newSortExpression = currentSortExpression) Then
 'sort column is the same so change the sort order
 If (currentSortOrder = enuSortOrder.soAscending) Then

 currentSortOrder = enuSortOrder.soDescending
 Else
 currentSortOrder = enuSortOrder.soAscending
 End If
 Else
 'sort column is different so set the new column with ascending
 'sort order
 currentSortExpression = newSortExpression
 currentSortOrder = enuSortOrder.soAscending
 End If

 'update the view state with the new sort information
 ViewState(VS_CURRENT_SORT_EXPRESSION) = currentSortExpression
 ViewState(VS_CURRENT_SORT_ORDER) = currentSortOrder

 'rebind the data in the datagrid
 bindData(currentSortExpression, _
 currentSortOrder)
 End Sub 'dgBooks_SortCommand

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page index changed
 ''' event of the datagrid. It is responsible for setting the page index
 ''' from the passed arguments and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="source">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub dgBooks_PageIndexChanged(ByVal source As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridPageChangedEventArgs)
 Dim currentSortExpression As String
 Dim currentSortOrder As enuSortOrder

 'set new page index and rebind the data
 dgBooks.CurrentPageIndex = e.NewPageIndex

 'get the current sort expression and order from the viewstate
 currentSortExpression = CStr(ViewState(VS_CURRENT_SORT_EXPRESSION))
 currentSortOrder = CType(ViewState(VS_CURRENT_SORT_ORDER), enuSortOrder)
 'rebind the data in the datagrid
 bindData(currentSortExpression, _
 currentSortOrder)
 End Sub 'dgCustomers_PageIndexChanged

 '''***
 ''' <summary>
 ''' This routine queries the database for the data to displayed and binds
 ''' it to the datagrid
 ''' </summary>
 '''
 ''' <param name="sortExpression">Set to the sort expression to use for

 ''' sorting the data</param>
 ''' <param name="sortOrder">Set to the requried sort order</param>
 Private Sub bindData(ByVal sortExpression As String, _
 ByVal sortOrder As enuSortOrder)
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dTable As DataTable = Nothing
 Dim strConnection As String
 Dim strSQL As String
 Dim index As Integer
 Dim col As DataGridColumn = Nothing
 Dim colImage As String
 Dim strSortOrder As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 If (sortOrder = enuSortOrder.soAscending) Then
 strSortOrder = " ASC"
 Else
 strSortOrder = " DESC"
 End If

 strSQL = "SELECT Title, ISBN, Publisher " & _
 "FROM Book " & _
 "ORDER BY " & sortExpression & _
 strSortOrder

 da = New OleDbDataAdapter(strSQL, dbConn)
 dTable = New DataTable
 da.Fill(dTable)

 'loop through the columns in the datagrid updating the heading to
 'mark which column is the sort column and the sort order
 For index = 0 To dgBooks.Columns.Count - 1
 col = dgBooks.Columns(index)

 'check to see if this is the sort column
 If (col.SortExpression = sortExpression) Then
 'this is the sort column so determine whether the ascending or
 'descending image needs to be included
 If (sortOrder = enuSortOrder.soAscending) Then
 colImage = " "
 Else
 colImage = " "
 End If

 Else
 'This is not the sort column so include no image html
 colImage = ""
 End If 'If (col.SortExpression = sortExpression)

 'set the title for the column
 col.HeaderText = columnTitle(index) & colImage
 Next index

 'set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dTable
 dgBooks.DataBind()

 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'bindData
 End Class 'CH02DatagridWithSortingAndPagingVB
End Namespace

Example 2-31. Combining sorting and paging in a DataGrid code-behind
(.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02DatagridWithSortingAndPagingCS.aspx
 /// </summary>
 public partial class CH02DatagridWithSortingAndPagingCS : System.Web.UI.Page
 {
 // the following enumeration is used to define the sort orders
 private enum enuSortOrder
 {
 soAscending = 0,
 soDescending = 1
 }

 // strings to use for the sort expressions and column title

 // separate arrays are used to support the sort expression and titles
 // being different
 static readonly String[] sortExpression =
 new String[] { "Title", "ISBN", "Publisher" };
 static readonly String[] columnTitle =
 new String[] { "Title", "ISBN", "Publisher" };

 // the names of the variables placed in the viewstate
 static readonly String VS_CURRENT_SORT_EXPRESSION = "currentSortExpression";
 static readonly String VS_CURRENT_SORT_ORDER = "currentSortOrder";

 ///**
 /// <summary>
 /// This routine provides the event handler for the page load event. It
 /// is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 private void Page_Load(object sender, System.EventArgs e)
 {
 String defaultSortExpression;
 enuSortOrder defaultSortOrder;

 if (!Page.IsPostBack)
 {
 // sort by title, ascending as the default
 defaultSortExpression = sortExpression[0];
 defaultSortOrder = enuSortOrder.soAscending;

 // bind data to the DataGrid
 this.ViewState.Add(VS_CURRENT_SORT_EXPRESSION, defaultSortExpression);
 this.ViewState.Add(VS_CURRENT_SORT_ORDER, defaultSortOrder);
 bindData(defaultSortExpression,
 defaultSortOrder);
 }
 } // Page_Load

 ///**
 /// <summary>
 /// This routine provides the event handler for the datagrid sort event.
 /// It is responsible re-binding the data to the datagrid by the selected
 /// column.
 /// </summary>
 ///
 /// <param name="source">Set to the source of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void dgBooks_SortCommand(Object source,
 System.Web.UI.WebControls.DataGridSortCommandEventArgs e)
 {
 String newSortExpression = null;
 String currentSortExpression = null;

 enuSortOrder currentSortOrder;

 // get the current sort expression and order from the viewstate
 currentSortExpression =
 (String)(this.ViewState[VS_CURRENT_SORT_EXPRESSION]);
 currentSortOrder =
 (enuSortOrder)(this.ViewState[VS_CURRENT_SORT_ORDER]);
 // check to see if this is a new column or the sort order
 // of the current column needs to be changed.
 newSortExpression = e.SortExpression;
 if (newSortExpression == currentSortExpression)
 {
 // sort column is the same so change the sort order
 if (currentSortOrder == enuSortOrder.soAscending)
 {
 currentSortOrder = enuSortOrder.soDescending;
 }
 else
 {
 currentSortOrder = enuSortOrder.soAscending;
 }
 }
 else
 {
 // sort column is different so set the new column with ascending
 // sort order
 currentSortExpression = newSortExpression;
 currentSortOrder = enuSortOrder.soAscending;
 }

 // update the view state with the new sort information
 this.ViewState.Add(VS_CURRENT_SORT_EXPRESSION, currentSortExpression);
 this.ViewState.Add(VS_CURRENT_SORT_ORDER, currentSortOrder);

 // rebind the data in the datagrid
 bindData(currentSortExpression,
 currentSortOrder);
 } // dgBooks_SortCommand

 ///**
 /// <summary>
 /// This routine provides the event handler for the page index changed
 /// event of the datagrid. It is responsible for setting the page index
 /// from the passed arguments and rebinding the data.
 /// </summary>
 ///
 /// <param name="source">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>

 protected void dgBooks_PageIndexChanged(Object source,
 System.Web.UI.WebControls.DataGridPageChangedEventArgs e)
 {

 String currentSortExpression;
 enuSortOrder currentSortOrder;

 // set new page index and rebind the data
 dgBooks.CurrentPageIndex = e.NewPageIndex;

 // get the current sort expression and order from the viewstate
 currentSortExpression =
 (String)(this.ViewState[VS_CURRENT_SORT_EXPRESSION]);
 currentSortOrder =
 (enuSortOrder)(this.ViewState[VS_CURRENT_SORT_ORDER]);

 // rebind the data in the datagrid
 bindData(currentSortExpression,
 currentSortOrder);
 } // dgCustomers_PageIndexChanged

 ///**
 /// <summary>
 /// This routine queries the database for the data to displayed and binds
 /// it to the datagrid
 /// </summary>
 ///
 /// <param name="sortExpression">Set to the sort expression to use for
 /// sorting the data</param>
 /// <param name="sortOrder">Set to the requried sort order</param>
 private void bindData(String sortExpression,
 enuSortOrder sortOrder)
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataTable dTable = null;
 String strConnection = null;
 String strSQL = null;
 int index = 0;
 DataGridColumn col = null;
 String colImage = null;
 String strSortOrder = null;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 if (sortOrder == enuSortOrder.soAscending)
 {
 strSortOrder = " ASC";

 }
 else
 {
 strSortOrder = " DESC";
 }

 strSQL = "SELECT Title, ISBN, Publisher " +
 "FROM Book " +
 "ORDER BY " + sortExpression +
 strSortOrder;

 da = new OleDbDataAdapter(strSQL, dbConn);
 dTable = new DataTable();
 da.Fill(dTable);

 // loop through the columns in the datagrid updating the heading to
 // mark which column is the sort column and the sort order
 for (index = 0; index < dgBooks.Columns.Count; index++)
 {
 col = dgBooks.Columns[index];
 // check to see if this is the sort column
 if (col.SortExpression == sortExpression)
 {
 // this is the sort column so determine whether the ascending or
 // descending image needs to be included
 if (sortOrder == enuSortOrder.soAscending)
 {
 colImage = " ";
 }
 else
 {
 colImage = " ";
 }
 }
 else
 {
 // This is not the sort column so include no image html
 colImage = "";
 } // if (col.SortExpression == sortExpression)

 // set the title for the column
 col.HeaderText = columnTitle[index] + colImage;
 } // for index

 // set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dTable;
 dgBooks.DataBind();
 } // try

 finally
 {
 //clean up

 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // bindData
 } // CH02DatagridWithSortingAndPagingCS
}

Recipe 2.13. Paging Through a Record-Heavy DataGrid

Problem

You need to display a large set of data in a DataGrid , yet the user must be able to page through it
quickly. This approach is beneficial anytime you have to navigate through thousands of records.

Solution

Use custom paging with a DataGrid and, using a stored procedure, read from the database only the
data that is needed for a given page. An example of the output that can be achieved with this
approach is shown in Figure 2-13 . Examples 2-33 , 2-34 through 2-35 show the .aspx and code-
behind files for an application that illustrates this approach; the application uses the stored procedure
shown in Example 2-32 to retrieve the data to display.

Discussion

The solution we advocate for the problem of paging through large datasets requires a somewhat
different approach to custom paging and managing the labels used to display the current and total
pages.

Figure 2-13. Paging through a record-heavy DataGrid output

To enable paging and to allow you to control movement within the dataset when data binding, the
DataGrid's AllowPaging and AllowCustomPaging attributes must be set to TRue . When
AllowCustomPaging is set to False (the default), the DataGrid assumes that all of the data that can be
displayed in all pages is present in the data source, and it calculates the group of records to display
from the CurrentPageIndex and PageSize attributes. When AllowCustomPaging is set to TRue , the
DataGrid expects only one page (as defined by the PageSize attribute) to be present in the data
source and you are responsible for filling the data source with the proper page of data.

 <asp:DataGrid ID="dgBooks" runat="server"
 BorderColor="#000080"
 BorderWidth="2px"
 AutoGenerateColumns="False"
 Width="90%"
 HorizontalAlign="Center"
 AllowPaging="True"
 AllowCustomPaging="True"
 PageSize="10"
 PagerStyle-Visible="False">

For this example, the internal paging controls of the DataGrid are not used, so the PagerStyle-
Visible attribute is set False to hide the DataGrid's pager control.

A pair of labels is used to display the current page and total number of pages available. In addition,
four buttons are used to provide navigation (First, Prev, Next, and Last).

If you want to use the internal paging functionality with custom paging, the
VirtualItemCount attribute must be set to the total number of items that can
be displayed in the DataGrid (all pages). In addition, the CurrentPageIndex
attribute must be set to the currently displayed page.

The code-behind uses two private variables to store the current page and total number of pages used
throughout the class. In the Page_Load event handler, the currentPage variable is initialized to 0 when
the page is initially loaded, and then the bindData method is called to populate the DataGrid . When
the page is being posted back, the currentPage and totalPages variables are set from the values in
the labels used to display the information to the user. The data binding is then done, as required, by
the specific event handlers.

Four event handler routines are included in the code-behind to handle the click events for the four
buttons. The event handlers alter the currentPage variable as appropriate and rebind the data. To
improve performance, the event handlers first check to see if the page needs changing and rebinding.

With standard paging, all of the data is returned, even if there are thousands of rows, and the
DataGrid determines which ones are displayed. In this case, however, the bindData method uses the
stored procedure shown in Example 2-32 to retrieve only the data to be displayed for the required
page.

The stored procedure uses three parameters: pageNumber, pageSize , and totalRecords . The
pageNumber is an input parameter that defines the page to be displayed. The pageSize is an input
parameter that defines the number of rows to be displayed per page; this must be the same as the
DataGrid's PageSize property. totalRecords is an output parameter used to obtain the total number
of rows of data available for display.

The stored procedure first calculates the index of the first record and the last record to display in the
requested page, as shown here:

 SELECT @firstRecordInPage = @pageNumber * @pageSize + 1
 SELECT @lastRecordInPage = @firstRecordInPage + @pageSize

A temporary table is then created to store the data from the Book table in the desired order. This
table contains an Identity column that is set up to number the records from 1 to the total number of
records added to the table. This provides the ability to select only the specific rows needed for the
requested page number.

 CREATE TABLE #Book
 (
 [ID] [int] IDENTITY (1, 1) NOT NULL ,
 [BookID] [int] NOT NULL ,
 [Title] [nvarchar] (100) NOT NULL ,
 [ISBN] [nvarchar] (50) NOT NULL ,
 [Publisher] [nvarchar] (50) NOT NULL
)

Next, the data from the Book table is copied into the temporary table and ordered by the book title.
Now you have an ordered list of the books with the ID column set to 1 for the first book and N for the
last book.

 INSERT INTO #Book
 (BookID, Title, ISBN, Publisher)
 SELECT BookID, Title, ISBN, Publisher FROM Book ORDER BY Title

The next step is to query the temporary table for only the rows required for the page being displayed.
This is done by qualifying the query based on the ID being within the range of the first and last
records to display.

 SELECT * FROM #Book
 WHERE ID >= @firstRecordInPage
 AND ID < @lastRecordInPage

Finally, you query the Book table for the total number of books and set the totalRecords output
parameter to the count:

 SELECT @totalRecords = COUNT(*) FROM Book

The stored procedure used here was kept simple to illustrate the concept of
returning only the required data. One negative of the example code is that all of
the data from the Book table is copied to the temporary table, unnecessarily
bloating the table. One way to reduce the amount of data copied is to copy
rows only up to the last row required, a modification you will want to consider
when adapting this code to your unique environment.

If you are using SQL Server 2005, you may want to consider implementing the
stored procedure in VB.NET or C# and use the new ExecutePagedReader
method in the SqlCommand class. The Execute-PagedReader method provides the
ability to retrieve only the data you need in an efficient manner.

The bindData method first opens a connection to the database. A command is then created to
execute the stored procedure, and the three parameters required for the stored procedure are added
to it. The command is then executed using the ExecuteReader method and the returned data reader
is set as the data source for the DataGrid .

The returned DataReader must be closed to retrieve the output parameter from
the stored procedure. Attempting to access the output parameter before the
DataReader is closed will return null .

Finally, the total number of records is retrieved from the parameter collection, and the labels on the
form used to inform the user of the current page and total number of pages are initialized.

See Also

Recipe 2.8

Example 2-32. Stored procedure for record-heavy DataGrid

CREATE PROCEDURE getPageData
@pageNumber INT,
@pageSize INT,
@totalRecords INT OUTPUT
AS
DECLARE @firstRecordInPage INT
DECLARE @lastRecordInPage INT

-- Calculate the number of rows needed to get to the current page
SELECT @firstRecordInPage = @pageNumber * @pageSize + 1
SELECT @lastRecordInPage = @firstRecordInPage + @pageSize

-- Create a temporary table to copy the book data into.
-- Include only the columns needed with an additional ID
-- column that is the primary key of the temporary table.
-- In addition, it is an identity that will number the
-- records copied into the table starting with 1 thus allowing
-- us to query only for the specific records needed for the
-- requested page.
CREATE TABLE #Book
(
[ID] [int] IDENTITY (1, 1) NOT NULL ,
[BookID] [int] NOT NULL ,
[Title] [nvarchar] (100) NOT NULL ,
[ISBN] [nvarchar] (50) NOT NULL ,
[Publisher] [nvarchar] (50) NOT NULL
)

-- Copy the data from the book table into the temp table
INSERT INTO #Book
(BookID, Title, ISBN, Publisher)
SELECT BookID, Title, ISBN, Publisher FROM Book ORDER BY Title

-- Get the rows required for the passed page
SELECT * FROM #Book
WHERE ID >= @firstRecordInPage
AND ID < @lastRecordInPage

-- Get the total number of records in the table
SELECT @totalRecords = COUNT(*) FROM Book
GO

Example 2-33. Paging through a record-heavy DataGrid (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"

 CodeFile="CH02 LargeDatasetPagingVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02LargeDatasetPagingVB1"
 Title="DataGrid With Large Data Set Paging" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 DataGrid With Large Data Set Paging (VB)
 </div>
 <asp:DataGrid ID="dgBooks" runat="server"
 BorderColor="#000080"
 BorderWidth="2px"
 AutoGenerateColumns="False"
 Width="90%"
 HorizontalAlign="Center"
 AllowPaging="True"
 AllowCustomPaging="True"
 PageSize="10"
 PagerStyle-Visible="False">
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <ItemStyle CssClass="tableCellNormal" />
 <AlternatingItemStyle CssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundColumn HeaderText="Title" DataField="Title"/>
 <asp:BoundColumn HeaderText="ISBN" DataField="ISBN"
 ItemStyle-HorizontalAlign="Center"/>
 <asp:BoundColumn HeaderText="Publisher" DataField="Publisher"
 ItemStyle-HorizontalAlign="Center"/>
 </Columns>
</asp:DataGrid>
<table width="40%" border="0" align="center">
 <tr>
 <td colspan="4" align="center">
 Displaying page
 <asp:Literal id="labCurrentPage" runat="server" /> of
 <asp:Literal id="labTotalPages" runat="server" /></td>
 </tr>
 <tr>
 <td align="center">
 <input id="btnFirst" runat="server"
 type="button"
 value="First"
 onserverclick="btnFirst_ServerClick"/>
 </td>
 <td align="center">
 <input id="btnPrev" runat="server"
 type="button"
 value="Prev"
 onserverclick="btnPrev_ServerClick"/>
 </td>
 <td align="center">
 <input id="btnNext" runat="server"
 type="button"
 value="Next"

 onserverclick="btnNext_ServerClick"/>
 </td>
 <td align="center">
 <input id="Last" runat="server"
 type="button"
 value="Last"
 onserverclick="btnLast_ServerClick"/>
 </td>
 </tr>
 </table>
</asp:Content>

Example 2-34. Paging through a record-heavy DataGrid (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02 LargeDatasetPagingVB1.aspx
 ''' </summary>
 Partial Class CH02LargeDatasetPagingVB1
 Inherits System.Web.UI.Page

 'private variables used to store the current page and total number of
 'pages. This is required since the CurrentPageIndex and PageCount
 'properties of the datagrid cannot be used with custom paging

 Private currentPage As Integer
 Private totalPages As Integer

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Page.IsPostBack) Then

 'This is a post back so initialize the current and total page variables
 'with the values currently being displayed
 currentPage = CInt(labCurrentPage.Text) - 1 'zero based page numbers
 totalPages = CInt(labTotalPages.Text)
 Else
 'This is the first rendering of the form so set the current page to the
 'first page and bind the data
 currentPage = 0
 bindData()
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the first button click
 ''' event. It is responsible for setting the page index to the first
 ''' page and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnFirst_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'set new page index and rebind the data
 If (currentPage > 0) Then
 currentPage = 0
 bindData()
 End If
 End Sub 'btnFirst_ServerClick

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the previous button click
 ''' event. It is responsible for setting the page index to the previous
 ''' page and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnPrev_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'set new page index and rebind the data
 If (currentPage > 0) Then
 currentPage -= 1
 bindData()
 End If
 End Sub 'btnPrev_ServerClick

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the next button click
 ''' event. It is responsible for setting the page index to the next

 ''' page and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnNext_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'set new page index and rebind the data
 If (currentPage < totalPages - 1) Then
 currentPage += 1
 bindData()
 End If
 End Sub 'btnNext_ServerClick

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the last button click
 ''' event. It is responsible for setting the page index to the last
 ''' page and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnLast_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'set new page index and rebind the data
 If (currentPage < totalPages - 1) Then
 currentPage = totalPages - 1
 bindData()
 End If
 End Sub 'btnLast_ServerClick

 '''***
 ''' <summary>
 ''' This routine queries the database for the data to displayed and binds
 ''' it to the datagrid
 ''' </summary>
 Private Sub bindData()
 Dim dbConn As OleDbConnection = Nothing
 Dim dCmd As OleDbCommand = Nothing
 Dim dReader As OleDbDataReader = Nothing
 Dim param As OleDbParameter = Nothing
 Dim strConnection As String
 Dim strSQL As String
 Dim totalRecords As Integer

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)

 dbConn.Open()

 'create command to execute the stored procedure along with the
 'parameters required in and out of the procedure
 strSQL = "getPageData" 'name of stored procedure
 dCmd = New OleDbCommand(strSQL, dbConn)
 dCmd.CommandType = CommandType.StoredProcedure
 param = dCmd.Parameters.Add("pageNumber", OleDbType.Integer)
 param.Direction = ParameterDirection.Input
 param.Value = currentPage

 param = dCmd.Parameters.Add("pageSize", OleDbType.Integer)
 param.Direction = ParameterDirection.Input
 param.Value = dgBooks.PageSize

 param = dCmd.Parameters.Add("totalRecords", OleDbType.Integer)
 param.Direction = ParameterDirection.Output

 'execute the stored procedure and set the datasource for the datagrid
 dReader = dCmd.ExecuteReader()
 dgBooks.DataSource = dReader
 dgBooks.DataBind()

 'close the dataReader to make the output parameter available
 dReader.Close()

 'output information about the current page and total number of pages
 totalRecords = CInt(dCmd.Parameters.Item("totalRecords").Value)
 totalPages = CInt(Math.Ceiling(totalRecords / dgBooks.PageSize))
 labTotalPages.Text = totalPages.ToString()
 labCurrentPage.Text = (currentPage + 1).ToString()

 Finally
 'cleanup
 If (Not IsNothing(dReader)) Then
 dReader.Close()
 End If

 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'bindData
 End Class 'CH02 LargeDatasetPagingVB1
End Namespace

Example 2-35. Paging through a record-heavy DataGrid (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 ///***
 /// <summary>
 /// This class provides the code behind for
 /// CH02LargeDatasetPagingCS1.aspx
 /// </summary>
 public partial class CH02 LargeDatasetPagingCS1 : System.Web.UI.Page
 {

 // private variables used to store the current page and total number of
 // pages. This is required since the CurrentPageIndex and PageCount
 // properties of the datagrid cannot be used with custom paging
 private int currentPage;
 private int totalPages;

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (Page.IsPostBack)
 {
 // This is a post back so initialize the current and total page
 // variables with the values currently being displayed
 currentPage = Convert.ToInt32(labCurrentPage.Text) - 1;
 totalPages = Convert.ToInt32(labTotalPages.Text);
 }
 else
 {
 // This is the first rendering of the form so set the current page to
 // the first page and bind the data
 currentPage = 0;
 bindData();
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the first button click
 /// event. It is responsible for setting the page index to the first
 /// page and rebinding the data.

 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>

 protected void btnFirst_ServerClick(Object sender,
 System.EventArgs e)
 {
 // set new page index and rebind the data
 if (currentPage > 0)
 {
 currentPage = 0;
 bindData();
 }
 } // btnFirst_ServerClick

 ///***
 /// <summary>
 /// This routine provides the event handler for the previous button click
 /// event. It is responsible for setting the page index to the previous
 /// page and rebinding the data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnPrev_ServerClick(Object sender,
 System.EventArgs e)
 {
 // set new page index and rebind the data
 if (currentPage > 0)
 {
 currentPage -= 1;
 bindData();
 }
 } // btnPrev_ServerClick

 ///**
 /// <summary>
 /// This routine provides the event handler for the next button click
 /// event. It is responsible for setting the page index to the next
 /// page and rebinding the data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnNext_ServerClick(Object sender,
 System.EventArgs e)
 {
 // set new page index and rebind the data
 if (currentPage < totalPages - 1)
 {
 currentPage += 1;

 bindData();
 }
 } // btnNext_ServerClick

 ///***
 /// <summary>
 /// This routine provides the event handler for the last button click
 /// event. It is responsible for setting the page index to the last
 /// page and rebinding the data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnLast_ServerClick(Object sender,
 System.EventArgs e)
 {
 // set new page index and rebind the data
 if (currentPage < totalPages - 1)
 {
 currentPage = totalPages - 1;
 bindData();
 }
 } // btnLast_ServerClick

 ///**
 /// <summary>
 /// This routine queries the database for the data to displayed and binds
 /// it to the datagrid
 /// </summary>
 private void bindData()
 {
 OleDbConnection dbConn = null;
 OleDbCommand dCmd = null;
 OleDbDataReader dReader = null;
 OleDbParameter param = null;
 String strConnection = null;
 String strSQL = null;
 int totalRecords = 0;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // create command to execute the stored procedure along with the
 // parameters required in/out of the procedure
 strSQL = "getPageData"; // name of stored procedure
 dCmd = new OleDbCommand(strSQL, dbConn);

 dCmd.CommandType = CommandType.StoredProcedure;

 param = dCmd.Parameters.Add("pageNumber", OleDbType.Integer);
 param.Direction = ParameterDirection.Input;
 param.Value = currentPage;

 param = dCmd.Parameters.Add("pageSize", OleDbType.Integer);
 param.Direction = ParameterDirection.Input;
 param.Value = dgBooks.PageSize;

 param = dCmd.Parameters.Add("totalRecords", OleDbType.Integer);
 param.Direction = ParameterDirection.Output;
 //execute the stored procedure and set the datasource for the datagrid
 dReader = dCmd.ExecuteReader();
 dgBooks.DataSource = dReader;
 dgBooks.DataBind();

 // close the dataReader to make the output parameter available
 dReader.Close();

 // output information about the current page and total number of pages
 totalRecords = Convert.ToInt32(dCmd.Parameters["totalRecords"].Value);
 totalPages = Convert.ToInt32(Math.Ceiling(Convert.ToDouble(totalRecords) /
 dgBooks.PageSize));
 labTotalPages.Text = totalPages.ToString();
 labCurrentPage.Text = (currentPage + 1).ToString();
 } // try

 finally
 {
 //clean up
 if (dReader != null)
 {
 dReader.Close();
 }
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // bindData
 } // CH02LargeDatasetPagingCS1
}

Recipe 2.14. Editing Data Within a DataGrid

Problem

You want to allow the user to edit the data within the table displayed by a DataGrid .

Solution

Add an EditCommandColumn column type to the DataGrid control's display to enable editing of the data
fields of each record. A typical example of normal display mode output is shown in Figure 2-14 , and
an example of edit mode output is shown in Figure 2-15 . Examples 2-36 , 2-37 through 2-38 show
the .aspx and code-behind files for the application that produces this result.

Figure 2-14. DataGrid with editingnormal mode

Figure 2-15. DataGrid with editingrow edit mode

Discussion

This recipe uses the built-in editing facilities of the DataGrid control, in particular the
EditCommandColumn column type, which provides Edit command buttons for editing data items in each
row of a DataGrid . The EditText, CancelText , and UpdateText properties define the text to be
output for the Edit command button's Edit, Cancel, and Update hyperlinks, respectively.

 <asp:EditCommandColumn ButtonType="LinkButton"
 EditText="Edit"
 CancelText="Cancel"
 UpdateText="Update" />

The ButtonType attribute defines the type of button to output. You can specify LinkButton , which
provides hyperlinked text, or PushButton , which outputs an HTML button.

The Edit command button's EditText, CancelText , and UpdateText properties
can be set to HTML. For example, to output an image for the links, you can use
 .

In our example that implements this solution, three columns are defined for the DataGrid . The first
uses an asp:BoundColumn element with the ReadOnly attribute set to true to prevent users from
editing the field contents:

 <asp:BoundColumn DataField="SectionNumber"
 ItemStyle-HorizontalAlign="Center"
 HeaderText="Section"
 ReadOnly="True" />

The second column uses an asp:TemplateColumn element to define a layout template for normal
display (ItemTemplate) and edit mode display (EditItemTemplate) . The EditItemTemplate property
defines an asp:TextBox control to control the size and other aspects of the field contents. Both
templates are bound to the "SectionHeading" data.

 <asp:TemplateColumn HeaderText="Section Heading">
 <ItemTemplate>
 <%#Eval("SectionHeading")%>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox id="txtSectionHeading" runat="server"
 Columns="55" cssClass="tableCellNormal"
 text='<%# Eval("SectionHeading") %>' />
 </EditItemTemplate>
 </asp:TemplateColumn>

Like the second column, the third column uses an asp:TemplateColumn element. In this case,
however, the EditItemTemplate property defines an asp:DropDownList control, allowing the user to
select only from valid choices for the column. This column is bound to the yesNoSelections ArrayList
created in the code-behind. The selection in the drop-down list is initialized to the current value in the
database by binding the SelectedIndex to the index of the value in the ArrayList .

 <asp:TemplateColumn HeaderText="VB Example"
 ItemStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <%#yesNoSelections.Item(CInt(Eval("HasVBExample")))%>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:DropDownList id="selHasVBSample" runat="server"
 DataSource="<%# yesNoSelections %>"
 DataTextField="Text"
 DataValueField="Value"
 SelectedIndex='<%# CInt(Eval("HasVBExample")) %>' />
 </EditItemTemplate>
 </asp:TemplateColumn>

The Protected yesNoSelections As ArrayList declaration is added at the class level in the code-
behind to provide access to the ArrayList from the code in the .aspx file.

Page_Load just calls bindData , as is typical in this chapter's recipes. However, bindData is different
from the norm in two ways. First, the ArrayList is built with the selections that are applicable for the
user to select from when changing the value of the Has VB Example column. Second, the line
dgProblems.DataKeyField = "EditProblemID" is added to have the DataGrid maintain the primary
key value for each row without having to add it to the grid as a column (hidden or visible). This
approach stores the primary key value for each row in the view state only so it can be recovered
when needed on the server side. It has the advantage of hiding the value from prying eyes.

The dgProblems_EditCommand method handles the event generated when the user clicks the Edit link
within a row. It sets the EditItemIndex to the selected row, which causes ASP.NET to use the Edit
Template when the data for the row is rebound along with the Cancel and Update links in the edit
command column.

The dgProblems_CancelCommand method handles the event generated when the user clicks the Cancel
link in the row being edited. It sets the EditItemIndex to 1 to display the DataGrid in normal mode
when the data is rebound.

The dgProblems_UpdateCommand method handles the event generated when the user clicks the Update
link in the row being edited. It extracts the edited data, updates the data in the database, and resets
the DataGrid to normal mode when the data is rebound (see comments in the code for more details).

Example 2-36. DataGrid with editing (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02DataGridWithEditingVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02DataGridWithEditingVB"
 Title="DataGrid With Editing" %>

<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 DataGrid With Editing (VB)
 </div>
 <asp:DataGrid id="dgProblems" runat="server"
 BorderColor="#000080" BorderWidth="2px"
 AutoGenerateColumns="False"
 HorizontalAlign="center"
 Width="90%"
 OnCancelCommand="dgProblems_CancelCommand"
 OnEditCommand="dgProblems_EditCommand"
 OnUpdateCommand="dgProblems_UpdateCommand">
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <ItemStyle cssClass="tableCellNormal" />
 <AlternatingItemStyle cssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundColumn DataField="SectionNumber"
 ItemStyle-HorizontalAlign="Center"
 HeaderText="Section"
 ReadOnly="True" />
 <asp:TemplateColumn HeaderText="Section Heading">
 <ItemTemplate>
 <%#Eval("SectionHeading")%>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox id="txtSectionHeading" runat="server"
 Columns="55" cssClass="tableCellNormal"
 text='<%# Eval("SectionHeading") %>' />
 </EditItemTemplate>

 </asp:TemplateColumn>

 <asp:TemplateColumn HeaderText="VB Example"
 ItemStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <%#yesNoSelections.Item(CInt(Eval("HasVBExample")))%>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:DropDownList id="selHasVBSample" runat="server"
 DataSource="<%# yesNoSelections %>"
 DataTextField="Text"
 DataValueField="Value"
 SelectedIndex='<%# CInt(Eval("HasVBExample")) %>' />
 </EditItemTemplate>
 </asp:TemplateColumn>

 <asp:EditCommandColumn ButtonType="LinkButton"
 EditText="Edit"
 CancelText="Cancel"
 UpdateText="Update" />
 </Columns>
 </asp:DataGrid>
</asp:Content>

Example 2-37. DataGrid with editing code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02DataGridWithEditingVB.aspx
 ''' </summary>
 Partial Class CH02DataGridWithEditingVB
 Inherits System.Web.UI.Page
 'The following variable contains the list of yes/no selections used in
 'the dropdown lists and is declared protected to provide access to the
 'data from the aspx page
 Protected yesNoSelections As ArrayList

 '''**
 ''' <summary>

 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Not Page.IsPostBack) Then
 bindData()
 End If
 End Sub 'Page_Load

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the cancel command click
 ''' event. It is responsible for resetting the edit item index to no item
 ''' and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="source">Set to the source of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub dgProblems_CancelCommand(ByVal source As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs)
 dgProblems.EditItemIndex = -1
 bindData()
 End Sub 'dgProblems_CancelCommand

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the edit command click
 ''' event. It is responsible for setting the edit item index to the
 ''' selected item and rebinding the data.
 ''' </summary>
 '''
 ''' <param name="source">Set to the source of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub dgProblems_EditCommand(ByVal source As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs)
 dgProblems.EditItemIndex = e.Item.ItemIndex
 bindData()
 End Sub 'dgProblems_EditCommand

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the update command click
 ''' event. It is responsible for updating the contents of the database
 ''' with the date entered for the item currently being edited.
 ''' </summary>
 '''
 ''' <param name="source">Set to the source of the event</param>
 ''' <param name="e">Set to the event arguments</param>

 Protected Sub dgProblems_UpdateCommand(ByVal source As Object, _
 ByVal e As System.Web.UI.WebControls.DataGridCommandEventArgs)
 Dim dbConn As OleDbConnection = Nothing
 Dim dCmd As OleDbCommand = Nothing
 Dim sectionHeading As String
 Dim hasVBSample As Integer
 Dim strConnection As String
 Dim strSQL As String
 Dim rowsAffected As Integer

 Try
 'get the edited section heading and "has vb sample" data
 'NOTE: This can be done by using the FindControl method of the edited
 ' item because EditItemTemplates were used and the controls in the
 ' templates where given IDs. If a standard BoundColumn was used,
 ' the data would have to be acccessed using the cells collection
 ' (e.g. e.Item.Cells(0).Text would access the section number
 ' column in this example.
 sectionHeading = CType(e.Item.FindControl("txtSectionHeading"), _
 TextBox).Text()
 hasVBSample = CInt(CType(e.Item.FindControl("selHasVBSample"), _
 DropDownList).SelectedItem.Value)
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'update data in database
 'NOTE: The primary key used to uniquely identify the row being edited
 ' is accessed through the DataKeys collection of the DataGrid.
 strSQL = "UPDATE EditProblem " & _
 "SET SectionHeading=?" & _
 ",HasVBExample=?" & _
 " WHERE EditProblemID=" & _
 dgProblems.DataKeys(e.Item.ItemIndex).ToString()
 dCmd = New OleDbCommand(strSQL, dbConn)
 dCmd.Parameters.Add(New OleDbParameter("SectionHeading", sectionHeading))
 dCmd.Parameters.Add(New OleDbParameter("HasVBSample", hasVBSample))
 rowsAffected = dCmd.ExecuteNonQuery()

 'TODO: production code should check the number of rows affected here to
 'make sure it is exactly 1 and output the appropriate success or
 'failure information to the user.
 'reset the edit item and rebind the data
 dgProblems.EditItemIndex = -1
 bindData()

 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then

 dbConn.Close()
 End If
 End Try
 End Sub 'dgProblems_UpdateCommand

 '''***
 ''' <summary>
 ''' This routine queries the database for the data to displayed and
 ''' binds it to the DataGrid.
 ''' </summary>
 Private Sub bindData()
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dTable As DataTable = Nothing
 Dim strConnection As String
 Dim strSQL As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 strSQL = "SELECT EditProblemID, SectionNumber" & _
 ", SectionHeading, HasVBExample" & _
 " FROM EditProblem" & _
 " ORDER BY SectionNumber"

 da = New OleDbDataAdapter(strSQL, dbConn)
 dTable = New DataTable
 da.Fill(dTable)

 'build the arraylist with the acceptable responses to the
 '"Has VB Sample" field
 yesNoSelections = New ArrayList(2)
 yesNoSelections.Add(New ListItem("No", "0"))
 yesNoSelections.Add(New ListItem("Yes", "1")) \

 'set the source of the data for the datagrid control and bind it
 dgProblems.DataSource = dTable
 dgProblems.DataKeyField = "EditProblemID"
 dgProblems.DataBind()

 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try

 End Sub 'bindData
 End Class 'CH02DataGridWithEditingVB
End Namespace

Example 2-38. DataGrid with editing code-behind (.cs)

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02DataGridWithEditingCS.aspx
 /// </summary>
 public partial class CH02DataGridWithEditingCS : System.Web.UI.Page
 {
 // The following variable contains the list of yes/no selections used in
 // the dropdown lists and is declared protected to provide access to the
 // data from the aspx page
 protected ArrayList yesNoSelections;

 ///**
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 bindData();
 }
 } // Page_Load

 ///**
 /// <summary>
 /// This routine provides the event handler for the cancel command click
 /// event. It is responsible for resetting the edit item index to no item
 /// and rebinding the data.
 /// </summary>
 ///

 /// <param name="source">Set to the source of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void dgProblems_CancelCommand(Object source,
 System.Web.UI.WebControls.DataGridCommandEventArgs e)
 {
 dgProblems.EditItemIndex = -1;
 bindData();
 } // dgProblems_CancelCommand

 ///**
 /// <summary>
 /// This routine provides the event handler for the edit command click
 /// event. It is responsible for setting the edit item index to the
 /// selected item and rebinding the data.
 /// </summary>
 ///
 /// <param name="source">Set to the source of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void dgProblems_EditCommand(Object source,
 System.Web.UI.WebControls.DataGridCommandEventArgs e)
 {
 dgProblems.EditItemIndex = e.Item.ItemIndex;
 bindData();
 } // dgProblems_EditCommand

 ///**
 /// <summary>
 /// This routine provides the event handler for the update command click
 /// event. It is responsible for updating the contents of the database
 /// with the date entered for the item currently being edited.
 /// </summary>
 ///
 /// <param name="source">Set to the source of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void dgProblems_UpdateCommand(Object source,
 System.Web.UI.WebControls.DataGridCommandEventArgs e)
 {
 OleDbConnection dbConn = null;
 OleDbCommand dCmd = null;
 String sectionHeading = null;
 int hasCSSample;
 String strConnection = null;
 String strSQL = null;
 int rowsAffected;
 DropDownList ddl = null;

 try
 {
 // get the edited section heading and "has vb sample" data
 // NOTE: This can be done by using the FindControl method of the edited
 // item because EditItemTemplates were used and the controls in
 // the templates where given IDs. If a standard BoundColumn was

 // used, the data would have to be acccessed using the cells
 // collection (e.g. e.Row.Cells(0).Text would access the section
 // number column in this example.
 sectionHeading =
 ((TextBox)(e.Item.FindControl("txtSectionHeading"))).Text;
 ddl = (DropDownList)(e.Item.FindControl("selHasCSSample"));
 hasCSSample = Convert.ToInt32(ddl.SelectedItem.Value);

 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // update data in database
 // NOTE: The primary key used to uniquely identify the row being edited
 // is accessed through the DataKeys collection of the DataGrid.
 strSQL = "UPDATE EditProblem " +
 "SET SectionHeading='" + sectionHeading + "'" +
 ",HasCSExample=" + hasCSSample +
 " WHERE EditProblemID=" +
 dgProblems.DataKeys[e.Item.ItemIndex].ToString();
 dCmd = new OleDbCommand(strSQL, dbConn);
 rowsAffected = dCmd.ExecuteNonQuery();

 // TODO: production code should check the number of rows affected here to
 // make sure it is exactly 1 and output the appropriate success or
 // failure information to the user.

 // reset the edit item and rebind the data
 dgProblems.EditItemIndex = -1;
 bindData();
 }

 finally
 {
 //cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 }
 } // dgProblems_UpdateCommand

 ///***
 /// <summary>
 /// This routine queries the database for the data to displayed and
 /// binds it to the DataGrid.
 /// </summary>
 private void bindData()
 {

 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataTable dTable = null;
 String strConnection = null;
 String strSQL = null;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 strSQL = "SELECT EditProblemID, SectionNumber" +
 ", SectionHeading, HasCSExample " +
 "FROM EditProblem " +
 "ORDER BY SectionNumber";
 da = new OleDbDataAdapter(strSQL, dbConn);
 dTable = new DataTable();
 da.Fill(dTable);

 // build the arraylist with the acceptable responses to the
 // "Has C# Sample" field
 yesNoSelections = new ArrayList(2);
 yesNoSelections.Add(new ListItem("No", "0"));
 yesNoSelections.Add(new ListItem("Yes", "1"));

 // set the source of the data for the datagrid control and bind it
 dgProblems.DataSource = dTable;
 dgProblems.DataKeyField = "EditProblemID";
 dgProblems.DataBind();
 } // try

 finally
 {
 //clean up
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // bindData
 } // CH02DataGridWithEditingCS
}

Recipe 2.15. Navigating and Sorting Within a GridView

Problem

You want to use a GridView with sorting and paging.

Solution

Enable the sorting and paging functions of the GridView and add custom coding to display the sort
order in the header of the current sort column. Figure 2-16 shows a typical GridView with sorting and
paging implemented. Examples 2-39 , 2-40 through 2-41 show the .aspx file and the code-behind
files for an application that produces this output.

Figure 2-16. Combining sorting and paging in a GridView output

Discussion

Unlike the DataGrid , the GridView provides the ability to perform sorting and paging without having
to write any custom code. But because the GridView does not provide any indication of the current
sort column or order, you may want to write a small amount of custom code to accomplish this, as
described in this recipe.

As a first step, the GridView , an excellent addition to the ASP.NET 2.0 controls, provides the ability to
implement standard sorting and paging with little code. Sorting and paging are enabled by setting the
AllowSorting and AllowPaging attributes to TRue .

 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="true"
 AllowSorting="true"
 ShowHeader="true"
 …

The ShowHeader attribute must be set to true to support sorting since the
header provides the controls used to perform the sorting.

In addition, the HeaderText for each column that needs to support sorting
cannot be set to an empty string. Otherwise, the control used to perform the
sort operation for the column will not be rendered.

The Page_Load event handler in our application initializes the SqlDataSource and then sets the
DataSourceID of our GridView to the ID of the SqlDataSource .

The GridView 's built-in sorting and paging works only if the DataSourceID
property of the GridView is set to the ID of the data source. If you use the
DataSource property instead, you will have to implement all of the same event
handlers that are required to perform sorting and paging with a DataGrid (see
Recipe 2.11).

By default, the SortExpression property of the GridView is set to an empty string and the
SortDirection property is set to Ascending . To set the sort column and sort to meet your needs, you
will need to call the Sort method of the GridView passing the desired sort expression and order. This
is required since the SortExpression and SortDirection properties are read-only and cannot be set
directly. In our application, we set the initial sort column to the Title column and the sort order to
Ascending .

 If (Not Page.IsPostBack) Then
 'perform the initial sort on the first column in ascending order
 gvBooks.Sort(gvBooks.Columns(0).SortExpression, _
 SortDirection.Ascending)
 End If

 if (!Page.IsPostBack)
 {
 // perform the initial sort on the first column in ascending order
 gvBooks.Sort(gvBooks.Columns[0].SortExpression,
 SortDirection.Ascending);
 }

Call the Sort method only if the page is initially being displayed. If the Sort
method is called for each postback, the data will always be sorted using the
defaults.

To mark the current sort column and order in the GridView' s header, custom code is required in the
RowCreated event handler. Since the RowCreated event occurs for each row created in the GridView ,
you must first check to see if the row that has been created is the header.

 If (e.Row.RowType = DataControlRowType.Header) Then

 …

 End If 'If (gvBooks.SortExpression.Equals(String.Empty))

 if (e.Row.RowType == DataControlRowType.Header)
 {
 …

 } // if (e.Row.RowType == DataControlRowType.Header)

If the row that has been created is the header, you will need to loop through all of the columns in the
GridView to determine which column matches the current sort expression. When the current sort
column is determined, you need to check the sort direction and then add an HTML image to the
controls in the header column to indicate the sort direction.

 If (col.SortExpression.Equals(gvBooks.SortExpression)) Then
 'this is the sort column so determine whether the ascending or
 'descending image needs to be included
 image = New HtmlImage()
 image.Border = 0
 If (gvBooks.SortDirection = SortDirection.Ascending) Then
 image.Src = "images/sort_ascending.gif"
 Else
 image.Src = "images/sort_descending.gif"
 End If

 'add the image to the column header
 e.Row.Cells(index).Controls.Add(image)

 if (col.SortExpression.Equals(gvBooks.SortExpression))
 {

 // this is the sort column so determine whether the ascending or
 // descending image needs to be included
 image = new HtmlImage();
 image.Border = 0;
 if (gvBooks.SortDirection == SortDirection.Ascending)
 {
 image.Src = "images/sort_ascending.gif";
 }
 else
 {
 image.Src = "images/sort_descending.gif";
 }

 // add the image to the column header
 e.Row.Cells[index].Controls.Add(image);
 } // if (col.SortExpression.Equals(gvBooks.SortExpression))

See Also

Recipes 2.11 and 2.15

Example 2-39. Combining sorting and paging in a GridView (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02GridViewWithSortingAndPagingVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02GridViewWithSortingAndPagingVB"
 Title="GridView With Sorting and Paging" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 GridView With Sorting and Paging (VB)
 </div>
 <asp:SqlDataSource ID="dSource" runat="server" />
 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="true"
 AllowSorting="true"
 ShowHeader="true"
 AutoGenerateColumns="false"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 Caption=""
 HorizontalAlign="Center"
 Width="90%"
 PageSize="5"
 PagerSettings-Mode="Numeric"
 PagerSettings-PageButtonCount="5"

 PagerSettings-Position="Bottom"
 PagerStyle-HorizontalAlign="Center"
 PagerSettings-NextPageText="Next"
 PagerSettings-PreviousPageText="Prev"
 PagerStyle-CssClass="pagerText"
 OnRowCreated="gvBooks_RowCreated" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundField DataField="Title"
 HeaderText="Title "
 SortExpression="Title" />
 <asp:BoundField DataField="ISBN"
 HeaderText="ISBN "
 ItemStyle-HorizontalAlign="Center"
 SortExpression="ISBN" />
 <asp:BoundField DataField="Publisher"
 HeaderText="Publisher "
 ItemStyle-HorizontalAlign="Center"
 SortExpression="Publisher" />
 </Columns>
 </asp:GridView>
</asp:Content>

Example 2-40. Combining sorting and paging in a GridView (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02GridViewWithSortingAndPagingVB.aspx
 ''' </summary>
 Partial Class CH02GridViewWithSortingAndPagingVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''

 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 'configure the data source to get the data from the database
 'NOTE: This code must be executed anytime the page is rendered
 ' including postbacks
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT Title, ISBN, Publisher " & _
 "FROM Book " &_
 "ORDER BY Title"

 'set the data source ID for the GridView
 'NOTE: The DataSourceID must be used instead of the DataSource if the
 ' automatic sorting/paging in GridView are to be used.
 gvBooks.DataSourceID = dSource.ID

 If (Not Page.IsPostBack) Then
 'perform the initial sort on the first column in ascending order
 gvBooks.Sort(gvBooks.Columns(0).SortExpression, _
 SortDirection.Ascending)
 End If

 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the GridView's row created

 ''' event. It is responsible for setting the icon in the header row to
 ''' indicate the current sort column and sort order
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub gvBooks_RowCreated(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
 Dim index As Integer
 Dim col As DataControlField = Nothing
 Dim image As HtmlImage = Nothing

 If (e.Row.RowType = DataControlRowType.Header) Then
 'loop through the columns in the gridview updating the header to
 'mark which column is the sort column and the sort order
 For index = 0 To gvBooks.Columns.Count - 1
 col = gvBooks.Columns(index)

 'check to see if this is the sort column
 If (col.SortExpression.Equals(gvBooks.SortExpression)) Then

 'this is the sort column so determine whether the ascending or
 'descending image needs to be included
 image = New HtmlImage()
 image.Border = 0
 If (gvBooks.SortDirection = SortDirection.Ascending) Then
 image.Src = "images/sort_ascending.gif"
 Else
 image.Src = "images/sort_descending.gif"
 End If

 'add the image to the column header
 e.Row.Cells(index).Controls.Add(image)
 End If 'If (col.SortExpression = sortExpression)
 Next index
 End If 'If (gvBooks.SortExpression.Equals(String.Empty))
 End Sub 'gvBooks_RowCreated
 End Class 'CH02GridViewWithSortingAndPagingVB
End Namespace

Example 2-41. Combining sorting and paging in a GridView (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02GridViewWithSortingAndPagingCS.aspx

 /// </summary>
 public partial class CH02GridViewWithSortingAndPagingCS
 : System.Web.UI.Page
{
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event. It
 /// is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 private void Page_Load(Object sender,
 System.EventArgs e)

 {
 // configure the data source to get the data from the database
 // NOTE: This code must be executed anytime the page is rendered
 // including postbacks
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataSet;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, ISBN, Publisher " +
 "FROM Book " +
 "ORDER BY Title";

 // set the data source ID for the GridView
 // NOTE: The DataSourceID must be used instead of the DataSource if the
 // automatic sorting/paging in GridView are to be used.
 gvBooks.DataSourceID = dSource.ID;

 if (!Page.IsPostBack)
 {
 // perform the initial sort on the first column in ascending order
 gvBooks.Sort(gvBooks.Columns[0].SortExpression,
 SortDirection.Ascending);
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the GridView's row created
 /// event. It is responsible for setting the icon in the header row to
 /// indicate the current sort column and sort order
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void gvBooks_RowCreated(Object sender,
 System.Web.UI.WebControls.GridViewRowEventArgs e)
 {
 DataControlField col = null;
 HtmlImage image = null;

 if (e.Row.RowType == DataControlRowType.Header)
 {
 // loop through the columns in the gridview updating the header to
 // mark which column is the sort column and the sort order
 for (int index = 0; index < gvBooks.Columns.Count; index++)
 {
 col = gvBooks.Columns[index];

 // check to see if this is the sort column
 if (col.SortExpression.Equals(gvBooks.SortExpression))
 {
 // this is the sort column so determine whether the ascending or

 // descending image needs to be included
 image = new HtmlImage();
 image.Border = 0;
 if (gvBooks.SortDirection == SortDirection.Ascending)
 {
 image.Src = "images/sort_ascending.gif";
 }
 else
 {
 image.Src = "images/sort_descending.gif";
 }

 // add the image to the column header
 e.Row.Cells[index].Controls.Add(image);
 } // if (col.SortExpression.Equals(gvBooks.SortExpression))
 } // for index
 } // if (e.Row.RowType == DataControlRowType.Header)
 } //gvBooks_RowCreated
 } // CH02GridViewWithSortingAndPagingCS
}

Recipe 2.16. Updating a GridView Without Refreshing the
Whole Page

Problem

You want to use a GridView and have its contents be updated without refreshing the whole page
when the user performs a sort or paging operation.

Solution

Implement the solution described in Recipe 2.14 and then set the EnableSortingAndPagingCallbacks
attribute of the GridView to TRue.

Discussion

The GridView control provides built-in support for making callbacks to the server when a new sort
order or page of data is requested by the user, and, in the process, retrieves the most recent data
and updates the contents of the GridView, all without having to refresh the whole page. All you have
to do to implement this capability is to set the EnableSortingAndPagingCallbacks attribute of the
GridView to TRue. ASP.NET handles everything else for you.

 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="true"
 AllowSorting="true"
 AutoGenerateColumns="false"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 Caption=""
 HorizontalAlign="Center"
 Width="90%"
 PageSize="5"
 PagerSettings-Mode="Numeric"
 PagerSettings-PageButtonCount="5"
 PagerSettings-Position="Bottom"
 PagerStyle-HorizontalAlign="Center"
 PagerSettings-NextPageText="Next"
 PagerSettings-PreviousPageText="Prev"
 PagerStyle-CssClass="pagerText"
 OnRowCreated="gvBooks_RowCreated"

 EnableSortingAndPagingCallbacks="true" >

ASP.NET handles the partial page refresh for you by outputting client-side JavaScript to perform an
asynchronous callback to the server and handle the callback when the updated data is returned from
the server. We won't delve into the JavaScipt here, but you can see it yourself by implementing the
EnableSortingAndPagingCallbacks attribute in your application and then using the View Source
command in the browser.

The ability to update the contents of a GridView without refreshing the whole
page is not supported in all browsers. Only Internet Explorer 5.5 (and later),
Netscape 6.0 (and later), and Firefox are supported.

See Also

Recipe 2.14

Recipe 2.17. Editing Data in a GridView

Problem

You want to allow the user to edit the data within the table displayed by a GridView .

Solution

Add a GridView and an updateable data source, such as an asp:SqlDataSource , to the .aspx file, set
the AutoGenerateEditButton attribute of the GridView control to true, add EditItemTemplate elements
for each column that is to be editable, and initialize the properties of the data source in the code-
behind.

In the .aspx file:

Add a GridView control where the data is to be displayed.

Add an asp:SqlDataSource .

Set the AutoGenerateEditButton attribute of the GridView to true.

Add EditItemTemplate elements for each editable column.

In the Page_Init event handler of the code-behind class for the page, use the .NET language of your
choice to:

Initialize the SelectCommand property of the SqlDataSource to the SQL statement used to get the
data to display from the database.

Initialize the UpdateCommand property of the SqlDataSource to the SQL statement used to update
with parameters for the data the user can edit.

Add the parameters for the data the user can update to the UpdateParameters collection of the
SqlDataSource .

Set the DataKeyNames collection of the SqlDataSource to the primary key(s) used to identify a
unique row of data in the GridView .

Figure 2-17 shows the output of a typical example in normal mode and Figure 2-18 shows the output
in edit mode. Examples 2-42 , 2-43 through 2-44 show the .aspx file and the code-behind files for an
application that produces this output.

Discussion

The GridView reduces the amount of custom code required for editing tabular data over what was
required in ASP.NET 1.x (see Recipe 2.13). By binding a GridView to an updateable data source such
as the SqlDataSource , the GridView 's built-in editing capability can be used with little custom code.

Figure 2-17. GridView with editingnormal mode

Figure 2-18. GridView with editingrow edit mode

To add an edit button to each row in the GridView automatically, as shown in Figure 2-17 , you need
to set the AutoGenerateEditButton attribute to true . This will automatically generate the update and
cancel buttons when the GridView is in edit mode (see Figure 2-18).

 <asp:GridView ID="gvProblems" runat="server"
 BorderColor="#000080"
 BorderWidth="2px"
 AutoGenerateColumns="False"
 HorizontalAlign="center"

 Width="90%"
 AutoGenerateEditButton="true" >

If you use asp:BoundField elements to define the data displayed in the GridView , the GridView will
automatically handle rendering textboxes for editing the data; however, you are limited to editing
simple data. If you want to provide the ability for the user to select from a dropdown or provide any
other special editing features, you will need to define the displayed data using an asp:TemplateField
element for each editable column. The asp:TemplateField elements need to include an ItemTemplate
element that defines how the data is to be displayed in normal mode and an EditItemTemplate
element to define how the data is displayed in edit mode. The EditItemTemplates can include
dropdowns, radio buttons, or any other control that your application needs.

 <Columns>
 <asp:BoundField DataField="SectionNumber"
 ItemStyle-HorizontalAlign="Center"
 HeaderText="Section"
 ReadOnly="True" />
 <asp:TemplateField HeaderText="Section Heading"
 ItemStyle-HorizontalAlign="Left">
 <ItemTemplate>
 <%#Eval("SectionHeading")%>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox id="txtEditName" runat="server"
 Columns="40"
 Text='<%# Bind("SectionHeading") %>' />
 </EditItemTemplate>
 </asp:TemplateField>

 <asp:TemplateField HeaderText="VB Example"
 ItemStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <%#yesNoSelections.Item(CInt(Eval("HasVBExample")))%>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:DropDownList id="selHasVBSample" runat="server"
 DataSource="<%# yesNoSelections %>"
 DataTextField="Text"
 DataValueField="Value"
 SelectedValue='<%# Bind("HasVBExample") %>' />
 </EditItemTemplate>
 </asp:TemplateField>
 </Columns>

In our example, we have two editable columns. The first column contains simple text. To provide
more control over the size of the textbox displayed in edit mode, we have used an asp:TextBox and
set the number of columns to 40 .

The second column contains a yes/no value. We are using an asp:DropDownList control when the
GridView is in edit mode to limit the choices the user can enter. In addition, we are binding the
asp:DropDownList to an ArrayList containing the valid values (described later).

When using the GridView 's built-in editing functionality with EditItemTemplates
, the data binding must use the new Bind method instead of the Eval method.
When using Bind and the form is posted back to the server, a name/value
collection of the edited data is passed to the server and is used by ASP.NET to
provide the parameter values for the update command.

The names of the parameters defined in the UpdateCommand and the
UpdateParameters collection must match the names of the columns in the data
source bound to the controls using the Bind method. If they do not match, the
update will fail, indicating the missing parameter value must be specified. If you
need the column names in the data source and parameter names to be
different, you have to provide custom code to handle the differences.

In the Page_Init event handler in the code-behind, the ArrayList used to provide the valid selections
in the asp:DropDownList displayed in edit modeis initialized. In our example, we created the list
programmatically. In your application, the list can be created from a database or any other data
source, as required.

The SqlDataSource is initialized in the normal manner with a couple of additions. The UpdateCommand
property is set to the SQL required to update the data in the database. The SQL needs to use
parameters for the values to update as well as the value of the primary key used to identify the
unique record being updated.

 dSource.UpdateCommand = "UPDATE EditProblem " & _
 "SET SectionHeading=@SectionHeading" & _
 ",HasVBExample=@HasVBExample" & _
 " WHERE EditProblemID=@_EditProblemID"

 dSource.UpdateCommand = "UPDATE EditProblem " +
 "SET SectionHeading=@SectionHeading" +
 ",HasCSExample=@HasCSExample" +
 " WHERE EditProblemID=@_EditProblemID";

In addition, Parameter objects need to be created and added to the UpdateParameters collection of
SqlDataSource for each of the data values being changed. A Parameter object does not need to be
added for the primary key value. ASP.NET will automatically handle the primary key value(s) from
DataKeyNames collection (described below). The parameter names must match the names of the
parameters in the SQL update statement.

 param = New Parameter("SectionHeading", _
 TypeCode.String)
 dSource.UpdateParameters.Add(param)
 param = New Parameter("HasVBExample", _
 TypeCode.Int32)
 dSource.UpdateParameters.Add(param)

 param = new Parameter("SectionHeading",
 TypeCode.String);
 dSource.UpdateParameters.Add(param);
 param = new Parameter("HasCSExample",
 TypeCode.Int32);
 dSource.UpdateParameters.Add(param);

The DataKeyNames collection is set to a string array containing the names of the column(s) used in the
database as the primary key. This can be one or more columns.

 Dim dataKeys(0) As String

 …

 dataKeys(0) = "EditProblemID"
 gvProblems.DataKeyNames = dataKeys

 String[] dataKeys;

 …

 dataKeys = new string[1] {"EditProblemID"};
 gvProblems.DataKeyNames = dataKeys;

Finally, the DataSourceID property is set to the ID of the SqlDataSource :

 gvProblems.DataSourceID = dSource.ID

 gvProblems.DataSourceID = dSource.ID;

The GridView 's built-in editing will work only if the DataSourceID property of
the GridView is set to the ID of the data source. If the DataSource property is
used instead, you will have to implement all of the same event handlers
required to perform editing with a DataGrid (see Recipe 2.13).

By using a GridView with an updateable data source and following the coding conventions for column
and parameter names described in this recipe, editing can be implemented with a minimal amount of
custom code.

The data source must be initialized in the Page_Init event handler. If the data
source is initialized later in the page life cycle, ASP.NET will not have the
information it needs to use the built-in editing functionality.

See Also

Recipe 2.13

Example 2-42. GridView with editing (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02GridViewWithEditingVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02GridViewWithEditingVB"
 Title="GridView With Editing" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 GridView With Editing (VB)
 </div>
 <asp:SqlDataSource id="dSource" runat="server" />
 <asp:GridView ID="gvProblems" runat="server"

 BorderColor="#000080"
 BorderWidth="2px"
 AutoGenerateColumns="False"
 HorizontalAlign="center"
 Width="90%"
 AutoGenerateEditButton="true" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader"
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundField DataField="SectionNumber"
 ItemStyle-HorizontalAlign="Center"
 HeaderText="Section"
 ReadOnly="True" />

 <asp:TemplateField HeaderText="Section Heading"
 ItemStyle-HorizontalAlign="Left">
 <ItemTemplate>
 <%#Eval("SectionHeading")%>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:TextBox id="txtSectionHeading" runat="server"
 Columns="40"
 Text='<%# Bind("SectionHeading") %>' />
 </EditItemTemplate>
 </asp:TemplateField>

 <asp:TemplateField HeaderText="VB Example"
 ItemStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <%#yesNoSelections.Item(CInt(Eval("HasVBExample")))%>
 </ItemTemplate>
 <EditItemTemplate>
 <asp:DropDownList id="selHasVBSample" runat="server"
 DataSource="<%# yesNoSelections %>"
 DataTextField="Text"
 DataValueField="Value"
 SelectedValue='<%# Bind("HasVBExample") %>' />
 </EditItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>
</asp:Content>

Example 2-43. GridView with editing (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02GridViewWithEditingVB.aspx
 ''' </summary>
 Partial Class CH02GridViewWithEditingVB
 Inherits System.Web.UI.Page

 'The following variable contains the list of yes/no selections used in
 'the dropdown lists and is declared protected to provide access to the

 'data from the aspx page
 Protected yesNoSelections As ArrayList

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page init event. It
 ''' is responsible for initializing the data source and the grid view
 ''' on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Init(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Init
 Dim dataKeys(0) As String
 Dim param As Parameter

 'build the arraylist with the acceptable responses to the
 '"Has VB Sample" field
 yesNoSelections = New ArrayList(2)
 yesNoSelections.Add(New ListItem("No", "0"))
 yesNoSelections.Add(New ListItem("Yes", "1"))

 'configure the data source to get the data from the database
 'NOTE: This code must be executed anytime the page is rendered
 ' including postbacks
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("sqlConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet
 dSource.ProviderName = "System.Data.SqlClient"
 dSource.SelectCommand = "SELECT EditProblemID, SectionNumber" & _
 ", SectionHeading, HasVBExample" & _
 " FROM EditProblem" & _
 " ORDER BY SectionNumber"
 dSource.UpdateCommand = "UPDATE EditProblem " & _
 "SET SectionHeading=@SectionHeading" & _
 ",HasVBExample=@HasVBExample" & _
 " WHERE EditProblemID=@_EditProblemID"
 param = New Parameter("SectionHeading", _
 TypeCode.String)
 dSource.UpdateParameters.Add(param)

 param = New Parameter("HasVBExample", _
 TypeCode.Int32)
 dSource.UpdateParameters.Add(param)

 'set the source of the data and the data keys for the gridview control
 dataKeys(0) = "EditProblemID"
 gvProblems.DataKeyNames = dataKeys
 gvProblems.DataSourceID = dSource.ID
 End Sub 'Page_Init
 End Class 'CH02GridViewWithEditingVB

End Namespace

Example 2-44. GridView with editing (.cs)

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02GridViewWithEditingCS.aspx
 /// </summary>
 public partial class CH02GridViewWithEditingCS : System.Web.UI.Page
 {
 // The following variable contains the list of yes/no selections used in
 // the dropdown lists and is declared protected to provide access to the
 // data from the aspx page
 protected ArrayList yesNoSelections;

 ///***
 /// <summary>
 /// This routine provides the event handler for the page init event. It
 /// is responsible for initializing the data source and the grid view
 /// on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Init(object sender,
 EventArgs e)
 {
 String[] dataKeys;
 Parameter param;

 // build the arraylist with the acceptable responses to the
 // "Has C# Sample" field
 yesNoSelections = new ArrayList(2);
 yesNoSelections.Add(new ListItem("No", "0"));
 yesNoSelections.Add(new ListItem("Yes", "1"));

 // configure the data source to get the data from the database
 // NOTE: This code must be executed anytime the page is rendered
 // including postbacks
 dSource.ConnectionString = ConfigurationManager.

 ConnectionStrings["sqlConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataSet;
 dSource.ProviderName = "System.Data.SqlClient";
 dSource.SelectCommand = "SELECT EditProblemID, SectionNumber" +
 ", SectionHeading, HasCSExample" +
 " FROM EditProblem" +
 " ORDER BY SectionNumber";
 dSource.UpdateCommand = "UPDATE EditProblem " +
 "SET SectionHeading=@SectionHeading" +
 ",HasCSExample=@HasCSExample" +
 " WHERE EditProblemID=@_EditProblemID";
 param = new Parameter("SectionHeading",
 TypeCode.String);
 dSource.UpdateParameters.Add(param);
 param = new Parameter("HasCSExample",
 TypeCode.Int32);
 dSource.UpdateParameters.Add(param);

 // set the source of the data and the data keys for the gridview control
 dataKeys = new string[1] {"EditProblemID"};
 gvProblems.DataKeyNames = dataKeys;
 gvProblems.DataSourceID = dSource.ID;
 } // Page_Init
 } // CH02GridViewWithEditingCS
}

Recipe 2.18. Inserting a Row Within a GridView

Problem

You want to provide the ability for a user to insert a new row of data within a GridView .

Solution

Add a GridView and an updateable data source, such as an asp:SqlDataSource , to the .aspx file, set
the ShowFooter attribute of the GridView control to TRue , add Footer-Template elements for each
column that is to be inserted, add an Insert button in the footer, and initialize the properties of the
data source in the code-behind. When the user clicks the Insert button, set the parameter values
from the entered data and use the data source to insert the data in the GridView's RowCommand event
handler in the code-behind.

In the .aspx file:

Add a GridView control where the data is to be displayed.1.

Add an asp:SqlDataSource .2.

Set the ShowFooter attribute of the GridView to TRue .3.

Add FooterTemplate elements for each column that is to be inserted.4.

In the Page_Init event handler of the code-behind class for the page, use the .NET language of your
choice to:

Initialize the SelectCommand property of the SqlDataSource to the SQL statement used to get the
data to display from the database.

1.

Initialize the InsertCommand property of the SqlDataSource to the SQL statement (with
parameters) used to insert in the database the data the user enters.

2.

Add the parameters for the data the user can update to the InsertParameters collection of the
SqlDataSource .

3.

In the RowCommand event handler, set the values of the InsertParameters of the SqlDataSource
from the controls containing the data entered by the user and then call the Insert method of
the SqlDataSource .

4.

Figure 2-19 shows the output of a typical example in normal mode and Figure 2-18 shows the output
in our application. Examples 2-45 , 2-46 through 2-47 show the .aspx file and the code-behind files

for an application that produces this output.

Figure 2-19. GridView with row insert output

Discussion

Most applications provide the ability to add new records to a tabular display of data. Though the
GridView does not directly support inserting a new record using an updateable data source, such as
the SqlDataSource , it can be altered to provide the ability to insert a new record when combined with
a small amount of custom code.

In our example, we use the footer row of the GridView to provide a location for the textboxes and
drop-down list necessary to enter the data for a new row. In addition, we add a new column on the
right side of the GridView to provide a location for an Insert button, as shown in Figure 2-19 . To
make the footer visible, the ShowFooter attribute must be set to true .

 <asp:GridView ID="gvProblems" runat="server"
 BorderColor="#000080"
 BorderWidth="2px"
 AutoGenerateColumns="False"
 HorizontalAlign="center"
 Width="90%"
 ShowFooter="true"
 OnRowCommand="gvProblems_RowCommand">

A FooterTemplate element is provided for each asp:TemplateField element to define the HTML that is
to be rendered in the footer. The first and second columns contain an asp:TextBox control, the third
column contains an asp:DropDownList control, and the fourth column contains an asp:Button control.

 <Columns>
 <asp:TemplateField HeaderText="Section"
 ItemStyle-HorizontalAlign="Center"
 FooterStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <%#Eval("SectionNumber")%>
 </ItemTemplate>
 <FooterTemplate>
 <asp:TextBox id="txtSectionNumber" runat="server"
 Columns="3" />
 </FooterTemplate>
 </asp:TemplateField>

 <asp:TemplateField HeaderText="Section Heading"
 ItemStyle-HorizontalAlign="Left"
 FooterStyle-HorizontalAlign="Left">
 <ItemTemplate>
 <%#Eval("SectionHeading")%>
 </ItemTemplate>
 <FooterTemplate>
 <asp:TextBox id="txtSectionHeading" runat="server"
 Columns="40" />
 </FooterTemplate>
 </asp:TemplateField>

 <asp:TemplateField HeaderText="VB Example"
 ItemStyle-HorizontalAlign="Center"
 FooterStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <%#yesNoSelections.Item(CInt(Eval("HasVBExample")))%<

 </ItemTemplate>
 <FooterTemplate>
 <asp:DropDownList id="selHasVBSample" runat="server"
 DataSource="<%# yesNoSelections %>"
 DataTextField="Text"
 DataValueField="Value" />
 </FooterTemplate>
 </asp:TemplateField>

 <asp:TemplateField FooterStyle-HorizontalAlign="Center">
 <FooterTemplate>
 <asp:Button ID="btnInsert" runat="server"
 Text="Insert"
 CommandName="Insert" />
 </FooterTemplate>
 </asp:TemplateField>
 </Columns>

In the Page_Init event handler in the code-behind, the ArrayList used to provide the valid selections
in the asp:DropDownList is initialized and bound to the drop-down list. In our example, we
programmatically created the list. In your application, the list can be created from a database or any
other data source, as required.

The SqlDataSource is initialized in the normal manner with a couple of additions. The InsertCommand
property is set to the SQL required to insert the data in the database. The SQL needs to use
parameters for the data values.

 dSource.InsertCommand = "INSERT INTO EditProblem " & _
 " (SectionNumber, SectionHeading, HasVBExample)" & _
 " VALUES" & _
 " (@SectionNumber,@SectionHeading,@HasVBExample)"

 dSource.InsertCommand = "INSERT INTO EditProblem " +
 " (SectionNumber, SectionHeading, HasCSExample)" +
 " VALUES" +
 " (@SectionNumber,@SectionHeading,@HasCSExample)";

In addition, Parameter objects need to be created and added to the InsertParameters collection of
SqlDataSource for each of the data values in the inserted row:

 param = New Parameter("SectionNumber", _
 TypeCode.Int32)
 dSource.InsertParameters.Add(param)
 param = New Parameter("SectionHeading", _
 TypeCode.String)
 dSource.InsertParameters.Add(param)
 param = New Parameter("HasVBExample", _
 TypeCode.Int32)
 dSource.InsertParameters.Add(param)

 param = new Parameter("SectionNumber",
 TypeCode.Int32);
 dSource.InsertParameters.Add(param);
 param = new Parameter("SectionHeading",
 TypeCode.String);

 dSource.InsertParameters.Add(param);
 param = new Parameter("HasCSExample",
 TypeCode.Int32);
 dSource.InsertParameters.Add(param);

Finally, the DataSourceID property needs to be set to the ID of the SqlDataSource :

 gvProblems.DataSourceID = dSource.ID

 gvProblems.DataSourceID = dSource.ID;

In the RowCommand event handler (gvProblems_RowCommand in our example), the data entered by the
user is retrieved from the controls in the footer and used to set the values for the InsertParameters :

 get the section number and set the parameter value
 tBox = CType(gvProblems.FooterRow.FindControl("txtSectionNumber"), _
 TextBox)
 dSource.InsertParameters("SectionNumber").DefaultValue = tBox.Text

 'get the section heading and set the parameter value
 tBox = CType(gvProblems.FooterRow.FindControl("txtSectionHeading"), _
 TextBox)
 dSource.InsertParameters("SectionHeading").DefaultValue = tBox.Text

 'get the has sample selection and set the parameter value
 ddList = CType(gvProblems.FooterRow.FindControl("selHasVBSample"), _
 DropDownList)
 dSource.InsertParameters("HasVBExample").DefaultValue = _
 ddList.SelectedItem.Value

 // get the section number and set the parameter value
 tBox = (TextBox)(gvProblems.FooterRow.FindControl("txtSectionNumber"));
 dSource.InsertParameters["SectionNumber"].DefaultValue = tBox.Text;

 // get the section heading and set the parameter value
 tBox = (TextBox)(gvProblems.FooterRow.FindControl("txtSectionHeading"));
 dSource.InsertParameters["SectionHeading"].DefaultValue = tBox.Text;

 // get the has sample selection and set the parameter value
 ddList = (DropDownList)(gvProblems.FooterRow.FindControl("selHasCSSample"));
 dSource.InsertParameters["HasCSExample"].DefaultValue =
 ddList.SelectedItem.Value;

Once the parameter values for the insert command have been set, the Insert method of the data
source is called to perform the insert operation:

 dSource.Insert()

 dSource.Insert();

Updateable data sources, like the SqlDataSource used in this example, significantly reduce the
amount of custom code required to implement common functionality, such as inserting a new record.
This same approach can be used with a DataGrid , provided your application requires the use of a
DataGrid .

Example 2-45. GridView with row insert (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02GridViewWithInsertVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02GridViewWithInsertVB"
 Title="Inserting Row In a GridView" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Inserting Row In a GridView (VB)
 </div>
 <asp:SqlDataSource id="dSource" runat="server" />
 <asp:GridView ID="gvProblems" runat="server"
 BorderColor="#000080"
 BorderWidth="2px"
 AutoGenerateColumns="False"
 HorizontalAlign="center"
 Width="90%"
 ShowFooter="true"
 OnRowCommand="gvProblems_RowCommand">
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <FooterStyle CssClass="tableCellSelected" />
 <Columns>
 <asp:TemplateField HeaderText="Section"
 ItemStyle-HorizontalAlign="Center"
 FooterStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <%#Eval("SectionNumber")%>
 </ItemTemplate>
 <FooterTemplate>
 <asp:TextBox id="txtSectionNumber" runat="server"
 Columns="3" />
 </FooterTemplate>
 </asp:TemplateField>

 <asp:TemplateField HeaderText="Section Heading"
 ItemStyle-HorizontalAlign="Left"
 FooterStyle-HorizontalAlign="Left">
 <ItemTemplate>
 <%#Eval("SectionHeading")%>
 </ItemTemplate>
 <FooterTemplate>
 <asp:TextBox id="txtSectionHeading" runat="server"
 Columns="40" />
 </FooterTemplate>
 </asp:TemplateField>

 <asp:TemplateField HeaderText="VB Example"
 ItemStyle-HorizontalAlign="Center"
 FooterStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <%#yesNoSelections.Item(CInt(Eval("HasVBExample")))%>

 </ItemTemplate>
 <FooterTemplate>
 <asp:DropDownList id="selHasVBSample" runat="server"
 DataSource="<%# yesNoSelections %>"
 DataTextField="Text"
 DataValueField="Value" />
 </FooterTemplate>>
 </asp:TemplateField>

 <asp:TemplateField FooterStyle-HorizontalAlign="Center">
 <FooterTemplate>
 <asp:Button ID="btnInsert" runat="server"
 Text="Insert"
 CommandName="Insert" />
 </FooterTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>
</asp:Content>

Example 2-46. GridView with row insert (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data

Namespace ASPNetCookbook.VBExamples

''' <summary>
''' This class provides the code behind for
''' CH02GridViewWithInsertVB.aspx
''' </summary>
Partial Class CH02GridViewWithInsertVB
 Inherits System.Web.UI.Page

 'The following variable contains the list of yes/no selections used in
 'the dropdown lists and is declared protected to provide access to the
 'data from the aspx page
 Protected yesNoSelections As ArrayList

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page init event. It
 ''' is responsible for initializing the data source and the grid view
 ''' on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Init(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Init
 Dim param As Parameter

 'build the arraylist with the acceptable responses to the
 '"Has VB Sample" field
 yesNoSelections = New ArrayList(2)
 yesNoSelections.Add(New ListItem("No", "0"))
 yesNoSelections.Add(New ListItem("Yes", "1"))

 'configure the data source to get the data from the database
 'NOTE: This code must be executed anytime the page is rendered
 ' including postbacks
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("sqlConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet
 dSource.ProviderName = "System.Data.SqlClient"
 dSource.SelectCommand = "SELECT EditProblemID, SectionNumber" & _
 ", SectionHeading, HasVBExample" & _
 " FROM EditProblem" & _
 " ORDER BY SectionNumber"

 dSource.InsertCommand = "INSERT INTO EditProblem " & _
 " (SectionNumber, SectionHeading, HasVBExample)" & _
 " VALUES" & _
 " (@SectionNumber,@SectionHeading,@HasVBExample)"
 param = New Parameter("SectionNumber", _
 TypeCode.Int32)
 dSource.InsertParameters.Add(param)
 param = New Parameter("SectionHeading", _
 TypeCode.String)

 dSource.InsertParameters.Add(param)
 param = New Parameter("HasVBExample", _
 TypeCode.Int32)
 dSource.InsertParameters.Add(param)

 'set the source of the data for the gridview control
 gvProblems.DataSourceID = dSource.ID
 End Sub 'Page_Init

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the GridView row command.
 ''' It is responsible for processing the Add button click.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub gvProblems_RowCommand(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewCommandEventArgs)
 Dim tBox As TextBox
 Dim ddList As DropDownList

 'check to see if the command is for the Insert button
 If (e.CommandName.Equals("Insert")) Then
 'get the section number and set the parameter value

 tBox = CType(gvProblems.FooterRow.FindControl("txtSectionNumber"), _
 TextBox)
 dSource.InsertParameters("SectionNumber").DefaultValue = tBox.Text

 'get the section heading and set the parameter value
 tBox = CType(gvProblems.FooterRow.FindControl("txtSectionHeading"), _
 TextBox)
 dSource.InsertParameters("SectionHeading").DefaultValue = tBox.Text

 'get the has sample selection and set the parameter value
 ddList = CType(gvProblems.FooterRow.FindControl("selHasVBSample"), _
 DropDownList)
 dSource.InsertParameters("HasVBExample").DefaultValue = _
 ddList.SelectedItem.Value

 'insert the row in the database
 dSource.Insert()
 End If
 End Sub 'gvProblems_RowCommand
 End Class 'CH02GridViewWithInsertVB
End Namespace

Example 2-47. GridView with row insert (.cs)

using System;
using System.Collections;
using System.Configuration;
using System.Data;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02GridViewWithInsertCS.aspx
 /// </summary>
 public partial class CH02GridViewWithInsertCS : System.Web.UI.Page
 {
 // The following variable contains the list of yes/no selections used in
 // the dropdown lists and is declared protected to provide access to the
 // data from the aspx page
 protected ArrayList yesNoSelections;

 ///***
 /// <summary>
 /// This routine provides the event handler for the page init event. It
 /// is responsible for initializing the data source and the grid view
 /// on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Init(object sender,
 EventArgs e)

 {
 Parameter param;

 // build the arraylist with the acceptable responses to the
 // "Has C# Sample" field
 yesNoSelections = new ArrayList(2);
 yesNoSelections.Add(new ListItem("No", "0"));
 yesNoSelections.Add(new ListItem("Yes", "1"));

 // configure the data source to get the data from the database
 // NOTE: This code must be executed anytime the page is rendered
 // including postbacks
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["sqlConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataSet;
 dSource.ProviderName = "System.Data.SqlClient";
 dSource.SelectCommand = "SELECT EditProblemID, SectionNumber" +
 ", SectionHeading, HasCSExample" +
 " FROM EditProblem" +
 " ORDER BY SectionNumber";

 dSource.InsertCommand = "INSERT INTO EditProblem " +
 " (SectionNumber, SectionHeading, HasCSExample)" +
 " VALUES" +
 " (@SectionNumber,@SectionHeading,@HasCSExample)";
 param = new Parameter("SectionNumber",
 TypeCode.Int32);
 dSource.InsertParameters.Add(param);
 param = new Parameter("SectionHeading",
 TypeCode.String);
 dSource.InsertParameters.Add(param);
 param = new Parameter("HasCSExample",
 TypeCode.Int32);
 dSource.InsertParameters.Add(param);

 // set the source of the data for the gridview control
 gvProblems.DataSourceID = dSource.ID;
 } // Page_Init

 ///***
 /// <summary>
 /// This routine provides the event handler for the GridView row command.
 /// It is responsible for processing the Add button click.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void gvProblems_RowCommand(Object sender,
 System.Web.UI.WebControls.GridViewCommandEventArgs e)
 {
 TextBox tBox;
 DropDownList ddList;

 // check to see if the command is for the Insert button
 if (e.CommandName.Equals("Insert"))
 {

 // get the section number and set the parameter value
 tBox = (TextBox)(gvProblems.FooterRow.FindControl("txtSectionNumber"));
 dSource.InsertParameters["SectionNumber"].DefaultValue = tBox.Text;

 // get the section heading and set the parameter value
 tBox = (TextBox)(gvProblems.FooterRow.FindControl("txtSectionHeading"));
 dSource.InsertParameters["SectionHeading"].DefaultValue = tBox.Text;

 // get the has sample selection and set the parameter value
 ddList = (DropDownList)
 (gvProblems.FooterRow.FindControl("selHasCSSample"));
 dSource.InsertParameters["HasCSExample"].DefaultValue =
 ddList.SelectedItem.Value;

 // insert the row in the database
 dSource.Insert();

 }
 } // gvProblems_RowCommand
 } // CH02GridViewWithInsertCS
}

Recipe 2.19. Formatting Columnar Data in a GridView

Problem

You need to format dates and numbers in your GridView controls.

Solution

Use the DataFormatString attribute of the asp:BoundField element:

Within the .aspx file that contains the GridView control, add a BoundField element with the
appropriate DataFormatString attribute for each column you want to format.

1.

If the DataFormatString does not provide the flexibility you need to format your data, use the
ItemDataBound event instead to gain greater flexibility.

2.

Figure 2-20 shows the appearance of an example GridView with the Publish Date and List Price
columns formatted for dates and currency, respectively. Examples 2-48 , 2-49 through 2-50 show
the .aspx and code-behind files for an application that produces this result.

Figure 2-20. Formatting columnar data in a GridView output

Discussion

The formatting of dates and numbers in a GridView is performed with the DataFormatString attribute
of the asp:BoundField element. The general format of the formatting string is {A:B }, where A is the
zero-based index number of the property the format applies to (this is generally 0) and B specifies

the format.

Numeric formats can be any of the following. Most numeric formats can be followed by an integer
defining the number of decimal places displayed.

Table 2-2.

Format character Description

C Displays numeric values in currency format

Format character Description

D Displays numeric values in decimal format

E Displays numeric values in scientific (exponential) format

F Displays numeric values in fixed format

G Displays numeric values in general format

N Displays numeric values in number format

X Displays numeric values in hexadecimal format

Time/date formats can be any combination of the following:

Table 2-3.

Format
character

Associated property/description
Example format pattern

(en-US)

d ShortDatePattern MM/dd/yyyy

D LongDatePattern dddd, dd MMMM yyyy

f Full date and time (long date and short time) dddd, dd MMMM yyyy HH:mm

F FullDateTimePattern (long date and long time) dddd, dd MMMM yyyy HH:mm:ss

g General (short date and short time) MM/dd/yyyy HH:mm

G General (short date and long time) MM/dd/yyyy HH:mm:ss

M, M MonthDayPattern MMMM dd

r, R RFC1123Pattern
ddd, dd MMM yyyy

HH':'mm':'ss 'GMT'

S
SortableDateTimePattern (based on ISO 8601)
using local time

yyyy'-'MM'-

'dd'T'HH':'mm':'ss

t ShortTimePattern HH:mm

T LongTimePattern HH:mm:ss

u
UniversalSortableDateTimePattern using universal
time

yyyy'-'MM'-'dd

HH':'mm':'ss'Z'

U
Full date and time (long date and long time) using
universal time

dddd, dd MMMM yyyy HH:mm:ss

y, Y YearMonthPattern yyyy MMMM

D Displays numeric values in decimal format

E Displays numeric values in scientific (exponential) format

F Displays numeric values in fixed format

G Displays numeric values in general format

N Displays numeric values in number format

X Displays numeric values in hexadecimal format

Time/date formats can be any combination of the following:

Table 2-3.

Format
character

Associated property/description
Example format pattern

(en-US)

d ShortDatePattern MM/dd/yyyy

D LongDatePattern dddd, dd MMMM yyyy

f Full date and time (long date and short time) dddd, dd MMMM yyyy HH:mm

F FullDateTimePattern (long date and long time) dddd, dd MMMM yyyy HH:mm:ss

g General (short date and short time) MM/dd/yyyy HH:mm

G General (short date and long time) MM/dd/yyyy HH:mm:ss

M, M MonthDayPattern MMMM dd

r, R RFC1123Pattern
ddd, dd MMM yyyy

HH':'mm':'ss 'GMT'

S
SortableDateTimePattern (based on ISO 8601)
using local time

yyyy'-'MM'-

'dd'T'HH':'mm':'ss

t ShortTimePattern HH:mm

T LongTimePattern HH:mm:ss

u
UniversalSortableDateTimePattern using universal
time

yyyy'-'MM'-'dd

HH':'mm':'ss'Z'

U
Full date and time (long date and long time) using
universal time

dddd, dd MMMM yyyy HH:mm:ss

y, Y YearMonthPattern yyyy MMMM

Formatting can be applied when using data binding to any other
controlincluding text boxes, repeaters, and the likeby passing the same format
string described in this recipe as the second parameter of the Eval method. For
example:

 Eval(" PublishDate ",
 "{0:MMM dd, yyyy}")
 Eval(" ListPrice",
 "{0:C2}")

Formatting data in this manner can be costly in terms of performance. A less
costly approach is shown next.

If the DataFormatString does not provide the flexibility you need to format your data, the
RowDataBound event can be used to provide total flexibility in the data presented. As with most events
in ASP.NET, the RowDataBound event is passed two parameters. The first argument is the sender of
the event. In this case, it will be the GridView . The second argument is the event arguments. This
parameter (by default named e) provides a reference to the item that has been data bound. By using
this argument, each column in the row that has been data bound can be accessed and the data
formatted as required. There are almost no limits to the reformatting that can be done using the
RowDataBound event. The following code provides an example of using the RowDataBound event to
format the Publish Date and List Price columns in our example:

 Protected Sub gvBooks_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
 Const DATE_PUBLISHED_COL As Integer = 1
 Const LIST_PRICE_COL As Integer = 2

 Dim cell As TableCell
 Dim datePublished As Date
 Dim listPrice As Single

 'make sure the item data bound is a data row since this event is also
 'called for the header, footer, pager, etc. and no formatting is
 'required for these items
 If (e.Row.RowType = DataControlRowType.DataRow) Then
 'get the date published that was placed in the GridView during data
 'binding and reformat it as required
 cell = CType(e.Row.Controls(DATE_PUBLISHED_COL), _
 DataControlFieldCell)
 datePublished = CType(cell.Text, _
 Date)

 cell.Text = datePublished.ToString("MMM dd, yyyy")

 'get the list price that was placed in the GridView during data
 'binding and reformat it as required
 cell = CType(e.Row.Controls(LIST_PRICE_COL), _
 DataControlFieldCell)
 listPrice = CType(cell.Text, _
 Single)
 cell.Text = listPrice.ToString("C2")
 End If
 End Sub 'gvBooks_RowDataBound

 protected void gvBooks_RowDataBound(Object sender,
 System.Web.UI.WebControls.GridViewRowEventArgs e)
 {
 const int DATE_PUBLISHED_COL = 1;
 const int LIST_PRICE_COL = 2;

 TableCell cell;
 DateTime datePublished;
 Single listPrice;

 // make sure the item data bound is adata row since this event is also
 // called for the header, footer, pager, etc. and no formatting is
 // required for these items
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 // get the date published that was placed in the GridView during data
 // binding and reformat it as required
 cell = (DataControlFieldCell)(e.Row.Controls[DATE_PUBLISHED_COL]);
 datePublished = Convert.ToDateTime(cell.Text);
 cell.Text = datePublished.ToString("MMM dd, yyyy");

 // get the list price that was placed in the GridView during data
 // binding and reformat it as required
 cell = (DataControlFieldCell)(e.Row.Controls[LIST_PRICE_COL]);
 listPrice = Convert.ToSingle(cell.Text);
 cell.Text = listPrice.ToString("C2");
 }
 } //gvBooks_RowDataBound

Remove any DataFormatString properties from the BoundField elements when
using this method of formatting. The additional data conversions and
formatting will result in a performance hit as well as potential confusion if the
formatting is coded differently.

See Also

Search Standard Numeric Format Strings in the MSDN Library.

Example 2-48. Formatting columnar data in a GridView (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02GridViewWithFormattedColumnsVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02GridViewWithFormattedColumnsVB1"
 Title="GridView With Formatted Columns - ASPX" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 GridView With Formatted Columns In ASPX (VB)
 </div>
 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="false"
 AllowSorting="false"
 AutoGenerateColumns="false"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 Caption=""
 HorizontalAlign="Center"
 Width="90%" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundField DataField="Title"
 HeaderText="Title" />
 <asp:BoundField HeaderText="Publish Date"
 DataField="PublishDate"
 ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:MMM dd, yyyy}" />
 <asp:BoundField HeaderText="List Price"
 DataField="ListPrice"
 ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:C2}" />
 </Columns>
 </asp:GridView>
</asp:Content>

Example 2-49. Formatting columnar data in a GridView code-behind (.vb)

Option Explicit On
Option Strict On

Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02GridViewWithFormattedColumnsVB1.aspx
 ''' </summary>
 Partial Class CH02GridViewWithFormattedColumnsVB1
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dSource As SqlDataSource = Nothing

 If (Not Page.IsPostBack) Then
 'configure the data source to get the data from the database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " & _
 "FROM Book " & _
 "ORDER BY Title"

 'set the source of the data for the gridview control and bind it
 gvBooks.DataSource = dSource
 gvBooks.DataBind()
 End If
 End Sub 'Page_Load
 End Class 'CH02GridViewWithFormattedColumnsVB1
End Namespace

Example 2-50. Formatting columnar data in a GridView code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples

{
 /// <summary>
 /// This class provides the code behind for
 /// CH02GridViewWithFormattedColumnsCS1.aspx
 /// </summary>
 public partial class CH02GridViewWithFormattedColumnsCS1
 : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 SqlDataSource dSource = null;

 if (!Page.IsPostBack)
 {
 // configure the data source to get the data from the database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataReader;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " +
 "FROM Book " +
 "ORDER BY Title";

 // set the source of the data for the gridview control and bind it
 gvBooks.DataSource = dSource;
 gvBooks.DataBind();
 }
 } // Page_Load
 } // CH02GridViewWithFormattedColumnsCS1
}

Recipe 2.20. Allowing Selection Anywhere Within a
GridView

Problem

You are implementing a GridView that requires selection of a row, but you do not want to have a
Select button in every row of your GridView . What you really want is to allow the user to click
anywhere within a row, like in a classic Windows application.

Solution

To every row in the GridView , add a hidden Select button along with an onclick event that performs
the same action as if the hidden Select button were clicked:

Add a hidden ButtonField to the GridView .1.

Set the ButtonType attribute to Link so a hidden hyperlinked Select button is rendered in every
row.

2.

In the RowDataBound event, add an onclick event to the GridView row that performs the same
action as clicking the hidden Select button.

3.

The approach produces output like that shown in Figure 2-21 . Examples 2-51 , 2-52 through 2-53
show the .aspx and code-behind files for the application that produces this result.

Figure 2-21. Output of GridView allowing selection anywhere

Discussion

To allow selection of a row of data by clicking on it, you create a GridView in the usual fashion but
add a hidden ButtonField . The ButtonType attribute is set to Link , and the CommandName attribute is
set to Select . This causes the GridView to be rendered with a hidden hyperlinked Select button in
every row.

 <Columns>
 <asp:ButtonField ButtonType="Link"
 Visible="False"
 CommandName="Select" />
 …
 </Columns>

In the code-behind, the GridView control's RowDataBound event handler (gvBooks_RowDataBound) is
used to expand the functionality of the hidden Select button to encompass the entire row. This
method is called for every row of the GridView , including the header and footer, so the item type
must be checked to see if this event applies to a given data row.

When the event applies to a data row, you must first get a reference to the hidden Select button in
the row. The LINK_BUTTON_COLUMN and LINK_BUTTON_CONTROL constants are used to avoid so-called
"magic numbers" (hardcoded numbers that seem to appear out of nowhere in the code) and to make
the code more maintainable.

Next, some client-side JavaScript is added to a row's hidden hyperlinked Select button. Its two
purposes are to handle the onclick event for the row in the GridView that has been data bound and
to perform a call to__doPostBack . The JavaScript is added to the GridView row's Attributes
collection using the Add method, whose parameters are the name of the event we want to add to the
control and the name of the function (along with its parameters) to be executed when the event
occurs.

The Page 's GetPostBackClientHyperlink method is used to get the name of the clientside function
created for the hidden Select button in the row being processed. It returns the name of the event
method along with the required parameters. For the first row in our GridView , for example, the
GetPostBackClientHyperlink method returns
javascript:__doPostBack('ctl00$PageBody$gvBooks$ctl02$ctl00 ','').

Effectively, this adds an onclick event to all the table rows, which causes the method __doPostBack
to be called anytime the user clicks on a data row in the grid. Because this onclick event is identical
to the event created for the hidden Select button in the row, the postback is processed as a select
event, thereby setting the SelectedIndex of the GridView to the clicked row.

Be aware that the selection of a row using this method requires a round trip to
the server to perform the selection.

By default, ASP.NET 2.0 validates that events are raised only by controls that
are enabled and are in parent hierarchies that are also enabled. Since the
technique described in this recipe uses an event posted back from a hidden
button, an exception will be thrown unless event validation is disabled by
setting the EnableEventValidation attribute of the @ Page directive to false :

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.
 master"
 AutoEventWireup="false"
 CodeFile="CH02GridViewWithSelectionAnywhereVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.
 CH02GridViewWithSelectionAnywhereVB"
 EnableEventValidation="false"
 Title="GridView With Selection Anywhere" %>

This example shows the use of Add, Edit, and Delete buttons below the GridView , which is typical of
a scenario where a row is selected and then a desired action is performed on it. The methods for the
Add, Edit, and Delete events were included in this recipe but were left empty to keep the code down
to a reasonable size.

Example 2-51. GridView allowing selection anywhere (.aspx)

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02GridViewWithSelectionAnywhereVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02GridViewWithSelectionAnywhereVB"
 EnableEventValidation="false"
 Title="GridView With Selection Anywhere" %>
 <asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 GridView With Selection Anywhere (VB)
 </div>
 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="false"
 AllowSorting="false"
 AutoGenerateColumns="false"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 Caption=""
 HorizontalAlign="Center"
 Width="90%"
 OnRowDataBound="gvBooks_RowDataBound" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <SelectedRowStyle CssClass="tableCellSelected" />
 <Columns>
 <asp:ButtonField ButtonType="Link"
 Visible="False"
 CommandName="Select" />
 <asp:BoundField HeaderText="Title"
 DataField="Title"
 ItemStyle-HorizontalAlign="Left" />
 <asp:BoundField HeaderText="Publish Date"
 DataField="PublishDate"
 ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:MMM dd, yyyy}"/>
 <asp:BoundField HeaderText="List Price"
 DataField="ListPrice"
 ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:C2}"/>
 </Columns>

 </asp:GridView>

 <table width="40%" border="0" align="center">
 <tr>
 <td align="center">

 <input id="btnAdd" runat="server" type="button"
 value="Add"
 onserverclick="btnAdd_ServerClick">
 </td>
 <td align="center">
 <input id="btnEdit" runat="server" type="button"
 value="Edit"
 onserverclick="btnEdit_ServerClick">
 </td>
 <td align="center">
 <input id="btnDelete" runat="server" type="button"
 value="Delete"
 onserverclick="btnDelete_ServerClick">
 </td>
 </tr>
 </table>
</asp:Content>

Example 2-52. GridView allowing selection anywhere code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02GridViewWithSelectionAnywhereVB.aspx
 ''' </summary>
 Partial Class CH02GridViewWithSelectionAnywhereVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''

 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Not Page.IsPostBack) Then
 bindData()
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine is the event handler that is called when the Add button
 ''' is clicked.
 ''' </summary>
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnAdd_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 'place code here to perform Add operations
 End Sub 'btnAdd_ServerClick

 '''***
 ''' <summary>
 ''' This routine is the event handler that is called when the Edit button
 ''' is clicked.
 ''' </summary>
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnEdit_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 'place code here to perform Edit operations
 End Sub 'btnEdit_ServerClick

 '''***
 ''' <summary>
 ''' This routine is the event handler that is called when the Delete button
 ''' is clicked.
 ''' </summary>
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnDelete_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 'place code here to perform Delete operations
 End Sub 'btnDelete_ServerClick

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the GridView's row data
 ''' bound event. It is responsible for formatting the data in the
 ''' columns of the GridView
 ''' </summary>
 '''

 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub gvBooks_RowDataBound(ByVal sender As Object, ByVal e As _
 System.Web.UI.WebControls.GridViewRowEventArgs)
 'GridView column containing link button defined on ASPX page
 Const LINK_BUTTON_COLUMN As Integer = 0
 'index of link button control in the link button column
 Const LINK_BUTTON_CONTROL As Integer = 0

 Dim button As LinkButton

 'check the type of item that was databound and only take action if it
 'was a row in the GridView
 If (e.Row.RowType = DataControlRowType.DataRow) Then
 'the item that was bound is a so get a reference to the link button
 'column defined in the Columns property of the GridView (in the aspx
 'file) and add an event handler for the the onclick event for this
 'entire row. This will make clicking anywhere in the row select
 'the row.
 'NOTE: This is tightly coupled to the definition of the bound columns
 ' in the aspx page.
 button = _
 CType(e.Row.Cells(LINK_BUTTON_COLUMN).Controls(LINK_BUTTON_CONTROL), _
 LinkButton)
 e.Row.Attributes.Add("onclick", _
 ClientScript.GetPostBackClientHyperlink(button, ""))
 End If
 End Sub 'gvBooks_RowDataBound

 '''***
 ''' <summary>
 ''' This routine queries the database for the data to displayed and binds
 ''' it to the GridView
 ''' </summary>
 Private Sub bindData()
 Dim dSource As SqlDataSource = Nothing

 'configure the data source to get the data from the database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " & _
 "FROM Book " & _
 "ORDER BY Title"

 'set the source of the data for the gridview control and bind it
 gvBooks.DataSource = dSource
 gvBooks.DataBind()

 'select first item in the gridview

 gvBooks.SelectedIndex = 0
 End Sub 'bindData
 End Class 'CH02GridViewWithSelectionAnywhereVB
End Namespace

Example 2-53. GridView allowing selection anywhere code-behind (.cs)

using System;
using System.Configuration;

using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02GridViewWithSelectionAnywhereCS.aspx
 /// </summary>
 public partial class CH02GridViewWithSelectionAnywhereCS
 : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 bindData();
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine is the event handler that is called when the Add button
 /// is clicked.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnAdd_ServerClick(Object sender,

 System.EventArgs e)
 {
 // place code here to perform Add operations
 } // btnAdd_ServerClick

 ///***
 /// <summary>
 /// This routine is the event handler that is called when the Edit button
 /// is clicked.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnEdit_ServerClick(Object sender,
 System.EventArgs e)

 {
 // place code here to perform Edit operations
 } // btnEdit_ServerClick

 ///***
 /// <summary>
 /// This routine is the event handler that is called when the Delete button
 /// is clicked.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnDelete_ServerClick(Object sender,
 System.EventArgs e)
 {
 // place code here to perform Delete operations
 } // btnDelete_ServerClick

 ///***
 /// <summary>
 /// This routine provides the event handler for the GridView's row created
 /// event. It is responsible for setting the icon in the header row to
 /// indicate the current sort column and sort order
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void gvBooks_RowDataBound(Object sender,
 System.Web.UI.WebControls.GridViewRowEventArgs e)
 {
 // gridview column containing link button defined on ASPX page
 const int LINK_BUTTON_COLUMN = 0;
 // index of link button control in the link button column
 const int LINK_BUTTON_CONTROL = 0;

 LinkButton button = null;

 // check the type of row that was databound and only take action if it
 // was a data row
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 // the item that was bound is a data row so get a reference to the
 // link button column defined in the Columns property of the datagrid
 // (in the aspx page) and add an event handler for the the onclick
 // event for this entire row. This will make clicking anywhere in the
 // row select the row.
 // NOTE: This is tightly coupled to the definition of the bound
 // columns in the aspx page.
 button =
 (LinkButton)(e.Row.Cells[LINK_BUTTON_COLUMN].Controls[LINK_BUTTON_CONTROL]);
 e.Row.Attributes.Add("onclick",
 Page.GetPostBackClientHyperlink(button, ""));

 }
 } //gvBooks_RowDataBound

 ///***
 /// <summary>
 /// This routine queries the database for the data to displayed and
 /// binds it to the GridView
 /// </summary>
 private void bindData()
 {
 SqlDataSource dSource = null;

 // configure the data source to get the data from the database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataReader;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " +
 "FROM Book " +
 "ORDER BY Title";

 // set the source of the data for the gridview control and bind it
 gvBooks.DataSource = dSource;
 gvBooks.DataBind();

 // select first item in the gridview
 gvBooks.SelectedIndex = 0;
 } // bindData
 } // CH02GridViewWithSelectionAnywhereCS
}

Recipe 2.21. Adding a Delete Confirmation Pop-Up

Problem

You want to add to a GridView row a confirmation pop-up that appears whenever a user tries to
delete a row in the GridView .

Solution

Add a Select button to each row of the GridView and a Delete button below the GridView . Whenever
the Delete button is clicked, execute some client-side script that displays the confirmation pop-up,
followed by some server-side code that performs the actual deletion.

In the .aspx file:

Create an extra button column in the GridView to display a Select button.1.

Add a Delete button below the GridView .2.

In the code-behind class for the page, use the .NET language of your choice to:

Register the client-side script to be executed when the Delete button is clicked.1.

Add an attribute to the Delete button that calls the delete script when the Delete button is
clicked.

2.

Figure 2-22 shows a GridView with this solution implemented. Examples 2-54 , 2-55 through 2-56
show the .aspx and code-behind files for the application that produces this result.

Figure 2-22. Confirmation pop-up before deletion in a GridView output

Discussion

To display a confirmation pop-up when a user attempts to delete a row in a data table, you create a
GridView in the same way you have done throughout this chapter, except that you add a button
column to allow for row selection. Setting the ButtonType to "Link " outputs a hyperlink for selecting
the row. (The ButtonType can instead be set to "Button " to output an HTMLInputButton control or
"Image " to output an HTMLImageButton control.) The CommandName defines the action to be taken when
the button is clicked, and the Text attribute defines the text that will be output for the button. (The
"select anywhere approach" described in Recipe 2.19 can be used here instead.)

 <Columns>
 <asp:ButtonField ButtonType="Link"
 CommandName="Select"
 Text="Select" />
 …

 </Columns>

From here on, it's easiest to explain the remaining steps of this recipe in the context of our actual
example application. In the Page_Load method of the code-behind, the client-side script block to be
executed when the Delete button is clicked is created and registered with the page. The
ClientScript.IsClientScriptBlockRegistered method is used to ensure that the script block is not
registered more than once on the page. The ClientScript.RegisterClientScriptBlock method is
used to output the script block in the page when the page is rendered. This method causes the script
to output immediately after the opening Form tag. If you prefer the script to be output immediately
before the Form end tag, the ClientScript.RegisterStartupScript method can be used instead.

In ASP.NET 1.x, the RegisterClientScriptBlock was part of the Page class and had only two
parameters: the name of the script (the key) and the script that was to be output. In ASP.NET 2.0,
the RegisterClientScriptBlock method has been moved to the new ClientScript class and two new
parameters have been added. The first parameter is a type and can be used in conjunction with the
key to identify the script uniquely. This helps avoid the problem of scripts with the same name being
output from other controls, resulting in an improperly executing page. The type is generally set to the
type of the controlling container such as the page class or the user control class.

The second and third parameters of the RegisterClientScriptBlock are the key and script, as within
ASP.NET 1.x. The fourth parameter is a Boolean that when set true will cause the script tags to be
output automatically so your script block does not have to contain the tags as it did in ASP.NET 1.x.

The client-side script that is output to the browser is shown here:

 <script type="text/javascript">
 <!-
 function beforeDelete()
 {return(confirm('Are you sure you want to delete the selected item?'));}
 // -->
 </script>

The code that outputs the client-side script block must be executed every time
the page is rendered, including postbacks , because the registered script blocks
are not persisted in the Page object.

After creating and registering the client script block, an attribute is added to the Delete button control
to cause the client script block to be executed when the button is clicked. The resulting HTML for the
delete button is shown here:

 <input type="submit"
 name="ctl00$PageBody$btnDelete"
 value="Delete"
 onclick="return(beforeDelete());"

 id="ctl00_PageBody_btnDelete" />

When the user clicks the Delete button, the beforeDelete function is called in the client-side code.
The beforeDelete function outputs a standard HTML confirmation dialog box with the message, "Are
you sure you want to delete the selected item?" If the user clicks the Cancel button, the function
returns False , effectively canceling the postback of the page. If the user clicks the OK button, the
function returns TRue , allowing the page to be posted back to the server.

A server-side event handler (btnDelete_ServerClick) is added to the code-behind to handle the
Delete button's server-side click event. In this method, a check is performed to ensure a row is
selected, and then the required deletion code for your application is processed.

The JavaScript registered in the code-behind and the attribute added to the
Delete button can also be placed directly in the .aspx file. This was not done in
this example, though, in the spirit of keeping all code in the code-behind and all
presentation aspects in the .aspx file, a highly recommended practice. By using
this approach, you can create a library of client-side scripts once and reuse
them many times throughout your applications.

Using a radio button for row selection instead of a Select button would be
preferable, but a bug in Releases 1.0, 1.1, and 2.0 of ASP.NET makes it difficult.
The problem is caused by a unique name and group name being generated for
every control in the grid, thus placing the radio buttons on each row in a
different group. This has the unfortunate consequence of allowing a user to
select multiple radio buttons at the same time. For details of the bug, see
Knowledge Base article Q316495 on Microsoft's MSDN web site
(http://msdn.microsoft.com).

See Also

Recipe 2.19

Example 2-54. Confirmation pop-up before deletion in a GridView (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02GridViewWithConfirmBeforeDeleteVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02GridViewWithConfirmBeforeDeleteVB"
 Title="GridView With Confirmation Popup Before Delete" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 GridView With Confirmation Popup Before Delete (VB)
 </div>

 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="false"
 AllowSorting="false"
 AutoGenerateColumns="false"
 BorderColor="#000080"

 BorderStyle="Solid"
 BorderWidth="2px"
 Caption=""
 HorizontalAlign="Center"
 Width="90%" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <SelectedRowStyle CssClass="tableCellSelected" />
 <Columns>
 <asp:ButtonField ButtonType="Link"
 CommandName="Select"
 Text="Select" />
 <asp:BoundField HeaderText="Title"
 DataField="Title"
 ItemStyle-HorizontalAlign="Left" />
 <asp:BoundField HeaderText="Publish Date"
 DataField="PublishDate"
 ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:MMM dd, yyyy}"/>
 <asp:BoundField HeaderText="List Price"
 DataField="ListPrice"
 ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:C2}"/>
 </Columns>
</asp:GridView>

<table width="40%" border="0" align="center">
 <tr>
 <td align="center">
 <asp:Button ID="btnAdd" runat="server"
 Text="Add"
 OnClick="btnAdd_ServerClick" />
 </td>
 <td align="center">
 <asp:Button ID="btnEdit" runat="server"
 Text="Edit"
 OnClick="btnEdit_ServerClick" />
 </td>
 <td align="center">
 <asp:Button ID="btnDelete" runat="server"
 Text="Delete"
 OnClick="btnDelete_ServerClick" />
 </td>
 </tr>
 </table>

</asp:Content>

Example 2-55. Confirmation pop-up before deletion in a GridView code-
behind (.vb)

Option Explicit On
Option Strict On

Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02GridViewWithConfirmBeforeDeleteVB.aspx
 ''' </summary>
 Partial Class CH02GridViewWithConfirmBeforeDeleteVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim scriptBlock As String

 If (Not Page.IsPostBack) Then
 bindData()
 End If

 'NOTE: The following code must be processed for every rendering of the
 ' page or the client script will not be output when server click
 ' events are processed.

 'create the script block that will execute when the delete
 'button is clicked and register it
 scriptBlock = "function beforeDelete()" & vbCrLf & _
 "{return(confirm('Are you sure you want to delete " & _
 "the selected item?'));}"
 If (Not ClientScript.IsClientScriptBlockRegistered("deletePromptScript")) Then

 ClientScript.RegisterClientScriptBlock(Me.GetType(), _
 "deletePromptScript", _
 scriptBlock, _
 True)
 End If

 'use the OnClientClick property of the button to cause the above
 'script to be executed when the button is clicked
 btnDelete.OnClientClick = "return(beforeDelete());"
 End Sub 'Page_Load

 '''***
 ''' <summary>

 ''' This routine is the event handler that is called when the Add button
 ''' is clicked.
 ''' </summary>
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnAdd_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 'place code here to perform Add operations
 End Sub 'btnAdd_ServerClick

 '''***
 ''' <summary>
 ''' This routine is the event handler that is called when the Edit button
 ''' is clicked.
 ''' </summary>
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnEdit_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 'place code here to perform Edit operations
 End Sub 'btnEdit_ServerClick

 '''***
 ''' <summary>
 ''' This routine is the event handler that is called when the Delete button
 ''' is clicked.
 ''' </summary>
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnDelete_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 'make sure an item is selected
 If (gvBooks.SelectedIndex >= 0) Then
 'place code here to perform Delete operations
 End If
 End Sub 'btnDelete_ServerClick

 '''***

 ''' <summary>
 ''' This routine queries the database for the data to displayed and binds
 ''' it to the GridView
 ''' </summary>
 Private Sub bindData()
 Dim dSource As SqlDataSource = Nothing

 'configure the data source to get the data from the database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet
 dSource.ProviderName = "System.Data.OleDb"

 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " & _
 "FROM Book " & _
 "ORDER BY Title"

 'set the source of the data for the gridview control and bind it
 gvBooks.DataSource = dSource
 gvBooks.DataBind()

 'select first item in the gridview
 gvBooks.SelectedIndex = 0
 End Sub 'bindData
 End Class 'CH02GridViewWithConfirmBeforeDeleteVB
End Namespace

Example 2-56. Confirmation pop-up before deletion in a GridView code-
behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02GridViewWithConfirmBeforeDeleteCS.aspx
 /// </summary>
 public partial class CH02GridViewWithConfirmBeforeDeleteCS
 : System.Web.UI.Page
 {
 ///***
 /// <summary>

 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 String scriptBlock;

 if (!Page.IsPostBack)
 {
 bindData();
 }

 // NOTE: The following code must be processed for every rendering of the
 // page or the client script will not be output when server click
 // events are processed.

 // create the script block that will execute when the delete
 // button is clicked and register it
 scriptBlock = "function beforeDelete()\n" +
 "{return(confirm('Are you sure you want to delete " +
 "the selected item?'));}\n";
 if (!ClientScript.IsClientScriptBlockRegistered("deletePromptScript"))
 {
 ClientScript.RegisterClientScriptBlock(this.GetType(),
 "deletePromptScript",
 scriptBlock,
 true);
 }

 // use the OnClientClick property of the button to cause the above
 // script to be executed when the button is clicked
 btnDelete.OnClientClick = "return(beforeDelete());";
 } // Page_Load

 ///***
 /// <summary>
 /// This routine is the event handler that is called when the Add button
 /// is clicked.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnAdd_ServerClick(Object sender,
 System.EventArgs e)
 {
 // place code here to perform Add operations
 } // btnAdd_ServerClick

 ///***

 /// <summary>
 /// This routine is the event handler that is called when the Edit button
 /// is clicked.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnEdit_ServerClick(Object sender,
 System.EventArgs e)
 {
 // place code here to perform Edit operations
 } // btnEdit_ServerClick

 ///***
 /// <summary>
 /// This routine is the event handler that is called when the Delete button
 /// is clicked.
 /// </summary>
 ///

 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnDelete_ServerClick(Object sender,
 System.EventArgs e)
 {
 // make sure an item is selected
 if (gvBooks.SelectedIndex >= 0)
 {
 // place code here to perform Delete operations
 }
 } // btnDelete_ServerClick

 ///***
 /// <summary>
 /// This routine queries the database for the data to displayed and
 /// binds it to the GridView
 /// </summary>
 private void bindData()
 {
 SqlDataSource dSource = null;

 // configure the data source to get the data from the database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataReader;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " +
 "FROM Book " +
 "ORDER BY Title";

 // set the source of the data for the gridview control and bind it

 gvBooks.DataSource = dSource;
 gvBooks.DataBind();

 // select first item in the gridview
 gvBooks.SelectedIndex = 0;
 } // bindData
 } // CH02GridViewWithConfirmBeforeDeleteCS
}

Recipe 2.22. Displaying a Pop-Up Details Window

Problem

You want to provide additional details for each row in a GridView using a pop-up window.

Solution

Add a Details button to each row in the GridView . When the user clicks the button, open a new
browser window, obtain the information from the server, and display the detailed information in a
pop-up window. An example of the possible output is shown in Figures 2-23 (sample GridView) and
Figures 2-24 (sample pop-up window output). As with the other recipes in this book, we've
implemented a complete application that illustrates this approach. The form and code-behind for the
page containing the sample GridView is shown in Examples 2-57 , 2-58 through 2-59 , and the form
and code-behind for the sample pop-up window is shown in Examples 2-60 , 2-61 through 2-62 .

Figure 2-23. GridView with pop-up details window output

Discussion

To implement this solution, create a GridView in the normal fashion but add a link button column to
display a Details link. When the user clicks the Details link within a row of the GridView , the browser
opens a new window and requests the appropriate page from the server. In the context of our
example that implements this solution, a book details page is requested. From here on, the recipe's
remaining steps are described in the context of our example because we use techniques that you are
likely to find helpful in implementing your own application.

In our example, when the book details page is processed, a book ID is extracted from the query
string and is used in the database query to get the detailed data for the specific book as shown in the
Page_Load method of Examples 2-61 (VB) and 2-62 (C#).

Figure 2-24. Pop-up details window output

When building a Details link in the .aspx file, an HTML anchor tag is placed in the ItemTemplate for
the column. (The purpose of the anchor tag is to request the details page when the associated link
button is clicked.) The target property of the HTML anchor is set to _blank , causing a new browser
window to open when the link is clicked.

The Page_Load method in the code-behind is nearly identical to that used in other recipes with one
change. The lines of code shown next are added to populate the DataKeyNames collection of the
GridView with the primary key values for the rows being displayed. This causes the GridView to keep
track of the primary key value for each row without our having to output the data in a hidden
column. These values are needed later to display the book details.

 dataKeys(0) = "BookID"
 gvBooks.DataKeyNames = dataKeys

 dataKeys = new string[1] {"BookID"};
 gvBooks.DataKeyNames = dataKeys;

The GridView control's RowDataBound event is used to set the href value for the "details" HTML
anchors added to the GridView . Because this event is called independently for every row in the
GridView , the item type must be checked to see if this event applies for a given data row.

When the event does apply to a data row, the first thing we must do is get the ID of the book being
displayed in the row as shown here:

 bookID = CInt(gvBooks.DataKeys(e.Row.RowIndex).Item(0))

 bookID = (int)(gvBooks.DataKeys[e.Row.RowIndex][0]);

Next, we need to get a reference to the " details" HTML anchor in the row. Because ItemTemplate
were used and the anchor controls in the templates were given IDs, we can accomplish this by using
the FindControl method of the passed item. If a standard BoundField were used instead, the data
would have to be accessed using the cells collection (e.g., e.Row.Cells(1).controls(1) would access
the anchor control in this example). Providing an ID and using FindControl eliminates the potential
for broken code if the columns are later reordered. The control must be cast to an HTMLAnchor
because the controls collection is a collection of objects.

After obtaining a reference to the HTML anchor tag, we need to set the href property of the anchor to
the name of the details page. In addition, the URL needs to include "BookID= n " where n is the ID of

the book displayed in the row. The resulting anchor tag in the GridView for BookID = 1 is shown here:

 <a href="CH02BookDetailsVB.aspx?BookID=1"
 id="ctl00_PageBody_gvBooks_ctl03_lnkDetails"
 target="_blank">Details

The ID is altered by ASP.NET to ensure all server controls have unique IDs.
ASP.NET maintains the original and the unique IDs, so the original ID we
provided with the FindControl method is handled correctly, sparing us from
determining the unique ID or dealing with indexing into items and cells.

Example 2-57. GridView with pop-up details window (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02GridViewWithPopupDetailsVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02GridViewWithPopupDetailsVB"
 Title="GridView With Popup Details" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 GridView With Popup Details (VB)
 </div>
 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="false"
 AllowSorting="false"
 AutoGenerateColumns="false"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 Caption=""
 HorizontalAlign="Center"

 Width="90%"
 OnRowDataBound="gvBooks_RowDataBound" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <SelectedRowStyle CssClass="tableCellSelected" />
 <Columns>

 <asp:BoundField HeaderText="Title"
 DataField="Title"
 ItemStyle-HorizontalAlign="Left" />
 <asp:TemplateField ItemStyle-HorizontalAlign="Center">
 <ItemTemplate>
 <a id="lnkDetails" runat="server"
 target="_blank">Details
 </ItemTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>
</asp:Content>

Example 2-58. GridView with pop-up details window code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02GridViewWithPopupDetailsVB.aspx
 ''' </summary>
 Partial Class CH02GridViewWithPopupDetailsVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load
 Dim dSource As SqlDataSource = Nothing
 Dim dataKeys(0) As String

 If (Not Page.IsPostBack) Then
 'configure the data source to get the data from the database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataReader
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT BookID, Title " & _
 "FROM Book " & _
 "ORDER BY Title"

 'set the source of the data for the gridview control and bind it
 dataKeys(0) = "BookID"
 gvBooks.DataKeyNames = dataKeys
 gvBooks.DataSource = dSource
 gvBooks.DataBind()
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine is the event handler that is called for each item in the
 ''' GridView after a data bind occurs. It is responsible for setting the
 ''' URL of the anchor tags to the page used to display the details for
 ''' a book
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub gvBooks_RowDataBound(ByVal sender As Object, ByVal e As _
 System.Web.UI.WebControls.GridViewRowEventArgs)
 Const DETAIL_PAGE As String = "CH02BookDetailsVB.aspx"

 Dim bookID As Integer
 Dim anchor As HtmlAnchor

 'check the type of item that was databound and only take action if it
 'was a row in the GridView
 If (e.Row.RowType = DataControlRowType.DataRow) Then
 'get the book ID for the row being bound
 bookID = CInt(gvBooks.DataKeys(e.Row.RowIndex).Item(0))

 'get the anchor tag in the row
 'NOTE: This can be done by using the FindControl method of the passed
 ' item because ItemTemplates were used and the anchor controls in
 ' the templates where given IDs. If a standard BoundField was
 ' used, the data would have to be accessed using the cells
 ' collection (e.g. e.Row.Cells(1).controls(1) would access the

 ' anchor control in this example.
 anchor = CType(e.Row.FindControl("lnkDetails"), _
 HtmlAnchor)

 'set the URL of the anchor tag to the page used to display the book
 'details passing the ID of the book in the querystring
 anchor.HRef = DETAIL_PAGE & "?BookID=" & bookID.ToString()
 End If
 End Sub 'gvBooks_RowDataBound
 End Class 'CH02GridViewWithPopupDetailsVB
End Namespace

Example 2-59. GridView with pop-up details window code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02GridViewWithPopupDetailsCS.aspx
 /// </summary>
 public partial class CH02GridViewWithPopupDetailsCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 SqlDataSource dSource = null;
 String[] dataKeys;

 if (!Page.IsPostBack)
 {
 // configure the data source to get the data from the database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;

 dSource.DataSourceMode = SqlDataSourceMode.DataReader;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT BookID, Title " +
 "FROM Book " +
 "ORDER BY Title";

 // set the source of the data for the gridview control and bind it
 dataKeys = new string[1] {"BookID"};
 gvBooks.DataKeyNames = dataKeys;
 gvBooks.DataSource = dSource;
 gvBooks.DataBind();
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the GridView's row created
 /// event. It is responsible for setting the icon in the header row to
 /// indicate the current sort column and sort order

 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void gvBooks_RowDataBound(Object sender,
 System.Web.UI.WebControls.GridViewRowEventArgs e)
 {
 const String DETAIL_PAGE = "CH02BookDetailsCS.aspx";

 int bookID;
 HtmlAnchor anchor;

 // check the type of item that was databound and only take action if it
 // was a row in the GridView
 if (e.Row.RowType == DataControlRowType.DataRow)
 {
 // get the book ID for the row being bound
 bookID = (int)(gvBooks.DataKeys[e.Row.RowIndex][0]);

 // 'get the anchor tag in the row
 // NOTE: This can be done by using the FindControl method of the
 // passed item because ItemTemplates were used and the
 // anchor controls in the templates where given IDs. If a
 // standard BoundField was used, the data would have to be
 // accessed using the cells collection (e.g.
 // e.Row.Cells[1].controls[1] would access the anchor control
 // in this example.
 anchor = (HtmlAnchor)(e.Row.FindControl("lnkDetails"));

 // set the URL of the anchor tag to the page used to display the book
 // details passing the ID of the book in the querystring
 anchor.HRef = DETAIL_PAGE + "?BookID=" + bookID.ToString();

 }
 } //gvBooks_RowDataBound
 } // CH02GridViewWithPopupDetailsCS
}

Example 2-60. Pop-up detail page (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02BookDetailsVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02BookDetailsVB"
 Title="Book Details" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Book Details (VB)
 </div>
 <asp:FormView ID="fvBook" runat="server" HorizontalAlign="Center">
 <ItemTemplate>
 <table width="600" border="0">
 <tr>

 <td rowspan="6" align="center" width="250">
 <img src="images/books/<%#Eval("ImageFilename") %>"alt="Book"></td>
 <td class="labelNormal" width="150">Title: </td>
 <td class="labelNormal" width="325"><%#Eval("Title") %></td>
 </tr>
 <tr>
 <td class="labelNormal">ISBN: </td>
 <td class="labelNormal"><%#Eval("ISBN") %></td>
 </tr>
 <tr>
 <td class="labelNormal">Publisher: </td>
 <td class="labelNormal"><%#Eval("Publisher") %></td>
 </tr>
 <tr>
 <td class="labelNormal">Publish Date: </td>
 <td class="labelNormal"><%#Eval("PublishDate", "{0:MMM yyyy}") %></td>
 </tr>
 <tr>
 <td class="labelNormal">List Price: </td>
 <td class="labelNormal"><%#Eval("ListPrice") %></td>
 </tr>
 <tr>
 <td class="labelNormal">Discounted Price: </td>
 <td class="labelNormal"><%#Eval("DiscountedPrice") %></td>
 </tr>
 </table>

 </ItemTemplate>
 </asp:FormView>
</asp:Content>

Example 2-61. Pop-up detail page code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02BookDetailsVB.aspx
 ''' </summary>
 Partial Class CH02BookDetailsVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''

 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dSource As SqlDataSource = Nothing
 Dim param As Parameter
 Dim bookID As String

 If (Not Page.IsPostBack) Then
 'get the book ID from the querystring in the URL
 If (IsNothing(Request.QueryString.Item("BookID"))) Then
 'production code needs to handle the page request without the needed
 'information in the querystring here
 Else
 bookID = Request.QueryString.Item("BookID").ToString()

 'configure the data source to get the data from the database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _

 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataReader
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT Title, ISBN, Publisher, " & _
 "PublishDate, ListPrice, " & _
 "DiscountedPrice, ImageFilename " & _
 "FROM Book " & _
 "WHERE BookID=?"
 param = New Parameter("BookID", TypeCode.Int32, bookID)
 dSource.SelectParameters.Add(param)

 'set the source of the data for the formview control and bind it
 fvBook.DataSource = dSource
 fvBook.DataBind()
 End If
 End If
 End Sub 'Page_Load
 End Class 'CH02BookDetailsVB
End Namespace

Example 2-62. Pop-up detail page code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02BookDetailsCS.aspx

 /// </summary>
 public partial class CH02BookDetailsCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {

 SqlDataSource dSource = null;
 Parameter param = null;
 String bookID;

 if (!Page.IsPostBack)
 {
 // get the book ID from the querystring in the URL
 if (Request.QueryString["BookID"] == null)
 {
 // production code needs to handle the page request without the
 // needed information in the querystring here
 }
 else
 {
 bookID = Request.QueryString["BookID"].ToString();
 // configure the data source to get the data from the database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataReader;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, ISBN, Publisher, " +
 "PublishDate, ListPrice, " +
 "DiscountedPrice, ImageFilename " +
 "FROM Book " +
 "WHERE BookID=?";
 param = new Parameter("BookID", TypeCode.Int32, bookID);
 dSource.SelectParameters.Add(param);

 // set the source of the data for the gridview control and bind it
 fvBook.DataSource = dSource;
 fvBook.DataBind();
 }
 }
 } // Page_Load
 } // CH02BookDetailsCS
}

Recipe 2.23. Adding a Totals Row to a GridView

Problem

You have a GridView containing numeric information, and you need to display a total of the data in
the last row of the grid.

Solution

Enable the output of the footer in the GridView , accumulate the total for the data in the
RowDataBound event handler, and then output the total in the GridView footer.

In the .aspx file, set the ShowFooter attribute of the asp:GridView element to TRue .

In the code-behind class for the page, use the .NET language of your choice to:

Initialize the totals to 0 , and bind the data to the GridView in the normal fashion.1.

In the RowDataBound event handler, add the values for each data row to the accumulated totals.2.

In the RowDataBound event handler, set the total values in the footer when the footer is data
bound.

3.

Figure 2-25 shows some typical output. Examples 2-63 , 2-64 through 2-65 show the .aspx file and
code-behind files for an application that produces this output.

Figure 2-25. GridView with totals row output

Discussion

The best way to describe the addition of a totals row to a GridView is by example. In this recipe,
you'll want to create the GridView differently than normal. In the asp:GridView element, set the
ShowFooter attribute to true to cause a footer to be output when the control is rendered. Then, you
place the totals data in the footer.

 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="false"
 AllowSorting="false"
 AutoGenerateColumns="false"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 Caption=""
 HorizontalAlign="Center"

 ShowFooter="true"
 Width="90%"
 OnRowDataBound="gvBooks_RowDataBound" >

Next, add a FooterStyle element to format all of the columns in the footer with a stylesheet class
and horizontal alignment:

 <FooterStyle CssClass="tableCellSelected" HorizontalAlign="Right"/>

All columns are defined in the Columns element as asp:TemplateField columns. This provides a lot of
flexibility in the display of the columns. The first column contains only an ItemTemplate that is bound
to the Title field in the DataSource . The FooterText property of this column is set to "Total :" to
display the label for the other values in the footer.

 <asp:TemplateField HeaderText="Title" FooterText="Total:">
 <ItemTemplate>
 <%# Eval("Title") %>
 </ItemTemplate>
 </asp:TemplateField>

The second and third columns contain an ItemTemplate element to define the format of the data
placed in the rows of the grid and a FooterTemplate element to define the format of the data placed
in the footer of the respective columns:

 <asp:TemplateField HeaderText="List Price"
 ItemStyle-HorizontalAlign="Right">
 <ItemTemplate>
 <asp:Literal id="lblListPrice" runat="server"
 text='<%# Eval("ListPrice") %>' />
 </ItemTemplate>
 <FooterTemplate>
 <asp:Literal id="lblListPriceTotal" runat="server" />
 </FooterTemplate>
 </asp:TemplateField>

In the code-behind, two private variables (mListPriceTotal and mDiscountedPriceTotal) are
declared at the class level to store the accumulated sum for each of the price columns. The Page_Load
method is identical to previous recipes, except for the addition of the code to set mListPriceTotal
and mDiscountedPriceTotal to zero before the data binding is performed.

The RowDataBound event is used to accumulate the sum of the prices as the rows in the GridView are

bound. You can do this because the data binding always starts at the top of the grid and ends at the
bottom. Because the RowDataBound event method is called for every row in the grid, you must
determine what row this event applies to by checking the ItemType of the passed event arguments.
Several groups of item types are needed here, so a Select Case statement (switch in C#) is used.

When the item type is a data row, you need to get the values in the list price and discounted price
columns and add them to the appropriate total variables. Getting the price values requires getting
the price values from the data passed to the method (e.Row. DataItem), adding the price data to the
totals, getting a reference to the controls used to display the data, and setting the price value in the
controls for the row. Getting a reference to the control is the trickiest part. The easiest and most
flexible approach is to use Literal controls in the ItemTemplates of the GridView defined in the .aspx
file. By setting the IDs of the literal controls, the FindControl method of the row being data bound
can be used to get a reference to the desired control.

If the IDs of the controls in the ItemTemplates are undefined, the only way to
get a reference to a control is to index into the cells and controls collections of
the row. In this example, the list price control is in the second column of the
grid. Cells in a GridView are created with a literal control before and after the
controls you define in a column; therefore, the list price control is the second
control in the controls collection of the cell. Getting a reference to the list price
control using this method would be done with listPriceControl =
e.Row.Cells(1). controls(1) . This approach depends on column layout:
rearranging columns would break code that uses this approach. The
FindControl method is easier to maintain and less likely to be broken by
changing the user interface.

Literal controls are used in this example because they are rendered without the
addition of other controls and because accessing the price value is as simple as
getting the value of the text property of the control. An asp:Label control would
seem like a good option here; however, it is created as three literal controls in
the GridView , making it necessary to index into the controls collection of the
control returned by the FindControl method to get the needed price value.

When the item is the footer, all data rows have been processed, and you have the totals for the price
columns in the mListPriceTotal and mDiscountedPriceTotal variables. Now you need to output these
totals in the controls placed in the footer. This is done by using the FindControl method of the
passed item to get a reference to the controls in the footer. After a reference to the control is
obtained, the text property is set to the total for the column. In our example, the totals are being
formatted to be displayed in currency format with two decimal places.

Example 2-63. GridView with totals row (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH02GridViewWithTotalsRowVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH02GridViewWithTotalsRowVB"
 Title="GridView With Totals Row" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">

 <div align="center" class="pageHeading">
 GridView With Totals Row (VB)
 </div>
 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="false"
 AllowSorting="false"
 AutoGenerateColumns="false"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 Caption=""
 HorizontalAlign="Center"
 ShowFooter="true"
 Width="90%"
 OnRowDataBound="gvBooks_RowDataBound" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <FooterStyle CssClass="tableCellSelected" HorizontalAlign="Right"/>
 <Columns>
 <asp:TemplateField HeaderText="Title" FooterText="Total:">
 <ItemTemplate>
 <%# Eval("Title") %>
 </ItemTemplate>
 </asp:TemplateField>

 <asp:TemplateField HeaderText="List Price"
 ItemStyle-HorizontalAlign="Right">
 <ItemTemplate>
 <asp:Literal id="lblListPrice" runat="server"
 text='<%# Eval("ListPrice") %>' />
 </ItemTemplate>
 <FooterTemplate>
 <asp:Literal id="lblListPriceTotal" runat="server" />
 </FooterTemplate>
 </asp:TemplateField>

 <asp:TemplateField HeaderText="Discounted Price"
 ItemStyle-HorizontalAlign="Right">
 <ItemTemplate>

 <asp:Literal id="lblDiscountedPrice" runat="server"
 text='<%# Eval("DiscountedPrice") %>' />
 </asp:Label>
 </ItemTemplate>
 <FooterTemplate>
 <asp:Literal id="lblTotalDiscountedPrice"
 runat="server" />
 </FooterTemplate>
 </asp:TemplateField>
 </Columns>
 </asp:GridView>

</asp:Content>

Example 2-64. GridView with totals row code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH02GridViewWithTotalsRowVB.aspx
 ''' </summary>
 Partial Class CH02GridViewWithTotalsRowVB
 Inherits System.Web.UI.Page

 'variables used to accumulate the sum of the prices
 Private mListPriceTotal As Decimal
 Private mDiscountedPriceTotal As Decimal
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dSource As SqlDataSource = Nothing

 If (Not Page.IsPostBack) Then
 'configure the data source to get the data from the database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet

 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT Title, ListPrice, DiscountedPrice " & _
 "FROM Book " & _
 "ORDER BY Title"

 'set total values to 0 before data binding

 mListPriceTotal = 0
 mDiscountedPriceTotal = 0

 'set the source of the data for the gridview control and bind it
 gvBooks.DataSource = dSource
 gvBooks.DataBind()
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the GridView's row data
 ''' bound event. It is responsible for formatting the data in the
 ''' columns of the GridView
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub gvBooks_RowDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
 Dim rowData As DataRowView
 Dim price As Decimal
 Dim listPriceLabel As System.Web.UI.WebControls.Literal
 Dim discountedPriceLabel As System.Web.UI.WebControls.Literal
 Dim totalLabel As System.Web.UI.WebControls.Literal

 'check the type of item that was databound and only take action if it
 'was a row in the gridview
 Select Case (e.Row.RowType)
 Case DataControlRowType.DataRow
 'get the data for the item being bound
 rowData = CType(e.Row.DataItem, _
 DataRowView)

 'get the value for the list price and add it to the sum
 price = CDec(rowData.Item("ListPrice"))
 mListPriceTotal += price

 'get the control used to display the list price
 'NOTE: This can be done by using the FindControl method of the
 ' passed item because ItemTemplates were used and the anchor
 ' controls in the templates where given IDs. If a standard
 ' BoundField was used, the data would have to be accessed
 ' using the cellscollection (e.g. e.Row.Cells(1).controls(1)
 ' would access the label control in this example.
 listPriceLabel = CType(e.Row.FindControl("lblListPrice"), _
 System.Web.UI.WebControls.Literal)

 'now format the list price in currency format
 listPriceLabel.Text = price.ToString("C2")

 'get the value for the discounted price and add it to the sum

 price = CDec(rowData.Item("DiscountedPrice"))
 mDiscountedPriceTotal += price

 'get the control used to display the discounted price
 discountedPriceLabel = CType(e.Row.FindControl("lblDiscountedPrice"), _
 System.Web.UI.WebControls.Literal)

 'now format the discounted price in currency format
 discountedPriceLabel.Text = price.ToString("C2")

 Case DataControlRowType.Footer
 'get the control used to display the total of the list prices
 'and set its value to the total of the list prices
 totalLabel = CType(e.Row.FindControl("lblListPriceTotal"), _
 System.Web.UI.WebControls.Literal)
 totalLabel.Text = mListPriceTotal.ToString("C2")

 'get the control used to display the total of the discounted prices
 'and set its value to the total of the discounted prices
 totalLabel = CType(e.Row.FindControl("lblTotalDiscountedPrice"), _
 System.Web.UI.WebControls.Literal)
 totalLabel.Text = mDiscountedPriceTotal.ToString("C2")
 Case Else
 'DataControlRowType.EmptyDataRow, DataControlRowType.Header,
 'DataControlRowType.Pager, or DataControlRowType.Separator
 'no action required
 End Select
 End Sub 'gvBooks_RowDataBound
 End Class 'CH02GridViewWithTotalsRowVB
End Namespace

Example 2-65. GridView with totals row code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.Common;
using System.Data.OleDb;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH02GridViewWithTotalsRowCS.aspx
 /// </summary>
 public partial class CH02GridViewWithTotalsRowCS : System.Web.UI.Page

 {
 // variables used to accumulate the sum of the prices
 private Decimal mListPriceTotal;
 private Decimal mDiscountedPriceTotal;

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 SqlDataSource dSource = null;

 if (!Page.IsPostBack)
 {
 // configure the data source to get the data from the database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataReader;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, ListPrice, DiscountedPrice " +
 "FROM Book " +
 "ORDER BY Title";

 // set total values to 0 before data binding
 mListPriceTotal = 0;
 mDiscountedPriceTotal = 0;

 // set the source of the data for the gridview control and bind it
 gvBooks.DataSource = dSource;
 gvBooks.DataBind();
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the GridView's row created
 /// event. It is responsible for setting the icon in the header row to
 /// indicate the current sort column and sort order
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void gvBooks_RowDataBound(Object sender,
 System.Web.UI.WebControls.GridViewRowEventArgs e)
 {
 DbDataRecord rowData;

 Decimal price;
 System.Web.UI.WebControls.Literal listPriceLabel;
 System.Web.UI.WebControls.Literal discountedPriceLabel;
 System.Web.UI.WebControls.Literal totalLabel;

 // check the type of item that was databound and only take action if it
 // was a row in the gridview
 switch (e.Row.RowType)
 {
 case DataControlRowType.DataRow:
 // get the data for the item being bound
 rowData = (DbDataRecord)(e.Row.DataItem);

 // get the value for the list price and add it to the sum
 price = (Decimal)(rowData["ListPrice"]);
 mListPriceTotal += price;

 // get the control used to display the list price
 // NOTE: This can be done by using the FindControl method of the
 // passed item because ItemTemplates were used and the anchor
 // controls in the templates where given IDs. If a standard
 // BoundField was used, the data would have to be accessed
 // using the cells collection (e.g. e.Row.Cells(1).controls(1)
 // would access the label control in this example.
 listPriceLabel = (System.Web.UI.WebControls.Literal)
 (e.Row.FindControl("lblListPrice"));

 // now format the list price in currency format
 listPriceLabel.Text = price.ToString("C2");

 // get the value for the discounted price and add it to the sum
 price = (Decimal)(rowData["DiscountedPrice"]);
 mDiscountedPriceTotal += price;

 // get the control used to display the discounted price
 discountedPriceLabel = (System.Web.UI.WebControls.Literal)
 (e.Row.FindControl("lblDiscountedPrice"));

 // now format the discounted price in currency format
 discountedPriceLabel.Text = price.ToString("C2");
 break;

 case DataControlRowType.Footer:
 // get the control used to display the total of the list prices
 // and set its value to the total of the list prices
 totalLabel = (System.Web.UI.WebControls.Literal)
 (e.Row.FindControl("lblListPriceTotal"));
 totalLabel.Text = mListPriceTotal.ToString("C2");

 // get the control used to display the total of the discounted prices
 // and set its value to the total of the discounted prices

 totalLabel = (System.Web.UI.WebControls.Literal)

 (e.Row.FindControl("lblTotalDiscountedPrice"));
 totalLabel.Text = mDiscountedPriceTotal.ToString("C2");
 break;

 default:
 // DataControlRowType.EmptyDataRow, DataControlRowType.Header,
 // DataControlRowType.Pager, or DataControlRowType.Separator
 // no action required
 break;
 } // switch (e.Row.RowType)
 } //gvBooks_RowDataBound
 } // CH02GridViewWithTotalsRowCS
}

Chapter 3. Validation

3.0 Introduction

ASP.NET validation controls (also known as validators) simplify the task of ensuring that data is
entered correctly on forms. For most validations, no code is required in the .aspx file or the code-
behind class. You add a validator to the .aspx file, have it reference an input control (a server
control) elsewhere on the page, and set one or more of its validation attributes (such as
MinimumValue or MaximumValue, which specify the minimum and maximum values of a validation
range). ASP.NET does all the rest. You can combine validators to provide multiple validations on a
single input, such as a RequiredFieldValidator and a RangeValidator, which perform as their names
imply.

Validation can be performed on the client and server. By default, validators perform their validation
automatically on postback in server code. However, if the user has a browser that supports DHTML
and client-side validation is enabled, validators can perform their validation using client script. Client-
side validation is handy whenever you want to avoid a round trip to the server for server-side
validation, such as when you want to make sure an entry is provided in a text box. Regardless of
whether client-side validation is performed, server-side validation is always a good idea if only to
ensure that validation takes place, even when the user's browser doesn't support DHTML.

This chapter includes a useful collection of recipes for validating data, starting with automatic,
attribute-oriented validation, next dealing with custom validation, and ending with validation groups.
When you perform custom validation, you intercept an input control's validation call and provide your
own validation logic (by adding your own custom JavaScript and server-side code). Custom validation
is the focus of two of the chapter's recipes, which show you how to require a user to make a selection
from a drop-down list and how to require valid user input data, such as a password that matches an
entry in a database.

Validation groups are new to ASP.NET 2.0 and were introduced to support the concept of multiple
logical sections on a form. A common scenario is when you have two logical sections on a form, one
for supporting login and the other for new user registration, both with their own Submit buttons, such
as that shown in Figure 3-14. Handling this scenario in ASP.NET 1.x was difficult because clicking
either button would invoke all the validators for the page, which was not generally intended. With
ASP.NET 2.0, however, you can group controls for purposes of validation and associate them with the
button the user clicks. That is, you can have one group of controls validated when a Login button is
clicked and another when a Register button is clicked. The last two recipes show you how to handle
this scenario easily using validation groups. The first shows the basics and the second goes into more
depth by showing you how to handle the validation under programmatic control, which is useful when
you want to perform your own nonstandard validation, such as when you want to check a new user's
registration against a database.

All validators, except the RequiredFieldValidator, allow the control being
validated to be left blank. This subtle point is worth noting, as you may need to
account for this behavior in your code when using ASP.NET's automatic
validation.

Recipe 3.2. Requiring That Data Be Entered in a Field

Problem

You need to ensure that a user has entered data in a text box, such as a first or last name on a
registration form.

Solution

Add a RequiredFieldValidator control to the .aspx file, and use the event handler of the control that
completes the user's entry for the page to verify that validation was successful.

In the .aspx file:

Add a RequiredFieldValidator control for each text box in which data must be entered.1.

Set the ControlToValidate attribute to the ID of the control to validate.2.

Add Save and Cancel (or equivalently named) buttons.3.

Set the Save button's CausesValidation attribute to true to have validation performed when the
button is clicked (set it to False for the Cancel button).

4.

In the code-behind class, use the .NET language of your choice to add code to the event handler for
the Save button's click event that checks the Page.IsValid property and verifies that all validation
was successful.

Figure 3-1 shows a typical user input form with fields for First Name and Last Name and several other
types of information. Figure 3-2 shows the same form with validation error messages that appear
when the user fails to complete the First Name and Last Name fields. Example 3-1 shows the .aspx
file that implements the form, and Examples 3-2 and 3-3 show the VB and C# code-behind files
needed to complete the application.

Figure 3-1. Form with required field validation outputnormal

Figure 3-2. Form with required field validation outputwith error messages

Discussion

When you need to insist that a user enter data into a text box, a common requirement for forms
used to register new users for a site or service, the RequiredFieldValidator control provides a
straightforward way to enforce the rule. We've used the control to require completion of the First
Name and Last Name text boxes of a simple registration form (see Figures 3-1 and Figures 3-2). You

need to assign a RequiredFieldValidator control to each text box you wish to check. Each validator
control must be placed on the form at the exact spot where you want its error message to be
displayed (typically just after the text box it validates), and the ControlToValidate attribute of the
validator must be set to the ID of the text box as shown in the following code snippet. In our
example, the names of the First Name and Last Name text boxes are txtFirstName and txtLastName,
respectively.

 <asp:RequiredFieldValidator id="rfvFirstName"
 Runat="server"
 ControlToValidate="txtFirstName"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True">

 First Name Is Required
 </asp:RequiredFieldValidator>

The Display attribute must be set to Dynamic, Static, or None. Dynamic causes ASP.NET to output
the HTML related to the validator error message only when an error message is to be output. Static
causes HTML related to the validator error message to be output at all times even when an error
message is not output. None prevents any HTML related to the validator error message from being
output; this setting is useful when you plan to use an error summary and do not wish to display an
error message at the specific field. (See Recipe 3.5 for an example that uses an error summary.) In
our example, the Display attribute is set to Dynamic so an error message is issued only when
validation fails:

 <asp:RequiredFieldValidator id="rfvFirstName"
 Runat="server"
 ControlToValidate="txtFirstName"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True">

 First Name Is Required
 </asp:RequiredFieldValidator>

The EnableClientScript attribute can be set to true or False as a function of how you want
validation performed. Setting the attribute to TRue causes validation to be performed on the client
and on the server when the form is submitted. Setting the attribute to False causes validation to be
performed only on the server when the form is submitted. See Recipe 3.6 for an example showing
when you may want to set this attribute to False. In our example, we have set the
EnableClientScript attribute to true so validation is performed on the client and the server:

 <asp:RequiredFieldValidator id="rfvFirstName"
 Runat="server"

 ControlToValidate="txtFirstName"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True">

 First Name Is Required
 </asp:RequiredFieldValidator>

The error message to be output when validation fails is placed between the open and close tags of
the control. The message can include HTML, as shown here, where an HTML image tag comes first,
followed by text:

 <asp:RequiredFieldValidator id="rfvFirstName"
 Runat="server"
 ControlToValidate="txtFirstName"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True">

 First Name Is Required
 </asp:RequiredFieldValidator>

In our application, two buttons are provided on the form to allow the user to submit or cancel the
page. The Save button causes the form to be submitted and the data the user has entered to be
validated, while the Cancel button causes validation to be bypassed. Validation is requested by
setting the CausesValidation attribute to true for the Save button and False for the Cancel button:

 <input id="btnSave" runat="server" type="button"
 value="Save" causesvalidation="true"
 onserverclick="btnSave_ServerClick"/>
 <input id="btnCancel" runat="server" type="button"
 value="Cancel" causesvalidation="false"/>

With the setup done in the .aspx file, the code-behind requires a simple check of the Page.IsValid
property in the event handler for the Save button's click event. This is done to ensure all client-and
server-side validation was successful before processing the form data.

See Also

Recipes 3.5 and 3.6

Example 3-1. Form with required field validation (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH03RequiredFieldValidationVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH03RequiredFieldValidationVB"
 title="Validator - Required Field" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Required Field Validation (VB)
 </div>
 <table align="center" class="dataEntry"></tr>
 <td class="LabelText">First Name: </td>
 <td>
 <asp:TextBox id="txtFirstName" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvFirstName"
 Runat="server"
 ControlToValidate="txtFirstName"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True">

 First Name Is Required
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Last Name: </td>
 <td>
 <asp:TextBox id="txtLastName" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvLastName"
 Runat="server"
 ControlToValidate="txtLastName"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True">

 Last Name Is Required
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Age: </td>
 <td>
 <asp:TextBox id="txtAge" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>

 </tr>
 <td class="LabelText">Country: </td>
 <td>
 <asp:DropDownList id="ddCountry" Runat="server" >
 <asp:ListItem Selected="True"
 Value="0">----- Select Country -----</asp:ListItem>

 <asp:ListItem Value="1">Canada</asp:ListItem>
 <asp:ListItem Value="2">United States</asp:ListItem>
 </asp:DropDownList>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Email Address: </td>
 <td>
 <asp:TextBox id="txtEmailAddress" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Password: </td>
 <td>
 <asp:TextBox id="txtPassword1" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Re-enter Password: </td>
 <td>
 <asp:TextBox id="txtPassword2" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td colspan="2">

 <table align="center" width="50%"></tr>
 <td align="center">
 <input id="btnSave" runat="server" type="button"
 value="Save" causesvalidation="true"
 onserverclick="btnSave_ServerClick"/>
 </td>
 <td align="center">
 <input id="btnCancel" runat="server" type="button"
 value="Cancel" causesvalidation="false"
 onserverclick="btnCancel_ServerClick" />
 </td>
 </tr>
 </table>
 </td>

 </tr>
 </table>
</asp:Content>

Example 3-2. Form with required field validation code-behind (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for CH03RequiredFieldValidationVB.aspx
 ''' </summary>
 Partial Class CH03RequiredFieldValidationVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the save button click
 ''' event. It is responsible for processing the form data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnSave_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 If (Page.IsValid) Then
 'process form data and save as required for application
 End If
 End Sub 'btnSave_ServerClick
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the cancel button click
 ''' event. It is responsible for processing the form data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnCancel_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'perform any cancel operations required for application
 End Sub 'btnCancel_ServerClick
 End Class 'CH03RequiredFieldValidationVB
End Namespace

Example 3-3. Form with required field validation code-behind (.cs)

using System;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH03RequiredFieldValidationCS.aspx
 /// </summary>
 public partial class CH03RequiredFieldValidationCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the save button click
 /// event. It is responsible for processing the form data.
 /// </summary>

 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnSave_ServerClick(Object sender,
 System.EventArgs e)
 {
 if (Page.IsValid)
 {
 // process form data and save as required for application
 }
 } //btnSave_ServerClick
 ///***
 /// <summary>
 /// This routine provides the event handler for the cancel button click
 /// event. It is responsible for processing the form data.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnCancel_ServerClick(Object sender,
 System.EventArgs e)
 {
 // perform any cancel operations required for application
 } // btnCancel_ServerClick
 } // CH03RequiredFieldValidationCS
}

Recipe 3.3. Requiring Data to Be in a Range

Problem

You need to ensure data entered by a user is within a defined rangefor example, between two
numbers, currency values, dates, or alphabetic characters.

Solution

Add a RangeValidator control to the .aspx file for each TextBox control to be checked, set the
minimum and maximum acceptable values for the range, and verify that validation was successful
from within the event handler of the control that completes the user's entry for the page.

In the .aspx file:

Add a RangeValidator control for each text box in which the user must enter data within a
specified range.

1.

Set the ControlToValidate attribute to the ID of the control to validate.2.

Set the control's MinimumValue and MaximumValue attributes to the minimum and maximum
values for the valid range.

3.

Add Save and Cancel (or equivalently named) buttons.4.

Set the Save button's CausesValidation attribute to TRue to have validation performed when the
button is clicked (set it to False for the Cancel button).

5.

In the code-behind class for the page, use the .NET language of your choice to add code to the event
handler for the Save button's click event to check the Page.IsValid property and verify that all
validation was successful. (See Recipe 3.1 for details.)

Figure 3-3 shows the user input form introduced in Recipe 3.1 with normal, error-free output. Figure
3-4 shows the same form with the error message that appears on the form when the data entered
into the Age field falls outside a predetermined range. Example 3-4 shows the .aspx file that
implements the form, and Examples 3-2 and 3-3 (see Recipe 3.1) show the companion code-behind
files.

Figure 3-3. Form with range validation outputnormal

Discussion

To make sure a user enters data in a text box within a defined range, place a RangeValidator control
on the form and assign it the text box to be validated. To create the form shown in Figures 3-3 and
Figures 3-4, for example, we added an asp:RangeValidator control to the .aspx file that implements
the form and assigned it to the Age text box to ensure the entered data is within the range 18 to 99.
You must place the validator on the form at the exact location where you want the control's error
message to be displayed, which in our case is just to the right of the Age text box.

Figure 3-4. Form with range validation outputwith error message

To assign a RangeValidator control to a text box or other control type, you must set its
ControlToValidate attribute to the ID of the control you wish to validate. In our example, the ID of
the Age text box is txtAge:

 <asp:RangeValidator id="rvAge" Runat="server"
 ControlToValidate="txtAge"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 MinimumValue="18"
 MaximumValue="99"
 Type="Integer">

 Age Must Be Between 18 and 99
 </asp:RangeValidator>

To specify a valid range, you must set the MinimumValue and MaximumValue attributes of the
RangeValidator control. In our example, we have set the lowest acceptable value to 18 and the
highest to 99. These values are inclusive, which means that ages 18 and 99 are also acceptable.

 <asp:RangeValidator id="rvAge" Runat="server"
 ControlToValidate="txtAge"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 MinimumValue="18"
 MaximumValue="99"

 Type="Integer">

 Age Must Be Between 18 and 99
 </asp:RangeValidator>

Our example focuses on using a range of two numbers, but you can use a range of dates, times,
currency values, alphabetic characters, etc.

To change the minimum and maximum values dynamically, you can set them in the code-behind, as
shown next. You might want to do this, for example, when determining the range on the fly.

 Dim minAge As Integer
 Dim maxAge As Integer
 ..
 minAge = 18
 maxAge = 99
 rvAge.MinimumValue = minAge.ToString()
 rvAge.MaximumValue = maxage.ToString()

 int minAge;
 int maxAge;
 ..
 minAge = 18;
 maxAge = 99;
 rvAge.MinimumValue = minAge.ToString();
 rvAge.MaximumValue = maxAge.ToString();

If control attributes are first set in the .aspx file and later set in the code-
behind, the values set in the code-behind will be the values used in the
rendered page.

The error message to be output when validation fails is placed between the open and close tags:

 <asp:RangeValidator id="rvAge" Runat="server"
 ControlToValidate="txtAge"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 MinimumValue="18"
 MaximumValue="99"
 Type="Integer">

 Age Must Be Between 18 and 99
 </asp:RangeValidator>

The error message that will be output when a validation error occurs can be set dynamically in the
code-behind, which is something you might find useful when you have set the maximum and
minimum range values on the fly:

 rvAge.Text = " " & _
 "Age Must Be Between " & minAge.ToString() & _
 " and " & maxage.ToString()

 rvAge.Text = " " +
 "Age Must Be Between " + minAge.ToString() +
 " and " + maxAge.ToString();

If you want a text box to be a required field, add a RequiredFieldValidator control to the form as
well, which is what we have done in our example with the Age text box:

 <asp:RequiredFieldValidator id="rfvAge"
 Runat="server"
 ControlToValidate="txtAge"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True">

 Age Is Required
 </asp:RequiredFieldValidator>
 <asp:RangeValidator id="rvAge" Runat="server"
 ControlToValidate="txtAge"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 MinimumValue="18"
 MaximumValue="99"
 Type="Integer">

 Age Must Be Between 18 and 99
 </asp:RangeValidator>

All other aspects of the .aspx and code-behind are the same as for Recipe 3.1. See that recipe's
discussion for comments about the Display, EnableClientScript, and CausesValidation attributes in
particular. You'll also find explanations of the Save and Cancel buttons and various other aspects of

the code.

See Also

Recipe 3.1

Example 3-4. Form with range validation (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH03RangeValidationVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH03RangeValidationVB"
 title="Range Validation" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">

 Range Validation (VB)
 </div>
 <table align="center" class="dataEntry"></tr>
 <td class="LabelText">First Name: </td>
 <td>
 <asp:TextBox id="txtFirstName" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Last Name: </td>
 <td>
 <asp:TextBox id="txtLastName" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Age: </td>
 <td>
 <asp:TextBox id="txtAge" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvAge"
 Runat="server"
 ControlToValidate="txtAge"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True">

 Age Is Required
 </asp:RequiredFieldValidator>
 <asp:RangeValidator id="rvAge" Runat="server"

 ControlToValidate="txtAge"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 MinimumValue="18"
 MaximumValue="99"
 Type="Integer">

 Age Must Be Between 18 and 99
 </asp:RangeValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Country: </td>
 <td>
 <asp:DropDownList id="ddCountry" Runat="server" >
 <asp:ListItem Selected="True"
 Value="0">----- Select Country -----</asp:ListItem>
 <asp:ListItem Value="1">Canada</asp:ListItem>
 <asp:ListItem Value="2">United States</asp:ListItem>
 </asp:DropDownList>

 </td>
 </tr>
 </tr>
 <td class="LabelText">Email Address: </td>
 <td>
 <asp:TextBox id="txtEmailAddress" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Password: </td>
 <td>
 <asp:TextBox id="txtPassword1" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" /> </td>
 </tr>
 </tr>
 <td class="LabelText">Re-enter Password: </td>
 <td>
 <asp:TextBox id="txtPassword2" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td colspan="2">

 <table align="center" width="50%"></tr>
 <td align="center">
 <input id="btnSave" runat="server" type="button"

 value="Save" causesvalidation="true"
 onserverclick="btnSave_ServerClick"/>
 </td>
 <td align="center">
 <input id="btnCancel" runat="server" type="button"
 value="Cancel" causesvalidation="false"
 onserverclick="btnCancel_ServerClick" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
</asp:Content>

Recipe 3.4. Requiring That Two Data Input Fields Match

Problem

You need to make sure the data a user enters in two fields on an input form is the same, such as
when performing password or email verification.

Solution

Add RequiredFieldValidator controls to the .aspx file for both TextBox controls to prevent a user
from skipping one of the fields. Next, add a CompareValidator control to one of the TextBox controls.
Finally, verify that validation was successful from within the event handler of the control that
completes the user's entry for the page.

In the .aspx file:

Add a RequiredFieldValidator control for each of the two text boxes in which the user must
enter matching data.

1.

Add a CompareValidator control to the control that must have its input match the other control
(usually the second one).

2.

Add Save and Cancel (or equivalently named) buttons.3.

Set the Save button's CausesValidation attribute to true to have validation performed when the
button is clicked (set it to False for the Cancel button).

4.

In the code-behind class for the page, use the .NET language of your choice to add code to the event
handler for the Save button's click event to check the Page.IsValid property and verify that all
validation was successful. (See Recipe 3.1 for details.)

Figure 3-5 shows a typical form with normal output prior to data entry. Figure 3-6 shows the error
message that appears on the form when the user enters passwords that do not match. Example 3-5
shows the .aspx file for the solution we have implemented to illustrate this recipe. See Examples 3-2
and 3-3 (Recipe 3.1) for the companion code-behind files.

Discussion

The first step in making sure the data a user enters in two fields is the same is to place
RequiredFieldValidator controls in the form for the two fields. In our application, for example,
RequiredFieldValidator controls are added for the Password and Re-enter Password text boxes.

Next, a CompareValidator control must be added for the second field whose input must match the
first field's input. In our example application, a CompareValidator is added for the Re-enter Password
because its input must match the Password's input. The validators are placed to the right of the text
boxes to cause the error messages to be displayed beside the text boxes.

Figure 3-5. Form with compare validation outputnormal

Figure 3-6. Form with compare validation outputwith error message

Because the CompareValidator allows empty input, a RequiredFieldValidator
must be used with each of the controls involved in the comparison. Attempting
to use a CompareValidator without a RequiredFieldValidator will result in odd
and undesirable behavior.

In our application, for example, if the RequiredFieldValidator were omitted for
the Re-enter Password text box, the comparison validation would be performed
only if data were entered in the Re-enter Password text box. The end result
would be failing to flaga validation error when the user enters data in the
Password text box but leaves the Re-enter Password text box empty.

See Recipe 3.1 for more information about how to set up the required field validators.

The ControlToValidate attribute of the CompareValidator control is set to the ID of the control to
validate. On our form, the control to validate is txtPassword2, the TextBox in which the user re-enters
his password:

 <asp:CompareValidator ID="cvPassword2" runat="server"
 ControlToValidate="txtPassword2"
 ControlToCompare="txtPassword1"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True">

 Both Passwords Must Match
 </asp:CompareValidator>

The ControlToCompare attribute is set to the ID of the control used as the reference, in our case
txtPassword1:

 <asp:CompareValidator ID="cvPassword2" runat="server"
 ControlToValidate="txtPassword2"
 ControlToCompare="txtPassword1"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True">

 Both Passwords Must Match
 </asp:CompareValidator>

In all other respects, the .aspx and code-behind files are the same as those in Recipe 3.1. See that
recipe's discussion for comments about the Display, EnableClientScript, and CausesValidation
attributes in particular. You'll also find explanations of the Save and Cancel buttons and various other
aspects of the code.

See Also

Recipe 3.1

Example 3-5. Form with compare validation (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH03CompareValidationVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH03CompareValidationVB"
 title="Compare Validator" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Field Comparison Validation (VB)
 </div>
 <table align="center" class="dataEntry"></tr>
 <td class="LabelText">First Name: </td>
 <td>
 <asp:TextBox id="txtFirstName" Runat="server"
 Columns="30" CssClass="LabelText" />

 </td>
 </tr>
 </tr>
 <td class="LabelText">Last Name: </td>
 <td>

 <asp:TextBox id="txtLastName" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Age: </td>
 <td>
 <asp:TextBox id="txtAge" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Country: </td>
 <td>
 <asp:DropDownList id="ddCountry" Runat="server" >
 <asp:ListItem Selected="True"
 Value="0">----- Select Country -----</asp:ListItem>
 <asp:ListItem Value="1">Canada</asp:ListItem>
 <asp:ListItem Value="2">United States</asp:ListItem>
 </asp:DropDownList>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Email Address: </td>
 <td>
 <asp:TextBox id="txtEmailAddress" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Password: </td>
 <td>
 <asp:TextBox id="txtPassword1" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvPassword1"
 Runat="server"
 ControlToValidate="txtPassword1"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True">

 Password Is Required
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>

 <td class="LabelText">Re-enter Password: </td>
 <td>
 <asp:TextBox id="txtPassword2" Runat="server"
 TextMode="Password"

 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rvPassword2"
 Runat="server"
 ControlToValidate="txtPassword2"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True">

 Re-Entered Password Is Required
 </asp:RequiredFieldValidator>
 <asp:CompareValidator ID="cvPassword2" runat="server"
 ControlToValidate="txtPassword2"
 ControlToCompare="txtPassword1"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True">

 Both Passwords Must Match
 </asp:CompareValidator>
 </td>
 </tr>
 </tr>
 <td colspan="2">

 <table align="center" width="50%"></tr>
 <td align="center">
 <input id="btnSave" runat="server" type="button"
 value="Save" causesvalidation="true"
 onserverclick="btnSave_ServerClick"/>
 </td>
 <td align="center">
 <input id="btnCancel" runat="server" type="button"
 value="Cancel" causesvalidation="false"
 onserverclick="btnCancel_ServerClick" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
</asp:Content>

Recipe 3.5. Requiring Data to Match a Predefined Pattern

Problem

You need to make sure the data a user enters matches a specific pattern, such as an email address.

Solution

Add a RegularExpressionValidator control to the .aspx file, set the regular expression to perform the
pattern matching, and verify that validation was successful from within the event handler of the
control that completes the user's entry for the page.

In the .aspx file:

Add a RegularExpressionValidator control for each text box that must have data matching a
specific pattern.

1.

Set the ValidationExpression attribute of the RegularExpressionValidator to the regular
expression needed to match the required pattern.

2.

Add Save and Cancel (or equivalently named) buttons.3.

Set the Save button's CausesValidation attribute to true to have validation performed when the
button is clicked (set it to False for the Cancel button).

4.

In the code-behind class for the page, use the .NET language of your choice to add code to the event
handler for the Save button's click event to check the Page.IsValid property and verify that all
validation was successful. (See Recipe 3.1 for details.)

Figure 3-7 shows a typical form with normal, error-free output. Figure 3-8 shows the error message
that appears on the form when an invalid email address is entered. Example 3-6 shows the .aspx file
for our application that implements the recipe. (See Examples 3-2 and 3-3 [Recipe 3.1] for the
companion code-behind files.)

Discussion

One of the more common uses of pattern validation is for checking the form of an email address
entered to ensure it matches the user@domain pattern. A RegularExpressionValidator control is
added for the Email Address text box in the example. The control is placed to the right of the Email
Address text box and causes the error message to be displayed beside the text box when an invalid
email address is entered.

Figure 3-7. Form with pattern validation outputnormal

Figure 3-8. Form with pattern validationwith error message

The ControlToValidate attribute of the validation control must be set to the ID of the control to

validate, in our case, txtEmailAddress:

 <asp:RegularExpressionValidator id="revEmailAddress"
 Runat="server"
 ControlToValidate="txtEmailAddress"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"

 ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

 Invalid Email Address
 </asp:RegularExpressionValidator>

The ValidationExpression attribute is set to the regular expression that will perform the pattern
matching on the data entered into the text box. Any valid regular expression can be used. The
expression we use in our example is the standard prebuilt expression for an Internet email address
chosen from a pick list in the Regular Expression Editor of Visual Studio 2005, which is available when
setting the ValidateExpression attribute (see Figure 3-9). The Help accessible from this same dialog
box provides a complete explanation of the syntax and can be used when writing your own custom
regular expressions. Many books describe all the nuances of regular expressions, including Mastering
Regular Expressions (O'Reilly), so we won't go into them here.

 <asp:RegularExpressionValidator id="revEmailAddress"
 Runat="server"
 ControlToValidate="txtEmailAddress"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

 Invalid Email Address
 </asp:RegularExpressionValidator>

Figure 3-9. Regular Expression Editor

The error message to be output when validation fails is placed between the open and close tags. It
can include HTML, as shown here:

 <asp:RegularExpressionValidator id="revEmailAddress"
 Runat="server"
 ControlToValidate="txtEmailAddress"
 CssClass="AlertText"

 Display="Dynamic"
 EnableClientScript="True"
 ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

 Invalid Email Address
 </asp:RegularExpressionValidator>

If the email address in this example was required to process the form, a
RequiredFieldValidator would need to be added along with the
RegularExpressionValidator.

In all other respects, the .aspx and code-behind files are identical to those in Recipe 3.1. See that
recipe's discussion for comments about the Display, EnableClientScript, and CausesValidation
attributes in particular. You'll also find explanations of the Save and Cancel buttons and various other
aspects of the code.

See Also

Recipe 3.1; search Regular Expression Examples in the MSDN Library; Mastering Regular
Expressions, by Jeffrey E. F. Friedl (O'Reilly); the Help available from the Regular Expression dialog
box when setting the ValidateExpression attribute in Visual Studio 2005.

Example 3-6. Form with pattern validation (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH03RegularExpressionValidationVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH03RegularExpressionValidationVB"
 title="Regular Expression Validator" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Regular Expression Validation (VB)
 </div>
 <table align="center" class="dataEntry"></tr>
 <td class="LabelText">First Name: </td>
 <td>
 <asp:TextBox id="txtFirstName" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Last Name: </td>
 <td>
 <asp:TextBox id="txtLastName" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Age: </td>
 <td>

 <asp:TextBox id="txtAge" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Country: </td>
 <td>
 <asp:DropDownList id="ddCountry" Runat="server" >
 <asp:ListItem Selected="True"
 Value="0">----- Select Country -----</asp:ListItem>
 <asp:ListItem Value="1">Canada</asp:ListItem>
 <asp:ListItem Value="2">United States</asp:ListItem>
 </asp:DropDownList>

 </td>
 </tr>
 </tr>
 <td class="LabelText">Email Address: </td>
 <td>
 <asp:TextBox id="txtEmailAddress" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:requiredfieldvalidator id="rfvEmailAddress"
 runat="server"
 controltovalidate="txtEmailAddress"
 cssclass="alertText"
 display="Dynamic"
 enableclientscript="True">

 Email Address Is Required
 </asp:requiredfieldvalidator>
 <asp:RegularExpressionValidator id="revEmailAddress"
 Runat="server"
 ControlToValidate="txtEmailAddress"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*">

 Invalid Email Address
 </asp:RegularExpressionValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Password: </td>
 <td>
 <asp:TextBox id="txtPassword1" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Re-enter Password: </td>
 <td>

 <asp:TextBox id="txtPassword2" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 </tr>
 <td colspan="2">

 <table align="center" width="50%"></tr>
 <td align="center">
 <input id="btnSave" runat="server" type="button"
 value="Save" causesvalidation="true"

 onserverclick="btnSave_ServerClick"/>
 </td>
 <td align="center">
 <input id="btnCancel" runat="server" type="button"
 value="Cancel" causesvalidation="false"
 onserverclick="btnCancel_ServerClick" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
</asp:Content>

Recipe 3.6. Requiring That a Drop-Down List Selection Be
Made

Problem

You need to make sure a user selects an entry in a drop-down list.

Solution

Add a CustomValidator control to the drop-down list, along with some client-side JavaScript to
validate the selection. Next, implement an event handler for the CustomValidator control's
ServerValidate event. Finally, check the Page.IsValid property in the event handler for the control
that completes the user's entry for the page.

In the .aspx file:

Add a CustomValidator control for each drop-down list where you must verify that an item has
been selected.

1.

Add JavaScript to validate the selection on the client side.2.

Add Save and Cancel (or equivalently named) buttons.3.

Set the Save button's CausesValidation attribute to true to have validation performed when the
button is clicked (set it to False for the Cancel button).

4.

In the code-behind class for the page, use the .NET language of your choice to:

Add an event handler for the CustomValidator control's ServerValidate event whose purpose is
to provide the server-side validation to ensure an item has been selected.

1.

Add code to the event handler for the Save button's click event to check the Page.IsValid
property and verify that all validation was successful (see Recipe 3.1 for details).

2.

Figure 3-10 shows a typical form with normal output prior to data entry. Figure 3-11 shows the form
with validation errors. Examples 3-7 , 3-8 through 3-9 show the .aspx and code-behind files for our
application that implements the solution.

Figure 3-10. Form with selection validation outputnormal

Discussion

This recipe involves using a CustomValidator control to verify that an item has been selected in a
drop-down list. But the approach we advocate is out of the ordinary for a couple of reasons. First, by
implementing validation via client-side JavaScript, errors can be detected on the client, thus avoiding
unnecessary round trips to the server for server-side validation.

Figure 3-11. Form with selection validation outputwith error summary

Besides using a CustomValidator control, this application uses validation
controls from all of the previous recipes combined, specifically
RequiredFieldValidator , RangeValidator , CompareValidator , and
RegularExpressionValidator . Combining validators of various types is typical
when performing validation on a complex form.

Second, instead of displaying an error message at each control, this example shows how to use a
ValidationSummary control to provide a list of all errors on the page in one place. This approach is
useful for a "busy" form.

To implement the solution, the ControlToValidate attribute must be set to the drop-down list you will
be validating. In our case, it is set to ddCountry :

 <asp:CustomValidator id="valItemSelected" runat="server"
 ControlToValidate="ddCountry"
 ClientValidationFunction="isItemSelected"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Country Must Be Selected"

 OnServerValidate="valItemSelected_ServerValidate">

 </asp:CustomValidator>

The ClientValidationFunction attribute must be set to the name of the client JavaScript function
that will perform the client-side validation, which is done to ensure an item has been selected from
the drop down:

 <asp:CustomValidator id="valItemSelected" runat="server"
 ControlToValidate="ddCountry"
 ClientValidationFunction="isItemSelected"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Country Must Be Selected"
 OnServerValidate="valItemSelected_ServerValidate">

 </asp:CustomValidator>

A client script block must be added to the page containing the function named in the
ClientValidationFunction attribute of the CustomValidator , as shown in Example 3-7 . The function
must have source and argument parameters. When the function is called, the source will be set to a
reference to the validator that called the function. In this case, it is the "valItemSelected " validator.

The arguments parameter is a structure containing two elements: Value and IsValid. Value contains
the current value of the control being validated. In this case, it is the value of the selected item in the
drop-down list. In our example, three entries are added to the drop-down list, with the first entry
being the Select Country instruction with a value of 0 . All legitimate selections from the drop-down
contain values greater than 0; therefore, if the value of arguments.Value is less than 1, no selection
has been made and the value of arguments.IsValid is set to False to indicate a validation failure. If
arguments.Value is greater than 0, then a selection has been made, and arguments.IsValid is set to
TRue to indicate the validation passed.

The EnableClientScript attribute is set to true or False according to how you want validation to be
performed. Setting the attribute to true causes validation to be performed on the client and on the
server when the page is submitted. Setting the attribute to False causes validation to be performed
only on the server when the form is submitted. In our example, we are providing client-side
JavaScript, so it must be set to true :

 <asp:CustomValidator id="valItemSelected" runat="server"
 ControlToValidate="ddCountry"
 ClientValidationFunction="isItemSelected"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Country Must Be Selected"

 OnServerValidate="valItemSelected_ServerValidate">

 </asp:CustomValidator>

Rather than outputtin gan error message at each control, as was done in all the previous examples in
this chapter, we've added a ValidationSummary control to the form in this example to provide in one
place a summary of all the errors on the form. When a validation summary is being used, an error
message is no longer required between the start and end tags of the validator element. Instead, the
ErrorMessage attribute of the validator is set to the error message to display. To provide visual
feedback of which control has an error, an arrow image is inserted between the start and end tags of
the validator element in our example:

 <asp:CustomValidator id="valItemSelected" runat="server"
 ControlToValidate="ddCountry"
 ClientValidationFunction="isItemSelected"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Country Must Be Selected"
 OnServerValidate="valItemSelected_ServerValidate">

 </asp:CustomValidator>

The DisplayMode attribute of the asp:ValidationSummary control defines how the summary is
displayed. Valid values are BulletList, List , and SingleParagraph . BulletList will generate a
bulleted errors list, which is what we've chosen for our example. List will generate the same list as
the BulletList setting but without the bullets. SingleParagraph generates a single HTML paragraph
containing all of the error information. The HeaderText attribute is set to the title placed at the top of
the errors list.

 <asp:ValidationSummary id="vsErrors" Runat="server"
 CssClass="AlertText"
 DisplayMode="BulletList"
 EnableClientScript="True"
 HeaderText="Error Summary" />

The sample application's code-behind includes an event handler for the CustomValidator control's
ServerValidate event, as shown in Examples 3-8 (VB) and 3-9 (C#). This event handler provides the
server-side validation to ensure a country has been selected using the same technique implemented
in the client script.

The code-behind includes an event handler for the Save button's click event. This event handler
checks to ensure the page is valid (all validation passed) and then performs the processing of the
form data.

See Also

Recipes 3.1, 3.2, 3.3, and 3.4

Example 3-7. Form with selection validation (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH03CustomSelectionValidationVB.aspx.vb"

 Inherits="ASPNetCookbook.VBExamples.CH03CustomSelectionValidationVB"
 title="Custom Selection Validator" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <script language="javascript" type="text/javascript">
 <!--
 function isItemSelected(source, arguments)
 {
 if (arguments.Value < 1)
 {
 arguments.IsValid = false;
 }
 else
 {
 arguments.IsValid = true;
 }
 }
 //-->
 </script>
 <div align="center" class="pageHeading">
 Custom Selection Validation (VB)
 </div>
 <table align="center" class="dataEntry">
 </tr>
 <td colspan="2" align="left">
 <asp:ValidationSummary id="vsErrors" Runat="server"
 CssClass="alertText"
 DisplayMode="BulletList"
 EnableClientScript="True"
 HeaderText="Error Summary" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">First Name: </td>
 <td>
 <asp:TextBox id="txtFirstName" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvFirstName"
 Runat="server"
 ControlToValidate="txtFirstName"

 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="First Name Is Required">

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class="LabelText">Last Name: </td>
 <td>
 <asp:TextBox id="txtLastName" Runat="server"
 Columns="30" CssClass="LabelText" />

 <asp:RequiredFieldValidator id="rfvLastName"
 Runat="server"
 ControlToValidate="txtLastName"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Last Name Is Required">

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Age: </td>
 <td>
 <asp:TextBox id="txtAge" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="Requiredfieldvalidator1"
 Runat="server"
 ControlToValidate="txtAge"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Age Is Required">

 </asp:RequiredFieldValidator>
 <asp:RangeValidator id="rvAge" Runat="server"
 ControlToValidate="txtAge"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 MinimumValue="18"
 MaximumValue="99"
 Type="Integer"
 ErrorMessage="Age Must Be Between 18 and 99">

 </asp:RangeValidator>
 </td>
 </tr>

 </tr>
 <td class="LabelText">Country: </td>
 <td>
 <asp:DropDownList id="ddCountry" Runat="server" >
 <asp:ListItem Selected="True"
 Value="0">----- Select Country -----</asp:ListItem>
 <asp:ListItem Value="1">Canada</asp:ListItem>
 <asp:ListItem Value="2">United States</asp:ListItem>
 </asp:DropDownList>
 <asp:CustomValidator id="valItemSelected" runat="server"
 ControlToValidate="ddCountry"
 ClientValidationFunction="isItemSelected"
 CssClass="alertText"
 Display="Dynamic"

 EnableClientScript="True"
 ErrorMessage="Country Must Be Selected"
 OnServerValidate="valItemSelected_ServerValidate">

 </asp:CustomValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Email Address: </td>
 <td>
 <asp:TextBox id="txtEmailAddress" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:requiredfieldvalidator id="rfvEmailAddress"
 runat="server"
 controltovalidate="txtEmailAddress"
 cssclass="alertText"
 display="Dynamic"
 enableclientscript="True">

 </asp:requiredfieldvalidator>
 <asp:RegularExpressionValidator id="revEmailAddress"
 Runat="server"
 ControlToValidate="txtEmailAddress"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"
 ErrorMessage="Invalid Email Address">

 </asp:RegularExpressionValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Password: </td>
 <td>
 <asp:TextBox id="txtPassword1" Runat="server"
 TextMode="Password"

 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvPassword1"
 Runat="server"
 ControlToValidate="txtPassword1"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Password Is Required">

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Re-enter Password: </td>
 <td>

 <asp:TextBox id="txtPassword2" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rvPassword2"
 Runat="server"
 ControlToValidate="txtPassword2"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Re-Entered Password Is Required">

 </asp:RequiredFieldValidator>
 <asp:CompareValidator ID="cvPassword2" runat="server"
 ControlToValidate="txtPassword2"
 ControlToCompare="txtPassword1"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Both Passwords Must Match">

 </asp:CompareValidator>
 </td>
 </tr>
 </tr>
 <td colspan="2">

 <table align="center" width="50%">
 </tr>
 <td align="center">
 <input id="btnSave" runat="server" type="button"
 value="Save" causesvalidation="true"
 onserverclick="btnSave_ServerClick"/>
 </td>
 <td align="center">
 <input id="btnCancel" runat="server" type="button"
 value="Cancel" causesvalidation="false"

 onserverclick="btnCancel_ServerClick" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
</asp:Content>

Example 3-8. Form with selection validation code-behind (.vb)

Option Explicit On
Option Strict On
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH03CustomSelectionValidationVB.aspx

 ''' </summary>
 Partial Class CH03CustomSelectionValidationVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the valItemSelected
 ''' server validate event. It is responsible for validating that a
 ''' country has been selected.
 ''' </summary>
 '''
 ''' <param name="source">Set to the sender of the event</param>
 ''' <param name="args">Set to the event arguments</param>
 Protected Sub valItemSelected_ServerValidate(ByVal source As Object, _
 ByVal args As System.Web.UI.WebControls.ServerValidateEventArgs)
 If (ddCountry.SelectedIndex < 1) Then
 args.IsValid = False
 Else
 args.IsValid = True
 End If
 End Sub 'valItemSelected_ServerValidate
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the save button click
 ''' event. It is responsible for processing the form data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnSave_ServerClick(ByVal sender As Object, _

 ByVal e As System.EventArgs)
 If (Page.IsValid) Then
 'process form data and save as required for application
 End If
 End Sub 'btnSave_ServerClick
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the cancel button click
 ''' event. It is responsible for processing the form data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnCancel_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'perform any cancel operations required for application
 End Sub 'btnCancel_ServerClick
 End Class 'CH03CustomSelectionValidationVB
End Namespace

Example 3-9. Form with selection validation code-behind (.cs)

using System;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH03CustomSelectionValidationCS.aspx
 /// </summary>
 public partial class CH03CustomSelectionValidationCS
 : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the valItemSelected server
 /// validate event. It is responsible for validating that a country has
 /// been selected
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void valItemSelected_ServerValidate(Object source,
 System.Web.UI.WebControls.ServerValidateEventArgs args)
 {
 if (ddCountry.SelectedIndex < 1)
 {
 args.IsValid = false;
 }

 else
 {
 args.IsValid = true;
 }
 } // valItemSelected_ServerValidate
 ///***
 /// <summary>
 /// This routine provides the event handler for the save button click
 /// event. It is responsible for processing the form data.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnSave_ServerClick(Object sender,
 System.EventArgs e)
 {
 if (Page.IsValid)
 {
 // process form data and save as required for application
 }
 } //btnSave_ServerClick
 ///***
 /// <summary>
 /// This routine provides the event handler for the cancel button click
 /// event. It is responsible for processing the form data.
 /// </summary>

 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnCancel_ServerClick(Object sender,
 System.EventArgs e)
 {
 // perform any cancel operations required for application
 } // btnCancel_ServerClick
 } //CH03CustomSelectionValidationCS
}

Recipe 3.7. Requiring Data to Match a Database Entry

Problem

You need to make sure the data a user enters matches an entry in a database.

Solution

Add a CustomValidator to the .aspx file. Then add an event handler to the codebehind for the
CustomValidator control's ServerValidate event, its purpose beingto validate the user entries against
the database.

In the .aspx file:

Add a CustomValidator control that validates the entries against the database during server-
side validation.

1.

Add a Login (or equivalently named) button.2.

In the code-behind class for the page, use the .NET language of your choice to:

Add an event handler for the CustomValidator control's ServerValidate event, its purpose
beingto provide the server-side validation of the user's entries against the database.

1.

Add code to the event handler for the Login button's click event to check the Page.IsValid
property and verify that all validation was successful (see Recipe 3.1 for details).

2.

Figure 3-12 shows a typical form with normal output prior to data entry. Figure 3-13 shows the form
with a validation error message. Examples 3-10, 3-11 through 3-12 show the .aspx and code-behind
files for our application that implements the solution.

Discussion

One of the most common examples of this recipe's handiness is when implementing a classic login
page. The approach we favor in this scenario uses a CustomValidator to perform the user
authentication and a ValidationSummary to display error information.

Figure 3-12. Form with database validation outputnormal

Figure 3-13. Form with database validation outputwith error message

In our example, RequiredFieldValidator controls are used for the login ID and password fields.
(RequiredFieldValidator controls are described in Recipe 3.1.) The user must supply both to gain
access to her account.

Unlike the other recipes in this chapter, our approach for this recipe has the CustomValidator
control's EnableClientScript attribute set to False to disable client side validation because the
database validation can be done only on the server side:

 <asp:CustomValidator id="cvAuthentication" Runat="server"
 Display="None"
 EnableClientScript="False"
 ErrorMessage="Login ID or Password Is Invalid"
 OnServerValidate="cvAuthentication_ServerValidate" />

The ValidationSummary is set up to display all validation errors. This includes errors from the
RequiredFieldValidator controls and the CustomValidator used for user authentication.

The ServerValidate event for the CustomValidator (cvAuthentication_ServerValidate) is used to
perform the user authentication by checkingif a user exists in the database with the entered login ID
and password, as shown in Examples 3-11 (VB) and 3-12 (C#).

If the user is found in the database, the args.IsValid property is set true to indicate the validation
was successful. Otherwise, it is set False to indicate the validation failed.

The event handler for the Login button's click event (btnLogin_Click) then checks to see if the page
is valid before proceeding with actions required to log the user into the system.

As you may have noticed, the approach used in this recipe is an amalgam of all the approaches used
in the chapter's other recipes. Having used this approach to control essentially all the aspects of
validation, you can adapt it to perform almost any validation your application requires.

See Also

Recipes 3.1 and 3.5

Example 3-10. Form with database validation (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH03CustomDatabaseValidationVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH03CustomDatabaseValidationVB"
 title="Custom Database Validation" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Custom Selection Validation (VB)
 </div>
 <table align="center" class="dataEntry">
 </tr>
 <td colspan="2" align="left">
 <asp:ValidationSummary id="vsErrors" Runat="server"
 CssClass="alertText"
 DisplayMode="BulletList"
 EnableClientScript="True"
 HeaderText="Error Summary" />
 <asp:CustomValidator id="cvAuthentication" Runat="server"
 Display="None"
 EnableClientScript="False"
 ErrorMessage="Login ID or Password Is Invalid"
 OnServerValidate="cvAuthentication_ServerValidate" />
 </td>

 </tr>
 </tr>
 <td class="LabelText">Login ID: </td>
 <td>
 <asp:TextBox id="txtLoginID" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvLoginID"
 Runat="server"
 ControlToValidate="txtLoginID"
 CssClass="alertText"

 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Login ID Is Required">

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Password: </td>
 <td>
 <asp:TextBox id="txtPassword" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvPassword"
 Runat="server"
 ControlToValidate="txtPassword"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Password Is Required">

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td colspan="2" align="center">

 <input id="btnLogin" runat="server" type="button"
 value="Login" causesvalidation="true"
 onserverclick="btnLogin_Click"/>
 </td>
 </tr>
 </table>
</asp:Content>

Example 3-11. Form with database validation code-behind (.vb)

Option Explicit On
Option Strict On
Imports System.Configuration.ConfigurationManager
Imports System.Data
Imports System.Data.OleDb
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH03CustomDatabaseValidationVB.aspx
 ''' </summary>
 Partial Class CH03CustomDatabaseValidationVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>

 ''' This routine provides the event handler for the authentication server
 ''' validate event. It is responsible for checking the login ID and
 ''' password in the database to authenticate the user.
 ''' </summary>
 '''
 ''' <param name="source">Set to the sender of the event</param>
 ''' <param name="args">Set to the event arguments</param>
 Protected Sub cvAuthentication_ServerValidate(ByVal source As Object, _
 ByVal args As ServerValidateEventArgs)
 Dim dbConn As OleDbConnection = Nothing
 Dim dCmd As OleDbCommand = Nothing
 Dim strConnection As String
 Dim strSQL As String
 Try
 'initially assume credentials are invalid
 args.IsValid = False
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()
 'build the query string and check to see if a user with the entered
 'credentials exists in the database
 strSQL = "SELECT AppUserID FROM AppUser " & _
 "WHERE LoginID=? AND " & _
 "Password=?"
 dCmd = New OleDbCommand(strSQL, dbConn)
 dCmd.Parameters.Add(New OleDbParameter("LoginID", _
 txtLoginID.Text))
 dCmd.Parameters.Add(New OleDbParameter("Password", _
 txtPassword.Text))
 'check to see if the user was found
 If (Not IsNothing(dCmd.ExecuteScalar())) Then
 args.IsValid = True
 End If
 Finally

 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'cvAuthentication_ServerValidate
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the login button click

 ''' event. It is responsible for processing the form data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnLogin_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 If (Page.IsValid) Then
 'user has been authenticated so proceed with allowing access
 'to the site
 End If
 End Sub 'btnLogin_Click
 End Class 'CH03CustomDatabaseValidationVB
End Namespace

Example 3-12. Form with database validation code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH03CustomDatabaseValidationCS.aspx
 /// </summary>
 public partial class CH03CustomDatabaseValidationCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the authentication server
 /// validate event. It is responsible checking the login ID and password
 /// in the database to authenticate the user.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>

 protected void cvAuthentication_ServerValidate(Object source,
 System.Web.UI.WebControls.ServerValidateEventArgs args)
 {
 OleDbConnection dbConn = null;
 OleDbCommand dCmd = null;
 String strConnection = null;
 String strSQL = null;
 try
 {
 // initially assume credentials are invalid
 args.IsValid = false;

 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();
 // build the query string and check to see if a user with the
 // entered credentials exists in the database
 strSQL = "SELECT AppUserID FROM AppUser " +
 "WHERE LoginID=? AND " +
 "Password=?";
 dCmd = new OleDbCommand(strSQL, dbConn);
 dCmd.Parameters.Add(new OleDbParameter("LoginID",
 txtLoginID.Text));
 dCmd.Parameters.Add(new OleDbParameter("Password",
 txtPassword.Text));
 // check to see if the user was found
 if (dCmd.ExecuteScalar() != null)
 {
 args.IsValid = true;
 }
 } // try
 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // cvAuthentication_ServerValidate
 ///***
 /// <summary>
 /// This routine provides the event handler for the login button click
 /// event. It is responsible for processing the form data.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnLogin_Click(Object sender,
 System.EventArgs e)

 {
 if (Page.IsValid)
 {
 // user has been authenticated so proceed with allowing access
 // to the site
 }
 } //btnLogin_Click
 } // CH03CustomDatabaseValidationCS
}

Recipe 3.8. Using Validation Groups to Support Login
and New User Registration Within a Single Form

Problem

You have two logical sections on a form with controls that require different validation as a function of
the button the user clicks, such as a form that supports login and new user registration.

Solution

For each group of controls and its associated form-submit button, set the ValidationGroup attribute
to a unique group name and set the CausesValidatio attribute of the form-submit buttons to TRue .

In the .aspx file:

Set the ValidationGroup attribute of a form-submit button to a unique group name.1.

Set the ValidationGroup attribute of each of the controls to be validated when the button is
clicked to the same group name as the form-submit button.

2.

Set the form-submit button's CausesValidation attribute to True to have validation performed
when the button is clicked.

3.

Repeat steps 13 for each form-submit button and its associated controls.4.

In the code-behind class for the page, use the .NET language of your choice to add code to the event
handler for each button's click event to check the Page.IsValid property and verify that all validation
was successful. (See Recipe 3.1 for details.)

Figure 3-14 shows a typical form with normal, error-free output. Figure 3-15 shows the error
message that appears on the form when a validation error occurs in the login section of the form.
Figure 3-16 shows the error message that appears on the form when a validation error occurs in the
form's register section. Examples 3-13 , 3-14 through 3-15 show the .aspx and code-behind files for
our application that implements the solution.

Discussion

In ASP.NET 1.x, handling multiple logical sections on a form with more than one submit button was
difficult, especially when you needed different validation to be performed as a function of which
button the user clicked. You generally had to resort to custom code to control the validation.
Depending on the number of buttons and controls, this could result in some complex code.

Figure 3-14. Form with group validation outputnormal

Figure 3-15. Form with group validation outputfirst group failed validation

Figure 3-16. Form with group validation outputsecond group failed
validation

In ASP.NET 2.0, all validators and form-submit buttons have an optional ValidationGroup attribute.
Setting The ValidationGroup attribute of a submit button, and the controls to be validated when the
button is clicked to the same group name, provides the ability to define what controls are validated
with each button. This reduces the code required to support multisection forms.

Any controls that do not have the ValidationGroup attribute set to a value are
grouped by default to provide backward compatibility with ASP.NET 1.x.

Our example application has two sections on the form, one with login controls (login ID, password,
and a login button) and the other with registration controls (login ID, email address, password, re-
enter password, and a register button).

The ValidationGroup attribute for each of the controls in the login section are set to LoginGroup .
When the Login button is clicked, only the controls with the ValidationGroup set to LoginGroup are
validated.

 <asp:CustomValidator id="cvAuthentication" Runat="server"
 Display="None"

 EnableClientScript="False"
 ErrorMessage="Login ID or Password Is Invalid"

 OnServerValidate="cvAuthentication_ServerValidate"
 ValidationGroup="LoginGroup" />
 …
 <asp:RequiredFieldValidator id="rfvLoginID"
 Runat="server"
 ControlToValidate="txtLoginID"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Login ID Is Required"
 ValidationGroup="LoginGroup" >

 </asp:RequiredFieldValidator>
 …
 <asp:RequiredFieldValidator id="rfvPassword"
 Runat="server"
 ControlToValidate="txtPassword"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Password Is Required"
 ValidationGroup="LoginGroup" >

 </asp:RequiredFieldValidator>
 …
 <input id="btnLogin" runat="server" type="button"
 value="Login" causesvalidation="true"
 onserverclick="btnLogin_Click"
 validationgroup="LoginGroup" >

The ValidationGroup attribute for each of the controls in the registration section are set to
RegisterGroup . When the Register button is clicked, only the controls with the ValidationGroup set
to RegisterGroup are validated.

 <asp:RequiredFieldValidator id="rfvNewLoginID"
 Runat="server"
 ControlToValidate="txtNewLoginID"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Login ID Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:RequiredFieldValidator>
 …

 <asp:requiredfieldvalidator id="rfvEmailAddress"
 runat="server"
 controltovalidate="txtEmailAddress"
 cssclass="AlertText"
 display="Dynamic"
 enableclientscript="True"
 ErrorMessage="Email Address Is Required"

 ValidationGroup="RegisterGroup" >

 </asp:requiredfieldvalidator>
 <asp:RegularExpressionValidator id="revEmailAddress"
 Runat="server"
 ControlToValidate="txtEmailAddress"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"
 ErrorMessage="Invalid Email Address"
 ValidationGroup="RegisterGroup" >

 </asp:RegularExpressionValidator>
 …
 <asp:RequiredFieldValidator id="rfvPassword1"
 Runat="server"
 ControlToValidate="txtPassword1"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Password Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:RequiredFieldValidator>
 …
 <asp:RequiredFieldValidator id="rvPassword2"
 Runat="server"
 ControlToValidate="txtPassword2"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Re-Entered Password Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:RequiredFieldValidator>
 <asp:CompareValidator ID="cvPassword2" runat="server"
 ControlToValidate="txtPassword2"
 ControlToCompare="txtPassword1"
 CssClass="AlertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Both Passwords Must Match"

 ValidationGroup="RegisterGroup" >

 </asp:CompareValidator>
 …
 <input id="btnRegister" runat="server" type="button"
 value="Register" causesvalidation="true"
 onserverclick="btnRegister_ServerClick"
 validationgroup="RegisterGroup" >

In addition to grouping buttons and user input controls, the ValidationSummary control supports the
ValidationGroup attribute. This provides the ability to use a ValidationSummary for each section on
the form and to display a summary of the errors in the appropriate section.

 <asp:ValidationSummary id="vsLoginErrors" Runat="server"
 CssClass="AlertText"
 DisplayMode="BulletList"
 EnableClientScript="True"
 HeaderText="Error Summary"
 ValidationGroup="LoginGroup" />

When using validation groups, no custom code is required in client-side JavaScript or in the code-
behind to support the validation.

See Also

Recipe 3.8

Example 3-13. Form with multiple validation sections (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH03GroupingValidatorsVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH03GroupingValidatorsVB"
 title="Grouping Validators" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Grouping Validators (VB)
 </div>
 <table align="center" class="dataEntry">
 </tr>
 <td colspan="2" align="left">
 <asp:ValidationSummary id="vsLoginErrors" Runat="server"
 CssClass="alertText"
 DisplayMode="BulletList"
 EnableClientScript="True"

 HeaderText="Error Summary"
 ValidationGroup="LoginGroup" />
 <asp:CustomValidator id="cvAuthentication" Runat="server"
 Display="None"
 EnableClientScript="False"
 ErrorMessage="Login ID or Password Is Invalid"
 OnServerValidate="cvAuthentication_ServerValidate"
 ValidationGroup="LoginGroup" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Login ID: </td>
 <td>
 <asp:TextBox id="txtLoginID" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvLoginID"
 Runat="server"
 ControlToValidate="txtLoginID"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Login ID Is Required"
 ValidationGroup="LoginGroup" >

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Password: </td>
 <td>
 <asp:TextBox id="txtPassword" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvPassword"
 Runat="server"
 ControlToValidate="txtPassword"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Password Is Required"
 ValidationGroup="LoginGroup" >

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td colspan="2" align="center">

 <input id="btnLogin" runat="server" type="button"
 value="Login" causesvalidation="true"
 onserverclick="btnLogin_Click"
 validationgroup="LoginGroup" />

 </td>
 </tr>
 </table>
 <hr />
 <table align="center" class="dataEntry">
 </tr>
 <td colspan="2" align="left">
 <asp:ValidationSummary id="vsRegistrationErrors" Runat="server"
 CssClass="alertText"
 DisplayMode="BulletList"
 EnableClientScript="True"
 HeaderText="Error Summary"
 ValidationGroup="RegisterGroup" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Login ID: </td>
 <td>
 <asp:TextBox id="txtNewLoginID" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvNewLoginID"
 Runat="server"
 ControlToValidate="txtNewLoginID"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Login ID Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Email Address: </td>
 <td>
 <asp:TextBox id="txtEmailAddress" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:requiredfieldvalidator id="rfvEmailAddress"
 runat="server"
 controltovalidate="txtEmailAddress"
 cssclass="alertText"
 display="Dynamic"
 enableclientscript="True"
 ErrorMessage="Email Address Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:requiredfieldvalidator>
 <asp:RegularExpressionValidator id="revEmailAddress"
 Runat="server"
 ControlToValidate="txtEmailAddress"
 CssClass="alertText"
 Display="Dynamic"

 EnableClientScript="True"
 ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"
 ErrorMessage="Invalid Email Address"
 ValidationGroup="RegisterGroup" >

 </asp:RegularExpressionValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Password: </td>
 <td>
 <asp:TextBox id="txtPassword1" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvPassword1"
 Runat="server"
 ControlToValidate="txtPassword1"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Password Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Re-enter Password: </td>
 <td>
 <asp:TextBox id="txtPassword2" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rvPassword2"
 Runat="server"
 ControlToValidate="txtPassword2"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Re-Entered Password Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:RequiredFieldValidator>
 <asp:CompareValidator ID="cvPassword2" runat="server"
 ControlToValidate="txtPassword2"
 ControlToCompare="txtPassword1"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 ErrorMessage="Both Passwords Must Match"
 ValidationGroup="RegisterGroup" >

 </asp:CompareValidator>

 </td>
 </tr>
 </tr>
 <td colspan="2" align="center">

 <input id="btnRegister" runat="server" type="button"
 value="Register" causesvalidation="true"
 onserverclick="btnRegister_ServerClick"
 validationgroup="RegisterGroup" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 3-14. Form with multiple validation sections (.vb)

Option Explicit On
Option Strict On
Imports System.Configuration.ConfigurationManager
Imports System.Data
Imports System.Data.OleDb
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH03GroupingValidatorsVB.aspx
 ''' </summary>
 Partial Class CH03GroupingValidatorsVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the authentication server
 ''' validate event. It is responsible for checking the login ID and
 ''' password in the database to authenticate the user.
 ''' </summary>
 '''
 ''' <param name="source">Set to the sender of the event</param>
 ''' <param name="args">Set to the event arguments</param>
 Protected Sub cvAuthentication_ServerValidate(ByVal source As Object, _
 ByVal args As ServerValidateEventArgs)
 Dim dbConn As OleDbConnection = Nothing
 Dim dCmd As OleDbCommand = Nothing
 Dim strConnection As String
 Dim strSQL As String
 Try
 'initially assume credentials are invalid
 args.IsValid = False
 'get the connection string from web.config and open a connection

 'to the database
 strConnection = _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()
 'build the query string and check to see if a user with the entered
 'credentials exists in the database

 strSQL = "SELECT AppUserID FROM AppUser " & _
 "WHERE LoginID=? AND " & _
 "Password=?"
 dCmd = New OleDbCommand(strSQL, dbConn)
 dCmd.Parameters.Add(New OleDbParameter("LoginID", _
 txtLoginID.Text))
 dCmd.Parameters.Add(New OleDbParameter("Password", _
 txtPassword.Text))
 'check to see if the user was found
 If (Not IsNothing(dCmd.ExecuteScalar())) Then
 args.IsValid = True
 End If
 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'cvAuthentication_ServerValidate
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the login button click
 ''' event. It is responsible for processing the form data for login.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnLogin_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 If (Page.IsValid) Then
 'user has been authenticated so proceed with allowing access
 'to the site
 End If
 End Sub 'btnLogin_Click
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the login button click
 ''' event. It is responsible for processing the form data for
 ''' registration.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnRegister_ServerClick(ByVal sender As Object, _

 ByVal e As System.EventArgs)
 If (Page.IsValid) Then
 'all entered data is valid so proceed with registration
 End If

 End Sub 'btnRegister_ServerClick
 End Class 'CH03GroupingValidatorsVB
End Namespace

Example 3-15. Form with multiple validation sections (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for CH03GroupingValidatorsCS.aspx
 /// </summary>
 public partial class CH03GroupingValidatorsCS
 : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the authentication server
 /// validate event. It is responsible checking the login ID and password
 /// in the database to authenticate the user.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void cvAuthentication_ServerValidate(Object source,
 System.Web.UI.WebControls.ServerValidateEventArgs args)
 {
 OleDbConnection dbConn = null;
 OleDbCommand dCmd = null;
 String strConnection = null;
 String strSQL = null;
 try
 {
 // initially assume credentials are invalid
 args.IsValid = false;
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);

 dbConn.Open();
 // build the query string and check to see if a user with the
 // entered credentials exists in the database
 strSQL = "SELECT AppUserID FROM AppUser " +
 "WHERE LoginID=? AND " +
 "Password=?";
 dCmd = new OleDbCommand(strSQL, dbConn);

 dCmd.Parameters.Add(new OleDbParameter("LoginID",
 txtLoginID.Text));
 dCmd.Parameters.Add(new OleDbParameter("Password",
 txtPassword.Text));
 // check to see if the user was found
 if (dCmd.ExecuteScalar() != null)
 {
 args.IsValid = true;
 }
 } // try
 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // cvAuthentication_ServerValidate
 ///***
 /// <summary>
 /// This routine provides the event handler for the login button click
 /// event. It is responsible for providing access to the site for the
 /// user if authenticated.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnLogin_Click(Object sender,
 System.EventArgs e)
 {
 if (Page.IsValid)
 {
 // user has been authenticated so proceed with allowing access
 // to the site
 }
 } //btnLogin_Click
 ///***
 /// >summary>
 /// This routine provides the event handler for the register button click
 /// event. It is responsible for processing the form data for
 /// registration.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>

 protected void btnRegister_ServerClick(Object sender,
 System.EventArgs e)
 {
 if (Page.IsValid)
 {

 // all entered data is valid so proceed with registration
 }
 } //btnRegister_ServerClick
 } // CH03GroupingValidatorsCS
}

Recipe 3.9. Performing Validation Programmatically to
Execute Your Own Application-Specific Logic

Problem

You have two logical sections on a form with controls that require different validation as a function of
the button the user clicks. You want to have programmatic control over the validation performed
because your application needs to carry out its own application-specific logic, such as when you want
to check a new user's registration against a database.

Solution

For each group of controls and their associated form-submit button, set the ValidationGroup
attribute to a unique group name. This will cause only the controls with a group name matching the
group name of the button to be validated when the button is clicked.

In the .aspx file:

Set the ValidationGroup attribute of a form-submit button to a unique group name.1.

Set the ValidationGroup attribute of each of the controls to be validated when the button is
clicked to the same group name as the form-submit button.

2.

Set the form-submit button's CausesValidation attribute to False to disable both the client-side
and server-side validation performed by ASP.NET when the button is clicked.

3.

Repeat steps 13 for each form-submit button and its associated controls.4.

In the code-behind class for the page, use the .NET language of your choice to:

Add an event handler for each form-submit button.1.

Add code to the event handler to get the collection of validators associated with the button.2.

Iterate through the collection performing the required validation.3.

Figure 3-14 shows a typical form with normal, error-free output. Figure 3-15 shows the error
message that appears on the form when a validation error occurs in the login section of the form.
Figure 3-16 shows the error message that appears on the form when a validation error occurs in the
register section of the form. Examples 3-16, 3-17 through 3-18 show the .aspx and code-behind files

for our application that implements the solution.

Discussion

Periodically, you must control the validation process that ASP.NET normally provides to perform the
validation in a nonstandard way. ASP.NET provides the ability to get a collection containing a specific
group of or all validators on a form. A collection of all validators on a form can be obtained as shown
below:

 Dim allValidators As ValidatorCollection
 …
 allValidators = Page.Validators

 ValidatorCollection allValidators;

 allValidators = Page.Validators;

A collection of validators for a specific group on a form can be obtained as shown below:

validators = Page.GetValidators([name of desired group])

validators = Page.GetValidators([name of desired group]);

If Nothing (null in C#) is passed to the GetValidators method, all validators
missing the ValidationGroup attribute set will be returned.

In our application, we are modifying the code described in Recipe 3.7 to disable the validation
provided by ASP.NET by setting the CausesValidation attribute of both form-submit buttons to False.

 <input id="btnLogin" runat="server" type="button"
 value="Login" CausesValidation="false"
 onserverclick="btnLogin_Click"
 validationgroup="LoginGroup" >
 …
 <input id="btnRegister" runat="server" type="button"
 value="Register" CausesValidation="false"

 onserverclick="btnRegister_ServerClick"
 validationgroup="RegisterGroup" >

In the code-behind we have added a method (groupIsValid) that will perform that validation on the
group of validators defined by the passed parameter and return True if all validation for the group is
valid, as shown in Examples 3-17 (VB) and 3-18 (C#).

The form-submit button event handlers will also be modified. Instead of testing the Page.IsValid
property, they call the groupIsValid method with the applicable group name to determine if the data
for the associated controls is valid.

When the validation provided by ASP.NET is disabled, as described in this
recipe, accessing the Page.IsValid property will throw an exception indicating
that Page.IsValid cannot be called before validation has taken place.
Page.IsValid cannot be accessed unless Page.Validate is called either by
ASP.NET or in your code.

Example 3-16. Form with programmatic validation (.aspx)

<%@ Page Language="VB"
 MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH03ProgrammaticValidationVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH03ProgrammaticValidationVB"
 title="Programmatic Validation" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Programmatic Validation (VB)
 </div>
 <table align="center" class="dataEntry">
 </tr>
 <td colspan="2" align="left">
 <asp:ValidationSummary id="vsLoginErrors" Runat="server"
 CssClass="alertText"
 DisplayMode="BulletList"
 EnableClientScript="False"
 HeaderText="Error Summary"
 ValidationGroup="LoginGroup" />
 <asp:CustomValidator id="cvAuthentication" Runat="server"
 Display="None"
 EnableClientScript="False"
 ErrorMessage="Login ID or Password Is Invalid"
 OnServerValidate="cvAuthentication_ServerValidate"
 ValidationGroup="LoginGroup" />
 </td>
 </tr>

 </tr>
 <td class="LabelText">Login ID: </td>
 <td>
 <asp:TextBox id="txtLoginID" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvLoginID"
 Runat="server"
 ControlToValidate="txtLoginID"
 CssClass="alertText"

 Display="Dynamic"
 EnableClientScript="False"
 ErrorMessage="Login ID Is Required"
 ValidationGroup="LoginGroup" >

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Password: </td>
 <td>
 <asp:TextBox id="txtPassword" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvPassword"
 Runat="server"
 ControlToValidate="txtPassword"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="False"
 ErrorMessage="Password Is Required"
 ValidationGroup="LoginGroup" >

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td colspan="2" align="center">

 <input id="btnLogin" runat="server" type="button"
 value="Login" causesvalidation="false"
 onserverclick="btnLogin_Click"
 validationgroup="LoginGroup" />
 </td>
 </tr>
 </table>
 <hr />
 <table align="center" class="dataEntry">
 </tr>
 <td colspan="2" align="left">
 <asp:ValidationSummary id="vsRegistrationErrors" Runat="server"
 CssClass="alertText"

 DisplayMode="BulletList"
 EnableClientScript="False"
 HeaderText="Error Summary"
 ValidationGroup="RegisterGroup" />
 </td>
 </tr>
 </tr>
 <td class="LabelText">Login ID: </td>
 <td>

 <asp:TextBox id="txtNewLoginID" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvNewLoginID"
 Runat="server"
 ControlToValidate="txtNewLoginID"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="False"
 ErrorMessage="Login ID Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Email Address: </td>
 <td>
 <asp:TextBox id="txtEmailAddress" Runat="server"
 Columns="30" CssClass="LabelText" />
 <asp:requiredfieldvalidator id="rfvEmailAddress"
 runat="server"
 controltovalidate="txtEmailAddress"
 cssclass="alertText"
 display="Dynamic"
 enableclientscript="False"
 ErrorMessage="Email Address Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:requiredfieldvalidator>
 <asp:RegularExpressionValidator id="revEmailAddress"
 Runat="server"
 ControlToValidate="txtEmailAddress"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="False"
ValidationExpression="\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"
 ErrorMessage="Invalid Email Address"
 ValidationGroup="RegisterGroup" >

 </asp:RegularExpressionValidator>
 </td>
 </tr>

 </tr>
 <td class="LabelText">Password: </td>
 <td>
 <asp:TextBox id="txtPassword1" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rfvPassword1"
 Runat="server"
 ControlToValidate="txtPassword1"
 CssClass="alertText"

 Display="Dynamic"
 EnableClientScript="False"
 ErrorMessage="Password Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:RequiredFieldValidator>
 </td>
 </tr>
 </tr>
 <td class="LabelText">Re-enter Password: </td>
 <td>
 <asp:TextBox id="txtPassword2" Runat="server"
 TextMode="Password"
 Columns="30" CssClass="LabelText" />
 <asp:RequiredFieldValidator id="rvPassword2"
 Runat="server"
 ControlToValidate="txtPassword2"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="False"
 ErrorMessage="Re-Entered Password Is Required"
 ValidationGroup="RegisterGroup" >

 </asp:RequiredFieldValidator>
 <asp:CompareValidator ID="cvPassword2" runat="server"
 ControlToValidate="txtPassword2"
 ControlToCompare="txtPassword1"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="False"
 ErrorMessage="Both Passwords Must Match"
 ValidationGroup="RegisterGroup" >

 </asp:CompareValidator>
 </td>
 </tr>
 </tr>
 <td colspan="2" align="center">

 <input id="btnRegister" runat="server" type="button"
 value="Register" causesvalidation="false"

 onserverclick="btnRegister_ServerClick"
 validationgroup="RegisterGroup" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 3-17. Form with programmatic validation (.vb)

Option Explicit On
Option Strict On
Imports System.Configuration.ConfigurationManager
Imports System.Data
Imports System.Data.OleDb
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH03ProgrammaticValidationVB.aspx
 ''' </summary>
 Partial Class CH03ProgrammaticValidationVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the authentication server
 ''' validate event. It is responsible for checking the login ID and
 ''' password in the database to authenticate the user.
 ''' </summary>
 '''
 ''' <param name="source">Set to the sender of the event</param>
 ''' <param name="args">Set to the event arguments</param>
 Protected Sub cvAuthentication_ServerValidate(ByVal source As Object, _
 ByVal args As ServerValidateEventArgs)
 Dim dbConn As OleDbConnection = Nothing
 Dim dCmd As OleDbCommand = Nothing
 Dim strConnection As String
 Dim strSQL As String
 Try
 'initially assume credentials are invalid
 args.IsValid = False
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()
 'build the query string and check to see if a user with the entered
 'credentials exists in the database

 strSQL = "SELECT AppUserID FROM AppUser " & _
 "WHERE LoginID=? AND " & _
 "Password=?"
 dCmd = New OleDbCommand(strSQL, dbConn)
 dCmd.Parameters.Add(New OleDbParameter("LoginID", _
 txtLoginID.Text))
 dCmd.Parameters.Add(New OleDbParameter("Password", _
 txtPassword.Text))

 'check to see if the user was found
 If (Not IsNothing(dCmd.ExecuteScalar())) Then
 args.IsValid = True
 End If
 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'cvAuthentication_ServerValidate
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the login button click
 ''' event. It is responsible for processing the form data for login.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnLogin_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'check to see if all entered login data is valid
 If (groupIsValid("LoginGroup")) Then
 'user has been authenticated so proceed with allowing access
 'to the site
 End If
 End Sub 'btnLogin_Click
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the login button click
 ''' event. It is responsible for processing the form data for
 ''' registration.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnRegister_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'check to see if all entered registration data is valid
 If (groupIsValid("RegisterGroup")) Then
 'all entered data is valid so proceed with registration
 End If
 End Sub 'btnRegister_ServerClick

 '''***
 ''' <summary>
 ''' This routine iterates through validators for the passed group
 ''' performing the validation.
 ''' </summary>
 '''

 ''' <param name="validatorGroup">Set to the name of the validator
 ''' group to perform validation on.
 ''' </param>
 '''
 ''' <returns>True if all validators in the group are valid.
 ''' Else, False.
 '''</returns>
 Private Function groupIsValid(ByVal validatorGroup As String) As Boolean
 Dim validators As System.Web.UI.ValidatorCollection = Nothing
 Dim validator As System.Web.UI.IValidator = Nothing
 Dim isValid As Boolean = True
 'get the validators in the Register group
 validators = Page.GetValidators(validatorGroup)
 'iterate through the validators calling the Validate methods
 'and checking to see if the validation was succcessful
 For Each validator In validators
 validator.Validate()
 If (Not validator.IsValid) Then
 isValid = False
 End If
 Next validator
 Return (isValid)
 End Function 'groupIsValid
 End Class 'CH03ProgrammaticValidationVB
End Namespace

Example 3-18. Form with programmatic validation (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH03ProgrammaticValidationCS.aspx
 /// </summary>

 public partial class CH03ProgrammaticValidationCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the authentication server
 /// validate event. It is responsible checking the login ID and password
 /// in the database to authenticate the user.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>

 protected void cvAuthentication_ServerValidate(Object source,
 System.Web.UI.WebControls.ServerValidateEventArgs args)
 {
 OleDbConnection dbConn = null;
 OleDbCommand dCmd = null;
 String strConnection = null;
 String strSQL = null;
 try
 {
 // initially assume credentials are invalid
 args.IsValid = false;
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();
 // build the query string and check to see if a user with the
 // entered credentials exists in the database
 strSQL = "SELECT AppUserID FROM AppUser " +
 "WHERE LoginID=? AND " +
 "Password=?";
 dCmd = new OleDbCommand(strSQL, dbConn);
 dCmd.Parameters.Add(new OleDbParameter("LoginID",
 txtLoginID.Text));
 dCmd.Parameters.Add(new OleDbParameter("Password",
 txtPassword.Text));
 // check to see if the user was found
 if (dCmd.ExecuteScalar() != null)
 {
 args.IsValid = true;
 }
 } // try
 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally

 } // cvAuthentication_ServerValidate
 ///***
 /// <summary>
 /// This routine provides the event handler for the login button click
 /// event. It is responsible for providing access to the site for the
 /// user if authenticated.

 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnLogin_Click(Object sender,
 System.EventArgs e)
 {
 // check to see if all entered login data is valid
 if (groupIsValid("LoginGroup"))
 {
 // user has been authenticated so proceed with allowing access
 // to the site
 }
 } //btnLogin_Click
 ///***
 /// <summary>
 /// This routine provides the event handler for the register button click
 /// event. It is responsible for processing the form data for
 /// registration.
 /// </summary>
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnRegister_ServerClick(Object sender,
 System.EventArgs e)
 {
 // check to see if all entered registration data is valid
 if (groupIsValid("RegisterGroup"))
 {
 // all entered data is valid so proceed with registration
 }
 } //btnRegister_ServerClick
 ///***
 /// <summary>
 /// This routine iterates through validators for the passed group
 /// performing the validation.
 /// </summary>
 /// <param name="validatorGroup">Set to the name of the validator
 /// group to perform validation on.
 /// </param>
 /// <returns>True if all validators in the group are valid.
 /// Else, False.
 ///</returns>
 private Boolean groupIsValid(String validatorGroup)
 {
 ValidatorCollection validators = null;
 Boolean isValid = true;

 // get the validators in the Register group
 validators = Page.GetValidators(validatorGroup);

 // iterate through the validators calling the Validate methods
 // and checking to see if the validation was succcessful
 foreach (IValidator validator in validators)
 {
 validator.Validate();
 if (!validator.IsValid)
 {
 isValid = false;
 }
 } // foreach validator
 return (isValid);
 } // groupIsValid
 } // CH03ProgrammaticValidationCS
}

Chapter 4. Forms

4.0 Introduction

At the most basic level, forms provide the visual interface of your applications. Each form is a
combination of programming logic and user interface rendered as an HTML page by the user's
browser. ASP.NET server controls provide the basic building blocks of forms and expose an object
model containing properties, methods, and events. Building a basic form in ASP.NET only requires
adding some HTML and some server controls to a page and then handling some server control events
in the code-behind to modify and interact with the page. These are the basics of forms and are
generally well understood even by beginning ASP.NET programmers.

Beyond the basics, though, certain aspects of forms take some getting used to in ASP.NET: in
particular, the concept of programming the server and client sides of an application. Forms are
inherently client-side because that's where they execute and much of their behavior must be handled
in the client browser. This sounds simple enough, but getting forms to do your bidding requires you to
write server-side code that writes the client-side code to be executed when the page is loaded in the
browser. If that isn't enough, client-side code often needs to be written in JavaScript. Add to that the
task of managing the nuances of another scripting language, and you begin to feel as though you're
playing 3-D chess.

This chapter provides solutions to many form-related problems you are likely to encounter in using
ASP.NET. By the time you've waded through a recipe or two, the required client- and server-side
maneuvers ought to be manageable.

Microsoft has made several aspects of working with forms easier in ASP.NET 2.0. For instance,
setting a form's default button is a common requirement for many web applications. In ASP.NET 1.x
and in classic ASP, setting a form's default button requires you to write custom client-side JavaScript.
In ASP.NET 2.0, however, you can use the new DefaultButton property of the form object, as we
explain in this chapter's first recipe.

Recipe 4.2. Setting the Default Button to Submit a Form

Problem

You have a form with multiple buttons and you need to set the button that will be used as the default
button when the user presses the Enter key on the keyboard.

Solution

Create the .aspx file with the controls required for your application. In the Page_Load event handler of
the code-behind class, use the .NET language of your choice to set the default button on the form.

Discussion

Setting the default button in ASP.NET 1.x and in classic ASP requires you to write custom client-side
JavaScript that executes when the page is loaded in the browser. The script captures the keypress
event, checks to see if the key that is pressed is the Enter key, and performs a postback of the form.
In addition, the JavaScript created is typically different for each major browser.

ASP.NET 2.0, on the other hand, has exposed a DefaultButton property of the form object that
allows you to set the button that will be used as the default when the user presses the Enter key.
ASP.NET then handles the client script generation for you.

 Page.Form.DefaultButton = btnLogin.UniqueID

 Page.Form.DefaultButton = btnLogin.UniqueID;

Examples 4-1, 4-2, through 4-3 showthe .aspx and code-behind files for an application that makes
use of this solution.

When setting the DefaultButton property, note the following:

The control that will be used as the default button when the user presses
the Enter key can be any control that implements the IButtonControl
interface.

The DefaultButton property must be set to the UniqueID property of the
desired control.

Failure to follow these guidelines results in an exception being thrown when the
page is displayed, indicating the DefaultButton must be a control that
implements IButtonControl.

See Also

Recipes 4.4 and 4.5

Example 4-1. Setting the default submit button (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH04SettingDefaultSubmitButtonVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH04SettingDefaultSubmitButtonVB"
 Title="Setting Default Submit Button" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Setting Default Submit Button (VB)
 </div>
 <table width="50%" align="center" border="0">
 <tr>
 <td class="labelText">Email Address: </td>
 <td>
 <asp:TextBox ID="txtEmailAddress" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 <tr>
 <td class="labelText">Password: </td>
 <td>
 <asp:TextBox ID="txtPassword" Runat="server"
 textmode="Password"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 <tr>
 <td colspan="2">

 <table align="center" width="50%">
 <tr>
 <td align="center">
 <asp:Button ID="btnLogin" runat="server"
 OnClick="btnLogin_Click"
 Text="Login" />
 </td>
 <td align="center">
 <asp:Button ID="btnCancel" runat="server"
 OnClick="btnCancel_Click"
 Text="Cancel" />
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
</asp:Content>

Example 4-2. Setting the default submit button (.vb)

Option Explicit On
Option Strict On
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH04SettingDefaultSubmitButtonVB.aspx
 ''' </summary>

 Partial Class CH04SettingDefaultSubmitButtonVB
 Inherits System.Web.UI.Page

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 'set the button that will be the default button when the user hits
 'the Enter key. NOTE: The UniqueID must be used or error will occur
 'when page is displayed indicating a control that implements
 'IButtonControl must be used as the default button

 Page.Form.DefaultButton = btnLogin.UniqueID
 End Sub 'Page_Load

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the login button click
 ''' event. It is responsible for processing the form data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnLogin_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'perform login operations here
 End Sub 'btnLogin_Click

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the cancel button click
 ''' event.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnCancel_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'perform cancel operations here
 End Sub 'btnCancel_Click
 End Class
End Namespace

Example 4-3. Setting the default submit button (.cs)

using System;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH04SettingDefaultSubmitButtonCS.aspx
 /// </summary>
 public partial class CH04SettingDefaultSubmitButtonCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>

 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 // set the button that will be the default button when the user hits
 // the Enter key. NOTE: The UniqueID must be used or error will occur
 // when page is displayed indicating a control that implements
 // IButtonControl must be used as the default button
 Page.Form.DefaultButton = btnLogin.UniqueID;
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the login button click
 /// event. It is responsible for processing the form data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnLogin_Click(Object sender,
 System.EventArgs e)
 {
 // perform login operations here
 } //btnLogin_Click

 ///**
 /// <summary>
 /// This routine provides the event handler for the cancel button click
 /// event.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnCancel_Click(Object sender,
 System.EventArgs e)
 {
 // perform cancel operations here
 } //btnCancel_Click
 } // CH04SettingDefaultSubmitButtonCS
}

Recipe 4.3. Submitting a Form to a Different Page

Problem

You need to submit the information on one pagea form, for exampleto another. You might want to do
this to use one page to collect form data and a second page to process it.

The default operation for ASP.NET is to submit the form to the same page.
Submitting the form to a different pagei.e., performing cross-page
postingrequires some coding gymnastics in ASP.NET 1.x, explained in some
detail in the first edition of the ASP.NET Cookbook:

Using the Server.Transfer method in a button click event handler in the
code-behind of the first page to transfer control to a second page, after
saving the contents of the first in session scope.

Using the Server.Transfer method in a button click event handler in the
code-behind of the first page to transfer control, along with the form
contents in the ViewState, to the second page.

In ASP.NET 2.0, however, performing cross-page posting is easier because you
can now accomplish it by setting the PostBackUrl button property.

Solution

Use the cross-page posting functionality added to ASP.NET 2.0 to submit a form to a different page.

In the .aspx file of the first page, set to the URL of the desired page the PostBackUrl property of the
button that will initiate the submission of the form to another page. No special code is required in the
code-behind of the first page to support cross-page posting.

In the code-behind of the second page, use the .NET language of your choice to:

Check to verify that page is being requested as a cross-page post from another page.1.

Use the FindControl method of the PreviousPage property to get a reference to a control in the
first page.

2.

Use the data from the control in the first page as required in the second page.3.

Repeat the last two steps for each control in the first page that you need data for in the second4.

3.

page.
4.

Examples 4-4, 4-5, 4-6, 4-7, 4-8 through 4-9 showthe .aspx and code-behind files for an application
that implements this solution.

Discussion

The default operation for ASP.NET is to submit the form to the same page for processing. This
operation is acceptable for most applications; however, the need may arise to submit the form to
another page. This is much easier to do in ASP.NET 2.0 than in previous versions. In fact, prior to
ASP.NET 2.0, submitting a form to another page required working around the system instead of with
it.

In ASP.NET 2.0, the submission to another page is controlled by the PostBackURL property of the
buttons on the form. This provides the ability to submit the form to different pages for each button.

 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit"
 PostBackUrl="~/CH04SubmitToAnother_SecondPageVB1.aspx" />

You cannot set the action attribute of the form element to cause the form to be
submitted to another page. ASP.NET always changes the action to the URL of
the page being displayed.

When the user clicks the submit button, ASP.NET executes a client-side JavaScript method that
performs the submission to the second page, passing the information necessary for the second page
to determine if the request is the result of a cross-page post, as well as the data to rehydrate the
page object for the first page.

You can determine if a page is being requested as a result of a cross-page post by checking if the
PreviousPage property of the Page object is null (Nothing in VB):

 If (IsNothing(Page.PreviousPage)) Then
 'page is not being accessed by a cross-page postback

 Else
 'page is being accessed by a cross-page postback

 End If

 if (Page.PreviousPage == null)
 {
 // page is not being accessed by a cross-page postback
 }

 else
 {
 // page is being accessed by a cross-page post-back
 }

The first time you access the PreviousPage property, ASP.NET rehydrates the
page object for the first page. As part of the rehydration, all events up to
LoadComplete are fired. This includes the button click event for the submit
button that was clicked. If your code contains an event handler for the click
event for the buttons used to submit to another page, this code will be
executed.

By accessing the PreviousPage property, your code can access the content of the controls on the first
page. Since the PreviousPage property is of type Page, you cannot directly access the controls. You
have to use the FindControls method to get a reference to the desired control and then access the
data in the control.

 get the page content control
 'NOTE: This is required since a master page is being used and the
 ' controls that contain the data needed here are within it
 pageContent = CType(Page.PreviousPage.Form.FindControl("PageBody"), _
 ContentPlaceHolder)
 'get the first name data from the first page and set the label
 'on this page
 tBox = CType(pageContent.FindControl("txtFirstName"), _
 TextBox)
 lblFirstName.Text = tBox.Text

 // get the page content control
 // NOTE: This is required since a master page is being used and the
 // controls that contain the data needed here are within it
 pageContent = (ContentPlaceHolder)
 (Page.PreviousPage.Form.FindControl("PageBody"));

 // get the first name data from the first page and set the label
 // on this page
 tBox = (TextBox)(pageContent.FindControl("txtFirstName"));
 lblFirstName.Text = tBox.Text;

If the control you are accessing is contained within another control, such as a
template or a content placeholder, you need to use FindControl to get a
reference to the container first and then use FindControl again to get a
reference to the control containing your data.

Though the solution shown above works fine and is acceptable in most applications, it has two
problems. First, you must have knowledge of the structure of the first page to get a reference to the
desired controls in the second (described above). This can become complicated if the controls on the
first page are embedded in multiple layers of control containers. Second, the access to the controls is
not strongly typed, requiring you to cast the control type for access. If the control type changes on
the first page, the code in the second page must also be changed.

Another solution that eliminates these problems is to add public properties to the code-behind of the
first page that expose the data in the controls that you need in the second page:

 '''**
 ''' <summary>
 ''' This routine provides the ability to get/set the firstName property
 ''' </summary>
 Public Property firstName() As String
 Get
 Return (txtFirstName.Text)
 End Get
 Set(ByVal value As String)
 txtFirstName.Text = value
 End Set
 End Property

 '''**
 ''' <summary>
 ''' This routine provides the ability to get/set the lastName property
 ''' </summary>
 Public Property lastName() As String
 Get
 Return (txtLastName.Text)
 End Get
 Set(ByVal value As String)
 txtLastName.Text = value
 End Set
 End Property

 '''***
 ''' <summary>
 ''' This routine provides the ability to get/set the age property
 ''' </summary>
 Public Property age() As String
 Get
 Return (txtAge.Text)

 End Get
 Set(ByVal value As String)
 txtAge.Text = value
 End Set
 End Property

 ///**
 /// <summary>
 /// This routine provides the ability to get/set the firstName property
 /// </summary>
 public String firstName
 {
 get
 {
 return (txtFirstName.Text);
 }
 set
 {
 txtFirstName.Text = value;
 }
 } // firstName

 ///***
 /// <summary>
 /// This routine provides the ability to get/set the lastName property
 /// </summary>
 public String lastName
 {
 get
 {
 return (txtLastName.Text);
 }
 set
 {
 txtLastName.Text = value;
 }
 } // lastName

 ///***
 /// <summary>
 /// This routine provides the ability to get/set the age property
 /// </summary>
 public String age
 {
 get
 {
 return (txtAge.Text);
 }
 set
 {
 txtAge.Text = value;
 }

 } // age

In the .aspx file of the second page, add the PreviousPageType directive to the top of the file with the
VirtualPath attribute set to the URL of the first page:

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH04SubmitToAnother_SecondPageVB2.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH04SubmitToAnother_SecondPageVB2"
 Title="Form Submission To Another Page - Second Page - Approach 2" %>
 <%@ PreviousPageType VirtualPath="~/CH04SubmitToAnother_FirstPageVB2.aspx" %>

References to pages, images, and other resources are typically prefaced with
"~/", which is used to indicate the root folder of the web application.

In the code-behind of the second page, define a variable of the type of the first page and set its value
to the PreviousPage property of the Page object:

 Dim prevPage As CH04SubmitToAnother_FirstPageVB2

 'get a strongly type reference to the previous page
 prevPage = CType(Page.PreviousPage, _
 CH04SubmitToAnother_FirstPageVB2)

 CH04SubmitToAnother_FirstPageCS2 prevPage;

 // get a strongly type reference to the previous page
 prevPage = (CH04SubmitToAnother_FirstPageCS2)(Page.PreviousPage);

With the strongly typed reference to the first page, you can directly access the properties you added
to access the required data:

 lblFirstName.Text = prevPage.firstName
 lblLastName.Text = prevPage.lastName
 lblAge.Text = prevPage.age

 lblFirstName.Text = prevPage.firstName;
 lblLastName.Text = prevPage.lastName;
 lblAge.Text = prevPage.age;

This second solution is cleaner and less likely to break when the code is changed during future
maintenance operations. It does require a little more planning and coding but it is worth the effort.

See Also

Search ASP.NET 2.0 Internals in the MSDN Library.

Example 4-4. Submitting a form to another pagefirst page (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH04SubmitToAnother_FirstPageVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH04SubmitToAnother_FirstPageVB1"
 Title="Form Submission To Another Page - Approach 1" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Form Submission To Another Page - Approach 1 (VB)
 </div>
 <table width="50%" align="center" border="0">
 <tr>
 <td class="labelText">First Name: </td>
 <td>
 <asp:TextBox ID="txtFirstName" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 <tr>
 <td class="labelText">Last Name: </td>
 <td>
 <asp:TextBox ID="txtLastName" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>
 <tr>
 <td class="labelText">Age: </td>
 <td>
 <asp:TextBox ID="txtAge" Runat="server"
 Columns="30" CssClass="LabelText" />
 </td>
 </tr>

 <tr>
 <td align="center" colspan="2">

 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit"
 PostBackUrl="~/CH04SubmitToAnother_SecondPageVB1.aspx" />

 </td>
 </tr>
 </table>
</asp:Content>

Example 4-5. Submitting a form to another pagefirst page (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH04SubmitToAnother_FirstPageVB1.aspx
 ''' </summary>
 Partial Class CH04SubmitToAnother_FirstPageVB1
 Inherits System.Web.UI.Page
 '''**
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 End Sub 'Page_Load
 End Class 'CH04SubmitToAnother_FirstPageVB1
End Namespace

Example 4-6. Submitting a form to another pagefirst page (.cs)

using System;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH04SubmitToAnother_FirstPageCS1.aspx
 /// </summary>
 public partial class CH04SubmitToAnother_FirstPageCS1 : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 } // Page_Load
 } // CH04SubmitToAnother_FirstPageCS1
}

Example 4-7. Submitting a form to another pagesecond page (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH04SubmitToAnother_SecondPageVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH04SubmitToAnother_SecondPageVB1"
 Title="Form Submission To Another Page - Second Page - Approach 1" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Form Submission To Another Page - Approach 1 (VB)
 </div>
 <table width="50%" align="center" border="0">
 <tr>
 <td colspan="2" align="center" class="pageHeading">
 Data Submitted From Previous Page
 </td>
 </tr>
 <tr>
 <td class="labelText">First Name: </td>
 <td class="labelText">
 <asp:Label ID="lblFirstName" Runat="server" />
 </td>

 </tr>
 <tr>
 <td class="labelText">Last Name: </td>
 <td class="labelText">
 <asp:Label id="lblLastName" Runat="server" />
 </td>
 </tr>
 <tr>
 <td class="labelText">Age: </td>
 <td class="labelText">
 <asp:Label ID="lblAge" Runat="server" />
 </td>
 </tr>
 <tr>
 <td colspan="2"> </td>
 </tr>
 <tr>
 <td class="labelText">Page Access Method: </td>
 <td class="labelText">
 <asp:Label ID="lblPageAccessMethod" Runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 4-8. Submitting a form to another pagesecond page (.vb)

Option Explicit On
Option Strict On

Imports System.Web.UI.WebControls

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH04SubmitToAnother_SecondPageVB1.aspx
 ''' </summary> Partial Class CH04SubmitToAnother_SecondPageVB1
 Inherits System.Web.UI.Page
 '''**
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load
 Dim tBox As TextBox
 Dim pageContent As ContentPlaceHolder
 'check to see how the page is being accessed
 If (IsNothing(Page.PreviousPage)) Then
 'page is not being accessed by cross-page post so check to if
 'it is being accessed via self post-back
 If (Page.IsPostBack) Then
 'page is being accessed by a post-back from itself
 lblPageAccessMethod.Text = "Page was accessed via post-back"
 Else
 'page is being accessed directly
 lblPageAccessMethod.Text = "Page was accessed directly"
 End If
 Else
 'page is being accessed by a cross-page post-back
 lblPageAccessMethod.Text = "Page was accessed via cross-page post-back"

 'get the page content control
 'NOTE: This is required since a master page is being used and the
 ' controls that contain the data needed here are within it
 pageContent = CType(Page.PreviousPage.Form.FindControl("PageBody"), _
 ContentPlaceHolder)

 'get the first name data from the first page and set the label
 'on this page
 tBox = CType(pageContent.FindControl("txtFirstName"), _
 TextBox)
 lblFirstName.Text = tBox.Text

 'get the last name data from the first page and set the label
 'on this page
 tBox = CType(pageContent.FindControl("txtLastName"), _
 TextBox)
 lblLastName.Text = tBox.Text

 'get the age data from the first page and set the label
 'on this page
 tBox = CType(pageContent.FindControl("txtAge"), _
 TextBox)
 lblAge.Text = tBox.Text
 End If
 End Sub 'Page_Load
 End Class 'CH04SubmitToAnother_SecondPageVB1
End Namespace

Example 4-9. Submitting a form to another pagesecond page (.cs)

using System;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH04SubmitToAnother_SecondPageCS1.aspx
 /// </summary>
 public partial class CH04SubmitToAnother_SecondPageCS1 : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 TextBox tBox;
 ContentPlaceHolder pageContent;

 // check to see how the page is being accessed
 if (Page.PreviousPage == null)
 {
 // page is not being accessed by cross-page post so check to if
 // it is being accessed via self post-back
 if (Page.IsPostBack)
 {
 // page is being accessed by a post-back from itself
 lblPageAccessMethod.Text = "Page was accessed via post-back";
 }
 else
 {
 // page is being accessed directly
 lblPageAccessMethod.Text = "Page was accessed directly";
 }
 }
 else
 {
 // page is being accessed by a cross-page post-back
 lblPageAccessMethod.Text = "Page was accessed via cross-page post-back";

 // get the page content control
 // NOTE: This is required since a master page is being used and the
 // controls that contain the data needed here are within it
 pageContent = (ContentPlaceHolder)
 (Page.PreviousPage.Form.FindControl("PageBody"));

 // get the first name data from the first page and set the label

 // on this page
 tBox = (TextBox)(pageContent.FindControl("txtFirstName"));
 lblFirstName.Text = tBox.Text;

 // get the last name data from the first page and set the label
 // on this page
 tBox = (TextBox)(pageContent.FindControl("txtLastName"));
 lblLastName.Text = tBox.Text;

 // get the age data from the first page and set the label
 // on this page
 tBox = (TextBox)(pageContent.FindControl("txtAge"));
 lblAge.Text = tBox.Text;
 }
 } // Page_Load
 } // CH04SubmitToAnother_SecondPageCS1
}

Recipe 4.4. Simulating Multipage Forms Problem

Problem

You want to create a form that appears, from the user's perspective, to consist of multiple pages, while
keeping all of your code in one .aspx file and the code-behind that accompanies it.

Solution

Create one ASP.NET page. Use a Wizard control with a WizardStep control containing the HTML for each of
the "virtual" pages you wish to display. The output of a typical multipage form is shown in Figures 4-1 , 4-2 ,
4-3 , 4-4 through 4-5 . Examples 4-10 , 4-11 through 4-12 showthe .aspx and code-behind files for an
application that implements this solution.

Figure 4-1. Multipage form output (Section 1.1)

Discussion

In classic ASP, a series of questions or prompts, such as those on a survey or wizard, is typically
implemented using multiple ASP pages with each submitting to the next in turn. Because ASP.NET 2.0 allows
you to submit a form to another page, this same approach can still be used; however, ASP.NET 2.0
provides a simpler approach using the Wizard control.

Figure 4-2. Multipage form output (Section 1.2)

Figure 4-3. Multipage form output (Section 1.2.3)

Figure 4-4. Multipage form output (Section 1.2.4)

Figure 4-5. Multipage form output (Section 1.3)

The Wizard control provides the infrastructure you need to present a series of virtual pages to the user
including the requisite navigation controls for moving forward and backward in the series. The virtual pages
are defined using a WizardStep control for each of the individual pages you want to present to the user. By
defining the step type for the WizardStep controls (Start, Step, Finish, Complete , and Auto), the Wizard
control will display the appropriate navigation buttons. The navigation buttons displayed for each step type
are shown below.

Table 4-1.

WizardStep
type

Navigation buttons displayed

Start Next

Step Previous, Next

Finish Previous, Complete

Complete None

Auto
Automatically generates the navigation buttons as required by the position of the
WizardStep control in the collection of WizardSteps

The example solution we present here uses the Wizard control and a series of WizardStep controls to display
a series of questions in a short survey.

Refer to Recipe 4.2 if you are determined to stick to the multiple form approach.

In our example, the .aspx file contains one Wizard control and five WizardStep controls. The first WizardStep
contains the first question ("Do you currently use ASP.NET 1.x?") along with a RadioButtonList control for
the response. The second WizardStep control contains the second question ("How long have you been using
ASP.NET 1.x?") along with a DropDownList control for the response. The third and fourth WizardStep
controls are the same as the first and second steps with questions related to ASP.NET 2.0. The fifth
WizardStep control contains a message thanking the user for taking the survey.

The Page_Load event handler in the code-behind initializes two arrays containing the possible answers to the
questions and binds the data to the RadioButtonList and DropDownList controls in steps 1 through 4, as
shown in Examples 4-11 (VB) and 4-12 (C#). We used this approach to reuse the data and to set the stage
for potentially populating the available responses from a database.

We have implemented event handlers in the code-behind for the wizard's next and previous button click
events to demonstrate the ability to skip questions as a function of the user's responses. In the event
handler for the next button click event (wzSurvey_NextButtonClick), we check to see if the current step is
for one of the "use" questions. If the user responds by indicating she has not used ASP.NET, there is no
point in asking how long she has used the product, so we skip the next step using the wizard's MoveTo
method.

 'skip steps as a function of the users answers
 Select Case e.CurrentStepIndex
 Case 0
 If ((rbStep1.SelectedIndex >= 0) AndAlso _
 (rbStep1.SelectedItem.Text.Equals("No"))) Then
 'user does not use ASP.NET 1.x so move to 2.0 question
 wzSurvey.MoveTo(step3)

 End If

 Case 2
 If ((rbStep1.SelectedIndex >= 0) AndAlso _
 (rbStep3.SelectedItem.Text.Equals("No"))) Then
 'user does not use ASP.NET 2.0 so move to complete step
 wzSurvey.MoveTo(step5)
 End If

 Case Else
 'nothing required
 End Select

 // skip steps as a function of the users answers
 switch (e.CurrentStepIndex)
 {
 case 0:
 if ((rbStep1.SelectedIndex >= 0) &&
 (rbStep1.SelectedItem.Text.Equals("No")))
 {
 // user does not use ASP.NET 1.x so move to 2.0 question
 wzSurvey.MoveTo(step3);
 }
 break;

 case 2:
 if ((rbStep1.SelectedIndex >= 0) &&
 (rbStep3.SelectedItem.Text.Equals("No")))
 {
 // user does not use ASP.NET 2.0 so move to complete step
 wzSurvey.MoveTo(step5);
 }
 break;

 default:
 // nothing required
 break;

 }

In the wizard's previous button click event handler (wzSurvey_PreviousButtonClick), we do the same
checks, but this time for the user navigating in the reverse direction.

When the final step is reached, the survey should be saved in your data store. We do this in the event
handler for the ActiveStepChanged event by checking to see if the ActiveStepIndex is equal to the last step
in the series.

 'check to see if the complete step is the active step
 If (wzSurvey.ActiveStepIndex = wzSurvey.WizardSteps.Count - 1) Then
 'survey is complete so production application should store the data
 'in an applicable data store
 End If

 // check to see if the complete step is the active step
 if (wzSurvey.ActiveStepIndex == wzSurvey.WizardSteps.Count - 1)
 {
 // survey is complete so production application should store the data
 // in an applicable data store
 }

The Wizard control has a Finish button click event that can be used to trigger your
code to save the results; however, if your implementation of the Wizard control (like
our example) allows the user to skip steps, it is possible the Finish step will never be
displayed and the Finish button click event will not occur.

In addition to sequential navigation, the Wizard control provides the ability to perform direct navigation
through the series of steps by displaying a sidebar with links to each step, as shown in Figure 4-6 . The
sidebar is enabled by setting the DisplaySideBar attribute of the Wizard control to true.

 <asp:Wizard ID="wzSurvey" runat="server"
 CssClass="wizardBody" Width="75%" align="center"
 HeaderText="ASP.NET Usage Survey"
 HeaderStyle-CssClass="wizardHeader"
 StepStyle-HorizontalAlign="Left"
 StepStyle-VerticalAlign="Middle"
 DisplaySideBar="true"
 SideBarStyle-CssClass="wizardSideBar"
 OnNextButtonClick="wzSurvey_NextButtonClick"
 OnPreviousButtonClick="wzSurvey_PreviousButtonClick"
 OnActiveStepChanged="wzSurvey_ActiveStepChanged" >

Figure 4-6. Wizard control with sidebar navigation

By using the style attributes for each of the sections of the Wizard control, almost everything about the
Wizard control can be configured to match the look and feel of your application.

See Also

Recipe 4.2

Example 4-10. Simulating a multipage form (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH04SurveyDataVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH04SurveyDataVB1"
 Title="Using the Wizard Control For Data Collection" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Using the Wizard Control For Data Collection (VB)
 </div>
 <asp:Wizard ID="wzSurvey" runat="server"
 CssClass="wizardBody" Width="75%" align="center"
 HeaderText="ASP.NET Usage Survey"
 HeaderStyle-CssClass="wizardHeader"
 StepStyle-HorizontalAlign="Left"
 StepStyle-VerticalAlign="Middle"
 DisplaySideBar="false"
 OnNextButtonClick="wzSurvey_NextButtonClick"
 OnPreviousButtonClick="wzSurvey_PreviousButtonClick"
 OnActiveStepChanged="wzSurvey_ActiveStepChanged" >
 <WizardSteps>
 <asp:WizardStep ID="step1" runat="server"
 StepType="Start" Title="1.x Use">
 <asp:Label ID="lbl1" runat="server"
 CssClass="wizardStep"
 Text="Do you currently use ASP.NET 1.x?" />
 <asp:RadioButtonList ID="rbStep1" Runat="server"
 RepeatLayout="Flow"
 RepeatDirection="Horizontal"
 CssClass="wizardStep" />

 </asp:WizardStep>

 <asp:WizardStep ID="step2" runat="server"
 StepType="Step" Title="1.x Experience">
 <asp:Label ID="lbl2" runat="server"
 CssClass="wizardStep"
 Text="How long have you been using ASP.NET 1.x?" />
 <asp:DropDownList ID="ddStep2" runat="server"
 CssClass="wizardStep" />
 </asp:WizardStep>

 <asp:WizardStep ID="step3" runat="server"
 StepType="Step" Title="2.0 Use">
 <asp:Label ID="lbl3" runat="server"
 CssClass="wizardStep"
 Text="Do you currently use ASP.NET 2.0?" />
 <asp:RadioButtonList ID="rbStep3" Runat="server"
 RepeatLayout="Flow"
 RepeatDirection="Horizontal"
 CssClass="wizardStep" />
 </asp:WizardStep>

 <asp:WizardStep ID="step4" runat="server"
 StepType="Finish" Title="2.0 Experience">
 <asp:Label ID="lbl4" runat="server"
 CssClass="wizardStep"
 Text="How long have you been using ASP.NET 2.0?" />
 <asp:DropDownList ID="ddStep4" runat="server"
 CssClass="wizardStep" />
 </asp:WizardStep>

 <asp:WizardStep ID="step5" runat="server"
 Ste1pType="Complete"
 Title="Complete" >
 <asp:Label ID="lbl5" runat="server"
 CssClass="wizardStep"
 Text="Thank you for taking our survey" />
 </asp:WizardStep>
 </WizardSteps>
 </asp:Wizard>
</asp:Content>

Example 4-11. Simulating a multipage form (.vb)

Option Explicit On
Option Strict On

Imports System.Web.UI.WebControls

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH04SurveyDataVB1.aspx
 ''' </summary>
 Partial Class CH04SurveyDataVB1
 Inherits System.Web.UI.Page

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Dim yesNoSelections As ArrayList
 Dim experienceSelections As ArrayList

 If (Not Page.IsPostBack) Then
 'build the arraylist with the yes/no responses
 yesNoSelections = New ArrayList()
 yesNoSelections.Add(New ListItem("Yes", "1"))
 yesNoSelections.Add(New ListItem("No", "0"))

 'bind the yes/no data to the radio button lists in the questions
 rbStep1.DataSource = yesNoSelections
 rbStep1.DataTextField = "Text"
 rbStep1.DataValueField = "Value"
 rbStep1.DataBind()

 rbStep3.DataSource = yesNoSelections
 rbStep3.DataTextField = "Text"
 rbStep3.DataValueField = "Value"
 rbStep3.DataBind()

 'build the arraylist with the experience responses
 experienceSelections = New ArrayList
 experienceSelections.Add(New ListItem("-- Select One --", "0"))
 experienceSelections.Add(New ListItem("0-6 Months", "1"))
 experienceSelections.Add(New ListItem("7-12 Months", "2"))
 experienceSelections.Add(New ListItem("13-24 Months", "3"))
 experienceSelections.Add(New ListItem("24+ Months", "4"))

 'bind the experience data to the radio button lists in the questions
 ddStep2.DataSource = experienceSelections
 ddStep2.DataTextField = "Text"

 ddStep2.DataValueField = "Value"
 ddStep2.DataBind()

 ddStep4.DataSource = experienceSelections
 ddStep4.DataTextField = "Text"
 ddStep4.DataValueField = "Value"
 ddStep4.DataBind()
 End If
End Sub 'Page_Load

'''*** ''' <summary>
''' This routine provides the event handler for the wizard's next button
''' click event. It is responsible for altering the survey navigation as
''' as function of the answers provided
''' </summary>
'''
''' <param name="sender"></param>
''' <param name="e"></param>
Protected Sub wzSurvey_NextButtonClick(ByVal sender As Object, _
 ByVal e As WizardNavigationEventArgs)
 'skip steps as a function of the users answers
 Select Case e.CurrentStepIndex
 Case 0
 If ((rbStep1.SelectedIndex >= 0) AndAlso _
 (rbStep1.SelectedItem.Text.Equals("No"))) Then
 'user does not use ASP.NET 1.x so move to 2.0 question
 wzSurvey.MoveTo(step3)
 End If

 Case 2
 If ((rbStep1.SelectedIndex >= 0) AndAlso _
 (rbStep3.SelectedItem.Text.Equals("No"))) Then
 'user does not use ASP.NET 2.0 so move to complete step
 wzSurvey.MoveTo(step5)
 End If

 Case Else
 'nothing required
 End Select
 End Sub 'wzSurvey_NextButtonClick

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the wizard's prev button
 ''' click event. It is responsible for altering the survey navigation as
 ''' as function of the answers provided
 ''' </summary>
 '''
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 Protected Sub wzSurvey_PreviousButtonClick(ByVal sender As Object, _
 ByVal e As WizardNavigationEventArgs)

 'skip steps as a function of the users answers
 Select Case e.CurrentStepIndex
 Case 2
 If ((rbStep1.SelectedIndex >= 0) AndAlso _
 (rbStep3.SelectedItem.Text.Equals("No"))) Then
 'user does not use ASP.NET 2.0 so move to 1.x question
 wzSurvey.MoveTo(step1)
 End If
 Case Else
 'nothing required
 End Select
 End Sub 'wzSurvey_PreviousButtonClick

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the wizard's active step
 ''' changed event. It is responsible for determining if the survey is
 ''' complete and storing the data in the data store.
 ''' </summary>
 '''
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 Protected Sub wzSurvey_ActiveStepChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'check to see if the complete step is the active step
 If (wzSurvey.ActiveStepIndex = wzSurvey.WizardSteps.Count - 1) Then
 'survey is complete so production application should store the data
 'in an applicable data store
 End If
 End Sub 'wzSurvey_ActiveStepChanged
 End Class 'CH04SurveyDataVB1
End Namespace

Example 4-12. Simulating a multipage form (.cs)

using System;
using System.Collections;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH04SurveyDataCS1.aspx
 /// </summary>
 public partial class CH04SurveyDataCS1 : System.Web.UI.Page
 {

 ///**
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>

 protected void Page_Load(object sender, EventArgs e)
 {
 ArrayList yesNoSelections;
 ArrayList experienceSelections;

 if (!Page.IsPostBack)
 {
 // build the arraylist with the yes/no responses
 yesNoSelections = new ArrayList();
 yesNoSelections.Add(new ListItem("Yes", "1"));
 yesNoSelections.Add(new ListItem("No", "0"));

 // bind the yes/no data to the radio button lists in the questions
 rbStep1.DataSource = yesNoSelections;
 rbStep1.DataTextField = "Text";
 rbStep1.DataValueField = "Value";
 rbStep1.DataBind();

 rbStep3.DataSource = yesNoSelections;
 rbStep3.DataTextField = "Text";
 rbStep3.DataValueField = "Value";
 rbStep3.DataBind();

 // build the arraylist with the experience responses
 experienceSelections = new ArrayList();
 experienceSelections.Add(new ListItem("-- Select One --", "0"));
 experienceSelections.Add(new ListItem("0-6 Months", "1"));
 experienceSelections.Add(new ListItem("7-12 Months", "2"));
 experienceSelections.Add(new ListItem("13-24 Months", "3"));
 experienceSelections.Add(new ListItem("24+ Months", "4"));

 // bind the experience data to the radio button lists in the questions
 ddStep2.DataSource = experienceSelections;
 ddStep2.DataTextField = "Text";
 ddStep2.DataValueField = "Value";
 ddStep2.DataBind();

 ddStep4.DataSource = experienceSelections;
 ddStep4.DataTextField = "Text";
 ddStep4.DataValueField = "Value";
 ddStep4.DataBind();
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the wizard's next button
 /// click event. It is responsible for altering the survey navigation as
 /// as function of the answers provided
 /// </summary>
 ///
 /// <param name="sender"></param>
 /// <param name="e"></param>
 protected void wzSurvey_NextButtonClick(Object sender,
 WizardNavigationEventArgs e)
 {
 // skip steps as a function of the users answers
 switch (e.CurrentStepIndex)
 {
 case 0:
 if ((rbStep1.SelectedIndex >= 0) &&
 (rbStep1.SelectedItem.Text.Equals("No")))
 {
 // user does not use ASP.NET 1.x so move to 2.0 question
 wzSurvey.MoveTo(step3);
 }
 break;

 case 2:
 if ((rbStep1.SelectedIndex >= 0) &&
 (rbStep3.SelectedItem.Text.Equals("No")))
 {
 // user does not use ASP.NET 2.0 so move to complete step
 wzSurvey.MoveTo(step5);
 }
 break;

 default:
 // nothing required
 break;
 }
 } // wzSurvey_NextButtonClick

 ///***
 /// <summary>
 /// This routine provides the event handler for the wizard's prev button
 /// click event. It is responsible for altering the survey navigation as
 /// as function of the answers provided
 /// </summary>
 ///
 /// <param name="sender"></param>
 /// <param name="e"></param>
 protected void wzSurvey_PreviousButtonClick(Object sender,
 WizardNavigationEventArgs e)
 {

 // skip steps as a function of the users answers
 switch (e.CurrentStepIndex)
 {
 case 2:
 if ((rbStep1.SelectedIndex >= 0) &&
 (rbStep3.SelectedItem.Text.Equals("No")))
 {
 // user does not use ASP.NET 2.0 so move to 1.x question
 wzSurvey.MoveTo(step1);
 }
 break;

 default:
 // nothing required
 break;
 }
 } // wzSurvey_PreviousButtonClick

 ///**
 /// <summary>
 /// This routine provides the event handler for the wizard's active step
 /// changed event. It is responsible for determining if the survey is
 /// complete and storing the data in the data store.
 /// </summary>
 ///
 /// <param name="sender"></param>
 /// <param name="e"></param>

 protected void wzSurvey_ActiveStepChanged(Object sender,
 System.EventArgs e)
 {
 // check to see if the complete step is the active step
 if (wzSurvey.ActiveStepIndex == wzSurvey.WizardSteps.Count - 1)
 {
 // survey is complete so production application should store the data
 // in an applicable data store
 }
 } // wzSurvey_ActiveStepChanged
 } // CH04SurveyDataCS1
}

Recipe 4.5. Setting the Initial Focus to a Specific Control
Problem

Problem

You need to set the focus of a page to a specific control when the page is first loaded.

Solution

The simplest solution is to use the SetFocus method of the page object to set the focus to a specific
control, as shown below:

 Page.SetFocus(txtFirstName)

 Page.SetFocus(txtFirstName);

Another more flexible solution is to create a client-side JavaScript block in the code-behind that sets
the focus to the desired control and then writes the block to the rendered page so it is executed when
the page is loaded. We focus on this solution from here on because using client-side JavaScript is
often helpful, and occasionally a requirement, when working with forms.

In the code-behind class for the page, use the .NET language of your choice to:

Write some code that is called from the Page_Load method and generates a client-side
JavaScript block that calls the focus method of the desired control and sets the control's initial
focus to itself.

1.

Use the RegisterStartupScript method of the ClientScript object to register the script block
so it is output when the page is rendered.

2.

Examples 4-13, 4-14 through 4-15 showthe .aspx and code-behind files for the application that
implements this solution. (See the "Building a JavaScript Library" sidebar for the rationale behind our
approach.)

Discussion

To implement the JavaScript-based solution, nothing special is required in the .aspx file. But the
code-behind page is another matter. There, you need to generate a client-side JavaScript block that
calls the focus method of the desired control and sets the control's initial focus to itself.

The application that we've written to implement the solution uses a simple form with only three text
boxes to capture the user's first name, last name, and age. The application's code-behind assembles
a client-side JavaScript block that calls the set focus method of the first text box control and then
writes the script block to the rendered page. Here is the code that sets the focus of the first text box
on the form, txtFirstName:

 <script type="text/javascript">
 <!--
 document.getElementById('ctl00_PageBody_txtFirstName').focus();
 // -->
 </script>

The client-side JavaScript block is generated by the setFocusToControl method of the code-behind.
You pass to setFocusToControl the reference to the control that you want to have the focus when the
page is initially displayed in the browser, which is done via controlToFocus.ClientID in our example.
The client-side JavaScript uses the getElementById method of the document object to get a reference
to the passed control and then calls the focus method on the control:

 scriptBlock = "document.getElementById('" & _
 controlToFocus.ClientID & "').focus();"

 scriptBlock = "document.getElementById('" +
 controlToFocus.ClientID + "').focus();";

The RegisterStartupScript method of the Page object is used to register the client-side script block
to be output when the page is displayed in the browser. This method outputs the script block at the
bottom of the form. This is important because the script block created in the setFocusToControl
method is executed when the browser parses the page; for it to work correctly, the controls on the
form have to have been previously created. If this block were output at the top of the page or at the
beginning of the form, a JavaScript error would occur because the control to set the focus to would
not exist.

To set the initial focus, the Page_Load method calls the setFocusToControl method when the page is
initially loaded, passing it a reference to the control that is to have initial focus.

With the basic functionality in place to set the focus to a control programmatically, many options are
available. Refer to Recipe 4.5 for an example that uses the same functionality to set the focus to a
control that has a validation error.

Building a JavaScript Library

Client-side JavaScript is frequently required in web pages, and to want to reuse the same
JavaScript block is common. In classic ASP, reuse is achieved by using include files or by
linking to specific JavaScript files. A big drawback to either of these techniques is that
when the files are used as libraries, as is commonly done, they typically contain more
functions than needed by any given pages. This results in slower performance because
the excess code has to be downloaded to the browser along with the required code.
Other options include using many files, each containing fewer methods, or putting the
functionality required for a specific page directly in that page. Both result in duplication of
JavaScript in many places and a maintenance headache when changes are required.

With ASP.NET, you can generate the JavaScript you need by writing specialized methods
that you encapsulate in a custom helper class. You call only the methods required to
create the JavaScript you need for a specific page. This approach lets you reuse
debugged JavaScript for all of your applications, and it improves performance because
only the needed functions are rendered in the HTML page. An example of a client script
library class that contains the setFocusToControl method used in this recipe is shown
here. To make the method more useful, we have modified the code to allow you to pass
at runtime the identity of the control to receive focus. In addition, the method has the
Shared attribute to allow calling the method without instantiating the class.

 Namespace DDIG.Script
 Public Class ClientScripts
 Private Shared Sub setFocusToControl(_
 ByVal pageControl As System.Web.UI.Page, _
 ByVal scriptManager As System.Web.UI.ClientScriptManager,
 ByVal controlToFocus As System.Web.UI.Control)

 Dim scriptBlock As String

 'add the client script to set the control focus
 scriptBlock = "document.getElementById('" & _
controlToFocus.ClientID & "').focus();"
 'register the client script to be output when the
 'page is rendered
 scriptManager.RegisterStartupScript(pageControl.GetType(), _
 "SetFocusScript", _
 scriptBlock, _
 True)
 End Sub 'setFocusToControl
 End Class
 End Namespace

See Also

Recipe 4.5

Example 4-13. Setting focus initially (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH04SetFocusVB2.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH04SetFocusVB2"
 Title="Setting Control Focus - Approach 2" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Setting Control Focus - Approach 2 (VB)
 </div>
 <table width="75%" align="center" border="0" >
 <tr>
 <td class="labelText">First Name: </td>
 <td>
 <asp:TextBox id="txtFirstName" Runat="server"
 Columns="30" CssClass="labelText" />
 <asp:RequiredFieldValidator id="rfvFirstName"
 Runat="server"
 ControlToValidate="txtFirstName"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True">
 <img src="images/arrow_alert.gif"
 alt="arrow"/> First Name Is Required
 </asp:RequiredFieldValidator>
 </td>
 </tr>
 <tr>
 <td class="labelText">Last Name: </td>
 <td>
 <asp:TextBox id="txtLastName" Runat="server"
 Columns="30" CssClass="labelText" />
 <asp:RequiredFieldValidator id="rfvLastName"
 Runat="server"
 ControlToValidate="txtLastName"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True">
 <img src="images/arrow_alert.gif"
 alt="arrow"/> Last Name Is Required
 </asp:RequiredFieldValidator>
 </td>
 </tr>

 <tr>
 <td class="labelText">Age: </td>
 <td>
 <asp:TextBox id="txtAge" Runat="server"
 Columns="30" CssClass="labelText" />
 <asp:RequiredFieldValidator id="rfvAge"
 Runat="server"
 ControlToValidate="txtAge"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True">
 <img src="images/arrow_alert.gif"
 alt="arrow"/> Age Is Required
 </asp:RequiredFieldValidator>
 <asp:RangeValidator id="rvAge" Runat="server"
 ControlToValidate="txtAge"
 CssClass="alertText"
 Display="Dynamic"
 EnableClientScript="True"
 MinimumValue="18"
 MaximumValue="99"
 Type="Integer">
 <img src="images/arrow_alert.gif"
 alt="arrow"/> Age Must Be Between 18 and 99
 </asp:RangeValidator>
 </td>
 </tr>
 <tr>
 <td colspan="2">

 <table align="center" width="50%">
 <tr>
 <td align="center">
 <input id="btnSave" runat="server" type="button"
 value="Save" causesvalidation="true"
 onserverclick="btnSave_ServerClick"/>
 </td>
 <td align="center">
 <input id="btnCancel" runat="server" type="button"
 value="Cancel" causesvalidation="false"/>
 </td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
</asp:Content>

Example 4-14. Setting focus initially (.vb)

Option Explicit
On Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH04SetFocusVB2.aspx
 ''' </summary>
Partial Class CH04SetFocusVB2
 Inherits System.Web.UI.Page

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Not Page.IsPostBack) Then
 setFocusToControl(txtFirstName)
 End If
 End Sub 'Page_Load

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the save button click
 ''' event.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnSave_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 If (Page.IsValid) Then
 'process form data and save as required for application
 End If
 End Sub 'btnSave_ServerClick

 '''***
 ''' <summary>
 ''' This routine generates the client script to set the focus to the
 ''' passed control
 ''' </summary>
 '''
 ''' <param name="controlToFocus">Set to the control to which focus is
 ''' to be set</param>
 Private Sub setFocusToControl(ByVal controlToFocus As System.Web.UI.Control)

 Dim scriptBlock As String

 'add the client script to set the control focus
 scriptBlock = "document.getElementById('" & _
 controlToFocus.ClientID & "').focus();"

 'register the client script to be output when the page is rendered
 ClientScript.RegisterStartupScript(Me.GetType(), _
 "SetFocusScript", _
 scriptBlock, _
 True)

 End Sub 'setFocusToControl
 End Class 'CH04SetFocusVB2
 End Namespace

Example 4-15. Setting focus initially (.cs)

using System;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH04SetFocusCS2.aspx
 /// </summary>
 public partial class CH04SetFocusCS2 : System.Web.UI.Page
 {

 ///**
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 setFocusToControl(txtFirstName);
 }
 } // Page_Load

 ///**
 /// <summary>
 /// This routine provides the event handler for the save button click

 /// event.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnSave_ServerClick(Object sender,
 System.EventArgs e)
 {
 if (Page.IsValid)
 {
 // process form data and save as required for application
 }
 } //btnSave_ServerClick

 ///**
 /// <summary>
 /// This routine generates the client script to set the focus to the
 /// passed control
 /// </summary>
 ///
 /// <param name="controlToFocus">Set to the control to which focus is
 /// to be set</param>
 private void setFocusToControl(System.Web.UI.Control controlToFocus)
 {
 String scriptBlock;

 // add the client script to set the control focus
 scriptBlock = "document.getElementById('" +
 controlToFocus.ClientID + "').focus();";

 // register the client script to be output when the page is rendered
 ClientScript.RegisterStartupScript(this.GetType(),
 "SetFocusScript",
 scriptBlock,
 true);

 } // setFocusToControl
 } // CH04SetFocusCS2
}

Recipe 4.6. Setting the Focus to a Control with a
Validation Error

Problem

You want to set the focus to the first control on your form that has a validation error.

Solution

The solution to this recipe is an extension of the one introduced in Recipe 4.4, where we recommend
writing code that generates some client-side JavaScript that calls the focus method of the desired
control. For this recipe, we recommend adding some additional JavaScript-generating code tied to the
Save button's click event handler and, when executed, searches for a control with a validation error
and sets the focus to that control.

In the code-behind class for the page, use the .NET language of your choice to:

Write some code that is called from the Page_Load method and generates a client-side
JavaScript block that calls the focus method of the desired control and sets the control's initial
focus to itself (see Recipe 4.4 for details).

1.

Add additional code to the Save (or equivalently named) button's click event handler that
searches for a control with a validation error and sets the focus to that control.

2.

Use the RegisterStartupScript method of the ClientScript object to register the script block
so that it is output when the page is rendered.

3.

Examples 4-16 and 4-17 show routines required to implement the last two steps of this solution.

Discussion

As described in Recipe 4.4, you start implementing this solution by creating a client-side JavaScript
block in the code-behind that sets the focus to a desired control and then outputs the block to the
rendered page so it is executed when the page is loaded. With this code in place, you can add some
additional code to the Save (or equivalently named) button's click event that determines the first
control with a validation error and sets the focus to it via the previously loaded JavaScript code.

This solution relies on the page object containing a collection of the validation controls on the form.
The order of the validators in the collection is the same as the order in which they appear in the .aspx
file. (The validators should be placed with the controls they validate for this solution to work

correctly.)

To get a feel for how to implement this solution, first take a look at the sample application we created
for Recipe 4.4 (Examples 4-13, 4-14 through 4-15). Next, consider the code in Examples 4-16 and 4-
17, which is added to that application to implement this recipe's solution.

With the additional code, when the server-side button's click event is executed, a check is first made
to see if the page is valid. If it is, a save operation will be performed. If the page is invalid, the
validators will be iterated through until the first invalid one is found. This is determined by examining
the IsValid property of each validator control; its value will be false if the control associated with the
validator has failed to pass validation.

When an invalid validator is found, the associated control is identified by calling the FindControl
method of the validator object. The control is then passed to the setFocusToControl method. Only
one control can have the focus, so after an invalid control is found, the for loop is exited.

The client-side validation is disabled in this example to simplify the explanation of how to determine
which control has a validation error and how to set the focus to it. If we had kept client-side
validation enabled, we would have had to implement the same approach using client-side JavaScript.
Though the latter may prove to be the most useful for you, we have avoided it here to keep this
recipe lean and to the point.

See Also

Recipe 4.4

Example 4-16. Setting focus to control with validation error (.vb)

'''***
''' <summary>
''' This routine provides the event handler for the save button click
''' event.
''' </summary>
'''
''' <param name="sender">Set to the sender of the event</param>
''' <param name="e">Set to the event arguments</param>
Protected Sub btnSave_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim validator As System.Web.UI.WebControls.BaseValidator

 If (Page.IsValid) Then
 'process form data and save as required for application

 Else
 'page is invalid so iterate through validators to find the first one
 'with an error
 For Each validator In Page.Validators
 If (Not validator.IsValid) Then

 'validator that failed found so set the focus to the control
 'it validates and exit the loop
 setFocusToControl(validator.FindControl(validator.ControlToValidate))
 Exit For
 End If
 Next validator
 End If
End Sub 'btnSave_ServerClick

Example 4-17. Setting focus to control with validation error (.cs)

///***
/// <summary>
/// This routine provides the event handler for the save button click
/// event.
/// </summary>
///
/// <param name="sender">Set to the sender of the event</param>
/// <param name="e">Set to the event arguments</param>
protected void btnSave_ServerClick(Object sender,
 System.EventArgs e)
{
 if (Page.IsValid)
 {
 // process form data and save as required for application
 }
 else
 {
 // page is invalid so iterate through validators to find the first one
 // with an error
 foreach (BaseValidator validator in Page.Validators)
 {
 if (!validator.IsValid)
 {
 // validator that failed found so set the focus to the control
 // it validates and exit the loop
 setFocusToControl(validator.FindControl(validator.ControlToValidate));
 break;
 }
 }
 }
} //btnSave_ServerClick

Chapter 5. User Controls

5.0 Introduction

User controls provide an excellent mechanism for code reuse in ASP.NET. Indeed, the reuse
mechanism is better than the server-side include file method used in classic ASP. For one thing, user
controls are compiled and can be cached separately from the page in which they are used, providing
an increase in performance. (See Chapter 19.) For another, user controls leverage the object model
support provided by ASP.NET, which means that you can program against any properties you declare
for the control, just like other ASP.NET server controls.

This brings us to another point: user controls exist only on the server. When rendered and sent to
the client, they are just part of the flat HTML for a page. Since they exist only on the server, browser
compatibility is not an issue. It is unnecessary to download a control from the server to the client
and, in the process, risk that a user might refuse to download a control needed to render your web
page properly.

Recipe 5.2. Sharing a Page Header on Multiple Pages

Problem

You have a header common to all pages in a site and do not want to repeat the code on every page.

Solution

Create a user control containing the header code and add the control to each page.

To create the user control:

Create a file with a .ascx extension.1.

Place the @ Control directive at the top of the file.2.

Add the HTML you wish to reuse for the header, making sure to avoid using any <html>,
<head>, <body>, or <form> elements.

3.

In the code-behind class for the control, use the .NET language of your choice to:

Create a user control code-behind class that inherits from the UserControl class.1.

(Optional) Establish properties for the control that will provide the ability to control the basic
look of the header programmatically.

2.

To use the user control in an ASP.NET page:

Register the control by using the @ Register directive at the top of the page.1.

Place the tag for the user control where you want the control to be rendered.2.

To demonstrate this solution, we've created a user control that houses some typical header HTML,
including tags for a header image and a divider image. We then show how to use the user
control in three different ways: with default parameters, with parameters set in the .aspx file, and
with parameters set in the code-behind.

The output of a test page that uses the user control is shown in Figure 5-1. (The second divider line
appears in green and the third divider line appears in blue when rendered on the screen.) Example 5-

1 shows the .ascx file for the user control. Examples 5-2 and 5-3 show the VB and C# code-behind
files for the user control. Example 5-4 shows the .aspx file that uses the user control in the three
different ways previously mentioned. Examples 5-5 and 5-6 show the VB and C# code-behind files
for the test page that uses the user control.

Discussion

User controls provide an easy way to partition pages and reuse the page sections throughout your
application. They are similar to web forms in that they consist of two files: a .ascx file (the user
interface) and a code-behind file (.vb or .cs). Since they constitute page sections, the user interface
elements they contain generally do not include <html>, <head>, <body>, or <form> elements. Further,
you must place the @ Control directive at the top of the .ascx file instead of the @ Page directive used
for web forms. The code-behind class for a user control is similar to the code-behind class for a web
form, with the most noticeable difference being that the user control code-behind class inherits from
the UserControl class instead of the Page class.

The example we've provided to demonstrate this solution shows you how to create a user control to
be used as a page header. The user control has three custom properties that provide the ability to
control the basic look of the header programmatically.

The HTML for the user control (see Example 5-1) contains a table with two rows and a single column.
The first row of the table contains a "logo" style image. The src attribute of the image tag is set to
the name of the image that will be used for the default image.

Figure 5-1. Page header user control output

The cell in the second row of the table contains a single-pixel transparent image. This is a classic

HTML trick to allow manipulation of a table cell to provide dividers with alterable colors and heights as
well as to stretch the size of the cell. The bgcolor and height attributes of the cell are set to the
values that will be the defaults for the color and height of the divider line.

The code-behind contains three properties:

headerImage

Provides the ability to set/get the image that will be displayed in the header

dividerColor

Provides the ability to set/get the divider color

dividerHeight

Provides the ability to set/get the divider height

To use a user control in an ASP.NET page, the control must be registered using the @ Register
directive at the top of the page. The TagPrefix and TagName attributes are used to define the "custom
tag" uniquely on the ASP.NET page. The TagPrefix is typically set to the project's namespace. The
TagName should be set to a value that describes the control's use. The Src attribute is set to the name
of the .ascx file of the user control. Here is how we set these attributes in our example:

 <%@ Register TagPrefix="ASPCookbook" TagName="PageHeader"
 Src="CH05UserControlHeaderVB.ascx" %>

Additionally, a tag is placed in the HTML where you want the user control rendered. The tag must be
given an id and the runat attribute must be set to "server" or else the user control will not be
rendered. Here is the syntax we've used for inserting our example user control using the default
values:

 <ASPCookbook:PageHeader id="pageHeader1" runat="server" />

If you want to change the properties for a user control, you can set them as attributes in the tag. For
instance, here is how we set the header image, the divider color, and the divider height in our
example:

 <ASPCookbook:PageHeader id="pageHeader2" runat="server"
 headerImage="images/oreilly_header.gif"
 dividerColor="#008000"
 dividerHeight="12" />

The properties for a user control included in an ASP.NET page can be set in the code-behind in the
same manner as setting the attributes for any other HTML or ASP.NET server control. You can set the
appropriate values in Page_Load or another method. Here's how we do it in our example:

 pageHeader3.headerImage = "images/ddig_logo.gif"
 pageHeader3.dividerHeight = "18"
 pageHeader3.dividerColor = ColorTranslator.ToHtml(Color.DarkBlue)

 pageHeader3.headerImage = "images/ddig_logo.gif";
 pageHeader3.dividerHeight = "18";
 pageHeader3.dividerColor = ColorTranslator.ToHtml(Color.DarkBlue);

See Also

Recipe 1.1 for how to use master pages to share common HTML between pages

Example 5-1. Page header user control (.ascx)

<%@ Control Language="VB" AutoEventWireup="false"
 CodeFile="CH05UserControlHeaderVB.ascx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH05UserControlHeaderVB" %>
<table width="100%" cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="center">
 <img id="imgHeader" runat="server"
 src="images/ASPNetCookbookHeading_blue.gif"
 alt="ASPNETCookbook"/>
 </td>
 </tr>
 <tr>
 <td id="tdDivider" runat="server" bgcolor="#6B0808" height="6">
 </td>
 </tr>
</table>

Example 5-2. Page header user control (.vb)

Option Explicit On
Option Strict On

Imports System.Web.UI.WebControls

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH05UserControlHeaderVB.ascx
 ''' </summary>
 Partial Class CH05UserControlHeaderVB
 Inherits System.Web.UI.UserControl

 '''***
 ''' <summary>
 ''' This property provides the ability get/set the image used in the
 ''' header user control
 ''' </summary>
 Public Property headerImage() As String
 Get
 Return (imgHeader.Src)
 End Get

 Set(ByVal Value As String)
 imgHeader.Src = Value
 End Set
 End Property 'headerImage

 '''***
 ''' <summary>
 ''' This property provides the ability get/set the divider color used
 ''' at the bottom of the user control
 ''' </summary>
 Public Property dividerColor() As String
 Get
 Return (tdDivider.BgColor)
 End Get

 Set(ByVal Value As String)
 tdDivider.BgColor = Value
 End Set
 End Property 'dividerColor

 '''***
 ''' <summary>
 ''' This property provides the ability get/set the divider height used
 ''' at the bottom of the user control
 ''' </summary>
 Public Property dividerHeight() As String
 Get
 Return (tdDivider.Height)
 End Get

 Set(ByVal Value As String)
 tdDivider.Height = Value
 End Set
 End Property 'dividerHeight

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 'place user code here
 End Sub 'Page_Load
 End Class 'CH05UserControlHeaderVB
End Namespace

Example 5-3. Page header user control (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH05UserControlHeaderCS.ascx
 /// </summary>
 public partial class CH05UserControlHeaderCS : System.Web.UI.UserControl
 {
 ///***
 /// <summary>
 /// This property provides the ability get/set the image used in the
 /// header user control
 /// </summary>
 public String headerImage
 {
 get
 {
 return imgHeader.Src;
 }

 set
 {
 imgHeader.Src = value;

 }
 } // headerImage

 ///***
 /// <summary>
 /// This property provides the ability get/set the divider color used
 /// at the bottom of the user control
 /// </summary>
 public String dividerColor
 {
 get
 {
 return tdDivider.BgColor;
 }

 set
 {
 tdDivider.BgColor = value;
 }
 } // dividerColor

 ///***
 /// <summary>
 /// This property provides the ability get/set the divider height used
 /// at the bottom of the user control
 /// </summary>
 public String dividerHeight
 {
 get
 {
 return tdDivider.Height;
 }

 set
 {
 tdDivider.Height = value;
 }
 } // dividerHeight

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 // place user code here
 } // Page_Load
 } // CH05UserControlHeaderCS

}

Example 5-4. Using the page header user control (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH05DisplayHeaderVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH05DisplayHeaderVB"
 Title="User Control Display Header" %>
<%@ Register TagPrefix="ASPCookbook" TagName="PageHeader"
 Src="CH05UserControlHeaderVB.ascx" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">

 <table width="90%" align="center" border="0">
 <tr>
 <td class="pageHeading">Header Using Default Parameters:</td>
 </tr>
 <tr>
 <td>
 <ASPCookbook:PageHeader id="pageHeader1" runat="server" />
 </td>
 </tr>
 <tr>
 <td class="pageHeading">

 Header With Parameters Set In ASPX:</td>
 </tr>
 <tr>
 <td>
 <ASPCookbook:PageHeader id="pageHeader2" runat="server"
 headerImage="images/oreilly_header.gif"
 dividerColor="#008000"
 dividerHeight="12" />
 </td>
 </tr>
 <tr>
 <td class="pageHeading">

 Header With Parameters Set In Code-behind:</td>
 </tr>
 <tr>
 <td>
 <ASPCookbook:PageHeader id="pageHeader3" runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 5-5. Using the page header user control (.vb)

Option Explicit On
Option Strict On

Imports System.Drawing

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH05DisplayHeaderVB.aspx
 ''' </summary>
 Partial Class CH05DisplayHeaderVB
 Inherits System.Web.UI.Page

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 'initialize the 3rd page header user control
 pageHeader3.headerImage = "images/ddig_logo.gif"
 pageHeader3.dividerHeight = "18"
 pageHeader3.dividerColor = ColorTranslator.ToHtml(Color.DarkBlue)
 End Sub 'Page_Load
 End Class 'CH05DisplayHeaderVB
End Namespace

Example 5-6. Using the page header user control (.cs)

using System;
using System.Drawing;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH05DisplayHeaderCS.aspx
 /// </summary>
 public partial class CH05DisplayHeaderCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 // initialize the 3rd page header user control
 pageHeader3.headerImage = "images/ddig_logo.gif";
 pageHeader3.dividerHeight = "18";
 pageHeader3.dividerColor = ColorTranslator.ToHtml(Color.DarkBlue);
 } // Page_Load
 } // CH05DisplayHeaderCS
}

Recipe 5.3. Creating a Customizable Navigation Bar

Problem

You want to create a navigation bar that lets you add or remove items without changing code so you
can reuse the navigation bar in multiple applications.

Solution

Create an XML document containing the items that will be displayed in the navigation bar, and then
create a user control that uses the contents of the XML document to provide the required
customization.

To create the user control:

Create a file with a .ascx extension.1.

Place the @ Control directive at the top of the file.2.

Add a DataList control configured to render a table with an ItemTemplate defining the cells in
the table.

3.

In the code-behind class for the control, use the .NET language of your choice to:

Create a user control code-behind class that inherits from the UserControl class.1.

(Optional) Establish properties for the control that will provide the ability to control
programmatically the basic look of the navigation bar, such as its background color.

2.

To use the user control in an ASP.NET page:

Register the control by using the @ Register directive at the top of the page.1.

Place the tag for the user control in the HTML where you want the control rendered.2.

The output of a test page demonstrating a typical navigation bar user control is shown in Figure 5-2.
Example 5-7 shows the XML document we created to define the contents of the navigation bar.
Example 5-8 shows the .ascx file for the user control. Examples 5-9 and 5-10 show the VB and C#
code-behind files for the user control. Example 5-11 shows the .aspx file for the test page that uses

the user control. Examples 5-12 and 5-13 show the VB and C# code-behind files for the test page.

Figure 5-2. Customizable navigation bar output

Discussion

The general strategy for this solution is to create an XML document that defines the contents of the
navigation bar user control. You then use the Page_Load method of the user control's code-behind to
read into a DataSet the XML document containing the navigation bar data and then bind the dataset
to a DataList control. Using a DataSet and DataList control in this way has three advantages:

You are not limited to the number of items in the navigation bar.1.

Loading the XML document used to define the navigation bar items into a DataSet makes for
easy traversal of those items.

2.

A DataList control configured to render a table with an ItemTemplate provides the flexibility in
the display of the columns that is needed for customizing a navigation bar.

3.

The example we have written to implement this solution creates a navigation bar user control whose
contents are defined by an XML document. But the example goes a bit further in that it provides the
ability to define what buttons appear in the navigation bar as well as the ability to customize the color
of the bar, change the name of the XML file used to define the bar, and set other properties.

The XML document that defines our navigation bar consists of a series of elements named Public, as
shown in Example 5-7. This is the name of the navigation bar (explained later). Each of the Public
elements contains three elements: the ButtonLink element defines the URL for the navigation bar
button, the ImageSrc element defines the image used for the button, and the AltText element sets
the text alternative for the image (i.e., the value of the Alt attribute of the IMG tag used for the
button).

The .ascx file for our example user control, which is shown in Example 5-8, contains a DataList
control configured to render a table with an ItemTemplate to define the cells in the table. The
ItemTemplate contains an anchor tag used for the navigation and an image tag to display the graphic
button.

The code-behind for our example user control, shown in Examples 5-9 (VB) and 5-10 (C#), contains
three properties to enable customization of the navigation bar. The backgroundColor property
provides the ability to change the background color of the navigation bar. The xmlFilename property
defines the XML document used to populate the navigation bar. The navBarName property is used to
define the name of the group of elements in the XML document used to populate the navigation bar.
In this example, all of the elements are named Public. The example's design allows the XML
document to have any number of other element groups, thus providing the ability to have a different
navigation bar on different pages depending on the page type, user role, context, or the like. If you
wanted a different navigation bar for the private pages in the site, for example, you would add a
group of Private elements with the information needed to define the private navigation bar. How to
select one is described later.

Our approach advocates leveraging a DataList tabular control for the workings of the navigation bar.
Here's how we populate the DataList:

In the Page_Load method of the code-behind, the XML document containing the navigation bar
data is read into a DataSet and then bound to the DataList.

1.

The dlNavBar_ItemDataBound method is then called by ASP.NET for each of the items defined in
the XML document (rows in the DataSet). Its job is to set the HRef of the anchor tag and then
set the image source and alt text for the image tag.

2.

To use the navigation bar user control in an .aspx page, the control must be registered with the @
Register directive at the top of the page and then the navigation bar control can be inserted into
your page. Example 5-11 shows how this is done in our application, including the use of TagPrefix,
TagName, and Src attributes set to the namespace of the project, the name of the control, and the
name (and virtual path) of the .ascx file of the user control, respectively (see Recipe 5.1 for more
details on these attributes).

In our example, the three properties of the navigation bar control must be set. Setting these in the
.aspx file is possible; however, because the xmlFilename property must be set to a fully qualified XML
filename, this is better done in the code-behind as shown in Examples 5-12 (VB) and 5-13 (C#).

The navigation bar user control presented here is somewhat bland compared to most others. For
instance, many navigation bars we have implemented support a changing image to indicate the
active location in the site, complete with mouse-overs for each new image. When implementing this
capability yourself, consider adding additional image information in the XML document to support the
"on," "off," and "over" images. The typical mouse-over code will need to be added to the .ascx file,
and the code-behind will need a currentPage property to provide the ability for it to change the
images displayed as a function of the currently displayed page.

The performance of the navigation control shown in this recipe can be improved
by caching the control, as described in Recipe 16.6.

See Also

Recipe 16.6 for caching user controls

Example 5-7. XML used for customizable navigation bar

<?xml version="1.0" encoding="utf-8"?>
<NavBar>
 <Public>
 <ButtonLink>../ChapterMenu.aspx</ButtonLink>
 <ImageSrc>images/nav/button_nav_home_off.gif</ImageSrc>
 <AltText>Home</AltText>
 </Public>
 <Public>
 <ButtonLink>../ProblemMenu.aspx?Chapter=2</ButtonLink>
 <ImageSrc>images/nav/button_nav_datagrids_off.gif</ImageSrc>
 <AltText>Datagrids</AltText>
 </Public>
 <Public>
 <ButtonLink>../ProblemMenu.aspx?Chapter=3</ButtonLink>
 <ImageSrc>images/nav/button_nav_validation_off.gif</ImageSrc>
 <AltText>Validation</AltText>
 </Public>
 <Public>
 <ButtonLink>../ProblemMenu.aspx?Chapter=4</ButtonLink>
 <ImageSrc>images/nav/button_nav_forms_off.gif</ImageSrc>
 <AltText>Forms</AltText>
 </Public>
 <Public>
 <ButtonLink>../ProblemMenu.aspx?Chapter=5</ButtonLink>
 <ImageSrc>images/nav/button_nav_user_controls_off.gif</ImageSrc>
 <AltText>User Controls</AltText>
 </Public>
</NavBar>

Example 5-8. Customizable navigation bar (.ascx)

<%@ Control Language="VB" AutoEventWireup="false"
 CodeFile="CH05UserControlNavBarVB.ascx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH05UserControlNavBarVB" %>
<asp:datalist id="dlNavBar" runat="server"
 width="100%" borderwidth="0"
 cellpadding="0" cellspacing="0" height="29"
 repeatdirection="Horizontal" repeatlayout="Table"
 OnItemDataBound="dlNavBar_ItemDataBound">
 <itemtemplate>
 <td height="25" align="center">

 <img id="imgNavBarImage" runat="server" border="0"
 alt="" src=""/>
 </td>
 </itemtemplate>
</asp:datalist>

Example 5-9. Customizable navigation bar (.vb)

 Option Explicit On
 Option Strict On

 Imports System.Data
 Imports System.Web.UI.WebControls

 Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH05UserControlNavBarVB.ascx
 ''' </summary>
 Partial Class CH05UserControlNavBarVB
 Inherits System.Web.UI.UserControl

 'private attributes
 Private mXMLFilename As String
 Private mNavBarName As String

 'The following constants define the elements available
 'in the navigation bar XML document
 Private Const MENU_ITEM_BUTTON_LINK As String = "ButtonLink"
 Private Const MENU_ITEM_IMAGE_SRC As String = "ImageSrc"
 Private Const MENU_ITEM_ALT_TEXT As String = "AltText"

 '''***
 ''' <summary>
 ''' This property provides the ability get/set the background color used

 ''' for the navigation bar
 ''' </summary>
 Public Property backgroundColor() As System.Drawing.Color
 Get
 Return (dlNavBar.BackColor)
 End Get

 Set(ByVal value As System.Drawing.Color)
 dlNavBar.BackColor = value
 End Set
 End Property

 '''***
 ''' <summary>
 ''' This property provides the ability get/set the name of the xml file
 ''' used to define the navigation bar
 ''' </summary>
 Public Property xmlFilename() As String
 Get
 Return (mXMLFilename)
 End Get

 Set(ByVal value As String)
 mXMLFilename = value
 End Set
 End Property

 '''***
 ''' <summay>
 ''' This property provides the ability get/set the name of the navigation
 ''' bar definition in the xml file
 ''' </summary>
 Public Property navBarName() As String
 Get
 Return (mNavBarName)
 End Get

 Set(ByVal value As String)
 mNavBarName = value
 End Set
 End Property

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Dim dsNavBarData As DataSet

 'load the XML document used to define the navigation bar items
 'into a dataset to provide easy traversal
 dsNavBarData = New DataSet
 dsNavBarData.ReadXml(xmlFilename)

 'bind the nav bar data to the repeater on the control
 dlNavBar.DataSource = dsNavBarData.Tables(navBarName)
 dlNavBar.DataBind()
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the item data bound event
 ''' of the datalist control in the nav bar. It is responsible for setting
 ''' the anchor and image attributes for the item being bound.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub dlNavBar_ItemDataBound(ByVal sender As Object, _
 ByVal e As DataListItemEventArgs)
 'the following constants define the names of the controls in the datalist
 Const ANCHOR_CONTROL As String = "anNavBarLink"
 Const IMAGE_CONTROL As String = "imgNavBarImage"

 Dim anchorControl As HtmlAnchor
 Dim imageControl As HtmlImage
 Dim dRow As DataRowView

 'make sure this is an item or alternating item in the repeater
 If ((e.Item.ItemType = ListItemType.Item) Or _
 (e.Item.ItemType = ListItemType.AlternatingItem)) Then
 'get the data being bound
 dRow = CType(e.Item.DataItem, _
 DataRowView)

 'find the link control then set it to the url
 anchorControl = CType(e.Item.FindControl(ANCHOR_CONTROL), _
 HtmlAnchor)
 anchorControl.HRef = CStr(dRow.Item(MENU_ITEM_BUTTON_LINK))

 'find the image control then set the image source and alt text
 imageControl = CType(e.Item.FindControl(IMAGE_CONTROL), _
 HtmlImage)
 imageControl.Src = CStr(dRow.Item(MENU_ITEM_IMAGE_SRC))
 imageControl.Alt = CStr(dRow.Item(MENU_ITEM_ALT_TEXT))
 End If
 End Sub 'dlNavBar_ItemDataBound
 End Class 'CH05UserControlNavBarVB
End Namespace

Example 5-10. Customizable navigation bar (.cs)

using System;
using System.Data;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
 {
 /// <summary>
 /// This class provides the code behind for
 /// CH05UserControlNavBarCS.ascx
 /// </summary>
 public partial class CH05UserControlNavBarCS : System.Web.UI.UserControl
 {
 // private attributes
 private String mXMLFilename;
 private String mNavBarName;

 // The following constants define the elements available
 // in the navigation bar XML document
 private const String MENU_ITEM_BUTTON_LINK = "ButtonLink";
 private const String MENU_ITEM_IMAGE_SRC = "ImageSrc";
 private const String MENU_ITEM_ALT_TEXT = "AltText";

 ///***
 /// <summary>
 /// This property provides the ability get/set the background color used
 /// for the navigation bar
 /// </summary>
 public System.Drawing.Color backgroundColor
 {
 get
 {
 return dlNavBar.BackColor;
 }

 set
 {
 dlNavBar.BackColor = value;
 }
 } // backgroundColor

 ///***
 /// <summary>
 /// This property provides the ability get/set the name of the xml file
 /// used to define the navigation bar

 /// </summary>
 public String xmlFilename
 {
 get
 {
 return mXMLFilename;
 }

 set
 {
 mXMLFilename = value;
 }
 } // xmlFilename

 ///***
 /// <summary>
 /// This property provides the ability get/set the name of the navigation
 /// bar definition in the xml file
 /// </summary>
 public String navBarName
 {
 get
 {
 return mNavBarName;
 }

 set
 {
 mNavBarName = value;
 }
 } // navBarName

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 DataSet dsNavBarData;

 // load the XML document used to define the navigation bar items
 // into a dataset to provide easy traversal
 dsNavBarData = new DataSet();
 dsNavBarData.ReadXml(xmlFilename);

 // bind the nav bar data to the repeater on the control
 dlNavBar.DataSource = dsNavBarData.Tables[navBarName];
 dlNavBar.DataBind();

 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the item data bound event
 /// of the datalist control in the nav bar. It is responsible for setting
 /// the anchor and image attributes for the item being bound.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void dlNavBar_ItemDataBound(Object sender,
 DataListItemEventArgs e)
 {
 // the following constants define the names of the controls in the datalist
 const String ANCHOR_CONTROL = "anNavBarLink";
 const String IMAGE_CONTROL = "imgNavBarImage";

 HtmlAnchor anchorControl;
 HtmlImage imageControl;
 DataRowView dRow;

 // make sure this is an item or alternating item in the repeater
 if ((e.Item.ItemType == ListItemType.Item) ||
 (e.Item.ItemType == ListItemType.AlternatingItem))
 {
 // get the data being bound
 dRow = (DataRowView)(e.Item.DataItem);
 // find the link control then set it to the url
 anchorControl = (HtmlAnchor)(e.Item.FindControl(ANCHOR_CONTROL));
 anchorControl.HRef = (String)(dRow[MENU_ITEM_BUTTON_LINK]);

 // find the image control then set the image source and alt text
 imageControl = (HtmlImage)(e.Item.FindControl(IMAGE_CONTROL));
 imageControl.Src = (String)(dRow[MENU_ITEM_IMAGE_SRC]);
 imageControl.Alt = (String)(dRow[MENU_ITEM_ALT_TEXT]);
 }
 } // dlNavBar_ItemDataBound
 } // CH05UserControlNavBarCS
}

Example 5-11. Using the navigation bar (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH05DisplayNavBarVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH05DisplayNavBarVB"
 Title="User Control Display Navigation Bar" %>
<%@ Register TagPrefix="ASPCookbook" TagName="NavBar"
 Src="CH05UserControlNavBarVB.ascx" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <table width="100%" align="center" border="0"
 cellpadding="0" cellspacing="0" >
 <tr>
 <td>
 <ASPCookbook:NavBar id="navBar" runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 5-12. Using the navigation bar (.vb)

Option Explicit On
Option Strict On

Imports System.Drawing

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH05DisplayNavBarVB.aspx
 ''' </summary>
 Partial Class CH05DisplayNavBarVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 'initialize the navbar user control
 navBar.xmlFilename = Server.MapPath("xml") & "\NavigationBar.xml"
 navBar.navBarName = "Public"
 navBar.backgroundColor = ColorTranslator.FromHtml("#6B0808")

 End Sub 'Page_Load
 End Class 'CH05DisplayNavBarVB
End Namespace

Example 5-13. Using the navigation bar (.cs)

using System;
using System.Drawing;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH05DisplayNavBarCS.aspx
 /// </summary>
 public partial class CH05DisplayNavBarCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 // initialize the navbar user control
 navBar.xmlFilename = Server.MapPath("xml") + "\\NavigationBar.xml";
 navBar.navBarName = "Public";
 navBar.backgroundColor = ColorTranslator.FromHtml("#6B0808");
 } // Page_Load
 } // CH05DisplayNavBarCS
}

Recipe 5.4. Reusing Code-Behind Classes

Problem

You have several page sections that require identical code-behind but the user presentation must be
different for each.

Solution

Create a user control for the first page section. For the other page sections, create only the .ascx file
and link it to the code-behind class for the first page section. For example, to produce the vertically
oriented navigation shown in Figure 5-3, create the navigation bar user control described in Recipe
5.2, then create the .ascx file shown in Example 5-14, all without writing any VB or C# code.

Figure 5-3. Reuse of code-behind class output

Discussion

The @ Control directive at the top of the .ascx page defines the code-behind class that will be used
with the .ascx file. The Codebehind attribute defines the name of the file containing the code-behind
class. The Inherits attribute defines the class in the codebehind file that inherits from
System.Web.UI.UserControl and provides the codebehind code.

By changing the Codebehind and Inherits attributes of the .ascx file, you can reuse code. In our
example, the attributes are set as shown here to reuse the code-behind from Recipe 5.2:

 <%@ Control Language="VB" AutoEventWireup="false"

 CodeFile="CH05UserControlNavBarVB.ascx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH05UserControlNavBarVB" %>

The user control can provide any desired user interface without changing any of the code-behind. The
server controls referenced in the code-behind class must be present in the .ascx, and they must be of
the same type. Leaving a server control out of the .ascx or changing its type will result in an
exception being thrown.

Example 5-14. Reuse of code-behind class (.ascx)

<%@ Control Language="VB" AutoEventWireup="false"
 CodeFile="CH05UserControlNavBarVB.ascx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH05UserControlNavBarVB" %>
<asp:datalist id="dlNavBar" runat="server"
 borderwidth="0" cellpadding="0" cellspacing="0" height="29"
 repeatdirection="vertical" repeatcolumns="1"
 repeatlayout="Table" width="150" horizontalalign="Left"
 itemstyle-horizontalalign="Center"
 OnItemDataBound="dlNavBar_ItemDataBound">
 <itemtemplate>

 <img id="imgNavBarImage" runat="server" border="0"
 alt="" src=""/>
 </itemtemplate>
</asp:datalist>

Recipe 5.5. Communicating Between User Controls

Problem

You have multiple user controls on a page, and one of the user controls needs to send data to another
as, for example, when one control takes its form or content from the user's action on another.

Solution

Create a custom event argument class to define the message to be sent, a source user control, a
destination user control, and a web form that contains both user controls. (See Recipes 5.1 and 5.2 for
detailed steps.)

In the custom event argument class that defines the message to be sent:

Inherit from EventArgs .1.

Add a message property to contain the message data.2.

In the source user control:

Create a custom event.1.

Raise the event when the required action is performed, such as when a user completes her entry
for a form.

2.

In the destination user control:

Create an event handler to receive the event from the source user control.1.

Display the message received.2.

In the web form used to test the user control communication:

Add the source user control.1.

Add the destination user control.2.

"Wire" the event raised in the source user control to the event handler in the destination user
control in the Page_Load event of the web form.

3.

3.

The output of a test page showing one user control communicating with another appears in Figure 5-4
. The code for our example application that implements the solution is shown in Examples 5-15 , 5-16 ,
5-17 , 5-18 , 5-19 , 5-20 , 5-21 , 5-22 , 5-23 , 5-24 through 5-25 . Examples 5-15 (VB) and 5-16 (C#)
show the custom event argument class used to define the message sent. Example 5-17 shows the
.ascx file for the source user control. Examples 5-18 and 5-19 show the VB and C# code-behind for the
source user control. Example 5-20 shows the .ascx file for the destination user control. Examples 5-21
and 5-22 show the VB and C# code-behind for the destination user control. Example 5-23 shows the
.aspx file for the web form used to demonstrate the user controls and their inter-connection. Examples
5-24 and 5-25 show the VB and C# code-behind for the demonstration web form.

Figure 5-4. Communicating between user controls output

Discussion

Rather than dwell on the basic content and creation of user controls, which is the subject of the
previous recipes in the chapter, this recipe focuses on the interaction between user controls. The
approach we advocate for handling this interaction involves creating a custom event for the source
user control and raising the event when the communication is to be initiated, such as when the user
clicks a button to complete his entry for the form. To receive the event from the source user control,
the destination user control must have an event handler tailored for that purpose.

In our approach, creating the custom event for the source user control involves creating a custom
event argument class, which provides the ability to add a message to the event arguments. It involves
using a delegate, which is a convenient way to pass to the destination user control a reference to an
event handler for the OnSend event raised by the source user control.

We've created an application to illustrate our approach. Because of the unusually high number of
interrelated files, this example may appear overwhelming at first, but it is actually pretty
straightforward. Keep in mind the four basic pieces:

A custom event argument class defining the message sent1.

A user control that sends a message (the source)2.

3.

4.

1.

2.

A user control that receives the message (the destination)3.

A web form that contains the two user controls and wires them together4.

The custom event argument class provides the ability to add the message to the event arguments.
This class inherits from System.EventArgs and adds a message property as shown in Examples 5-15
(VB) and 5-16 (C#).

The source user control contains only a button used to initiate sending a message.

The source user control code-behind contains the bulk of the code. First, we define a new delegate
signature, customMessageHandler , to allow the MessageEventArgs object to be passed as the event
arguments. Without this delegate, you would have to use the EventArgs object, which does not
provide the ability to pass custom information. An event is then defined with this type of delegate.

A delegate is a class that can hold a reference to a method. A delegate class has
a signature and it can hold references only to methods that match its signature.
The delegate object is passed to code that calls the referenced method without
having to know at compile time which method will be invoked. The most
common example is building a generic sort routine, one that allows you to sort
any type of data, where you pass to it the data to be sorted and a reference to
the comparison routine needed to compare the particular data. The situation
here is somewhat similar. In this case, we are passing a message to the
destination user control (contained within an instance of MessageEventArgs) and
a reference to an event handler for the OnSend event raised by the source user
control. A delegate provides the best, most convenient way to accomplish this.

Our remaining task in the source user control code-behind is to provide a standard event handler for
the send message button click event. In this handler, an instance of MessageEventArgs is created and
populated with the message being sent. The OnSend event is then raised, passing a reference to the
source user control as the event source and a reference to the messageArgs object containing the
message being sent. In our example, this is a hardwired message, but it demonstrates the basic
principal.

In C#, the OnSend event must be checked to make sure it is not null before
raising the event. Failure to do so will result in an exception being thrown if no
handler is wired to the event. This is not required for VB.

Our example's destination user control, which is shown in Example 5-20 , contains only a label used to
display the message sent from the source user control.

The destination user control code-behind, shown in VB in Example 5-21 and in C# in Example 5-22 ,
contains a single method to handle the event raised from the source user control. The signature of the
method must match the customMessageHandler delegate defined in the source user control. The only
operation performed is to update the label in the user control with the message passed in the event
arguments.

In our example, the .aspx file for the web form used to demonstrate the user controls, which appears
in Example 5-23 , includes the registration of the two user controls and the tags within the HTML

where the user controls are to be displayed.

The code-behind for the demonstration web form, shown in VB in Example 5-24 and in C# in Example
5-25 , provides the glue for tying the event from the source user control to the destination user
control. This is done by adding the updateLabel of the destination user control as an event handler for
the OnSend event raised by the source user control. We are adding a delegate to the source user
control's OnSend event's event handler list; that list now consists of just one event handler but can
include more.

Event delegates in .NET are multicast, which allows them to hold references to
more than one event handler. This provides the ability for one event to be
processed by multiple event handlers. You can try it yourself by adding a label to
the demonstration web form, adding a new event handler in the web form, and
then adding your new event handler to the OnSend event's event handler list.
This will cause the label on the destination user control and the web form to be
updated with the message from the source user control. An example that does
this with multiple user controls is shown in Recipe 5.5.

In VB, when using the event/delegate model, the keyword WithEvents is not
used. (The WithEvents keyword indicates that a declared object variable refers
to a class instance that can raise events.) WithEvents and the event/delegate
model can be intermixed, but they should not be used for the same event.

See Also

Recipe 5.5 and Programming C# or Programming Visual Basic .NET (O'Reilly), both by Jesse Liberty,
for more about delegates

Example 5-15. Class defining message passed between user controls (.vb)

Option Explicit On
Option Strict On

Imports System
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class class provides the definition of the custom event arguments
 ''' used as the event arguments for the message sent from this control
 ''' This class simply inherits from System.EventArgs and adds a message
 ''' property
 ''' </summary>
 Public Class MessageEventArgs
 Inherits EventArgs

 Private mMessage As String

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the message in the
 ''' event args
 ''' </summary>
 Public Property message() As String
 Get
 Return (mMessage)
 End Get
 Set(ByVal Value As String)
 mMessage = Value
 End Set
 End Property
 End Class 'MessageEventArgs
End Namespace

Example 5-16. Class defining message passed between user controls (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the definition of the custom event arguments used
 /// as the event arguments for the message sent from this control. This
 /// class simply inherits from System.EventArgs and adds a message property.
 /// </summary>
 public class MessageEventArgs
 {
 private String mMessage;

 /// <summary>
 /// This property provides the ability to get/set the message in the
 /// event args
 /// </summary>
 public String message
 {
 get
 {
 return (mMessage);
 }

 set
 {
 mMessage = value;
 }
 } // message
 } // MessageEventArgs
}

Example 5-17. Communicating between controlssource user control (.ascx)

<%@ Control Language="VB" AutoEventWireup="false"
 CodeFile="CH05UserControlCommSourceVB.ascx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH05UserControlCommSourceVB" %>
<asp:Button ID="btnSendMessage" runat="server"
 Text="Send Message"
 OnClick="btnSendMessage_Click" />

Example 5-18. Communicating between controlssource user control (.vb)

Option Explicit On
Option Strict On

Imports System.Drawing

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH05UserControlCommSourceVB.ascx
 ''' </summary>
 Partial Class CH05UserControlCommSourceVB
 Inherits System.Web.UI.UserControl

 'define the delegate handler signature and the event that will be raised
 'to send the message
 Public Delegate Sub customMessageHandler(ByVal sender As System.Object, _
 ByVal e As MessageEventArgs)
 Public Event OnSend As customMessageHandler

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the send message button
 ''' click event. It creates a new MessageEventArgs object then raises
 ''' an OnSend event
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnSendMessage_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 Dim messageArgs As New MessageEventArgs
 messageArgs.message = "This message came from the source user control"
 RaiseEvent OnSend(Me, messageArgs)
 End Sub 'btnSendMessage_Click
 End Class 'CH05UserControlCommSourceVB
End Namespace

Example 5-19. Communicating between controlssource user control (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH05UserControlCommSourceCS.ascx
 /// </summary>
 public partial class CH05UserControlCommSourceCS : System.Web.UI.UserControl
 {
 // define the delegate handler signature and the event that will be raised
 // to send the message
 public delegate void customMessageHandler(Object sender,
 MessageEventArgs e);
 public event customMessageHandler OnSend;

 ///***
 /// <summary>
 /// This routine provides the event handler for the send message button
 /// click event. It creates a new MessageEventArgs object then raises
 /// an OnSend event
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnSendMessage_Click(object sender,
 EventArgs e)
 {
 MessageEventArgs messageArgs = new MessageEventArgs();
 messageArgs.message = "This message came from the source user control";

 if (OnSend != null)
 {
 OnSend(this, messageArgs);
 }
 } // btnSendMessage_Click
 } // CH05UserControlCommSourceCS
}

Example 5-20. Communicating between controlsdestination user control
(.ascx)

<%@ Control Language="VB" AutoEventWireup="false"
 CodeFile="CH05UserControlCommDestinationVB.ascx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH05UserControlCommDestinationVB" %>
x<asp:Label ID="labMessage" Runat="server">No Message Yet</asp:Label>

Example 5-21. Communicating between controlsdestination user control
(.vb)

Option Explicit On
Option Strict On

Imports System

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH05UserControlCommDestinationVB.ascx
 ''' </summary>
 Partial Class CH05UserControlCommDestinationVB
 Inherits System.Web.UI.UserControl
 '''***
 ''' <summary>
 ''' This routine provides the event handler that is the recipient of the
 ''' event raised by the source user control.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Public Sub updateLabel(ByVal sender As System.Object, _
 ByVal e As MessageEventArgs)
 'update the label with the message in the event arguments
 labMessage.Text = e.message
 End Sub 'updateLabel
 End Class 'CH05UserControlCommDestinationVB
End Namespace

Example 5-22. *Communicating between controlsdestination user control
(.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH05UserControlCommDestinationCS.ascx
 /// </summary>
 public partial class CH05UserControlCommDestinationCS :
 System.Web.UI.UserControl
 {
 ///***
 /// <summary>
 /// This routine provides the event handler that is the recipient of the
 /// event raised by the source user control.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 public void updateLabel(Object sender,
 MessageEventArgs e)
 {
 // update the label with the message in the event arguments
 labMessage.Text = e.message;
 } // updateLabel
 } // CH05UserControlCommDestinationCS
}

Example 5-23. Communicating between controlsmain form (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master";
 AutoEventWireup="false"
 CodeFile="CH05UserControlCommTestVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH05UserControlCommTestVB"
 Title="User Control Communication Test" %>
<%@ Register TagPrefix="ASPCookbook" TagName="SourceControl"
 Src="CH05UserControlCommSourceVB.ascx" %>
<%@ Register TagPrefix="ASPCookbook" TagName="DestinationControl"
 Src="CH05UserControlCommDestinationVB.ascx" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 User Control Communication Test (VB)
 </div>
 <table width="60%" align="center" border="0">
 <tr>
 <td class="PageHeading">

 Source User Control:
 </td>
 </tr>
 <tr>
 <td bgcolor="#ffffcc" align="center" height="75">
 <ASPCookbook:SourceControl id="ucSource" runat="server" />
 </td>
 </tr>
 <tr>
 <td> </td>
 </tr>
 <tr>
 <td class="PageHeading">
 Destination User Control:
 </td>
 </tr>
 <tr>
 <td bgcolor=";#ffffcc" align="center" height="75">
 <ASPCookbook:DestinationControl id="ucDestination" runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 5-24. Communicating between controlsmain form (.vb)

Option Explicit On
Option Strict On

Imports System.Drawing

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH05UserControlCommTestVB.aspx
 ''' </summary>
 Partial Class CH05UserControlCommTestVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _

 ByVal e As System.EventArgs) Handles Me.Load
 'wire the event to the destination user control handler
 AddHandler ucSource.OnSend, AddressOf ucDestination.updateLabel
 End Sub 'Page_Load
 End Class 'CH05UserControlCommTestVB
End Namespace

Example 5-25. Communicating between controlsmain form (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH05UserControlCommTestCS.aspx
 /// </summary>
 public partial class CH05UserControlCommTestCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 // wire the event to the destination user control handler
ucSource.OnSend +=
 new CH05UserControlCommSourceCS.customMessageHandler(ucDestination.updateLabel);
 } // Page_Load
 } // CH05UserControlCommTestCS
}

Recipe 5.6. Adding User Controls Dynamically

Problem

You need to load a group of user controls programmatically at runtime because the number of
controls required is unknown at design time.

Solution

Bind your data to a Repeater control in the normal fashion and then, as data is bound to each row of
the Repeater, use the ItemDataBound event to load a user control dynamically and place it in a table
cell of the Repeater control's ItemTemplate.

Add a Repeater control to the .aspx file with a table cell in the ItemTemplate where the user control is
to be placed.

In the code-behind class, use the .NET language of your choice to:

Bind the data to the Repeater control.1.

Create an event handler method for the ItemDataBound event of the Repeater control.2.

In the method that handles the ItemDataBound event, use the LoadControl method to create an
instance of the user control, and then add the loaded control to the controls collection of the
table cell in the ItemTemplate.

3.

Figure 5-5 shows a form where we start with the user controls created in Recipe 5.4 and dynamically
load three user controls at runtime. Example 5-26 shows the .aspx file that implements this solution,
while Examples 5-27 and 5-28 show the companion VB and C# code-behind files.

Discussion

This recipe demonstrates how to load a group of user controls dynamically into a form, the count for
which can be determined only at runtime. A Repeater control is used because it generates a
lightweight read-only tabular display and is templatedriven. The Repeater control's ItemTemplate
element formats the rows of data. The user control dynamically loaded at runtime is strategically
placed in a table cell in the ItemTemplate. This loading takes place in the method that handles the
ItemDataBound event for each row of the Repeater. More specifically, the LoadControl method is used
to create an instance of the user control, and then the loaded control is added to the controls
collection of the table cell.

The example we have written to demonstrate the solution starts with the user controls created in
Recipe 5.4 and loads the destination user controls at runtime. In addition, it wires them to the source
user control to demonstrate the multicast event mechanism in .NET.

Figure 5-5. User controls loaded at runtime output

A Repeater control is placed in the .aspx file with an ItemTemplate containing two table cells. The first
cell is used to hold the dynamically loaded user control's number, and the second cell is used to hold
the user control itself. Example 5-26 shows how we've implemented this in our example.

The dynamically loaded user controls can be added to the Page control
collection; however, this will place them at the bottom of the page and they will
be rendered outside the form. Dynamically loaded user controls should be
added to the controls collection of some control contained within the form.

In the repUserControls_ItemDataBound method of the code-behind, the user control for the row being
bound is loaded at runtime from the .ascx file using the LoadControl method. It is then added to the
controls collection of the second table cell in the Repeater.

To demonstrate the multicast event mechanism in .NET we mentioned in Recipe 5.4, each of the
dynamically loaded user controls is wired to the source user control in the .aspx file. This results in
each of the dynamically loaded user controls receiving the message event from the source user
control.

 AddHandler ucSource.OnSend, AddressOf ucDest.updateLabel

 ucSource.OnSend +=
 new CH05UserControlCommSourceCS.customMessageHandler(ucDest.updateLabel);

The result in this case is that each destination user control is updated with the same text from the
source user control, which is a bit dull. Imagining a more interesting scenario is easy where one
destination user control has a text label updated, the second a database, and the third an XML web
service, or the like, with all of these updates the result of methods having been registered with the
source control's OnSend event's event handler list.

See Also

Recipe 5.4

Example 5-26. User controls loaded at runtime (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH05UserControlRuntimeVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH05UserControlRuntimeVB"
 Title="Load User Controls At Runtime" %>
<%@ Register TagPrefix="ASPCookbook" TagName="SourceControl"
 Src="CH05UserControlCommSourceVB.ascx" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Load User Controls At Runtime (VB)
 </div>
 <table width="90%" align="center" border="0" >
 <tr>
 <td class="PageHeading" colspan="2">
 Source User Control:</td>
 </tr>
 <tr>
 <td bgcolor="#ffffcc" align="center" height="50" colspan="2">
 <ASPCookbook:SourceControl id="ucSource" runat="server" />
 </td>
 </tr>
 <tr>
 <td colspan="2"> </td>
 </tr>
 <tr>
 <td class="PageHeading" colspan="2">
 User Controls Loaded At Runtime:
 </td>
 </tr>

 <asp:repeater id="repUserControls" runat="server"
 OnItemDataBound="repUserControls_ItemDataBound">
 <itemtemplate>
 <tr id="trControl" runat="server" height="50">
 <td id="tdCount" runat="server" width="10%"></td>
 <td id="tdUserControl" runat="server"></td>
 </tr>
 </itemtemplate>
 </asp:repeater>
 </table>
</asp:Content>

Example 5-27. User controls loaded at runtime (.vb)

Option Explicit On
Option Strict On

Imports System.Web.UI.WebControls

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH05UserControlRuntimeVB.aspx
 ''' </summary>
 Partial Class CH05UserControlRuntimeVB
 Inherits System.Web.UI.Page
 'the following variable is used to keep count of the number of controls
 Private controlCount As Integer

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim values As ArrayList = New ArrayList

 'build array of data to bind to repeater
 'for this example it is just the color of the entry but for a real
 'application the data would normally be from a database, etc.
 values.Add("#ffffcc")
 values.Add("#ccffff")
 values.Add("#ccff99")

 'bind the data to the repeater
 controlCount = 0
 repUserControls.DataSource = values
 repUserControls.DataBind()
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the item data bound event
 ''' of the repeater control on the form. It is responsible for loading
 ''' the user control and placing it in the repeater for the item being
 ''' bound.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub repUserControls_ItemDataBound(ByVal sender As Object, _
 ByVal e As RepeaterItemEventArgs)
 'the following constants are the names of the controls in the repeater
 Const TABLE_ROW As String = "trControl"
 Const COUNT_CELL As String = "tdCount"
 Const USER_CONTROL_CELL As String = "tdUserControl"

 Dim row As HtmlTableRow
 Dim cell As HtmlTableCell
 Dim ucDest As CH05UserControlCommDestinationVB

 'make sure this is an item or alternating item in the repeater
 If ((e.Item.ItemType = ListItemType.Item) Or _
 (e.Item.ItemType = ListItemType.AlternatingItem)) Then
 'find the table row and set the background color
 row = CType(e.Item.FindControl(TABLE_ROW), _
 HtmlTableRow)
 row.BgColor = CStr(e.Item.DataItem)

 'find the cell for the control count and set the count
 cell = CType(e.Item.FindControl(COUNT_CELL), _
 HtmlTableCell)
 controlCount += 1
 cell.InnerText = controlCount.ToString()

 'find the cell for the control and load a user control
 cell = CType(e.Item.FindControl(USER_CONTROL_CELL), _
 HtmlTableCell)
 ucDest = CType(LoadControl("CH05UserControlCommDestinationVB.ascx"), _
 CH05UserControlCommDestinationVB)
 cell.Controls.Add(ucDest)
 AddHandler ucSource.OnSend, AddressOf ucDest.updateLabel
 End If
 End Sub 'repUserControls_ItemDataBound
 End Class 'CH05UserControlRuntimeVB

End Namespace

Example 5-28. User controls loaded at runtime (.cs)

using System;
using System.Collections;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH05UserControlRuntimeCS.aspx
 /// </summary>
 public partial class CH05UserControlRuntimeCS : System.Web.UI.Page
 {
 // the following variable is used to keep count of the number of controls
 private int controlCount;
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 ArrayList values = new ArrayList();

 // build array of data to bind to repeater
 // for this example it is just the color of the entry but for a real
 // application the data would normally be from a database, etc.
 values.Add("#ffffcc");
 values.Add("#ccffff");
 values.Add("#ccff99");

 // bind the data to the repeater
 controlCount = 0;
 repUserControls.DataSource = values;
 repUserControls.DataBind();
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the item data bound event

 /// of the repeater control on the form. It is responsible for loading
 /// the user control and placing it in the repeater for the item being
 /// bound.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void repUserControls_ItemDataBound(Object sender,
 RepeaterItemEventArgs e)
 {
 // the following constants are the names of the controls in the repeater
 const String TABLE_ROW = "trControl";
 const String COUNT_CELL = "tdCount";
 const String USER_CONTROL_CELL = "tdUserControl";

 HtmlTableRow row;
 HtmlTableCell cell;
 CH05UserControlCommDestinationCS ucDest;

 // make sure this is an item or alternating item in the repeater
 if ((e.Item.ItemType == ListItemType.Item) ||
 (e.Item.ItemType == ListItemType.AlternatingItem))
 {
 // find the table row and set the background color
 row = (HtmlTableRow)(e.Item.FindControl(TABLE_ROW));
 row.BgColor = (String)(e.Item.DataItem);

 // find the cell for the control count and set the count
 cell = (HtmlTableCell)(e.Item.FindControl(COUNT_CELL));
 controlCount += 1;
 cell.InnerText = controlCount.ToString();

 // find the cell for the control and load a user control
 cell = (HtmlTableCell)(e.Item.FindControl(USER_CONTROL_CELL));
 ucDest = (CH05UserControlCommDestinationCS)
 (LoadControl("CH05UserControlCommDestinationCS.ascx"));
 cell.Controls.Add(ucDest);
 ucSource.OnSend +=
 new
 CH05UserControlCommSourceCS.customMessageHandler(ucDest.updateLabel);
 }
 } // repUserControls_ItemDataBound
 } // CH05UserControlRuntimeCS
}

Chapter 6. Custom Controls

6.0 Introduction

Custom controls are compiled controls that function like ASP.NET's own server controls. Like user
controls, custom controls can enhance the reusability of code repeated within a project or over
multiple projects. There are important differences, however. In general, user controls are like "mini"
web pages in that they contain part of an ASP.NET page. Additionally, they are compiled when first
requested, but their user interface can easily be changed as required. With custom controls, on the
other hand, the user interface is generated by the code and cannot easily be changed except through
properties and methods that you implement, about which we'll speak more in a minute.

In a broader sense, a custom control is any control you create with these common themes: it is
typically derived from the Control or WebControl class in the System.Web.UI namespace or an existing
ASP.NET server control. It generally provides its own user interface, and it may provide its own
backend functionality through the methods, properties, and events that you implement for it.

Custom controls range from the simple to the complex. A simple custom control might, for example,
write some HTML, perhaps modifying its HTML-style attributes as it does so. A more complex custom
control would offer HTML-style attributes of its own through properties you implement. A custom text
box control could, for example, offer one attribute for controlling the color of its label and another to
control the width of the control itself. To make it more complex and more useful, the control would
have to handle postback events like the server controls provided with ASP.NET. Still more complex
would be a custom control that, like the DataGrid control, includes templates and supports data
binding. Because custom controls can be created from scratch or inherited from existing controls, the
possibilities are endless.

All of the hypothetical custom controls we've described are, with the exception of the templated
control, illustrated in this chapter's recipes. (If you're interested in learning more about templated
controls, see the example in the ASP.NET QuickStart Tutorials that are part of the .NET Framework
QuickStarts that ship with Visual Studio or are available via http://www.gotdotnet.com.)

This chapter introduces you to some of the techniques used to build custom controls. In sticking to
the basics, we implicitly recognize that custom controls are "custom" and, therefore, highly individual.
However, these basics ought to take you a long way in crafting your own custom controls.

http://www.gotdotnet.com

Which Is Better: Control or WebControl?

The Control class in the System.Web.UI namespace is the base class for all server
controls. It provides the properties, methods, and events shared by all web controls. The
WebControl class in the System.Web.UI.WebControls namespace derives from the Control
class and adds style properties such as Font, Forecolor, and Backcolor. In addition, it
provides skin and theme features.

Microsoft recommends deriving from the Control class if your custom control contains no
user interface elements. But if your custom control provides a user interface, you should
derive from the WebControl class.

Recipe 6.2. Combining HTML Controls in a Single
Custom Control

Problem

You want to create a custom control that combines two or more HTML controls.

Solution

Use the .NET language of your choice to:

Create a class that inherits from the WebControl class in the System.Web.UI.WebControls
namespace.

1.

Override the Render method to have it output the HTML controls you wish to include.2.

(Optional) Use the HtmlTextWriter class to enhance your chances of writing well-formed HTML.3.

To use the custom control in an ASP.NET page:

Register the assembly containing the control.1.

Insert the tag for the custom control anywhere in the page.2.

Figure 6-1 shows the output of a custom control that combines a label and text box. Examples 6-1
and 6-2 show the VB and C# class files for the custom control. Example 6-3 shows how to use the
custom control in an ASP.NET page.

Figure 6-1. Basic custom control output

Discussion

To create a custom control that combines the functionality of two or more HTML controls, you first
create a class that inherits from the WebControl class in System.Web.UI.WebControls.

The only method of WebControl required to output HTML is the Render method. Render is responsible
for writing the HTML that will be rendered by the browser. To enhance your ability to write well-
formed HTML, you can use other methods of the HtmlTextWriter class along with the
HtmlTextWriterAttribute and HtmlTextWriterTag enumerations. We'll talk more about this in a
minute, but for now we'll stick with writing our own unvarnished HTML.

The custom control we have implemented in our example contains a label and an input control. The
label and input control are output in the Render method with the following code:

 writer.Write("Enter Age: ")
 writer.Write("<input type='text' size='3' />")

 writer.Write("Enter Age: ");
 writer.Write("<input type='text' size='3' />");

To use the custom control, the assembly containing the control must be registered in the target .aspx
file. The TagPrefix attribute defines an alias to use for the namespace in the page. The Namespace
attribute must be set to the fully qualified namespace of the control. Here is how you register the
assembly in our example:

 <%@ Register TagPrefix="ASPCookbook" Namespace="ASPNetCookbook.VBExamples"; %>

If you place the source code for your custom controls in the App_Code folder of
your project, ASP.NET 2.0 will dynamically compile the code into an assembly.
If you do not include the Assembly attribute in the @ Register directive, the
assembly created by compiling the code in the App_Code folder will be inferred.

If you precompile your source code into an explicit assembly, the Assembly
attribute of the @ Register directive must be included to inform ASP.NET where
to locate the custom control.

The custom control can be placed anywhere on the page by inserting a tag. The control to insert is
identified by naming the tag with the TagPrefix followed by the class name. The tag must include the
id and runat="server" attributes for the control to be rendered on the page. This is the tag used in
our example:

 <ASPCookbook:CH06QuickAndDirtyCustomControlVB1
 id="ccQuickAndDirty" runat="server" />

In our example, raw HTML is written to the web page in the Render method. For simple HTML, this
works well. As the complexity of the HTML you write increases, however, the likelihood that you'll
introduce errors increases. Fortunately, HtmlTextWriter includes methods that simplify the generation
of complex HTML. These methods can help you with the nuances of adding HTML attributes (and
values) to an HTMLTextWriter output stream, writing beginning and ending tags, flushing buffers so
all buffered data is written to the text stream, etc. To create the input box in our example, you could
use the HtmlTextWriter like this:

 Protected Overrides Sub Render(ByVal writer As HtmlTextWriter)
 'output label
 writer.Write("Enter Age: ")

 'output input control
 writer.AddAttribute(HtmlTextWriterAttribute.Type, _
 "text")
 writer.AddAttribute(HtmlTextWriterAttribute.Size, _
 "3")
 writer.RenderBeginTag(HtmlTextWriterTag.Input)
 writer.RenderEndTag()
 End Sub 'Render

 protected override void Render(HtmlTextWriter writer)
 {
 //output label
 writer.Write("Enter Age: ");

 //output input control

 writer.AddAttribute(HtmlTextWriterAttribute.Type,
 "text");
 writer.AddAttribute(HtmlTextWriterAttribute.Size,
 "3");

 writer.RenderBeginTag(HtmlTextWriterTag.Input);
 writer.RenderEndTag();
 } // Render

One advantage of implementing the Render method in this way is that you can use the
RenderBeginTag and RenderEndTag methods to output HTML and sidestep having to insert the <, /,
and > characters yourself. In addition, using the HtmlTextWriterTag and HtmlTextWriterAttribute
enumerations ensures all tags and attributes are correctly spelled.

Another advantage is that you can avoid the hassle of ensuring the single and double quotes are
handled correctly. Notice in the first example that the values for the attributes of the input tag were
output with single quotes, since double quotes mark the beginning and end of strings. Outputting
double quotes around the values would have required more complex code with string concatenations.
Using the AddAttribute method avoids this problem completely.

You must call the AddAttribute method immediately before you call the
RenderBeginTag method, which writes the opening tag of the associated HTML
element. This is required because the HtmlTextWriter builds a collection of
attributes to output in the opening tag of the HTML element. When the
RenderBeginTag method is called, the attributes are output in the opening tag
and then the collection is cleared.

A useful enhancement to this approach would be to add HTML-style attributes to the control to make
the control more adaptable and reusable throughout your applications. See Recipe 6.2 for how to do
this.

If you are going to use your custom controls on multiple pages in your
application and would like to avoid having to place the @ Register directive in
each page, register the controls in the web.config file. To register the custom
control for this recipe, for example, the following would be added to the
web.config file:

 <system.web>

 <!--
 Register controls that are to be used on multiple
 pages to eliminate the need to add an @Register
 directive to each page.
 -->
 <pages>
 <controls>
 <add tagPrefix="ASPCookbookControls"
 namespace="ASPNetCookbook.VBExamples" />
 </controls>
 </pages>
 </system.web>

See Also

Recipe 6.2; for additional details on Control, Render, HtmlTextWriterTag, HtmlText-
WriterAttribute, and especially HtmlTextWriter, search the MSDN Library

Example 6-1. Quick-and-dirty custom control (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the quick and dirty custom control example which
 ''' includes a label and a text box. The Control is rendered by writing
 ''' raw HTML to the output stream.
 ''' </summary>
 Public Class CH06QuickAndDirtyCustomControlVB1
 Inherits WebControl

 '''***
 ''' <summary>
 ''' This routine renders the HTML output of the control
 ''' </summary>
 '''
 ''' <param name="writer">Set to the HtmlTextWriter to use to output the
 ''' rendered HTML for the control
 ''' </param>
 Protected Overrides Sub Render(ByVal writer As HtmlTextWriter)
 'output label
 writer.Write("Enter Age: ")

 'output input control
 writer.Write("<input type='text' size='3' />")
 End Sub 'Render
 End Class 'CH06QuickAndDirtyCustomControlVB1
End Namespace

Example 6-2. Quick-and-dirty custom control (.cs)

using System.Web.UI;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the quick and dirty custom control example which
 /// includes a label and a text box. The Control is rendered by writing
 /// raw HTML to the output stream.
 /// </summary>
 public class CH06QuickAndDirtyCustomControlCS1 : WebControl
 {
 ///***
 /// <summary>
 /// This routine renders the HTML output of the control
 /// </summary>
 ///
 /// <param name="writer">Set to the HtmlTextWriter to use to output the
 /// rendered HTML for the control
 /// </param>
 protected override void Render(HtmlTextWriter writer)
 {
 // output label
 writer.Write("Enter Age: ");

 // output input control
 writer.Write("<input type='text' size='3' />");
 } // Render
 } // CH06QuickAndDirtyCustomControlCS1
}

Example 6-3. Using the quick-and-dirty custom control

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH06DisplayQuickAndDirtyControlVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH06DisplayQuickAndDirtyControlVB1"
 Title="Quick And Dirty Custom Control" %>
<%@ Register TagPrefix="ASPCookbook" Namespace="ASPNetCookbook.VBExamples" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Quick & Dirty Custom Control - Raw HTML Output (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr bgcolor="#ffffcc">
 <td align="center">
 <ASPCookbook:CH06QuickAndDirtyCustomControlVB1
 id="ccQuickAndDirty" runat="server' />
 </td>
 </tr>
 <tr>
 <td align="center">

 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" />
 </td>
 </tr>
 </table>
</asp:Content>

Recipe 6.3. Creating a Custom Control with Attributes

Problem

You want to create a custom control with HTML-style attributes that can be used to customize the
appearance of the control in the .aspx file.

Solution

Create the basic custom control (as described in Recipe 6.1), add properties to the class, and use the
values of the properties when rendering the control's HTML output.

Use the .NET language of your choice to:

Create a class that inherits from the WebControl class in the System.Web.UI.WebControls
namespace.

1.

Implement support for the HTML-style attributes by adding properties to the class.2.

Override the TagKey property to return the HTML tag to be used as a container for the control.3.

Override the RenderContents method to have it render the HTML output of the control using the
values of the properties.

4.

To use the custom control in an ASP.NET page:

Register the assembly containing the control.1.

Insert the tag for the custom control anywhere in the page and set the attributes appropriately.2.

To illustrate this solution, we started with the sample custom control we built for Recipe 6.1 and
added support for HTML-style attributes, such as an attribute that defines the color used to display
label text. Figure 6-2 shows some output using default and modified attributes for the control. In the
case of the latter, we used the Enter Age: label text appears in red when rendered on the screen.
Examples 6-4 and 6-5 show the VB and C# class files for our custom control. Example 6-6 shows
how to use the custom control in an ASP.NET page to produce these results.

Figure 6-2. Custom control with attributes output

Discussion

Recipe 6.1 describes how to create a basic custom control, so we'll skip that discussion here. Instead,
we'll focus on implementing HTML-style attributes for a custom control.

Custom control properties provide the ability to change aspects of the control programmatically using
HTML-style attributes, which can be set in the .aspx file or code-behind. Attributes are a common
feature of ASP.NET server controls. For example, the image button control provides an ImageURL
attribute that you can set to define the image to be displayed when the control is rendered:

 <asp:ImageButton ID="btnSubmit"; Runat="server"
 ImageUrl="button_submit.gif" />

Attributes are implemented in a custom control by adding properties to the class. The properties are
similar to properties in a class implemented as a data service. The names of the properties define the
names of the attributes that can be used with the custom control.

To illustrate this approach, we've provided the code in Examples 6-4 (VB) and 6-5 (C#) that defines
a custom control named CH06CustomControlAttributesVB or CH06-CustomControlAttributesCS with the
properties shown in Table 6-1.

Table 6-1. Custom control properties

Property Data type Description

labelText String Defines the text for the label

textColor Color Defines the color used to display the label text

textboxWidth Int or Integer Defines the width of the text box

When you define custom control properties, you should always initialize each property by assigning it
a default value. For example, in Examples 6-4 and 6-5, we've assigned the private variable used to
store the labelText property an initial value of "Label:", the private variable used to store the
textColor property value has been given an initial value of Color.Black, and the private variable
used to store the textboxWidth property value has been given an initial value of 3. Initializing
properties in this manner allows your control to handle the condition when the programmer does not
include a value for the attribute that corresponds to a particular property.

To use a custom control, it must first be registered in the target .aspx file, as described in Recipe 6.1.
For instance, here's how to register the VB version of the custom control in our example:

 <%@ Register TagPrefix="ASPCookbook" Namespace="ASPNetCookbook.VBExamples" %>

You can use the control as is if the default label text, text color, and text box width are acceptable:

 <ASPCookbook:CH06CustomControlAttributesVB
 id="ccAttributes1" runat="server" />

Or you can set the attributes to customize the look of the control for a particular page:

 <ASPCookbook:CH06CustomControlAttributesVB
 id="ccAttributes2" runat="server"
 labelText = "Enter Age: "
 textColor="#ff0000"
 textboxWidth="10"
 CssClass="customControl" />

One thing to consider when implementing the properties of a custom control is that ASP.NET will
match the names of the attributes in the custom control tag (.aspx file) with the names of the
properties in the class that implements the custom control. What's more, because all attribute values
in the .aspx file are strings, ASP.NET provides the type conversion necessary to match the type
required for the property.

If ASP.NET cannot convert the attribute value to the type required for the
property, a parse exception will be thrown when the page is displayed. For
example, if a property is an integer type and the value "abc" is set as the
attribute value, a parse exception will be thrown. If you set the attributes in the
.aspx file, there will be no way to prevent this other than to ensure you test the
code. Alternately, you can set the values in the code-behind, which will
generally catch errors of this type during compilation instead of at runtime.

By default, a custom control that derives from WebControl is rendered within an HTML tag.
You can change the HTML container by overriding the TagKey property and returning the desired
HTML tag, as we have done in our example where we use a <div> tag as the container instead. You'll
see in a minute how this plays out in the HTML that is rendered.

 Protected Overrides ReadOnly Property TagKey() As HtmlTextWriterTag
 Get
 Return (HtmlTextWriterTag.Div)
 End Get
 End Property 'TagKey

 protected override HtmlTextWriterTag TagKey
 {
 get
 {
 return (HtmlTextWriterTag.Div);
 }
 } // TagKey

When deriving your custom control from WebControl, you should override the RenderContents method
to output the contents of your control. The RenderContents method is called after the Render method
has rendered the HTML tag (and its attributes) used as the container for your control. By using this
approach, any attributes included in the control in the .aspx file will be output as attributes of control
container. In our example, we have included an attribute for the CssClass:

 <ASPCookbook:CH06CustomControlAttributesVB
 id="ccAttributes2" runat="server"
 labelText = "Enter Age: "
 textColor="#ff0000"
 textboxWidth="10"
 CssClass="customControl" />

If you override the Render method, the RenderContents method will not be
called, since the Render method sets up the rendering execution life cycle.
Generally, you should override only the RenderContents method.

When the control is rendered, the following HTML is sent to the browser with the class attribute set to
the value of the CssClass attribute in the server control:

 <div id="ctl00_PageBody_ccAttributes2" class="customControl" >
 Enter Age: <input type="text" size="10" />
 </div>

See Also

Recipe 6.1

Example 6-4. Custom control with attributes (.vb)

Option Explicit On
Option Strict On

Imports System.Drawing

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a custom control with attributes to provide the
 ''' ability to alter the control programmically.
 ''' </summary>
 Public Class CH06CustomControlAttributesVB
 Inherits WebControl

 'private copies of attribute data
 Private mLabelText As String = "Label: "
 Private mTextColor As Color = Color.Black
 Private mTextboxWidth As Integer = 3

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the text of of the label
 ''' in the control
 ''' </summary>

 Public Property labelText() As String
 Get
 Return (mLabelText)
 End Get

 Set(ByVal Value As String)
 mLabelText = Value
 End Set
 End Property 'labelText

 '''***
 ''' <summary>

 ''' This property provides the ability to set the color of the text
 ''' in the control
 ''' </summary>
 Public Property textColor() As Color
 Get
 Return (mTextColor)
 End Get

 Set(ByVal Value As Color)
 mTextColor = Value
 End Set
 End Property 'textColor

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the width of the text box
 ''' in the control
 ''' </summary>

 Public Property textboxWidth() As Integer
 Get
 Return (mTextboxWidth)
 End Get

 Set(ByVal Value As Integer)
 mTextboxWidth = Value
 End Set
 End Property 'textboxWidth

 '''***
 ''' <summary>
 ''' This property provides the ability to set the HTML tag that is used
 ''' as the container for the control
 ''' </summary>
 Protected Overrides ReadOnly Property TagKey() As HtmlTextWriterTag
 Get
 Return (HtmlTextWriterTag.Div)
 End Get
 End Property 'TagKey

 '''***
 ''' <summary>
 ''' This routine renders the HTML output of the control contents
 ''' </summary>
 '''
 ''' <param name="writer">Set to the HtmlTextWriter to use to output the
 ''' rendered HTML for the control
 ''' </param>
 Protected Overrides Sub RenderContents(ByVal writer As HtmlTextWriter)
 'output label within a font tag
 writer.AddAttribute("color", _
 ColorTranslator.ToHtml(textColor))

 writer.RenderBeginTag(HtmlTextWriterTag.Font)
 writer.Write(labelText)
 writer.RenderEndTag()

 'output input control
 writer.AddAttribute(HtmlTextWriterAttribute.Type, _
 "text")
 writer.AddAttribute(HtmlTextWriterAttribute.Size, _
 textboxWidth.ToString())
 writer.RenderBeginTag(HtmlTextWriterTag.Input)
 writer.RenderEndTag()
 End Sub 'RenderContents
 End Class 'CH06 CustomControlAttributesVB
End Namespace

Example 6-5. Custom control with attributes (.cs)

using System;
using System.Drawing;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a custom control with attributes to provide the
 /// ability to alter the control programmically.
 /// </summary>
 public class CH06CustomControlAttributesCS : WebControl
 {
 // private copies of attribute data
 private String mLabelText = "Label: ";
 private Color mTextColor = Color.Black;
 private int mTextboxWidth = 3;

 ///**
 /// <summary>
 /// This property provides the ability to get/set the text of of the label
 /// in the control
 /// </summary>
 public String labelText
 {
 get
 {
 return (mLabelText);
 }
 set

 {
 mLabelText = value;
 }
 } // labelText

 ///***
 /// <summary>
 /// This property provides the ability to set the color of the text
 /// in the control
 /// </summary>
 public Color textColor
 {
 get
 {
 return (mTextColor);
 }
 set
 {
 mTextColor = value;
 }
 } // textColor

 ///***
 /// <summary>
 /// This property provides the ability to get/set the width of the text box
 /// in the control
 /// </summary>
 public int textboxWidth
 {
 get
 {
 return (mTextboxWidth);
 }
 set
 {
 mTextboxWidth = value;
 }
 } // textboxWidth

 ///***
 /// <summary>
 /// This property provides the ability to set the HTML tag that is used
 /// as the container for the control
 /// </summary>
 protected override HtmlTextWriterTag TagKey
 {
 get
 {
 return (HtmlTextWriterTag.Div);
 }
 } // TagKey

 ///***
 /// <summary>
 /// This routine renders the HTML output of the control contents
 /// </summary>
 ///
 /// <param name="writer">Set to the HtmlTextWriter to use to output the
 /// rendered HTML for the control
 /// </param>
 protected override void RenderContents(HtmlTextWriter writer)
 {
 // output label within a font tag
 writer.AddAttribute("color",
 ColorTranslator.ToHtml(textColor));
 writer.RenderBeginTag(HtmlTextWriterTag.Font);
 writer.Write(labelText);
 writer.RenderEndTag();

 // output input control
 writer.AddAttribute(HtmlTextWriterAttribute.Type,
 "text");
 writer.AddAttribute(HtmlTextWriterAttribute.Size,
 textboxWidth.ToString());
 writer.RenderBeginTag(HtmlTextWriterTag.Input);
 writer.RenderEndTag();
 } // RenderContents
 } // CH06CustomControlAttributesCS
}

Example 6-6. Using the custom control with attributes (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH06DisplayControlWithAttributesVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH06DisplayControlWithAttributesVB"
 Title="Display Custom Control With Attributes" %>
<%@ Register TagPrefix="ASPCookbook" Namespace="ASPNetCookbook.VBExamples" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Custom Control With Attributes (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr>
 <td>With Default Attributes:</td>
 </tr>
 <tr bgcolor="#ffffcc">
 <td align="center">
 <ASPCookbook:CH06 CustomControlAttributesVB

 id="ccAttributes1" runat="server" />
 </td>
 </tr>
 <tr>
 <td>
With Modified Attributes:</td>
 </tr>
 <tr bgcolor="#ffffcc">
 <td align="center">
 <ASPCookbook:CH06CustomControlAttributesVB
 id="ccAttributes2" runat="server"
 labelText = "Enter Age: "
 textColor="#ff0000"
 textboxWidth="10"
 CssClass="customControl" />
 </td>
 </tr>
 <tr>
 <td align="center">

 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" />
 </td>
 </tr>
 </table>
</asp:Content>

Recipe 6.4. Creating a Custom Control with State

Problem

You want to create a custom control that remembers its state between postbacks of a form, like the
server controls provided with ASP.NET.

Solution

Create a custom control like the one described in Recipe 6.2, implement the IPostBackDataHandler
interface to add the functionality to retrieve the values posted to the server and then update the
values in the custom control from the postback data.

Use the .NET language of your choice to:

Create a class that inherits from the WebControl class in the System.Web.UI.WebControls
namespace.

1.

Implement support for HTML-style attributes by adding properties to the class.2.

Implement an IPostBackDataHandler as necessary to update the state of the control with the
posted data.

3.

Override the RenderContents method to have it render the HTML output of the control using the
values of the properties.

4.

To use the custom control in an ASP.NET page:

Register the assembly containing the control.1.

Insert the tag for the custom control anywhere in the page and set the attributes appropriately.2.

Examples 6-7 and 6-8 show the VB and C# class files for a custom control that maintains state.
Example 6-9 shows how we use the custom control in an ASP.NET page.

A version of the custom control that maintains state and provides the added ability to raise an event
when the control data has changed is shown in Examples 6-10 (VB) and 6-11 (C#). Examples 6-12,
6-13 through 6-14 show the .aspx and code-behind files of an application that uses the custom
control with state and provides an event handler for the data-changed event.

Discussion

When implementing a custom control, you will want to ensure it maintains its state between
postbacks to the server. Otherwise, it will lose its values and the user will have to reset them each
time. To see what we mean by this, consider the custom controls discussed in Recipes 6.1 and 6.2; if
you implement either of these controls, you will notice that anytime you click the Submit button, the
value entered into the text box is lost when the page is redisplayed. This is caused by the control not
processing the form data posted back to the server.

To maintain the values in a custom control, the control must implement the IPostBackDataHandler
interface. The IPostBackDataHandler interface requires the implementation of two methods:
LoadPostData and RaisePostDataChangedEvent. The LoadPostData method supplies the data posted to
the server, which provides the ability to update the state of the control with the posted data. The
RaisePostDataChangedEvent method provides the ability to raise events if data for the control
changes; this method is used to good effect in the second of the two approaches we advocate for this
recipe, and we discuss it at the end of this section. The LoadPostData and RaisePostDataChangedEvent
methods are automatically called by ASP.NET when the form is posted back to the server.

The LoadPostData method has the following signature:

 Public Overridable Function LoadPostData(ByVal postDataKey As String, _
 ByVal postCollection As NameValueCollection) As Boolean

 public virtual bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)

The postCollection argument contains the collection of name/value pairs posted to the server. The
postDataKey parameter provides the "name" of the key value for this control used to access the
control's postback value.

The postDataKey parameter will be set to the unique ID value for the custom
control. If the custom control contains only one control that posts a value back
to the server and its ID was used as the value of the name attribute when the
control was rendered, the value of the postDataKey parameter can be used to
obtain the posted value. If the custom control is a composite control that
contains more than one control with postback data or if the custom control's ID
is not used for the control within the custom control, you, as the programmer,
will need to provide a unique ID value for each control in the custom control,
extract the values individually within the LoadPostData method, and set the
appropriate property.

The return value for the LoadPostData method should always be set to False if
the data has not changed or if no check is performed to see if the data
changed. Setting the return to False prevents the RaisePostDataChangedEvent
method from being called. See the discussion at the end of this section
regarding raising events on data changes.

To give you a better feel for how to implement this solution, we turn to a variation of the custom
control we've been working with throughout the chapter, which contains a label and text box. In our
first example, the control needs to remember the state of the text in the text box of the input HTML
control, and so we have added a text property to provide the ability to get/set the text value. Similar
properties are provided for the label text, text color, and text box width. No surprise here.

As you look over the code, you'll notice that, with the exception of the text property, all the
properties in this custom control use private variables to store their values. These values are lost
when the form is rendered and sent to the browser. Because these values are not changed by the
user in the browser, there is no need to remember their previous values. The text property is
another matter. To provide the ability to remember its previous value, we use the ViewState to
persist the value instead of a private variable. We have implemented the LoadPostData method to
process the data posted back from the client and set the text property from the postback data.

We have also implemented the RaisePostDataChangedEvent method. In this first example, the method
is empty and not used but is required as part of the IPostBackDataHandler interface. In the recipe's
second example, it is used to raise an event when data for the text control change (more about this
later).

A couple of changes from Recipe 6.2's implementation are required in the RenderContents event
handler. You must set the name and value attributes of the HTML input control. Set the name attribute
to a unique identifier so you'll have the ability to obtain the value posted back to the server. If the
control does not have a name attribute, the browser will not include its data in the postback data. Set
the value attribute to the current text value for the control.

If the text value does not exist, the value attribute should not be output.
Absent this check, the value attribute will be output without a value, which is
not well-formed HTML and is not handled well by some browsers.

In our second example, we build on the basic structure of the first solely to raise an event if the text
in the text box changes and to notify the user with a change in the label text. Because the value that
was output when the page was rendered is stored in the ViewState, we can compare it to the new
value posted back to the server. As shown in Examples 6-10 (VB) and 6-11 (C#), if the value
changes, the LoadPostData method will return TRue. Otherwise, it will return false.

When the LoadPostData method returns True, ASP.NET will call the RaisePostDataChangedEvent
method after all of the controls have had the opportunity to process their postback data. In this
method, we raise the TextChanged event, passing a reference to the custom control and any event
arguments that are applicable, as shown in Examples 6-10 (VB) and 6-11 (C#). In this example, no
arguments are required, so EventArgs.Empty is used for the event arguments parameter.

See Also

Recipes 6.1, 6.2, and 6.4

Example 6-7. Custom control with state (.vb)

Option Explicit On
Option Strict On

Imports System.Drawing

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a custom control that maintains state through
 ''' postbacks to the server.
 ''' </summary>
 Public Class CH06CustomControlWithStateVB1
 Inherits WebControl
 Implements IPostBackDataHandler

 'private copies of attribute data
 Private mLabelText As String = "Label: "
 Private mTextColor As Color = Color.Black
 Private mTextboxWidth As Integer = 3

 '''***
 ''' <summary>
 ''' This property provides the ability to set the text of of the label
 ''' in the control
 ''' </summary>
 Public Property labelText() As String
 Get
 Return (mLabelText)
 End Get

 Set(ByVal Value As String)
 mLabelText = Value
 End Set
 End Property 'labelText

 '''***
 ''' <summary>
 ''' This property provides the ability to set the color of the text
 ''' in the control
 ''' </summary>
 Public Property textColor() As Color
 Get
 Return (mTextColor)
 End Get

 Set(ByVal Value As Color)
 mTextColor = Value
 End Set
 End Property 'textColor

 '''***

 ''' <summary>
 ''' This property provides the ability to set the width of the text box
 ''' in the control
 ''' </summary>
 Public Property textboxWidth() As Integer
 Get
 Return (mTextboxWidth)
 End Get

 Set(ByVal Value As Integer)
 mTextboxWidth = Value
 End Set
 End Property 'textboxWidth

 '''***
 ''' <summary>
 ''' This property provides the ability to set the HTML tag that is used
 ''' as the container for the control
 ''' </summary>
 Protected Overrides ReadOnly Property TagKey() As HtmlTextWriterTag
 Get
 Return (HtmlTextWriterTag.Div)
 End Get
 End Property 'TagKey

 '''***
 ''' <summary>
 ''' This property provides the ability to set the text in the text box
 ''' in the control. NOTE: The text value is stored in the ViewState
 ''' instead of a private variable to provide the ability to check the
 ''' current and previous values to determine if the text has changed.
 ''' </summary>
 Private Const VS_TEXTBOX_VALUE As String = "TextboxValue"

 Public Property text() As String
 Get
 Dim value As String = Nothing
 If (Not IsNothing(viewstate(VS_TEXTBOX_VALUE))) Then
 value = CStr(viewstate(VS_TEXTBOX_VALUE))
 End If
 Return (value)
 End Get

 Set(ByVal Value As String)
 ViewState(VS_TEXTBOX_VALUE) = Value
 End Set
 End Property 'text

 '''***
 ''' <summary>
 ''' This routine renders the HTML output of the control contents
 ''' </summary>

 '''
 ''' <param name="writer">Set to the HtmlTextWriter to use to output the
 ''' rendered HTML for the control
 ''' </param>
 Protected Overrides Sub RenderContents(ByVal writer As HtmlTextWriter)
 'output label within a font tag
 writer.AddAttribute("color", _
 ColorTranslator.ToHtml(textColor))
 writer.RenderBeginTag(HtmlTextWriterTag.Font)
 writer.Write(labelText)
 writer.RenderEndTag()

 'output input control
 writer.AddAttribute(HtmlTextWriterAttribute.Type, _
 "text")
 writer.AddAttribute(HtmlTextWriterAttribute.Size, _
 textboxWidth.ToString())
 'output name attribute to identify data on postback
 writer.AddAttribute(HtmlTextWriterAttribute.Name, _
 Me.UniqueID)
 'output value attribute only if value exists
 If (Not IsNothing(text)) Then
 writer.AddAttribute(HtmlTextWriterAttribute.Value, _
 text)
 End If

 writer.RenderBeginTag(HtmlTextWriterTag.Input)
 writer.RenderEndTag()
 End Sub 'RenderContents

 '''***
 ''' <summary>
 ''' This routine processes data posted back from the client
 ''' </summary>
 '''
 ''' <param name="postDataKey">The key identifier for the control</param>
 ''' <param name="postCollection">The collection of all incoming name
 ''' values</param>
 '''
 ''' <returns>set true if the server control's state changes as a result
 ''' of the post back; otherwise false
 ''' </returns>

 Public Overridable Function LoadPostData(ByVal postDataKey As String, _
 ByVal postCollection As NameValueCollection) As Boolean _
 Implements IPostBackDataHandler.LoadPostData

 'set the value of the text property from the postback data
 text = postCollection(postDataKey)
 Return (False)
 End Function 'LoadPostData

 '''***
 ''' <summary>
 ''' This routine processes data changed events as a result of the postback
 ''' </summary>
 Public Overridable Sub RaisePostDataChangedEvent() _
 Implements IPostBackDataHandler.RaisePostDataChangedEvent

 End Sub 'RaisePostDataChangedEvent
 End Class
End Namespace

Example 6-8. Custom control with state (.cs)

using System;
using System.Collections.Specialized;
using System.Drawing;
using System.Web.UI;
using System.Web.UI.WebControls;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a custom control that maintains state through
 /// postbacks to the server.
 /// </summary>
 public class CH06CustomControlWithStateCS1 :
 WebControl, IPostBackDataHandler
 {
 // private copies of attribute data
 private String mLabelText = "Label: ";
 private Color mTextColor = Color.Black;
 private int mTextboxWidth = 3;

 ///**
 /// <summary>
 /// This property provides the ability to get/set the text of of the label
 /// in the control
 /// </summary>
 public String labelText
 {
 get
 {
 return (mLabelText);
 }
 set
 {
 mLabelText = value;
 }

 } // labelText

 ///***
 /// <summary>
 /// This property provides the ability to set the color of the text
 /// in the control
 /// </summary>
 public Color textColor
 {
 get
 {
 return (mTextColor);
 }
 set
 {
 mTextColor = value;
 }
 } // textColor

 ///***
 /// <summary>
 /// This property provides the ability to get/set the width of the text box
 /// in the control
 /// </summary>
 public int textboxWidth
 {
 get
 {
 return (mTextboxWidth);
 }
 set
 {
 mTextboxWidth = value;
 }
 } // textboxWidth

 ///***
 /// <summary>
 /// This property provides the ability to set the HTML tag that is used
 /// as the container for the control
 /// </summary>
 protected override HtmlTextWriterTag TagKey
 {
 get
 {
 return (HtmlTextWriterTag.Div);
 }
 } // TagKey

 ///***
 /// <summary>
 /// This property provides the ability to get/set the text in the text box

 /// in the control
 /// </summary>
 private const String VS_TEXTBOX_VALUE = "TextboxValue";

 public String text
 {
 get
 {
 String value = null;
 if (ViewState[VS_TEXTBOX_VALUE] != null)
 {
 value = (String)(ViewState[VS_TEXTBOX_VALUE]);
 }
 return (value);
 }
 set
 {
 ViewState[VS_TEXTBOX_VALUE] = value;
 }
 } // text

 ///***
 /// <summary>
 /// This routine renders the HTML output of the control contents
 /// </summary>
 ///
 /// <param name="writer">Set to the HtmlTextWriter to use to output the
 /// rendered HTML for the control
 /// </param>
 protected override void RenderContents(HtmlTextWriter writer)
 {
 //output label
 writer.AddAttribute("color",
 ColorTranslator.ToHtml(textColor));
 writer.RenderBeginTag(HtmlTextWriterTag.Font);
 writer.Write(labelText);
 writer.RenderEndTag();

 //output input control
 writer.AddAttribute(HtmlTextWriterAttribute.Type,
 "text");
 writer.AddAttribute(HtmlTextWriterAttribute.Size,
 textboxWidth.ToString());

 // output name attribute to identify data on postback
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
 this.UniqueID);

 // output value attribute only if value exists
 if (text != null)
 {
 writer.AddAttribute(HtmlTextWriterAttribute.Value,

 text);
 }

 writer.RenderBeginTag(HtmlTextWriterTag.Input);
 writer.RenderEndTag();
 } // RenderContents

 ///***
 /// <summary>
 /// This routine processes data posted back from the client
 /// </summary>
 ///
 /// <param name="postDataKey">The key identifier for the control</param>
 /// <param name="postCollection">The collection of all incoming name
 /// values</param>
 ///
 /// <returns>set true if the server control's state changes as a result
 /// of the post back; otherwise false
 /// </returns>
 public virtual bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 // set the value of the text property from the postback data
 text = postCollection[postDataKey];
 return (false);
 } // LoadPostData

 ///***
 /// <summary>
 /// This routine processes data changed events as a result of the postback
 /// </summary>
 public virtual void RaisePostDataChangedEvent()
 {
 } // RaisePostDataChangedEvent
 } // CH06CustomControlWithStateCS1
}

Example 6-9. Using the custom control with state (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH06DisplayControlWithStateVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH06DisplayControlWithStateVB1"
 Title="Custom Control With State" %>
<%@ Register TagPrefix="ASPCookbook" Namespace="ASPNetCookbook.VBExamples" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Custom Control With State (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr bgcolor="#ffffcc">
 <td align="center">
 <ASPCookbook:CH06CustomControlWithStateVB1
 id="ccAttributes" runat="server"
 labelText="Enter Age: "
 textColor="#000080"
 textboxWidth="5" />
 </td>
 </tr>
 <tr>
 <td align="center">

 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 6-10. Custom control with state and changed event (.vb)

Option Explicit On
Option Strict On

Imports System.Drawing

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a custom control that maintains state through
 ''' postbacks to the server and raises an event when the entered
 ''' data changes.
 ''' </summary>
 Public Class CH06CustomControlWithStateVB2
 Inherits WebControl
 Implements IPostBackDataHandler

 'define an event to be raised if the text changes
 Public Event TextChanged As EventHandler

 'private copies of attribute data
 Private mLabelText As String = "Label: "
 Private mTextColor As Color = Color.Black
 Private mTextboxWidth As Integer = 3

 '''***
 ''' <summary>
 ''' This property provides the ability to set the text of of the label
 ''' in the control
 ''' </summary>
 Public Property labelText() As String
 Get
 Return (mLabelText)
 End Get

 Set(ByVal Value As String)
 mLabelText = Value
 End Set
 End Property 'labelText

 '''***
 ''' <summary>
 ''' This property provides the ability to set the color of the text
 ''' in the control
 ''' </summary>
 Public Property textColor() As Color
 Get
 Return (mTextColor)
 End Get

 Set(ByVal Value As Color)
 mTextColor = Value
 End Set
 End Property 'textColor

 '''***
 ''' <summary>
 ''' This property provides the ability to set the width of the text box
 ''' in the control
 ''' </summary>
 Public Property textboxWidth() As Integer
 Get
 Return (mTextboxWidth)
 End Get

 Set(ByVal Value As Integer)
 mTextboxWidth = Value
 End Set

 End Property 'textboxWidth

 '''***
 ''' <summary>
 ''' This property provides the ability to set the HTML tag that is used
 ''' as the container for the control
 ''' </summary>
 Protected Overrides ReadOnly Property TagKey() As HtmlTextWriterTag
 Get
 Return (HtmlTextWriterTag.Div)
 End Get
 End Property 'TagKey

 '''***
 ''' <summary>
 ''' This property provides the ability to set the text in the text box
 ''' in the control. NOTE: The text value is stored in the ViewState
 ''' instead of a private variable to provide the ability to check the
 ''' current and previous values to determine if the text has changed.
 ''' </summary>
 Private Const VS_TEXTBOX_VALUE As String = "TextboxValue"

 Public Property text() As String
 Get
 Dim value As String = Nothing
 If (Not IsNothing(viewstate(VS_TEXTBOX_VALUE))) Then
 value = CStr(viewstate(VS_TEXTBOX_VALUE))
 End If
 Return (value)
 End Get

 Set(ByVal Value As String)
 ViewState(VS_TEXTBOX_VALUE) = Value
 End Set
 End Property 'text

 '''***
 ''' <summary>
 ''' This routine renders the HTML output of the control contents
 ''' </summary>
 '''
 ''' <param name="writer">Set to the HtmlTextWriter to use to output the
 ''' rendered HTML for the control
 ''' </param>
 Protected Overrides Sub RenderContents(ByVal writer As HtmlTextWriter)
 'output label within a font tag
 writer.AddAttribute("color", _
 ColorTranslator.ToHtml(textColor))
 writer.RenderBeginTag(HtmlTextWriterTag.Font)
 writer.Write(labelText)
 writer.RenderEndTag()

 'output input control
 writer.AddAttribute(HtmlTextWriterAttribute.Type, _
 "text")
 writer.AddAttribute(HtmlTextWriterAttribute.Size, _
 textboxWidth.ToString())

 'output name attribute to identify data on postback
 writer.AddAttribute(HtmlTextWriterAttribute.Name, _
 Me.UniqueID)

 'output value attribute only if value exists
 If (Not IsNothing(text)) Then
 writer.AddAttribute(HtmlTextWriterAttribute.Value, _
 text)
 End If

 writer.RenderBeginTag(HtmlTextWriterTag.Input)
 writer.RenderEndTag()
 End Sub 'RenderContents

 '''***
 ''' <summary>
 ''' This routine processes data posted back from the client
 ''' </summary>
 '''
 ''' <param name="postDataKey">The key identifier for the control</param>
 ''' <param name="postCollection">The collection of all incoming name
 ''' values</param>
 '''
 ''' <returns>set true if the server control's state changes as a result
 ''' of the post back; otherwise false
 ''' </returns>
 Public Overridable Function LoadPostData(ByVal postDataKey As String,_
 ByVal postCollection As NameValueCollection) As Boolean _
 Implements IPostBackDataHandler.LoadPostData
 Dim dataChanged As Boolean = False
 Dim postbackValue As String

 'check to see if the data changed
 postbackValue = postCollection(postDataKey)
 If (Not postbackValue.Equals(text)) Then
 dataChanged = True
 End If

 'set the value of the text property from the postback data
 text = postbackValue

 Return (dataChanged)
 End Function 'LoadPostData

 '''***
 ''' <summary>

 ''' This routine processes data changed events as a result of the postback
 ''' </summary>
 Public Overridable Sub RaisePostDataChangedEvent() _
 Implements IPostBackDataHandler.RaisePostDataChangedEvent
 RaiseEvent TextChanged(Me, EventArgs.Empty)
 End Sub 'RaisePostDataChangedEvent
 End Class 'CH06CustomControlWithStateVB2
End Namespace

Example 6-11. Custom control with state and changed event (.cs)

using System;
using System.Collections.Specialized;
using System.Drawing;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a custom control that maintains state through
 /// postbacks to the server and raises an event when the entered
 /// data changes.
 /// </summary>
 public class CH06CustomControlWithStateCS2 :
 WebControl, IPostBackDataHandler
 {
 // define an event to be raised if the text changes
 public event EventHandler TextChanged;

 // private copies of attribute data
 private String mLabelText = "Label: ";
 private Color mTextColor = Color.Black;
 private int mTextboxWidth = 3;

 ///**
 /// <summary>
 /// This property provides the ability to get/set the text of of the label
 /// in the control
 /// </summary>
 public String labelText
 {
 get
 {
 return (mLabelText);
 }
 set

 {
 mLabelText = value;
 }
 } // labelText

 ///***
 /// <summary>
 /// This property provides the ability to set the color of the text
 /// in the control
 /// </summary>
 public Color textColor
 {
 get
 {
 return (mTextColor);
 }
 set
 {
 mTextColor = value;
 }
 } // textColor

 ///***
 /// <summary>
 /// This property provides the ability to get/set the width of the text box
 /// in the control
 /// </summary>
 public int textboxWidth
 {
 get
 {
 return (mTextboxWidth);
 }
 set
 {
 mTextboxWidth = value;
 }
 } // textboxWidth

 ///***
 /// <summary>
 /// This property provides the ability to set the HTML tag that is used
 /// as the container for the control
 /// </summary>
 protected override HtmlTextWriterTag TagKey
 {
 get
 {
 return (HtmlTextWriterTag.Div);
 }
 } // TagKey

 ///***
 /// <summary>
 /// This property provides the ability to get/set the text in the text box
 /// in the control
 /// </summary>
 private const String VS_TEXTBOX_VALUE = "TextboxValue";

 public String text
 {
 get
 {
 String value = null;
 if (ViewState[VS_TEXTBOX_VALUE] != null)
 {
 value = (String)(ViewState[VS_TEXTBOX_VALUE]);
 }
 return (value);
 }
 set
 {
 ViewState[VS_TEXTBOX_VALUE] = value;
 }
 } // text

 ///***
 /// <summary>
 /// This routine renders the HTML output of the control contents
 /// </summary>
 ///
 /// <param name="writer">Set to the HtmlTextWriter to use to output the
 /// rendered HTML for the control
 /// </param>
 protected override void RenderContents(HtmlTextWriter writer)
 {
 //output label
 writer.AddAttribute("color",
 ColorTranslator.ToHtml(textColor));
 writer.RenderBeginTag(HtmlTextWriterTag.Font);
 writer.Write(labelText);
 writer.RenderEndTag();

 //output input control
 writer.AddAttribute(HtmlTextWriterAttribute.Type,
 "text");
 writer.AddAttribute(HtmlTextWriterAttribute.Size,
 textboxWidth.ToString());

 // output name attribute to identify data on postback
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
 this.UniqueID);

 // output value attribute only if value exists

 if (text != null)
 {
 writer.AddAttribute(HtmlTextWriterAttribute.Value,
 text);
 }

 writer.RenderBeginTag(HtmlTextWriterTag.Input);
 writer.RenderEndTag();
 } // RenderContents

 ///***
 /// <summary>
 /// This routine processes data posted back from the client
 /// </summary>
 ///
 /// <param name="postDataKey">The key identifier for the control</param>
 /// <param name="postCollection">The collection of all incoming name
 /// values</param>
 ///
 /// <returns>set true if the server control's state changes as a result
 /// of the post back; otherwise false
 /// </returns>

 public virtual bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 Boolean dataChanged = false;
 String postbackValue;

 // check to see if the data changed
 postbackValue = postCollection[postDataKey];
 if (!postbackValue.Equals(text))
 {
 dataChanged = true;
 }

 // set the value of the text property from the postback data
 text = postbackValue;

 return (dataChanged);
 } // LoadPostData

 ///***
 /// <summary>
 /// This routine processes data changed events as a result of the postback
 /// </summary>
 public virtual void RaisePostDataChangedEvent()
 {
 // raise event if a handler is assigned
 if (TextChanged != null)
 {
 TextChanged(this, EventArgs.Empty);

 }
 } // RaisePostDataChangedEvent
 } // CH06CustomControlWithStateCS2
}

Example 6-12. Using the custom control with state and changed event
(.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH06DisplayControlWithStateVB2.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH06DisplayControlWithStateVB2"
 Title="Custom Control With State" %>
<%@ Register TagPrefix="ASPCookbook" Namespace="ASPNetCookbook.VBExamples" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Custom Control With State And Events (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr bgcolor="#ffffcc">
 <td align="center">
 <ASPCookbook:CH06CustomControlWithStateVB2
 id="ccAttributes" runat="server"
 labelText="Enter Age: "
 textColor="#000080"
 textboxWidth="5"
 OnTextChanged="ccAttributes_TextChanged" />
 </td>
 </tr>
 <tr>
 <td align="center">
 <asp:Label ID="labMessage" Runat="server" />
 </td>
 </tr>
 <tr>
 <td align="center">

 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 6-13. Using the custom control with state and changed event
code-behind (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code beside for
 ''' CH06DisplayControlWithStateVB2.aspx
 ''' </summary>
 Partial Class CH06DisplayControlWithStateVB2
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 labMessage.Text = ""
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the custom control text
 ''' changed event.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub ccAttributes_TextChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 labMessage.Text = "Data Changed"
 End Sub 'ccAttributes_TextChanged
 End Class 'CH06DisplayControlWithStateVB2
End Namespace

Example 6-14. Using the custom control with state and changed event
code-behind (.cs)

using System;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code beside for
 /// CH06DisplayControlWithStateCS2.aspx
 /// </summary>
 public partial class CH06DisplayControlWithStateCS2 : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 labMessage.Text = "";
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the custom control text
 /// changed event.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void ccAttributes_TextChanged(Object sender,
 System.EventArgs e)
 {
 labMessage.Text = "Data Changed";
 } //ccAttributes_TextChanged
 } // CH06DisplayControlWithStateCS2
}

Recipe 6.5. Using the Control State with Custom Controls

Problem

You want to allow users to disable the ViewState for your custom control but you do not want to lose
functionality when they do. In other words, when a developer disables the ViewState for the page or
your custom control, you want to be able to maintain critical state information for your control.

Solution

Create a custom control like the one described in Recipe 6.3, register the control with the Page
indicating the control requires use of the Control State, override the SaveControlState method to
save the critical information for your control in the Control State, and override the LoadControlState
method to reload the critical information from the Control State on postback.

Use the .NET language of your choice to:

Create a class that inherits from the WebControl class in the System.Web.UI.WebControls
namespace.

1.

Implement state support as described in Recipe 6.3.2.

In the control Init method, register the control with the Page indicating the control requires use
of the Control State.

3.

Override the SaveControlState method to save the critical information for your control in the
Control State.

4.

Override the LoadControlState method to reload the control information from the Control
State on postback.

5.

To use the custom control in an ASP.NET page:

Register the assembly containing the control.1.

Insert the tag for the custom control anywhere in the page and set the attributes appropriately.2.

Examples 6-15 and 6-16 show the VB and C# class files for a custom control that maintains its
critical state information in the Control State. Examples 6-17, Examples 6-18 through 6-19 show how
to use the custom control in an ASP.NET page.

Discussion

Custom controls developed in ASP.NET 1.x had only one way to save critical state information. The
only option available was to use the ViewState, which worked well until a developer disabled the
ViewState for the page or your custom control. When he disabled the ViewState, the state
information needed by your control was unavailable at postback, generally resulting in loss of
functionality for your control.

ASP.NET 2.0 provides another method of saving the critical state information. This method uses the
Control State to save the state information in the page in the same manner as the ViewState, but
the Control State cannot be disabled. Saving the critical state information in the Control State
provides the ability for the developer to improve performance by disabling the ViewState without
compromising the functionality of your control.

The Control State should be used only for small amounts of critical state
information that your control must have upon postback. The information you
place in the Control State is stored in the rendered page as a hidden input
control (as part of same hidden control that stores the ViewState). This results
in the information being sent to the browser with the page request as well as
being sent back to the server upon postback, which will affect performance if
significant amounts of data are stored in the Control State.

To store state information in the Control State, you will need to implement a control similar to the
one described in Recipe 6.3. One modification is required to the control from what is described in
Recipe 6.3. You need to remove any property storage from the ViewState, as shown below for the
text property:

 Public Property text() As String
 Get
 Return (mText)
 End Get

 Set(ByVal Value As String)
 mText = Value
 End Set
 End Property 'text

 public String text
 {
 get
 {
 return (mText);
 }
 set
 {
 mText = value;

 }
 } // text

Next, you need to register the control with the page to inform the page that the Control State is
required for your control. The registration is normally performed in the Init event handler for the
control.

 Private Sub CH06CustomControlWithStateVB1_Init(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles Me.Init
 Page.RegisterRequiresControlState(Me)
 End Sub 'CH06CustomControlWithStateVB1_Init

 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 Page.RegisterRequiresControlState(this);
 }

Then you need to override the SaveControlState method to save the critical state information for
your control in the Control State. Storing data in the Control State requires verifying that you have
data to store and checking to see if other data is being stored in the Control State, as shown in
Examples 6-15 (VB) and 6-16 (C#).

All data stored in the Control State is managed by the Page and is stored as
object Pairs. When storing your data in the Control State, you must check for
data stored in the Control State and add your data accordingly. Failure to
handle previously added data or incorrectly adding your data will affect the
operation of the page and other controls on the page.

Finally, you need to override the LoadControlState method to reload your critical state information
upon postback. This requires checking to see if any data is available and, if so, evaluating its type. If
the data type is a Pair, you must pass the First property of the pair to the base class and use the
Second property as your data. If the data type is not a Pair, you will need to verify the data type is
the type you are expecting for your control, as shown in Examples 6-15 (VB) and 6-16 (C#).

When the state data provided to the LoadControlState method is of type Pair,
you must pass the data to the base class. Failure to do so will result in incorrect
operation of the page or other controls on the page.

The Control State is a valuable asset for custom control development. With it, you can ensure

critical state information is available while providing the developer the ability to enhance performance
by disabling the ViewState.

See Also

Recipes 6.3 and 19.1

Example 6-15. Custom control using the control state (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Drawing

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a custom control that maintains state through
 ''' postbacks to the server using the page control state.
 ''' </summary>
 Public Class CH06CustomControlWithStateVB3
 Inherits WebControl
 Implements IPostBackDataHandler

 'define an event to be raised if the text changes
 Public Event TextChanged As EventHandler

 'private copies of attribute data
 Private mLabelText As String = "Label: "
 Private mTextColor As Color = Color.Black
 Private mTextboxWidth As Integer = 3
 Private mText As String = Nothing

 '''***
 ''' <summary>
 ''' This property provides the ability to set the text of of the label
 ''' in the control
 ''' </summary>
 Public Property labelText() As String
 Get
 Return (mLabelText)
 End Get

 Set(ByVal Value As String)
 mLabelText = Value
 End Set
 End Property 'labelText

 '''***
 ''' <summary>
 ''' This property provides the ability to set the color of the text
 ''' in the control
 ''' </summary>
 Public Property textColor() As Color
 Get
 Return (mTextColor)
 End Get
 Set(ByVal Value As Color)
 mTextColor = Value
 End Set
 End Property 'textColor

 '''***
 ''' <summary>
 ''' This property provides the ability to set the width of the text box
 ''' in the control
 ''' </summary>
 Public Property textboxWidth() As Integer
 Get
 Return (mTextboxWidth)
 End Get

 Set(ByVal Value As Integer)
 mTextboxWidth = Value
 End Set
 End Property 'textboxWidth

 '''***
 ''' <summary>
 ''' This property provides the ability to set the HTML tag that is used
 ''' as the container for the control
 ''' </summary>
 Protected Overrides ReadOnly Property TagKey() As HtmlTextWriterTag
 Get
 Return (HtmlTextWriterTag.Div)
 End Get
 End Property 'TagKey

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the text in the text box
 ''' in the control.
 ''' </summary>
 Public Property text() As String
 Get
 Return (mText)
 End Get

 Set(ByVal Value As String)
 mText = Value

 End Set
 End Property 'text

 '''***
 ''' <summary>
 ''' This routine renders the HTML output of the control contents
 ''' </summary>
 '''
 ''' <param name="writer">Set to the HtmlTextWriter to use to output the
 ''' rendered HTML for the control
 ''' </param>
 Protected Overrides Sub RenderContents(ByVal writer As HtmlTextWriter)
 'output label within a font tag
 writer.AddAttribute("color", _
 ColorTranslator.ToHtml(textColor))
 writer.RenderBeginTag(HtmlTextWriterTag.Font)
 writer.Write(labelText)
 writer.RenderEndTag()

 'output input control
 writer.AddAttribute(HtmlTextWriterAttribute.Type, _
 "text")
 writer.AddAttribute(HtmlTextWriterAttribute.Size, _
 textboxWidth.ToString())

 'output name attribute to identify data on postback
 writer.AddAttribute(HtmlTextWriterAttribute.Name, _
 Me.UniqueID)

 'output value attribute only if value exists
 If (Not IsNothing(text)) Then
 writer.AddAttribute(HtmlTextWriterAttribute.Value, _
 text)
 End If

 writer.RenderBeginTag(HtmlTextWriterTag.Input)
 writer.RenderEndTag()
 End Sub 'RenderContents

 '''***
 ''' <summary>
 ''' This routine processes data posted back from the client
 ''' </summary>
 '''
 ''' <param name="postDataKey">The key identifier for the control</param>
 ''' <param name="postCollection">The collection of all incoming name
 ''' values</param>
 '''
 ''' <returns>set true if the server control's state changes as a result
 ''' of the post back; otherwise false
 ''' </returns>
 Public Overridable Function LoadPostData(ByVal postDataKey As String, _

 ByVal postCollection As NameValueCollection) As Boolean _
 Implements IPostBackDataHandler.LoadPostData
 Dim dataChanged As Boolean = False
 Dim postbackValue As String

 'check to see if the data changed
 postbackValue = postCollection(postDataKey)
 If (Not postbackValue.Equals(text)) Then
 dataChanged = True
 End If

 'set the value of the text property from the postback data
 text = postbackValue

 Return (dataChanged)
 End Function 'LoadPostData

 '''***
 ''' <summary>
 ''' This routine processes data changed events as a result of the postback
 ''' </summary>
 Public Overridable Sub RaisePostDataChangedEvent() _
 Implements IPostBackDataHandler.RaisePostDataChangedEvent
 RaiseEvent TextChanged(Me, EventArgs.Empty)
 End Sub 'RaisePostDataChangedEvent

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the control init event.
 ''' It is responsible for registering with the page to indicate this
 ''' control requires the control state
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub CH06CustomControlWithStateVB1_Init(ByVal sender As Object, _
 ByVal e As EventArgs) _
 Handles Me.Init
 Page.RegisterRequiresControlState(Me)
 End Sub 'CH06CustomControlWithStateVB1_Init

 '''***
 ''' <summary>
 ''' This routine provides the ability to restore the data from the control
 ''' state that was previously saved by the SaveControlState method
 ''' </summary>
 '''
 ''' <param name="state">Set to the control state to restore</param>
 Protected Overrides Sub LoadControlState(ByVal state As Object)
 Dim statePair As Pair
 'check to see if there is any control state to restore
 If (Not state Is Nothing) Then

 'check to see if the state information contain base data
 If (TypeOf state Is Pair) Then
 'state contains control state information for the base class so
 'extract it and pass it along to the base class
 statePair = CType(state, Pair)
 MyBase.LoadControlState(statePair.First)

 'get the state information for this object
 text = CStr(statePair.Second)
 Else
 'state contains only simple data so check to see if it is
 'applicable to this object
 If (TypeOf state Is String) Then
 'get the state information for this object
 text = CStr(state)
 Else
 'pass state information on to base object
 MyBase.LoadControlState(state)
 End If
 End If
 End If
 End Sub 'LoadControlState

 '''***
 ''' <summary>
 ''' This routine provides the ability to save information in the control
 ''' state
 ''' </summary>
 '''
 ''' <returns>An object containing the information to store in the control
 ''' state
 ''' </returns>
 Protected Overrides Function SaveControlState() As Object
 Dim baseControlState As Object
 Dim returnValue As Object = Nothing

 baseControlState = MyBase.SaveControlState()
 If (text Is Nothing) Then
 returnValue = baseControlState
 Else
 If (baseControlState Is Nothing) Then
 returnValue = text
 Else
 returnValue = New Pair(baseControlState, _
 text)
 End If
 End If

 Return (returnValue)
 End Function 'SaveControlState
 End Class 'CH06CustomControlWithStateVB3
 End Namespace

Example 6-16. Custom control using the control state (.cs)

using System;
using System.Collections.Specialized;
using System.Drawing;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a custom control that maintains state through
 /// postbacks to the server and raises an event when the entered
 /// data changes.
 /// </summary>
 public class CH06CustomControlWithStateCS3 :
 WebControl, IPostBackDataHandler
 {
 // define an event to be raised if the text changes
 public event EventHandler TextChanged;

 // private copies of attribute data
 private String mLabelText = "Label: ";
 private Color mTextColor = Color.Black;
 private int mTextboxWidth = 3;
 private String mText = null;

 ///**
 /// <summary>
 /// This property provides the ability to get/set the text of of the label
 /// in the control
 /// </summary>
 public String labelText
 {
 get
 {
 return (mLabelText);
 }
 set
 {
 mLabelText = value;
 }
 } // labelText

 ///***
 /// <summary>
 /// This property provides the ability to set the color of the text

 /// in the control
 /// </summary>
 public Color textColor
 {
 get
 {
 return (mTextColor);
 }
 set
 {
 mTextColor = value;
 }
 } // textColor

 ///***
 /// <summary>
 /// This property provides the ability to get/set the width of the text box
 /// in the control
 /// </summary>
 public int textboxWidth
 {
 get
 {
 return (mTextboxWidth);
 }
 set
 {
 mTextboxWidth = value;
 }
 } // textboxWidth

 ///***
 /// <summary>
 /// This property provides the ability to set the HTML tag that is used
 /// as the container for the control
 /// </summary>
 protected override HtmlTextWriterTag TagKey
 {
 get
 {
 return (HtmlTextWriterTag.Div);
 }
 } // TagKey

 ///***
 /// <summary>
 /// This property provides the ability to get/set the text in the text box
 /// in the control
 /// </summary>
 public String text
 {
 get

 {
 return (mText);
 }
 set
 {
 mText = value;
 }
 } // text

 ///***
 /// <summary>
 /// This routine renders the HTML output of the control contents
 /// </summary>
 ///
 /// <param name="writer">Set to the HtmlTextWriter to use to output the
 /// rendered HTML for the control
 /// </param>
 protected override void RenderContents(HtmlTextWriter writer)
 {
 //output label
 writer.AddAttribute("color",
 ColorTranslator.ToHtml(textColor));
 writer.RenderBeginTag(HtmlTextWriterTag.Font);
 writer.Write(labelText);
 writer.RenderEndTag();

 //output input control
 writer.AddAttribute(HtmlTextWriterAttribute.Type,
 "text");
 writer.AddAttribute(HtmlTextWriterAttribute.Size,
 textboxWidth.ToString());

 // output name attribute to identify data on postback
 writer.AddAttribute(HtmlTextWriterAttribute.Name,
 this.UniqueID);

 // output value attribute only if value exists
 if (text != null)
 {
 writer.AddAttribute(HtmlTextWriterAttribute.Value,
 text);
 }

 writer.RenderBeginTag(HtmlTextWriterTag.Input);
 writer.RenderEndTag();
 } // RenderContents
 ///***
 /// <summary>
 /// This routine processes data posted back from the client
 /// </summary>
 ///
 /// <param name="postDataKey">The key identifier for the control</param>

 /// <param name="postCollection">The collection of all incoming name
 /// values</param>
 ///
 /// <returns>set true if the server control's state changes as a result
 /// of the post back; otherwise false
 /// </returns>
 public virtual bool LoadPostData(string postDataKey,
 NameValueCollection postCollection)
 {
 Boolean dataChanged = false;
 String postbackValue;

 // check to see if the data changed
 postbackValue = postCollection[postDataKey];
 if (!postbackValue.Equals(text))
 {
 dataChanged = true;
 }

 // set the value of the text property from the postback data
 text = postbackValue;

 return (dataChanged);
 } // LoadPostData

 ///***
 /// <summary>
 /// This routine processes data changed events as a result of the postback
 /// </summary>
 public virtual void RaisePostDataChangedEvent()
 {
 // raise event if a handler is assigned
 if (TextChanged != null)
 {
 TextChanged(this, EventArgs.Empty);
 }
 } // RaisePostDataChangedEvent

 ///***
 /// <summary>
 /// This routine provides the event handler for the control init event.
 /// It is responsible for registering with the page to indicate this
 /// control requires the control state6
 /// </summary>
 ///
 /// <param name="e">Set to the event arguments</param>
 protected override void OnInit(EventArgs e)
 {
 base.OnInit(e);
 Page.RegisterRequiresControlState(this);
 }

 ///***
 /// <summary>
 /// This routine provides the ability to restore the data from the control
 /// state that was previously saved by the SaveControlState method
 /// </summary>
 ///
 /// <param name="state">Set to the control state to restore</param>
 protected override void LoadControlState(Object state)
 {
 Pair statePair;

 // check to see if there is any control state to restore
 if (state != null)
 {
 // check to see if the state information contain base data
 if (state is Pair)
 {
 // state contains control state information for the base class so
 // extract it and pass it along to the base class
 statePair = (Pair)state;
 base.LoadControlState(statePair.First);
 // get the state information for this object
 text = (String)(statePair.Second);
 }
 else
 {
 // state contains only simple data so check to see if it is
 // applicable to this object
 if (state is String)
 {
 // get the state information for this object
 text = (String)state;
 }
 else
 {
 // pass state information on to base object
 base.LoadControlState(state);
 }
 }
 }
 } // LoadControlState

 ///***
 /// <summary>
 /// This routine provides the ability to save information in the control
 /// state
 /// </summary>
 ///
 /// <returns>An object containing the information to store in the control
 /// state
 /// </returns>
 protected override Object SaveControlState()

 {
 Object baseControlState;
 Object returnValue = null;

 baseControlState = base.SaveControlState();
 if (text == null)
 {
 returnValue = baseControlState;
 }
 else
 {
 if (baseControlState == null)
 {
 returnValue = text;
 }
 else
 {
 returnValue = new Pair(baseControlState,
 text);
 }
 }
 return (returnValue);
 } // SaveControlState
 } // CH06CustomControlWithStateCS3
}

Example 6-17. Using the custom control using the control state (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH06DisplayControlWithStateVB3.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH06DisplayControlWithStateVB3"
 Title="Custom Control Using Control State" %>
<%@ Register TagPrefix="ASPCookbook" Namespace="ASPNetCookbook.VBExamples" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Custom Control With State & Events Using Control State (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr bgcolor="#ffffcc">
 <td align="center">
 <ASPCookbook:CH06CustomControlWithStateVB3
 id="ccAttributes" runat="server"
 labelText="Enter Age: "
 textColor="#000080"
 textboxWidth="5"
 OnTextChanged="ccAttributes_TextChanged"

 EnableViewState="false" />
 </td>
 </tr>
 <tr>
 <td align="center">
 <asp:Label ID="labMessage" Runat="server" />
 </td>
 </tr>
 <tr>
 <td align="center">

 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 6-18. Using the custom control using the control state code-
behind (.vb)

Option Explicit On
Option Strict On
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code beside for
 ''' CH06DisplayControlWithStateVB3.aspx
 ''' </summary>
 Partial Class CH06DisplayControlWithStateVB3
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 labMessage.Text = ""
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the custom control text

 ''' changed event.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub ccAttributes_TextChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 labMessage.Text = "Data Changed"
 End Sub 'ccAttributes_TextChanged
 End Class 'CH06DisplayControlWithStateVB3
End Namespace

Example 6-19. Using the custom control using the control state code-
behind (.cs)

using System;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code beside for
 /// CH06DisplayControlWithStateCS3.aspx
 /// </summary>
 public partial class CH06DisplayControlWithStateCS3 : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 labMessage.Text = "";
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the custom control text
 /// changed event.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void ccAttributes_TextChanged(Object sender,
 System.EventArgs e)

 {
 labMessage.Text = "Data Changed";
 } //ccAttributes_TextChanged
 } // CH06DisplayControlWithStateCS3
}

Recipe 6.6. Customizing an ASP.NET TextBox Server
Control

Problem

You want to customize an ASP.NET TextBox server control to allow only numeric input.

Solution

Create a custom control that inherits from the ASP.NET text box control and add code to emit client-
side script that limits the input to only numeric values.

Use the .NET language of your choice to:

Create a class that inherits from the TextBox class in the System.Web.UI.WebControls
namespace.

1.

Override the OnPreRender method to have it generate the requisite client-side script.2.

Override the AddAttributesToRender if you need to add an attribute to the rendered control.3.

To use the custom control in an ASP.NET page:

Register the assembly containing the control.1.

Insert the tag for the custom control anywhere in the page.2.

Examples 6-20 and 6-21 show the VB and C# class files for an example custom control we have
written to illustrate our approach. This custom control emits client-side script that checks key presses
and allows only numeric keys to be entered into a text box. Example 6-22 shows how to use the
custom control in an ASP.NET page.

Discussion

Extending an existing ASP.NET server control is an easy way to create the functionality you need for
an application. By inheriting your custom controls from existing controls, you only have to write the
code you need to add your special functionality.

To illustrate this approach, we've implemented a text box control that allows only numeric input, a
common project requirement. Why is it necessary to implement a custom control to accomplish this?
First, none of the ASP.NET controls provides this functionality. Second, although you can check the
data entered in a text box to ensure it is numeric and within a range with a range validator, this
does not prevent the user from entering letters into the text box in the first place. Extending the
standard text box control by adding client-side script that allows only numeric keys to be processed
and their values entered into the text box is a better solution.

The first step in extending the ASP.NET text box control is to create a custom control class that
inherits from System.Web.UI.WebControls.TextBox.

Next, you must override the OnPreRender method to generate the client-side script. (The reason for
overriding OnPreRender is that you need to get the script onto the page before the control is
rendered.) This is done by creating a string containing the script block, and then registering it to be
output to the page with the Page.ClientScript. RegisterClientScriptBlock method.

The client script must be created and output in an event that occurs before the
Render event, or the script will not be output in the rendered page. This can be
done in the Load or PreRender events.

Be sure to call the base class OnPreRender method. Failure to do so can result in
lost functionality if the base control performs any operations in the OnPreRender
method.

Output the client script using the
Page.ClientScript.RegisterClientScriptBlock method with the first
parameter set to the type of your control. This ensures that client script is
output to the page only once if multiple instances of your control are used on a
page. If the client script was output directly in the Render event and the page
contained multiple instances of the custom control, the client script would be
output for each instance of the control.

The client-side script output to the page in our example is shown next. It checks each key press to
see if the keycode is in the 09 range and returns TRue if it is. Otherwise, it returns false.

 <script type="text/javascript">
 <!-
 function checkKey()
 {
 var key = event.keyCode;
 var processKey = false;
 if ((key >= 0x30) && (key <= 0x39))
 {
 processKey = true;
 }

 return(processKey);
 }
 // -->
 </script>

This script will work only for Internet Explorer. You can use the
Page.Request.Browser object in the OnPreRender method to determine the
browser type and version so you can output code specific to the browser
requesting the page.

The last step to implement our sample custom control is to add an attribute to the rendered input
control to cause the checkKey method to be executed when a key is pressed with the focus set to the
input control. This is done by overriding the AddAttributesToRender method and adding the
onkeypress attribute.

If your application has a similar requirement to add an attribute to the
rendered input control, call the base class AddAttributesToRender method.
Failure to do so can result in lost functionality if the base control performs any
operations in the AddAttributesToRender method.

The rendered HTML input control is shown here:

 <input name="ctl00$PageBody$ccNumericInput" type="text"
 maxlength="10" size="10"
 id="ctl00_PageBody_ccNumericInput"
 onkeypress="return checkKey();" />

To complete the example, we insert the control into an ASP.NET page by first registering the control
(see Example 6-22). We then place the control tag in the page just as if it were a plain-vanilla text
box.

One of the great advantages of inheriting from an existing ASP.NET server control is the support for
all the control's inherent functionality. In this case, we can set any of the attributes available for the
asp:Textbox control, though we did no coding for those properties in our control:

 <ASPCookbook:CH06CustomControlNumericInputVB
 id="ccNumericInput" runat="server"
 Columns="10" MaxLength="10" />

See Also

JavaScript: The Definitive Guide, by David Flanagan (O'Reilly), for more information on browser-
specific JavaScript; ASP.NET in a Nutshell, by G. Andrew Duthie and Matthew MacDonald (O'Reilly);
and the MSDN Library for more on OnPreRender and AddAttributestoRender

Example 6-20. Numeric input-only text box (.vb)

Option Explicit On
Option Strict On

Imports System.Environment
Imports System.Web.UI

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a custom control that implements an input control
 ''' that only allows numbers to be input.
 ''' </summary>
 Public Class CH06CustomControlNumericInputVB
 Inherits System.Web.UI.WebControls.TextBox

 'the following constant defines the name of the name of the client-side
 'JavaScript method used to process keystrokes
 Private Const CHECK_KEY_NAME As String = "checkKey"

 '''***
 ''' <summary>
 ''' This routine handles the prerender event for the custom control.
 ''' It adds clientside script to process keys before adding them to
 ''' the text box.
 ''' </summary>
 '''
 ''' <param name="e">Set to the event arguments</param>
 Protected Overrides Sub OnPreRender(ByVal e As System.EventArgs)
 Dim scriptBlock As StringBuilder

 MyBase.OnPreRender(e)

 'generate code to check the key pressed
 scriptBlock = New StringBuilder
 scriptBlock.Append("function " & CHECK_KEY_NAME & "()" & NewLine)
 scriptBlock.Append("{" & NewLine)
 scriptBlock.Append("var key = event.keyCode;" & NewLine)
 scriptBlock.Append("var processKey = false;" & NewLine)
 scriptBlock.Append("if ((key >= 0x30) && (key <= 0x39))" & NewLine)
 scriptBlock.Append("{" & NewLine)
 scriptBlock.Append("processKey = true;" & NewLine)
 scriptBlock.Append("}" & NewLine)
 scriptBlock.Append("return(processKey);" & NewLine)

 scriptBlock.Append("}" & NewLine)

 'register script to be output when the page is rendered
 Page.ClientScript.RegisterStartupScript(Me.GetType(), _
 CHECK_KEY_NAME, _
 scriptBlock.ToString(), _
 True)
 End Sub 'OnPreRender

 '''***
 ''' <summary>
 ''' This routine handles the AddAttributeToRender event for the custom
 ''' control. It adds the onkeypress attribute to the text box to cause
 ''' processing of all keys pressed when the text box has focus.
 ''' </summary>
 '''
 ''' <param name="writer">Set to the HtmlTextWriter to use to output the
 ''' rendered HTML for the control
 ''' </param>
 Protected Overrides Sub AddAttributesToRender(_
 ByVal writer As HtmlTextWriter)
 MyBase.AddAttributesToRender(writer)
 'add an attribute to the text box to call client script to check
 'keys pressed
 writer.AddAttribute("onkeypress", _
 "return " & CHECK_KEY_NAME & "();")
 End Sub 'AddAttributesToRender
 End Class 'CH06CustomControlNumericInputVB
End Namespace

Example 6-21. Numeric input-only text box (.cs)

using System;
using System.Drawing;
using System.Text;
using System.Web.UI;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a custom control that implements an input control
 /// that only allows numbers to be input.
 /// </summary>
 public class CH06CustomControlNumericInputCS : TextBox
 {
 // the following constant defines the name of the name of the client-side

 // JavaScript method used to process keystrokes
 private const String CHECK_KEY_NAME = "checkKey";

 ///***
 /// <summary>
 /// This routine handles the prerender event for the custom control. It
 /// adds clientside script to process keys before adding them to the
 /// text box.
 /// </summary>
 ///
 /// <param name="e">Set to the event arguments</param>
 protected override void OnPreRender(System.EventArgs e)
 {
 StringBuilder scriptBlock = null;

 base.OnPreRender(e);

 // generate code to check the key pressed
 scriptBlock = new StringBuilder();
 scriptBlock.Append("function " + CHECK_KEY_NAME + "()\r");
 scriptBlock.Append("{\r");
 scriptBlock.Append("var key = event.keyCode;\r");
 scriptBlock.Append("var processKey = false;\r");
 scriptBlock.Append("if ((key >= 0x30) && (key <= 0x39))\r");
 scriptBlock.Append("{\r");
 scriptBlock.Append("processKey = true;\r");
 scriptBlock.Append("}\r");
 scriptBlock.Append("return(processKey);\r");
 scriptBlock.Append("}\r");
 // register script to be output when the page is rendered
 Page.ClientScript.RegisterStartupScript(this.GetType(),
 CHECK_KEY_NAME,
 scriptBlock.ToString(),
 true);
 } // OnPreRender

 //**
 //
 // ROUTINE: AddAttributesToRender
 //
 // DESCRIPTION:
 //--
 /// <summary>
 /// This routine handles the AddAttributeToRender event for the custom
 /// control. It adds the onkeypress attribute to the text box to cause
 /// processing of all keys pressed when the text box has focus.
 /// </summary>
 ///
 /// <param name="writer">Set to the HtmlTextWriter to use to output the
 /// rendered HTML for the control
 /// </param>
 protected override void AddAttributesToRender(

 System.Web.UI.HtmlTextWriter writer)
 {
 base.AddAttributesToRender(writer);

 // add an attribute to the text box to call client script to check
 // keys pressed
 writer.AddAttribute("onkeypress", "return " + CHECK_KEY_NAME + "();");
 } // AddAttributesToRender
 } // CH06CustomControlNumericInputCS
}

Example 6-22. Using the numeric input custom control (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH06DisplayControlWithNumericInputVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH06DisplayControlWithNumericInputVB"
 Title="Custom Control With Numeric Input" %>
<%@ Register TagPrefix="ASPCookbook" Namespace="ASPNetCookbook.VBExamples" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Custom Numeric Input Control (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr bgcolor="#ffffcc">
 <td align="center">
 <ASPCookbook:CH06CustomControlNumericInputVB
 id="ccNumericInput" runat="server"
 Columns="10" MaxLength="10" />
 </td>
 </tr>
 <tr>
 <td align="center">

 <asp:Button ID="btnSubmit" runat="server"
 Text="Submit" />
 </td>
 </tr>
 </table>
</asp:Content>

Chapter 7. Maintaining State

7.0 Introduction

Because HTTP is an inherently stateless protocol, you must use special techniques when you want to
preserve information about users as they move from one page to the next or when they leave and
reenter your application. Saving this information is known as saving or maintaining state. You need
to maintain state to improve the user's experience with an ASP.NET application. By maintaining
state, you can maintain the continuity between pages and between sessions that users demand of a
webbased application, such as keeping track of items in a shopping cart or noting viewing
preferences. You can enhance the performance of heavily used applications by making commonly
used data available to any user, without making repeated trips to a database.

Be aware, however, that maintaining state can sometimes result in a decline in performance. For
example, if you place large objects in session state you can negatively affect an application's
performance by tying up system resources.

You can preserve information at the application, session, and page levels of an ASP.NET application.
The recipes in this chapter demonstrate how each is done:

Application state

By making commonly used data available to all users of an application, you can sometimes
improve application performance. Recipe 7.1 shows how to retrieve data from a database,
place it in the Application object, and make it accessible to all users of an application. This is
known as maintaining state at the application level.

Session state

Experienced web users expect you to remember who they are for the duration of their sessions
at your site. Preserving this information, as well as information about their activities, is known
as saving session state. Recipe 7.2 shows how to use an object to provide a container for some
simple personalized data that is used by many pages of an application. The advantage is you
can maintain information for each user without having to access the database each time the
data is needed.

Page state

Saving page state involves storing small bits of page information in hidden text fields or in the
ViewState. For instance, Recipe 7.3 shows how a page with multiple states can remember the
current state value between postbacks. In this instance, information is stored in a hidden field
each time a page is submitted to the server so the state can be restored on return to the client.

In the chapter's last example, page state is used to store a complex object in the ViewState for
tracking state information between page submittals. The example demonstrates how you can
emulate two-way data binding with the DataGrid, a capability that is native to the GridView

control (see Recipe 2.16) but not to the DataGrid. With two-way data binding, any changes
made to the data in the bound controls are automatically updated in the underlying data
container, making updates to the original data source simple. In web forms, because the
connection to the underlying data container is broken when the page is rendered, a bit of
additional work is required to update the original data source, which the recipe shows you how
to do.

Recipe 7.2. Maintaining Information Needed by All Users
of an Application

Problem

You want to make certain data available to all users of an application.

Solution

Place the code needed to find and load the data in the Application_Start method of global.asax and
store it in the Application object:

In the global.asax file, use the .NET language of your choice to:

Create an event handler for the Application_Start event.1.

Load the application data and store it in the Application object.2.

The code we've written to demonstrate this solution is shown in Examples 7-1 , 7-2 , 7-3 , 7-4 , 7-5 ,
7-6 through 7-7 . Examples 7-1 and 7-2 show the VB and C# global.asax files; this code reads data
from a database and places it in the Application object. Examples 7-3 and 7-4 show the VB and C#
classes for constants used throughout the application to access the data in the Application object.
Figure 7-1 shows a simple form we've created to view the application state data. Example 7-5 shows
the .aspx file that produces the form. Examples 7-6 and 7-7 show the companion VB and C# code-
behind files that demonstrate how to access the application state data.

Figure 7-1. A view of some sample application state data

Discussion

The purpose of the Application object is to store information once that can be simultaneously shared
with all users of the application without having to access it repeatedly from a database or some other
data store. One example is when you want to store and share the number of times an application has
been hit by all the users of the application. Another example is when you want to store and share
some common reference information, as illustrated in Figure 7-1 . Using the Application object
provides the ideal means to accomplish these tasks. The Application object is similar to the Session
object (discussed in the next recipe), except that it stores global information as opposed to
information about an individual session. The Application object is a property of the Page object that
provides the ability to store almost any data and offer access to it throughout the application by all
users. Storing commonly used global data in memory can improve the application's performance.

The Cache object can also be used to store data used throughout an application.
See Chapter 16 for examples of using the Cache object.

The code we've written to illustrate this recipe provides an example of loading information from a
database and storing it in the Application object so it can be accessed by any page of an application
without having to retrieve the data from the database each time the data is needed.

Data that you want to make available throughout the application should be initialized when the
application starts. The Application_Start event handler in the global.asax file class is the best place
to do this because the Application_Start event is raised the first time the application is accessed.

In our example, the Application_Start event handler reads the titles of the chapters of this book
from a database into a DataTable and stores the table of chapter data in the Application object.

Data stored in the Application object can be accessed from any page of an application. When you
access the data, you must cast it to the correct type because all data is stored in the Application
object as Objects ; without properly casting the data, your code will not compile. Our example
retrieves the data and binds it to a Repeater control in the Page_Load method in Examples 7-6 (VB)
and 7-7 (C#). (Data binding is described in Chapter 2 .)

To avoid "hardcoding" names of variables placed in the Application object, we
recommend you define public constants in a class that is accessible throughout
your application, such as appconstants in Examples 7-3 (VB) and 7-4 (C#). In
ASP.NET 1.x, these constants could be placed in the Global.asax.vb (or
Global.asax.cs) class. With the changes in ASP.NET 2.0 to use partial classes,
these constants must be placed in another class to provide application-wide
access.

On another note, any object placed in the Application object must be free-
threaded; otherwise, deadlocks, race conditions, and access violations can
occur. Any object created from the classes in the Common Language Runtime
is free-threaded and can be safely stored in the Application object. VB6
objects are apartment-threaded and should not be placed in the Application
object.

You can update data stored in the Application object whenever your application requires it. ASP.NET
is multithreaded, so many threads can access the variables within the scope of an application at the
same time. Changing the variables' values in an uncontrolled fashion can cause data concurrency
issues. To prevent contention between threads, the Application object must be able to block access
to itself while changes are being made. You can do this by calling the Lock method of the Application
object, making your changes, and calling the Unlock method, as shown here:

 Application.Lock()
 Application.Add(APP_CHAPTER_DATA, _
 ds.Tables(CHAPTER_TABLE))
 Application.UnLock()

 Application.Lock();
 Application.Add(APP_CHAPTER_DATA,
 ds.Tables[CHAPTER_TABLE]);
 Application.UnLock();

Your application should always minimize the time the Application object is
locked because all other threads are held off until the lock is released. To avoid
permanent locks, ASP.NET automatically performs the unlock operation when a
request is completed, a request times out, or an unhandled exception occurs
and causes the request to fail.

Whenever you use the Application object in an application, consider the following points:

The Application object is not shared across servers in a web farm. Each server maintains its
own copy of the Application object. If the values stored in the application are different on each
of the servers in the web farm, your application may operate differently depending on which
server was accessed.

Any data stored in the Application object is cleared when the application restarts. If any of that
data needs to be persisted, you can place code in the Application_End event handler of
global.asax to store the data in a database or the like. Be careful in relying on the
Application_End event handler to persist any important data. It is not called if the application
stops abnormally, such as in a power failure or an application crash.

See Also

Chapter 16 for information on using the Cache object

Example 7-1. Maintaining application state (global.asaxVB)

<%@ Application Language="VB" %>
<%@ Import Namespace="System.Configuration.ConfigurationManager" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.OleDb" %>
<%@ Import Namespace="ASPNetCookbook.VBExamples" %>
<script RunAt="server">

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the application start
 ''' event. It is responsible for initializing application variables.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dTable As DataTable = Nothing
 Dim strConnection As String
 Dim cmdText As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 cmdText = "SELECT ChapterNumber, Title, Description " & _
 "FROM Chapter " & _
 "ORDER BY ChapterNumber"

 'fill the dataset with the chapter data
 da = New OleDbDataAdapter(cmdText, dbConn)
 dTable = New datatable
 da.Fill(dtable)

 'store the table containing the chapter data in the Application object
 Application.Add(appconstants.APP_CHAPTER_DATA, _
 dtable)

 Finally
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub
</script>

Example 7-2. Maintaining application state (global.asaxC#)

<%@ Application Language="C#" %>
<%@ Import Namespace="System.Configuration" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.OleDb" %>
<%@ Import Namespace="ASPNetCookbook.CSExamples" %>

<script RunAt="server">

 ///***
 /// <summary>
 /// This routine provides the event handler for the application start
 /// event. It is responsible for initializing application variables.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>

 /// <param name="e">Set to the event arguments</param>
 void Application_Start(Object sender, EventArgs e)
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataTable dTable = null;
 String strConnection = null;
 String cmdText = null;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 cmdText = "SELECT ChapterNumber, Title, Description " +
 "FROM Chapter " +
 "ORDER BY ChapterNumber";

 // fill the dataset with the chapter data
 da = new OleDbDataAdapter(cmdText, dbConn);
 dTable = new DataTable();
 da.Fill(dTable);

 // store the table containing the chapter data in the Application object
 Application.Add(appconstants.APP_CHAPTER_DATA,
 dTable);
 } // try

 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // Application_Start
</script>

Example 7-3. Application constants (.vb)

Option Explicit On
Option Strict On

Imports System.Drawing

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class constants that are used throughout the application
 ''' </summary>
 Public Class appconstants
 'the following constant used to define the name of the variable used to
 'store the chapter data in the application object
 Public Const APP_CHAPTER_DATA As String = "ChapterData"

 End Class 'appconstants
End Namespace

Example 7-4. Application constants (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class constants that are used throughout the application
 /// </summary>
 public class appconstants
 {
 // the following constant used to define the name of the variable used to
 // store the chapter data in the application object
 public const String APP_CHAPTER_DATA = "ChapterData";

 } // appconstants
}

Example 7-5. Using application state data (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH07ApplicationStateVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH07ApplicationStateVB"
 Title="Application State" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Maintaining Application State (VB)
 </div>
 <table width="40%" border="0" align="center"
 cellpadding="0" cellspacing="0">
 <thead>
 <tr>
 <th colspan="2"
 class="pageHeading">ASP.NET Cookbook Chapters</th>
 </tr>
 </thead>
 <tr>
 <td></td>
 </tr>
 <asp:Repeater id="repMenuItems" runat="server">
 <ItemTemplate>
 <tr class="labelText">
 <td align="center" width="15%">
 <%#Eval("ChapterNumber")%></td>
 <td width="85%">
 <%#Eval("Title")%></td>
 </tr>
 <tr>
 <td bgcolor="#FFFFFF" colspan="2">
 </td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
</asp:Content>

Example 7-6. Using application state data code-behind (.vb)

Option Explicit On
Option Strict On

Imports System.Data

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH07ApplicationStateVB.aspx
 ''' </summary>
 Partial Class CH07ApplicationStateVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim chapterData As DataTable
 If (Not Page.IsPostBack()) Then
 'get the chapter data stored in the application object
 chapterData = CType(Application.Item(appconstants.APP_CHAPTER_DATA), _
 DataTable)

 'bind it to the repeater to display the chapter data
 repMenuItems.DataSource = chapterData
 repMenuItems.DataBind()
 End If
 End Sub 'Page_Load
 End Class 'CH07ApplicationStateVB
End Namespace

Example 7-7. Using application state data code-behind (.cs)

using System;
using System.Data;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH07ApplicationStateCS.aspx
 /// </summary>
 public partial class CH07ApplicationStateCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 DataTable chapterData = null;

 if (!Page.IsPostBack)
 {
 // get the chapter data stored in the application object
 chapterData = (DataTable)(Application[appconstants.APP_CHAPTER_DATA]);

 // bind it to the repeater to display the chapter data
 repMenuItems.DataSource = chapterData;
 repMenuItems.DataBind();
 }
 } // Page_Load
 } // CH07ApplicationStateCS
}

Recipe 7.3. Maintaining Information About a User
Throughout a Session

Problem

You want to make personalized information available to the users of your application for as long as
each remains active without accessing a database each time the information is needed and
regardless of the number of pages traversed.

Solution

Create a class in which to store the personalized data, instantiate the class and load the data, store
the data object in the Session object, and access the data from the Session object as required.

In the code-behind class for your ASP.NET pages that need access to the data, use the .NET
language of your choice to:

Check to see if the object used to store the personalized data exists in the Session object.1.

If the object exists, retrieve the object from Session. If the object does not exist, instantiate the
class used for the personalized data and store it in the Session object.

2.

Use the data as required in your application.3.

A simple example that illustrates this solution is shown in Examples 7-8, 7-9, 7-10, 7-11 through 7-
12. The example uses the class shown in Examples 7-8 (CH07PersonalDataVB for VB) and 7-9
(CH07PersonalDataCS for C#) to provide a container for some simple personalized data. This class
contains properties for each of the data items and a default constructor.

Figure 7-2 shows a form that we've created for viewing the current contents of the personalized data
stored in the Session object and for entering new session state data values. Example 7-10 shows the
.aspx file that produces the form. Examples 7-11 and 7-12 show the companion VB and C# code-
behind files.

Figure 7-2. Form for viewing and entering session state data values

Discussion

An approach we like for maintaining personalized data about a user for the duration of a sessionan
approach often referred to as personalizationis to create a class to hold the data, instantiate and
populate the object, store the object in the Session object, and access the data from the Session
object.

This recipe takes a slightly different approach to personalization from that
found in the recipes in Chapter 10, which leverage ASP.NET 2.0's built-in profile
features. Here the emphasis is on relatively short-lived datathat is, data that
must remain available while the user is active. What's more, your code must
undertake all the necessary steps to instantiate and populate an object to hold
personalized settings, store it in session state, and access it from session state
when needed. By contrast, when using ASP.NET 2.0's built-in profile features,
much of the mechanics of persisting information is handled for you
automatically and transparently using the profile framework. More important,
ASP.NET 2.0's profile features are geared more toward long-lived data, such as
a user's name, address, and other user-specific information. These
customizations can be persisted and made available to the user on subsequent
visits to the site. This forms the basis of ASP.NET 2.0's new profile features and
is the focus of the recipes in Chapter 10.

As its name implies, you can use the Session object in ASP.NET to store information needed for a
particular user session. Variables stored in the Session object are not discarded when the user
navigates between the pages of an application. Rather, they are persisted for the entire session.

To illustrate this approach, the code-behind in our example contains the logic needed to access the

data in the Session object. We make use of the Page_Load method in Examples 7-11 (VB) and 7-12
(C#) to check if the Session object contains the personalization data. If not, we create a new
CH07PersonalDataVB (VB) or CH07PersonalDataCS (C#) object using default values, and store this new
data object in the Session object associated with the current session. Otherwise, we retrieve a
reference to the object containing the personalized data. Finally, we update the contents of the form
by passing the personalization object to a method that uses the data to update the contents of the
form.

In Examples 7-11 (VB) and 7-12 (C#), a constant, SES_PERSONALIZATION_DATA,
is used to define the name of the variable placed in the Session object. This is
done to avoid having to hardcode the name of the variable in multiple locations
in the code. In an application where the data is accessed in multiple pages, the
constant should be stored in another class containing global constants as
described in Recipe 7.1.

For this example, the personalized data is updated when the user enters new personalization data
values and clicks the Update button. In the button click event handler, we check whether the data
has been stored in the Session object, using the same code we used in the Page_Load method. You
should always check this condition to avoid the error that will be thrown if the data is no longer in the
Session object. Loss of data can occur if the session times out and ASP.NET deletes all variables for
the user session.

Next, we update the contents of the personalization object with data from the form. In a production
setting, your code will need to perform validation on the data to ensure that it is of the correct type,
in the correct form, within the correct range, and so on. Finally, we store the personalization data in
the Session object and update the form contents.

This example is simple, but it shows the mechanics associated with storing and retrieving data in the
Session object. In a full application, the personalization data could be read from a database when the
user logs in. If your application uses cookies to identify a user, the Session_Start event handler of
global.asax provides an ideal place to retrieve the cookie that identifies the user, get the user's
personalization data from a database, and place the data in the Session object.

You can place any object in the Session object, but take care not to overuse the Session object.
Large objects can impact the application's performance by tying up system resources.

To provide the ability to associate session data with a specific user, ASP.NET assigns a session ID to
each user session. The session ID is then used by ASP.NET to retrieve the Session object associated
with the user requesting a page.

The HTTP protocol is stateless, so some method of associating the incoming requests with a specific
user is required. By default, ASP.NET sends a cookie containing the session ID to the client browser
as part of its response to the first page request by a user. Subsequent page requests return the
cookie data. ASP.NET retrieves the cookie data from the request, extracts the session ID, retrieves
the Session object for the specific user, and processes the requested page.

The cookie sent to the client browser is an in-memory cookie and is not persisted on the client
machine. If the user closes the browser, the cookie containing the session ID will be destroyed.

To support applications that do not use cookies, ASP.NET provides the ability to modify the URL
automatically to contain the session ID (called URL munging). This method of tracking the session ID

is configured in the web.config file and is discussed in Recipe 12.4.

ASP.NET supports three methods of storing the session information. By default, the session data is
stored in memory within the ASP.NET process. The session data can also be stored in memory in an
out-of-process state server or SQL Server. The storage methods are configured in the web.config file
and are discussed in Recipe 12.4.

When using the Session object in your application, consider the following points:

By default, a session times out after 20 minutes of inactivity. When a session times out, the
ASP.NET process destroys all session data, and the resources used by the session variables are
recovered. The session timeout is configured in the web.config file and is discussed in Recipe
12.4.

If any special operations are required when a user session ends, they can be performed in the
Session_End event handler of global.asax. This event is raised whenever a session ends,
whether it is done programmatically or because the session times out. However, the
Session_End event may not be raised if ASP.NET is terminated abruptly.

See Also

Recipes 7.1, 12.4, and Chapter 10 for ASP.NET 2.0's built-in personalization features

Example 7-8. Class used to store data in session object (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the container to store personalization data
 ''' for a user
 ''' </summary>
 Public Class CH07PersonalDataVB
 'private attributes with default values
 Private mUsername As String = ""
 Private mResultsPerPage As Integer = 25
 Private mSortBy As String = "Title"

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the username data
 ''' </summary>
 Public Property username() As String
 Get
 Return (mUsername)
 End Get

 Set(ByVal Value As String)
 mUsername = Value
 End Set
 End Property 'username

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the resultsPerPage data
 ''' </summary>
 Public Property resultsPerPage() As Integer
 Get
 Return (mResultsPerPage)
 End Get
 Set(ByVal Value As Integer)
 mResultsPerPage = Value
 End Set
 End Property 'resultsPerPage

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the sortBy data
 ''' </summary>
 Public Property sortBy() As String
 Get
 Return (mSortBy)
 End Get
 Set(ByVal Value As String)
 mSortBy = Value
 End Set
 End Property 'sortBy
 End Class 'CH07PersonalDataVB
End Namespace

Example 7-9. Class used to store data in session object (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the container to store personalization data
 /// for a user
 /// </summary>
 public class CH07PersonalDataCS
 {
 // private attributes with default values
 private String mUsername = "";

 private int mResultsPerPage = 25;
 private String mSortBy = "Title";

 ///**
 /// <summary>
 /// This property provides the ability to get/set the username data
 /// </summary>
 public String username
 {
 get
 {
 return (mUsername);
 }
 set
 {
 mUsername = value;
 }
 } // username

 ///**
 /// <summary>
 /// This property provides the ability to get/set the resultsPerPage data
 /// </summary>
 public int resultsPerPage
 {
 get
 {
 return (mResultsPerPage);
 }
 set
 {
 mResultsPerPage = value;
 }
 } // resultsPerPage

 ///**
 /// <summary>
 /// This property provides the ability to get/set the sortBy data
 /// </summary>
 public String sortBy
 {
 get
 {
 return (mSortBy);
 }
 set
 {
 mSortBy = value;
 }
 } // mSortBy
 } // CH07PersonalDataCS
}

Example 7-10. Maintaining user state (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH07SessionStateVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH07SessionStateVB"
 Title="State Session" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Maintaining Session State (VB)
 </div>
 <table width="60%" align="center">
 <tr>
 <td colspan="2" align="center" class="pageHeading">
 Current Session Data Values</td>
 </tr>
 <tr class="labelText">
 <td>User Name: </td>
 <td><asp:Label ID="labUserName" Runat="server" /></td>
 </tr>
 <tr class="labelText">
 <td>Results Per Page: </td>
 <td><asp:Label ID="labResultsPerPage" Runat="server" /></td>
 </tr>
 <tr class="labelText">
 <td>Sort By: </td>
 <td><asp:Label ID="labSortBy" Runat="server" /></td>
 </tr>
 </table>

 <table width="60%" align="center">
 <tr>
 <td colspan="2" align="center" class="pageHeading">
 Enter New Session Data Values</td>
 </tr>
 <tr class="labelText">
 <td>User Name: </td>
 <td><asp:TextBox ID="txtUserName" Runat="server" /></td>
 </tr>
 <tr class="labelText">
 <td>Results Per Page: </td>
 <td><asp:TextBox ID="txtResultsPerPage" Runat="server" /></td>
 </tr>
 <tr class="labelText">
 <td>Sort By: </td>
 <td><asp:TextBox ID="txtSortBy" Runat="server" /></td>
 </tr>

 <tr>
 <td colspan="2" align="center">

 <asp:Button ID="btnUpdate" runat="server"
 Text="Update"
 OnClick="btnUpdate_Click" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 7-11. Maintaining user state code-behind (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH07SessionStateVB.aspx
 ''' </summary>
 Partial Class CH07SessionStateVB
 Inherits System.Web.UI.Page

 'The following constant defines the name of the session variable used
 'to store the user personalization data
 Public Const SES_PERSONALIZATION_DATA As String = "PersonalizationData"

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim personalData As CH07PersonalDataVB

 If (Not Page.IsPostBack()) Then
 'check to see if the session data exists
 If (IsNothing(Session(SES_PERSONALIZATION_DATA))) Then
 'data does not exist in session so create a new personalization
 'object and place it in session scope
 personalData = New CH07PersonalDataVB
 Session.Add(SES_PERSONALIZATION_DATA, _

 personalData)
 Else
 'data exists in session so get a reference to the data
 personalData = CType(Session(SES_PERSONALIZATION_DATA), _
 CH07PersonalDataVB)
 End If

 'update contents on the form
 updateFormData(personalData)
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the update button click
 ''' event. It is responsible for updating the contents of the session
 ''' variable used to store the personalization data and updating the form.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnUpdate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim personalData As CH07PersonalDataVB
 'check to see if the session data exists
 If (IsNothing(Session(SES_PERSONALIZATION_DATA))) Then
 'data does not exist in session so create a new personalization object
 personalData = New CH07PersonalDataVB
 Else
 'data exists in session so get a reference to the data
 personalData = CType(Session(SES_PERSONALIZATION_DATA), _
 CH07PersonalDataVB)
 End If

 'update contents of session object from form
 personalData.username = txtUserName.Text
 personalData.resultsPerPage = CInt(txtResultsPerPage.Text)
 personalData.sortBy = txtSortBy.Text

 'update contents of session object
 Session(SES_PERSONALIZATION_DATA) = personalData

 'update contents on the form
 updateFormData(personalData)
 End Sub 'btnUpdate_Click

 '''***
 ''' <summary>
 ''' This routine updates the contents of the form from the passed data.
 ''' </summary>
 '''
 ''' <param name="personalData">Set the the personalization data used

 ''' to update the data on the form
 ''' </param>
 Private Sub updateFormData(ByVal personalData As CH07PersonalDataVB)
 labUserName.Text = personalData.username
 labResultsPerPage.Text = personalData.resultsPerPage.ToString()
 labSortBy.Text = personalData.sortBy
 End Sub 'update
 End Class 'CH07 SessionStateVB
End Namespace

Example 7-12. Maintaining user state code-behind (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH07SessionStateCS.aspx
 /// </summary>
 public partial class CH07SessionStateCS : System.Web.UI.Page
 {
 // The following constant defines the name of the session variable used
 // to store the user personalization data
 public const String SES_PERSONALIZATION_DATA = "PersonalizationData";
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 CH07PersonalDataCS personalData = null;

 if (!Page.IsPostBack)
 {
 // check to see if the session data exists
 if (Session[SES_PERSONALIZATION_DATA] == null)
 {
 // data does not exist in session so create a new personalization
 // object and place it in session scope
 personalData = new CH07PersonalDataCS();
 Session.Add(SES_PERSONALIZATION_DATA,
 personalData);

 }
 else
 {
 // data exists in session so get a reference to the data
 personalData = (CH07PersonalDataCS)
 (Session[SES_PERSONALIZATION_DATA]);
 }

 // update contents on the form
 updateFormData(personalData);
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the update button click
 /// event. It is responsible for updating the contents of the session
 /// variable used to store the personalization data and updating the form.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnUpdate_Click(object sender, EventArgs e)
 {
 CH07PersonalDataCS personalData = null;

 //check to see if the session data exists
 if (Session[SES_PERSONALIZATION_DATA] == null)
 {
 // data does not exist in session so create a new
 // personalization object
 personalData = new CH07PersonalDataCS();
 }
 else
 {
 //data exists in session so get a reference to the data
 personalData = (CH07PersonalDataCS)(Session[SES_PERSONALIZATION_DATA]);
 }

 // update contents of session object from form
 personalData.username = txtUserName.Text;
 personalData.resultsPerPage = Convert.ToInt32(txtResultsPerPage.Text);
 personalData.sortBy = txtSortBy.Text;

 //update contents of session object
 Session[SES_PERSONALIZATION_DATA] = personalData;

 // update contents on the form
 updateFormData(personalData);
 } // btnUpdate_Click

 ///***

 /// <summary>
 /// This routine updates the contents of the form from the passed data.
 /// </summary>
 private void updateFormData(CH07PersonalDataCS personalData)
 {
 labUserName.Text = personalData.username;
 labResultsPerPage.Text = personalData.resultsPerPage.ToString();
 labSortBy.Text = personalData.sortBy;
 } // updateFormData
 } // CH07SessionStateCS
}

Recipe 7.4. Preserving Information Between Postbacks

Problem

You have a page that needs to remember the state's value between postbacks to determine how to
display the page.

Solution

Use the RegisterHiddenField method of the ClientScript object to create a hidden text field in the
rendered page.

Nothing special is required in the .aspx file. Instead, in the code-behind class for the page, use the
.NET language of your choice to:

Programmatically insert a hidden text field into the form using the RegisterHiddenField method
of the ClientScript object.

1.

Use this field to store the value of the state you wish to preserve between postbacks.2.

Access the hidden text field on subsequent submissions of the page to the server.3.

Figure 7-3 shows the output of a form that preserves the page state using a hidden field. Clicking the
Prev/Next buttons decrements/increments the value in the hidden field by one. Example 7-13 shows
the .aspx file that produces the form. Examples 7-14 and 7-15 show the companion VB and C# code-
behind files that demonstrate how to access the application state data.

Figure 7-3. Maintaining page state with a hidden field

Discussion

An approach we favor for remembering the current state of a value between postbacks to the server
involves programmatically inserting one or more hidden text fields into a form.

A similar technique is commonly used by classic ASP developers, who explicitly place a hidden text
field in the form and set its value in the page code. You can use the same technique in ASP.NET
pages. However, ASP.NET, unlike classic ASP, lets you programmatically insert hidden text fields into
a form at runtime. The significant advantage here is that all code you write is kept in the code-
behind, allowing the .aspx file to contain only the presentation aspects (hidden fields contain no user
interface).

One negative aspect of using hidden fields for storing state data is that the data is stored in plain
text. If you do not want the data to be visible in the rendered HTML, you should store the data in the
ViewState instead, as described in Recipe 7.4.

As an example of when you might use hidden fields, suppose your application supports complex
sorting within a DataGrid, such as a two-way sort that involves ascending and descending columns
and might even be supported by your own sorting expressions. You can use hidden fields to maintain
information about how a user has performed a specific sort so you can preserve the user's sorting
order and choice of sorted columns.

Our example that illustrates the solution is simple to focus on the concept of storing information in
hidden fields each time a page is submitted to the server. The example programmatically inserts a
single hidden field into a form and then increments or decrements its value based on the button
clicked by the user.

Because the hidden field is accessed from many points in the code-behind, a constant at the class
level, PAGE_STATE, defines the name of the hidden field that is programmatically inserted into the
rendered page. This avoids hardcoding the hidden field name throughout the code and the associated
maintenance issues.

In the Page_Load method, updatePage, which is the method used to update the page based on the
page state, is called passing a value of 0 as the initial page state value.

In the updatePage method, a label is updated to indicate the current state value. After updating the
page to reflect the current page state, the RegisterHiddenField method of the Page object is used to
save the page state value in the rendered page.

The rendered page contains the following hidden form variable that can be retrieved when the page is
submitted to the server. The name is set to the value of the PAGE_STATE constant, and the value is set
to the current page state:

 <input type="hidden" name="PageState" id="PageState" value="0" />

Hidden fields always store the value as a string. This requires any data saved
using the technique to be converted to a string when the RegisterHiddenField
method is called.

In this example, two buttons are provided to increment and decrement the page state, respectively.
An event handler is added in the code-behind for each of the button click events. The event handler
for the increment button is called btnNextState_Click; the event handler for the decrement button is
btnPrevState_Click. In the event handlers, the current page state is retrieved from the hidden field,
adjusted as required, and then the updatePage method is called to update the page and save the new
page state value in the form when the page is rendered.

The example demonstrates how easy ASP.NET has made it to persist information needed for each
round trip between the server and the client. For an example of persisting more complex data
between page submittals, refer to Recipe 7.4.

See Also

Recipe 7.4

Example 7-13. Maintaining page state with hidden values (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH07HiddenValuesVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH07HiddenValuesVB"
 Title="Hidden Values" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Maintaining Page State With Hidden Fields (VB)
 </div>
 <table width="30%" align="center" id="tabState" runat="server">
 <tr class="labelText">
 <td>Current Page State: </td>
 <td><asp:Label ID="labPageState" Runat="server" /></td>
 </tr>
 <tr>
 <td colspan="2" align="center">

 <asp:Button ID="btnPrevState" runat="server"
 Text="Prev State"
 OnClick="btnPrevState_Click" />
 <asp:Button ID="btnNextState" runat="server"
 Text="Next State"
 OnClick="btnNextState_Click" />
 </td>

 </tr>
 </table>
</asp:Content>

Example 7-14. Maintaining page state with hidden values code-behind
(.vb)

Option Explicit
On Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH07HiddenValuesVB.aspx
 ''' </summary>
 Partial Class CH07HiddenValuesVB
 Inherits System.Web.UI.Page

 'The following variable defines the name of the hidden field in the
 'form used to track the page state
 Private PAGE_STATE As String = "PageState"

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Not Page.IsPostBack()) Then
 'not a postback so initialize the page state to 0
 updatePage(0)
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the next state button
 ''' click event. It is responsible for setting the page state ahead
 ''' one state.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>

 Protected Sub btnNextState_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim pageState As Integer

 pageState = CInt(Request.Form(PAGE_STATE))
 pageState += 1
 updatePage(pageState)
 End Sub 'btnNextState_Click

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the previous state button
 ''' click event. It is responsible for setting the page state back one
 ''' state.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnPrevState_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim pageState As Integer

 pageState = CInt(Request.Form(PAGE_STATE))
 pageState -= 1
 updatePage(pageState)
 End Sub 'btnPrevState_Click

 '''***
 ''' <summary>
 ''' This routine updates the page for the passed page state.
 ''' </summary>
 '''
 ''' <param name="pageState">Set to the current page state</param>
 Private Sub updatePage(ByVal pageState As Integer)

 'update the current page state display
 labPageState.Text = pageState.ToString()

 'register the hidden field used to persist the current page state
 ClientScript.RegisterHiddenField(PAGE_STATE, _
 pageState.ToString())
 End Sub 'updatePage
 End Class 'CH07HiddenValuesVB
End Namespace

Example 7-15. Maintaining page state with hidden values code-behind
(.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH07HiddenValuesCS.aspx
 /// </summary>
 public partial class CH07HiddenValuesCS : System.Web.UI.Page
 {
 // The following variable defines the name of the hidden field in the
 // form used to track the page state
 private String PAGE_STATE = "PageState";

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 // not a postback so initialize the page state to 0
 updatePage(0);
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the next state button
 /// click event. It is responsible for setting the page state ahead
 /// one state.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnNextState_Click(object sender, EventArgs e)
 {
 int pageState;

 pageState = Convert.ToInt32(Request.Form[PAGE_STATE]);
 pageState += 1;
 updatePage(pageState);
 } // btnNextState_Click

 ///***
 /// <summary>

 /// This routine provides the event handler for the previous state button
 /// click event. It is responsible for setting the page state back one
 /// state.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnPrevState_Click(object sender, EventArgs e)
 {
 int pageState;

 pageState = Convert.ToInt32(Request.Form[PAGE_STATE]);
 pageState -= 1;
 updatePage(pageState);
 } // btnPrevState_Click

 ///***
 /// <summary>
 /// This routine updates the page for the passed page state.
 /// </summary>
 ///
 /// <param name="pageState">Set to the current page state</param>
 private void updatePage(int pageState)
 {
 // update the current page state display
 labPageState.Text = pageState.ToString();
 // register the hidden field used to persist the current page state
 ClientScript.RegisterHiddenField(PAGE_STATE,
 pageState.ToString());
 } // updatePage
 } // CH07HiddenValuesCS
}

Recipe 7.5. Preserving Information Across Multiple
Requests for a Page

Problem

You have a page that contains complex object information you need to preserve between requests for
the page. The data contains information you want to be unreadable in the rendered HTML, and you
do not want to use a database to preserve the information.

Solution

Use the ViewState property of the Page object to store the data. You can access the data when the
page is submitted back to the server.

In the code-behind class for the page, use the .NET language of your choice to add all the code
necessary to handle the storage and recovery of the object data to and from the ViewState.

In a separate class file, use the .NET language of your choice to define the container in which you will
store the data in the ViewState.

The application that illustrates this solution is shown in Examples 7-16, 7-17, 7-18, 7-19 through 7-
20. Example 7-16 shows the .aspx file. Examples 7-17 and 7-18 show the VB and C# code-behind
files. Examples 7-19 and 7-20 show the VB and C# data service class. Figure 7-4 shows the form
produced by the application.

Discussion

The ViewState is an object similar to the Application and Session objects discussed in the previous
recipes; however, its method of data storage is different. Unlike the Application and Session objects,
which are stored in server memory, the ViewState is stored in a hidden form field within the HTML
sent to the browser. This property lets you store page state information directly in a page and then
retrieve it when the page is posted back to the server without using server resources. This technique
does result, however, in additional data being transmitted to and from the server.

Figure 7-4. Maintaining page state with ViewState

ASP.NET uses the ViewState to store state information for the server controls on your form so it can
rehydrate (or deserialize the data for) the controls upon submittal of the page to the server. You can
use the ViewState for storing page state data in your application as well. What we mean by "page
state data" in this context is user-specific state values not stored by a control. Values are tracked in
ViewState similarly to how they are tracked in Session (described in Recipe 7.2) and Cache (described
in Recipe 16.7).

An example of when you might want to use ViewState in this way is when you want to display a list of
items in a DataGrid, and each user wants to sort the DataGrid's columns differently. In this context,
the sort order is a small piece of user-specific page state that you want to maintain when the page is
submitted back to the server. ViewState is a fine place to store this type of value, and the Visual
Studio help files are replete with examples of this sort.

The example we've written to illustrate this solution is more ambitious than the previous example,
fairly long, but worth the effort. It demonstrates the ability to store complex objects in the ViewState
for tracking state information between page submittals and how to emulate the two-way data binding
available with the GridView control but not available with the DataGrid control. When used together,
these two concepts provide the ability to use many of the features of ASP.NET, which can simplify the
code required to develop an application.

If you find yourself using the DataGrid because it's the best choice for your
application, this recipe will help you implement two-way data binding with it.
The GridView, however, inherently supports two-way data binding.

The .aspx file, shown in Example 7-16, is typical of a page containing a data-bound DataGrid (see
Chapter 2). The one difference in this example is the use of constants from the data service class to
define the fields bound to the columns in the DataGrid. The constants are described later, during the
discussion of the data service class.

In Example 7-16, the following change is required to use the .aspx file with C#:

Change the namespace in the imports statement to ASPNetCookbook.
CSExamples.

You'll find all code that handles the persistence and recovery of the object data you store in the
ViewState in the code-behind shown in Examples 7-17 (VB) and 7-18 (C#).

The data service class, shown in Examples 7-19 (VB) and 7-20 (C#), provides a container for
persisting the data in the ViewState. (The data service class is described at the end of this example.)

Because you will want to access the object persisted in the ViewState from multiple places in your
code, we've defined a constant in the code-behind, VS_TEST_DATA, to define the name of the variable
used to access the object in the ViewState. With this approach, you avoid the problems when you
hardcode a variable name throughout your code.

In the Page_Load method of the code-behind, an instance of the data service class is created by
calling its constructor. The new object is passed to the bindData method to bind the data in the
object to the DataGrid in the .aspx file.

Create the new object only when the page is originally rendered. Creating it on
subsequent postbacks would result in loss of the data entered by the user.

The bindData method performs two operations. First, it binds the data in the passed testData object
to the DataGrid. This is done by setting the DataSource to the table in the DataSet of the passed
object and calling the BindData method of the DataGrid. In addition, the DataKeyField is set to the
field in the table that contains the primary key data. This provides the unique identifier for each row
of test data in the rendered DataGrid and is needed to update the data submitted back to the server.
The bindData method then persists the passed object to the ViewState. This causes the testData
object to be serialized to a string and placed in the ViewState when the page is rendered.

When a page is rendered and sent to the client browser, all objects created in
the code-behind are destroyed. This means the testData object no longer
exists after the page is rendered unless you have persisted it. This is where
data binding in web applications differs from data binding in Windows
applications. In a Windows application, the underlying DataSet, DataTable, or
other data container bound to the controls on the Windows form continues to
exist and remains connected to the bound controls. Any changes made to the
data in the bound controls are updated in the underlying data container,
making updates to the original data source simple. In web forms, the
connection to the underlying data container is broken when the page is
rendered. Emulating the two-way binding and data updates available in
Windows applications requires a bit of additional work, but it can be well worth
the effort. (Again, our focus here assumes the bound control is a DataGrid. The
GridView inherently supports this capability.)

When the user clicks the Update button, the form is submitted back to the server. ASP.NET takes
care of updating the DataGrid server control with the data posted back to the server. However, the
underlying data container (the testData object in this example) is not recreated by ASP.NET.
Therefore, the testData object is rehydrated from the ViewState in the Update button click event.

After rehydrating the testData object, the contents of the object need to be updated with the current
data in the DataGrid. This is done by iterating through the rows in the grid, extracting the individual
data values, and updating the contents of the testData object.

For each row, the primary key value is obtained from the DataKeys collection for the current item.
This is possible because the DataKeyField was set to the column containing the primary key when the
DataGrid was originally bound.

Next, a reference is obtained to the first grade score text box. This is done by using the FindControl
method of the current DataGrid item. This is possible because the text boxes defined in the DataGrid
have been assigned IDs used here to perform the lookup. After the ID has been retrieved, the first
grade score is updated in the testData object with the value in the text box. This process is repeated
for the second grade score text box.

Production code should have validation to ensure that only numeric values are
entered in the text box. This is best done using validation controls (see Chapter
3) or a custom control that allows only numeric entry, as described in Recipe
6.5.

After updating the contents of the object, the update method is called to update the contents of the
database with the data in the object, and the data is again bound to the DataGrid.

The CH07TestDataVB class (see Examples 7-19 for the VB version and 7-20 for the C# version)
provides the data services for this example. It encapsulates the data along with the methods for
operating on the data. The class is defined with the Serializable attribute to provide the ability to
serialize the data in the object created from the class to a string, which can then be stored in the
ViewState or another location, such as a database. This string can then be deserialized to rehydrate
the original object.

The class is designed to contain a DataSet as the container for the object data. This DataSet provides
the ability to bind a DataGrid or another control directly to the data in the object. To bind to the
internal data, two things are required. First, a property (the read-only testData property) must be
provided to obtain a reference to the data table that contains the data.

Second, the names of the columns in the data table used for binding must be made available to bind
controls to the specific data elements. These are defined as public constants in the class to provide a
loose coupling between the code-behind and the data services class. By using the constants, the
names of the columns can change without affecting any of the code that uses the CH07TestDataVB
class.

In this example, the constructor for the class queries the database for the test data and fills the
private member mTestData. The only special operation performed is to define the data column that is
the primary key for the table in the DataSet. This makes it possible to find a specific row using the
primary key value.

If the primary key is not defined for a table in the DataSet, the code will be
required to filter the data in the table using a DataView or to iterate through all
of the rows in the data table to find the row of interest. Both of these
approaches can penalize performance.

Two properties are defined to set the first and second grade scores. Both of these properties perform
the same actions but on different columns in the data table. To set a value, the appropriate row must
be located. This is done by using the Find method of the row collection with the testID (primary key)
value passed to the property. The find operation will only work if a primary key is defined for the
table. After finding the row matching the passed testID, the value is set to the passed score.

When all data has been changed, as required in the object, the Update method is called. This method
updates the data from the object to the database. It utilizes the functionality in ADO.NET that will,
with a few lines of code, perform all inserts, updates, and deletes required to match the data in the
database with the data in the data table. This basically requires four steps:

Open a connection to the database. This is the same process used in the constructor.1.

Create a new data adapter using the same Select statement used to populate the data table
originally.

All of the columns currently contained in the data table must be included in
the Select statement. For this reason, it is good to define the Select
statement as a constant or a private member variable to allow the
constructor and Update methods to use the same Select statement, as
shown in the following code:

 da = New OleDbDataAdapter(CMD_TEXT, _
 dbConn)

 da = new OleDbDataAdapter(CMD_TEXT,
 dbConn);

2.

Create a new command builder with a reference to the data adapter created in step 2. The
command builder will build the appropriate insert, update, and delete commands from the
provided Select command.

3.

Call the Update method of the data adapter. This will perform all required inserts, updates, and
deletes required to cause the data in the database to match the data in the data table.

4.

4.

The update works because every row in a data table has a status property that
indicates if the row in the data table has been modified, added, or deleted.
From this status information, the data adapter can determine what actions are
required.

This example does not provide the ability to add new tests or delete current tests. You can easily add
the functionality to the CH07TestDataVB class by adding two methods: addTest and deleteTest. Your
addTest method needs to be passed the test name, its maximum score, and the scores for first and
second grade. With the passed data, it should add a new row to the data table containing the test
data. Likewise, your deleteTest method should delete the required row from the data table using the
Delete method of the rows collection. The Delete method does not delete the row but marks it for
deletion when the update is performed.

Though the technique described in this example is powerful and useful, you
should use it carefully. Placing a serialized object in the ViewState can increase
the size of the information sent to the client browser, and, because the
ViewState information is stored in a hidden form field, it is sent back to the
server when the page is submitted. In most cases, this doesn't matter, because
an extra few thousand bytes is not a problem. However, if you have a large
object, the overhead could be excessive. One way to use this technique with a
large object is to store the object in the Session object instead of in the
ViewState. The trade-off is the server resources and time required to transmit
the data to the Session object. Refer to Recipe 7.2 for information on using the
Session object.

See Also

Recipes 6.5, 7.2, and 16.6

Example 7-16. Maintaining page state using the ViewState (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH07ViewStateVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH07ViewStateVB"
 Title="ViewState Persistence" %>
<%@ Import Namespace="ASPNetCookbook.VBExamples" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Maintaining Page State With The ViewState (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr>
 <td align="center">

 <asp:DataGrid ID="dgScores" Runat="server"
 Width="100%"
 AutoGenerateColumns="False"
 BorderColor="000080"
 BorderWidth="2px"
 HeaderStyle-BackColor="#000080"
 HeaderStyle-CssClass="tableHeader"
 ItemStyle-CssClass="tableCellNormal"
 ItemStyle-BackColor="#FFFFFF" >
 <Columns>
 <asp:TemplateColumn HeaderStyle-HorizontalAlign="Center"
 HeaderText="Test Name">
 <ItemTemplate>
 <%#Eval(CH07TestDataVB.TEST_NAME)%>
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderStyle-HorizontalAlign="Center"
 ItemStyle-HorizontalAlign="Center"
 HeaderText="Max Score">
 <ItemTemplate>
 <%#Eval(CH07TestDataVB.MAX_SCORE)%>
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderStyle-HorizontalAlign="Center"
 ItemStyle-HorizontalAlign="Center"
 HeaderText="First Grade
Passing Score">
 <ItemTemplate>
 <asp:TextBox id="txtFirstGradeScore" runat="server"
 Columns="5"
 text='<%# Eval(CH07TestDataVB.FIRST_GRADE_PASSING_SCORE) %>' />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderStyle-HorizontalAlign="Center"
 ItemStyle-HorizontalAlign="Center"
 HeaderText="Second Grade
Passing Score">
 <ItemTemplate>
 <asp:TextBox id="txtSecondGradeScore" runat="server"
 Columns="5"
 text='<%# Eval(CH07TestDataVB.SECOND_GRADE_PASSING_SCORE) %>' />
 </ItemTemplate>
 </asp:TemplateColumn>
 </Columns>
 </asp:DataGrid>
 </td>
 </tr>
 <tr>
 <td align="center">

 <asp:Button ID="btnUpdate" runat="server"
 Text="Update"
 OnClick="btnUpdate_Click" />
 <asp:Button ID="btnCancel" runat="server"

 Text="Cancel"
 OnClick="btnCancel_Click" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 7-17. Maintaining page state using the ViewState code-behind
(.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH07ViewStateVB.aspx
 ''' </summary>
 Partial Class CH07ViewStateVB
 Inherits System.Web.UI.Page
 'the following constant defines the name of the viewstate variable used
 'to store the test data object
 Private Const VS_TEST_DATA As String = "TestData"

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim testData As CH07TestDataVB

 If (Not Page.IsPostBack()) Then
 'create new test data object and bind to it
 testData = New CH07TestDataVB
 bindData(testData)
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the update button click
 ''' event event. It is responsible for updating the contents of the

 ''' database with the data from the form.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnUpdate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 'the following constants define the names of the textboxes in the
 'datagrid rows
 Const FIRST_GRADE_SCORE_TEXTBOX As String = "txtFirstGradeScore"
 Const SECOND_GRADE_SCORE_TEXTBOX As String = "txtSecondGradeScore"

 Dim testData As CH07TestDataVB
 Dim item As System.Web.UI.WebControls.DataGridItem
 Dim txtScore As TextBox
 Dim testID As Integer

 'make sure page contents are valid
 If (Page.IsValid) Then
 'rehydrate the test data object from the viewstate
 testData = CType(ViewState.Item(VS_TEST_DATA), _
 CH07TestDataVB)
 'copy the contents of the fields in the datagrid to the test data
 'object to emulate the two-way databinding in the Windows world
 For Each item In dgScores.Items
 'get the testID for the test data in the datagrid row
 testID = CInt(dgScores.DataKeys.Item(item.ItemIndex))

 'get a reference to the first grade score textbox in the row
 txtScore = CType(item.FindControl(FIRST_GRADE_SCORE_TEXTBOX), _
 TextBox)

 'update the first grade score in the test data object
 testData.firstGradeScore(testID) = CInt(txtScore.Text)

 'get a reference to the second grade score textbox in the row
 txtScore = CType(item.FindControl(SECOND_GRADE_SCORE_TEXTBOX), _
 TextBox)

 'update the first grade score in the test data object
 testData.secondGradeScore(testID) = CInt(txtScore.Text)
 Next item

 'update the test data in the database
 testData.update()

 'rebind the data to the datagrid
 bindData(testData)
 End If
 End Sub 'btnUpdate_Click

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the cancel button click
 ''' event event. It is responsible for cancel the current edits.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnCancel_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)

 'perform the actions required to cancel the edits
 End Sub 'btnCancel_Click

 '''***
 ''' <summary>
 ''' This routine binds the data in the passed object to the datagrid then
 ''' persists the object in the viewstate
 ''' </summary>
 '''
 ''' <param name="testData">Set to the test data to bind to the datagrid
 ''' on the form
 ''' </param>
 Private Sub bindData(ByVal testData As CH07TestDataVB)
 'bind the test data to the datagrid
 dgScores.DataSource = testData.testData()
 dgScores.DataKeyField = testData.TEST_DATA_ID
 dgScores.DataBind()

 'save the test data object in the view state
 ViewState.Add(VS_TEST_DATA, _
 testData)
 End Sub 'bindData
 End Class 'CH07ViewStateVB
End Namespace

Example 7-18. Maintaining page state using the ViewState code-behind
(.cs)

using System;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH07ViewStateCS.aspx

 /// </summary>
 public partial class CH07ViewStateCS : System.Web.UI.Page
 {
 // the following constant defines the name of the viewstate variable used
 // to store the test data object
 private const String VS_TEST_DATA = "TestData";

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 CH07TestDataCS testData = null;

 if (!Page.IsPostBack)
 {
 // create new test data object and bind to it
 testData = new CH07TestDataCS();
 bindData(testData);
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the update button click
 /// event event. It is responsible for updating the contents of the
 /// database with the data from the form.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnUpdate_Click(object sender, EventArgs e)
 {
 // the following constants define the names of the textboxes in the
 // datagrid rows
 const String FIRST_GRADE_SCORE_TEXTBOX = "txtFirstGradeScore";
 const string SECOND_GRADE_SCORE_TEXTBOX = "txtSecondGradeScore";

 CH07TestDataCS testData = null;
 TextBox txtScore = null;
 int testID;

 // make sure page contents are valid
 if (Page.IsValid)
 {
 // rehydrate the test data object from the viewstate
 testData = (CH07TestDataCS)(ViewState[VS_TEST_DATA]);

 // copy the contents of the fields in the datagrid to the test data
 // object to emulate the two-way databinding in the Windows world
 foreach (DataGridItem item in dgScores.Items)
 {
 // get the testID for the test data in the datagrid row
 testID = Convert.ToInt32(dgScores.DataKeys[item.ItemIndex]);

 //get a reference to the first grade score textbox in the row
 txtScore = (TextBox)(item.FindControl(FIRST_GRADE_SCORE_TEXTBOX));

 // update the first grade score in the test data object
 testData.set_firstGradeScore(testID,
 Convert.ToInt32(txtScore.Text));
 // get a reference to the second grade score textbox in the row
 txtScore = (TextBox)(item.FindControl(SECOND_GRADE_SCORE_TEXTBOX));

 // update the first grade score in the test data object
 testData.set_secondGradeScore(testID,
 Convert.ToInt32(txtScore.Text));
 } // foreach

 // update the test data in the database
 testData.update();

 // rebind the data to the datagrid
 bindData(testData);
 } // if (Page.IsValid)
 } // btnUpdate_Click

 ///***
 /// <summary>
 /// This routine provides the event handler for the cancel button click
 /// event event. It is responsible for cancel the current edits.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnCancel_Click(object sender, EventArgs e)
 {
 // perform the actions required to cancel the edits
 } // btnCancel_Click

 ///***
 /// <summary>
 /// This routine binds the data in the passed object to the datagrid then
 /// persists the object in the viewstate
 /// </summary>
 ///
 /// <param name="testData">Set to the test data to bind to the datagrid
 /// on the form
 /// </param>

 private void bindData(CH07TestDataCS testData)
 {
 // bind the test data to the datagrid
 dgScores.DataSource = testData.testData;
 dgScores.DataKeyField = CH07TestDataCS.TEST_DATA_ID;
 dgScores.DataBind();

 // save the test data object in the view state
 ViewState.Add(VS_TEST_DATA,
 testData);
 } // bindData
 } // CH07ViewStateCS
}

Example 7-19. Data service class for storage in the ViewState (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration.ConfigurationManager
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides an encapsulation of test data and properties/method
 ''' to operate on the data.
 '''
 ''' NOTE: This class is marked as serializable to provide the ability to
 ''' serialize the objects created with the class to an XML string.
 ''' </summary>
 <Serializable()> _
 Public Class CH07TestDataVB
 'constants used to bind the data in the encapsulated dataset
 Public Const TEST_DATA_ID As String = "TestDataID"
 Public Const TEST_NAME As String = "TestName"
 Public Const FIRST_GRADE_PASSING_SCORE As String = "FirstGradePassingScore"
 Public Const SECOND_GRADE_PASSING_SCORE As String = "SecondGradePassingScore"
 Public Const MAX_SCORE As String = "MaxScore"

 'constant to provide the name of the table in the dataset
 Private Const TEST_DATA_TABLE As String = "TestData"

 'private attributes
 Private mTestData As DataSet

 Private mConnectionStr As String

 'the following constant is used to query the data from the database
 Private Const CMD_TEXT As String = "SELECT " & TEST_DATA_ID & "," & _
 TEST_NAME & "," & _
 FIRST_GRADE_PASSING_SCORE & "," & _
 SECOND_GRADE_PASSING_SCORE & "," & _
 MAX_SCORE & _
 " FROM " & TEST_DATA_TABLE

 '''***
 ''' <summary>
 ''' This property provides the ability to get a reference to the table
 ''' in the dataset containing the test data.
 ''' </summary>
 Public ReadOnly Property testData() As DataTable
 Get
 Return (mTestData.Tables(TEST_DATA_TABLE))
 End Get
 End Property 'testData

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the first grade score
 ''' for the passed test ID.
 ''' </summary>
 Public Property firstGradeScore(ByVal testID As Integer) As Integer
 Get
 Dim dRow As DataRow

 'get row with the passed testID value
 dRow = mTestData.Tables(TEST_DATA_TABLE).Rows.Find(testID)

 'return the first grade passing score
 Return (CInt(dRow.Item(FIRST_GRADE_PASSING_SCORE)))
 End Get
 Set(ByVal Value As Integer)
 Dim dRow As DataRow

 'get row with the passed testID value
 dRow = mTestData.Tables(TEST_DATA_TABLE).Rows.Find(testID)

 'set the first grade passing score
 dRow.Item(FIRST_GRADE_PASSING_SCORE) = Value
 End Set
 End Property 'firstGradeScore

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the second grade score
 ''' for the passed test ID.
 ''' </summary>

 Public Property secondGradeScore(ByVal testID As Integer) As Integer
 Get
 Dim dRow As DataRow

 'get row with the passed testID value
 dRow = mTestData.Tables(TEST_DATA_TABLE).Rows.Find(testID)

 'return the first grade passing score
 Return CInt((dRow.Item(SECOND_GRADE_PASSING_SCORE)))

 End Get

 Set(ByVal Value As Integer)
 Dim dRow As DataRow

 'get row with the passed testID value
 dRow = mTestData.Tables(TEST_DATA_TABLE).Rows.Find(testID)

 'set the first grade passing score
 dRow.Item(SECOND_GRADE_PASSING_SCORE) = Value

 End Set
 End Property 'secondGradeScore

 '''***
 ''' <summary>
 ''' This routine provides the ability to update the test data for this
 ''' object in the database.
 ''' </summary>
 Public Sub update()
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim cmdBuilder As OleDbCommandBuilder = Nothing

 Try
 dbConn = New OleDbConnection(mConnectionStr)
 dbConn.Open()
 da = New OleDbDataAdapter(CMD_TEXT, _
 dbConn)

 'create a command builder which will create the appropriate update,
 'insert, and delete SQL statements
 cmdBuilder = New OleDbCommandBuilder(da)

 'update data in the testdata table
 da.Update(mTestData, _
 TEST_DATA_TABLE)

 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()

 End If
 End Try
 End Sub 'update

 '''***
 ''' <summary>
 ''' This constructor creates the object and populates it with test data
 ''' from the database
 ''' </summary>
 Public Sub New()
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim key(0) As DataColumn

 Try
 'get the connection string from web.config and open a connection
 'to the database
 mConnectionStr = _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(mConnectionStr)
 dbConn.Open()

 'get the data from the database
 da = New OleDbDataAdapter(CMD_TEXT, _
 dbConn)
 mTestData = New DataSet
 da.Fill(mTestData, _
 TEST_DATA_TABLE)

 'define the testID column in the data table as a primary key column
 'this makes it possible to "lookup" a datarow with the testID value
 'NOTE: The PrimaryKey property expects an array of DataColumn even
 ' when only one column is used as the primary key
 key(0) = mTestData.Tables(TEST_DATA_TABLE).Columns(TEST_DATA_ID)
 mTestData.Tables(TEST_DATA_TABLE).PrimaryKey = key
 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'New
 End Class 'CH07TestDataVB
End Namespace

Example 7-20. Data service class for storage in the ViewState (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides an encapsulation of test data and properties/method
 /// to operate on the data.
 ///
 /// NOTE: This class is marked as serializable to provide the ability to
 /// serialize the objects created with the class to an XML string.
 /// </summary>
 [Serializable]
 public class CH07TestDataCS
 {
 // constants used to bind the data in the encapsulated dataset
 public const String TEST_DATA_ID = "TestDataID";
 public const String TEST_NAME = "TestName";
 public const String FIRST_GRADE_PASSING_SCORE = "FirstGradePassingScore";
 public const String SECOND_GRADE_PASSING_SCORE = "SecondGradePassingScore";
 public const String MAX_SCORE = "MaxScore";

 // constant to provide the name of the table in the dataset
 private const String TEST_DATA_TABLE = "TestData";

 // private attributes
 private DataSet mTestData = null;
 private String mConnectionStr = null;

 // the following constant is used to query the data from the database
 private const String CMD_TEXT = "SELECT " + TEST_DATA_ID + "," +
 TEST_NAME + "," +
 FIRST_GRADE_PASSING_SCORE + "," +
 SECOND_GRADE_PASSING_SCORE + "," +
 MAX_SCORE +
 " FROM " + TEST_DATA_TABLE;

 ///***
 /// <summary>
 /// This property provides the ability to get a reference to the table
 /// in the dataset containing the test data.
 /// </summary>
 public DataTable testData
 {
 get
 {
 return (mTestData.Tables[TEST_DATA_TABLE]);
 }
 } // testData

 ///***
 /// <summary>
 /// This routine provides the ability to set the first grade score for
 /// the passed test ID.
 /// </summary>
 ///
 /// <param name="testID">Set to the ID of the test</param>
 /// <param name="score">Set to the test score</param>
 public void set_firstGradeScore(int testID, int score)
 {
 DataRow dRow = null;

 // get row with the passed testID value
 dRow = mTestData.Tables[TEST_DATA_TABLE].Rows.Find(testID);

 // set the first grade passing score
 dRow[FIRST_GRADE_PASSING_SCORE] = score;
 } // set_firstGradeScore

 ///***
 /// <summary>
 /// This routine provides the ability to set the second grade score for
 /// the passed test ID.
 /// </summary>
 ///
 /// <param name="testID">Set to the ID of the test</param>
 /// <param name="score">Set to the test score</param>
 public void set_secondGradeScore(int testID, int score)
 {
 DataRow dRow = null;

 // get row with the passed testID value
 dRow = mTestData.Tables[TEST_DATA_TABLE].Rows.Find(testID);

 // set the second grade passing score
 dRow[SECOND_GRADE_PASSING_SCORE] = score;
 } // set_secondGradeScore

 ///***
 /// <summary>
 /// This routine provides the ability to update the test data for this
 /// object in the database.
 /// </summary>
 public void update()
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 OleDbCommandBuilder cmdBuilder = null;

 try
 {
 dbConn = new OleDbConnection(mConnectionStr);

 dbConn.Open();

 da = new OleDbDataAdapter(CMD_TEXT, dbConn);

 // create a command builder which will create the appropriate update,
 // insert, and delete SQL statements
 cmdBuilder = new OleDbCommandBuilder(da);

 // update data in the testdata table
 da.Update(mTestData,
 TEST_DATA_TABLE);
 }

 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally

 } // update

 ///***
 /// <summary>
 /// This constructor creates the object and populates it with test data
 /// from the database
 /// </summary>
 public CH07TestDataCS()
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataColumn[] key = new DataColumn[1];

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 mConnectionStr = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(mConnectionStr);
 dbConn.Open();

 // get the data from the database
 da = new OleDbDataAdapter(CMD_TEXT,
 dbConn);
 mTestData = new DataSet();
 da.Fill(mTestData,
 TEST_DATA_TABLE);

 // define the testID column in the data table as a primary key column

 // this makes it possible to "lookup" a datarow with the testID value
 // NOTE: The PrimaryKey property expects an array of DataColumn even
 // when only one column is used as the primary key
 key[0] = mTestData.Tables[TEST_DATA_TABLE].Columns[TEST_DATA_ID];
 mTestData.Tables[TEST_DATA_TABLE].PrimaryKey = key;
 } // try

 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // CH07TestDataCS
 } // CH07TestDataCS
}

Chapter 8. Error Handling

8.0 Introduction

Journeyman programmers know that proper error handling is critical to the operation of an
application. Without it, your chances of making the application fault tolerant are less than remote.
Taking the time to plan an error-handling strategy in the early stages of a project can pay off as the
project progresses. Yet, too often error handling is given short shrift, for want of time, interest,
awareness, accessibility, and who knows what.

Fortunately, error handling has been greatly improved in ASP.NET, making it more approachable and
easier to implement than classic ASP. Taking a page or two from the Java playbook, ASP.NET
provides state-of-the-art handling of errors with exceptions and error-handler events.

The error-handling model in ASP.NET lets you handle errors easily at the method, page, and
application levels of your web applications. Most applications will use some combination of these to
handle problems when they arise. In this chapter, we have included recipes for handling errors at
each level:

Method level

When does it make sense to handle errors locally versus letting them propagate to a higher
level? In general, you want to handle recoverable errors in the method where they occur and
let nonrecoverable errors propagate up. Recipe 8.1 details this subject. It helps you understand
all the nuances of the try…Catch…Finally block and includes sets of if…then solution
statements and leading questions to help you choose how to implement error handling in a
routine.

Page level

Recipe 8.2 shows you how to trap errors in a page and redirect the user to another page. Why
would you want to use this approach? It allows you to handle all page-level errors in a uniform
way, which can simplify error-handling code and make it more consistent and robust. The trick
is in keeping all the error-handling code in one place in the original page by leveraging the
Page_Error method, as the recipe explains.

Application level

Recipe 8.3 shows you how to handle the errors at the application level that occur on any page
of your application. The approach we advocate involves trapping errors that occur and logging
them in an event log prior to redirecting the user to another page. By handling all exceptions at
the application level, rather than at the method or page level, you can process all errors for the
application in a single location. Doing all error handling in one place in an application is key to
writing effective code. It requires understanding what happens to unhandled exceptions at the
method, page, and application levels, which this recipe explains.

The final recipe is about creating user-friendly error messages, which sounds simple but involves
creating a new exception class that inherits from the .NET Framework's base exception classes and
adding the functionality your application requires. How to take advantage of this new class in the
Catch block of your code is also explained.

Recipe 8.2. Handling Errors at the Method Level

Problem

You're uncertain how to organize your code to handle errors at the method level. In particular, you'd
like to take advantage of .NET structured exception handling for dealing with errors, but you're
unsure how to best implement it.

Solution

If potential errors are recoverable in the routine

Use a combination of try…Catch blocks as a retry mechanism for error handling.

If useful information can be added to the exception

Create and throw a new exception with the added information.

If cleanup is required

Perform it in the finally block.

If potential errors are not recoverable in the routine

Recovery should be handled by the calling routine and its error-handling structure.

Discussion

Because .NET structured exception handling is so good, we recommend you use it, or consider using
it, with every method that you write. There are a number of ways to implement its functionality.

Basic syntax of Try…Catch…Finally

To begin with, here is the syntax of a .NET try…Catch…Finally block in VB and C#:

 Private Sub anyRoutine()
 Try
 'Routine code in this block

 Catch exc As Exception
 'error handling in this block

 Finally
 'cleanup performed in this block

 End Try
 End Sub 'anyRoutine

 private void anyRoutine()
 {
 try
 {
 // Routine code in this block
 }

 catch (Exception exc)
 {
 // error handling in this block
 }

 finally
 {
 // cleanup performed in this block
 }
 } // anyRoutine

The try block includes code that implements the method.

The catch block, which is optional, includes code to handle specific errors that you have identified as
likely to occur and to recover from them when that is possible.

The finally block code, which is optional, performs any cleanup required on leaving the method,
whether due to an error or not. This typically includes the closing of any open database connections
and files, disposing of objects created by the method, and so on. A finally block is guaranteed to be
executed even if an exception is thrown or the code in the routine performs a return.

As noted, the catch and finally blocks are optional. Sometimes, you'll want to use one or the other,
and other times you'll want to use both.

A try block must contain either a catch or a finally block.

Guidelines for implementing

Developers should make use of .NET exception handling in any method where an error is possible,
but the exact technique depends on the circumstances, as summarized in Table 8-1.

Table 8-1. Guidelines for Try…Catch…Finally blocks

Can
errors
occur?

Recoverable?
Can useful context

information be
added?

Cleanup
required?

Recommended
combination of try, catch,

and finally

No N/A N/A No None

No N/A N/A Yes TRy and finally only

Yes No No No None

Yes No No Yes TRy and finally only

Yes No Yes No try and catch only

Yes No Yes Yes try, catch, and finally

Yes Yes N/A N/A try and catch only

The .NET Framework does not close database connections, files, etc., when an
error occurs. This is your responsibility as a programmer, and you should do it
in the finally block. The finally block is the last opportunity to perform any
cleanup before the exception-handling infrastructure takes control of the
application.

Additional considerations

To help you implement error handling in a routine, we've provided the following leading questions.
Your answers can help you determine what portions of the try…Catch…Finally block you need. Refer
to Table 8-1 for how to structure a routine based on your answers.

Can any errors occur in this routine?

If not, no special error-handling code is required. Do not shortchange the answer to this
question, however, because even x=x+1 can result in an overflow exception.

Are the potential errors recoverable in the routine?

If an error occured but nothing useful can be done in the routine, the exception should be
allowed to propagate to the calling routine. It serves no useful purpose to catch the exception
and rethrow it. This question is different from, "Are the potential errors recoverable at the
application level?" For example, if the routine attempts to write a record to a database and
finds the record locked, a retry can be attempted in the routine. However, if a value is passed
to the routine and the operations on the value result in an overflow or other error, recovery
cannot be performed in the routine but should be handled by the calling routine and its error-
handling structure.

Can any useful information be added to the exception?

Exceptions that occur in the .NET Framework contain detailed information regarding the error.
However, the exceptions do not provide any context information about what was being
attempted at the application level that may assist in troubleshooting the error or providing
more useful information to the user.

A new exception can be created and thrown with the added information. The first parameter for
the new exception object should contain the useful context message, and the second
parameter should be the original exception. The exception-handling mechanisms in the .NET
Framework create a linked list of Exception objects to create a trail from the root of the
exception up to the level where the exception is handled. By passing the original exception as
the second parameter, the linked list from the root exception is maintained, as in this example:

 Catch exc As Exception
 Throw New Exception("Useful context message", _
 exc)

 catch (Exception exc)
 {
 throw (new Exception("Useful context message",
 exc));
 }

Is a combination of Try…Catch blocks warranted?

A combination of TRy…Catch blocks can help provide a retry mechanism for error handling, as
shown in Examples 8-1 (VB) and 8-2 (C#). These examples show the use of an internal
try…Catch block within a while loop to provide a retry mechanism and an overall TRy…Finally
block to ensure cleanup is performed.

The catch block should not be used for normal program flow. Normal program
flow code should only be placed in the TRy block, with the abnormal flow being
placed in the catch block. Using the catch block in normal program flow will
result in significant performance degradation due to the complex operations
being performed by the .NET Framework to process exceptions.

The exception-handling mechanisms in the .NET Framework are powerful. Whereas this example
highlights exception handling at the method level, other specific exception types can be caught and
processed differently. In addition, you can create new exception classes by inheriting from the base
exception classes and adding the functionality required by your applications. An example of this
technique is shown in Recipe 8.4.

See Also

Recipe 8.4

Example 8-1. Retrying when an exception occurs (.vb)

Imports System
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

 …

 Private Sub updateData(ByVal problemID As Integer, _
 ByVal sectionHeading As String)
 Const MAX_RETRIES As Integer = 5

 Dim dbConn As OleDbConnection = Nothing
 Dim dCmd As OleDbCommand = Nothing
 Dim strConnection As String
 Dim cmdText As String
 Dim updateOK As Boolean
 Dim retryCount As Integer

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'build the update SQL to update the record in the database

 cmdText = "UPDATE EditProblem " &_
 "SET SectionHeading='" & sectionHeading & "' " &_
 "WHERE EditProblemID=" &problemID.ToString()
 dCmd = New OleDbCommand(cmdText, _
 dbConn)

 'provide a loop with a try catch block to facilitate retrying
 'the database update
 updateOK = False
 retryCount = 0
 While ((Not updateOK) And (retryCount < MAX_RETRIES))
 Try
 dCmd.ExecuteNonQuery()
 updateOK = True

 Catch exc As Exception
 retryCount += 1
 If (retryCount >= MAX_RETRIES) Then
 'throw a new exception with a context message stating that
 'the maximum retries was exceeded
 Throw New Exception("Maximum retries exceeded", _
 exc)

 End If

 End Try
 End While

 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
End Sub 'updateData

Example 8-2. Retrying when an exception occurs (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;

 private void updateData(int problemID,
 String sectionHeading)
 {

 const int MAX_RETRIES = 5;

 OleDbConnection dbConn = null;
 OleDbCommand dCmd = null;
 String strConnection = null;
 String cmdText = null;
 bool updateOK;
 int retryCount;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the update SQL to update the record in the database
 cmdText = "UPDATE EditProblem " +
 "SET SectionHeading='" + sectionHeading + "' " +
 "WHERE EditProblemID=" + problemID.ToString();
 dCmd = new OleDbCommand(cmdText, dbConn);
 // provide a loop with a try catch block to facilitate retrying
 // the database update
 updateOK = false;
 retryCount = 0;
 while ((!updateOK) &(retryCount < MAX_RETRIES))
 {
 try
 {
 dCmd.ExecuteNonQuery();
 updateOK = true;
 } // try

 catch (Exception exc)
 {
 retryCount++;
 if (retryCount >= MAX_RETRIES)
 {
 // throw a new exception with a context message stating that
 // the maximum retries was exceeded
 throw new Exception("Maximum retries exceeded",
 exc);
 }
 } // catch
 } // While
 } // try

 finally
 {
 // cleanup

 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // updateData

Recipe 8.3. Handling Errors at the Page Level

Problem

You want to trap any error that occurs on a page and, using a page-level event handler, redirect the
user to another page that displays the information about the problem.

Solution

Add code to the Page_Error event handler of the page to set the ErrorPage property of that page to
the URL you want to display to the user when an error occurs.

In the code-behind for the page, use the .NET language of your choice to:

Add a Page_Error event handler.1.

In the event handler, get a reference to the last error that occurred using the GetLastError
method.

2.

Set the ErrorPage property of the Page object to the URL of the page you want displayed after
the error, adding querystring parameters to pass error information to the page.

3.

Examples 8-3 (VB) and 8-4 (C#) demonstrate this solution. (Because the .aspx file for this example
contains nothing related to the error handling, it is not included here.)

Discussion

The Page_Error event of the ASP.NET Page object is raised any time an unhandled error occurs in a
page. The first action required in the event handler is to get a reference to the last error. After getting
the reference, the code should perform the required logging, notifications, etc. See Recipe 8.3 for an
example of writing to the event log.

ASP.NET provides you with the ability to redirect the user to another page when an error occurs. To
use this feature, set the ErrorPage property of the Page object to the URL of the page you want the
user to see. You can add querystring parameters to the URL to pass specific error messages to the
page. For instance, in the code snippets shown next, we've added three querystring parameters to
the URL of an error message page: PageHeader, Message1, and Message2. PageHeader is set to the
message "Error Occurred." Message1 is set to the message in the lastError exception. This will be the
message from the last exception thrown. Message2 is a message we've added to say where the error
was processed.

 Page.ErrorPage = "CH08DisplayErrorVB.aspx" &_
 "?PageHeader=Error Occurred" &_
 "&Message1=" & lastError.Message &_
 "&Message2=" &_
 "This error was processed at the page level"

 Page.ErrorPage = "CH08DisplayErrorCS.aspx" +
 "?PageHeader=Error Occurred" +
 "&Message1=" + lastError.Message +
 "&Message2=" +
 "This error was processed at the page level";

When the Page_Error event is completed, ASP.NET will automatically perform a redirect to the URL
named in the ErrorPage property. You could do this yourself using Response.Redirect([Page URL]),

but why write a line of code when ASP.NET can do it for you?

If you do not add any querystring parameters, ASP.NET will append one for you.
The name of the parameter will be aspxerrorpath, and the value will be the relative
URL to the specified page. In our example, the ASP.NET-added querystring would
have been as follows:

 aspxerrorpath=/ASPNetCookbook2VB/CH08PageLevelErrorHandlingVB.aspx

This technique, when coupled with those for handling exceptions at the method level (described in
Recipe 8.1) can simplify handling errors in pages. The only place any code is required to gather error
information and redirect to another page is in the Page_Error event handler. This is a significant
improvement over the error-handling code required in classic ASP, where exception handling could be
done only at the method level.

By default, ASP.NET displays the full error context in a special ASP.NET page on
the local machine. If you access this example from a browser on the web
server, the redirection described here will not occur. If you access this example
from a different machine, the redirection will be performed. Refer to Chapter 12
when changing the default handling of error messages in web.config.

See Also

Recipes 8.1 and 8.3, Chapter 12

Example 8-3. Handling errors at the page level (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH08PageLevelErrorHandlingVB.aspx
 ''' </summary>
 Partial Class CH08PageLevelErrorHandlingVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim values As Hashtable = Nothing

 'add a key/value pair to the hashtable without first creating
 'the hashtable which will cause a null reference exception error
 values.Add("Key", "Value")
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page error event.
 ''' It builds a URL with the error information then sets the ErrorPage
 ''' property to the URL.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_Error(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Error
 Dim lastError As Exception

 'get the last error that occurred
 lastError = Server.GetLastError()

 'do any logging, notifications, etc. here

 'set the URL of the page that will display the error and
 'include querystring parameters to allow the page to display
 'what happened

 Page.ErrorPage = "CH08DisplayErrorVB.aspx" &_
 "?PageHeader=Error Occurred" &_
 "&Message1=" &lastError.Message &_
 "&Message2=" &_
 "This error was processed at the page level"

 End Sub 'Page_Error
 End Class 'CH08PageLevelErrorHandlingVB
End Namespace

Example 8-4. Handling errors at the page level (.cs)

using System;
using System.Collections;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH08PageLevelErrorHandlingCS.aspx
 /// </summary>
 public partial class CH08PageLevelErrorHandlingCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 Hashtable values = null;

 // add a key/value pair to the hashtable without first creating
 // the hashtable which will cause a null reference exception error
 values.Add("Key", "Value");
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the page error event.
 /// It builds a URL with the error information then sets the ErrorPage
 /// property to the URL.
 /// </summary>
 ///

 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 private void Page_Error(Object sender,
 System.EventArgs e)
 {
 Exception lastError = null;
 // get the last error that occurred
 lastError = Server.GetLastError();

 // do any logging, notifications, etc. here

 // set the URL of the page that will display the error and
 // include querystring parameters to allow the page to display
 // what happened
 Page.ErrorPage = "CH08DisplayErrorCS.aspx" +
 "?PageHeader=Error Occurred" +
 "&Message1=" + lastError.Message +
 "&Message2=" +
 "This error was processed at the page level";
 } // Page_Error
 } // CH08PageLevelErrorHandlingCS
}

Recipe 8.4. Handling Errors at the Application Level

Problem

You want to report and log all errors in a common location, regardless of where they arise within the
application.

Solution

Incorporate the error handling in methods (described in Recipe 8.1), add code to the Page_Error
event handler to rethrow the page errors, and add the code to the Application_Error event handler
to perform the logging and redirection.

In the code-behind class for your ASP.NET pages that need to perform error handling, use the .NET
language of your choice to:

Create a Page_Error event handler.1.

Rethrow the page errors from within the method. (This is needed to avoid all errors being
wrapped with an HttpUnhandledException exception.)

2.

In global.asax, use the .NET language of your choice to:

Create an Application_Error event handler.1.

Create a detailed message and write it to the event log.2.

Redirect the user to the error page using Server.Transfer.3.

The code we've written to demonstrate this solution is shown in Examples 8-6, 8-7, 8-8 through 8-9.
The Page_Error code required in all pages is shown in Examples 8-6 (VB) and 8-7 (C#). The
Application_Error code required in global.asax is shown in Examples 8-8 (VB) and 8-9 (C#).
(Because the .aspx file for this example contains nothing related to the error handling, it is not
included here.)

Discussion

The exception model in ASP.NET provides the ability for exceptions to be handled at any level, from
the method level to the application level. An unhandled exception is sequentially rethrown to each

method in the call stack. If no methods in the call stack handle the exception, the Page_Error event
will be raised. If the exception is not handled in the Page_Error event, the event will be rethrown and
the Application_Error event is raised. The rethrowing of exceptions to the application level allows for
processing in a single location for the application.

To process errors at the application level, each page must include the Page_Error event handler with
a single line of code to rethrow the last exception that occurred:

 Private Sub Page_Error(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles MyBase.Error

 'rethrow the last error that occurred
 Throw Server.GetLastError()
 End Sub 'Page_Error

 private void Page_Error(Object sender,
 System.EventArgs e)
 {
 // rethrow the last error that occurred
 throw Server.GetLastError();
 } // Page_Error

We do this step to avoid having the exception information wrapped with an HttpUnhandledException
exception. ASP.NET automatically creates a new HttpUnhandledException at the page level unless you
rethrow the last exception, which from ASP.NET's perspective constitutes handling the exception.

One school of thought says this step is unnecessary and that it's fine to have ASP.NET wrap your
exceptions at will; all you have to do is ignore all the "outer" exceptions and get the first inner
exception. We don't subscribe to this view, however, because there are cases, such as page parse
errors, that do not get wrapped with the HttpUnhandledException. This can make it difficult to extract
the "real" exception information when no guarantee exists that the "real" exception information is the
first inner exception in the chain of exceptions.

Visual Studio users can make the insertion of the Page_Error code on each
page much easier by using the built-in macro facilities or adding the code block
for the Page_Error event to the toolbox. Alternatively, you can create a base
page that contains the Page_Error method and have all of your pages inherit
from this base page. With this approach, you do not have to deal with
implementing Page_Error in all of your pages.

The error processing for the application is placed in the Application_Error event handler (in
global.asax). Much of this code follows a standard pattern, which is illustrated in Examples 8-8 (VB)
and 8-9 (C#). The first step is to get a reference to the last exception that occurred:

 lastException = Server.GetLastError()

 lastException = Server.GetLastError();

The next step is to create a detailed message to insert into the event log. This message should
contain the message from the most recent exception and a complete dump of all error information in
the link list of exceptions. The complete dump is obtained by calling the ToString method of the last
exception, as in the following example code:

 message = lastException.Message & _
 vbCrLf & vbCrLf & _
 lastException.ToString()

 message = lastException.Message +
 "\r\r" +
 lastException.ToString();

Next, you can write the message to the event log. As we show in Examples 8-8 and 8-9, this is done
by creating a new EventLog object, setting the Source property to a constant containing the name of
the event source to write the information to (the Application log in our example), and writing the
message to the event log. When writing the entry to the event log, the event type can be set to
Error, FailureAudit, Information, SuccessAudit, and Warning, all of which are members of the
EventLogEntryType enumeration. Here is the code responsible for writing to the event log in our
example:

 Log = New EventLog
 Log.Source = EVENT_LOG_NAME
 Log.WriteEntry(message, _
 EventLogEntryType.Error)

 log = new EventLog();
 log.Source = EVENT_LOG_NAME;
 log.WriteEntry(message,
 EventLogEntryType.Error);

The event log entry created by our example is shown in Example 8-5. The entry shows that a
NullReferenceException occurred at line 41 in the code-behind for the example page. If the exception
had been wrapped by throwing new exceptions at each error-handling point in the code, they would
all have been listed here. This is useful for troubleshooting runtime errors because the source of the

error is shown, along with the complete call path to the point the error occurred.

At this point any other notifications, such as sending an email to the system administrator, should be
performed. Refer to Recipe 21.7 for information regarding sending emails.

The final step to processing errors at the application level is to clear the error and redirect the user to
the page where an error message is displayed:

 Server.ClearError()
 Server.Transfer("CH08DisplayErrorVB.aspx" &_
 "?PageHeader=Error Occurred" &_
 "&Message1=" &lastException.Message &_
 "&Message2=" &_
 "This error was processed at the application level")

 Server.ClearError();
 Server.Transfer("CH08DisplayErrorCS.aspx" +
 "?PageHeader=Error Occurred" +
 "&Message1=" + lastException.Message +
 "&Message2=" +
 "This error was processed at the application level");

If you do not clear the error, ASP.NET will assume the error has not been
processed and will handle it for you with its infamous "yellow" screen.

You can use one of two methods to redirect the user to the error page. The first method is to call
Response.Redirect, which works by returning information to the browser instructing the browser to
do a redirect to the page indicated. This results in an additional round trip to the server. As we show
in Examples 8-8 (VB) and 8-9 (C#), the second method is Server.Transfer, which is the method we
favor because it transfers the request to the indicated page without the extra browser/server round
trip.

Calling Response.Redirect throws a ThreadAbortException as a result of
aborting the execution of the page. This exception is handled differently than
other exceptions and will not bubble up to the page or application level.

By default, Windows 2000 and 2003 Server provide three event sources:
Application, Security, and System. Of the three sources, only the default
ASP.NET user (ASPNET) has permission to write to the Application log.
Attempts to write to the Security or System logs will result in an exception
being thrown in the Application_Error event.

You can make the errors for your application easier to find in the event viewer by creating an event
source specific to your application. Without escalating the privileges for the ASP.NET user to the
System level (a bad option), you cannot create a new event source within your ASP.NET application.
Two options are available. You can use the registry editor and add a new key to the
HKEY_LOCAL_MACHINE\System\ CurrentControlSet\Services\EventLog key or create a console
application to do the work for you. We suggest the console application because it is easy and
repeatable.

Create a console application in the usual fashion, add the following code to it, and run the application
while being logged in as a user with administrative privileges. This will create an event source specific
to your application. The only change required to the code described here is to change the
EVENT_LOG_NAME constant value to the name of your new event source.

 Const EVENT_LOG_NAME As String = "Your Application"

 If (Not EventLog.SourceExists(EVENT_LOG_NAME)) Then
 EventLog.CreateEventSource(EVENT_LOG_NAME, EVENT_LOG_NAME)
 End If

 const String EVENT_LOG_NAME = "Your Application";

 if (EventLog.SourceExists(EVENT_LOG_NAME) != null)
 {
 EventLog.CreateEventSource(EVENT_LOG_NAME, EVENT_LOG_NAME);
 }

See Also

Recipes 8.1 and 21.7

Example 8-5. Event log entry for this example

System.NullReferenceException: {"Object reference not set to an instance
 of an object."}
Data: {System.Collections.ListDictionaryInternal}
HelpLink: Nothing
HResult: -2147467261
InnerException: Nothing
IsTransient: False
Message: "Object reference not set to an instance of an object."
Source: "App_Web_3q7je6zg"
StackTrace: " at ASPNetCookbook.VBExamples.
 CH08ApplicationLevelErrorHandlingVB.Page_Error(Object sender, EventArgs e)
 in E:\ASPNetCookbook2\projects\ASPNetCookbookVB2\
 CH08ApplicationLevelErrorHandlingVB.aspx.vb:line 41
at System.Web.UI.TemplateControl.OnError(EventArgs e)
at System.Web.UI.Page.HandleError(Exception e)
at System.Web.UI.Page.ProcessRequestMain(Boolean includeStagesBeforeAsyncPoint,
 Boolean includeStagesAfterAsyncPoint)
at System.Web.UI.Page.ProcessRequest(Boolean includeStagesBeforeAsyncPoint,
 Boolean includeStagesAfterAsyncPoint)
at System.Web.UI.Page.ProcessRequest()
at System.Web.UI.Page.ProcessRequest(HttpContext context)
at System.Web.HttpApplication.CallHandlerExecutionStep.System.Web.
 HttpApplication.IExecutionStep.Execute()
at System.Web.HttpApplication.ExecuteStep(IExecutionStep step, Boolean&
 completedSynchronously)"
TargetSite: {System.Reflection.RuntimeMethodInfo}

Example 8-6. Page_Error code for handling errors at the application level
(.vb)

'''***
''' <summary>
''' This routine handles the error event for the page. It is used to
''' trap all errors for the page and rethrow the exception. The rethrow
''' is needed to avoid all errors being wrapped with an
''' "HttpUnhandledException" exception.
''' </summary>
'''
''' <param name="sender">Set to the sender of the event</param>
''' <param name="e">Set to the event arguments</param>
Protected Sub Page_Error(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Error
 'rethrow the last error that occurred
 Throw Server.GetLastError()
End Sub 'Page_Error

Example 8-7. Page_Error code for handling errors at the application level
(.cs)

///***
/// <summary>
/// This routine handles the error event for the page. It is used to
/// trap all errors for the page and rethrow the exception. The rethrow
/// is needed to avoid all errors being wrapped with an
/// "HttpUnhandledException" exception.
/// </summary>
///
/// <param name="sender">Set to the sender of the event</param>
/// <param name="e">Set to the event arguments</param>
private void Page_Error(Object sender,
 System.EventArgs e)
{
 // rethrow the last error that occurred
 throw Server.GetLastError();
} // Page_Error

Example 8-8. Application_Error code for handling errors at the application
level (.vb)

'''***
''' <summary>
''' This routine provides the event handler for the application error
''' event. It is responsible for processing errors at the application
''' level.
''' </summary>
'''
''' <param name="sender">Set to the sender of the event</param>
''' <param name="e">Set to the event arguments</param>
Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 Const EVENT_LOG_NAME As String = "Application"

 Dim lastException As Exception
 Dim Log As EventLog
 Dim message As String

 'get the last error that occurred
 lastException = Server.GetLastError()

 'create the error message from the message in the last exception along
 'with a complete dump of all of the inner exceptions (all exception
 'data in the linked list of exceptions)
 message = lastException.Message & _
 vbCrLf & vbCrLf & _
 lastException.ToString()

 'Insert error information into the event log
 Log = New EventLog
 Log.Source = EVENT_LOG_NAME
 Log.WriteEntry(message, _
 EventLogEntryType.Error)

 'perform other notifications, etc. here

 'clear the error and redirect to the page used to display the
 'error information
 Server.ClearError()
 Server.Transfer("CH08DisplayErrorVB.aspx" & _
 "?PageHeader=Error Occurred" & _
 "&Message1=" & lastException.Message & _
 "&Message2=" &_
 "This error was processed at the application level")
End Sub 'Application_Error

Example 8-9. Application_Error code for handling errors at the application
level (.cs)

///***
/// <summary>
/// This routine provides the event handler for the application error
/// event. It is responsible for processing errors at the application
/// level.
/// </summary>
///
/// <param name="sender">Set to the sender of the event</param>
/// <param name="e">Set to the event arguments</param>
 protected void Application_Error(Object sender, EventArgs e)
 {
 const String EVENT_LOG_NAME = "Application";

 Exception lastException = null;
 System.Diagnostics.EventLog log = null;
 String message = null;

 // get the last error that occurred

 lastException = Server.GetLastError();

 // create the error message from the message in the last exception along
 // with a complete dump of all of the inner exceptions (all exception
 // data in the linked list of exceptions)
 message = lastException.Message +
 "\r\r" +
 lastException.ToString();

 // Insert error information into the event log
 log = new System.Diagnostics.EventLog();
 log.Source = EVENT_LOG_NAME;
 log.WriteEntry(message,
 EventLogEntryType.Error);

 // perform other notifications, etc. here

 // clear the error and redirect to the page used to display the
 // error information
 Server.ClearError();
 Server.Transfer("CH08DisplayErrorCS.aspx" +
 "?PageHeader=Error Occurred" +
 "&Message1=" + lastException.Message +
 "&Message2=" +
 "This error was processed at the application level");
 } // Application_Error

Recipe 8.5. Displaying User-Friendly Error Messages

Problem

You want the event-handling methods described in this chapter to write detailed messages to an
error log for use in debugging your application, but you want to display friendly, informative
messages to the user.

Solution

Create a custom exception class that includes a property to hold the user-friendly message, and
when an error occurs, instantiate a new exception object of the custom type in the Catch block of
your error-handling code, set the property of the exception to the desired message, and throw the
new exception.

Use the .NET language of your choice to create the custom exception class by deriving from
System.ApplicationException and adding a property to hold the userfriendly message, giving it a
name like userFriendlyMessage.

In the code-behind for the ASP.NET pages of your application that need to perform error handling,
use the .NET language of your choice to:

In the Catch block of methods where informative messages are useful, instantiate a new
exception object of your custom class type, set the userFriendlyMessage property to the desired
message, and throw the new exception.

1.

In the Application_Error event handler, write the detailed information provided by the
exception object to the event log and display the message contained in the
userFriendlyMessage property of the exception on a common error message page.

2.

The custom exception class we've created to demonstrate this solution is shown in Examples 8-10
(VB) and 8-11 (C#). The code showing how to create the new exception is shown in Examples 8-12
(VB) and 8-13 (C#). The code for the Application_Error event handler is shown in Examples 8-14
(VB) and 8-15 (C#). (Because the .aspx file for this example contains nothing related to the error
handling, it is not included in this recipe.)

Discussion

The first step to providing user-friendly messages with your exceptions is to create a new class that
inherits from System.ApplicationException. (The System.ApplicationException class extends

System.Exception but adds no new functionality. It is meant to be used to differentiate between
exceptions defined by applications and those defined by the system.)

If the custom exception classes are intended for use only in your current
application, the classes should be placed in the App_Code folder of your
application. If you are using Visual Studio 2005, it will offer to create the folder
and place the class in it for you.

If the custom exception classes are intended to be used in multiple applications,
a separate Class project should be created. The assembly created by the Class
project should then be placed in the bin folder of your project and a reference
added to the assembly to allow using the classes in your application.

You then need to add a property to the class to support the user-friendly message. The last step in
creating the new exception class is to create a constructor that will create the base exception, by
calling the base class constructor with the raw message and a reference to the inner exception, and
then to set the user-friendly message. Examples 8-10 (VB) and 8-11 (C#) show how we have
implemented these steps.

The new exception class is put to use in the Catch block of your code by creating an instance of the
new exception class, passing it the original message, a reference to the exception, and the desired
user-friendly message. The reference to the original exception is passed to preserve the linked list of
exceptions. In this case, your new exception will point to the original exception by using the inner
property of the new exception. After the new exception class is created, it is thrown. Examples 8-12
(VB) and 8-13 (C#) illustrate a sample Catch block.

As shown in Examples 8-14 (VB) and 8-15 (C#), our sample Application_Error event handler writes
detailed information to the event log and then displays the message contained in the
userFriendlyMessage property of the exception. This example event code is a variation of the event
code described in Recipe 8.3, modified to check if the exception being processed has a user-friendly
message to use instead of the raw exception message.

This recipe's approach can be extended many ways to suit your needs. For example, the custom
exception class could contain a nextPage property set to pass information on where the user should
be taken after reviewing the error message.

See Also

Recipe 8.3

Example 8-10. Custom exception class with user-friendly message
property (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides an exception class with support for a user-
 ''' friendly message
 ''' </summary>
 Public Class CH08FriendlyExceptionVB
 Inherits System.ApplicationException

 'private copy of user friendly message
 Private mUserFriendlyMessage As String = ""
 '''***
 ''' <summary>
 ''' Provides access to the message to be displayed to the user-friendly
 ''' message.
 ''' </summary>
 Public Property userFriendlyMessage() As String
 Get
 Return (mUserFriendlyMessage)
 End Get

 Set(ByVal Value As String)
 mUserFriendlyMessage = Value
 End Set
 End Property 'userFriendlyMessage

 '''***
 ''' <summary>
 ''' Provides a constructor supporting an error message, a reference to
 ''' the exception that threw this exeception, and a user-friendly
 ''' message for the exception
 ''' </summary>
 Public Sub New(ByVal message As String, _
 ByVal inner As Exception, _
 ByVal userFriendlyMessage As String)
 'call base class constructor. NOTE: This must be the first line in
 'this constructor
 MyBase.New(message, inner)
 mUserFriendlyMessage = userFriendlyMessage
 End Sub 'New
 End Class 'CH08FriendlyExceptionVB
End Namespace

Example 8-11. Custom exception class with user-friendly message
property (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides an exception class with support for a user-
 /// friendly message
 public class CH08FriendlyExceptionCS : System.ApplicationException
 {
 // private copy of user friendly message
 private String mUserFriendlyMessage = "";
 ///***
 /// <summary>
 /// Provides access to the message to be displayed to the user-friendly
 /// message.
 /// </summary>
 public String userFriendlyMessage
 {
 get
 {
 return(mUserFriendlyMessage);
 }
 set
 {
 mUserFriendlyMessage = value;
 }
 } // userFriendlyMessage

 ///***
 /// <summary>
 /// Provides a constructor supporting an error message, a reference to
 /// the exception that threw this exeception, and a user-friendly
 /// message for the exception
 /// </summary>
 public CH08FriendlyExceptionCS(String message,
 Exception inner,
 String userFriendlyMessage) :
 base(message, inner)
 {
 mUserFriendlyMessage = userFriendlyMessage;
 }
 } // CH08FriendlyExceptionCS
}

Example 8-12. Creation of new custom exception (.vb)

'''***
''' <summary>
''' This routine provides the event handler for the page load event. It
''' is responsible for initializing the controls on the page.
''' </summary>
'''
''' <param name="sender">Set to the sender of the event</param>
''' <param name="e">Set to the event arguments</param>
Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim values As Hashtable = Nothing
 Try
 'add a key/value pair to the hashtable without first creating
 'the hashtable which will cause a null exception error
 values.Add("Key", "Value")
 Catch exc As Exception
 Throw New CH08FriendlyExceptionVB(exc.Message, _
 exc, _
 "The application is currently " &_
 "experiencing technical " &_
 "difficulties … " &_
 "Please try again later")
 End Try
End Sub 'Page_Load

Example 8-13. Creation of new custom exception (.cs)

///***
/// <summary>
/// This routine provides the event handler for the page load event.
/// It is responsible for initializing the controls on the page.
/// </summary>
///
/// <param name="sender">Set to the sender of the event</param>
/// <param name="e">Set to the event arguments</param>
protected void Page_Load(object sender, EventArgs e)
{
 Hashtable values = null;

 try
 {
 // add a key/value pair to the hashtable without first creating
 // the hashtable which will cause a null exception error
 values.Add("Key", "Value");
 }

 catch (Exception exc)
 {
 throw new CH08FriendlyExceptionCS(exc.Message,
 exc,
 "The application is currently " +
 "experiencing technical " +
 "difficulties … " +
 "Please try again later");
 }
} // Page_Load

Example 8-14. Application_Error code for displaying a user-friendly
message (.vb)

'''***
''' <summary>
''' This routine provides the event handler for the application error
''' event. It is responsible for processing errors at the application
''' level.
''' </summary>
'''
''' <param name="sender">Set to the sender of the event</param>
''' <param name="e">Set to the event arguments</param>
Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 Const EVENT_LOG_NAME As String = "Application"

 Dim lastException As Exception
 Dim userFriendlyException As CH08FriendlyExceptionVB
 Dim Log As EventLog
 Dim message As String

 'get the last error that occurred
 lastException = Server.GetLastError()

 'create the error message from the message in the last exception along
 'with a complete dump of all of the inner exceptions (all exception
 'data in the linked list of exceptions)
 message = lastException.Message &_
 vbCrLf &vbCrLf &_
 lastException.ToString()

 'Insert error information into the event log
 Log = New EventLog
 Log.Source = EVENT_LOG_NAME
 Log.WriteEntry(message, _

 EventLogEntryType.Error)

 'perform other notifications, etc. here

 'check to if the exception has a user friendly message
 If (TypeOf (lastException) Is CH08FriendlyExceptionVB) Then
 'exception has a user friendly message
 userFriendlyException = CType(lastException, _
 CH08FriendlyExceptionVB)
 message = userFriendlyException.userFriendlyMessage
 Else
 'exception does not have a user friendly message to just
 'output the raw message
 message = lastException.Message
 End If

 'clear the error and redirect to the page used to display the
 'error information
 Server.ClearError()
 Server.Transfer("CH08DisplayErrorVB.aspx" &_
 "?PageHeader=Error Occurred" &_
 "&Message1=" &message &_
 "&Message2=" &_
 This exception used a user friendly mesage")
End Sub 'Application_Error

Example 8-15. Application_Error code for displaying a user-friendly
message (.cs)

///***
/// <summary>
/// This routine provides the event handler for the application error
/// event. It is responsible for processing errors at the application
/// level.
/// </summary>
///
/// <param name="sender">Set to the sender of the event</param>
/// <param name="e">Set to the event arguments</param>
 protected void Application_Error(Object sender, EventArgs e)
 {
 const String EVENT_LOG_NAME = "Application";

 Exception lastException = null;
 CH08FriendlyExceptionCS userFriendlyException = null;
 EventLog log = null;
 String message = null;

 // get the last error that occurred
 lastException = Server.GetLastError();

 // create the error message from the message in the last exception along
 // with a complete dump of all of the inner exceptions (all exception
 // data in the linked list of exceptions)
 message = lastException.Message +
 "\r\r" +
 astException.ToString();

 // Insert error information into the event log
 log = new EventLog();
 log.Source = EVENT_LOG_NAME;
 log.WriteEntry(message,
 EventLogEntryType.Error);

 // perform other notifications, etc. here

 // check to if the exception has a user friendly message
 if (lastException.GetType() == typeof(CH08FriendlyExceptionCS))
 {
 // exception has a user friendly message
 userFriendlyException = (CH08FriendlyExceptionCS)(lastException);
 message = userFriendlyException.userFriendlyMessage;
 }
 else
 {
 // exception does not have a user friendly message to just
 // output the raw message
 message = lastException.Message;
 }
 // clear the error and redirect to the page used to display the
 // error information
 Server.ClearError();
 Server.Transfer("CH08DisplayErrorCS.aspx" +
 "?PageHeader=Error Occurred" +
 "&Message1=" + message +
 "&Message2=" +
 "This exception used a user friendly mesage");
 } // Application_Error

Chapter 9. Security

9.0 Introduction

ASP.NET provides an infrastructure for authentication and authorization that will meet most of your
needs for securing an application. Three authentication schemes are available: Forms, Windows, and
Passport.

Forms

With Forms authentication, you use a classic custom login page to gather credentials from
users and to authenticate the information supplied against a database or other data store of
authorized users. You can leverage the FormsAuthentication APIs built into ASP.NET to issue a
cookie back to the client. Recipes in this chapter show you how to use Forms authentication to
restrict access to some or all pages of an application. We will show you how to restrict access
to pages depending on the role assigned to the user.

Windows

Implementing Window authentication involves using a standard Windows dialog box to gather
user credentials and validating the user against existing Windows accounts. If your application
runs on an intranet, you will find that the fourth recipe in the chapter helps you implement
Windows authentication in record time.

Passport

Passport authentication uses Microsoft's Passport service to perform the required
authentication. We haven't provided any examples in this chapter, not because Passport
authentication is especially difficult but because we doubt many readers are implementing it.
Irrespective of our personal views, we have yet to see much interest in Passport authentication
on a commercial level.

If none of the built-in authentication schemes provided by ASP.NET meets the needs of your
application, the .NET Framework provides the ability to create your own authentication scheme. This
typically involves writing a custom class that implements the IAuthenticationModule interface and
registering it to bypass the built-in .NET authentication. Custom authentication is not covered in this
book because of its individual nature. You can find more details in the MSDN Library by searching for
the term "custom authentication."

This chapter provides several recipes for securing your applications using the built-in mechanisms
provided by ASP.NET. These are usually adequate to meet the needs of your application.

One of the most important recommendations we can make is that you always have the security
features of your application reviewed by key project stakeholders and security specialists. Bringing
other perspectives to issues of security is always a good idea because it is difficult to conceive of all
the ways security may be breached in your environment. Having others inspect your plans saves you

having to shoulder the entire security burden alone, which is an unwise and uncomfortable position to
be in.

With regard to the enhancements to the security-related features in ASP.NET 2.0, you will notice that
we have made strategic use of the login controls (especially the asp:Login and asp:LoginName), which
simplify the process of writing security-related code as it relates to having users log in, log out,
provide their name, etc. We will show you how to secure your website using ASP.NET 2.0's
Membership and Role providers, which is the subject of the final recipe in the chapter. As part of this
recipe, we will show you how to use the configuration tool ASP.NET 2.0 offers for managing users and
their roles. Taken together, these security-related features make it easy to add strong authentication
mechanisms to your website with little or no code.

Recipe 9.2. Restricting Access to All Application Pages

Problem

You want to restrict access to the pages of your application to authorized users only.

Solution

Change the web.config settings of your application to specify Forms authentication, and create an .aspx login page to collect user credentials
and complete the authentication check.

Modify web.config as follows:

Set the mode attribute of the <authentication> element to Forms .1.

Add a <forms> child element to the <authentication> element to specify key aspects of the Forms implementation:

 <configuration>
 <system.web>

 …

 <authentication mode="Forms">
 <forms name=".ASPNETCookbookVBSecurity91"
 loginUrl="Login.aspx"
 protection="All"
 timeout="30"
 path="/">
 </forms>
 </authentication>
 </system.web>
 </configuration>

2.

Add <deny> and <allow> child elements to the <authorization> element to deny access to anonymous users and allow access to all who
have been authenticated:

 <configuration>
 <system.web>

 …

3.

 <authorization>
 <deny users="?" /> <!-- Deny anonymous user -->
 <allow users="*" /> <!-- Allow all authenticated users -->
 </authorization>
 </system.web>
 </configuration>

In the .aspx file for the login page:

Add a Login control.1.

Customize the Login control as required by your application.2.

In the code-behind class for the login page, use the .NET language of your choice to:

Use the Authenticate event handler of the Login control to verify the user credentials.1.

If the user credentials are valid, create a Forms authentication cookie and add it to the cookie collection returned to the browser by
calling the SetAuthCookie method of the FormsAuthentication class.

2.

(Optional) Set the Forms authentication cookie to be persisted on the client machine.3.

Redirect the user to the appropriate application start page using Response.Redirect .4.

The code we've created to illustrate this solution is shown in Examples 9-1 , 9-2 , 9-3 through 9-4 . Example 9-1 shows the modifications we
make to web.config to restrict access to all pages. Example 9-2 shows the .aspx file for the login page. Examples 9-3 (VB) and 9-4 (C#)
show the code-behind class for the login page. Figure 9-1 shows the login page produced by the application.

Figure 9-1. Example login page

Discussion

ASP.NET runs within the context of IIS and all requests must first pass through IIS, so setting up the security for an ASP.NET application

always starts with setting up security in IIS. For this recipe, we do not want IIS to perform any authentication to allow ASP.NET to handle all
authentication. Therefore, the website (or virtual directory) must be set up to allow anonymous access. (We won't take you through setting
up anonymous access in IIS since it is easy to do and is documented in MSDN. Just search for "IIS authentication.")

The first step to restricting access to all pages of an application is to enable ASP.NET security. This is done by setting the mode attribute of
the <authentication> element of the web.config file to Forms . (Other options are Windows and Passport .)

The second step is to add a <forms> child element to the <authentication> element to specify the details of the Forms implementation. The
<forms> element has the following attributes:

name

Defines the name of the HTTP cookie used by ASP.NET to maintain the user authentication information. Care should be taken when
naming the cookie. If two applications on the same server use the same cookie name, "cross authentication" may occur.

loginUrl

Defines the page to which ASP.NET will redirect users when they attempt to access pages in your application without being logged in.
The login page should provide the fields required to authenticate the user, typically a login ID and password or whatever else your
application requires.

protection

Defines the protection method used for the cookie. Possible values are All, None, Encryption , and Validation. Validation specifies
that the cookie data will be validated to ensure it was not altered in transit. Encryption specifies that the cookie is encrypted. All
specifies that data validation and encryption will be used. None specifies no protection will be provided for the cookie information. The
default is All and is recommended because it offers the highest level of protection for this authentication cookie.

timeout

Defines the amount of time in minutes before the cookie expires. The value provided here should be at least as long as the timeout for
the session. Making the value shorter than the session timeout can result in a user being redirected to the page defined by the
loginUrl before the session times out.

path

Defines the path of cookies issued by the application. Be aware that most browsers treat the path as case-sensitive and will not return
the cookie for a request that does not match the value provided for the path attribute. The result will be having the users redirected as
if they were not logged in. Unless your application requires specifying the path, we recommend that you leave the path as /.

requireSSL

Defines if an SSL connection is required to transmit the authentication cookie. The default value is false .

slidingExpiration

Defines if sliding expiration of the authentication cookie is enabled. If set to true , the authentication's cookie time to expire is
refreshed on every page request. If set to false , the authentication cookie will expire at the time set when the cookie was created.
The default value in ASP.NET 1.0 is true . In ASP.NET 1.1 and 2.0, the default value is false .

defaultUrl

Defines the default URL used for redirection after authentication. The default value is default.aspx . (This attribute is new for ASP.NET
2.0.)

Cookieless

Defines if cookies are used to store the authentication ticket and defines the behavior of the cookies. Possible values are UseCookies,
UseUri, AutoDetect , and UseDeviceProfile . UseCookies specifies that cookies will always be used to store the authentication ticket.
UseUri specifies that the authentication ticket will always be placed in the URL. For example:

http://localhost/aspnetcookbook2vb/VBSecurity91/(F(ixspTvd6lDSWeKLUrgFVdGet3iGNV6A9WARvWX2wO29SnCl7aSwcMlEcof6-
rEuOlBOm4EA_HJQ128T8GJWBFZB7Hf-JwdE5oAc-Bo4d4Es1))/Home.aspx

AutoDetect specifies cookies will be used if the requesting device supports cookies and cookies are enabled. If cookies are not
supported or not enabled, the URL will be used for the authentication ticket. UseDeviceProfile specifies the storage location for the
authentication ticket will be determined by the capabilities of the requesting device. This is similar to AutoDetect except no attempt is
made to determine if cookies are enabled. The determination is made by the device support. The default value is UseDeviceProfile for
backward compatibility with ASP.NET 1.x. (This attribute is new for ASP.NET 2.0.)

Here is an example of the <forms> element and its attributes:

 <authentication mode="Forms">
 <forms name=".ASPNETCookbookVBSecurity91"
 loginUrl="Login.aspx"
 protection="All"
 timeout="30"
 path="/" >
 </forms>
 </authentication>

The next step is to modify web.config to deny access to all anonymous users and allow access to all users who have been authenticated.
This is done by adding <deny> and <allow> child elements to the <authorization> element:

 <authorization>
 <deny users="?" /> <! Deny anonymous users >
 <allow users="*" /> <! Allow all authenticated users >
 </authorization>

Your application login page should use the asp:Login control or provide the fields required to enter the data needed to authenticate the user.
This is typically a login ID and password, which you gather via text boxes, but can be whatever your application requires. ASP.NET provides

http://localhost/aspnetcookbook2vb/VBSecurity91/(F(ixspTvd6lDSWeKLUrgFVdGet3iGNV6A9WARvWX2wO29SnCl7aSwcMlEcof6-

the ability to persist the authentication cookie on the client machine. If your application supports "auto login" from a persistent cookie, you
should provide a checkbox for the user to indicate that she wants to be remembered between sessions. In addition, your login page should
include a button to initiate the login process after the data has been entered. How we have done this for our application is illustrated in Figure
9-1 and in the .aspx file (Example 9-2).

In the code-behind for the login page, use the Authenticate event handler for the asp:Login control (or the login button click event if you
created your own) to verify the user credentials. In Examples 9-3 and 9-4 , for example, the database is queried for a user matching the
entered login ID and password using a DataCommand and a DataReader . After the DataReader is created, the record pointer is by default
positioned before the first record in the reader. By calling the Read method in the If statement, you can check to see if the user credentials
are found and read the user credentials from the database at the same time. If the user credentials are found in the database, the Read
method will return TRue . Otherwise, it will return False .

If the user credentials are valid, the Forms authentication cookie will need to be created and added to the cookie collection returned to the
browser. This can be done by calling the SetAuthCookie method of the FormsAuthentication class, passing the username and a Boolean
value indicating if the value should be persisted on the client machine. To persist the authentication cookie and allow the user to access the
application on subsequent sessions without logging in, set the second parameter to true . If the second parameter is set to False , the
authentication cookie is stored in memory on the client and is destroyed when the session expires or the user closes the browser.

Because the SetAuthCookie method is static, it is unnecessary to create a FormAuthentication object to use the
method. The SetAuthCookie method is the simplest approach to creating and adding the cookie to the cookie
collection but is inflexible. For an example of a more flexible approach that allows you to store additional data in the
authentication cookie, see Recipe 9.3.

After the application has created the authentication cookie, the user should be redirected to the appropriate start page. When ASP.NET
redirects the user to the login page defined in your web.config file, it will automatically append the name of the originally requested page to
the redirected URL, as shown next. You can use this information to redirect users to the originally requested page or redirect them to a fixed
page as illustrated in Examples 9-3 (VB) and 9-4 (C#).

 http://localhost/ASPNetBook/Login.aspx?ReturnUrl=Home.aspx

You must use Response.Redirect to redirect the user to the next page. Response.Redirect returns information to the browser instructing it
to redirect to the indicated page. This round trip to the client browser writes the authentication cookie to the browser so it will be returned to
the server on subsequent page requests. This cookie is what ASP.NET uses to determine if the user has been authenticated. If you use other
mechanisms, such as Server.Transfer , the authentication cookie will not be written to the browser; this will result in the user being
redirected back to the login page.

ASP.NET provides, in a single method call (the RedirectFromLoginPage method of the FormsAuthentication class),
the ability to create the authentication cookie, add it to the cookie collection, and redirect the user back to the
original page. By default, this will redirect the user to default.aspx . If your site uses a different home page, set the
defaultUrl attribute of the <forms> element to the required filename.

No other code is required. In other words, by using the code (without adding code to each page, as is required in classic ASP), access to all
of the pages in your application is restricted to logged-in users.

So how does ASP.NET do this so easily? When your application is configured to use Forms authentication, ASP.NET looks for the cookie
defined by the name attribute of the <forms> element in web.config for every page requested from your application. If the cookie does not

http://localhost/ASPNetBook/Login.aspx?ReturnUrl=Home.aspx

exist, ASP.NET will assume the user is not logged in and will redirect the user to the page defined by the loginUrl attribute. If the cookie
does exist, ASP.NET will assume the user is authenticated and pass the request on to the requesting page. In addition, when the cookie
exists, ASP.NET will create a user principal object with the information found in the authentication cookie. The user principal object (or
principal object for short) represents the security context under which code is running. This information is available to your application by
accessing the User object in the current context. To get the username you added to the authentication cookie, use the line of code shown
here:

 userName = Context.User.Identity.Name

 userName = Context.User.Identity.Name;

Applications that provide the ability to log inparticularly those that provide the ability to persist the information on the client machine to
eliminate the need to log in on subsequent visitsshould provide the ability to log out. In this context, logging out destroys the authentication
cookie on the client machine, which requires the user to log in again to gain access to your application. This can be accomplished with the
line of code shown here:

 FormsAuthentication.SignOut()

 FormsAuthentication.SignOut();

ASP.NET can provide security only for files mapped to the ASP.NET ISAPI DLL. By default, these are files with the
extensions .asax, .ascx, .ashx, .asmx, .aspx, .axd, .vsdisco, .rem, .soap, .config, .cs, .csproj, .vb, .vbproj,
.webinfo, .licx , and .resx . Any other file typessuch as .gif, .jpg, .txt , and .js are not protected by ASP.NET
security. If access to these file types must be restricted, they will have to be added to the list of file types
processed by the ASP.NET ISAPI DLL. This can be done in the application configuration section of the IIS
properties of your application. Requiring these file types to be processed by ASP.NET will affect performance of
your application, because of the extra processing required for the images, text files, JavaScript, etc.

See Also

Recipe 9.3; MSDN documentation for IIS setup (search for "IIS authentication")

Example 9-1. Changes to web.config to restrict access to all pages

<?xml version="1.0"?>
<configuration>
 <system.web>

 …

 <authentication mode="Forms">
 >forms name=".ASPNETCookbookVBSecurity91"

 loginUrl="Login.aspx"
 protection="All"
 timeout="30"
 path="/" >
 </forms>
 </authentication>

 <authorization>
 <deny users="?" /> <!-- Deny anonymous user -->
 <allow users="*" /> <!-- Allow all authenticated users -->
 </authorization>

 …
 </system.web>
</configuration>

Example 9-2. Login page (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="Login.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.Login"
 Title="Login" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Block Access To All Pages (VB)
 </div>
 <div align="center">
 <asp:Login ID="Login1" runat="server"
 TitleText=""
 UserNameLabelText="Login ID: "
 PasswordLabelText="Password: "
 DisplayRememberMe="true"
 RememberMeText="Remember Me"
 LabelStyle-CssClass="labelText"
 CheckBoxStyle-CssClass="labelText"
 TextBoxStyle-CssClass="labelText"

 OnAuthenticate="Login1_Authenticate" >
 <CheckBoxStyle CssClass="labelText" />
 <TextBoxStyle CssClass="labelText" />
 <LabelStyle CssClass="labelText" />
 </asp:Login>

 <input type="button" value="Attempt Access without Login"
 onclick="document.location='Home.aspx'" />
 </div>
</asp:Content>

Example 9-3. Login page code-behind (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' Login.aspx
 ''' </summary>
 Partial Class Login
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the login button click
 ''' event. It is responsible for authenticating the user and redirecting
 ''' to the next page if the user is authenticated.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Login1_Authenticate(ByVal sender As Object, _
 ByVal e As AuthenticateEventArgs)
 'name of querystring parameter containing return URL
 Const QS_RETURN_URL As String = "ReturnURL"
 Dim dbConn As OleDbConnection = Nothing
 Dim dCmd As OleDbCommand = Nothing
 Dim dr As OleDbDataReader = Nothing
 Dim strConnection As String
 Dim strSQL As String

 Dim nextPage As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()

 'check to see if the user exists in the database
 strSQL = "SELECT (FirstName + ' ' + LastName) AS UserName " & _
 "FROM AppUser " & _
 "WHERE LoginID=? AND " & _
 "Password=?"
 dCmd = New OleDbCommand(strSQL, dbConn)
 dCmd.Parameters.Add(New OleDbParameter("LoginID", _
 Login1.UserName))
 dCmd.Parameters.Add(New OleDbParameter("Password", _
 Login1.Password))
 dr = dCmd.ExecuteReader()

 If (dr.Read()) Then
 'user credentials were found in the database so notify the system
 'that the user is authenticated
 FormsAuthentication.SetAuthCookie(CStr(dr.Item("UserName")), _
 Login1.RememberMeSet)

 'get the next page for the user
 If (Not IsNothing(Request.QueryString(QS_RETURN_URL))) Then
 'user attempted to access a page without logging in so redirect
 'them to their originally requested page
 nextPage = Request.QueryString(QS_RETURN_URL)
 Else
 'user came straight to the login page so just send them to the
 'home page
 nextPage = "Home.aspx"
 End If

 'Redirect user to the next page
 'NOTE: This must be a Response.Redirect to write the cookie to the
 ' user's browser. Do NOT change to Server.Transfer which
 ' does not cause around trip to the client browser and thus
 ' will not write the authentication cookie to the client
 ' browser.
 Response.Redirect(nextPage, True)
 Else
 'user credentials do not exist in the database so output error
 'message indicating the problem
 Login1.FailureText = "Login ID or password is incorrect. " & _
 "Please check your credentials and try again."
 End If

 Finally
 'cleanup
 If (Not IsNothing(dr)) Then
 dr.Close()
 End If

 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'Login1_Authenticate
 End Class 'Login
End Namespace

Example 9-4. Login page code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.Security;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// Login.aspx
 /// </summary>
 public partial class Login : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the login button click
 /// event. It is responsible for authenticating the user and redirecting
 /// to the next page if the user is authenticated.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Login1_Authenticate(Object sender,
 AuthenticateEventArgs e)
 {
 // name of querystring parameter containing return URL
 const String QS_RETURN_URL = "ReturnURL";

 OleDbConnection dbConn = null;

 OleDbCommand dCmd = null;
 OleDbDataReader dr = null;
 String strConnection = null;
 String strSQL = null;
 String nextPage = null;

 try
 {

 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // check to see if the user exists in the database
 strSQL = "SELECT (FirstName + ' ' + LastName) AS UserName " +
 "FROM AppUser " +
 "WHERE LoginID=? AND " +
 "Password=?";
 dCmd = new OleDbCommand(strSQL, dbConn);
 dCmd.Parameters.Add(new OleDbParameter("LoginID",
 Login1.UserName));
 dCmd.Parameters.Add(new OleDbParameter("Password",
 Login1.Password));
 dr = dCmd.ExecuteReader();

 if (dr.Read())
 {
 // user credentials were found in the database so notify the system
 // that the user is authenticated
 FormsAuthentication.SetAuthCookie((String)(dr["UserName"]),
 Login1.RememberMeSet);

 // get the next page for the user
 if (Request.QueryString[QS_RETURN_URL] != null)
 {
 // user attempted to access a page without logging in so redirect
 // them to their originally requested page
 nextPage = Request.QueryString[QS_RETURN_URL];
 }
 else
 {
 // user came straight to the login page so just send them to the
 // home page
 nextPage = "Home.aspx";
 }

 // Redirect user to the next page
 // NOTE: This must be a Response.Redirect to write the cookie to
 // the user's browser. Do NOT change to Server.Transfer

 // which does not cause around trip to the client browser
 // and thus will not write the authentication cookie to the
 // client browser.
 Response.Redirect(nextPage, true);
 }
 else
 {
 // user credentials do not exist in the database so output error
 // message indicating the problem
 Login1.FailureText = "Login ID or password is incorrect. " +
 "Please check your credentials and try again.";
 }
 } // try

 finally
 {
 // cleanup
 if (dr != null)
 {
 dr.Close();
 }

 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally

 } // Login1_Authenticate
} // Login
}

Recipe 9.3. Restricting Access to Selected Application
Pages

Problem

You want to restrict access to many of the pages in your application (i.e., you want to make some
pages accessible to the public).

Solution

Implement the solution described in Recipe 9.1 and modify the contents of the web.config file to list
the pages allowing public access and requiring authentication.

Modify web.config as follows:

Change the <deny> child element of the <authorization> element to <deny users="*"/> and
delete the <allow> child element to deny access to all users.

1.

Add a <location> element to the configuration level for each application page to specify if it is
available to the public or only to authenticated users.

2.

Example 9-5 shows how we have implemented this solution with some sample web.config entries. We
begin by adding settings that deny access to all users. We then add settings that allow public access
to PublicPage.aspx but restrict access to Home.aspx only to authenticated users.

Discussion

The approach we advocate for this recipe is the same as for Recipe 9.1, except for certain aspects of
the web.config file configuration.

The <authentication> element and its <forms> child are the same as in Recipe 9.1.

We have modified the <authorization> element that we used in Recipe 9.1 to deny access to all
users. By denying authorization to all users at the application level, elements can be added to
authorize access to particular pages.

Access to the individual pages in the application is controlled by providing a <location> element for
each page. For pages with public access, the <location> element should be set up as follows:

 <location path="PublicPage.aspx">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>
 </location>

The path attribute of the <location> element specifies the page to which this <location> element
applies. The <authorization> element defines the access to the page defined in the path attribute.
For public access, the <authorization> should be set to allow all users (users="*").

To limit access to individual pages, a <location> element is provided for each of the restricted pages,
as follows:

 <location path="Home.aspx">
 <system.web>
 <authorization>
 <deny users="?" /> <!-- Deny anonymous (unauthenticated) users -->
 <allow users="*"/> <!-- Allow all authenticated users -->
 </authorization>
 </system.web>
 </location>

The primary difference is the inclusion of two <authorization> child elements. The <deny> element
denies access to anonymous (unauthenticated) users. The <allow> element allows access to all
authenticated users. We've used two special identities in the code: ? and *. Here ? refers to the
anonymous identity, and * refers to all identities.

At first glance, this code sequence would appear to allow access to all users. ASP.NET processes
authentication and authorization in a hierarchical fashion, starting at machine.config, followed by the
web.config for the application and any web.config files located in folders in the path to the requested
page. When ASP.NET finds the first access rule that applies to the current user, the rule will be
applied. The rule evaluation continues, and if any other rules are found that reduce the access, they
will be applied; otherwise, they will be skipped. In this case, the <deny users="?" /> rule is processed
first. The <allow users="*"/> rule is processed second, and because it does not reduce the access, it
is skipped. Therefore, if the user is not authenticated, he is denied access. As you can see by this
example, the precise ordering of the <allow> and <deny> elements is important. They must be in
most restrictive order, from top to bottom.

One of the disadvantages of using a <location> element for each page you wish to make accessible
to authenticated users is the maintenance of all the page names in the <location> elements. An
application with 50 pages is easy to process; however, an application with a large number of pages
can be a big task. ASP.NET provides another mechanism, described later, to make the process a little
easier.

Though this approach may have some maintenance issues, it does have the advantage of providing

more control over the individual pages served by your application. For instance, without modifying
the web.config file, no one will be able to add a page to your application that will be viewable through
the web server. If someone does succeed in adding a page, attempts to access it will result in a
redirection to the login page.

If the idea of maintaining a <location> element for each page in your application is unappealing, you
can structure your application to place public pages and private pages in separate folders and then
provide one <location> element for the public folder and a second one for the private pages:

 <!--
 **
 The following location element provides public access to all pages
 in the PublicPages folder.
 **
 -->
 <location path="PublicPages">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>
 </location>

 <!--
 **
 The following location element restricts access to all pages
 in the PrivatePages folder.
 **
 -->
 <location path="PrivatePages">
 <system.web>
 <authorization>
 <deny users="?" /> <!-- Deny anonymous (unauthenticated) users -->
 <allow users="*"/> <!-- Allow all authenticated users -->
 </authorization>
 </system.web>
 </location>

Using <location> elements to define separate folders for public and private pages is analogous to
using them to set authorization requirements for individual pages, except the path attribute is set to
a relative path to an applicable folder rather than to a specific .aspx page.

Nothing comes free. The folder approach to controlling security makes the
maintenance of the web.config file simpler; however, it has two drawbacks.
First, any page placed in a designated folder becomes part of your application
whether you want it to or not. Second, sharing images and user controls is
more difficult. This is the result of having to provide a relative path from the
requested page to the image or user control. It becomes more difficult if a user
control contains images and is used in the root folder as well as in a subfolder.

See Also

Recipe 9.1; MSDN documentation for more information on web.config format (search for "Format of
ASP.NET Configuration Files")

Example 9-5. web.config entries to restrict access to some pages

<?xml version="1.0"?>
<configuration>
 <system.web>

 …
 <authentication mode="Forms">
 <forms name=".ASPNETCookbookVBSecurity921"
 loginUrl="Login.aspx"
 protection="All"
 timeout="30"
 path="/">
 </forms>
 </authentication>

 <authorization>
 <deny users="*" /> <!-- Deny all users -->
 </authorization>

 …
 </system.web>

 <!--
 **
 The following section provides public access to pages that do not
 require authentication. An entry must be included for each page
 or folder that does not require authentication.
 **
 -->
 <location path="PublicPage.aspx">
 <system.web>
 <authorization>

 <allow users="*"/>
 </authorization>
 </system.web>
 </location>

 <!--
 **
 The following section defines the pages that require authentication
 for access. An entry must be included for each page or folder that
 requires authentication.
 **

 -->
 <location path="Home.aspx">
 <system.web>
 <authorization>
 <deny users="?" /><!-- Deny anonymous users -->
 <allow users="*"/><!-- Allow all authenticated users -->
 </authorization>
 </system.web>
 </location>

</configuration>

Recipe 9.4. Restricting Access to Application Pages by
Role

Problem

You want to assign or make use of predefined roles for the users of your application, and you want to
control access to pages as a function of these roles.

Solution

The solution involves the following four steps:

Implement the solution described in Recipe 9.2, adding the required roles to web.config for each
of the pages.

1.

In the code-behind class for the ASP.NET login page, add the user's role information to the
authentication cookie when the user logs in.

2.

Add code to the Application_AuthenticateRequest method in the global.asax file to recover the
user role information and build a user principal object.

3.

Set the user principal object to the Context.User property to provide ASP.NET the data it needs
to perform page-by-page authentication.

4.

The code we've written to illustrate this solution appears in Examples 9-6, 9-7, 9-8, 9-9 through 9-
10. The <authentication> and <authorization> elements of web.config are shown in Example 9-6.
The login page code-behind where the authentication cookie is created is shown in Examples 9-7 (VB)
and 9-8 (C#). (See Recipe 9.1 for the .aspx file for a typical login page.) The
Application_AuthenticateRequest method in the code-behind for global.asax is shown in Examples
9-9 (VB) and 9-10 (C#).

Discussion

The approach we favor for this recipe builds on Recipe 9.2 but takes a tack of its own based on the
addition and use of user roles. The <authentication> and <authorization> elements of the
web.config file are identical to those used in Recipe 9.2. And, as in Recipe 9.2, <location> elements
are used to define the access requirements for each page. The <location> elements for the public
access pages are also identical.

In this recipe, however, each <location> elements for the restricted pages contains a list of roles

required for access to the page it controls. The following code shows an example. For Home.aspx, the
User and Admin roles are allowed access. For AdminPage.aspx, only the Admin role is allowed access:

 <location path="Home.aspx">
 <system.web>
 <authorization>
 <allow roles="User,
 Admin"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>

 <location path="AdminPage.aspx">
 <system.web>
 <authorization>
 <allow roles="Admin"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>

Include the <deny users="*" /> element for all pages after the list of roles
allowed to access the page. This informs ASP.NET that if users are not assigned
one of the previously listed roles, they should be denied access to the page.

You might be tempted to use folders to contain pages with similar access rights,
as described in Recipe 9.2. However, this approach is more complicated when
roles are used, because a user can be assigned multiple roles and any given
page may be accessible by multiple roles. You might initially be able to segment
your application to use the folder approach, but making changes later will be
difficult. If you are using roles to control access to pages in your application,
you should include a <location> element for each page in your web.config file.

The operations required after the user credentials have been verified are different than the previous
recipes in this chapter. First, a FormsAuthenticationTicket is created. This authentication ticket will
be used as the authentication cookie. By manually creating the ticket, you can add the user role
information to the authentication cookie.

To create the ticket manually, you must instantiate a
System.Web.Security.FormsAuthenticationTicket object, as shown in a general form here and in a
more application-specific form in Examples 9-7 (VB) and 9-8 (C#):

 ticket = New FormsAuthenticationTicket(version, _
 name
 issueDate

 expiration
 isPersistant
 userData

The ticket takes six parameters:

version

The first parameter is a version number. In our code-behind examples, we've used the number
1, but you can use any value. In a production application that allows persistent cookies to be
stored on the client, the version number can be used to track and handle changes to the data
in the cookie.

name

The second parameter is the user's name. This can be any string you want to use to identify
the user.

issueDate

The third parameter is the issue date/time of the authentication ticket. This would normally be
set to the current date/time.

expiration

The fourth parameter is the expiration date/time of the authentication ticket. The difference
between this value and the issue date/time needs to be greater than or equal to the session
timeout value. In Examples 9-7 (VB) and 9-8 (C#), it is set to 30 minutes in the future.

isPersistent

The fifth parameter is a flag indicating whether the cookie should be persisted on the client (if
set to true) or should be memory-based (if set to False).

userData

The sixth parameter can be any string value you want to store with the cookie. It is used in our
example to store a comma-delimited list of user roles. This list of roles is used to authorize
access to the pages in your application.

Depending on how the role information is stored for a user of your application,
you may need to build a comma-delimited string containing the roles and use
this string as the sixth parameter of the authentication ticket.

After the application creates it, an authentication ticket needs to be converted to an encrypted string.
Only strings can be stored in cookies, and encryption prevents the possibility of tampering with the
data stored there. To encrypt the string, we call the Encrypt method of the FormsAuthentication
class, passing it the ticket that we created. The method returns a string containing the encrypted
ticket:

 encryptedStr = FormsAuthentication.Encrypt(ticket)

Now you need to create a cookie from the encrypted string, using the name of the Forms
authentication cookie defined in the web.config file. Naming the cookie anything else will keep the
authentication from working since ASP.NET will look for the cookie by the name defined in web.config
and will not find it.

 cookie = New HttpCookie(FormsAuthentication.FormsCookieName,
 encryptedStr)

Next, you need to set the expiration date and time for the cookie. If the cookie is to be persisted, the
expiration should be set in the future. In Examples 9-7 and 9-8, we've set the expiration date 10
years in the future. If the cookie is not to be persisted, the expiration date and time should not be set
or the cookie will be made persistent.

The last step before redirecting the user to the appropriate next page (the same as in previous
recipes in this chapter) is to add the cookie you created to the cookie collection so it will be sent to
the client browser on the redirect. This is done by calling the Add method of the Response object's
Cookies collection and passing it the cookie to be added.

Now that the user is logged in and the role information has been added to the authentication cookie,
you need to add the Application_AuthenticateRequest method to global.asax (see Examples 9-9 and
9-10). This method is executed for every requested resource that ASP.NET manages and allows the
authentication/ authorization process to be customized.

In the Application_AuthenticateRequest method, the first thing you need to do is to check if the
user is currently authenticated by calling the IsAuthenticated method of the Request object. If not,
no action needs to be taken.

If the user is authenticated, you need to check if the authentication type is set to Forms. If it is not,
an exception should be thrown since a significant mismatch exists between the code and the
authentication cookie.

 If (Context.Request.IsAuthenticated) Then
 If (Context.User.Identity.AuthenticationType = "Forms") Then

 …

 Else
 'application is improperly configured so throw an exception
 Throw New ApplicationException("Application Must Be Configured For
 Forms Authentication")
 End If 'If (Context.User.Identity.AuthenticationType = "Forms")
 End If 'If (Context.Request.IsAuthenticated)

 if (Context.Request.IsAuthenticated)
 {
 if (Context.User.Identity.AuthenticationType == "Forms")
 {
 …
 }
 else
 {
 // application is improperly configured so throw an exception
 throw new ApplicationException("Application Must Be Configured For
 Forms Authentication");
 } // if (Context.User.Identity.AuthenticationType = "Forms")
 } // if (Context.Request.IsAuthenticated)

Next, you need to get the user roles that you added to the Forms authentication cookie. This is done
by getting the identity from the Context.User object. You must cast the identity to a FormsIdentity
object to get access to the authentication ticket data where the user roles are stored. This casting is
the primary reason why the verification was made on the authentication type. If it was not Forms, this
casting would throw a generic exception that would be much harder to troubleshoot than an
exception that explicitly states what is wrong. The list of roles retrieved from the UserData property
of the authentication ticket is the comma-delimited list of the user roles you added to the
authentication ticket during login.

 identity = CType(Context.User.Identity, FormsIdentity)
 roles = identity.Ticket.UserData

 identity = (FormsIdentity)(Context.User.Identity);
 roles = identity.Ticket.UserData;

With the user identity and the roles in hand, you have the information you need to create a
GenericPrincipal object and assign it to the User property of the Context object. This
GenericPrincipal object is what ASP.NET uses, along with the information in the web.config file, to
perform the authorization for the requested page.

The GenericPrincipal constructor requires the user's identity and an array of strings for the roles
assigned to the user. The user's identity is the FormsIdentity object you retrieved previously. The

comma-delimited list of roles you retrieved previously can easily be converted to an array of strings
by using the Split method of the String object, passing a comma as the delimiter used for
performing the split.

 Context.User = new GenericPrincipal(identity,
 roles.Split(','));

 Context.User = New GenericPrincipal(identity, _
 roles.Split(","))

As with previous recipes in this chapter, you do not need to add any code to the individual pages in
your application to handle the authentication and authorization. ASP.NET will do that work for you
and let you concentrate on the requirements of the individual pages. If the authorization
requirements change for your application and different roles are required to access pages, the only
changes required will be to the web.config <location> elements.

Though you do not need to perform any of the authentication and authorization tasks, you may want
access to the information to customize your pages with the user information or to change what is
displayed on pages as a function of the user's roles. The username can be obtained as shown here:

 userName = context.User.Identity.Name

 userName = context.User.Identity.Name;

To check the user's role(s), use the following code:

 If (Context.User.IsInRole("User")) Then

 'perform functions for role

 End If

 if (Context.User.IsInRole("User"))
 {
 // perform functions for role
 }

Using the GenericPrincipal object, no mechanism is provided to get the list of roles assigned to the
user. You can only check to see if a user can perform a specific role. If your application requires that
you have access to the list of roles, you can store the role information in a Session variable or you
can create a custom user principal inheriting from the GenericPrincipal class and adding the
functionality needed by your application.

See Also

Recipes 9.1 and 9.2

Example 9-6. web.config for restricting access by user role

<?xml version="1.0"?>
<!--
<configuration>
 <system.web>

 …

 <authentication mode="Forms">
 <forms name=".ASPNETCookbookVBSecurity93"
 loginUrl="Login.aspx"
 protection="All"
 timeout="30"
 path="/">
 </forms>
 </authentication>

 <authorization>
 <!-- Deny all users -->
 <deny users="*" />
 </authorization>

 </system.web>
 <!--
 **
 The following section provides public access to pages that do not
 require authentication. An entry must be included for each page
 or folder that does not require authentication.
 **
 -->
 <location path="PublicPage.aspx">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>

 </location>

 <!--
 **
 The following section defines the pages that require authentication
 for access. An entry must be included for each page or folder that
 requires authentication with a list of the roles required for access
 to the page.

 Valid Roles are as follows.
 NOTE: The roles must be entered exactly as listed.

 User
 Admin
 **
 -->
 <location path="Home.aspx">
 <system.web>
 <authorization>
 <allow roles="User,
 Admin"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>

 <location path="AdminPage.aspx">
 <system.web>
 <authorization>
 <allow roles="Admin"/>
 <deny users="*"/>
 </authorization>

 </system.web>
 </location>

</configuration>

Example 9-7. Login page code-behind (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' Login.aspx
 ''' </summary>
 Partial Class Login
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the login button click
 ''' event. It is responsible for authenticating the user and redirecting
 ''' to the next page if the user is authenticated.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Login1_Authenticate(ByVal sender As Object, _
 ByVal e As AuthenticateEventArgs)
 'name of querystring parameter containing return URL
 Const QS_RETURN_URL As String = "ReturnURL"

 Dim dbConn As OleDbConnection = Nothing
 Dim dCmd As OleDbCommand = Nothing
 Dim dr As OleDbDataReader = Nothing
 Dim strConnection As String
 Dim strSQL As String
 Dim nextPage As String
 Dim ticket As FormsAuthenticationTicket
 Dim cookie As HttpCookie
 Dim encryptedStr As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString

 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()

 'check to see if the user exists in the database
 strSQL = "SELECT (FirstName + ' ' + LastName) AS UserName, " & _
 "Role " & _
 "FROM AppUser " & _
 "WHERE LoginID=? AND " & _
 "Password=?"
 dCmd = New OleDbCommand(strSQL, dbConn)
 dCmd.Parameters.Add(New OleDbParameter("LoginID", _
 Login1.UserName))
 dCmd.Parameters.Add(New OleDbParameter("Password", _
 Login1.Password))

 dr = dCmd.ExecuteReader()

 If (dr.Read()) Then
 'user credentials were found in the database so notify the system
 'that the user is authenticated

 'create an authentication ticket for the user with an expiration
 'time of 30 minutes and placing the user's role in the userData
 'property
 ticket = New FormsAuthenticationTicket(1, _
 CStr(dr.Item("UserName")), _
 DateTime.Now(), _
 DateTime.Now().AddMinutes(30), _
 Login1.RememberMeSet, _
 CStr(dr.Item("Role")))
 encryptedStr = FormsAuthentication.Encrypt(ticket)

 'add the encrypted authentication ticket in the cookies collection
 'and if the cookie is to be persisted, set the expiration for
 '10 years from now. Otherwise do not set the expiration or the
 'cookie will be created as a persistent cookie.
 cookie = New HttpCookie(FormsAuthentication.FormsCookieName, _
 encryptedStr)
 If (Login1.RememberMeSet) Then
 cookie.Expires = ticket.IssueDate.AddYears(10)
 End If

 Response.Cookies.Add(cookie)

 'get the next page for the user
 If (Not IsNothing(Request.QueryString(QS_RETURN_URL))) Then
 'user attempted to access a page without logging in so redirect
 'them to their originally requested page
 nextPage = Request.QueryString(QS_RETURN_URL)
 Else
 'user came straight to the login page so just send them to the
 'home page
 nextPage = "Home.aspx"
 End If

 'Redirect user to the next page
 'NOTE: This must be a Response.Redirect to write the cookie to the
 ' user's browser. Do NOT change to Server.Transfer which
 ' does not cause around trip to the client browser and thus
 ' will not write the authentication cookie to the client
 ' browser.
 Response.Redirect(nextPage, True)
 Else
 'user credentials do not exist in the database - in a production
 'application this should output an error message telling the user
 'that the login ID or password was incorrect
 End If

 Finally
 'cleanup
 If (Not IsNothing(dr)) Then
 dr.Close()
 End If

 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'Login1_Authenticate
 End Class 'Login
End Namespace

Example 9-8. Login page code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.Security;
using System.Web.UI.WebControls;
using System.Web;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// Login.aspx
 /// </summary>
 public partial class Login : System.Web.UI.Page
 {

 ///***
 /// <summary>
 /// This routine provides the event handler for the login button click
 /// event. It is responsible for authenticating the user and redirecting
 /// to the next page if the user is authenticated.
 /// </summary>
 ///

 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Login1_Authenticate(Object sender,
 AuthenticateEventArgs e)
 {
 // name of querystring parameter containing return URL

 const String QS_RETURN_URL = "ReturnURL";

 OleDbConnection dbConn = null;
 OleDbCommand dCmd = null;
 OleDbDataReader dr = null;
 String strConnection = null;
 String strSQL = null;
 String nextPage = null;
 FormsAuthenticationTicket ticket = null;
 HttpCookie cookie = null;
 String encryptedStr = null;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // check to see if the user exists in the database
 strSQL = "SELECT (FirstName + ' ' + LastName) AS UserName, " +
 "Role " +
 "FROM AppUser " +
 "WHERE LoginID=? AND " +
 "Password=?";
 dCmd = new OleDbCommand(strSQL, dbConn);
 dCmd.Parameters.Add(new OleDbParameter("LoginID",
 Login1.UserName));
 dCmd.Parameters.Add(new OleDbParameter("Password",
 Login1.Password));
 dr = dCmd.ExecuteReader();

 if (dr.Read())
 {
 // user credentials were found in the database so notify the system
 // that the user is authenticated
 // create an authentication ticket for the user with an expiration
 // time of 30 minutes and placing the user's role in the userData
 // property
 ticket = new FormsAuthenticationTicket(1,
 (String)(dr["UserName"]),
 DateTime.Now,
 DateTime.Now.AddMinutes(30),

 Login1.RememberMeSet,
 (String)(dr["Role"]));
 encryptedStr = FormsAuthentication.Encrypt(ticket);

 // add the encrypted authentication ticket in the cookies collection
 // and if the cookie is to be persisted, set the expiration for

 // 10 years from now. Otherwise do not set the expiration or the
 // cookie will be created as a persistent cookie.
 cookie = new HttpCookie(FormsAuthentication.FormsCookieName,
 encryptedStr);
 if (Login1.RememberMeSet)
 {
 cookie.Expires = ticket.IssueDate.AddYears(10);
 }

 Response.Cookies.Add(cookie);

 // get the next page for the user
 if (Request.QueryString[QS_RETURN_URL] != null)
 {
 // user attempted to access a page without logging in so redirect
 // them to their originally requested page
 nextPage = Request.QueryString[QS_RETURN_URL];
 }
 else
 {
 // user came straight to the login page so just send them to the
 // home page
 nextPage = "Home.aspx";
 }

 // Redirect user to the next page
 // NOTE: This must be a Response.Redirect to write the cookie to
 // the user's browser. Do NOT change to Server.Transfer
 // which does not cause around trip to the client browser
 // and thus will not write the authentication cookie to the
 // client browser.
 Response.Redirect(nextPage, true);
 }
 else
 {
 // user credentials do not exist in the database so output error
 // message indicating the problem
 Login1.FailureText = "Login ID or password is incorrect. " +
 "Please check your credentials and try again.";
 }
 } // try

 finally
 {
 // cleanup
 if (dr != null)

 {
 dr.Close();
 }

 if (dbConn != null)

 {
 dbConn.Close();
 }
 } // finally
 } // Login1_Authenticate
 } // Login
}

Example 9-9. Application_AuthenticateRequest method in global.asax
(VB)

'''***
''' <summary>
''' This routine provides the event handler for the application authenticate
''' request event. It is responsible for initializing application variables.
''' </summary>
'''
''' <param name="sender">Set to the sender of the event</param>
''' <param name="e">Set to the event arguments</param>
Protected Sub Application_AuthenticateRequest(ByVal sender As Object, _
 ByVal e As EventArgs)
 Dim roles As String
 Dim identity As FormsIdentity

 If (Context.Request.IsAuthenticated) Then
 If (Context.User.Identity.AuthenticationType = "Forms") Then
 'get the comma delimited list of roles from the user data
 'in the authentication ticket
 identity = CType(Context.User.Identity, FormsIdentity)
 roles = identity.Ticket.UserData

 'create a new user principal object with the current user identity
 'and the roles assigned to the user
 Context.User = New GenericPrincipal(identity, _
 roles.Split(","))
 Else
 'application is improperly configured so throw an exception
 Throw New ApplicationException("Application Must Be Configured For Forms
Authentication")
 End If 'If (Context.User.Identity.AuthenticationType = "Forms")
 End If 'If (Context.Request.IsAuthenticated)
End Sub 'Application_AuthenticateRequest

Example 9-10. Application_AuthenticateRequest method in global.asax

(C#)

///***
/// <summary>
/// This routine provides the event handler for the application authenticate
/// request event. It is responsible for initializing application variables.

/// </summary>
///
/// <param name="sender">Set to the sender of the event</param>
/// <param name="e">Set to the event arguments</param>
protected void Application_AuthenticateRequest(Object sender, EventArgs e)
{
 String roles = null;
 FormsIdentity identity = null;

 if (Context.Request.IsAuthenticated)
 {
 if (Context.User.Identity.AuthenticationType == "Forms")
 {

 // get the comma delimited list of roles from the user data
 // in the authentication ticket
 identity = (FormsIdentity)(Context.User.Identity);
 roles = identity.Ticket.UserData;

 // create a new user principal object with the current user identity
 // and the roles assigned to the user
 Context.User = new GenericPrincipal(identity,
 roles.Split(','));
 }
 else
 {

 // application is improperly configured so throw an exception
 throw new ApplicationException("Application Must Be Configured For Forms
Authentication");
 } // if (Context.User.Identity.AuthenticationType = "Forms")
 } // if (Context.Request.IsAuthenticated)
} // Application_AuthenticateRequest

Recipe 9.5. Using Windows Authentication

Problem

You want to use existing Windows network accounts for authenticating users of your application.

Solution

Configure IIS to block anonymous access and to require Windows integrated authentication.

Make the following four changes to web.config:

Specify Windows authentication:

 <authentication mode="Windows" />

1.

Set the <identity> element to impersonate:

 <identity impersonate="true" userName="" password="" />

2.

Configure the <authorization> element to deny access to all users:

 <authorization>
 <deny users="*" /> <!-- Deny all users -->
 </authorization>

3.

Add a <location> element for each page to which you want to control access with an <allow>
child element and attribute (to allow access to the page by certain roles) followed by a <deny>
child element and attribute (to deny access to all users not listed in the previous roles):

 <location path="DisplayUserInformation.aspx">
 <system.web>

4.

 <authorization>
 <allow roles="BuiltIn\Users,
 BuiltIn\Administrators"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>

The code we've implemented to illustrate this solution appears in Examples 9-11, 9-12, 9-13 through
9-14. Example 9-11 shows the Windows authentication and role settings in web.config for the sample
ASP.NET page. Example 9-12 shows the Windows authentication sample .aspx file. The code-behind
class for the page appears in Examples 9-13 (VB) and 9-14 (C#). Figure 9-2 shows the Windows
authentication dialog box, and Figure 9-3 shows a sample page produced by the application.

Figure 9-2. Windows authentication dialog box

Figure 9-3. Windows authentication sample page

Discussion

Windows authentication is a useful means of authenticating users of web applications that run on an
intranet. Windows authentication allows you to assume that each user has a valid Windows account
with appropriate permissions for accessing the network resources. This is an advantage to you as a
web application developer because it saves you from having to maintain all this information
separately in your application.

The setup required for using Windows authentication is similar to the setup performed for Forms
authentication. The big difference is the role IIS plays in the authentication. To support Forms
authentication, IIS is configured to allow anonymous access. In other words, IIS does not perform
any authentication, leaving the task of authenticating and authorizing users to ASP.NET. (See Recipe
9.1 for more on Forms authentication.)

For Windows authentication, IIS must be configured to block anonymous access and must be
configured to use Windows integrated authentication or basic authentication. We recommend
Windows integrated authentication because this method does not send the user password over the
network in clear text. With Windows authentication, IIS verifies that the user is allowed to access the
application; then ASP.NET performs the authorization for the requested resource. The operating
system can also be involved in the authorization by using Access Control Lists (ACLs) to limit access
to resources by specific users.

After you set up IIS, the web.config file should be set up with the authentication mode set to
Windows:

 <authentication mode="Windows" />

The <identity> element should be set to impersonate:

 <identity impersonate="true" userName="" password="" />

This configures ASP.NET to impersonate the user authenticated by IIS for all resource requests when

the userName and password are empty strings. If you want all requests to use a different account than
IIS used for authentication, the userName and password attributes of the <identity> element can be
set to the desired username and password. However, there are two negatives if you do this. First, the
password for the account is in clear text in web.config, which can cause security risks. Second,
logging and auditing cannot be done on a per-user basis.

The <authorization> section is configured to deny access to all users:

 <authorization>
 <deny users="*" /> <! Deny all users >
 </authorization>

This is done because <location> elements will be added to define the authorizations for each page.

To control the access to each page, add a <location> element. This provides the maximum flexibility
in controlling access to each page in your application. When using Windows authentication, roles are
synonymous with groups. Therefore, the <allow> element should contain the list of groups (roles)
allowed to access the given page. The <deny users="*"/> element should always be provided after
the <allow> element to deny access to all users not listed in the previous roles. For example:

 <location path="DisplayUserInformation.aspx">
 <system.web>
 <authorization>
 <allow roles="BuiltIn\Users,
 BuiltIn\Administrators"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>

Group (role) names must be fully qualified. When using local built-in groups
such as Users and Administrators, the fully qualified names are BuiltIn\Users
and BuiltIn\Administrators. When using groups you have created, you must
include the computer name, such as <MyComputer> \Testers. When using
domain groups, you must include the domain name, such as
<DomainName>\Testers.

As described in Recipe 9.2, you can place pages with the same access requirements in folders and
include a <location> element defining the access to the folders. See Recipes 9.2 and 9.3 for more
information on using folders in this way, including a discussion of the pros and cons of various folder-
related approaches.

No other code is required in your application to implement Windows authentication.

You can access the user credentials in your application by using the identity property from the

current context. Because Windows authentication is being used and more information is available for
the user than is available using Forms authentication, the identity property should be cast as a
WindowsIdentity type to access these additional properties:

 identity = CType(Context.User.Identity, WindowsIdentity)

 identity = (WindowsIdentity)(Context.User.Identity);

Windows authentication, the client browser, IIS, and Windows perform many
functions behind the scenes. If you access the application from the same
machine or from a machine in the same domain, you may not be prompted to
enter your username and password. This is caused by the browser
automatically sending your credentials when the challenge is issued by IIS.
Whether or not this happens is a function of the requested URL, how IIS is
configured, and how your browser is configured. The details of this
configuration are beyond the scope of this book. If you're interested in this
topic, consult your network administrator, who will probably know all the fine
points.

See Also

Recipes 9.1, 9.2, and 9.3; MSDN documentation for IIS setup (search for "IIS authentication")

Example 9-11. web.config for Windows authentication

<?xml version="1.0"?>
<configuration>
 <system.web>

 …

 <authentication mode="Windows" />
 <identity impersonate="true" />
 <authorization>
 <deny users="*" />
 <!-- Deny all users -->
 </authorization>

 …

 </system.web>

 <!--
 **
 The following section defines the pages in the application and the
 roles (groups) that are allowed to access them. Any group defined
 in Windows can be used. NOTE: The groups must be the fully
 qualified names such as BuiltIn\Administrators, etc.
 **
 -->
 <location path="DisplayUserInformation.aspx">
 <system.web>
 <authorization>

 <allow roles="BuiltIn\Users,
 BuiltIn\Administrators"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>
</configuration>

Example 9-12. Windows authentication sample page (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="DisplayUserInformation.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.DisplayUserInformation"
 Title="Display User Information" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Using Windows Authentication (VB)
 </div>
 <table width="60%" align="center" border="0">
 <tr>
 <td class="labelText">User Name: </td>
 <td>
 <asp:Label ID="txtUserName" Runat="server"
 CssClass="labelText" />
 </td>
 </tr>
 <tr>
 <td class="labelText">Authentication Type: </td>
 <td>
 <asp:Label ID="txtAuthenticationType" Runat="server"
 CssClass="labelText" />
 </td>
 </tr>
 <tr>

 <td class="labelText">Is In Administrators Group: </td>
 <td>
 <asp:Label ID="txtAdminGroup" Runat="server"
 CssClass="labelText" />
 </td>
 </tr>
 <tr>
 <td class="labelText">Is In Users Group: </td>
 <td>
 <asp:Label ID="txtUsersGroup" Runat="server"
 CssClass="labelText" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 9-13. Windows authentication sample page code-behind (.vb)

Option Explicit On
Option Strict On

Imports System.Security.Principal

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' DisplayUserInformation.aspx
 ''' </summary>
 Partial Class DisplayUserInformation
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim identity As WindowsIdentity

 'get the current user's identity
 identity = CType(Context.User.Identity, WindowsIdentity)

 'output the user's name and authentication type
 txtUserName.Text = identity.Name

 txtAuthenticationType.Text = identity.AuthenticationType

 'check to see if the user is a member of the administators group
 If (Context.User.IsInRole("BuiltIn\Administrators")) Then
 txtAdminGroup.Text = "Yes"
 Else
 txtAdminGroup.Text = "No"
 End If

 'check to see if the user is a member of the users group
 If (Context.User.IsInRole("BuiltIn\Users")) Then
 txtUsersGroup.Text = "Yes"
 Else
 txtUsersGroup.Text = "No"
 End If
 End Sub 'Page_Load
 End Class 'DisplayUserInformation
End Namespace

Example 9-14. Windows authentication sample page code-behind (.cs)

using System;
using System.Security.Principal;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// DisplayUserInformation.aspx
 /// </summary>
 public partial class DisplayUserInformation : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 WindowsIdentity identity = null;

 // get the current user's identity
 identity = (WindowsIdentity)(Context.User.Identity);

 // output the user's name and authentication type
 txtUserName.Text = identity.Name;
 txtAuthenticationType.Text = identity.AuthenticationType;

 // check to see if the user is a member of the administators group
 if (Context.User.IsInRole("BuiltIn\\Administrators"))
 {
 txtAdminGroup.Text = "Yes";
 }
 else
 {
 txtAdminGroup.Text = "No";
 }

 // check to see if the user is a member of the users group
 if (Context.User.IsInRole("BuiltIn\\Users"))
 {
 txtUsersGroup.Text = "Yes";
 }
 else
 {
 txtUsersGroup.Text = "No";
 }
 } // Page_Load
 } // DisplayUserInformation
}

Recipe 9.6. Using Membership and Roles

Problem

You want to secure your web site by writing only a minimum amount of code.

Solution

Use ASP.NET 2.0's Membership and Role providers. The solution involves the following steps:

Modify web.config as follows:

Add the <authentication>, <authorization> , and <location> elements, as described in Recipe
9.3.

1.

Add a <membership> element with a <provider> element defining the provider used to
authenticate users.

2.

Add a <roleManager> element with a <provider> element defining the provider used to manage
the roles for users of your application.

3.

In the .aspx file for the login page:

Add a Login control.1.

Customize the Login control as required by your application.2.

In the .aspx file for pages in your application, optionally add an <asp:LoginName> control to display
the logged in user's name and an <asp:LoginStatus> control to provide the ability to log out.

The code we've created to illustrate this solution is shown in Examples 9-15 , 9-16 through 9-17 .
Example 9-15 shows the modifications we make to web.config to use the Membership and Role
providers. Example 9-16 shows the .aspx file for the login page, and Example 9-17 shows the .aspx
file for a page that displays the user's name and provides the ability to log out of the application.

Discussion

ASP.NET 1.x simplified the coding required to control access to pages in your application. The
infrastructure to handle authentication and authorization for pages in your application requires no
code in the individual pages; however, it does require you to validate the user's credentials, store the
user information in a cookie, and extract the information from the cookie for each page request.
Though not much code was required in ASP.NET 1.x (see Recipe 9.3), authentication and

authorization can be implemented without writing any code whatsoever in ASP.NET 2.0.

Two providers are available in ASP.NET 2.0 to handle authentication and authorization. The
Membership provider handles the validation of user credentials and the Role provider handles the
user roles to support authorization. In addition, a configuration tool is provided to support managing
users and their roles.

In our example application we have modified the web.config file to include the <authentication>,
<authorization> , and <location> elements, as described in Recipe 9.3. These elements are used to
define the type of authentication used and the roles required to access the pages in the application.

To take advantage of the membership functionality, a <membership> element is added to web.config .
This configures the provider that will be used to validate the user's credentials when she logs in.

 <membership defaultProvider="AspNetSqlMembershipProvider"
 userIsOnlineTimeWindow="15">
 <providers>
 <remove name="AspNetSqlMembershipProvider" />
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="LocalSqlServer"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 applicationName="/"
 requiresUniqueEmail="false"
 minRequiredPasswordLength="1"
 minRequiredNonalphanumericCharacters="0"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5"
 passwordAttemptWindow="10"
 passwordStrengthRegularExpression="" />
 </providers>
 </membership>

The defaultProvider attribute of the membership element defines the provider that will be used for
managing users. The userIsOnlineTimeWindow attribute specifies the number of minutes after the last
access the user is still considered to be online. After the specified number of minutes elapses with no
activity from the user, the user is logged out. The default is 15 minutes.

 <membership defaultProvider="AspNetSqlMembershipProvider"
 userIsOnlineTimeWindow="15">

 …
 </membership>

The defaultProvider attribute should always be explicitly set. Omitting the
defaultProvider attribute will implicitly define the membership provider as the
first provider listed within the <membership> element. This could result in
unexpected behavior of your application if the list of providers is modified.

In addition, you should always define the provider(s) required for your
application since a provider is defined in machine.config . If your application
does not define its own provider(s), the provider defined in machine.config will
be used; this may cause your application to behave unexpectedly.

The <membership> element contains a <providers> element with one or more <add> elements to define
the provider(s) available for managing users. The name and type attributes of the <add> element are
required. All other attributes are optional and are a function of the individual providers.

In our example we are using the SqlMembershipProvider , which supports multiple attributes to
configure the provider. Table 9-1 defines the attributes available for the SqlMembershipProvider .

Table 9-1. SqlMembershipProvider attributes

Attribute Description

name Defines the name for the provider. Any value can be used.

type

Specifies the class used to provide the functionality for the
provider. Must be set to System.Web.
Security.SqlMembershipProvider for the
SqlMembershipProvider .

connectionStringName

Specifies the name of the connection string used to access
the SQL database used by the provider. Must be set to
one of the connection strings defined in the
<connectionStrings> element of web.config . Required for
the SqlMembershipProvider .

enablePasswordRetrieval
Specifies if retrieval of passwords is supported. Valid
values are true and false . The default value is false .

enablePasswordReset
Specifies if resetting passwords is supported. Valid values
are true and false . The default value is true .

requiresQuestionAndAnswer

Specifies if a user must provide an answer to his security
question when retrieving his password. Valid values are
true and false . The default value is true .

applicationName

Specifies the name of the application using the
membership provider. The default value is the value of the
System.Web.HttpRequest.ApplicationPath property.

requiresUniqueEmail

Specifies if the membership provider requires user email
addresses to be unique. Valid values are true and false .
The default value is true .

Attribute Description

minRequiredPasswordLength
Specifies the minimum length of passwords allowed by the
member ship provider. The default value is 7 .

minRequiredNonalphanumericCharacters

Specifies the minimum number of nonalphanumeric
characters (spaces, punctuation, etc.) that must be
included in a password. The default value is 1 .

passwordFormat

Specifies the format in which passwords are stored in the
database used by the membership provider. Valid values
are Clear, Encrypted , and Hashed. Clear specifies that
passwords are to be stored in plain text. Encrypted
specifies that passwords are to be encrypted. Encrypted
should be used when password values must be
retrievable. Hashed specifies that passwords are to be
stored using a one-way hash algorithm. Passwords stored
in hashed format cannot be retrieved. The default is
Hashed .

maxInvalidPasswordAttempts

Specifies the maximum number of attempts that can be
made before the user's account is locked out. The default
value is 5 .

passwordAttemptWindow

Specifies the elapsed number of minutes during which the
maximum number of invalid password attempts is
allowed. The default value is 10 .

passwordStrengthRegularExpression

Specifies a regular expression to be used to validate the
strength of user passwords. The default is an empty
string.

In our application, we have set the minRequiredNonalphanumericCharacters to 0
to simplify the use of the example. Evaluate the security needs of your
application and set the minRequiredPasswordLength,
minRequiredNonalphanumericCharacters, maxInvalidPasswordAttempts , and
passwordAttemptWindow attributes accordingly.

To take advantage of the role management functionality provided by the Role Manager, a
<roleManager> element is added to web.config . This configures the provider used to associate users
with roles and support authorization as a function of the user's role.

 <roleManager defaultProvider="AspNetSqlRoleProvider"
 enabled="true"
 cacheRolesInCookie="true"
 cookieName=".ASPNETCookbookVBSecurity951Roles"
 cookieTimeout="30"
 cookiePath="/"
 cookieRequireSSL="false"

minRequiredPasswordLength
Specifies the minimum length of passwords allowed by the
member ship provider. The default value is 7 .

minRequiredNonalphanumericCharacters

Specifies the minimum number of nonalphanumeric
characters (spaces, punctuation, etc.) that must be
included in a password. The default value is 1 .

passwordFormat

Specifies the format in which passwords are stored in the
database used by the membership provider. Valid values
are Clear, Encrypted , and Hashed. Clear specifies that
passwords are to be stored in plain text. Encrypted
specifies that passwords are to be encrypted. Encrypted
should be used when password values must be
retrievable. Hashed specifies that passwords are to be
stored using a one-way hash algorithm. Passwords stored
in hashed format cannot be retrieved. The default is
Hashed .

maxInvalidPasswordAttempts

Specifies the maximum number of attempts that can be
made before the user's account is locked out. The default
value is 5 .

passwordAttemptWindow

Specifies the elapsed number of minutes during which the
maximum number of invalid password attempts is
allowed. The default value is 10 .

passwordStrengthRegularExpression

Specifies a regular expression to be used to validate the
strength of user passwords. The default is an empty
string.

In our application, we have set the minRequiredNonalphanumericCharacters to 0
to simplify the use of the example. Evaluate the security needs of your
application and set the minRequiredPasswordLength,
minRequiredNonalphanumericCharacters, maxInvalidPasswordAttempts , and
passwordAttemptWindow attributes accordingly.

To take advantage of the role management functionality provided by the Role Manager, a
<roleManager> element is added to web.config . This configures the provider used to associate users
with roles and support authorization as a function of the user's role.

 <roleManager defaultProvider="AspNetSqlRoleProvider"
 enabled="true"
 cacheRolesInCookie="true"
 cookieName=".ASPNETCookbookVBSecurity951Roles"
 cookieTimeout="30"
 cookiePath="/"
 cookieRequireSSL="false"

 cookieSlidingExpiration="true"
 cookieProtection="All" >

 <providers>
 <remove name="AspNetSqlRoleProvider" />
 <add name="AspNetSqlRoleProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="LocalSqlServer"
 applicationName="/" />
 </providers>
 </roleManager>

The < roleManager> element has multiple attributes used to configure the role manager. Table 9-2
defines the available attributes for the <roleManager> element.

Table 9-2. RoleManager attributes

Attribute Description

defaultProvider

Specifies the provider that will be used for role management. Should
always be explicitly set to the desired provider. The default, if not
specified, is the first provider listed within the <roleManager> element.

enabled
Specifies if role management is being used. Valid values are true and
false . The default value is false .

cacheRolesInCookie
Specifies if user role information is cached in a cookie. Valid values are
true and false . The default value is true .

cookieName
Specifies the name of the cookie used to cache the user roles. The
default value is .ASPXROLES .

cookieTimeout
Specifies the time in minutes before the cookie expires. The default value
is 30 minutes.

cookiePath

Specifies the path of the cookie used for storing role information. Most
browsers treat the path as case-sensitive and will not return the cookie
for a request that does not match the value provided for the path
attribute. The result will be having the users redirected as if they were
not logged in, since the role data will not be available. Unless your
application requires specifying the path, we recommend that you leave
the path as "/".

cookieRequireSSL
Specifies if SSL is required. Valid values are TRue and false . The default
value is false .

cookieSlidingExpiration

Specifies if sliding expiration of the role cookie is enabled. If set to true ,
the roles cookie time to expire will be refreshed on every page request.
If set to false , the roles cookie will expire at the time set when the
cookie was created. The default value is true .

Attribute Description

cookieProtection

Specifies the protection method used for the roles cookie. Possible
values are All, None, Encryption , and Validation. Validation
specifies that the cookie data will be validated to ensure it was not
altered in transit. Encryption specifies that the cookie is encrypted. All
specifies that data validation and encryption will be used. None specifies
that no protection will be provided for the cookie information. The
default is All and is highly recommended because it offers the highest
level of protection for this authentication cookie.

The cookieName specified in the <roleManager> element must be different from
the value specified for the name attribute in the <forms> element. The name
attribute of the <forms> element specifies the name of the authentication
cookie. The cookieName attribute of the <roleManager> element specifies the
name of the cookie used to store user role data. If both are set to the same
value, the user will be properly redirected to the first page after he is
authenticated. Attempts to access additional pages in the application will result
in the user being redirected to the login page. This is because the roles data
overwrites the authentication data in the cookie, thus deleting the data
ASP.NET uses to determine if a user is authenticated.

One or more <provider> elements can be specified to define the providers available to manage user
roles. In our application we are using the SqlRoleProvider . As with most providers, attributes of the
element are used to configure the provider. Table 9-3 defines the attributes available for the
SqlRoleProvider .

Table 9-3. SqlRoleProvider attributes

Attribute Description

name Defines the name for the provider. Any value can be used.

type
Specifies the class used to provide the functionality for the provider. Must
be set to System. Web. Security.SqlRoleProvider for the SqlRoleProvider .

connectionStringName

Specifies the name of the connection string used to access the SQL
database used by the provider. Must be set to one of the connection strings
defined in the <connectionStrings> element of web.config . Required for the
SqlRoleProvider .

applicationName

Specifies the name of the application using the membership provider. The
default value is the value of the System.Web.HttpRequest.ApplicationPath
property.

In our application, we are using SQLExpress as the data store for the user information. ASP.NET 2.0
makes creation of the database required to support membership and roles simple. If you are using

cookieProtection

Specifies the protection method used for the roles cookie. Possible
values are All, None, Encryption , and Validation. Validation
specifies that the cookie data will be validated to ensure it was not
altered in transit. Encryption specifies that the cookie is encrypted. All
specifies that data validation and encryption will be used. None specifies
that no protection will be provided for the cookie information. The
default is All and is highly recommended because it offers the highest
level of protection for this authentication cookie.

The cookieName specified in the <roleManager> element must be different from
the value specified for the name attribute in the <forms> element. The name
attribute of the <forms> element specifies the name of the authentication
cookie. The cookieName attribute of the <roleManager> element specifies the
name of the cookie used to store user role data. If both are set to the same
value, the user will be properly redirected to the first page after he is
authenticated. Attempts to access additional pages in the application will result
in the user being redirected to the login page. This is because the roles data
overwrites the authentication data in the cookie, thus deleting the data
ASP.NET uses to determine if a user is authenticated.

One or more <provider> elements can be specified to define the providers available to manage user
roles. In our application we are using the SqlRoleProvider . As with most providers, attributes of the
element are used to configure the provider. Table 9-3 defines the attributes available for the
SqlRoleProvider .

Table 9-3. SqlRoleProvider attributes

Attribute Description

name Defines the name for the provider. Any value can be used.

type
Specifies the class used to provide the functionality for the provider. Must
be set to System. Web. Security.SqlRoleProvider for the SqlRoleProvider .

connectionStringName

Specifies the name of the connection string used to access the SQL
database used by the provider. Must be set to one of the connection strings
defined in the <connectionStrings> element of web.config . Required for the
SqlRoleProvider .

applicationName

Specifies the name of the application using the membership provider. The
default value is the value of the System.Web.HttpRequest.ApplicationPath
property.

In our application, we are using SQLExpress as the data store for the user information. ASP.NET 2.0
makes creation of the database required to support membership and roles simple. If you are using

Visual Studio 2005, you can select your website in the Solution Explorer and then select the WebSite
 ASP.NET Configuration toolbar item. This will launch the Web Site Administration Tool as shown in

Figure 9-4 .

To manage the users and roles, select the Security tab. The security page will be displayed, as shown
in Figure 9-5 , with options to configure the security aspects of your application. We have configured
everything required except for the creation of the users and roles.

To manage the user roles, select the Create or Manage Roles link. The roles administration page will
be displayed, as shown in Figure 9-6 . Add the roles required for your application. For our application,
we have added a User and an Admin role.

Figure 9-4. Web Site Administration Tool home page

Figure 9-5. Web Site Administration Tool security page

Figure 9-6. Web Site Administration Tool role management page

When the required roles have been added, click the back button on the Role Management page and
select the Manage Users link when the security home page is displayed to manage the users in your
application. The user management page will be displayed, as shown in Figure 9-7 . Add the users and
assign the roles for each user required for your application. For our application, we have created two
users: "user" and "admin."

When you use the WebSite Administration Tool, a SQLExpress database is
created in the App_Data folder of your application. The database is contained in
a file named ASPNETDB.MDF .

Now that the application is configured and the data store is created, you will need to create a login
page that uses an asp:Login control. The only attributes of the asp:Login control that must be set
are the ID and runat attributes; however, the control provides a multitude of attributes to allow you
to modify the appearance of the rendered control to meet the needs of your application.

 <asp:Login ID="Login1" runat="server" />

The asp:Login control will automatically make the appropriate calls to validate the users credentials,
create the authentication and roles cookies, and redirect the user to the page specified in the
defaultUrl attribute of the <forms> element in the web.config file. No code is required on your part.

Figure 9-7. Web Site Administration Tool user management page

In our application, we have added an asp:LoginName and an asp:LoginStatus control on our secured
pages, as shown in Example 9-17 . The asp:LoginName control provides the ability to display the
name of the logged-in user and the asp:LoginStatus control provides a link for the user to log out.
When the user clicks the "log out" link of the asp:LoginStatus control, the control automatically
makes the appropriate calls to log the user out and take the action defined by the LogoutAction
attribute. In our application, we have set the action to RedirectToLoginPage , which will redirect the
user to the page specified in the loginUrl attribute of the <forms> element in the web.config file.

If you want to use controls other than the asp:Login and asp:LoginStatus
controls to handle the login and logout actions from the user, you can use the
Membership and Role providers. The Membership class provides a full set of
methods to manage the users of your application programmatically. The
Validate method accepts the user's credentials and returns a Boolean value
indicating whether the credentials are valid or not. Combining this with the login
code described in Recipes 9.1, 9.2, and 9.3, you can use the functionality of the
Membership and Role providers but keep control over the login and logout
process. For more information on the available methods, see the
documentation in the MSDN Library for the Membership and Roles classes.

See Also

Recipes 9.1, 9.2, and 9.3; MSDN Library for additional information on the Membership and Roles
classes

Using SQL Server Instead of SQLExpress with the Membership

and Role Providers

SQL Server can be used with the Membership and Role providers. The SQL Server
database will not be automatically created for you, but Microsoft has provided an
application to assist you. The application provides the ability to create a new database
with the table structure required by the Membership and Role providers or add the tables
to an existing database. The application is aspnet_regsql.exe and by default is located in
the C:\WINNT\Microsoft.NET\Framework\<version> folder, where <version> is the
version number of the framework installed on your machine.

After creating the database, you will need to add a connection string to the web.config
file that defines the name, location, and login credentials for the Membership database.
The [server], [user], and [password] settings shown below should be set accordingly

for your server and database:

 <connectionStrings>
 <remove name="sqlConnectionString" />
 <add name="sqlConnectionString"

 connectionString="Data Source=[server];
 Initial Catalog=aspnetdb;

 UID=[user];

 PWD=[password];
 persist security info=False;
 Connection Timeout=30;"/>
 </connectionStrings>

The final step for configuring SQL Server for the Membership and Role providers is to set
the connectionStringName attribute of the providers to the name of the connection string
added for SQL Server:

 connectionStringName="sqlConnectionString"

Example 9-15. Changes to web.config to use Membership and Role
providers

<?xml version="1.0"?>

<!--
 Note: As an alternative to hand editing this file you can use the
 web admin tool to configure settings for your application. Use
 the Website->Asp.Net Configuration option in Visual Studio.
 A full list of settings and comments can be found in
 machine.config.comments usually located in
 \Windows\Microsoft.Net\Framework\v2.x\Config
-->
<configuration>

 <appSettings/>
 <connectionStrings>
 <remove name="LocalSqlServer" />
 <add name="LocalSqlServer"
 connectionString="data source=.\SQLEXPRESS;
 Integrated Security=SSPI;
 AttachDBFilename=|DataDirectory|aspnetdb.mdf;
 User Instance=true"
 providerName="System.Data.SqlClient" />
 </connectionStrings>

 <system.web>

 …

 <authentication mode="Forms" >
 <forms name=".ASPNETCookbookVBSecurity951"
 loginUrl="Login.aspx"
 protection="All"
 timeout="30"
 path="/"
 defaultUrl="Home.aspx" />
 </authentication>

 <authorization>
 <deny users="*" /> <!-- Deny all users -->
 </authorization>

 <membership defaultProvider="AspNetSqlMembershipProvider"
 userIsOnlineTimeWindow="15">
 <providers>
 <remove name="AspNetSqlMembershipProvider" />
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="LocalSqlServer"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 applicationName="/"
 requiresUniqueEmail="false"
 minRequiredPasswordLength="4"
 minRequiredNonalphanumericCharacters="0"

 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5"
 passwordAttemptWindow="10"
 passwordStrengthRegularExpression="" />
 </providers>
 </membership>

 <roleManager defaultProvider="AspNetSqlRoleProvider"
 enabled="true"
 cacheRolesInCookie="true"

 cookieName=".ASPNETCookbookVBSecurity951 Roles"
 cookieTimeout="30"
 cookiePath="/"
 cookieRequireSSL="false"
 cookieSlidingExpiration="true"
 cookieProtection="All" >
 <providers>
 <remove name="AspNetSqlRoleProvider" />
 <add name="AspNetSqlRoleProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="LocalSqlServer"
 applicationName="/" />
 </providers>
 </roleManager>

 …

</system.web>
<!--
**
 The following section provides public access to pages that do not
 require authentication. An entry must be included for each page
 or folder that does not require authentication.
**
-->
 <location path="PublicPage.aspx">
 <system.web>
 <authorization>
 <allow users="*"/>
 </authorization>
 </system.web>
 </location>

<!--
**
 The following section defines the pages that require authentication
 for access. An entry must be included for each page or folder that
 requires authentication with a list of the roles required for access
 to the page.

 Valid Roles are as follows.

 NOTE: The roles must be entered exactly as listed.

 User
 Admin
**
-->
<location path="Home.aspx">
 <system.web>
 <authorization>
 <allow roles="User,
 Admin"/>

 <deny users="*"/>
 </authorization>
 </system.web>
 </location>

 <location path="AdminPage.aspx">
 <system.web>
 <authorization>
 <allow roles="Admin"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>

</configuration>

Example 9-16. Login page (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="Login.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.Login"
 Title="Login" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Using Membership and Roles With SQLExpress (VB)
 </div>
 <div align="center">
 <asp:Login ID="Login1" runat="server"
 TitleText=""
 UserNameLabelText="Login ID: "
 PasswordLabelText="Password: "
 DisplayRememberMe="true"
 RememberMeText="Remember Me"
 LabelStyle-CssClass="labelText"

 CheckBoxStyle-CssClass="labelText"
 TextBoxStyle-CssClass="labelText" >
 <CheckBoxStyle CssClass="labelText" />
 <TextBoxStyle CssClass="labelText" />
 <LabelStyle CssClass="labelText" />
 </asp:Login>
 <div align="center" class="labelText">

Login ID=user, Password=user for access by member of User role

Login ID=admin, Password=admin for access by member of Admin role
 </div>

 <input type="button" value="Attempt Access without Login"
 onclick="document.location='Home.aspx'" />

 <input type="button" value="Access Public Page"
 onclick="document.location='PublicPage.aspx'" />
 </div>
</asp:Content>

Example 9-17. Home page (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="Home.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.Home"
 Title="Home" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Using Membership and Roles With SQLExpress (VB)
 </div>
 <table width="60%" align="center" border="0">
 <tr>
 <td align="center">
 <asp:LoginName ID="LoginName1" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="center">

 <asp:LoginStatus ID="LoginStatus1" runat="server"
 LogoutText="Log Out"
 LogoutAction="RedirectToLoginPage" />
 </td>
 </tr>
 </table>
</asp:Content>

Chapter 10. Profiles and Themes

10.0 Introduction

If you were interested in building profiles and themes into your own application in ASP.NET 1.x, you
basically had to create your own. For instance, you had to provide your own mechanisms for storing
and retrieving user profile information and for allowing users to choose the look and feel they wanted
for your application. The latter was sufficiently daunting that beginning or mid-level developers rarely
attempted it.

Fortunately, with ASP.NET 2.0's profile support, the days of having to create your own are gone. For
instance, in ASP.NET 2.0, you can include user profile data in your application without writing any
code to persist the data. You can inherit a profile, which is handy when you want to use the same
profile definition in multiple applications. You can store profile information for users who are not
logged into your application, and you can create a mechanism to periodically remove user profile data
that is no longer being used. All of these scenarios are illustrated by the recipes in this chapter.

Themes are another new feature in ASP.NET 2.0 and provide a browser-independent way of
"skinning" a set of controls. In ASP.NET 2.0, themes consist of collections of (Cascading Style Sheets)
CSS files, .skin files, and images that contain a definition for each server control you use in your
application and images. If you want to provide users the ability to choose the look and feel they want
for your application, you can store their selected theme in their profile and set the selected theme in
the pre-initialization code of the pages in your application. Recipe 10.5 shows you how to create an
ASP.NET 2.0 theme, and Recipe 10.6 shows you how to manage user-personalized themes.

Web parts are another new ASP.NET 2.0 feature that we could have covered in this chapter. Because
the topic is sufficiently rich in its own right, however, we decided to cover it in a separate chapter all
its own, which follows this one.

Before delving into this chapter, you should know that Microsoft has clarified its personalization and
profile terminology in ASP.NET 2.0:

Membership

Describes the authentication features

Role Manager

Describes the authorization features as a function of a user's roles

Profile

Describes the features used to store information about a user

Personalization

Describes the personalization that can be done with web parts

All of these topics, with the exception of personalization, are covered in one way or another in the
various recipes in this chapter. See Chapter 11 for more information on personalization.

Recipe 10.2. Using Profiles

Problem

You want to make use of user profile data throughout your application without having to implement
the infrastructure yourself.

Solution

Use the ASP.NET 2.0 membership and profile features by implementing the membership features
described in Recipe 9.5, modify web.config to enable user profiles, define in web.config the specific
user data to include in the profile, provide the ability to update the user profile data, and use the data
as required in your application.

Modify web.config as follows:

Add a <profile> element with a <provider> element defining the provider used to store and
retrieve user-specific data.

1.

Add a <properties> element and an <add> element for each user-specific data item to be
included in the profile.

2.

In the .aspx file for the page used to enter the user-specific data:

Add a server control for each user-specific data item.1.

Add an Update button (or equivalent) to initiate the updating of the user-specific data.2.

In the code-behind class for the page used to enter user-specific data, use the .NET language of your
choice to:

Initialize the controls in the .aspx file with the current data from the user's profile.1.

Implement an event handler for the Update button click event and update the user's profile
from the data entered by the user.

2.

The solution we have implemented to demonstrate the solution is shown in Examples 10-1, 10-2, 10-
3 through 10-4. Example 10-1 shows the modifications made to web.config. Example 10-2 shows the
.aspx file used to enter the user-specific data, and Examples 10-3 (VB) and 10-4 (C#) show the

code-behind classes for the page used to enter the user-specific data.

Discussion

With ASP.NET 1.x, as well as with classic ASP, no functionality was provided to maintain user profile
information. If you needed the ability to maintain user profile information, you had to implement your
own solution, which typically required a significant effort. With ASP.NET 2.0, the ability to maintain
user profile information is provided by using the Profile features, and, in most cases, the only code
required in your application is to use the information and to provide the ability for users to update
their information.

Maintaining user profile information requires defining the data to be maintained, having the ability to
store and retrieve the data, and having the ability to access the data. ASP.NET 2.0 simplifies each of
these tasks.

The simplest way to define the data to include in the user profile is using web.config. By adding a
<properties> element and <add> elements to the <profile> element for each user profile item to be
stored, ASP.NET 2.0 dynamically creates a class containing the profile data. If you are using Visual
Studio 2005, the class will be created in the background and its contents will be available using
Intellisense, making use of the profile data even easier.

 <profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 automaticSaveEnabled="false" >

 …

 <properties>
 <add name="FirstName"
 type="System.String"
 serializeAs="String"

 allowAnonymous="false"
 defaultValue=""
 readOnly="false" />
 <add name="LastName"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 defaultValue=""
 readOnly="false" />

 …
 </properties>
 </profile>

ASP.NET 2.0 includes one provider to handle the storage and retrieval of the user profile data, the

SqlProfileProvider. This provider supports storing the user profile information in SQL Express, SQL
Server 7.0, SQL Server 2000, or SQL Server 2005 without requiring you to write any code. All that is
required is adding a <providers> element to the <profile> element in web.config. The attributes
available for the SqlProfileProvider are shown in Table 10-1.

 <profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 automaticSaveEnabled="false" >

 <providers>
 <remove name="AspNetSqlProfileProvider" />
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="sqlConnectionString"
 applicationName="/" />
 </providers>

 …

 </profile>

Table 10-1. SqlProfileProvider attributes

Attribute Description

Name Defines the name for the provider. Any value can be used.

Type

Specifies the class used to provide the functionality for the provider. Must
be set to System.Web.Profile.SqlProfileProvider for the
SqlProfileProvider.

connectionStringName

Specifies the name of the connection string used to access the SQL
database used by the provider. Must be set to one of the connection strings
defined in the <connectionStrings> element of web.config. Required for the
SqlProfileProvider.

applicationName

Specifies the name of the application using the profile provider. The default
value is the value of the System.Web.HttpRequest.ApplicationPath
property.

The providers available to an application include all the providers defined in all
the .config files in the application hierarchy. At a minimum, this will include
machine.config and your application's web.config, but may also include
additional web.config files if your application itself is hierarchical and has
multiple web.config files. If a provider is included in multiple config files with
the same name, an exception indicating that the provider exists will be thrown.
To eliminate the possibility of accidental name collisions, include a <remove>
element before the <add> element for the name of the provider you are adding.
This is acceptable even if the provider does not exist since it is not an error to
remove a nonexistent provider.

If you need to store the user profile information in a different data store, you can implement your
own profile provider to store and retrieve the data. Refer to the ProfileProvider class in the MSDN
Library for more information on implementing a custom profile provider.

In our application that implements this solution, we have implemented the Membership functionality
for authentication and authorization, as described in Recipe 9.5, to provide the unique identification of
the user for the profile data. The use of the Membership features in ASP.NET 2.0 is not required to use
the Profile feature. All that is required is to provide a unique value for each user in the
User.Identity.Name property of the Principal object used for authentication, which is used by the
Profile Provider to identify the profile data required for the user. This means, for example, that the
authentication solution provided in Recipe 9.1, which does not use Membership, can be used equally
well.

The Membership and Profile providers share many tables in the database. If
you want to use the Profile feature but do not intend to use the Membership
features, you will or still need to add the tables required for the Membership and
Profile providers. Refer to the "Using SQL Server Instead of SQLExpress with
the Membership and Role Providers" sidebar in Recipe 9.5 for information on
creating a database with the required tables or adding the required tables to an
existing database.

The data to be included in the user profile is defined in web.config, as shown in Example 10-1. The
definition of a data item (profile property) includes multiple attributes described in Table 10-2.

Table 10-2. Profile property attributes

Attribute Description

name
Specifies the name of the property in the dynamically created Profile class. The
name is required and must be unique.

type

Specifies the data type for the property. The type is required and can be any .NET
data type or any custom data type of your choosing as long as the type can be
serialized.

Attribute Description

serializeAs
Specifies how the data is to be serialized for storage in the data store. Valid values
are String, Xml, Binary, and ProviderSpecific. The default value is String.

allowAnonymous
Specifies if the property should be allowed for anonymous users. Valid values are
true and false. The default value is false.

provider

Specifies the profile provider to be used to persist the property data. This provides
the ability for individual properties to be persisted by different providers. The
default value is the provider specified in the defaultProvider attribute of the
<provider> element.

defaultValue

Specifies the default value used when no profile data is available for the property.
This value is not stored in the data store by default. It is used to initialize the
property in the Profile object only.

readOnly
Specifies if the property should be read-only. Valid values are TRue and false. The
default value is false.

The data for our user profile uses a <group> element to group the properties for an address into a
MailingAddress group. This approach makes using the data in your code easier in cases where you
have multiple similar groups, such as a mailing address and a shipping address.

 <profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 automaticSaveEnabled="false" >

 …

 <properties>
 <add name="FirstName"
 type="System.String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="LastName"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <group name="MailingAddress">
 <add name="Address1"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""

serializeAs
Specifies how the data is to be serialized for storage in the data store. Valid values
are String, Xml, Binary, and ProviderSpecific. The default value is String.

allowAnonymous
Specifies if the property should be allowed for anonymous users. Valid values are
true and false. The default value is false.

provider

Specifies the profile provider to be used to persist the property data. This provides
the ability for individual properties to be persisted by different providers. The
default value is the provider specified in the defaultProvider attribute of the
<provider> element.

defaultValue

Specifies the default value used when no profile data is available for the property.
This value is not stored in the data store by default. It is used to initialize the
property in the Profile object only.

readOnly
Specifies if the property should be read-only. Valid values are TRue and false. The
default value is false.

The data for our user profile uses a <group> element to group the properties for an address into a
MailingAddress group. This approach makes using the data in your code easier in cases where you
have multiple similar groups, such as a mailing address and a shipping address.

 <profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 automaticSaveEnabled="false" >

 …

 <properties>
 <add name="FirstName"
 type="System.String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="LastName"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <group name="MailingAddress">
 <add name="Address1"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""

 readOnly="false" />
 <add name="Address2"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="City"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="State"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="ZipCode"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 </group>
 <add name="EmailAddresses"
 type="System.Collections.Specialized.StringCollection"
 serializeAs="Xml"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 </properties>
 </profile>

To demonstrate how to handle collections of properties, the data in our application includes a
collection of email addresses. The data type for this property is defined as StringCollection.

 <profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 automaticSaveEnabled="false" >

 …

 <properties>

 …

 <add name="EmailAddresses"
 type="System.Collections.Specialized.StringCollection"
 serializeAs="Xml"
 allowAnonymous="false"

 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 </properties>
 </profile>

When using collections, you cannot set the serializeAs property to String.
When using the SqlProfileProvider, you should set it to Xml or Binary.

In the code-behind class for our application's demonstration page, we initialize the controls on the
form with data from the logged in user's profile. For the simple properties, the Text properties for the
Textbox controls are set with the profile values. For the email address collection, we first add a blank
email address to the collection and then bind the data to a Repeater control containing Textbox
controls. Adding the blank email address before binding renders an empty textbox to allow the user
to enter an additional email address.

 Private Sub initializeForm()
 txtFirstName.Text = Profile.FirstName
 txtLastName.Text = Profile.LastName
 txtAddress1.Text = Profile.MailingAddress.Address1
 txtAddress2.Text = Profile.MailingAddress.Address2
 txtCity.Text = Profile.MailingAddress.City
 txtState.Text = Profile.MailingAddress.State
 txtZipCode.Text = Profile.MailingAddress.ZipCode

 'add a blank entry to allow the user to add a new email address
 Profile.EmailAddresses.Add("")

 repEmailAddresses.DataSource = Profile.EmailAddresses
 repEmailAddresses.DataBind()
 End Sub 'initializeForm

 private void initializeForm()
 {
 txtFirstName.Text = Profile.FirstName;

 txtLastName.Text = Profile.LastName;
 txtAddress1.Text = Profile.MailingAddress.Address1;
 txtAddress2.Text = Profile.MailingAddress.Address2;
 txtCity.Text = Profile.MailingAddress.City;
 txtState.Text = Profile.MailingAddress.State;
 txtZipCode.Text = Profile.MailingAddress.ZipCode;

 // add a blank entry to allow the user to add a new email address
 Profile.EmailAddresses.Add("");

 repEmailAddresses.DataSource = Profile.EmailAddresses;
 repEmailAddresses.DataBind();
 } // initializeForm

When the user clicks the update button, we copy the data from the controls on the form to the user's
profile, eliminating any blank email addresses in the process. We then call the Save method of the
Profile object to update the user's profile data in the data store.

The <profile> element has an automaticSaveEnabled attribute that controls the
automatic saving of the profile data. If the automaticSaveEnabled attribute is
set to true, the profile data will be updated at the completion of a page request
if any data has been changed. If the automaticSaveEnabled attribute is set to
false, you will be responsible for performing the update.

You should not call the Save method of the Profile object if the
automaticSaveEnabled attribute of the <profile> element is set to true. This
can result in a performance impact since the profile data will be updated twice.

As this solution demonstrates, by using Profile features provided with ASP.NET 2.0, you can include
user profile data in your application without writing any code to persist the data. In fact, with the
provider model used by ASP.NET, your application does not require any knowledge of how the profile
data is persisted. With the profile API provided, you can change the profile provider to use a different
data store without making any changes to your application code.

See Also

Recipes 9.1, 9.5, 10.2, and 10.3; MSDN Library for information on implementing a custom profile
provider

Example 10-1. Modifications to web.config for user profiles

<?xml version="1.0"?>

<configuration>

 <system.web>
 <!--

 The <authentication> section enables configuration
 of the security authentication mode used by
 ASP.NET to identify an incoming user.

 -->
 <authentication mode="Forms" >
 <forms name=".ASPNETCookbookVBPersonalization1"
 loginUrl="Login.aspx"
 protection="All"
 timeout="30"
 path="/"
 defaultUrl="UpdateProfile.aspx" />
 </authentication>

 <authorization>
 <deny users="*" /> <!-- Deny all users -->
 </authorization>

 <membership defaultProvider="AspNetSqlMembershipProvider"
 userIsOnlineTimeWindow="15">
 <providers>
 <remove name="AspNetSqlMembershipProvider" />
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="sqlConnectionString"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 applicationName="/"
 requiresUniqueEmail="false"
 minRequiredPasswordLength="4"
 minRequiredNonalphanumericCharacters="0"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5"
 passwordAttemptWindow="10"
 passwordStrengthRegularExpression="" />
 </providers>
 </membership>

 <roleManager defaultProvider="AspNetSqlRoleProvider"
 enabled="true"
 cacheRolesInCookie="true"
 cookieName=".ASPNETCookbookVBPersonalization1Roles"
 cookieTimeout="30"
 cookiePath="/"
 cookieRequireSSL="false"
 cookieSlidingExpiration="true"

 cookieProtection="All" >

 <providers>
 <remove name="AspNetSqlRoleProvider" />
 <add name="AspNetSqlRoleProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="sqlConnectionString"
 applicationName="/" />
 </providers>
 </roleManager>

 ><profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 automaticSaveEnabled="false" >
 <providers>
 <remove name="AspNetSqlProfileProvider" />
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="sqlConnectionString"
 applicationName="/" />
 </providers>

 <properties>
 <add name="FirstName"
 type="System.String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="LastName"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <group name="MailingAddress">
 <add name="Address1"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="Address2"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="City"

 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="State"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="ZipCode"
 type="System.String"
 serializeAs="String"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 </group>
 <add name="EmailAddresses"

 type="System.Collections.Specialized.StringCollection"
 serializeAs="Xml"
 allowAnonymous="false"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 </properties>
 </profile>
 </system.web>
 <!-
 **
 The following section defines the pages that require authentication
 for access. An entry must be included for each page that requires
 authentication with a list of the roles required for access to
 the page.

 Valid Roles are as follows.
 NOTE: The roles must be entered exactly as listed.

 User
 Admin
 **
 -->
 <location path="UpdateProfile.aspx">
 <system.web>
 <authorization>
 <allow roles="User,
 Admin"/>
 <deny users="*"/>

 </authorization>
 </system.web>
 </location>

</configuration>

Example 10-2. Update user profile data (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="UpdateProfile.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.UpdateProfile"
 Title="User Profile" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 User Profile (VB)
 </div>
 <table width="60%" align="center" border="0">
 <tr>
 <td class="labelNormal">FirstName: </td>
 <td><asp:TextBox ID="txtFirstName" runat="server" /></td>
 </tr>
 <tr>

 <td class="labelNormal">LastName: </td>
 <td><asp:TextBox ID="txtLastName" runat="server" /></td>
 </tr>
 <tr>
 <td class="labelNormal">Address 1: </td>
 <td><asp:TextBox ID="txtAddress1" runat="server" /></td>
 </tr>
 <tr>
 <td class="labelNormal">Address 2: </td>
 <td><asp:TextBox ID="txtAddress2" runat="server" /></td>
 </tr>
 <tr>
 <td class="labelNormal">City: </td>
 <td><asp:TextBox ID="txtCity" runat="server" /></td>
 </tr>
 <tr>
 <td class="labelNormal">State: </td>
 <td><asp:TextBox ID="txtState" runat="server" /></td>
 </tr>
 <tr>
 <td class="labelNormal">Zip Code: </td>
 <td><asp:TextBox ID="txtZipCode" runat="server" /></td>
 </tr>

 <tr>
 <td valign="top" class="labelNormal">Email Addresses: </td>
 <td>
 <table border="0" cellpadding="0" cellspacing="0">
 <asp:Repeater ID="repEmailAddresses" runat="server">
 <ItemTemplate>
 <tr>
 <td>
 <asp:TextBox ID="txtEmailAddress" runat="server"
 Text="<%#Container.DataItem%>" />
 </td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">

 <asp:Button ID="btnUpdate" runat="server"
 Text="Update"
 OnClick="btnUpdate_Click" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 10-3. Update user profile data (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration.ConfigurationManager
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' UpdateProfile.aspx
 ''' </summary>
 Partial Class UpdateProfile
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>

 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Not Page.IsPostBack) Then
 initializeForm()
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the update button click
 ''' event. It is responsible for updating the user profile from the data
 ''' on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnUpdate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim item As RepeaterItem
 Dim txtBox As TextBox
 Dim emailAddress As String
 Dim emailAddresses As StringCollection

 Profile.FirstName = txtFirstName.Text
 Profile.LastName = txtLastName.Text
 Profile.MailingAddress.Address1 = txtAddress1.Text
 Profile.MailingAddress.Address2 = txtAddress2.Text
 Profile.MailingAddress.City = txtCity.Text
 Profile.MailingAddress.State = txtState.Text
 Profile.MailingAddress.ZipCode = txtZipCode.Text

 emailAddresses = New StringCollection
 For Each item In repEmailAddresses.Items
 txtBox = CType(item.FindControl("txtEmailAddress"), _
 TextBox)
 emailAddress = txtBox.Text.Trim
 If (emailAddress.Length > 0) Then
 emailAddresses.Add(emailAddress)
 End If
 Next item

 Profile.EmailAddresses = emailAddresses
 Profile.Save()

 initializeForm()
 End Sub 'btnUpdate_Click

 '''***
 ''' <summary>
 ''' This routine updates the form with data from the user's profile
 ''' </summary>
 Private Sub initializeForm()
 txtFirstName.Text = Profile.FirstName
 txtLastName.Text = Profile.LastName
 txtAddress1.Text = Profile.MailingAddress.Address1
 txtAddress2.Text = Profile.MailingAddress.Address2
 txtCity.Text = Profile.MailingAddress.City
 txtState.Text = Profile.MailingAddress.State
 txtZipCode.Text = Profile.MailingAddress.ZipCode

 'add a blank entry to allow the user to add a new email address
 Profile.EmailAddresses.Add("")

 repEmailAddresses.DataSource = Profile.EmailAddresses
 repEmailAddresses.DataBind()
 End Sub 'initializeForm
 End Class 'UpdateProfile
End Namespace

Example 10-4. Update user profile data (.cs)

using System;
using System.Web.UI.WebControls;
using System.Collections.Specialized;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// UpdateProfile.aspx
 /// </summary>
 public partial class UpdateProfile : System.Web.UI.Page
 {

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {

 if (!Page.IsPostBack)
 {
 initializeForm();
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the update button click
 /// event. It is responsible for updating the user profile from the data
 /// on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnUpdate_Click(Object sender, System.EventArgs e)
 {
 TextBox txtBox;
 String emailAddress;
 StringCollection emailAddresses;

 Profile.FirstName = txtFirstName.Text;
 Profile.LastName = txtLastName.Text;
 Profile.MailingAddress.Address1 = txtAddress1.Text;
 Profile.MailingAddress.Address2 = txtAddress2.Text;
 Profile.MailingAddress.City = txtCity.Text;
 Profile.MailingAddress.State = txtState.Text;
 Profile.MailingAddress.ZipCode = txtZipCode.Text;

 emailAddresses = new StringCollection();
 foreach (RepeaterItem item in repEmailAddresses.Items)
 {
 txtBox = (TextBox)(item.FindControl("txtEmailAddress"));
 emailAddress = txtBox.Text.Trim();
 if (emailAddress.Length > 0)
 {
 emailAddresses.Add(emailAddress);
 }
 }

 Profile.EmailAddresses = emailAddresses;
 Profile.Save();

 initializeForm();
 } // btnUpdate_Click

 ///***
 /// <summary>
 /// This routine updates the form with data from the user's profile
 /// </summary>
 private void initializeForm()
 {

 txtFirstName.Text = Profile.FirstName;
 txtLastName.Text = Profile.LastName;
 txtAddress1.Text = Profile.MailingAddress.Address1;
 txtAddress2.Text = Profile.MailingAddress.Address2;
 txtCity.Text = Profile.MailingAddress.City;
 txtState.Text = Profile.MailingAddress.State;
 txtZipCode.Text = Profile.MailingAddress.ZipCode;

 // add a blank entry to allow the user to add a new email address
 Profile.EmailAddresses.Add("");

 repEmailAddresses.DataSource = Profile.EmailAddresses;
 repEmailAddresses.DataBind();
 } // initializeForm
 } // UpdateProfile
}

Recipe 10.3. Inheriting a Profile

Problem

You want to use ASP.NET 2.0's profile features but you do not want to define the profile information in
the web.config file because you use the same profile definition in multiple applications.

Solution

Implement the membership features to provide user authentication, as described in Recipe 9.5,
create a custom class that inherits from ProfileBase, add properties for each user-specific data item
you want to include in the profile, and modify the <profile> element in web.config to set the
inherits attribute to the custom class you created to store the user's profile data.

Use the .NET language of your choice to create a custom class for the profile data:

Inherit from ProfileBase.1.

Add a property for each data item to be included in the user profile2.

Modify web.config as follows:

Add a <profile> element with a <provider> element defining the provider used to store and
retrieve user-specific data.

1.

Set the inherits attribute of the <profile> element to the fully qualified namespace of the
custom class you created.

2.

Example 10-5 shows the modifications made to web.config for this solution. The custom user profile
class is shown in Examples 10-6 (VB) and 10-7 (C#). The example page that uses the user profile
information is identical to the example in Recipe 10.1 and is shown in Examples 10-2, 10-3 through
10-4.

Discussion

If you use the same user profile data in multiple applications, defining the profile in web.config
creates a maintenance problem when any changes are required since the changes would have to be
made in the web.config file of each application. Instead, defining the profile in a class that can be
compiled into an assembly and then using the assembly in each application is a better solution. The

profile infrastructure provided in ASP.NET 2.0 supports using a custom class for profile data to
support this situation.

The custom profile class has three specific requirements. First, the class must inherit from
ProfileBase. Second, the class must be serializable, meaning that all of the data in the class must

be able to be serialized; most .NET data types can be serialized, so this is generally not an issue.
Third, the class must include a property for each user profile data item to be stored. The class does
not need to provide instance variables to store the class data. Instead, the data for each property
must be accessed through the parent class, as shown below.

 Public Property FirstName() As String
 Get
 Return CType(MyBase.Item("FirstName"), String)
 End Get

 Set(ByVal value As String)
 MyBase.Item("FirstName") = value
 End Set
 End Property

 public String FirstName
 {
 get
 {
 return (String)(base["FirstName"]);
 }
 set
 {
 base["FirstName"] = value;
 }
 } // FirstName

The base class uses a collection of objects to store the property data using the
name of the property. Since the data is stored as an <Object>, it must be cast
to the appropriate data type when retrieving the data for a property.

The <profile> element in the web.config file for this solution includes an inherits attribute with the
value set to the fully qualified namespace of the custom profile class. This provides the definition of
the data the SqlProfileProvider will persist in the data store.

 <profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 inherits="ASPNetCookbook.VBExamples.UserProfile"
 automaticSaveEnabled="false" >

 <providers>
 <remove name="AspNetSqlProfileProvider" />
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="sqlConnectionString"
 applicationName="/" />
 </providers>
 </profile>

In the custom profile class for our example, we have emulated the grouping functionality for
properties described in Recipe 10.1. We have created a MailingAddress property with a data type of
Address, and we have created an Address class with properties for Address1, Address2, City, State,
and ZipCode. By using this approach, additional properties such as ShippingAddress can be added
without having to define individual properties for each of the elements in an address. In addition, using
this approach, the page used in Recipe 10.1 to demonstrate displaying and updating the profile data
can be used with no changes.

See Also

Recipes 9.5 and 10.1

Example 10-5. Modifications to web.config to use an inherited profile

<?xml version="1.0"?>
<configuration>

 <system.web>
 <!--
 The <authentication> section enables configuration
 of the security authentication mode used by
 ASP.NET to identify an incoming user.
 -->
 <authentication mode="Forms" >
 <forms name=".ASPNETCookbookVBPersonalization1"
 loginUrl="Login.aspx"

 protection="All"
 timeout="30"
 path="/"
 defaultUrl="UpdateProfile.aspx" />
 </authentication>

 <authorization>
 <deny users="*" /> <!-- Deny all users -->
 </authorization>

 <membership defaultProvider="AspNetSqlMembershipProvider"
 userIsOnlineTimeWindow="15">
 <providers>
 <remove name="AspNetSqlMembershipProvider" />
 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="sqlConnectionString"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 applicationName="/"
 requiresUniqueEmail="false"
 minRequiredPasswordLength="4"
 minRequiredNonalphanumericCharacters="0"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5"
 passwordAttemptWindow="10"
 passwordStrengthRegularExpression="" />
 </providers>
 </membership>

 <roleManager defaultProvider="AspNetSqlRoleProvider"
 enabled="true"
 cacheRolesInCookie="true"
 cookieName=".ASPNETCookbookVBPersonalization2Roles"
 cookieTimeout="30"
 cookiePath="/"
 cookieRequireSSL="false"
 cookieSlidingExpiration="true"
 cookieProtection="All" >
 <providers>
 <remove name="AspNetSqlRoleProvider" />
 <add name="AspNetSqlRoleProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="sqlConnectionString"
 applicationName="/" />
 </providers>
 </roleManager>

 <profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 inherits="ASPNetCookbook.VBExamples.UserProfile"
 automaticSaveEnabled="false" >
 <providers>
 <remove name="AspNetSqlProfileProvider" />
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="sqlConnectionString"
 applicationName="/" />
 </providers>
 </profile>
 </system.web>

 <!--
 **
 The following section defines the pages that require authentication
 for access. An entry must be included for each page that requires
 authentication with a list of the roles required for access to
 the page.

 Valid Roles are as follows.
 NOTE: The roles must be entered exactly as listed.

 User
 Admin
 **
 -->
 <location path="UpdateProfile.aspx">
 <system.web>
 <authorization>
 <allow roles="User,
 Admin"/>
 <deny users="*"/>
 </authorization>
 </system.web>
 </location>

</configuration>

Example 10-6. Custom profile class (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a container for the the user's profile information
 ''' </summary>
 Public Class UserProfile
 Inherits ProfileBase

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the firstName
 ''' </summary>
 Public Property FirstName() As String

 Get
 Return CType(MyBase.Item("FirstName"), String)
 End Get

 Set(ByVal value As String)
 MyBase.Item("FirstName") = value
 End Set
 End Property

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the lastName
 ''' </summary>
 Public Property LastName() As String
 Get
 Return CType(MyBase.Item("LastName"), String)
 End Get

 Set(ByVal value As String)
 MyBase.Item("LastName") = value
 End Set
 End Property

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the mailing address
 ''' </summary>
 Public Property MailingAddress() As Address
 Get
 Return CType(MyBase.Item("MailingAddress"), Address)
 End Get

 Set(ByVal value As Address)
 MyBase.Item("MailingAddress") = value
 End Set
 End Property

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the email addresses
 ''' </summary>
 Public Property EmailAddresses() As StringCollection
 Get
 Return CType(MyBase.Item("EmailAddresses"), StringCollection)
 End Get

 Set(ByVal value As StringCollection)
 MyBase.Item("EmailAddresses") = value
 End Set
 End Property
End Class 'UserProfile

 ''' <summary>
 ''' The following class is used as a data container for address data
 ''' </summary>
 Public Class Address

 Private mAddress1 As String
 Private mAddress2 As String
 Private mCity As String
 Private mState As String
 Private mZipCode As String

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the address1
 ''' </summary>
 Public Property Address1() As String
 Get
 Return (mAddress1)
 End Get

 Set(ByVal value As String)
 mAddress1 = value
 End Set
 End Property

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the address2
 ''' </summary>
 Public Property Address2() As String
 Get
 Return (mAddress2)
 End Get

 Set(ByVal value As String)
 mAddress2 = value
 End Set
 End Property

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the city
 ''' </summary>
 Public Property City() As String
 Get
 Return (mCity)
 End Get

 Set(ByVal value As String)
 mCity = value
 End Set
 End Property

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the state
 ''' </summary>

 Public Property State() As String
 Get
 Return (mState)
 End Get

 Set(ByVal value As String)
 mState = value
 End Set
 End Property

 '''**
 ''' <summary>
 ''' This property provides the ability to get/set the state
 ''' </summary>
 Public Property ZipCode() As String
 Get
 Return (mZipCode)
 End Get

 Set(ByVal value As String)
 mZipCode = value
 End Set
 End Property
 End Class 'Address
End Namespace

Example 10-7. Custom profile class (.cs)

using System;
using System.Collections.Specialized;
using System.Web.Profile;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a container for the the user's profile information.
 /// </summary>
 public class UserProfile : ProfileBase
 {
 ///**
 /// <summary>
 /// This property provides the ability to get/set the firstName
 /// </summary>
 public String FirstName
 {
 get
 {

 return (String)(base["FirstName"]);

 }
 set
 {
 base["FirstName"] = value;
 }
 } // FirstName

 ///**
 /// <summary>
 /// This property provides the ability to get/set the lastName
 /// </summary>
 public String LastName
 {
 get
 {
 return (String)(base["LastName"]);
 }
 set
 {
 base["LastName"] = value;
 }
 } // LastName

 ///**
 /// <summary>
 /// This property provides the ability to get/set the mailing address
 /// </summary>
 public Address MailingAddress
 {
 get
 {
 return (Address)(base["MailingAddress"]);
 }
 set
 {
 base["MailingAddress"] = value;
 }
 } // MailingAddress

 ///**
 /// <summary>
 /// This property provides the ability to get/set the email addresses
 /// </summary>
 public StringCollection EmailAddresses
 {
 get
 {
 return (StringCollection)(base["EmailAddresses"]);
 }
 set

 {
 base["EmailAddresses"] = value;

 }
 } // EmailAddresses
 } // UserProfile

 /// <summary>
 /// The following class is used as a data container for address data
 /// </summary>
 public class Address
 {
 private String mAddress1;
 private String mAddress2;
 private String mCity;
 private String mState;
 private String mZipCode;

 ///**
 /// <summary>
 /// This property provides the ability to get/set the address1
 /// </summary>
 public String Address1
 {
 get
 {
 return (mAddress1);
 }
 set
 {
 mAddress1 = value;
 }
 } // Address1

 ///**
 /// <summary>
 /// This property provides the ability to get/set the address2
 /// </summary>
 public String Address2
 {
 get
 {
 return (mAddress2);
 }
 set
 {
 mAddress2 = value;
 }
 } // Address2

 ///**
 /// <summary>

 /// This property provides the ability to get/set the city
 /// </summary>
 public String City

 {
 get
 {
 return (mCity);
 }
 set
 {
 mCity = value;
 }
 } // City

 ///**
 /// <summary>
 /// This property provides the ability to get/set the state
 /// </summary>
 public String State
 {
 get
 {
 return (mState);
 }
 set
 {
 mState = value;
 }
 } // State

 ///**
 /// <summary>
 /// This property provides the ability to get/set the state
 /// </summary>
 public String ZipCode
 {
 get
 {
 return (mZipCode);
 }
 set
 {
 mZipCode = value;
 }
 } // ZipCode
 } // Address
}

Recipe 10.4. Using and Migrating Anonymous Profiles

Problem

You want to store profile information for users who are not logged into your application.

Solution

Implement the solution described in Recipe 10.1, add an <anonymousIdentification> element to the
web.config file to enable anonymous identification, and set the allow-Anonymous attributes of the
profile property elements to true in web.config for each of the profile properties that should be stored
for anonymous users.

Modify web.config as follows:

Add an <anonymousIdentification> element to enable the anonymous identification features
and to define the cookie used to identify the user.

1.

Set the allowAnonymous attribute of each profile property that is to be persisted for anonymous
users to true.

2.

Example 10-8 shows the modifications made to web.config for this solution. The example page that
uses the user profile information is identical to the example in Recipe 10.1 and is shown in Examples
10-2, 10-3 through 10-4.

Discussion

Storing anonymous user profile data was possible in ASP.NET 1.x, but, since there was no inherent
support in 1.x, you had to implement it yourself. As part of the profile features, ASP.NET 2.0 provides
full support for storing data for anonymous users. Like storing profile data for authenticated users, it
can be configured with little code.

When anonymous identification is enabled, ASP.NET 2.0 generates a GUID to use as the identity for all
visitors to your application on their first visit. This GUID is stored in a cookie that is persisted on the
user's computer. For all subsequent page requests and visits to your application, the cookie is
retrieved and the GUID is used to access his or her profile information. Other than relying on a cookie
to identify the user (instead of logging into your application), the mechanism for managing the user
profile data is the same whether the user is anonymous or authenticated.

ASP.NET supports using the URL for the anonymous identification data;
however, unless the user bookmarks the URL with the encoded data, the user
cannot be identified on subsequent visits to your application.

Since cookies are not shared between browsers, users who use multiple
browsers may have unexpected results when accessing an application with one
browser and then another. If your application uses anonymous profiles and a
user first accesses it with Internet Explorer, for example, and then accesses
with Firefox, two separate profiles will be created and stored for the user. If the
user changes the profile information using one browser, those changes will not
be reflected when using the other browser.

To enable anonymous identification, you need to add an <anonymousIdentification> element to
web.config. Multiple attributes are provided to configure anonymous identification, as shown in Table
10-3.

Table 10-3. anonymousIdentification element attributes

Attribute Description

enabled
Specifies if the HttpAnonymousIdentificationModule is enabled. Valid
values are true and false. The default value is false.

cookieName
Defines the name of the cookie used to store the anonymous ID of the
user. The default value is .ASPXANONYMOUS.

cookiePath

Defines the path to the directory where the cookie is stored. Most
browsers treat the path as case-sensitive and will not return the cookie
for a request that does not match the value provided for the path
attribute. Unless your application requires specifying the path, leave the
path as "/".

cookieRequireSSL
Defines whether an SSL connection is required to transmit the cookie to
the client. Valid values are true and false. The default value is false.

cookieTimeout Specifies the cookie expiration time in minutes.

cookieSlidingExpiration

Defines if sliding expiration of the cookie is enabled. If set to TRue, the
cookie time to expire will be refreshed on every page request. If set to
false, the cookie will expire at the time set when the cookie was
created. The default value is TRue.

cookieProtection

Defines the protection method used for the cookie. Possible values are
All, None, Encryption, and Validation. Validation specifies that the
cookie data will be validated to ensure it was not altered in transit.
Encryption specifies that the cookie is encrypted. All specifies that data
validation and encryption will be used. None specifies that no protection

Attribute Description validation and encryption will be used. None specifies that no protection
will be provided for the cookie information. The default is All and is
recommended because it offers the highest level of protection for the
cookie.

In some applications, supporting conversion of an anonymous user to an authenticated user is
necessary. For example, when a user fills his shopping cart and then logs in to make a purchase, you
want to transfer the data from the shopping cart in the anonymous profile to the one in the
authenticated profile.

ASP.NET 2.0 provides the ability for you to perform the conversion by firing an event when an
anonymous user logs into your application. The event is the OnMigrateAnonymous and must be
handled in Global.asax, as shown in Example 10-9 (VB) and Example 10-10 (C#).

The first step to migrate an anonymous profile to an authenticated user profile is to get the user's
anonymous profile data. You can do this by calling the GetProfile method of the Profile class
passing the ID of the anonymous user. The anonymous user ID is passed to the
Profile_OnMigrateAnonymous method in the args parameter.

 anonymousProfile = Profile.GetProfile(args.AnonymousID)

 anonymousProfile = Profile.GetProfile(args.AnonymousID);

Next, you need to verify that the authenticated user profile does not exist. Since the profile for a
user, whether anonymous or authenticated, will never be null (Nothing in VB), you can check the
LastActivityDate property to determine if it has a valid date. If the date is equal to the minimum
date value, the authenticated profile does not exist. Any other value indicates an authenticated
profile exists.

 If (Profile.LastActivityDate = DateTime.MinValue) Then

 …

 End If

 if (Profile.LastActivityDate == DateTime.MinValue)
 {
 …
 }

validation and encryption will be used. None specifies that no protection
will be provided for the cookie information. The default is All and is
recommended because it offers the highest level of protection for the
cookie.

In some applications, supporting conversion of an anonymous user to an authenticated user is
necessary. For example, when a user fills his shopping cart and then logs in to make a purchase, you
want to transfer the data from the shopping cart in the anonymous profile to the one in the
authenticated profile.

ASP.NET 2.0 provides the ability for you to perform the conversion by firing an event when an
anonymous user logs into your application. The event is the OnMigrateAnonymous and must be
handled in Global.asax, as shown in Example 10-9 (VB) and Example 10-10 (C#).

The first step to migrate an anonymous profile to an authenticated user profile is to get the user's
anonymous profile data. You can do this by calling the GetProfile method of the Profile class
passing the ID of the anonymous user. The anonymous user ID is passed to the
Profile_OnMigrateAnonymous method in the args parameter.

 anonymousProfile = Profile.GetProfile(args.AnonymousID)

 anonymousProfile = Profile.GetProfile(args.AnonymousID);

Next, you need to verify that the authenticated user profile does not exist. Since the profile for a
user, whether anonymous or authenticated, will never be null (Nothing in VB), you can check the
LastActivityDate property to determine if it has a valid date. If the date is equal to the minimum
date value, the authenticated profile does not exist. Any other value indicates an authenticated
profile exists.

 If (Profile.LastActivityDate = DateTime.MinValue) Then

 …

 End If

 if (Profile.LastActivityDate == DateTime.MinValue)
 {
 …
 }

If you do not check the authenticated user profile in the OnMigrateAnonymous
event handler before migrating the anonymous user profile, the authenticated
user profile will be overwritten every time the user logs in, since the
OnMigrateAnonymous event is fired every time the user logs in to your
application.

After determining that the authenticated profile does not exist, you need to copy the desired data
from the anonymous profile to the authenticated profile and save the profile.

 If (Profile.LastActivityDate = DateTime.MinValue) Then
 'logged in user's profile does not exist so copy the anonymous
 'profile data to the logged in user's profile
 Profile.FirstName = anonymousProfile.FirstName
 Profile.LastName = anonymousProfile.LastName
 Profile.MailingAddress.Address1 = anonymousProfile.MailingAddress.Address1
 Profile.MailingAddress.Address2 = anonymousProfile.MailingAddress.Address2
 Profile.MailingAddress.City = anonymousProfile.MailingAddress.City
 Profile.MailingAddress.State = anonymousProfile.MailingAddress.State
 Profile.MailingAddress.ZipCode = anonymousProfile.MailingAddress.ZipCode
 Profile.EmailAddresses = anonymousProfile.EmailAddresses

 'save the logged in user's profile
 Profile.Save()
 End If

 if (Profile.LastActivityDate == DateTime.MinValue)
 {
 // logged in user's profile does not exist so copy the anonymous
 // profile data to the logged in user's profile
 Profile.FirstName = anonymousProfile.FirstName;
 Profile.LastName = anonymousProfile.LastName;
 Profile.MailingAddress.Address1 = anonymousProfile.MailingAddress.Address1;
 Profile.MailingAddress.Address2 = anonymousProfile.MailingAddress.Address2;

 Profile.MailingAddress.City = anonymousProfile.MailingAddress.City;
 Profile.MailingAddress.State = anonymousProfile.MailingAddress.State;
 Profile.MailingAddress.ZipCode = anonymousProfile.MailingAddress.ZipCode;
 Profile.EmailAddresses = anonymousProfile.EmailAddresses;

 // save the logged in user's profile
 Profile.Save();
 }

Next, you should delete the anonymous profile to help in managing unneeded profiles. This is
important since profile data is permanent and is never automatically purged (see Recipe 10.4 for an

example of managing profiles).

The final step is to delete the cookie used to identify the anonymous user since it is unneeded.

If you do not delete the anonymous cookie, the OnMigrateAnonymous event will
fire on every page access. This is caused by the way ASP.NET determines if the
event should be fired. If the user is authenticated and the anonymous cookie
exists, ASP.NET will assume this is the initial login and fire the event. If the
cookie is never deleted, the event will fire every time a page is requested.

The infrastructure provided by ASP.NET 2.0 for profiles will meet the needs of most applications with
little or no coding required. This can be a significant savings in developing your application.

See Also

Recipes 10.1 and 10.4

Example 10-8. Modifications to web.config to support profiles for
anonymous users

<?xml version="1.0"?>
<configuration>

<system.web>
 <!--
 The <authentication> section enables configuration
 of the security authentication mode used by
 ASP.NET to identify an incoming user.
 -->
 <authentication mode="Forms" >
 <forms name=".ASPNETCookbookVBPersonalization3"
 loginUrl="Login.aspx"
 protection="All"
 timeout="30"
 path="/"
 defaultUrl="UpdateProfile.aspx" />
 </authentication>

 <authorization>
 <allow users="*" /> <!-- Allow all users -->
 </authorization>

 <membership defaultProvider="AspNetSqlMembershipProvider"
 userIsOnlineTimeWindow="15">
 <providers>
 <remove name="AspNetSqlMembershipProvider" />

 <add name="AspNetSqlMembershipProvider"
 type="System.Web.Security.SqlMembershipProvider"
 connectionStringName="sqlConnectionString"
 enablePasswordRetrieval="false"
 enablePasswordReset="true"
 requiresQuestionAndAnswer="true"
 applicationName="/AnonymousVB"
 requiresUniqueEmail="false"
 minRequiredPasswordLength="4"
 minRequiredNonalphanumericCharacters="0"
 passwordFormat="Hashed"
 maxInvalidPasswordAttempts="5"
 passwordAttemptWindow="10"
 passwordStrengthRegularExpression="" />
 </providers>
 </membership>

 <roleManager defaultProvider="AspNetSqlRoleProvider"
 enabled="true"
 cacheRolesInCookie="true"
 cookieName=".ASPNETCookbookVBPersonalization1Roles"
 cookieTimeout="30"
 cookiePath="/"
 cookieRequireSSL="false"
 cookieSlidingExpiration="true"
 cookieProtection="All" >
 <providers>
 <remove name="AspNetSqlRoleProvider" />
 <add name="AspNetSqlRoleProvider"
 type="System.Web.Security.SqlRoleProvider"
 connectionStringName="sqlConnectionString"
 applicationName="/AnonymousVB" />
 </providers>
</roleManager>

<anonymousIdentification enabled="true"
 cookieName="ASPNETCookbookVBAnonymousID"
 cookiePath="/"
 cookieRequireSSL="false"
 cookieTimeout="525600"
 cookieSlidingExpiration="true"
 cookieProtection="All" />

 <profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 automaticSaveEnabled="false" >
 <providers>
 <remove name="AspNetSqlProfileProvider" />
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="sqlConnectionString"
 applicationName="/AnonymousVB" />

 </providers>

 <properties>
 <add name="FirstName"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="LastName"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="Theme"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <group name="MailingAddress">
 <add name="Address1"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="Address2"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="City"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"

 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="State"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"

 defaultValue=""
 readOnly="false" />
 <add name="ZipCode"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 </group>
 <add name="EmailAddresses"
 type="System.Collections.Specialized.StringCollection"
 serializeAs="Xml"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 </properties>
 </profile>

</system.web>
</configuration>

Example 10-9. OnMigrateAnonymous event handler in Global.asax (.vb)

Public Sub Profile_OnMigrateAnonymous(ByVal sender As Object, _
 ByVal args As ProfileMigrateEventArgs)
 Dim anonymousProfile As ProfileCommon

 'get the anonymous user's profile
 anonymousProfile = Profile.GetProfile(args.AnonymousID)

 'check to see if the logged in user's profile is already active
 If (Profile.LastActivityDate = DateTime.MinValue) Then
 'logged in user's profile does not exist so copy the anonymous
 'profile data to the logged in user's profile
 Profile.FirstName = anonymousProfile.FirstName
 Profile.LastName = anonymousProfile.LastName
 Profile.MailingAddress.Address1 = anonymousProfile.MailingAddress.Address1
 Profile.MailingAddress.Address2 = anonymousProfile.MailingAddress.Address2
 Profile.MailingAddress.City = anonymousProfile.MailingAddress.City
 Profile.MailingAddress.State = anonymousProfile.MailingAddress.State
 Profile.MailingAddress.ZipCode = anonymousProfile.MailingAddress.ZipCode
 Profile.EmailAddresses = anonymousProfile.EmailAddresses

 'save the logged in user's profile
 Profile.Save()

 End If

 'delete the anonymous user data from the database
 ProfileManager.DeleteProfile(anonymousProfile.UserName)

 'delete the anonymous cookie so this event will no longer
 'fire for a logged-in user
 AnonymousIdentificationModule.ClearAnonymousIdentifier()
End Sub 'Profile_OnMigrateAnonymous

Example 10-10. OnMigrateAnonymous event handler in Global.asax (C#)

public void Profile_OnMigrateAnonymous(Object sender,
 ProfileMigrateEventArgs args)
{
 ProfileCommon anonymousProfile;

 // get the anonymous user's profile
 anonymousProfile = Profile.GetProfile(args.AnonymousID);

 // check to see if the logged in user's profile is already active
 if (Profile.LastActivityDate == DateTime.MinValue)
 {
 // logged in user's profile does not exist so copy the anonymous
 // profile data to the logged in user's profile
 Profile.FirstName = anonymousProfile.FirstName;
 Profile.LastName = anonymousProfile.LastName;
 Profile.MailingAddress.Address1 = anonymousProfile.MailingAddress.Address1;
 Profile.MailingAddress.Address2 = anonymousProfile.MailingAddress.Address2;
 Profile.MailingAddress.City = anonymousProfile.MailingAddress.City;
 Profile.MailingAddress.State = anonymousProfile.MailingAddress.State;
 Profile.MailingAddress.ZipCode = anonymousProfile.MailingAddress.ZipCode;
 Profile.EmailAddresses = anonymousProfile.EmailAddresses;

 // save the logged in user's profile
 Profile.Save();
 }

 // delete the anonymous user data from the database
 ProfileManager.DeleteProfile(anonymousProfile.UserName);

 // delete the anonymous cookie so this event will no longer
 // fire for a logged-in user
 AnonymousIdentificationModule.ClearAnonymousIdentifier();
} // Profile_OnMigrateAnonymous

Recipe 10.5. Managing User Profiles

Problem

You want to provide a mechanism to periodically remove user profile data that is no longer being
used.

Solution

Use the ProfileManager class to find inactive profiles, display them in an ASP.NET page for the
manager to review, and then use the ProfileManager to delete the desired profiles.

In the .aspx file:

Add a drop-down list or other control to allow selection of the authentication option.1.

Add a drop-down list or other control to allow selection of the inactive period.2.

Add a button to initiate the search for the profile.3.

Add a GridView to display the profiles matching the search parameters.4.

Provide the ability to delete one or more profiles.5.

In the code-behind class for the page, use the .NET language of your choice as follows:

Initialize the authentication option drop-down control with the available options.1.

Initialize the inactive period drop-down control with the available options.2.

In the event handler for the Search button click event, use the GetAllInactive-Profiles
method of the ProfileManager class to get the profiles matching the search parameters and
then bind the profile data to a GridView .

3.

In the event handler for the Delete All button click event, use the DeleteInactiveProfiles
method of the ProfileManager class to delete the displayed profiles.

4.

The code we have created to illustrate this solution is shown in Examples 10-11 , 10-12 through 10-13
. Example 10-11 shows the .aspx file for the page used to manage profiles. The code-behind classes
for the page are shown in Examples 10-12 (VB) and 10-13 (C#). The output of the page used to
manage profiles is shown in Figures 10-1 (before searching) and 10-2 (after searching).

Discussion

The Profile provider supplied by Microsoft with ASP.NET 2.0 permanently stores the profile data for
anonymous and authenticated user profiles. Depending on the number of users of your application
and the number of those who are recurring users, a large number of inactive profiles may be stored
in your database. To keep the performance of your application at its peak, you should periodically
remove unused profiles.

Figure 10-1. Managing profiles page before performing search

Figure 10-2. Managing profiles page after performing search

ASP.NET 2.0 provides the ability to manage profiles with the ProfileManager class. This class gives
you the ability to find profiles matching selected criteria and to delete them using the same criteria or
by culling them from a list of users.

In the example we have written to illustrate this solution, we have created a page that provides the
ability for the user to enter the authentication type and the number of inactive months. When the
user clicks the Search button, the last activity date is calculated from the number of inactive months
selected in the Search button event handler. The GetAllInactiveProfiles method of the
ProfileManager class is then called, passing the authentication type and the last activity date.

The GetAllInactiveProfiles method returns a ProfileInfoCollection that can be bound to a
GridView or other grid control as shown in Examples 10-12 (VB) and 10-13 (C#).

The ProfileManager class has an overloaded GetAllInactiveProfiles method
that fully supports paginating data. It provides the ability to pass the page size
and desired page number to allow retrieving a single page of profiles. In
addition, it has a TotalRecords parameter that returns the total number of
profiles meeting the search criteria.

We store the search parameters in the ViewState to use when the user clicks the Delete All button.
By storing the parameters used to display the data, we ensure the deleted profiles are the ones being
displayed. If we used the selections from the dropdowns on the form, the user may have changed the

selection, which would result in a different set of profiles being deleted.

When the user clicks the Delete All button, the search parameters stored in the ViewState are
retrieved from the ViewState in the Delete All button event handler. The DeleteInactiveProfiles
method of the ProfileManager class is then called, passing the search parameters retrieved from the
ViewState .

The DeleteInactiveProfiles method returns the number of profiles deleted. Next, we hide the
GridView and display a message indicating the number of profiles deleted.

Like the other delete profile methods of the ProfileManager class, the
DeleteInactiveProfile method deletes only the user profile data. It does not
delete the user data from the database. If you want to delete the user data in
addition to the profile data, you will need to use the DeleteUser method of the
Membership class.

See Also

Recipe 10.1

Example 10-11. Managing profiles (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH10ManagingUserProfilesVB.aspx.vb"

 Inherits="ASPNetCookbook.VBExamples.CH10ManagingUserProfilesVB"
 Theme="Blue"
 Title="Managing User Profiles" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Managing User Profiles (VB)
 </div>
 <div align="center" class="subHeading">
 Profile Search Parmeters
 </div>

 <table width="60%" align="center" border="0" cellpadding="2">
 <tr>
 <td class="labelText" align="right">Authentication Option: </td>
 <td>
 <asp:DropDownList ID="ddAuthenticationOptions" runat="server"
 CssClass="labelText" />
 </td>
 </tr>
 <tr>
 <td class="labelText" align="right">Months of Inactivity: </td>

 <td>
 <asp:DropDownList ID="ddInactiveMonths" runat="server"
 CssClass="labelText" />

 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">

 <asp:Button ID="btnSearch" runat="server"
 Text="Search"
 OnClick="btnSearch_Click" />
 </td>
 </tr>
 </table>

 <div id="divProfiles" runat="server" align="center">

 <asp:GridView ID="gvProfiles" runat="server"
 BorderColor="#000080"
 BorderWidth="2px"
 AutoGenerateColumns="False"
 HorizontalAlign="center"
 Width="90%"
 CellPadding="2" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundField DataField="UserName" HeaderText="User Name" />
 <asp:BoundField DataField="LastActivityDate" HeaderText="Last Activity" />
 <asp:BoundField DataField="LastUpdatedDate" HeaderText="Last Updated" />

 <asp:BoundField DataField="Size" HeaderText="Size" />
 <asp:BoundField DataField="IsAnonymous" HeaderText="Anonymous" />
 </Columns>
 </asp:GridView>

 <asp:Button ID="btnDeleteAll" runat="server"
 Text="Delete All"
 OnClick="btnDeleteAll_Click" />
 </div>

 <div id="divMessage" runat="server" align="center" class="labelText">

 <asp:Literal ID="litMessage" runat="server" />
 </div>
</asp:Content>

Example 10-12. Managing profiles code-behind (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH10ManagingUserProfilesVB.aspx
 ''' </summary>
 Partial Class CH10ManagingUserProfilesVB
 Inherits System.Web.UI.Page

 'the following constants define the name of variables in the ViewState
 'used to store the search criteria for the currently displayed
 'profile data
 Private Const VS_AUTHENTICATION_OPTION As String = "AuthenticationOption"
 Private Const VS_LAST_ACTIVITY_DATE As String = "lastActivityDate"

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim item As ListItem

 If (Not Page.IsPostBack) Then
 'add items to the authentication option dropdown
 ddAuthenticationOptions.Items.Clear()
 item = New ListItem("All", _
 (CInt(ProfileAuthenticationOption.All)).ToString())

 ddAuthenticationOptions.Items.Add(item)
 item = New ListItem("Anonymous", _
 (CInt(ProfileAuthenticationOption.Anonymous)).ToString())
 ddAuthenticationOptions.Items.Add(item)
 item = New ListItem("Authenticated", _
 (CInt(ProfileAuthenticationOption.Authenticated)).ToString())
 ddAuthenticationOptions.Items.Add(item)

 'add itesm to the "months of inactivity" dropdown
 ddInactiveMonths.Items.Clear()
 item = New ListItem("0", "0")
 ddInactiveMonths.Items.Add(item)
 item = New ListItem("3", "3")

 ddInactiveMonths.Items.Add(item)
 item = New ListItem("6", "6")
 ddInactiveMonths.Items.Add(item)
 item = New ListItem("12", "12")
 ddInactiveMonths.Items.Add(item)

 'select the "12 months" entry
 ddInactiveMonths.SelectedIndex = ddInactiveMonths.Items.Count - 1

 'initially hide the grid and message panels
 divProfiles.Visible = False
 divMessage.Visible = False
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the search button click
 ''' event. It is responsible for searching for and displaying the
 ''' profiles matching the selected criteria
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnSearch_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim inactiveMonths As Integer
 Dim lastActivityDate As DateTime = DateTime.MinValue
 Dim profileData As ProfileInfoCollection
 Dim authenticationOption As ProfileAuthenticationOption

 authenticationOption = CType(ddAuthenticationOptions.SelectedValue, _
 ProfileAuthenticationOption)
 'calculate the last activity date
 inactiveMonths = CInt(ddInactiveMonths.SelectedValue)
 lastActivityDate = DateTime.Now.AddMonths(-inactiveMonths)

 'get profiles matching authentication option and last activity date
 profileData = _
 ProfileManager.GetAllInactiveProfiles(authenticationOption, _
 lastActivityDate)

 'check to see if any profiles match the selected criteria
 If (profileData.Count = 0) Then
 divProfiles.Visible = False
 divMessage.Visible = True
 litMessage.Text = "No profiles were found matching the entered criteria"
 Else
 divProfiles.Visible = True
 divMessage.Visible = False
 gvProfiles.DataSource = profileData
 gvProfiles.DataBind()

 End If

 'store the search criteria in the ViewState to support deleting
 'profiles when required
 'NOTE: The data is stored to ensure it matches the displayed
 ' profiles to handle the case where the user changes the
 ' criteria and then clicks the delete all button
 ViewState(VS_AUTHENTICATION_OPTION) = authenticationOption
 ViewState(VS_LAST_ACTIVITY_DATE) = lastActivityDate
End Sub 'btnSearch_Click

'''***
''' <summary>
''' This routine provides the event handler for the delete all button
''' click event. It is responsible for deleting the displayed profiles
''' </summary>
 '''
''' <param name="sender">Set to the sender of the event</param>
''' <param name="e">Set to the event arguments</param>
Protected Sub btnDeleteAll_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim lastActivityDate As DateTime
 Dim authenticationOption As ProfileAuthenticationOption
 Dim profilesDeleted As Integer

 'get the search criteria used to display the current data
 lastActivityDate = CDate(ViewState(VS_LAST_ACTIVITY_DATE))
 authenticationOption = CType(ViewState(VS_AUTHENTICATION_OPTION), _
 ProfileAuthenticationOption)

 'delete the profiles
 profilesDeleted = _
 ProfileManager.DeleteInactiveProfiles(authenticationOption, _
 lastActivityDate)

 'hide the grid and output message indicating the number of
 'profiles deleted

 divProfiles.Visible = False
 divMessage.Visible = True
 litMessage.Text = profilesDeleted.ToString() & _
 " Profile(s) were deleted"
 End Sub 'btnDeleteAll_Click
 End Class 'CH10ManagingUserProfilesVB
End Namespace

Example 10-13. Managing profiles code-behind (.cs)

using System;
using System.Web.UI.WebControls;
using System.Web.Profile;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH10ManagingUserProfilesCS.aspx
 /// </summary>
 public partial class CH10ManagingUserProfilesCS : System.Web.UI.Page
 {

 // the following constants define the name of variables in the ViewState
 // used to store the search criteria for the currently displayed
 // profile data
 private const String VS_AUTHENTICATION_OPTION = "AuthenticationOption";
 private const String VS_LAST_ACTIVITY_DATE = "lastActivityDate";

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 ListItem item;

 if (!Page.IsPostBack)
 {
 // add items to the authentication option dropdown
 ddAuthenticationOptions.Items.Clear();
 item = new ListItem("All",
 ((int)ProfileAuthenticationOption.All).ToString());
 ddAuthenticationOptions.Items.Add(item);
 item = new ListItem("Anonymous",
 ((int)ProfileAuthenticationOption.Anonymous).ToString());
 ddAuthenticationOptions.Items.Add(item);

 item = new ListItem("Authenticated",
 ((int)ProfileAuthenticationOption.Authenticated).ToString());
 ddAuthenticationOptions.Items.Add(item);

 // add itesm to the "months of inactivity" dropdown
 ddInactiveMonths.Items.Clear();
 item = new ListItem("0", "0");
 ddInactiveMonths.Items.Add(item);
 item = new ListItem("3", "3");
 ddInactiveMonths.Items.Add(item);

 item = new ListItem("6", "6");
 ddInactiveMonths.Items.Add(item);
 item = new ListItem("12", "12");
 ddInactiveMonths.Items.Add(item);

 // select the "12 months" entry
 ddInactiveMonths.SelectedIndex = ddInactiveMonths.Items.Count - 1;

 // initially hide the grid and message panels
 divProfiles.Visible = false;
 divMessage.Visible = false;

 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the search button click
 /// event. It is responsible for searching for and displaying the
 /// profiles matching the selected criteria
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnSearch_Click(Object sender,
 System.EventArgs e)
 {
 int inactiveMonths;
 DateTime lastActivityDate = DateTime.MinValue;
 ProfileInfoCollection profileData;
 ProfileAuthenticationOption authenticationOption;

 authenticationOption = (ProfileAuthenticationOption)
 (Convert.ToInt32(ddAuthenticationOptions.SelectedValue));

 // calculate the last activity date
 inactiveMonths = Convert.ToInt32(ddInactiveMonths.SelectedValue);
 lastActivityDate = DateTime.Now.AddMonths(-inactiveMonths);

 // get profiles matching authentication option and last activity date
 profileData =
 ProfileManager.GetAllInactiveProfiles(authenticationOption,
 lastActivityDate);

 // check to see if any profiles match the selected criteria
 if (profileData.Count == 0)
 {
 divProfiles.Visible = false;
 divMessage.Visible = true;
 litMessage.Text =
 "No profiles were found matching the entered criteria";
 }

 else
 {
 divProfiles.Visible = true;
 divMessage.Visible = false;
 gvProfiles.DataSource = profileData;
 gvProfiles.DataBind();
 }

 // store the search criteria in the ViewState to support deleting
 // profiles when required
 // NOTE: The data is stored to ensure it matches the displayed
 // profiles to handle the case where the user changes the
 // criteria and then clicks the delete all button
 ViewState[VS_AUTHENTICATION_OPTION] = authenticationOption;
 ViewState[VS_LAST_ACTIVITY_DATE] = lastActivityDate;
 } // btnSearch_Click

 ///***
 /// <summary>
 /// This routine provides the event handler for the delete all button
 /// click event. It is responsible for deleting the displayed profiles
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnDeleteAll_Click(Object sender,
 System.EventArgs e)
 {
 DateTime lastActivityDate;
 ProfileAuthenticationOption authenticationOption;
 int profilesDeleted;

 // get the search criteria used to display the current data
 lastActivityDate = (DateTime)(ViewState[VS_LAST_ACTIVITY_DATE]);
 authenticationOption = (ProfileAuthenticationOption)
 (ViewState[VS_AUTHENTICATION_OPTION]);

 // delete the profiles
 profilesDeleted =
 ProfileManager.DeleteInactiveProfiles(authenticationOption,
 lastActivityDate);

 // hide the grid and output message indicating the number of
 // profiles deleted

 divProfiles.Visible = false;
 divMessage.Visible = true;
 litMessage.Text = profilesDeleted.ToString() +
 " Profile(s) were deleted";
 } // btnDeleteAll_Click
 } // CH10ManagingUserProfilesCS
}

Recipe 10.6. Using Themes

Problem

You want to be able to change the look of your application without having to change all the pages in
your application.

Solution

Use the Theme features in ASP.NET 2.0 to define the look of your application. That is, create a theme
to define the look of each control and set the Theme attribute of the @ Page directive to tell ASP.NET to
use the theme for controls on the page.

Create a theme as follows:

Create an App_Themes folder in the root of your application.1.

Create a folder with the name you want to use for the theme in the App_Themes folder.2.

Create a .skin file in the folder created above containing a definition for each server control you
use in your application with the attributes that define its appearance set the way you want the
control to look.

3.

(Optionally) Create a .css file in the folder created above to use with your .skin file.4.

(Optionally) Add any images to the folder created above or to a subfolder as desired.5.

In the .aspx file for pages in your application set the Theme attribute of the @ Page directive to the
name of the theme you want to use for the page.

The .skin files we created to demonstrate this solution are shown in Example 10-14 (blue theme) and
Example 10-15 (grey theme). The .aspx file for the page that demonstrates how to use the theme is
shown in Example 10-16 . The code-behind file for the page is shown in Examples 10-17 (VB) and 10-
18 (C#). The output for the page is shown in Figure 10-3 .

Figure 10-3. Output of demonstration page using blue theme

Discussion

Providing a consistent look and feel for web applications has always been a challenge. In the early
days of the web, all look and feel was hardcoded into the HTML in the pages. This was convenient but
had two major drawbacks. First, ensuring that all pages had a consistent look and feel required a lot
of work and QA testing. Second, changing the look and feel of the application required changing
every page in the application. For a large site, this was generally an expensive project.

CSS greatly diminished the problem by providing the ability to define in one place the look and feel
for all aspects of the HTML page and controls. This reduced the effort of ensuring a consistent look
and feel as well as the magnitude of the effort to change it. Unfortunately, style sheets can get
complicated. The complexity arises from some styles inheriting from "parent" styles resulting in a
confusing hierarchy of style definitions.

ASP.NET 2.0 has introduced themes to help with the problem. Themes are a collection of CSS files,
.skin files, and images. Themes do not replace style sheets. Themes are intended to complement
style sheets and to place all of the files associated with a given look and feel in a single location.

In ASP.NET 2.0, a special folder named App_Themes in the root of your application is used to store
themes. Each theme needed for your application is placed in a separate folder within the App_Themes
folder, as shown in Figure 10-4 .

Figure 10-4. Theme folder structure

The .skin files that are part of themes contain definitions of each of the server controls used in your
application along with the look and feel that is desired for the controls. The server control definitions
in .skin files look identical to the server controls placed in the .aspx files, except that the only defined
aspects are the visual aspectsthat is, the look and feel. An example of the GridView control in the
.skin file is shown below:

 <asp:GridView runat="server"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 HorizontalAlign="Center"
 Width="90%">
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <SelectedRowStyle CssClass="tableCellSelected" />
 </asp:GridView>

The control definitions in .skin files can contain an optional SkinID attribute to allow defining the
same server control multiple times in a .skin file but with a different look and feel. This is useful when
your application needs to use the same control in a page multiple times with different looks. When
the SkinID attribute is not included in the control definition, the definition is used as the default
definition.

 <asp:Button runat="server"
 CssClass="button" />

 <asp:Button runat="server" SkinID="btnLightBlue"
 CssClass="lightBlueButton" />

A combination of server control definitions in .skin files and .css files provides the best flexibility in
defining the look and feel for an application.

The simplest way to use a theme is to set the Theme attribute in the @ Page directive to the name of
the theme you want applied to the page. This results in the look and feel for the default server

controls defined in the .skin file (the ones without a SkinID) for the theme being applied to the
controls on the page.

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH10UsingThemesVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH10UsingThemesVB1"
 Theme="Blue"
 Title="Using Themes" %>

To provide finer control over the application of the theme to a page, you can set the SkinID of
individual controls to the SkinID of the control definition in the .skin file that you want applied to the
control.

 <asp:Button ID="btnEdit" runat="server" SkinID="btnLightBlue"
 Text="Edit" />

In the web.config file, you can define the theme to be used by all pages in your application. By
setting the theme in web.config , you will not need to set the Theme attribute in the @ Page directive of
each page. This approach makes globally changing to another defined theme simple.

 <?xml version="1.0"?>
 <configuration>
 <system.web>

 …

 <!-
 set the theme fo all pages to to eliminate the need to add
 a Themes attribute to the @ Page directive to each page.

 -->
 <pages theme="Grey" />
 </system.web>
 </configuration>

The Theme attribute of the @ Page directive can be set in individual pages to
override the setting in web.config for individual pages.

Themes are an excellent addition to ASP.NET 2.0, providing the ability to define and maintain a

consistent look and feel. Themes can even be personalized, as described in Recipe 10.6.

See Also

Recipe 10.6

Control Definitions in .skin Files Override Definitions in .aspx

Files

The attributes defined for server controls in .skin files override the same definitions
placed in .aspx files. Normally, this is the behavior you want, but be careful when
defining some elements of complexserver controls, such as the GridView . For example,
it might be tempting to place the following control definition in a .skin file:

 <asp:GridView runat="server"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 HorizontalAlign="Center"
 Width="90%">
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <SelectedRowStyle CssClass="tableCellSelected" />
 <Columns>
 <asp:BoundField ItemStyle-HorizontalAlign="Left" />
 <asp:BoundField ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:MMM dd, yyyy}"/>
 <asp:BoundField ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:C2}"/>
 </Columns>
 </asp:GridView>

This would seem to be all right since only look-and-feel attributes are defined. The
problem arises, however, with the definition of the <Columns> element. The
<asp:BoundField> elements will override the same elements in the control definition in
the .aspx file. This problem results in a GridView containing no data because the
<asp:BoundField> elements do not contain DataField attributes that define what data
from a dataset gets bound to the column.

Example 10-14. Blue .skin file

<asp:GridView runat="server"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 HorizontalAlign="Center"
 Width="90%">
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <SelectedRowStyle CssClass="tableCellSelected" />
</asp:GridView>

<asp:Button runat="server"
 CssClass="button" />

<asp:Button runat="server" SkinID="btnLightBlue"
 CssClass="lightBlueButton" />

Example 10-15. Gray .skin file

<asp:GridView runat="server"
 BorderColor="#C0C0C0"
 BorderStyle="Solid"
 BorderWidth="2px"
 HorizontalAlign="Center"
 Width="90%">
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <SelectedRowStyle CssClass="tableCellSelected" />
</asp:GridView>

<asp:Button runat="server"
 CssClass="button" />

Example 10-16. Page using the blue theme (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH10UsingThemesVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH10UsingThemesVB1"

 Theme="Blue"
 Title="Using Themes" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Using Themes - Blue (VB)
 </div>
 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="false"
 AllowSorting="false"
 AutoGenerateColumns="false"
 Caption=""
 EnableTheming="true" >
 <Columns>
 <asp:ButtonField ButtonType="Link"
 CommandName="Select"
 Text="Select" />
 <asp:BoundField HeaderText="Title"
 DataField="Title"
 ItemStyle-HorizontalAlign="Left" />
 <asp:BoundField HeaderText="Publish Date"
 DataField="PublishDate"
 ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:MMM dd, yyyy}"/>
 <asp:BoundField HeaderText="List Price"
 DataField="ListPrice"
 ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:C2}"/>

 </Columns>
 </asp:GridView>

 <table width="40%" border="0" align="center">
 <tr>
 <td align="center">
 <asp:Button ID="btnAdd" runat="server"
 Text="Add" />
 </td>
 <td align="center">
 <asp:Button ID="btnEdit" runat="server"
 Text="Edit" />
 </td>
 <td align="center">
 <asp:Button ID="btnDelete" runat="server"
 Text="Delete" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 10-17. Page using the blue theme code-behind (.vb)

Option Explicit On
Option Strict On
Imports Microsoft.VisualBasic
Imports System.Configuration.ConfigurationManager
Imports System.Data

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH10UsingThemesVB1.aspx
 ''' </summary>
 Partial Class CH10UsingThemesVB1
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dSource As SqlDataSource = Nothing
 Dim dataKeys(0) As String

 If (Not Page.IsPostBack) Then
 'configure the data source to get the data from the database
 dSource = New SqlDataSource()

 dSource.ConnectionString = _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataReader
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT TOP 10 " & _
 "BookID,Title,PublishDate,ListPrice " & _
 "FROM Book " & _
 "ORDER BY Title"

 'set the source of the data for the gridview control and bind it
 dataKeys(0) = "BookID"
 gvBooks.DataKeyNames = dataKeys
 gvBooks.DataSource = dSource
 gvBooks.DataBind()
 End If
 End Sub 'Page_Load

 End Class 'CH10UsingThemesVB1

End Namespace

Example 10-18. Page using the blue theme code-behind (.cs)

using System;
using System.Configuration;
using System.Web.UI.WebControls;
using System.Web.Profile;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH10UsingThemesCS1.aspx
 /// </summary>
 public partial class CH10UsingThemesCS1 : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 SqlDataSource dSource = null;
 String[] dataKeys;

 if (!Page.IsPostBack)
 {
 // configure the data source to get the data from the database
 dSource = new SqlDataSource();

 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataReader;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT TOP 10 " +
 "BookID,Title,PublishDate,ListPrice " +
 "FROM Book " +
 "ORDER BY Title";

 // set the source of the data for the gridview control and bind it
 dataKeys = new string[1] { "BookID" };
 gvBooks.DataKeyNames = dataKeys;

 gvBooks.DataSource = dSource;
 gvBooks.DataBind();
 }
 } // Page_Load
 } // CH10UsingThemesCS1
}

Recipe 10.7. User-Personalized Themes

Problem

You want to provide to users of your application the ability to choose how the application looks.

Solution

Use the Profile features along with the Theme features in ASP.NET 2.0. Implement the profile features
described in Recipe 10.1, modify web.config to add a property to store the selected theme in the
profile, and set the selected theme in the Page_PreInit event handler of the pages in your
application.

Modify web.config as follows:

Add an <add> element to the <properties> element to include the name of the user's selected
theme in the profile.

In the code-behind class for the pages in your application, use the .NET language of your choice as
follows:

Implement the event handler for the Page_PreInit event to set the theme for the page from the
user's profile.

The solution we have implemented to demonstrate the solution is shown in Examples 10-19, 10-20,
10-21 through 10-22. Example 10-19 shows the modifications made to web.config. Example 10-20
shows the .aspx file used to enter the user profile data, and Examples 10-21 (VB) and 10-22 (C#)
show the code-behind classes for the page used to enter the user profile data.

Discussion

In some cases, you'll want to allow the user to choose the look and feel she wants for your
application. The combination of the profile and theme features in ASP.NET 2.0 provides the ability to
implement this functionality in your application with very little code.

For our example, we built on the solution provided in Recipe 10.1, adding the ability to enter and store
the user-selected theme. This requires adding a property to the profile defined in web.config to store
the name of the selected theme.

 <?xml version="1.0"?>

 <configuration>
 <system.web>

 …

 <profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 automaticSaveEnabled="false" >
 <providers>
 <remove name="AspNetSqlProfileProvider" />
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="sqlConnectionString"
 applicationName="/AnonymousVB" />
 </providers>

 <properties>
 <add name="FirstName"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />

 …

 <add name="Theme"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 …

 </properties>
 </profile>
 </system.web>
 </configuration>

To provide the ability for the user to select the desired theme, we have added a dropdown to the
.aspx file that is populated in the code-behind with a list of the folders within the App_Themes folder.
The names of these folders are the available themes in the application.

 get list of files in the images directory (just for example here)
 themes = Directory.GetDirectories(Server.MapPath("App_Themes"))

 'for display purposes, remove the path to the theme
 For index = 0 To themes.Length - 1
 themes(index) = New FileInfo(themes(index)).Name
 Next index

 'bind the list of themes to the dropdown on the form
 ddThemes.DataSource = themes
 ddThemes.DataBind()

 // get list of files in the images directory (just for example here)
 themes = Directory.GetDirectories(Server.MapPath("App_Themes"));

 // for display purposes, remove the path to the theme
 for (int index = 0; index < themes.Length; index++)
 {
 themes[index] = new FileInfo(themes[index]).Name;
 }

 // bind the list of themes to the dropdown on the form
 ddThemes.DataSource = themes;
 ddThemes.DataBind();

To apply the user's selected theme to a page at runtime, the Theme property of the Page object must
be set in the Page_PreInit event handler. This is required because the theme information is loaded
immediately after the Page_PreInit event. Any attempt to set the Theme property after the
Page_PreInit event occurs will result in an InvalidOperationException being thrown.

Since it is possible for no theme to be set in the user's profile, you need to verify that data is
available and set a default value if the data is not available:

 If (Profile.Theme.Length = 0) Then
 'user has not selected a theme so set the default
 Page.Theme = DEFAULT_THEME
 Else
 'user has selected a theme so use it
 Page.Theme = Profile.Theme
 End If

 if (Profile.Theme.Length == 0)
 {
 // user has not selected a theme so set the default
 Page.Theme = DEFAULT_THEME;
 }
 else

 {
 // user has selected a theme so use it
 Page.Theme = Profile.Theme;
 }

In our application, we provide the ability for the user to select a theme and apply it to the page. This
presents a bit of a problem since, when the Page_PreInit event fires, the server controls on the page
have not been initialized. Therefore, we cannot obtain the selected theme from the drop-down control
as we would in most any other circumstance. This requires us to fall back on the approach used in
classic ASP for getting the form data posted to the server. For those of you who do not remember
those days, you must obtain the value from the Page.Request.Form collection.

Generally, all that would normally be required to get the value is to use the ID of the drop-down
control as the key for the Form collection:

 'THIS WILL NOT WORK WHEN MASTER PAGES ARE USED
 Page.Theme = Page.Request.Form("ddThemes").ToString()

In our application, we are using a master page, which complicates directly accessing the data in the
Form collection. To guarantee unique names for controls on the rendered page, ASP.NET sets the
name of the control to the unique name property of the server control. The name is a combination of
the server control's ID and the content control's ID on the form, such as ctl00$PageBody$ddThemes. At
first glance, it would appear you could use the UniqueID property of the themes drop-down control to
access the Form data. Unfortunately, the server controls are not initialized, so the UniqueID property
is unavailable.

To work around the problem, we write the value of the UniqueID property of the themes drop-down
control to the rendered page in a hidden control when the form is initialized:

 Private Const DD_THEMES_UNIQUE_ID As String = "ddThemeUniqueID"

 …

 ClientScript.RegisterHiddenField(DD_THEMES_UNIQUE_ID, _
 ddThemes.UniqueID)

 private const String DD_THEMES_UNIQUE_ID = "ddThemeUniqueID";

 …

 ClientScript.RegisterHiddenField(DD_THEMES_UNIQUE_ID,
 ddThemes.UniqueID);

Because we are explicitly outputting the hidden control with a name of our choosing, we can get the
stored value and use it to access the selected value for the themes drop-down control:

 ddThemesUniqueID = Page.Request.Form(DD_THEMES_UNIQUE_ID).ToString()
 Page.Theme = Page.Request.Form(ddThemesUniqueID).ToString()

 ddThemesUniqueID = Page.Request.Form[DD_THEMES_UNIQUE_ID].ToString();
 Page.Theme = Page.Request.Form[ddThemesUniqueID].ToString();

The workaround we described above is only necessary when a form is used to input the user's theme
selection and to display the same form using the selected theme. When applying the theme to other
pages, this workaround is unnecessary.

To simplify the pages in your application, do the following:

Create a base class that inherits from System.Web.UI.Page.1.

Add a Page_PreInit event handler to set the Page.Theme property from the
theme in the user's profile.

2.

Change the pages in your application to inherit from this new base class
instead of the normal System.Web.UI.Page.

3.

Using this approach allows you to implement the setting of the theme in one
place for all your application pages.

See Also

Recipe 10.1

Example 10-19. Modifications to web.config to store theme name in the
profile

<?xml version="1.0"?>
<configuration>
 <system.web>

 …

 <profile enabled="true"
 defaultProvider="AspNetSqlProfileProvider"
 automaticSaveEnabled="false" >
 <providers>
 <remove name="AspNetSqlProfileProvider" />
 <add name="AspNetSqlProfileProvider"
 type="System.Web.Profile.SqlProfileProvider"
 connectionStringName="sqlConnectionString"
 applicationName="/AnonymousVB" />
 </providers>

 <properties>
 <add name="FirstName"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="LastName"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"

 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 <add name="Theme"
 type="System.String"
 serializeAs="String"
 allowAnonymous="true"
 provider="AspNetSqlProfileProvider"
 defaultValue=""
 readOnly="false" />
 …

 </properties>
 </profile>
 </system.web>
</configuration>

Example 10-20. Update user profile data (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH10PersonalizedThemesVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH10PersonalizedThemesVB"
 Title="Personalized Themes" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Personalized Themes (VB)
 </div>
 <div align="center" class="subHeading">

 <asp:Label ID="lblWelcome" runat="server" />
 </div>
 <table width="60%" align="center" border="0" cellpadding="2">
 <tr>
 <td align="right" class="labelText">FirstName: </td>
 <td><asp:TextBox ID="txtFirstName" runat="server" /></td>
 </tr>
 <tr>
 <td align="right" class="labelText">LastName: </td>
 <td><asp:TextBox ID="txtLastName" runat="server" /></td>
 </tr>
 <tr>
 <td align="right" class="labelText">Theme: </td>
 <td><asp:DropDownList ID="ddThemes" runat="server" /></td>
 </tr>
 <tr>
 <td colspan="2" align="center">

 <asp:Button ID="btnUpdate" runat="server"
 Text="Update"
 OnClick="btnUpdate_Click" />

 </td>
 </tr>
 </table>
</asp:Content>

Example 10-21. Update user profile data code-behind (.vb)

Option Explicit On
Option Strict On

Imports System

Imports System.IO

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH10PersonalizedThemesVB.aspx
 ''' </summary>
 Partial Class CH10PersonalizedThemesVB
 Inherits System.Web.UI.Page

 'the following constant defines the name of the default theme
 Private Const DEFAULT_THEME As String = "Blue"

 'the following constant defines the name of the hidden field placed
 'in the form with the unique ID for the theme dropdown control
 Private Const DD_THEMES_UNIQUE_ID As String = "ddThemeUniqueID"

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the page preinit event.
 ''' It is responsible for initializing the page theme.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub Page_PreInit(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.PreInit
 Dim ddThemesUniqueID As String

 'get the selected theme
 If (Page.IsPostBack) Then
 'page is being posted back so new theme is available in the form data
 'NOTE: The theme must be extracted from the form data because the
 ' server controls have not been initialized with the ViewState
 ' data yet and the theme must be set in the Page PreInit event.
 '
 ' Since the names of the server controls and thus the keys in the
 ' Form name/value collection are set to unique identifiers, the
 ' form variables cannot be accessed using the ID values we
 ' assigned. Because of this we have output a hidden HTML input
 ' to the form with the unique ID we need to access the Form
 ' variable.

 ddThemesUniqueID = Page.Request.Form(DD_THEMES_UNIQUE_ID).ToString()
 Page.Theme = Page.Request.Form(ddThemesUniqueID).ToString()
 Else
 'page is being initially displayed so use the theme setting from the
 'profile if it exists
 If (Profile.Theme.Length = 0) Then
 'user has not selected a theme so set the default
 Page.Theme = DEFAULT_THEME
 Else

 'user has selected a theme so use it
 Page.Theme = Profile.Theme
 End If
 End If
 End Sub 'Page_PreInit

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Not Page.IsPostBack) Then
 initializeForm()
 End If
 End Sub 'Page_Load

 '''**
 ''' <summary>
 ''' This routine provides the event handler for the update button click
 ''' event. It is responsible for updating the user profile from the data
 ''' on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnUpdate_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Profile.FirstName = txtFirstName.Text
 Profile.LastName = txtLastName.Text
 Profile.Theme = ddThemes.SelectedItem.Text
 Profile.Save()

 initializeForm()
 End Sub 'btnUpdate_Click

 '''**
 ''' <summary>
 ''' This routine updates the form with data from the user's profile

 ''' </summary>
 Private Sub initializeForm()
 Dim themes() As String
 Dim index As Integer

 txtFirstName.Text = Profile.FirstName
 txtLastName.Text = Profile.LastName

 'get list of files in the images directory (just for example here)
 themes = Directory.GetDirectories(Server.MapPath("App_Themes"))

 'for display purposes, remove the path to the theme
 For index = 0 To themes.Length - 1
 themes(index) = New FileInfo(themes(index)).Name
 Next index

 'bind the list of themes to the dropdown on the form
 ddThemes.DataSource = themes
 ddThemes.DataBind()

 'select the user's selected theme
 'NOTE: Page.Theme was initialized to the correct theme in Page_PreInit
 ddThemes.SelectedIndex = _
 ddThemes.Items.IndexOf(ddThemes.Items.FindByValue(Page.Theme))

 'output the unique identifier for the themes dropdown list to a hidden
 'field. The need for this is explained in the Page_PreInit event handler
 ClientScript.RegisterHiddenField(DD_THEMES_UNIQUE_ID, _
 ddThemes.UniqueID)
 End Sub 'initializeForm
 End Class 'CH10PersonalizedThemesVB
End Namespace

Example 10-22. Update user profile data code-behind (.cs)

using System;
using System.Configuration;
using System.IO;
using System.Web.UI.WebControls;
using System.Web.Profile;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH10PersonalizedThemesCS.aspx
 /// </summary>
 public partial class CH10PersonalizedThemesCS : System.Web.UI.Page
 {

 // the following constant defines the name of the default theme
 private const String DEFAULT_THEME = "Blue";

 // the following constant defines the name of the hidden field placed
 // in the form with the unique ID for the theme dropdown control

 private const String DD_THEMES_UNIQUE_ID = "ddThemeUniqueID";

 ///**
 /// <summary>
 /// This routine provides the event handler for the page preinit event.
 /// It is responsible for initializing the page theme.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_PreInit(Object sender,
 System.EventArgs e)
 {
 String ddThemesUniqueID;

 // get the selected theme
 if (Page.IsPostBack)
 {
 // page is being posted back so new theme is available in the form data
 // NOTE: The theme must be extracted from the form data because the
 // server controls have not been initialized with the ViewState
 // data yet and the theme must be set in the Page PreInit event.
 //
 // Since the names of the server controls and thus the keys in
 // the Form name/value collection are set to unique identifiers,
 // the form variables cannot be accessed using the ID values we
 // assigned. Because of this we have output a hidden HTML input
 // to the form with the unique ID we need to access the Form
 // variable.
 ddThemesUniqueID = Page.Request.Form[DD_THEMES_UNIQUE_ID].ToString();
 Page.Theme = Page.Request.Form[ddThemesUniqueID].ToString();
 }
 else
 {
 // page is being initially displayed so use the theme setting from the
 // profile if it exists
 if (Profile.Theme.Length == 0)
 {
 // user has not selected a theme so set the default
 Page.Theme = DEFAULT_THEME;
 }
 else
 {
 // user has selected a theme so use it
 Page.Theme = Profile.Theme;
 }
 }
 } // Page_PreInit

 ///**
 /// <summary>
 /// This routine provides the event handler for the page load event.

 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 initializeForm();
 }
 } // Page_Load

 ///**
 /// <summary>
 /// This routine provides the event handler for the update button click
 /// event. It is responsible for updating the user profile from the data
 /// on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnUpdate_Click(Object sender, System.EventArgs e)
 {
 Profile.FirstName = txtFirstName.Text;
 Profile.LastName = txtLastName.Text;
 Profile.Theme = ddThemes.SelectedItem.Text;
 Profile.Save();

 initializeForm();
 } // btnUpdate_Click

 ///**
 /// <summary>
 /// This routine updates the form with data from the user's profile
 /// </summary>
 private void initializeForm()
 {
 String[] themes;

 txtFirstName.Text = Profile.FirstName;
 txtLastName.Text = Profile.LastName;

 // get list of files in the images directory (just for example here)
 themes = Directory.GetDirectories(Server.MapPath("App_Themes"));

 // for display purposes, remove the path to the theme
 for (int index = 0; index < themes.Length; index++)
 {

 themes[index] = new FileInfo(themes[index]).Name;
 }

 // bind the list of themes to the dropdown on the form
 ddThemes.DataSource = themes;
 ddThemes.DataBind();

 // select the user's selected theme
 // NOTE: Page.Theme was initialized to the correct theme in Page_PreInit
 ddThemes.SelectedIndex =
 ddThemes.Items.IndexOf(ddThemes.Items.FindByValue(Page.Theme));

 // output the unique identifier for the themes dropdown list to a hidden
 // field. The need for this is explained in the Page_PreInit event
 // handler.
 ClientScript.RegisterHiddenField(DD_THEMES_UNIQUE_ID,
 ddThemes.UniqueID);
 } // initializeForm
 } // CH10PersonalizedThemesCS
}

Chapter 11. Web Parts

11.0 Introduction

Recipe 11.2. Using Server Controls and User Controls as Web Parts

Recipe 11.3. Creating a Reusable Web Parts Catalog

Recipe 11.4. Creating a Custom Web Part

Recipe 11.5. Communicating Between Web Parts

Recipe 11.6. Persisting Personalized Web Part Properties

11.0 Introduction

Web parts are the new building blocks of personalization in ASP.NET 2.0. Any controlwhether a
standard server control, custom control, user control, or web part controlcan be used as a web part
without modification.

In its simplest form, a web part consists of an ASP.NET server or user control that takes advantage
of the Web Parts control set, which is a group of structural components consisting of the following
minimum set:

WebPartManager control

Responsible for managing all other web part controls on the page

WebPartZone control

Defines an area on a page where web parts can be placed

CatalogZone control

Responsible for managing the user interface that displays the available web parts and provides
the user the ability to select web parts and add them to WebPartZones

Creating a web part and using the Web Parts control set on an ASP.NET page is a natural first step in
learning how to build web parts and is the subject of this chapter's first recipe.

As you create a stable of web parts, you will find you want to reuse them on many pages in your
applications, yet having to declare each web part on each page can be a stumbling block. Creating a
reusable web parts catalog circumvents this issue and is the subject of the chapter's second recipe.

ASP.NET server controls and user controls can be effective when used as web parts. Nevertheless,
you may need additional functionality not provided by these controlsfor example, when you want the
ability to build your web parts into a separate assembly for sharing with other applications. When this
is the case, creating a custom web part can be a good alternative and is the subject of the chapter's
third recipe.

Communicating between web parts is another common scenario that you may need to support in
your applications and is the subject of the fourth recipe in the chapter. For example, this recipe
shows you how to communicate between one web part that acts as a filter for data to be displayed by
another web part.

When you've built your own web parts, complete with custom properties, you'll want to store the
custom property settings so the next time users revisit your application, their property settings will
be reflected. Persisting the user's web part property settings along with the other web part

personalization data is the subject of the last recipe in the chapter.

Though some of these recipes are fairly detailed, this chapter only scratches the surface of web parts,
which, along with web portal development, is a career topic. Having said that, once you are familiar
with the basics of web parts, you will find that the ASP.NET 2.0 web part infrastructure meets the
needs of most of your applications right out of the box. Indeed, you will probably have to add little
code to begin implementing a portal-style application.

Recipe 11.2. Using Server Controls and User Controls as
Web Parts

Problem

You want to take advantage of web part functionality while leveraging standard ASP.NET server
controls or perhaps your existing user controls.

Solution

Use the ASP.NET 2.0 membership and web part features by implementing the membership features
described in Recipe 9.5 and modify web.config to configure the web part provider. In the pages that
use web parts, add a WebPartManager control, add one or more WebPartZone controls, add a
CatalogZone control, and add the desired server controls and user controls to the CatalogZone .

Add a <webParts> element to web.config as follows:

 <webParts>
 <personalization defaultProvider="AspNetSqlPersonalizationProvider">
 <providers>
 <remove name="AspNetSqlPersonalizationProvider"/>
 <add name="AspNetSqlPersonalizationProvider"
 type="System.Web.UI.WebControls.WebParts.SqlPersonalizationProvider"
 connectionStringName="sqlConnectionString"
 applicationName="CH11ExamplesVB" />
 </providers>
 <authorization>
 <deny users="*" verbs="enterSharedScope" />
 <allow users="*" verbs="modifyState" />
 </authorization>
 </personalization>
 </webParts>

In the .aspx file for the pages that will use web parts:

Add a WebPartManager control.1.

Add one or more WebPartZone controls.2.

Add a CatalogZone control along with PageCatalogPart and DeclarativeCatalogPart controls.3.

4.

2.

3.

Add the server controls and user controls you want to use as web parts to the
DeclarativeCatalogPart control.

4.

Add a Customize button (or equivalent) to provide the ability for the user to initiate
customization of the page.

5.

Optionally add a Reset button (or equivalent) to provide the ability to reset all page
customizations.

6.

In the code-behind class for the pages using web parts, use the .NET language of your choice to:

Implement an event handler for the Customize button click event and set the WebPartManager
DisplayMode to CatalogDisplayMode to allow the user to customize the page.

1.

Optionally implement an event handler for the Reset button click event and call the
ResetPersonalizationState method to reset all user customizations.

2.

The application we have implemented to demonstrate the solution is shown in Examples 11-1 , 11-2 ,
11-3 , 11-4 , 11-5 , 11-6 , through 11-7 . Example 11-1 shows a user control that displays the
weather for Charlottesville, Virginia. Examples 11-2 , 11-3 through 11-4 show the .aspx and code-
behind for a user control that displays a list of books from a database. Examples 11-5 , 11-6 through
11-7 show the .aspx and code-behind for a page that demonstrates using standard controls and user
controls as web parts.

Figure 11-1 shows the demonstration page as it is originally displayed before any customization.
Figure 11-2 shows the demonstration page in catalog display mode with a calendar added to the first
WebPartZone . Figure 11-3 shows the demonstration page after customization.

Discussion

Many applications need the ability to allow users to control what content is presented on a page as
well as to position the content in the location of their choosing. This functionality has been available
with portal applications for many years but has been beyond the reach of most developers because of
the high cost of off-the-shelf packages to support portals or the high cost of rolling your own.

Figure 11-1. Demonstration page before adding content

Figure 11-2. Demonstration page in catalog display mode

ASP.NET 2.0 includes a web parts framework that provides the ability to build your own portal
applications to allow users to customize the content, appearance, and behavior of pages. For all but
the most complex applications, little code is required to implement a portal-style application.

Figure 11-3. Demonstration page after adding content

Like most other features in ASP.NET 2.0, the web parts framework is built using the provider model.
One provider for the framework is shipped with 2.0: the SqlPersonalizationProvider provider. Like
many of the other providers, it supports using SQL Server 7 or later versions to store and retrieve
the web part personalization information. If you need to use a different data store for your
application, you can create your own provider.

Microsoft uses the following terminology in ASP.NET 2.0:

Membership

Describes the authentication features

Role Manager

Describes the authorization features as a function of a user's roles

Profile

Describes the features used to store information about a user

Personalization

Describes the personalization that can be done with web parts

Microsoft recognized that web parts would be more attractive to developers if they were able to use
standard controls and reuse user controls that had been developed.

As part of the web part framework, support for using any standard, custom, or user control as a web
part is provided. This is accomplished by automatically wrapping these "standard" controls with a
GenericWebPart object at compilation time. This way, all of your investment in controls of all types is
preserved and any of these controls can be used as web parts with no modification.

Using standard server controls and user controls as web parts may not always
be the best solution, because of a few limitations on what you can do with the
controls. Refer to Recipe 11.3 and Table 11-1 for more information on the
limitations.

In our application that implements this solution, we have implemented the Membership functionality
for authentication and authorization, as described in Recipe 9.5, to provide the unique identification of
the user for the personalization data. The use of the Membership features in ASP.NET 2.0 is not
required to use web part personalization. What is required is to provide a unique value for each user
in the User.Identity.Name property of the Principal object used for authentication, which is needed
by the SqlPersonalizationProvider to identify the personalization data for the user. This means, for
example, that the authentication solution provided in Recipe 9.1, which does not use Membership, can
be used equally well.

The Membership and Personalization providers share many tables in the
database. If you want to use the Personalization feature but do not intend to
use the Membership features, you still need to add the tables required for the
Membership and Personalization providers. Refer to the "Using SQL Server
Instead of SQLExpress with the Membership and Role Providers" sidebar in
Recipe 9.5 for information on creating a database with the required tables or
adding the required tables to an existing database.

Web part personalization requires authenticated users. You cannot enable
personalization for anonymous users. Attempts to use personalization with
anonymous users will result in an exception being thrown when the user tries
to customize the page. Several different exceptions are thrown, depending on
which operation is performed. All of the exception messages indicate that
personalization is not enabled and/or modifiable.

Once an authentication mechanism is in place, the next step is to configure the web part framework
by adding the following <webParts> element to web.config . The connnectionStringName must be set
to the name of the connection string defined for your database in web.config , and applicationName
should be set to a unique name for your application. The applicationName is used by the
SqlPersonalizationProvider to identify the data for your application in the database and to allow
multiple applications to share the same database while keeping the personalization data separated.

 <webParts>
 <personalization defaultProvider="AspNetSqlPersonalizationProvider">
 <providers>
 <remove name="AspNetSqlPersonalizationProvider"/>
 <add name="AspNetSqlPersonalizationProvider"
 type="System.Web.UI.WebControls.WebParts.SqlPersonalizationProvider"
 connectionStringName="<connection string>"
 applicationName="<your application name>" />
 </providers>
 <authorization>
 <deny users="*" verbs="enterSharedScope" />
 <allow users="*" verbs="modifyState" />
 </authorization>
 </personalization>
 </webParts>

The <remove> element is used to remove a previous definition of a provider with
the same name. Attempts to add a provider with a name that has been defined
will result in an exception being thrown. If you always remove the provider's
name prior to adding a provider, you will never have to deal with the problems
that can occur with colliding names in an application that uses multiple
web.config files.

Next, you need to add the web part controls to your .aspx file. The first control to add is a
WebPartManger control. The WebPartManager control is responsible for managing all other web part
controls on the page. The WebPartManager control must be added inside the <form> element and
before any other web part controls.

Only one WebPartManager control can be placed on a page. Otherwise, a parsing
error will occur.

Now you need to add one or more WebPartZone controls. WebPartZone controls define the area(s) on a
page where web parts can be placed. To control the page layout better, WebPartZones are frequently
placed in tables. In our application, we have defined a table with three rows. A WebPartZone control is
placed in the first and second rows of the table.

The final control to add is a CatalogZone control. The CatalogZone control is responsible for managing
the user interface that displays the available web parts and provides the user the ability to select web
parts and add them to WebPartZones . The CatalogZone control is not visible in the page until the
WebPartManager is placed in the CatalogDisplayMode (described below). In our example we have
added the CatalogZone control to the third row in the table.

Within the CatalogZone control, a <ZoneTemplate> element is added along with a PageCatalogPart
control and a DeclarativeCatalogPart control.

The <ZoneTemplate> element is a container for other catalog part controls. It provides the ability to
define CatalogPart controls declaratively.

The PageCatalogPart control is responsible for managing web parts that have been added to the page
but have been closed by the user (more about closing web parts later). It provides the list of closed
web parts and gives the user the ability to return them to a WebPartZone .

The DeclarativeCatalogPart control contains a <WebPartsTemplate> element that acts as a container
for standard server controls, user controls, and custom web parts available to the user. The
DeclarativeCatalogPart control provides the ability for a developer to define declaratively the
controls available to the user.

Here is the complete CatalogZone control for our application:

 <asp:CatalogZone ID="CatalogZone1" runat="server"
 EmptyZoneText="No Catalog Items"
 HeaderCloseVerb-Visible="false"
 CssClass="largeLabelText"
 Padding="6" >
 <ZoneTemplate>
 <asp:PageCatalogPart ID="pcp1" runat="server"
 Title="Previously Closed Controls" />
 <asp:DeclarativeCatalogPart ID="dpc1" runat="server"
 Title="Available Parts" >
 <WebPartsTemplate>
 <ASPNetCookbook:CvilleWeather ID="ucCvilleWeather"

 runat="server"
 Title="Weather" />
 <asp:Calendar ID="cal1" runat="server"
 Title="Calendar" />
 <ASPNetCookbook:BookData ID="ucBooks" runat="server"
 Title="Book Data" />
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
 </asp:CatalogZone>

In our application, we have included Customize and Reset buttons in the .aspx file. The Customize
button is used to initiate the customization of the page. When the user clicks the Customize button,
the btnCustomize_Click method in the code-behind is called and sets the DisplayMode property of the
WebPartManager to CatalogDisplayMode . This causes the CatalogZone control to be visible on the
page, which in turn provides the user the ability to add and delete web parts on the page. With
Internet Explorer 5. 5 and later versions, as well as some other browsers, the user can drag web
parts to different locations within a WebPartZone as well as between WebPartZones .

 wpm1.DisplayMode = WebPartManager.CatalogDisplayMode

 wpm1.DisplayMode = WebPartManager.CatalogDisplayMode;

The Reset button provides the ability to reset all personalization and return the page to its original
state (see Figure 11-1). When the user clicks the Reset button, the btnReset_Click method in the
code-behind is called and the ResetPersonalizationState method of the WebPartManager's
Personalization object is then called causing all personalization data for the page for the current
user to be reset.

 wpm1.Personalization.ResetPersonalizationState()

wpm1.Personalization.ResetPersonalizationState();

When web parts are displayed in a page, a title bar is added to the control being used as a web part.
The title bar includes a title and buttons to minimize or close the web part. A calendar control used as
a web part is shown in Figure 11-4 .

Figure 11-4. Calendar control displayed as a web part

When the Minimize button is clicked, the web part is collapsed on the page with only the title bar
displayed, as shown in Figure 11-5 . The Minimize button is then changed to a Restore button, as
shown in Figure 11-6 .

Figure 11-5. Web part minimized

Figure 11-6. Web part minimized, showing available buttons

When the Close button is clicked, the web part is removed from the page but is not deleted. It still
exists and has been added to the PageCatalogPart control described above. It can be added back to
the page by clicking the Customize button, selecting the Previously Closed Controls catalog,
selecting the desired closed control, and adding it to the desired zone.

The buttons in the web part titlebar can be displayed as a menu, as in this
example, or as fixed buttons in the titlebar by setting the
WebPartVerbRenderMode attribute of the WebPartZone control to TitleBar . The
available options are Menu and TitleBar .

When the buttons are displayed as a menu, ASP.NET generates DHTML for the
menu. If the requester's browser does not support the required DHTML,
ASP.NET will revert to displaying the buttons in the header.

ASP.NET 2.0's web part framework provides the ability for any application to use web parts and to
support portal functionality with little work. This example has only touched on some of the
functionality available with web part personalization. Refer to the other recipes in this chapter as well
as the WebPartManager class in the MSDN Library for more information on what is possible with the
web part framework.

See Also

Other recipes in this chapter, Recipe 9.5, and the MSDN Library for information on the WebPartManager
class

Example 11-1. User control to display the local weather (.ascx)

<%@ Control Language="VB" ClassName="CH11CVilleWeatherVB" %>
<a href="http://www.wunderground.com/US/VA/Charlottesville.html?
 bannertypeclick=infobox" target="_blank">
 <img src="http://banners.wunderground.com/weathersticker/infobox_both/
language/www/US/VA/Charlottesville.gif"
 border="0"
 alt="Click for Charlottesville, Virginia Forecast"
 height="108"
 width="144"/>

Example 11-2. User control to display book data (.ascx)

<%@ Control Language="VB" AutoEventWireup="false"
 CodeFile="CH11DisplayTabularDataVB.ascx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH11DisplayTabularDataVB" %>
<asp:SqlDataSource ID="dSource" runat="server" />
<asp:GridView ID="gvData" Runat="Server"
 AllowPaging="true"
 AllowSorting="true"
 AutoGenerateColumns="false"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px" Caption=""
 HorizontalAlign="Center"
 Width="600px"
 PageSize="5"
 PagerSettings-Mode="Numeric"
 PagerSettings-PageButtonCount="5"
 PagerSettings-Position="Bottom"
 PagerStyle-HorizontalAlign="Center"
 PagerStyle-CssClass="pagerText"
 OnRowCreated="gvData_RowCreated" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundField DataField="Title"
 HeaderText="Title "
 SortExpression="Title" />
 <asp:BoundField DataField="PublishDate"
 HeaderText="Publish Date "
 ItemStyle-HorizontalAlign="Center"
 SortExpression="PublishDate"
 DataFormatString="{0:MMM dd, yyyy}" />
 <asp:BoundField DataField="ListPrice"

 HeaderText="List Price "
 ItemStyle-HorizontalAlign="Center"
 SortExpression="ListPrice"
 DataFormatString="{0:C2}" />
 </Columns>
</asp:GridView>

Example 11-3. User control to display book data code-behind (.vb)

Option Explicit On
Option Strict On
Imports System.Configuration.ConfigurationManager
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH11DisplayTabularDataVB.ascx
 ''' </summary>
 Partial Class CH11DisplayTabularDataVB
 Inherits System.Web.UI.UserControl
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 'configure the data source to get the data from the database
 'NOTE: This code must be executed anytime the page is rendered
 ' including postbacks
 dSource.ConnectionString = _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " & _
 "FROM Book " & _
 "ORDER BY Title"

 'set the data source ID for the GridView
 'NOTE: The DataSourceID must be used instead of the DataSource if the
 ' automatic sorting/paging in GridView are to be used.
 gvData.DataSourceID = dSource.ID

 If (Not Page.IsPostBack) Then
 'perform the initial sort on the first column in ascending order
 gvData.Sort(gvData.Columns(0).SortExpression, _
 SortDirection.Ascending)
 End If

 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the GridView's row created
 ''' event. It is responsible for setting the icon in the header row to
 ''' indicate the current sort column and sort order
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub gvData_RowCreated(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
 Dim index As Integer
 Dim col As DataControlField = Nothing
 Dim image As HtmlImage = Nothing

 If (e.Row.RowType = DataControlRowType.Header) Then
 'loop through the columns in the gridview updating the header to
 'mark which column is the sort column and the sort order
 For index = 0 To gvData.Columns.Count - 1
 col = gvData.Columns(index)

 'check to see if this is the sort column
 If (col.SortExpression.Equals(gvData.SortExpression)) Then
 'this is the sort column so determine whether the ascending or
 'descending image needs to be included
 image = New HtmlImage()
 image.Border = 0
 If (gvData.SortDirection = SortDirection.Ascending) Then
 image.Src = "images/sort_ascending.gif"
 Else
 image.Src = "images/sort_descending.gif"
 End If

 'add the image to the column header
 e.Row.Cells(index).Controls.Add(image)
 End If 'If (col.SortExpression = sortExpression)
 Next index
 End If 'If (gvData.SortExpression.Equals(String.Empty))
 End Sub 'gvData_RowCreated
 End Class 'CH11DisplayTabularDataVB
End Namespace

Example 11-4. User control to display book data code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH11DisplayTabularDataCS.aspx
 /// </summary>
 public partial class CH11DisplayTabularDataCS : System.Web.UI.UserControl
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 // configure the data source to get the data from the database
 // NOTE: This code must be executed anytime the page is rendered
 // including postbacks
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataSet;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " +
 "FROM Book " +
 "ORDER BY Title";

 // set the data source ID for the GridView
 // NOTE: The DataSourceID must be used instead of the DataSource if the
 // automatic sorting/paging in GridView are to be used.
 gvData.DataSourceID = dSource.ID;

 if (!Page.IsPostBack)
 {
 // perform the initial sort on the first column in ascending order
 gvData.Sort(gvData.Columns[0].SortExpression,
 SortDirection.Ascending);
 }

 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the GridView's row created
 /// event. It is responsible for setting the icon in the header row to
 /// indicate the current sort column and sort order
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void gvData_RowCreated(Object sender,
 System.Web.UI.WebControls.GridViewRowEventArgs e)
 {
 DataControlField col = null;
 HtmlImage image = null;

 if (e.Row.RowType == DataControlRowType.Header)
 {
 // loop through the columns in the gridview updating the header to
 // mark which column is the sort column and the sort order
 for (int index = 0; index < gvData.Columns.Count; index++)
 {
 col = gvData.Columns[index];

 // check to see if this is the sort column
 if (col.SortExpression.Equals(gvData.SortExpression))
 {
 // this is the sort column so determine whether the ascending or
 // descending image needs to be included
 image = new HtmlImage();
 image.Border = 0;
 if (gvData.SortDirection == SortDirection.Ascending)
 {
 image.Src = "images/sort_ascending.gif";
 }
 else
 {
 image.Src = "images/sort_descending.gif";
 }

 // add the image to the column header
 e.Row.Cells[index].Controls.Add(image);
 } // if (col.SortExpression.Equals(gvBooks.SortExpression))
 } // for index
 } // if (e.Row.RowType == DataControlRowType.Header)
 } //gvData_RowCreated
 } // CH11DisplayTabularDataCS
}

Example 11-5. Using regular controls as web parts (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH11UsingRegularContolsAsWebPartsVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH11UsingRegularContolsAsWebPartsVB"
 Title="Using Server Controls and User Controls as Web Parts" %>
<%@ Register TagPrefix="ASPNetCookbook" TagName="CvilleWeather"
 Src="~/CH11CVilleWeatherVB.ascx" %>
<%@ Register TagPrefix="ASPNetCookbook" TagName="BookData"
 Src="~/CH11DisplayTabularDataVB.ascx" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Using Server Controls and User Controls as Web Parts (VB)
 </div>
 <asp:WebPartManager ID="wpm1" runat="server" />
 <table width="90%" align="center" border="1" cellpadding="4" cellspacing="0">
 <tr>
 <td align="right">
 <asp:LinkButton ID="btnCustomize" runat="server"
 Text="Customize"
 CssClass="labelText"
 OnClick="btnCustomize_Click" />
 <asp:LinkButton ID="btnReset" runat="server"
 Text="Reset"
 CssClass="labelText"
 OnClick="btnReset_Click" />
 </td>
 </tr>
 <tr>
 <td>
 <asp:WebPartZone ID="webPartZone1" runat="server"
 EmptyZoneText="No Content Selected"
 Height="10" HeaderText="Zone 1"
 LayoutOrientation="Horizontal"
 CssClass="largeLabelText"
 Padding="6" />
 </td>
 </tr>
 <tr>
 <td>
 <asp:WebPartZone ID="webPartZone2" runat="server"
 EmptyZoneText="No Content Selected"
 Height="10" HeaderText="Zone 2" LayoutOrientation="Horizontal"
 CssClass="largeLabelText"
 Padding="6" />
 </td>
 </tr>
 <tr>
 <td>

 <asp:CatalogZone ID="CatalogZone1" runat="server"
 EmptyZoneText="No Catalog Items"
 HeaderCloseVerb-Visible="false"
 CssClass="largeLabelText"
 Padding="6" >
 <ZoneTemplate>
 <asp:PageCatalogPart ID="pcp1" runat="server"
 Title="Previously Closed Controls" />
 <asp:DeclarativeCatalogPart ID="dpc1" runat="server"
 Title="Available Parts" >
 <WebPartsTemplate>
 <ASPNetCookbook:CvilleWeather ID="ucCvilleWeather"
 runat="server"
 Title="Weather" />
 <asp:Calendar ID="cal1" runat="server"
 Title="Calendar" />
 <ASPNetCookbook:BookData ID="ucBooks" runat="server"
 Title="Book Data" />
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
 </asp:CatalogZone>
 </td>
 </tr>
 </table>
</asp:Content>

Example 11-6. Using regular controls as web parts code-behind (.vb)

Option Explicit On
Option Strict On

Imports System
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH11UsingRegularContolsAsWebPartsVB.aspx
 ''' </summary>
 Partial Class CH11UsingRegularContolsAsWebPartsVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the customize button
 ''' click event. It is responsible for placing the web part manager
 ''' in catalog mode.
 ''' </summary>
 '''

 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnCustomize_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 wpm1.DisplayMode = WebPartManager.CatalogDisplayMode
 End Sub 'btnCustomize_Click

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the reset button
 ''' click event. It is responsible for resetting the web part manager
 ''' personalization data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnReset_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 wpm1.Personalization.ResetPersonalizationState()
 End Sub 'btnReset_Click
 End Class 'CH11UsingRegularContolsAsWebPartsVB
End Namespace

Example 11-7. Using regular controls as web parts code-behind (.cs)

using System;
using System.Web.UI.WebControls.WebParts;
namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH11UsingRegularContolsAsWebPartsCS.aspx
 /// </summary>
 public partial class CH11UsingRegularContolsAsWebPartsCS :
 System.Web.UI.Page
 {

 ///***
 /// <summary>
 /// This routine provides the event handler for the customize button
 /// click event. It is responsible for placing the web part manager
 /// in catalog mode.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnCustomize_Click(Object sender,

 System.EventArgs e)
 {
 wpm1.DisplayMode = WebPartManager.CatalogDisplayMode;
 } // btnCustomize_Click

 ///***
 /// <summary>
 /// This routine provides the event handler for the reset button
 /// click event. It is responsible for resetting the web part manager
 /// personalization data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnReset_Click(Object sender,
 System.EventArgs e)
 {
 wpm1.Personalization.ResetPersonalizationState();
 } // btnReset_Click
 } // CH11UsingRegularContolsAsWebPartsCS
}

Recipe 11.3. Creating a Reusable Web Parts Catalog

Problem

You need to reuse the same set of web parts in many pages in your application but you want to avoid
having to declare them on every page. Instead, you'd like to create a reusable web parts catalog you
can maintain separately but make available to the pages.

Solution

Implement the solution described in Recipe 11.1, create a user control containing all of the web parts
to be available in your pages, remove the <WebPartsTemplate> element and control definitions from
the DeclarativeCatalogPart control, and set the WebPartsListUserControlPath attribute of the
DeclarativeCatalogPart to the name of the user control you created.

In the .ascx file for the user control that will contain all available web parts, add the server controls,
user controls, and custom web parts in the same manner you would add them to a .aspx file.

In the .aspx file:

Remove the <WebPartsTemplate> element and control definitions from the
DeclarativeCatalogPart control.

1.

Set the WebPartsListUserControlPath attribute of the DeclarativeCatalogPart to the name of
the user control containing the available web parts.

2.

The application we have implemented to demonstrate the solution is shown in Examples 11-8, 11-9,
11-10 through 11-11. Example 11-8 shows the user control used as a "web parts catalog." Examples
11-9, 11-10 through 11-11 show the .aspx and code-behind for a page that demonstrates using the
"web parts catalog" user control.

Discussion

Applications that use web parts commonly reuse the same web parts in most or all of the pages of
the application. If your application only has a couple of web parts and the list never changes,
declaring them in every page where they can be used is not a problem. However, if you have many
web parts and new parts are periodically added, this becomes a maintenance problem since every
page that uses the web parts would require revision to add the new parts.

The web parts framework provides the ability to address this problem by using a user control to

define the web parts available instead of listing them individually in the DeclarativeCatalogPart
control. This approach, which allows you to manage the list of available web parts in a single location,
significantly reduces the effort required to change the list of available web parts.

The user control that contains the available web parts is created in the same manner as any other
user control, but it is used differently. It is never visible to the user, so you do not need to be
concerned about control layout. It is used by the DeclarativeCatalogPart control to provide the list of
available web parts.

The order in which the controls are defined in the "web part catalog" user
control is the same order in which they will be presented to the user.

In our application that implements this solution, we started with the example presented in Recipe
11.1. We added a new user control that contains a declaration of each of the controls to be used as
web parts. As in Recipe 11.1, a standard calendar control, the "weather" user control, and the "book
list" user control are declared, as shown in Example 11-9.

Next, we remove the <WebPartsTemplate> element and control definitions from the
DeclarativeCatalogPart control in the .aspx file. Then, we set the WebPartsListUserControlPath
attribute of the DeclarativeCatalogPart control to the name of our "web parts catalog" user control
(CH11WebPartCatalogVB.ascx). The complete CatalogZone control for our application is shown
below.

 <asp:CatalogZone ID="CatalogZone1" runat="server"
 EmptyZoneText="No Catalog Items"
 HeaderCloseVerb-Visible="false"
 CssClass="largeLabelText"
 Padding="6" >
 <ZoneTemplate>
 <asp:PageCatalogPart ID="pcp1" runat="server"
 Title="Previously Closed Controls" />
 <asp:DeclarativeCatalogPart ID="dpc1" runat="server"
 Title="Available Parts"
 WebPartsListUserControlPath="~/CH11WebPartCatalogVB.ascx" >
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
 </asp:CatalogZone>

The "web parts catalog" user control shown in this recipe functions exactly the same as the example
in Recipe 11.1 but with the added benefit of reduced maintenance.

See Also

Recipe 11.1

Example 11-8. User control containing available web parts (.ascx)

<%@ Control Language="VB" ClassName="CH11WebPartCatalogVB" %>
<%@ Register TagPrefix="ASPNetCookbook" TagName="CvilleWeather"
 Src="~/CH11CVilleWeatherVB.ascx" %>
<%@ Register TagPrefix="ASPNetCookbook" TagName="BookData"
 Src="~/CH11DisplayTabularDataVB.ascx" %>
<ASPNetCookbook:CvilleWeather ID="ucCvilleWeather"
 runat="server"
 Title="Weather" />
<asp:Calendar ID="cal1" runat="server"
 Title="Calendar" />
<ASPNetCookbook:BookData ID="ucBooks" runat="server"
 Title="Book Data" />

Example 11-9. Using a web parts catalog (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH11UsingReusableWebPartCatalogVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH11UsingReusableWebPartCatalogVB"
 Title="Reusable Web Part Catalog" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Reusable Web Part Catalog (VB)
 </div>
 <asp:WebPartManager ID="wpm1" runat="server" Personalization-Enabled="true" />
 <table width="90%" align="center" border="1" cellpadding="4" cellspacing="0">
 <tr>
 <td align="right">
 <asp:LinkButton ID="btnCustomize" runat="server"
 Text="Customize"
 CssClass="labelText"
 OnClick="btnCustomize_Click" />
 <asp:LinkButton ID="btnReset" runat="server"
 Text="Reset"
 CssClass="labelText"
 OnClick="btnReset_Click" />
 </td>
 </tr>
 <tr>
 <td>
 <asp:WebPartZone ID="webPartZone1" runat="server"
 EmptyZoneText="No Content Selected"

 Height="10" HeaderText="Zone 1"
 LayoutOrientation="Horizontal"
 CssClass="largeLabelText"
 Padding="6" />
 </td>
 </tr>
 <tr>
 <td>
 <asp:WebPartZone ID="webPartZone2" runat="server"
 EmptyZoneText="No Content Selected"
 Height="10" HeaderText="Zone 2"
 LayoutOrientation="Horizontal"
 CssClass="largeLabelText"
 Padding="6" />
 </td>
 </tr>
 <tr>
 <td>
 <asp:CatalogZone ID="CatalogZone1" runat="server"
 EmptyZoneText="No Catalog Items"
 HeaderCloseVerb-Visible="false"
 CssClass="largeLabelText"
 Padding="6" >
 <ZoneTemplate>
 <asp:PageCatalogPart ID="pcp1" runat="server"
 Title="Previously Closed Controls" />
 <asp:DeclarativeCatalogPart ID="dpc1" runat="server"
 Title="Available Parts"
 WebPartsListUserControlPath="~/CH11WebPartCatalogVB.ascx" >
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
 </asp:CatalogZone>
 </td>
 </tr>
 </table>
</asp:Content>

Example 11-10. Using a web parts catalog code-behind (.vb)

Option Explicit On
Option Strict On

Imports System

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH11UsingReusableWebPartCatalogVB.aspx
 ''' </summary>
 Partial Class CH11UsingReusableWebPartCatalogVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the customize button
 ''' click event. It is responsible for placing the web part manager
 ''' in catalog mode.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnCustomize_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 wpm1.DisplayMode = WebPartManager.CatalogDisplayMode
 End Sub 'btnCustomize_Click

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the reset button
 ''' click event. It is responsible for resetting the web part manager
 ''' personalization data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnReset_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 wpm1.Personalization.ResetPersonalizationState()
 End Sub 'btnReset_Click
 End Class 'CH11UsingReusableWebPartCatalogVB
End Namespace

Example 11-11. Using a web parts catalog code-behind (.cs)

using System;
using System.Web.UI.WebControls.WebParts;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH11UsingReusableWebPartCatalogCS.aspx
 /// </summary>
 public partial class CH11UsingReusableWebPartCatalogCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the customize button
 /// click event. It is responsible for placing the web part manager
 /// in catalog mode.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnCustomize_Click(Object sender,
 System.EventArgs e)
 {
 wpm1.DisplayMode = WebPartManager.CatalogDisplayMode;
 } // btnCustomize_Click

 ///***
 /// <summary>
 /// This routine provides the event handler for the reset button
 /// click event. It is responsible for resetting the web part manager
 /// personalization data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnReset_Click(Object sender,
 System.EventArgs e)
 {
 wpm1.Personalization.ResetPersonalizationState();
 } // btnReset_Click
 } // CH11UsingReusableWebPartCatalogCS
}

Recipe 11.4. Creating a Custom Web Part

Problem

You need some functionality for your web parts that you cannot get with user controls or standard
ASP.NET server controls, such as the ability to build them into a separate assembly for sharing with
other applications.

Solution

Create a class that inherits from the WebPart class and implements the required functionality. Then,
use the class with the Web Part control set in the same manner as you would other controls.

Use the .NET language of your choice to:

Create a new class inheriting from the WebPart class.1.

Override the CreateChildControls method and create the controls required for the web part.2.

Use the custom web part with the Web Part control set in the same manner as you would any other
control (see Recipe 11.1 for details).

The application we have implemented to demonstrate the solution is shown in Examples 11-12, 11-
13, 11-14, 11-15 through 11-16. Examples 11-12 (VB) and 11-13 (C#) show the class to implement
the custom web part. Examples 11-14, 11-15 through 11-16 show the .aspx and code-behind for a
page that demonstrates using the custom web part.

Discussion

For most applications, user controls and standard ASP.NET server controls provide the best option for
use as web parts. The primary reasons are their reusability and, in the case of user controls, the
efficiency of developing them. On the other hand, developing custom web parts is akin to developing
custom server controls (see Chapter 6). Since the entire user interface is generated
programmatically, they can be time-consuming to develop and maintain. There are times, however,
when a custom web part is the better solution. Table 11-1 lists some of the differences in custom web
parts and user controls when used as web parts.

Table 11-1. When to create custom web parts

Feature
Custom web

part
User

control

Can be built into a separate assembly for sharing with other
applications or installation into the GAC

Yes No

Verbs can be extended Yes No

Can be installed in the Visual Studio toolbox Yes No

Designer support available in Visual Studio No Yes

In our application that implements this solution, we start with the example presented in Recipe 11.1
and add a custom web part by creating a class that inherits from the WebPart class. For purposes of
comparison, our custom web part implements the same functionality as the user control we created
in Recipe 11.1that is, to display a list of books.

In the class, we implemented a CreateChildControls method that overrides the CreateChildControls
method in the WebPart class and creates the controls required for our web part (a GridView and a
SqlDataSource).

The first step is to clear the controls collection. This is needed to ensure that only the controls that
exist in the web part are the ones created in the CreateChildControls method.

 Controls.Clear()

 Controls.Clear();

The next step is to create the GridView control and set all of the properties required to define the
user interface. As with custom server controls, all user interface definition is done programmatically.

 gvData = New GridView()
 gvData.AllowPaging = True
 gvData.AllowSorting = True
 gvData.AutoGenerateColumns = False
 gvData.BorderColor = ColorTranslator.FromHtml("#000080")
 gvData.BorderStyle = WebControls.BorderStyle.Solid
 gvData.BorderWidth = 2
 gvData.Caption = ""
 gvData.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.Width = 600
 gvData.PageSize = 5
 gvData.PagerSettings.Mode = PagerButtons.Numeric
 gvData.PagerSettings.PageButtonCount = 5

 gvData.PagerSettings.Position = PagerPosition.Bottom
 gvData.PagerStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.PagerStyle.CssClass = "pagerText"

 gvData.HeaderStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.HeaderStyle.CssClass = "tableHeader"
 gvData.RowStyle.CssClass = "tableCellNormal"
 gvData.AlternatingRowStyle.CssClass = "tableCellAlternating"

 gvData = new GridView();
 gvData.AllowPaging = true;
 gvData.AllowSorting = true;
 gvData.AutoGenerateColumns = false;
 gvData.BorderColor = ColorTranslator.FromHtml("#000080");
 gvData.BorderStyle = BorderStyle.Solid;
 gvData.BorderWidth = 2;
 gvData.Caption = "";
 gvData.HorizontalAlign = HorizontalAlign.Center;

 gvData.Width = 600;
 gvData.PageSize = 5;
 gvData.PagerSettings.Mode = PagerButtons.Numeric;
 gvData.PagerSettings.PageButtonCount = 5;
 gvData.PagerSettings.Position = PagerPosition.Bottom;
 gvData.PagerStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.PagerStyle.CssClass = "pagerText";

 gvData.HeaderStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.HeaderStyle.CssClass = "tableHeader";
 gvData.RowStyle.CssClass = "tableCellNormal";
 gvData.AlternatingRowStyle.CssClass = "tableCellAlternating";

Next, you need to create the columns in the GridView, set the column properties, and add the
columns to the GridView. The properties that need to be set include the data field used to populate
the column, the header text, the sort expression, and optionally any formatting and styles.

 gridColumn = New BoundField()
 gridColumn.DataField = "Title"
 gridColumn.HeaderText = "Title"
 gridColumn.SortExpression = "Title"
 gvData.Columns.Add(gridColumn)

 gridColumn = New BoundField()
 gridColumn.DataField = "PublishDate"
 gridColumn.HeaderText = "Publish Date"
 gridColumn.SortExpression = "PublishDate"

 gridColumn.DataFormatString = "{0:MMM dd, yyyy}"
 gridColumn.ItemStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.Columns.Add(gridColumn)

 gridColumn = New BoundField()
 gridColumn.DataField = "ListPrice"
 gridColumn.HeaderText = "List Price"
 gridColumn.SortExpression = "ListPrice"
 gridColumn.DataFormatString = "{0:C2}"
 gridColumn.ItemStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.Columns.Add(gridColumn)

 gridColumn = new BoundField();
 gridColumn.DataField = "Title";
 gridColumn.HeaderText = "Title";
 gridColumn.SortExpression = "Title";
 gvData.Columns.Add(gridColumn);

 gridColumn = new BoundField();
 gridColumn.DataField = "PublishDate";
 gridColumn.HeaderText = "Publish Date";
 gridColumn.SortExpression = "PublishDate";
 gridColumn.DataFormatString = "{0:MMM dd, yyyy}";
 gridColumn.ItemStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.Columns.Add(gridColumn);

 gridColumn = new BoundField();
 gridColumn.DataField = "ListPrice";
 gridColumn.HeaderText = "List Price";
 gridColumn.SortExpression = "ListPrice";
 gridColumn.DataFormatString = "{0:C2}";
 gridColumn.ItemStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.Columns.Add(gridColumn);

In our example, we add an icon in the column header to indicate which is the sorted column and its
sort order (see Recipe 2.14 for a full explanation of this technique). To do this, we must "wire" the
event handler for the RowCreated event to our event handler method (gvData_RowCreated).

 AddHandler gvData.RowCreated, AddressOf gvData_RowCreated

 gvData.RowCreated += new GridViewRowEventHandler(gvData_RowCreated);

At this point, the GridView is complete and needs to be added to the Controls collection of our web

part:

 Me.Controls.Add(gvData)

 this.Controls.Add(gvData);

Now, you need to create the SqlDataSource control that will retrieve the book data from a database:

 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " & _
 "FROM Book " & _
 "ORDER BY Title"
 dSource.ID = "dSource"

 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataSet;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " +
 "FROM Book " +
 "ORDER BY Title";
 dSource.ID = "dSource";

The next step is to connect the GridView and the SqlDataSource to populate the GridView from the
SqlDataSource during data binding. This is done by setting the DataSourceID of the GridView to the ID
of the SqlDataSource.

 gvData.DataSourceID = dSource.ID

 gvData.DataSourceID = dSource.ID;

The GridView's built-in sorting and paging will work only if the DataSourceID
property of the GridView is set to the ID of the data source. If the DataSource
property is used instead, you will have to implement all of the same event
handlers that are required to perform sorting and paging with a DataGrid (see
Recipe 2.11).

As with the GridView, you need to add the SqlDataSource to the Controls collection of the web part:

 Me.Controls.Add(dSource)

 this.Controls.Add(dSource);

By default, the SortExpression property of the GridView is set to an empty string, and the
SortDirection property is set to Ascending. To set the sort column and sort order to meet your
needs, you will need to call the Sort method of the GridView, passing the desired sort expression and
sort order in the process. This is required since the SortExpression and SortDirection properties are
read-only and cannot be set directly. In our application, we set the initial sort column to the Title
column and the sort order to Ascending.

 If (gvData.SortExpression.Length = 0) Then
 gvData.Sort(gvData.Columns(0).SortExpression, _
 SortDirection.Ascending)
 End If

 if (gvData.SortExpression.Length == 0)
 {
 gvData.Sort(gvData.Columns[0].SortExpression,
 SortDirection.Ascending);
 }

The CreateChildControls method is executed when the page using the web
part is initially displayed, as well as when postbacks occur. When a postback
occurs as a result of a sort request, the SortExpression is set and is required to
sort the data by the column the user clicked. In this scenario, the call should
not be made to the Sort method in your code. If the call is made, the sorting
will not work correctly.

Now that you have the custom web part implemented, you need to use it in a page, which is done in
the same manner as standard controls and user controls (see Recipes 11.1 and 11.2). In our
example, we replaced the book data user control in the <WebPartsTemplate> element of the
DeclarativeCatalogPart with our custom web part.

 <asp:CatalogZone ID="CatalogZone1" runat="server"
 EmptyZoneText="No Catalog Items"
 HeaderCloseVerb-Visible="false"
 CssClass="largeLabelText"
 Padding="6" >

 <ZoneTemplate>
 <asp:DeclarativeCatalogPart ID="dpc1" runat="server"
 Title="Available Parts" >
 <WebPartsTemplate>
 <ASPNetCookbook:CvilleWeather ID="ucCvilleWeather"
 runat="server"
 Title="Weather" />
 <asp:Calendar ID="cal1" runat="server"
 Title="Calendar" />
 <ASPNetCookbook:CH11 CustomWebPartVB ID="cwpBooks" runat="server"
 Title="Book Data" />
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
 </asp:CatalogZone>

 <asp:CatalogZone ID="CatalogZone1" runat="server"
 EmptyZoneText="No Catalog Items"
 HeaderCloseVerb-Visible="false"
 CssClass="largeLabelText"
 Padding="6" >
 <ZoneTemplate>
 <asp:DeclarativeCatalogPart ID="dpc1" runat="server"
 Title="Available Parts" >
 <WebPartsTemplate>
 <ASPNetCookbook:CvilleWeather ID="ucCvilleWeather"
 runat="server"
 Title="Weather" />
 <asp:Calendar ID="cal1" runat="server"
 Title="Calendar" />
 <ASPNetCookbook:CH11CustomWebPartCS ID="cwpBooks" runat="server"
 Title="Book Data" />
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
 </asp:CatalogZone>

This recipe provides a simple example of a custom web part. Refer to Recipe 11.4, Recipe 11.5, and
the WebPart class documentation in the MSDN Library for more information on other things you can
do with custom web parts.

See Also

Recipes 2.11, 2.14, 11.1, 11.2, 11.4, 11.5, and the WebPart documentation in the MSDN Library

Example 11-12. Custom web part control (.vb)

Option Explicit On
Option Strict On

Imports System.Drawing
Imports System.Configuration
Imports System.Data
Imports System.Data.SqlClient

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a custom web part that displays book data
 ''' </summary>
 Public Class CH11CustomWebPartVB
 Inherits WebPart

 Private gvData As GridView

 '''***
 ''' <summary>
 ''' This routine creates the child controls (GridView and SqlDataSource)
 ''' for the web part
 ''' </summary>

 Protected Overrides Sub CreateChildControls()
 Dim gridColumn As BoundField
 Dim dSource As SqlDataSource

 'clear the controls collection
 Controls.Clear()

 'create the GridView control and set the applicable properties
 'to display the book data
 gvData = New GridView()
 gvData.AllowPaging = True
 gvData.AllowSorting = True
 gvData.AutoGenerateColumns = False
 gvData.BorderColor = ColorTranslator.FromHtml("#000080")

 gvData.BorderStyle = WebControls.BorderStyle.Solid
 gvData.BorderWidth = 2
 gvData.Caption = ""
 gvData.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.Width = 600
 gvData.PageSize = 5
 gvData.PagerSettings.Mode = PagerButtons.Numeric
 gvData.PagerSettings.PageButtonCount = 5
 gvData.PagerSettings.Position = PagerPosition.Bottom
 gvData.PagerStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.PagerStyle.CssClass = "pagerText"

 gvData.HeaderStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.HeaderStyle.CssClass = "tableHeader"
 gvData.RowStyle.CssClass = "tableCellNormal"
 gvData.AlternatingRowStyle.CssClass = "tableCellAlternating"

 'create the columns in the GridView
 gridColumn = New BoundField()
 gridColumn.DataField = "Title"
 gridColumn.HeaderText = "Title"
 gridColumn.SortExpression = "Title"
 gvData.Columns.Add(gridColumn)

 gridColumn = New BoundField()
 gridColumn.DataField = "PublishDate"
 gridColumn.HeaderText = "Publish Date"
 gridColumn.SortExpression = "PublishDate"
 gridColumn.DataFormatString = "{0:MMM dd, yyyy}"
 gridColumn.ItemStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.Columns.Add(gridColumn)

 gridColumn = New BoundField()
 gridColumn.DataField = "ListPrice"
 gridColumn.HeaderText = "List Price"
 gridColumn.SortExpression = "ListPrice"
 gridColumn.DataFormatString = "{0:C2}"
 gridColumn.ItemStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.Columns.Add(gridColumn)

 'add the event handler for the GridView RowCreated event
 AddHandler gvData.RowCreated, AddressOf gvData_RowCreated

 'add the GridView to the custom web part controls
 Me.Controls.Add(gvData)

 'create a SQL data source and set its properties to get the book data
 'from a database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet

 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " & _
 "FROM Book " & _
 "ORDER BY Title"
 dSource.ID = "dSource"

 'set the data source ID for the GridView
 'NOTE: The DataSourceID must be used instead of the DataSource if the
 ' automatic sorting/paging in GridView are to be used.
 gvData.DataSourceID = dSource.ID

 'add the SQL data source to the custom web part controls
 Me.Controls.Add(dSource)

 'perform the initial sort on the first column in ascending order
 'if no sort expression is currently set (this is the case when the
 'control is initially created)
 If (gvData.SortExpression.Length = 0) Then
 gvData.Sort(gvData.Columns(0).SortExpression, _
 SortDirection.Ascending)

 End If
 End Sub 'CreateChildControls

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the GridView's row created
 ''' event. It is responsible for setting the icon in the header row to
 ''' indicate the current sort column and sort order
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub gvData_RowCreated(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
 Dim index As Integer
 Dim col As DataControlField = Nothing
 Dim image As HtmlImage = Nothing

 If (e.Row.RowType = DataControlRowType.Header) Then
 'loop through the columns in the gridview updating the header to
 'mark which column is the sort column and the sort order
 For index = 0 To gvData.Columns.Count - 1
 col = gvData.Columns(index)

 'check to see if this is the sort column
 If (col.SortExpression.Equals(gvData.SortExpression)) Then
 'this is the sort column so determine whether the ascending or
 'descending image needs to be included
 image = New HtmlImage()
 image.Border = 0
 If (gvData.SortDirection = SortDirection.Ascending) Then

 image.Src = "images/sort_ascending.gif"
 Else
 image.Src = "images/sort_descending.gif"
 End If

 'add the image to the column header
 e.Row.Cells(index).Controls.Add(image)
 End If 'If (col.SortExpression = sortExpression)
 Next index
 End If 'If (gvData.SortExpression.Equals(String.Empty))
 End Sub 'gvData_RowCreated
 End Class 'CH11CustomWebPartVB
End Namespace

Example 11-13. Custom web part control (.cs)

using System;
using System.Drawing;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a custom web part that displays book data
 /// </summary> public class CH11CustomWebPartCS : WebPart
 {

 private GridView gvData = null;

 ///***
 /// <summary>
 /// This routine creates the child controls (GridView and SqlDataSource)
 /// for the web part
 /// </summary>
 protected override void CreateChildControls()
 {
 BoundField gridColumn;
 SqlDataSource dSource;

 // clear the controls collection
 Controls.Clear();

 // 'create the GridView control and set the applicable properties
 // to display the book data
 gvData = new GridView();
 gvData.AllowPaging = true;
 gvData.AllowSorting = true;
 gvData.AutoGenerateColumns = false;
 gvData.BorderColor = ColorTranslator.FromHtml("#000080");
 gvData.BorderStyle = BorderStyle.Solid;
 gvData.BorderWidth = 2;
 gvData.Caption = "";
 gvData.HorizontalAlign = HorizontalAlign.Center;
 gvData.Width = 600;
 gvData.PageSize = 5;
 gvData.PagerSettings.Mode = PagerButtons.Numeric;
 gvData.PagerSettings.PageButtonCount = 5;
 gvData.PagerSettings.Position = PagerPosition.Bottom;
 gvData.PagerStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.PagerStyle.CssClass = "pagerText";

 gvData.HeaderStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.HeaderStyle.CssClass = "tableHeader";
 gvData.RowStyle.CssClass = "tableCellNormal";
 gvData.AlternatingRowStyle.CssClass = "tableCellAlternating";
 // create the columns in the GridView
 gridColumn = new BoundField();
 gridColumn.DataField = "Title";
 gridColumn.HeaderText = "Title";
 gridColumn.SortExpression = "Title";
 gvData.Columns.Add(gridColumn);

 gridColumn = new BoundField();
 gridColumn.DataField = "PublishDate";
 gridColumn.HeaderText = "Publish Date";
 gridColumn.SortExpression = "PublishDate";
 gridColumn.DataFormatString = "{0:MMM dd, yyyy}";
 gridColumn.ItemStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.Columns.Add(gridColumn);

 gridColumn = new BoundField();
 gridColumn.DataField = "ListPrice";
 gridColumn.HeaderText = "List Price";
 gridColumn.SortExpression = "ListPrice";
 gridColumn.DataFormatString = "{0:C2}";
 gridColumn.ItemStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.Columns.Add(gridColumn);

 // add the event handler for the GridView RowCreated event
 gvData.RowCreated += new GridViewRowEventHandler(gvData_RowCreated);

 // add the GridView to the custom web part controls
 this.Controls.Add(gvData);

 // create a SQL data source and set its properties to get the book data
 // from a database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataSet;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice " +
 "FROM Book " +
 "ORDER BY Title";
 dSource.ID = "dSource";

 // set the data source ID for the GridView
 // NOTE: The DataSourceID must be used instead of the DataSource if the
 // automatic sorting/paging in GridView are to be used.
 gvData.DataSourceID = dSource.ID;

 // add the SQL data source to the custom web part controls
 this.Controls.Add(dSource);

 // perform the initial sort on the first column in ascending order
 // if no sort expression is currently set (this is the case when the
 // control is initially created)
 if (gvData.SortExpression.Length == 0)
 {
 gvData.Sort(gvData.Columns[0].SortExpression,
 SortDirection.Ascending);
 }
 } // CreateChildControls

 ///***
 /// <summary>
 /// This routine provides the event handler for the GridView's row created
 /// event. It is responsible for setting the icon in the header row to
 /// indicate the current sort column and sort order
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void gvData_RowCreated(Object sender,
 System.Web.UI.WebControls.GridViewRowEventArgs e)
 {
 DataControlField col = null;
 HtmlImage image = null;

 if (e.Row.RowType == DataControlRowType.Header)
 {
 // loop through the columns in the gridview updating the header to
 // mark which column is the sort column and the sort order
 for (int index = 0; index < gvData.Columns.Count; index++)
 {
 col = gvData.Columns[index];

 // check to see if this is the sort column
 if (col.SortExpression.Equals(gvData.SortExpression))
 {
 // this is the sort column so determine whether the ascending or
 // descending image needs to be included
 image = new HtmlImage();
 image.Border = 0;
 if (gvData.SortDirection == SortDirection.Ascending)
 {
 image.Src = "images/sort_ascending.gif";
 }
 else
 {
 image.Src = "images/sort_descending.gif";
 }

 // add the image to the column header
 e.Row.Cells[index].Controls.Add(image);
 } // if (col.SortExpression.Equals(gvBooks.SortExpression))
 } // for index
 } // if (e.Row.RowType == DataControlRowType.Header)
 } //gvData_RowCreated
 } // CH11CustomWebPartCS
}

Example 11-14. Using the custom web part (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH11UsingCustomWebPartVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH11UsingCustomWebPartVB"
 Title="Using a Custom Web Part" %>
<%@ Register TagPrefix="ASPNetCookbook" TagName="CvilleWeather"
 Src="~/CH11CVilleWeatherVB.ascx" %>
<%@ Register TagPrefix="ASPNetCookbook"
 Namespace="ASPNetCookbook.VBExamples"
 Assembly="__Code" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Using a Custom Web Part (VB)
 </div>
 <asp:WebPartManager ID="wpm1" runat="server" Personalization-Enabled="true" />
 <table width="90%" align="center" border="1" cellpadding="4" cellspacing="0">
 <tr>
 <td align="right">
 <asp:LinkButton ID="btnCustomize" runat="server"

 Text="Customize"
 CssClass="labelText"
 OnClick="btnCustomize_Click" />
 <asp:LinkButton ID="btnReset" runat="server"
 Text="Reset"
 CssClass="labelText"
 OnClick="btnReset_Click" />
 </td>
 </tr>
 <tr>
 <td>
 <asp:WebPartZone ID="webPartZone1" runat="server"
 EmptyZoneText="No Content Selected"
 Height="10" HeaderText="Zone 1"
 LayoutOrientation="Horizontal"
 CssClass="largeLabelText"
 Padding="6" />
 </td>
 </tr>
 <tr>
 <td>
 <asp:WebPartZone ID="webPartZone2" runat="server"
 EmptyZoneText="No Content Selected"
 Height="10" HeaderText="Zone 2"
 LayoutOrientation="Horizontal"
 CssClass="largeLabelText"
 Padding="6" />
 </td>
 </tr>
 <tr>
 <td>
 <asp:CatalogZone ID="CatalogZone1" runat="server"
 EmptyZoneText="No Catalog Items"
 HeaderCloseVerb-Visible="false"
 CssClass="largeLabelText"
 Padding="6" >
 <ZoneTemplate>
 <asp:DeclarativeCatalogPart ID="dpc1" runat="server"
 Title="Available Parts" >
 <WebPartsTemplate>
 <ASPNetCookbook:CvilleWeather ID="ucCvilleWeather"
 runat="server"
 Title="Weather" />
 <asp:Calendar ID="cal1" runat="server"
 Title="Calendar" />
 <ASPNetCookbook:CH11 CustomWebPartVB ID="cwpBooks" runat="server"
 Title="Book Data" />
 </WebPartsTemplate>
 </asp:DeclarativeCatalogPart>
 </ZoneTemplate>
 </asp:CatalogZone>
 </td>

 </tr>
 </table>
</asp:Content>

Example 11-15. Using the custom web part code-behind (.vb)

Option Explicit On
Option Strict On

Imports System

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH11UsingCustomWebPartVB.aspx
 ''' </summary>
 Partial Class CH11UsingCustomWebPartVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the customize button
 ''' click event. It is responsible for placing the web part manager
 ''' in catalog mode.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnCustomize_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 wpm1.DisplayMode = WebPartManager.CatalogDisplayMode
 End Sub 'btnCustomize_Click

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the reset button
 ''' click event. It is responsible for resetting the web part manager
 ''' personalization data.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnReset_Click(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 wpm1.Personalization.ResetPersonalizationState()
 End Sub 'btnReset_Click
 End Class 'CH11UsingCustomWebPartVB
End Namespace

Example 11-16. Using the custom web part code-behind (.cs)

using System;
using System.Web.UI.WebControls.WebParts;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH11UsingRegularContolsAsWebPartsCS.aspx
 /// </summary>
 public partial class CH11UsingCustomWebPartCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the customize button
 /// click event. It is responsible for placing the web part manager
 /// in catalog mode.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnCustomize_Click(Object sender,
 System.EventArgs e)
 {
 wpm1.DisplayMode = WebPartManager.CatalogDisplayMode;
 } // btnCustomize_Click

 ///***
 /// <summary>
 /// This routine provides the event handler for the reset button
 /// click event. It is responsible for resetting the web part manager
 /// personalization data.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnReset_Click(Object sender,
 System.EventArgs e)
 {
 wpm1.Personalization.ResetPersonalizationState();
 } // btnReset_Click
 } // CH11UsingCustomWebPartCS
}

Recipe 11.5. Communicating Between Web Parts

Problem

You have a web part in your application that needs to notify another web part when changes are
made by the user. For example, suppose you have one web part that reads data from a database
and acts a filter for a second web part displaying the filtered data. When the user changes the filter
settings in the first web part, you want the second web part to be notified accordingly so it can
display the new data.

Solution

Create a provider web part control, a consumer web part control, an interface to use as the
communication contract between the web parts, and a page that uses both web part controls. In the
provider web part control, add a method that returns the interface and is marked as the connection
provider. In the consumer web part control, add a method that is passed the interface and is marked
as the connection consumer. In the page that uses the web part controls, add a WebPartConnection
control to the <StaticConnections> element of the WebPartManager defining the connection between
the web parts.

The application we have implemented to demonstrate the solution is shown in Examples 11-17 , 11-
18 , 11-19 , 11-20 , 11-21 , 11-22 through 11-23 . Examples 11-17 (VB) and 11-18 (C#) show the
interface used for messages between the provider and consumer web parts. Examples 11-19 (VB)
and 11-20 (C#) show the provider web part. Examples 11-21 (VB) and 11-22 (C#) show the
consumer web part. Example 11-23 shows the .aspx for a page that demonstrates communicating
between web parts. No code-behind is shown for the demonstration page because no code is
required. Figure 11-7 shows the result.

Figure 11-7. Output of page demonstrating the communication between
web parts

Discussion

The web parts framework provides the ability to communicate between web parts. The
communication approach is a bit different from the scheme used to communicate between user
controls (see Recipe 5.4). Instead of broadcasting an event, which can be consumed by many user
controls, web part communication is explicitly "wired" between two web parts. Web parts can
participate in communication with multiple web parts but each communication path consists of a
single provider web part and a single consumer web part.

The communication path can be static (defined declaratively in the page that uses the controls) or
dynamic (created programmatically or by the user). This recipe describes creating a static connection
between web parts. For more information on connections between web parts, refer to the
documentation on the WebPartConnection class in the MSDN Library.

Establishing a static connection between web parts requires four steps:

Define an interface that will be used as the communication contract between the web parts.1.

Add a method to the provider web part that returns the interface and is decorated with the
ConnectionProvider attribute.

2.

Add a method to the consumer web part that is passed the interface and is decorated with the
ConnectionConsumer attribute.

3.

Add a WebPartConnection control in the <StaticConnections> element of the WebPartManager
control in the page where the web parts are used specifying the ID of the provider web part and
the ID of the consumer web part.

4.

Once these four steps have been implemented, the web part infrastructure handles calling the
provider to get the data and then calling the consumer to supply the data.

In our application that implements this solution, our provider web part contains a DropDownList

control with the categories of books in a database. Our consumer web part displays a list of books for
the selected category.

The interface we created as the communication contract defines a single property (BookCategory)
that provides the ability to pass the selected book category from the provider web part to the
consumer web part.

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This interface provides the definition of the definition of the
 ''' properties shared between web parts
 ''' </summary>
 Public Interface IBookCategoryVB
 '''***
 ''' <summary>
 ''' This property defines the category for the book data
 ''' </summary>
 Property BookCategory() As String

 End Interface
End Namespace

using System;

/// <summary>
/// This interface provides the definition of the definition of the
/// properties shared between web parts
/// </summary>
namespace ASPNetCookbook.CSExamples
{
 public interface IBookCategoryCS
 {
 ///***
 /// <summary>
 /// This property defines the category for the book data
 /// </summary>
 String BookCategory
 {
 get;
 set;
 }
 } // IBookCategoryCS
}

The CreateChildControls method of the provider web part class creates a DropDownList and a
SqlDataSource control to display the available book categories in the same manner as described in
Recipe 11.3. In addition, the class has a constructor that disables the Close button in the web part title
bar since we do not want the user to be able to close the web part in this example.

 Me.AllowClose = False

 this.AllowClose = false;

The provider web part also has a BookCategory property to get the currently selected category from
the DropDownList and to select an entry in the DropDownList when the property is being set:

 Public Property BookCategory() As String _
 Implements IBookCategoryVB.BookCategory
 Get
 'make sure the child controls have been created
 EnsureChildControls()
 Return (ddBookCategories.SelectedValue)
 End Get

 Set(ByVal value As String)
 'make sure the child controls have been created
 EnsureChildControls()

 'find the item matching the passed value in the drop down list
 'and select it
 ddBookCategories.SelectedIndex = _
 ddBookCategories.Items.IndexOf(ddBookCategories.Items.FindByValue(value))
 End Set
 End Property

 public String BookCategory
 {
 get
 {
 // make sure the child controls have been created
 EnsureChildControls();
 return (ddBookCategories.SelectedValue);
 }

 set
 {
 // make sure the child controls have been created
 EnsureChildControls();

 // find the item matching the passed value in the drop down list
 // and select it
 ddBookCategories.SelectedIndex =
 ddBookCategories.Items.IndexOf(ddBookCategories.Items.FindByValue(value));
 }
 }

The setter and getters of the property make a call to the EnsureChildControls
method of the web part. This method checks to see if the child controls have
been created; if they have not, it will make the necessary calls to create the
child controls. If the call to EnsureChildControls is not made, it will be possible
for the property to be accessed before the child controls are created, resulting
in an exception being thrown because the ddBookCategories control is null.

The GetConnectionInterface method of the provider web part is the method called by the web part
infrastructure to get the book category data. The method returns a reference to the instance of the
provider web part. It is decorated with the ConnectionProvider attribute to define the method used
as the provider of the data in the communications.

 <ConnectionProvider("BookCategory")> _
 Public Function GetConnectionInterface() As IBookCategoryVB
 Return Me
 End Function 'GetConnectionInterface

 [ConnectionProvider("BookCategory")]
 public IBookCategoryCS GetConnectionInterface()
 {
 return (this);
 } // GetConnectionInterface

The consumer web part in our example is a modification of the book list web part created in Recipe
11.3. We have added a constructor to disable the Close button in the web part title bar in the same
manner as we did for the provider web part.

We have added a BookCategory property and a SetConnectionInterface method. The BookCategory
property provides the ability to get and set the book category used to filter the list of books retrieved
from a database.

The SetConnectionInterface method of the consumer web part is called by the web part
infrastructure to pass the book category data read from the provider web part. It is decorated with
the ConnectionConsumer attribute to define the method used as the consumer of the data in the
communications.

The SetConnectionInterface method sets the BookCategory property, filters the data in the data
source to include only the books in the selected category, and sets the title of the web part to include
the book category:

 <ConnectionConsumer("BookCategory")> _
 Public Sub SetConnectionInterface(ByVal bookCategoryInterface As IBookCategoryVB)

 'make the child controls have been created
 EnsureChildControls()

 'set the book category to the selected category
 BookCategory = bookCategoryInterface.BookCategory

 'filter the data source for the selected category
 dSource.FilterExpression = "Category='" &BookCategory &"'"

 'set the title of the web part to include the selected category
 MyBase.Title = "Book Data For " &BookCategory &" Category"
 End Sub 'SetConnectionInterface

 [ConnectionConsumer("BookCategory")]
 public void SetConnectionInterface(IBookCategoryCS bookCategoryInterface)
 {
 // make the child controls have been created
 EnsureChildControls();

 // set the book category to the selected category
 BookCategory = bookCategoryInterface.BookCategory;

 // filter the data source for the selected category
 dSource.FilterExpression = "Category='" + BookCategory + "'";

 // set the title of the web part to include the selected category
 base.Title = "Book Data For " + BookCategory + " Category";
 } // SetConnectionInterface

The final step to making it all work is to define the connection between the provider and consumer
web parts. We do this by adding WebPartConnection control to the <StaticConnections> element of
the WebPartManager in the demonstration page, setting the ProviderID attribute to the ID of the
provider web part and the ConsumerID attribute to the ID of the consumer web part.

 <asp:WebPartManager ID="wpm1" runat="server" >
 <StaticConnections>
 <asp:WebPartConnection ID="wpc1"
 ConsumerID="cwpBooks"

 ProviderID="cwpCategories" />
 </StaticConnections>
 </asp:WebPartManager>

Adding communications between web parts improves their reusability. By creating task-focused web
parts, such as providing the ability for the user to select a book category in one web part and
displaying the data in another web part, the controls can be reused for different tasks in other pages
and applications.

Web part communication is not limited to custom web parts. Custom server
controls and user controls can use the same techniques described in this recipe
to participate in communications between web parts.

See Also

Recipe 5.4 and 11.3

Example 11-17. Interface class used as the message between web parts
(.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This interface provides the definition of the definition of the
 ''' properties shared between web parts
 ''' </summary>
 Public Interface IBookCategoryVB
 '''***
 ''' <summary>
 ''' This property defines the category for the book data
 ''' </summary>
 Property BookCategory() As String

 End Interface
End Namespace

Example 11-18. Interface class used as the message between web parts
(.cs)

using System;

/// <summary>
/// This interface provides the definition of the definition of the
/// properties shared between web parts
/// </summary>
namespace ASPNetCookbook.CSExamples
{
 public interface IBookCategoryCS
 {
 ///***
 /// <summary>
 /// This property defines the category for the book data
 /// </summary>
 String BookCategory
 {
 get;
 set;
 }
 } // IBookCategoryCS
}

Example 11-19. Communicating between web partsprovider web part
control (.vb)

Option Explicit On
Option Strict On

Imports System.Configuration
Imports System.Data
Imports System.Data.SqlClient

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a custom web part that displays the available
 ''' book categories and provides the ability to notify other web parts
 ''' when the user selects a new category
 ''' </summary>
 Public Class CH11BookCategoryWebPartVB
 Inherits WebPart
 Implements IBookCategoryVB

 Private ddBookCategories As DropDownList

 '''***
 ''' <summary>

 ''' This property provides the ability to get the selected book category
 ''' </summary>
 Public Property BookCategory() As String _
 Implements IBookCategoryVB.BookCategory
 Get
 'make sure the child controls have been created
 EnsureChildControls()
 Return (ddBookCategories.SelectedValue)
 End Get

 Set(ByVal value As String)
 'make sure the child controls have been created
 EnsureChildControls()

 'find the item matching the passed value in the drop down list
 'and select it
 ddBookCategories.SelectedIndex = _
 ddBookCategories.Items.IndexOf(ddBookCategories.Items.FindByValue(value))
 End Set
 End Property

 '''***
 ''' <summary>
 ''' This routine provides the interface for obtaining the selected
 ''' category when the data has changed
 ''' </summary>
 <ConnectionProvider("BookCategory")> _
 Public Function GetConnectionInterface() As IBookCategoryVB
 Return Me
 End Function 'GetConnectionInterface

 '''***
 ''' <summary>
 ''' This constructor initializes the web part to default values
 ''' </summary>
 ''' <remarks></remarks>
 Public Sub New()
 'disable the "close" verb
 Me.AllowClose = False
 End Sub 'New
 '''***
 ''' <summary>
 ''' This routine creates the child controls (book category DropDownList)
 ''' for the web part
 ''' </summary>
 Protected Overrides Sub CreateChildControls()
 Dim dSource As SqlDataSource

 'clear the controls collection
 Controls.Clear()

 'create the dropdown list and add it to the custom web part controls

 ddBookCategories = New DropDownList()
 ddBookCategories.AutoPostBack = True
 Me.Controls.Add(ddBookCategories)

 'create a SQL data source and set its properties to get the book
 'categories from a database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet
 dSource.ProviderName = "System.Data.OleDb"
 dSource.SelectCommand = "SELECT DISTINCT Category " &_
 "FROM Book " &_
 "ORDER BY Category ASC"

 'set the data source for the DropDownList and bind the data
 ddBookCategories.DataSource = dSource
 ddBookCategories.DataTextField = "Category"
 ddBookCategories.DataBind()

 'add the SQL data source to the custom web part controls
 Me.Controls.Add(dSource)
 End Sub 'CreateChildControls
 End Class 'CH11BookCategoryWebPartVB
End Namespace

Example 11-20. Communicating between web partsprovider web part
control (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a custom web part that displays book data
 /// </summary>
 public class CH11BookCategoryWebPartCS :
 WebPart, IBookCategoryCS
 {

 private DropDownList ddBookCategories = null;

 ///***
 /// <summary>
 /// This property provides the ability to get the selected book category
 /// </summary>
 public String BookCategory
 {
 get
 {
 // make sure the child controls have been created
 EnsureChildControls();
 return (ddBookCategories.SelectedValue);
 }
 set
 {
 // make sure the child controls have been created
 EnsureChildControls();

 // find the item matching the passed value in the drop down list
 // and select it
 ddBookCategories.SelectedIndex =
 ddBookCategories.Items.IndexOf(ddBookCategories.Items.FindByValue(value));
 }
 }

 ///***
 /// <summary>
 /// This routine provides the interface for obtaining the selected
 /// category when the data has changed
 /// </summary>
 [ConnectionProvider("BookCategory")]
 public IBookCategoryCS GetConnectionInterface()
 {
 return (this);
 } // GetConnectionInterface

 ///***
 /// <summary>
 /// This constructor initializes the web part to default values
 /// </summary>
 /// <remarks></remarks>
 public CH11BookCategoryWebPartCS()
 {
 // disable the "close" verb
 this.AllowClose = false;
 } // CH11BookCategoryWebPartCS

 ///***
 /// <summary>
 /// This routine creates the child controls (book category DropDownList)
 /// for the web part
 /// </summary>

 protected override void CreateChildControls()
 {
 SqlDataSource dSource;

 // clear the controls collection
 Controls.Clear();

 // create the dropdown list and add it to the custom web part controls
 ddBookCategories = new DropDownList();
 ddBookCategories.AutoPostBack = true;
 this.Controls.Add(ddBookCategories);

 // create a SQL data source and set its properties to get the book
 // categories from a database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataSet;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.SelectCommand = "SELECT DISTINCT Category " +
 "FROM Book " +
 "ORDER BY Category ASC";

 // set the data source for the DropDownList and bind the data
 ddBookCategories.DataSource = dSource;
 ddBookCategories.DataTextField = "Category";
 ddBookCategories.DataBind();

 // add the SQL data source to the custom web part controls
 this.Controls.Add(dSource);
 } // CreateChildControls
 } // CH11BookCategoryWebPartCS
}

Example 11-21. Communicating between web partsconsumer web part
control (.vb)

Option Explicit On
Option Strict On

Imports System.Configuration
Imports System.Data
Imports System.Data.SqlClient

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a custom web part that displays book data

 ''' and provides the ability to be notified by another web part
 ''' that the selected book category has changed
 ''' </summary>
 Public Class CH11CustomWebPartWithCommVB
 Inherits WebPart

 Private gvData As GridView
 Private dSource As SqlDataSource
 Private mBookCategory As String

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the BookCategory
 ''' </summary>
 Public Property BookCategory() As String
 Get
 Return (mBookCategory)
 End Get

 Set(ByVal value As String)
 mBookCategory = value
 End Set
 End Property

 '''***
 ''' <summary>
 ''' This routine provides the interface that is called to be notified
 ''' that the selected category has been changed
 ''' </summary>
 '''
 ''' <param name="bookCategoryInterface">Set to book category data</param>
 <ConnectionConsumer("BookCategory")> _
 Public Sub SetConnectionInterface(_
 ByVal bookCategoryInterface As IBookCategoryVB)

 'make the child controls have been created
 EnsureChildControls()

 'set the book category to the selected category
 BookCategory = bookCategoryInterface.BookCategory

 'filter the data source for the selected category
 dSource.FilterExpression = "Category='" &BookCategory &"'"

 'set the title of the web part to include the selected category
 MyBase.Title = "Book Data For " &BookCategory &" Category"
 End Sub 'SetConnectionInterface

 '''***
 ''' <summary>
 ''' This constructor initializes the web part to default values
 ''' </summary>

 Public Sub New()
 'set the default title
 MyBase.Title = "Book Data For All Categories"

 'disable the "close" verb
 Me.AllowClose = False
 End Sub 'New

 '''***
 ''' <summary>
 ''' This routine creates the child controls (GridView and SqlDataSource)
 ''' for the web part
 ''' </summary>
 Protected Overrides Sub CreateChildControls()
 Dim gridColumn As BoundField

 'clear the controls collection
 Controls.Clear()

 'create the GridView control and set the applicable properties
 'to display the book data
 gvData = New GridView()
 gvData.AllowPaging = True
 gvData.AllowSorting = True
 gvData.AutoGenerateColumns = False
 gvData.BorderColor = Drawing.ColorTranslator.FromHtml("#000080")
 gvData.BorderStyle = WebControls.BorderStyle.Solid
 gvData.BorderWidth = 2
 gvData.Caption = ""
 gvData.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.Width = 600
 gvData.PageSize = 5
 gvData.PagerSettings.Mode = PagerButtons.Numeric
 gvData.PagerSettings.PageButtonCount = 5
 gvData.PagerSettings.Position = PagerPosition.Bottom
 gvData.PagerStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.PagerStyle.CssClass = "pagerText"

 gvData.HeaderStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.HeaderStyle.CssClass = "tableHeader"
 gvData.RowStyle.CssClass = "tableCellNormal"
 gvData.AlternatingRowStyle.CssClass = "tableCellAlternating"

 'create the columns in the GridView
 gridColumn = New BoundField()
 gridColumn.DataField = "Title"
 gridColumn.HeaderText = "Title"
 gridColumn.SortExpression = "Title"
 gvData.Columns.Add(gridColumn)

 gridColumn = New BoundField()
 gridColumn.DataField = "PublishDate"

 gridColumn.HeaderText = "Publish Date"

 gridColumn.SortExpression = "PublishDate"
 gridColumn.DataFormatString = "{0:MMM dd, yyyy}"
 gridColumn.ItemStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.Columns.Add(gridColumn)

 gridColumn = New BoundField()
 gridColumn.DataField = "ListPrice"
 gridColumn.HeaderText = "List Price"
 gridColumn.SortExpression = "ListPrice"
 gridColumn.DataFormatString = "{0:C2}"
 gridColumn.ItemStyle.HorizontalAlign = WebControls.HorizontalAlign.Center
 gvData.Columns.Add(gridColumn)

 'add the event handler for the GridView RowCreated event
 AddHandler gvData.RowCreated, AddressOf gvData_RowCreated

 'add the GridView to the custom web part controls
 Me.Controls.Add(gvData)

 'create a SQL data source and set its properties to get the book data
 'from a database
 dSource = New SqlDataSource()
 dSource.ConnectionString = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dSource.DataSourceMode = SqlDataSourceMode.DataSet
 dSource.ProviderName = "System.Data.OleDb"
 dSource.ID = "dSource"
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice, Category " &_
 "FROM Book " &_
 "ORDER BY Title"

 'set the data source ID for the GridView
 'NOTE: The DataSourceID must be used instead of the DataSource if the
 ' automatic sorting/paging in GridView are to be used.
 gvData.DataSourceID = dSource.ID

 'add the SQL data source to the custom web part controls
 Me.Controls.Add(dSource)

 'perform the initial sort on the first column in ascending order
 'if no sort expression is currently set (this is the case when the
 'control is initially created)
 If (gvData.SortExpression.Length = 0) Then
 gvData.Sort(gvData.Columns(0).SortExpression, _
 SortDirection.Ascending)
 End If
 End Sub 'CreateChildControls

 '''***
 ''' <summary>

 ''' This routine provides the event handler for the GridView's row created
 ''' event. It is responsible for setting the icon in the header row to
 ''' indicate the current sort column and sort order
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub gvData_RowCreated(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.GridViewRowEventArgs)
 Dim index As Integer
 Dim col As DataControlField = Nothing
 Dim image As HtmlImage = Nothing

 If (e.Row.RowType = DataControlRowType.Header) Then
 'loop through the columns in the gridview updating the header to
 'mark which column is the sort column and the sort order
 For index = 0 To gvData.Columns.Count - 1
 col = gvData.Columns(index)

 'check to see if this is the sort column
 If (col.SortExpression.Equals(gvData.SortExpression)) Then
 'this is the sort column so determine whether the ascending or
 'descending image needs to be included
 image = New HtmlImage()
 image.Border = 0
 If (gvData.SortDirection = SortDirection.Ascending) Then
 image.Src = "images/sort_ascending.gif"
 Else
 image.Src = "images/sort_descending.gif"
 End If

 'add the image to the column header
 e.Row.Cells(index).Controls.Add(image)
 End If 'If (col.SortExpression = sortExpression)
 Next index
 End If 'If (gvData.SortExpression.Equals(String.Empty))
 End Sub
 End Class 'CH11CustomWebPartWithCommVB
End Namespace

Example 11-22. Communicating between web partsconsumer web part
control (.cs)

using System;
using System.Drawing;
using System.Configuration;
using System.Data;

using System.Data.SqlClient;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;
using System.Web.UI.WebControls.WebParts;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a custom web part that displays book data
 /// and provides the ability to be notified by another web part
 /// that the selected book category has changed
 /// </summary>
 public class CH11CustomWebPartWithCommCS : WebPart
 {

 private GridView gvData = null;
 private SqlDataSource dSource = null;
 private String mBookCategory = null;

 ///***
 /// <summary>
 /// This property provides the ability to get/set the BookCategory
 /// </summary>
 public String BookCategory
 {
 get
 {
 return (mBookCategory);
 }

 set
 {
 mBookCategory = value;
 }
 }

 ///***
 /// <summary>
 /// This routine provides the interface that is called to be notified
 /// that the selected category has been changed
 /// </summary>
 ///
 /// <param name="bookCategoryInterface">Set to book category data</param>
 [ConnectionConsumer("BookCategory")]
 public void SetConnectionInterface(IBookCategoryCS bookCategoryInterface)
 {
 // make the child controls have been created
 EnsureChildControls();

 // set the book category to the selected category
 BookCategory = bookCategoryInterface.BookCategory;

 // filter the data source for the selected category
 dSource.FilterExpression = "Category='" + BookCategory + "'";

 // set the title of the web part to include the selected category
 base.Title = "Book Data For " + BookCategory + " Category";
 } // SetConnectionInterface
 ///***
 /// <summary>
 /// This constructor initializes the web part to default values
 /// </summary>
 /// <remarks></remarks>
 public CH11CustomWebPartWithCommCS()
 {
 /// set the default title
 base.Title = "Book Data For All Categories";

 // disable the "close" verb
 this.AllowClose = false;
 } // CH11CustomWebPartWithCommCS

 ///***
 /// <summary>
 /// This routine creates the child controls (GridView and SqlDataSource)
 /// for the web part
 /// </summary>
 protected override void CreateChildControls()
 {
 BoundField gridColumn;

 // clear the controls collection
 Controls.Clear();

 // create the GridView control and set the applicable properties
 // to display the book data
 gvData = new GridView();
 gvData.AllowPaging = true;
 gvData.AllowSorting = true;
 gvData.AutoGenerateColumns = false;
 gvData.BorderColor = ColorTranslator.FromHtml("#000080");
 gvData.BorderStyle = BorderStyle.Solid;
 gvData.BorderWidth = 2;
 gvData.Caption = "";
 gvData.HorizontalAlign = HorizontalAlign.Center;
 gvData.Width = 600;
 gvData.PageSize = 5;
 gvData.PagerSettings.Mode = PagerButtons.Numeric;
 gvData.PagerSettings.PageButtonCount = 5;
 gvData.PagerSettings.Position = PagerPosition.Bottom;
 gvData.PagerStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.PagerStyle.CssClass = "pagerText";

 gvData.HeaderStyle.HorizontalAlign = HorizontalAlign.Center;

 gvData.HeaderStyle.CssClass = "tableHeader";
 gvData.RowStyle.CssClass = "tableCellNormal";
 gvData.AlternatingRowStyle.CssClass = "tableCellAlternating";

 // create the columns in the GridView
 gridColumn = new BoundField();
 gridColumn.DataField = "Title";
 gridColumn.HeaderText = "Title";
 gridColumn.SortExpression = "Title";
 gvData.Columns.Add(gridColumn);

 gridColumn = new BoundField();
 gridColumn.DataField = "PublishDate";
 gridColumn.HeaderText = "Publish Date";
 gridColumn.SortExpression = "PublishDate";
 gridColumn.DataFormatString = "{0:MMM dd, yyyy}";
 gridColumn.ItemStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.Columns.Add(gridColumn);

 gridColumn = new BoundField();
 gridColumn.DataField = "ListPrice";
 gridColumn.HeaderText = "List Price";
 gridColumn.SortExpression = "ListPrice";
 gridColumn.DataFormatString = "{0:C2}";
 gridColumn.ItemStyle.HorizontalAlign = HorizontalAlign.Center;
 gvData.Columns.Add(gridColumn);

 // add the event handler for the GridView RowCreated event
 gvData.RowCreated += new GridViewRowEventHandler(gvData_RowCreated);

 // add the GridView to the custom web part controls
 this.Controls.Add(gvData);

 // create a SQL data source and set its properties to get the book data
 // from a database
 dSource = new SqlDataSource();
 dSource.ConnectionString = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dSource.DataSourceMode = SqlDataSourceMode.DataSet;
 dSource.ProviderName = "System.Data.OleDb";
 dSource.ID = "dSource";
 dSource.SelectCommand = "SELECT Title, PublishDate, ListPrice, Category " +
 "FROM Book " +
 "ORDER BY Title";

 // set the data source ID for the GridView
 // NOTE: The DataSourceID must be used instead of the DataSource if the
 // automatic sorting/paging in GridView are to be used.
 gvData.DataSourceID = dSource.ID;

 // add the SQL data source to the custom web part controls
 this.Controls.Add(dSource);

 // perform the initial sort on the first column in ascending order
 // if no sort expression is currently set (this is the case when the
 // control is initially created)
 if (gvData.SortExpression.Length == 0)
 {
 gvData.Sort(gvData.Columns[0].SortExpression,
 SortDirection.Ascending);
 }
 } // CreateChildControls

 ///***
 /// <summary>
 /// This routine provides the event handler for the GridView's row created
 /// event. It is responsible for setting the icon in the header row to
 /// indicate the current sort column and sort order
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void gvData_RowCreated(Object sender,
 System.Web.UI.WebControls.GridViewRowEventArgs e)
 {
 DataControlField col = null;
 HtmlImage image = null;

 if (e.Row.RowType == DataControlRowType.Header)
 {
 // loop through the columns in the gridview updating the header to
 // mark which column is the sort column and the sort order
 for (int index = 0; index < gvData.Columns.Count; index++)
 {
 col = gvData.Columns[index];

 // check to see if this is the sort column
 if (col.SortExpression.Equals(gvData.SortExpression))
 {
 // this is the sort column so determine whether the ascending or
 // descending image needs to be included
 image = new HtmlImage();
 image.Border = 0;
 if (gvData.SortDirection == SortDirection.Ascending)
 {
 image.Src = "images/sort_ascending.gif";
 }
 else
 {
 image.Src = "images/sort_descending.gif";
 }

 // add the image to the column header
 e.Row.Cells[index].Controls.Add(image);

 } // if (col.SortExpression.Equals(gvBooks.SortExpression))
 } // for index
 } // if (e.Row.RowType == DataControlRowType.Header)
 } //gvData_RowCreated
 } // CH11CustomWebPartWithCommCS
}

Example 11-23. Communicating between web partsdemonstration page
(.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH11TestCommunicatingBetweenWebPartsVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH11TestCommunicatingBetweenWebPartsVB"
 Title="Communicating Between Web Parts" %>
<%@ Register TagPrefix="ASPNetCookbook"
 Namespace="ASPNetCookbook.VBExamples"
 Assembly="_ _Code" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Communicating Between Web Parts (VB)
 </div>
 <asp:WebPartManager ID="wpm1" runat="server" >
 <StaticConnections>
 <asp:WebPartConnection ID="wpc1"
 ConsumerID="cwpBooks"
 ProviderID="cwpCategories" />
 </StaticConnections>
 </asp:WebPartManager>
 <table width="90%" align="center" border="1" cellpadding="4" cellspacing="0">
 <tr>
 <td>
 <asp:WebPartZone ID="webPartZone1" runat="server"
 CssClass="largeLabelText">
 <ZoneTemplate>
 <ASPNetCookbook:CH11BookCategoryWebPartVB ID="cwpCategories"
 runat="server"
 Title="Book Categories" />
 </ZoneTemplate>
 </asp:WebPartZone>
 </td>
 </tr>
 <tr>
 <td>
 <asp:WebPartZone ID="webPartZone2" runat="server"
 CssClass="largeLabelText">
 <ZoneTemplate>

 <ASPNetCookbook:CH11CustomWebPartWithCommVB ID="cwpBooks"
 runat="server"
 Title="Book Data" />
 </ZoneTemplate>
 </asp:WebPartZone>
 </td>
 </tr>
 </table>
</asp:Content>

Recipe 11.6. Persisting Personalized Web Part Properties

Problem

You have created a web part with custom properties and you want the property data to be persisted
along with the other web part personalization data so the next time the user revisits the page, his
property settings are present.

Solution

Decorate the properties in your web part that you want persisted with the Personalizable attribute:

 <Personalizable()> _
 Public Property BookCategory() As String
 Get

 …

 End Get

 Set(ByVal value As String)

 …

 End Set
 End Property

 [Personalizable()]
 public String BookCategory
 {
 get
 {
 …
 }

 set
 {
 …
 }
 }

Discussion

The web part infrastructure automatically handles persisting the personalization performed by the
user when he adds web parts to pages. Which web parts the user selected and their location on the
page is automatically stored and retrieved when the user revisits your site. You do not have to write
any code to make this happen.

Adding custom property data to the persisted data is straightforward and requires only a small
modification to your code. You will need to add the Personalizable attribute to each of the properties
you want persisted. No other modifications are required.

To demonstrate this technique, we added the Personalizable attribute to the BookCategory property
of the book category web part described in Recipe 11.4, as shown below. With this addition, the book
category the user last selected is preselected for her on subsequent requests for the page.

 <Personalizable()> _
 Public Property BookCategory() As String _
 Implements IBookCategoryVB.BookCategory
 Get
 'make sure the child controls have been created
 EnsureChildControls()
 Return (ddBookCategories.SelectedValue)
 End Get

 Set(ByVal value As String)
 'make sure the child controls have been created
 EnsureChildControls()

 'find the item matching the passed value in the drop down list
 'and select it
 ddBookCategories.SelectedIndex = _
 ddBookCategories.Items.IndexOf(ddBookCategories.Items.FindByValue(value))
 End Set
 End Property

 [Personalizable()]
 public String BookCategory
 {
 get
 {
 // make sure the child controls have been created
 EnsureChildControls();
 return (ddBookCategories.SelectedValue);
 }

 set

 {
 // make sure the child controls have been created
 EnsureChildControls();

 // find the item matching the passed value in the drop down list
 // and select it
 ddBookCategories.SelectedIndex =
 ddBookCategories.Items.IndexOf(ddBookCategories.Items.FindByValue(value));
 }
 }

Storing custom property data for your web parts is a great way to enhance the user experience for
your application.

See Also

Recipe 11.4

Chapter 12. Configuration

12.0 Introduction

ASP.NET provides a convenient, extensible, XML-based mechanism for configuring ASP.NET and
applications that run under it. It is an improvement over the IIS metabase that was awkward to
change, required IIS to be restarted, and was not easily replicated on additional servers. By contrast,
ASP.NET automatically detects changes to the web.config file and transparently restarts the
application; there is no need to restart IIS. Replicating an ASP.NET application configuration is as
simple as copying the web.config file to the new server.

Configuration File Hierarchy

ASP.NET uses a hierarchy of configuration files. The machine.config file contains the settings for the
server and is located in the %SystemRoot%\Microsoft.NET\Framework\%VersionNumber%\CONFIG\
folder. You can create web.config files to configure each of your applications, overriding the settings
in machine.config. Folders within the application can have web.config files to customize the
configuration of portions of the application and override the settings in the .config files higher up the
hierarchy.

Structure and Use of web.config

The basic structure of web.config has a format similar to machine.config. The idea is that you add to
web.config only those entries for which you want to override settings in machine.config. At a
minimum, web.config must have a <configuration> element and a child element, such as a
<system.web> element. The following is a minimal web.config file:

 <?xml version="1.0"?>
 <configuration>
 <system.web>
 </system.web>
 </configuration>

The <configuration> and <system.web> elements don't do anything special other than provide the
structure for other settings you want to add. By using child elements of these default configuration
elements in web.config, you can, for example, change the ASP.NET HTTP runtime settings, store
key/value pairs in the <appSettings> element of web.config, and add elements of your own to
web.config. The recipes in this chapter will show you how to do all these things and more.

Modifying web.config

The web.config file is an XML file and can be edited with any text editor. As with most XML, the
structure of the web.config file must conform to a defined schema. (In this case, the schema is
detailed in the Microsoft documentation.) The web.config must be a properly formed XML document.
In other words, elements must be placed in the correct sections of the XML document and conform to
the case style and exact spelling defined in the schema. If a web.config file deviates from the schema
in any detail, ASP.NET will throw a configuration error exception.

This chapter does not attempt to address all of the configuration settings available in machine.config
and web.config. Rather, it provides information on many commonly used features and several that
are poorly documented. Many other configuration parameters related to security and HTTP handlers
are addressed in Chapters 9 and 20, respectively.

Finally, with regard to changes for ASP.NET 2.0, a handful of new attributes have been added to the
<sessionState> settings in web.config, making it easier, for example, to control the behavior of
cookies. Additionally, ASP.NET 2.0 offers new classes for reading, accessing, and modifying the
contents of web.config. Beyond these enhancements, however, the basic strategies for working with
machine.config and web.config are little changed from ASP.NET 1.x.

Recipe 12.2. Overriding Default HTTP Runtime Parameters
in web.config

Problem

You want to change the default HTTP runtime settings for your application, such as the execution
timeout setting.

Solution

Modify the web.config file by adding ASP.NET HTTP runtime settings to it:

Locate the web.config file in the root directory of your application (or create one if it does not
already exist).

1.

Add an <httpRuntime> element and set the executionTimeout and other attributes required for
your application:

 <?xml version="1.0"?>
 <configuration>
 <system.web>
 <httpRuntime executionTimeout="90"
 maxRequestLength="4096"
 useFullyQualifiedRedirectUrl="false" />
 </system.web>
 </configuration>

2.

Discussion

It can be useful to modify the default HTTP runtime settings in web.config so, for example, users of
your application can upload large files. Another, perhaps more important, motivation for this recipe is
to demonstrate unobtrusively how you can override the predefined settings for your application by
adding elements, such as the <httpRuntime> element, to the default web.config file Visual Studio
creates.

The following is a description of the attributes we've used with the <httpRuntime> element, which are

the most commonly used attributes:

executionTimeout

The executionTimeout attribute of <httpRuntime> defines the maximum amount of time in
seconds that a request is allowed to run before it is automatically terminated by ASP.NET. The
default value is 90 seconds. If your application has requests that take longer, such as a long-
running database query, you can increase the value. The value can be any positive integer
value (1 to 2,147,483,647), but large numbers are not practical.

maxRequestLength

The maxRequestLength attribute defines the maximum size of a file that can be uploaded by the
application. The value is in KB (kilobytes) and has a default value of 4096 (4MB). If your
application needs to support uploading files larger than 4MB, you can change the value as
required. The valid range is 0 to 2,147,483,647.

Denial-of-service attacks can be launched by initiating the upload of many
large files simultaneously. Therefore, the maxRequestLength should be set
as small as possible to meet the needs of your application.

useFullyQualifiedRedirectUrl

The useFullyQualifiedRedirectUrl attribute is a flag indicating if fully qualified URLs should be
used when ASP.NET performs a redirection. Setting the value to false (the default) configures
ASP.NET to use relative URLs (e.g., /ASPNetCookbook/ProblemMenu.aspx) for client redirects.
Setting the value to true configures ASP.NET to use fully qualified URLs (e.g.,
http://localhost/ASPNetCookbook/ProblemMenu.aspx) for all client redirects. If you are
working with mobile applications, some devices will require fully qualified URLs.

The <httpRuntime> element contains other attributes, including those that provide control over
threads used by your application and the number of requests allowed to be queued before requests
are rejected. Consult the Microsoft documentation on the <httpRuntime> element for full details of
these attributes.

See Also

MSDN documentation on the httpRuntime element (search for "httpRuntime element")

http://localhost/ASPNetCookbook/ProblemMenu.aspx

Recipe 12.3. Adding Custom Application Settings in
web.config

Problem

You have custom configuration information for your application that you would like to store in its
web.config file.

Solution

Modify the web.config file for your application by adding an <appSettings> element to contain the
custom configuration settings:

Locate the web.config file in the root directory of your application (or create one if it does not
already exist).

1.

Add an <appSettings> element.2.

Add <add> child elements along with key/value pairs to the <appSettings> element as required.3.

In the code-behind class for your ASP.NET page, use the .NET language of your choice to access
the <appSettings> key/value collection through the ConfigurationManager object.

4.

Examples 12-1, 12-2, 12-3 through 12-4 show the sample code we've written to implement this
solution. Example 12-1 shows our web.config file with some key/value pairs. Example 12-2 shows
the .aspx file for a web form that displays the configuration settings. Examples 12-3 (VB) and 12-4
(C#) show the code-behind class that accesses the configuration settings using the
ConfigurationManager object.

Discussion

ASP.NET lets you add and then access configuration information specific to your application to the
web.config file by means of a special <appSettings> element. You can add application configuration
information by adding an <add> child element for each parameter, setting the key attribute to the
name of the configuration parameter, and setting the value attribute to the value of the configuration
parameter, as shown in Example 12-1.

The <appSettings> element is not a child of <system.web>, like some of the other web.config elements
we discuss in this chapter. Rather, it is a subsection all its own within the <configuration> section.

When your application is started, ASP.NET creates a NameValueCollection from the key/value pairs in
the <appSettings> section. You can access this NameValueCollection anywhere in your application
through the ConfigurationManager object. Any data that can be represented as a string can be stored
in the <appSettings> section, but anything other than a string will need to be cast to the appropriate
data type for use in your application.

web.config allows any string for the value of a key/value pair. If the data is any
nonstring data type, your code needs to include the appropriate exception
handling for invalid data in the web.config file.

See Also

Recipe 12.6 for how to store an application's configuration information in its own custom section in
web.config

Example 12-1. Application settings in web.config

<?xml version="1.0"?>
<configuration>

 <appSettings>
 <!-- Keys/Values used in chapter 12 -->
 <add key="defaultSortField" value="Title" />
 <add key="defaultSortOrder" value="Ascending" />
 <add key="defaultResultsPerPage" value="25" />
 </appSettings>

</configuration>

Example 12-2. Accessing application settings in web.config (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH12GetAppSettingsVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH12GetAppSettingsVB"
 Title="Get Application Settings" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Application Configuration In web.config (VB)
 </div>
 <table width="60%" align="center" border="0">
 <tr>
 <td class="labelText">Sort Field: </td>
 <td class="labelText">
 <asp:Label ID="labSortField" Runat="server" /></td>
 </tr>
 <tr>
 <td class="labelText">Sort Order: </td>
 <td class="labelText">
 <asp:Label ID="labSortOrder" Runat="server" /></td>
 </tr>
 <tr>
 <td class="labelText">Number of Pages: </td>
 <td class="labelText">
 <asp:Label ID="labNumberOfPages" Runat="server" /></td>
 </tr>
 </table>
</asp:Content>

Example 12-3. Accessing application settings in web.config code-behind
(.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH12GetAppSettingsVB.aspx
 ''' </summary>
 Partial Class CH12GetAppSettingsVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>

 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim resultsPerPage As Integer

 'initialize labels on form from values in web.config
 labSortField.Text = ConfigurationManager.AppSettings("defaultSortField")
 labSortOrder.Text = ConfigurationManager.AppSettings("defaultSortOrder")

 'get an integer value from web.config and do a little calculating
 resultsPerPage = _
 CInt(ConfigurationManager.AppSettings("defaultResultsPerPage"))
 labNumberOfPages.Text = Math.Ceiling(1234.0 / resultsPerPage).ToString()
 End Sub 'Page_Load
 End Class 'CH12GetAppSettingsVB
End Namespace

Example 12-4. Accessing application settings in web.config code-behind
(.cs)

using System;
using System.Configuration;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH12GetAppSettingsCS.aspx
 /// </summary>
 public partial class CH12GetAppSettingsCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 int resultsPerPage;

 // initialize labels on form from values in web.config
 labSortField.Text =
 ConfigurationManager.AppSettings["defaultSortField"];
 labSortOrder.Text =
 ConfigurationManager.AppSettings["defaultSortOrder"];

 // get an integer value from web.config and do a little calculating
 resultsPerPage =
 Convert.ToInt32(ConfigurationManager.AppSettings["defaultResultsPerPage"]);
 labNumberOfPages.Text = Math.Ceiling(1234.0 / resultsPerPage).ToString();
 } // Page_Load
 } // CH12GetAppSettingsCS
}

Recipe 12.4. Displaying Custom Error Messages

Problem

You want to replace the generic messages ASP.NET displays whenever an application error occurs
with your own custom error messages.

Solution

Create a web.config file, add the custom errors element to it, and create the custom error pages.

Locate the web.config file in the root directory of your application (or create one if it does not
exist).

1.

Add a <customErrors> element to the web.config file and add an <error> child element for each
custom error page you want to display.

2.

Create the custom error pages.3.

Example 12-5 shows some settings that we've added to a web.config file to demonstrate this
solution.

Discussion

By default, ASP.NET displays its own error page when any of the standard server errors occurs, such
as 401 (access denied), 404 (page not found), or 500 (internal server error). But a default ASP.NET
error page will not match the look and feel of your application and may not provide the information
you want to convey to your users. ASP.NET provides the ability, via the web.config file, to output
your own custom error pages. A similar capability is available in IIS, but customizing the web.config
file is simpler. Because the customization is done in the web.config file, moving it to another server is
as simple as copying the web.config file and the customerror pages to the new location.

First, add a <customErrors> element to your web.config file as a child of <system.web>. The mode
attribute defines when and where the custom error pages are displayed. Set the mode to RemoteOnly
to have the customerror pages displayed only when accessing the application from a remote
machine. When set to RemoteOnly, the ASP.NET error pages will not be displayed when accessing the
application from the local machine. Set the mode to On to have the custom error messages displayed
on local and remote machines. Set the mode to Off to display the ASP.NET error messages on local
and remote machines.

The defaultRedirect attribute defines the custom error page that will be displayed if an error occurs
and there is no specific error element (described later) for the error. By default the defaultRedirect
attribute is set to GenericErrorPage.htm. You should change this to your own generic error page.

Next, add an error element for each server error you want to redirect to a custom error page. Set
the statusCode attribute to the server error code, and set the redirect attribute to the URL of the
page to be displayed when the error occurs. You can include parameters in the URL if desired.

When the error is a 404 error (page not found), for example, ASP.NET includes a parameter in the
URL to indicate the name of the requested page that was not found. The URL for the redirection of the
404 error described would be:

 http://[server]/ASPNetCookbook/PageNotAvailable.aspx?aspxerrorpath=
 /ASPNetCookbook/BadPage.aspx

Your application can use the Request.QueryString collection to retrieve the name of the page that
was not found and include the information in your custom page:

 labMessage.Text = Request.QueryString("aspxerrorpath") & _
 " Is Not Available On This Site"

 labMessage.Text = Request.QueryString["aspxerrorpath"] +
 " Is Not Available On This Site";

See Also

Search "<customErrors> element" in the MSDN library.

Example 12-5. Custom error settings in web.config

<?xml version="1.0"?>
<configuration>
 <system.web>

 <customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm">
 <error statusCode="404" redirect="PageNotAvailable.aspx"/>
 </customErrors>

 </system.web>
</configuration>

Recipe 12.5. Maintaining Session State Across Multiple
Web Servers

Problem

You need to configure your application to maintain session state across multiple web serversfor
example, in a load-balanced web farm or web garden.

Solution

When the data stored in session is easy to re-create or is not critical, configure your application to
use the ASP.NET State Service using the following four steps:

Set up a new server with the .NET Framework installed to maintain session state on behalf of
your application.

1.

Start the ASP.NET State Service on the designated machine.2.

Modify the application web.config file on its current web server, as shown next, setting the
<sessionState> element's mode attribute to StateServer and StateConnectionString attribute to
the IP address and port of the state server:

 <sessionState
 mode="StateServer"
 stateConnectionString="tcpip=10.0.1.11:42424"
 cookieless="false"
 timeout="20" />

3.

Copy the contents of the root folder and subfolders of your application on the current web
server to the additional web servers.

4.

When you must not lose any session information if server problems arise, use SQL Server to store all
session information, as follows:

In the instance of SQL Server that you will use for this purpose, install the special tables and
stored procedures that ASP.NET requires by running the InstallSqlState.sql script provided with
the .NET Framework located in the
%SystemRoot%\Microsoft.NET\Framework\%VersionNumber%\ folder.

1.

2.

3.

Set up a database user with read/write access to the tempDB database.2.

Modify the web.config file, as shown next, setting the IP address to the address of your SQL
Server machine and replacing user and pwd with the settings for the database user with

read/write access to the tempDB database:

 <sessionState
 mode="SQLServer"

 sqlConnectionString="data source=10.0.1.12;user id= user ;password=pwd "
 cookieless="false"
 timeout="20" />

3.

Discussion

ASP.NET provides in-process session management much like classic ASP. However, scaling to
multiple servers in classic ASP has always been difficult because session information is not shared
between ASP servers. There are ways to solve the problem in classic ASP but all are hard and code
changes are generally required when you move to a multiple-server configuration.

ASP.NET provides two methods for managing session state when you decide to deploy a web
application on multiple servers: the ASP.NET State Service and support for session state storage in
SQL Server.

The ASP.NET State Service is an out-of-process, memory-based session management service that is
intended to be used when the data stored in session is easy to recreate or is not critical. The SQL
Server-based session management uses SQL Server to store all session information and is intended
to be used when you must not lose any session information if server problems arise. As you might
expect, the performance of SQL Server in maintaining session state management is worse than the
ASP.NET State Service because of the overhead involved in querying and writing session information
in a database. The ASP.NET State Service will have a poorer performance as the default in-process
storage of an ASP.NET application because of the out-of-process communications and network hops
involved in communicating with other servers across a network.

The out-of-process State Service and SQL Server session management techniques are compatible
with each other and require no changes to your code when you move from one technique to another,
which you might do, for example, if you are losing critical session information.

If you choose to make use of the ASP.NET State Service, install and run it on a server separate from
the web servers in the web farm. This allows any one of the web servers to be taken down for
maintenance or replacement without interrupting access to your application. If the ASP.NET State
Service is running on a server running an instance of the application, when that server requires
maintenance, your entire application will be unavailable while the server is down.

You start the ASP.NET State Service the same way you start any other Windows service. Invoke the
Services console by clicking on Start Control Panel and selecting Administrative Tools and then
Services. In the Services console window, select the ASP.NET State Service, as shown in Figure 12-1
.

Figure 12-1. Starting the ASP.NET State Service

Right-click the ASP.NET State Service and select Properties to open the ASP.NET State Service
Properties dialog box. From the Startup type drop-down menu, select Automatic to start the service
automatically any time the server is restarted, and then click the Start button to start the service, as
shown in Figure 12-2 .

Figure 12-2. Setting the ASP.NET State Service's Startup type property to
Automatic

To use the ASP.NET State Service, you must make two changes to the application web.config file on
its current web server. First, add a <sessionState> element to the web.config file in the root directory
of your application (unless the element is present). Next, set (or change) the mode attribute to
"StateServer" and modify the stateConnectionString attribute to include the IP address of the
server running the ASP.NET State Service. We'll refer to that machine as the state server from here
on. Do not change the port number because this is the port the State Service is listening on. If you
must change the port number, you will need to make changes to the registry settings for the State
Service because the port number cannot be changed through the Services console. Here's some
sample code that demonstrates the changes we've described:

 <?xml version="1.0"?>
 <configuration>
 <system.web>

 …

 <sessionState mode="StateServer"
 stateConnectionString="tcpip=10.0.1.11:42424"
 cookieless="false"
 timeout="20" />

 …
 </system.web>
 </configuration>

In addition to modifying <sessionState> settings in web.config , you will need to alter the keys used
for encryption and generation of unique values. Session management uses these keys to generate
session IDs and hash values used in the session collection, so all servers must be configured to use
the same values. If the values differ from server to server, the session information will not be
understood by all of the servers hosting the application. You control encryption through the
<machineKey> element, which you will need to add to the web.config file. By default, the keys are set
to generate values automatically that will result in a different key being used on each server. These
values should be set to 40128 hexadecimal characters as a function of the encryption type and level.
Note that [YourHexValue] must be replaced with the hexadecimal value you want to use for your

application:

 <?xml version="1.0"?>
 <configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 <system.web>

 …

 <machineKey validationKey="[YourHexValue]"
 decryptionKey="[YourHexValue]"
 validation="SHA1"/>

 …

 </system.web>
 </configuration>

After you've tested your application with the ASP.NET state server enabled, you're ready to deploy it
to the other servers.

An alternate approach to using the ASP.NET state server is to use SQL Server to store and persist the
session information. ASP.NET again makes this a simple configuration change with no code changes
required.

The first step to using SQL Server for session management is to install the special tables and stored
procedures that ASP.NET requires in the instance of SQL Server that you will use for this purpose.
You create this support by running the InstallSqlState.sql script provided with the .NET Framework.

To run the script, open a command prompt and navigate to the folder
\WINNT\Microsoft.NET\Framework\<version> , where <version > is the version of the .NET
Framework installed on your SQL Server machine. At the command prompt, type the following, and
all of the necessary tables, stored procedures, and the like will be installed. You will need to
substitute for password the appropriate password for the sa account:

 OSQL -S localhost -U sa -P password < InstallSqlState.sql

If you need to uninstall the SQL Server state management objects, you will
have to use the same command line. Substitute UninstallSqlState.sql for
InstallSqlState.sql .

For a production application, set up a database user with read/write access to the tempDB database.
You will use this database user in the configuration described next.

The only other change required to use SQL Server for state management is to modify the web.config
file, as shown here, setting the mode to SQLServer , setting the IP address to the address of your SQL
Server machine, and replacing user and pwd with the settings for the database user with read/write

access to the tempDB database:

 <sessionState mode="SQLServer"

 sqlConnectionString="data source=10.0.1.12;user id=user;password=pwd"
 cookieless="false"
 timeout="20" />

From now on, when your application runs, it will use SQL Server for storing all of its session
information. You can see the results of this by looking at the ASPStateTempApplications and
ASPStateTempSessions tables in the tempDB database. You should find entries there for your
applications and sessions, respectively. Because the data is stored in binary format, you will not be
able to view it.

Two other sessionState element attributes are frequently used in conjunction with the other
modifications that we've discussed: cookieless and timeout .

cookieless

Defines whether cookies are used to store the session ID and the behavior of the cookies.
Possible values are UseCookies, UseUri, AutoDetect , and UseDeviceProfile . UseCookies
specifies that cookies will always be used to store the session ID. UseUri specifies the session
ID will always be placed in the URL (e.g.,
http://localhost/ASPNetCookbook/(3eqccw45tlzqa555hakqrn55)/Home.aspx). AutoDetect
specifies cookies will be used if the requesting device supports cookies and cookies are enabled.

http://localhost/ASPNetCookbook/(3eqccw45tlzqa555hakqrn55)/Home.aspx

If cookies are not supported or not enabled, the URL will be used for the session ID.
UseDeviceProfile specifies the storage location for the session ID is determined by the
capabilities of the requesting device. This is similar to AutoDetect except no attempt is made to
determine if cookies are enabled. The determination is made by the device support. The default
value is UseDeviceProfile for backward compatibility with ASP.NET 1.x. (This attribute is new
for ASP.NET 2.0.)

timeout

The timeout attribute is used to define the length of inactivity in a session before the session is
terminated. The value is in minutes and is 20 by default.

You may be aware that you can configure the session timeout in IIS. In
an ASP.NET application, however, the session timeout that can be
configured in IIS is not used.

See Also

The article by Rob Howard titled "ASP.NET Session State (Nothin' but ASP.NET)" in the MSDN library
(search "ASP.NET Session State")

Recipe 12.6. Accessing Other web.config Configuration
Elements

Problem

You want to be able to read application information from a web.config file that is unavailable as an
<appSettings> key/value pair but present as an attribute or child element of some other element of
the file.

Solution

Use the OpenWebConfiguration method of the WebConfigurationManager object to read the web.config
file into a Configuration object, and use the GetSection method to access the desired section.

In the code-behind class for your ASP.NET page, use the .NET language of your choice to:

Use the OpenWebConfiguration method of the WebConfigurationManager object to read the
web.config file into a Configuration object.

1.

Use the GetSection method to access the desired section.2.

Cast the returned ConfigurationSection object to the type of the object for the section being
accessed.

3.

Use the properties of the object to access the desired information.4.

Examples 12-6, 12-7 through 12-8 show an application we've written that implements this solution
and retrieves attribute settings from the <trace> element of a web.config file. Example 12-6 shows
the .aspx file that displays the information. Examples 12-7 (VB) and 12-8 (C#) show the code-behind
class for the page that does the work of reading the settings from the <trace> element.

Discussion

In ASP.NET 1.x, you had to resort to opening the web.config file using an XmlDocument object to
access many of the configuration elements. In ASP.NET 2.0, new classes have been introduced to
read and access web.config. The new classes provide the ability to change the contents of the
configuration file and save it back to the filesystem. In addition, the new classes are strongly typed,
which avoids the problem of storing data of the wrong type in the web.config file.

The first step is to open the web.config file by using the OpenWebConfiguration method of the

WebConfigurationManager object. The relative path within your web site to the web.config file is
passed to OpenWebConfiguration and a Configuration object containing the contents of the
web.config file is returned.

 Dim config As Configuration
 Dim path As String

 path = Request.ApplicationPath
 config = WebConfigurationManager.OpenWebConfiguration(path)

 Configuration config = null;
 String path = null;

 path = Request.ApplicationPath;
 config = WebConfigurationManager.OpenWebConfiguration(path);

Any web.config file contained in your application can be accessed by passing
the file's relative path to OpenWebConfiguration.

Next, use the GetSection method of the Configuration object to access the desired section. Since
the GetSection method returns a ConfigurationSection object, you will need to cast it to the type of
the section you are accessing. In our example, we are accessing the trace section, so we cast the
ConfigurationSection object to a traceSection object. This allows us to access the data in the trace
section using strongly typed properties.

 Dim traceSettings As TraceSection

 traceSettings = CType(config.GetSection("system.web/trace"), _
 TraceSection)

 TraceSection traceSettings = null;

 traceSettings = (TraceSection)(config.GetSection("system.web/trace"));

Finally, use the properties of the object to access the desired information. In our example, we are
displaying the values of a few of the attributes in the trace section.

 labEnabled.Text = traceSettings.Enabled.ToString()

 labRequestLimit.Text = traceSettings.RequestLimit.ToString()
 labPageOutput.Text = traceSettings.PageOutput.ToString()
 labTraceMode.Text = traceSettings.TraceMode.ToString()
 labLocalOnly.Text = traceSettings.LocalOnly.ToString()

 labEnabled.Text = traceSettings.Enabled.ToString();
 labRequestLimit.Text = traceSettings.RequestLimit.ToString();
 labPageOutput.Text = traceSettings.PageOutput.ToString();
 labTraceMode.Text = traceSettings.TraceMode.ToString();
 labLocalOnly.Text = traceSettings.LocalOnly.ToString();

If you need to modify the contents of the web.config file, you can change the values of the desired
properties and use the Save method of the Configuration object:

 traceSettings.Enabled = Not traceSettings.Enabled
 traceSettings.PageOutput = Not traceSettings.PageOutput
 config.Save()

 traceSettings.Enabled = !traceSettings.Enabled;
 traceSettings.PageOutput = !traceSettings.PageOutput;
 config.Save();

You should not design your application to change the contents of the
web.config file routinely. The reason is that changing the web.config file's
contents may cause the application to restart. Restarting the application can
lead to a significant delay for page requests and can cause undesirable effects
for users when their sessions are restarted.

Example 12-6. Access system configuration information in web.config
(.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH12AccessSystemConfigVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH12AccessSystemConfigVB"
 Title="Access web.config" %>

<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Accessing System Configuration Information In web.config (VB)

 </div>
 <table width="40%" align="center" border="0">
 <tr>
 <td align="center" class="subHeading" colspan="2>
 Trace Section Attributes
 </td>
 </tr>
 <tr>
 <td align="right" width="50%" class="labelText">enabled = </td>
 <td width="50%" class="labelText">
 <asp:Label ID="labEnabled" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right" class="labelText">requestLimit = </td>
 <td class="labelText">
 <asp:Label ID="labRequestLimit" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right" class="labelText">pageOutput = </td>
 <td class="labelText">
 <asp:Label ID="labPageOutput" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right" class="labelText">traceMode = </td>
 <td class="labelText">
 <asp:Label ID="labTraceMode" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right" class="labelText">localOnly = </td>
 <td class="labelText">
 <asp:Label ID="labLocalOnly" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="center" colspan="2">

 <input id="btnToggleEnable" runat="server"
 type="button" value="Toggle Enable"
 onserverclick="btnToggleEnable_ServerClick" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 12-7. Access system configuration information in web.config

code-behind (.vb)

Option Explicit
On Option Strict On

Imports System
Imports System.Configuration
Imports System.Web.Configuration

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH12AccessSystemConfigVB.aspx
 ''' </summary>
 Partial Class CH12AccessSystemConfigVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim config As Configuration
 Dim traceSettings As TraceSection
 Dim path As String

 If (Not Page.IsPostBack) Then
 path = Request.ApplicationPath
 config = WebConfigurationManager.OpenWebConfiguration(path)

 traceSettings = CType(config.GetSection("system.web/trace"), _
 TraceSection)

 initializeForm(traceSettings)
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the toggle enable button
 ''' click event. It is responsible for toggling the trace enable state
 ''' and updating the data in the web.config file.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>

 Protected Sub btnToggleEnable_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim config As Configuration
 Dim traceSettings As TraceSection
 Dim path As String

 path = Request.ApplicationPath
 config = WebConfigurationManager.OpenWebConfiguration(path)

 traceSettings = CType(config.GetSection("system.web/trace"), _
 TraceSection)
 traceSettings.Enabled = Not traceSettings.Enabled
 traceSettings.PageOutput = Not traceSettings.PageOutput
 config.Save()

 initializeForm(traceSettings)
 End Sub 'btnToggleEnable_ServerClick

 '''***
 ''' <summary>
 ''' This routine is responsible for displaying the initializing the
 ''' controls on the form with the passed trace setting information
 ''' </summary>
 '''
 ''' <param name="traceSettings">Set to the TraceSection information to
 ''' be used to initialize the controls on the form
 ''' </param>
 Private Sub initializeForm(ByVal traceSettings As TraceSection)
 labEnabled.Text = traceSettings.Enabled.ToString()
 labRequestLimit.Text = traceSettings.RequestLimit.ToString()
 labPageOutput.Text = traceSettings.PageOutput.ToString()
 labTraceMode.Text = traceSettings.TraceMode.ToString()
 labLocalOnly.Text = traceSettings.LocalOnly.ToString()
 End Sub 'initializeForm
 End Class 'CH12AccessSystemConfigVB
End Namespace

Example 12-8. Access system configuration information in web.config
code-behind (.cs)

using System;
using System.Configuration;
using System.Web.Configuration;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>

 /// This class provides the code behind for
 /// CH12AccessSystemConfigCS.aspx
 /// </summary>
 public partial class CH12AccessSystemConfigCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 Configuration config = null;
 TraceSection traceSettings = null;
 String path = null;

 if (!Page.IsPostBack)
 {
 path = Request.ApplicationPath;
 config = WebConfigurationManager.OpenWebConfiguration(path);

 traceSettings = (TraceSection)(config.GetSection("system.web/trace"));
 initializeForm(traceSettings);
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the toggle enable button
 /// click event. It is responsible for toggling the trace enable state
 /// and updating the data in the web.config file.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnToggleEnable_ServerClick(Object sender,
 EventArgs e)
 {
 Configuration config = null;
 TraceSection traceSettings = null;
 String path = null;

 path = Request.ApplicationPath;
 config = WebConfigurationManager.OpenWebConfiguration(path);

 traceSettings = (TraceSection)(config.GetSection("system.web/trace"));
 traceSettings.Enabled = !traceSettings.Enabled;
 traceSettings.PageOutput = !traceSettings.PageOutput;
 config.Save();

 initializeForm(traceSettings);
 } // btnToggleEnable_ServerClick

 ///***
 /// <summary>
 /// This routine is responsible for displaying the initializing the
 /// controls on the form with the passed trace setting information
 /// </summary>
 ///
 /// <param name="traceSettings">Set to the TraceSection information to
 /// be used to initialize the controls on the form
 /// </param>
 private void initializeForm(TraceSection traceSettings)
 {
 labEnabled.Text = traceSettings.Enabled.ToString();
 labRequestLimit.Text = traceSettings.RequestLimit.ToString();
 labPageOutput.Text = traceSettings.PageOutput.ToString();
 labTraceMode.Text = traceSettings.TraceMode.ToString();
 labLocalOnly.Text = traceSettings.LocalOnly.ToString();

 } // initializeForm
 } // CH12AccessSystemConfigCS
}

Recipe 12.7. Adding Your Own Configuration Elements to
web.config

Problem

You want to create and add your own configuration elements to web.config . No predefined element
will do, nor will use of the <appSettings> key/value entries of web.config , as described in Recipe
12.2.

Solution

Determine what configuration information you want to store in web.config , create your own custom
section handler for parsing the element, add the definition of the section handler to web.config , add
the new configuration element to web.config , and use the configuration information in your
application.

Determine what configuration information you want to store in web.config .1.

Use the .NET language of your choice to create a custom section handler class for parsing your
newly defined element.

2.

Add the definition of the section handler to the <configSections> section of web.config .3.

Add the configuration element to web.config and assign values to its attributes or child
elements.

4.

In the code-behind class for your ASP.NET page, use the .NET language of your choice to access
and put the custom configuration data to work.

5.

The code we've written to illustrate this solution appears in Examples 12-9 , 12-10 , 12-11 , 12-12 ,
12-13 through 12-14 . Examples 12-9 (VB) and 12-10 (C#) show the class for a custom section
handler. The changes we've made to web.config to have it use the custom section handler are shown
in Example 12-11 . Example 12-12 shows the .aspx file for a sample web form that displays some
custom configuration settings. Examples 12-13 and 12-14 show the code-behind class that accesses
the custom configuration information. The output of the sample web form showing the data read using
the custom configuration handler is shown in Figure 12-3 .

Figure 12-3. Configuration information read by configuration handler

Discussion

Sometimes the predefined configuration elements provided by ASP.NET, including the key/value
collection available through the <appSettings> element of web.config (described in Recipe 12.2), are
not enough. When this is the case, being able to store any configuration information required by your
application in its own custom section in web.config can be a useful alternative. What's more, having a
custom section in web.config can be a real boon to program clarity and ease of implementation.

As a prelude to discussing the custom section for web.config , it's worthwhile reviewing the basic
structure of a machine.config file, as shown next, because it is the machine.config file whose
structure we will mimic. The root node of the XML document is <configuration> . The
<configSections> child element is next. It defines the configuration section elements that will follow
and the configuration handlers (classes) that will handle the configuration information contained in
the elements. When <configSections> is present, it must be the first child element of
<configuration> .

 <?xml version="1.0" encoding="UTF-8"?>
 <configuration>

 <configSections>

 …

 </configSections>

 <!-- sections defined in configSections -->

 </configuration>

Even if you are used to looking at a web.config file, you have probably never seen the
<configSections> element. This is because all of the standard configuration handlers are defined in
machine.config . (ASP.NET reads the machine.config file and then the web.config file(s) for your
application. All of the data from the machine.config file is used unless a section in web.config
overrides the equivalent section in machine.config .) Because <configSections> is only used to define

configuration handlers, it never appears in a web.config file unless your application uses custom
configuration handlers like the one described in this example.

In this example, we use a <siteProperties> custom element to hold the information we want to store
in web.config and that will be used by our custom configuration handler. We have chosen the path of
using a custom element (and a custom configuration handler) because of the flexibility it affords us
and the clarity with which we can express the information to be stored.

In creating your own custom element, you first need to determine the configuration information you
want to store in web.config and then define the format you want it stored in. The only limitation is
that the data element must be a well-formed XML node. You can use attributes, child elements, or
any combination of the two to hold your custom configuration information. In our example, we use
attributes only. The well-formed XML that defines the section we want to add to our application
web.config is shown here:

 <siteProperties applicationName="ASP.NET Cookbook"
 databaseServer="192.168.0.1"
 databaseName="ASPNetCookbook_DB"
 databaseUserName="aspnetcookbook"
 databaseUserPassword="efficient"
 emailServer="mail@mailservices.com" />

The section can be named anything you like as long as it does not conflict with
any predefined ASP.NET elements. We recommend that, for consistency, you
stick with the mixed-case convention used by ASP. NET. Section names and
attributes are case-sensitive.

After defining your configuration element and specifying the values of the information it will store,
create a custom configuration handler in a separate project. This way, the created assembly can be
reused easily in multiple applications. For our example, the project was named
VBCustomConfigHandlers (CSCustomConfigHandlers for C#), which by default will generate an
assembly with the same name.

In your configuration handler project, add a new class named to reflect the configuration element the
handler supports. In our example, we've named the class SiteConfigHandlerVB (SiteConfigHandlerCS
for C#) because the section added to web.config contains site configuration information.

To act as a custom configuration handler, the class must implement the
IConfigurationSectionHandler interface:

 Namespace VBCustomConfigHandlers

 Public Class SiteConfigHandlerVB
 Implements IConfigurationSectionHandler

 …

 End Class SiteConfigHandlerVB
End Namespace 'VBCustomConfigHandlers

namespace CSCustomConfigHandlers
 {
 public class SiteConfigHandlerCS : IConfigurationSectionHandler
 {

 …

 } // SiteConfigHandlerCS
 } // CSCustomConfigHandlers

The IConfigurationSectionHandler interface requires that you implement a single method, Create ,
which requires three parameters: parent, configContext , and section . The parent parameter
provides a reference to the corresponding parent configuration section, and the configContext
parameter provides a reference to the current ASP.NET context. Neither is used in this example. The
section parameter provides a reference to the XML node (section) of the web.config file that is to be
processed. In our example, section will be set to reference the <siteProperties> section added to
web.config .

 Namespace VBCustomConfigHandlers
 Public Class VBSiteConfigHandler
 Implements IConfigurationSectionHandler

 Public Function Create(ByVal parent As Object, _
 ByVal configContext As Object, _
 ByVal section As XmlNode) As Object _

 Implements IConfigurationSectionHandler.Create

 …

 End Function 'Create
 End Class 'VBSiteConfigHandler
 End Namespace 'VBCustomConfigHandlers

 namespace CSCustomConfigHandlers
 {
 public class CSSiteConfigHandler : IConfigurationSectionHandler
 {

 public Object Create(Object parent,
 Object configContext,
 XmlNode section)

 {
 …
 } // Create
 } // CSSiteConfigHandler
 } // CSCustomConfigHandlers

The Create method returns an object that contains the configuration information from the passed
section. This can be anything you want it to be. The most flexible approach is to define a class that
will contain the data and provide easy access by your application. In our example, the returned class
is defined in the same file as the SiteConfigHandlerVB (SiteConfigHandlerCS for C#) class.

 Namespace VBCustomConfigHandlers
 Public Class VBSiteConfigHandler
 Implements IConfigurationSectionHandler

 Public Function Create(ByVal parent As Object, _
 ByVal configContext As Object, _
 ByVal section As XmlNode) As Object _

 Implements IConfigurationSectionHandler.Create

 …

 End Function 'Create
 End Class 'VBSiteConfigHandler

 'The following class provides the container returned by
 'the SiteConfigHandlerVB
 Public Class SiteConfigurationVB

 …

 End Class 'SiteConfigurationVB
 End Namespace 'VBCustomConfigHandlers

 namespace CSCustomConfigHandlers
 {
 public class CSSiteConfigHandler : IConfigurationSectionHandler
 {
 public Object Create(Object parent,
 Object configContext,
 XmlNode section)
 {
 …

 } // Create

 } // CSSiteConfigHandler

 // The following class provides the container returned by
 // the SiteConfigHandlerCS
 public class SiteConfigurationCS
 {
 …
 } // SiteConfigurationCS

 } // CSCustomConfigHandlers

The SiteConfigurationVB (SiteConfigurationCS for C#) class needs a constructor that has
parameters for each of the configuration items and a read-only property for each of the configuration
items. The code for our example is shown in Examples 12-9 (VB) and 12-10 (C#).

After the class that will be used for the return is defined, the Create method should extract the
configuration information from the passed XML section, create a new instance of the
SiteConfigurationVB (SiteConfigurationCS for C#) object, and return a reference to the new
instance. For our example, attributes were used for the configuration information in the section. This
allows us to get a reference to the attributes collection of the section and to extract the individual
values by using the GetNamedItem method of the attributes collection.

 Public Function Create(ByVal parent As Object, _
 ByVal configContext As Object, _
 ByVal section As XmlNode) As Object _

 Implements IConfigurationSectionHandler.Create

 Dim siteConfig As SiteConfigurationVB
 Dim attributes As XmlAttributeCollection

 attributes = section.Attributes
 With attributes
 siteConfig = _
 New SiteConfigurationVB(.GetNamedItem("applicationName").Value, _
 .GetNamedItem("databaseServer").Value, _
 .GetNamedItem("databaseName").Value, _
 .GetNamedItem("databaseUserName").Value, _
 .GetNamedItem("databaseUserPassword").Value, _
 .GetNamedItem("emailServer").Value)
 End With 'attributes

 Return (siteConfig)
 End Function 'Create

 public Object Create(Object parent,
 Object configContext,

 XmlNode section)
 {
 SiteConfigurationCS siteConfig = null;
 XmlAttributeCollection attributes = null;

 attributes = section.Attributes;
 siteConfig =
 new SiteConfigurationCS(
 attributes.GetNamedItem("applicationName").Value,
 attributes.GetNamedItem("databaseServer").Value,
 attributes.GetNamedItem("databaseName").Value,
 attributes.GetNamedItem("databaseUserName").Value,
 attributes.GetNamedItem("databaseUserPassword").Value,
 attributes.GetNamedItem("emailServer").Value);
 return (siteConfig);
 } // Create

With the customconfiguration handler, you need to add the handler information to web.config to tell
ASP.NET how to handle the <siteProperties> section you've added. Add a <configSections> element
at the top of your web.config that contains a single section element. The name attribute defines the
name of the custom section containing your configuration information. The type attribute defines the
class and assembly name in the form type ="class, assembly" that will process your custom
configuration section. The class name must be a fully qualified class name. The assembly name must

be the name of the assembly (dll) created in your configuration handler project, described earlier.

 <configSections>
 <section name="siteProperties"
 type="ASPNetCookbook.VBCustomConfigHandlers.SiteConfigHandlerVB,
 VbCustomConfigHandlers" />
 </configSections>

When the <configSections> element is present, it must be the first element in
the web.config file after the <configuration> element or a parsing exception
will be thrown.

The last thing you need to do before you can use the custom configuration in your application is to
add a reference to the VBCustomConfigHandlers (CSCustomConfigHandlers for C#) assembly in your
application.

Accessing the custom configuration information in your application requires using
ConfigurationManager.GetConfig and passing it the name of your custom section. This method
returns an object that must be cast to the object type you returned in your custom configuration
handler class. After the reference is obtained, all of the site information is available as properties of
the object.

 Dim siteConfig As SiteConfigurationVB

 siteConfig = CType(ConfigurationManager.GetSection("siteProperties"), _
 SiteConfigurationVB)
 labApplicationName.Text = siteConfig.applicationName
 labDBServer.Text = siteConfig.databaseServer
 labDBName.Text = siteConfig.databaseName
 labDBUserName.Text = siteConfig.databaseUserName
 labDBUserPassword.Text = siteConfig.databaseUserPassword
 labEmailServer.Text = siteConfig.emailServer

 SiteConfigurationCS siteConfig = null;

 siteConfig = (SiteConfigurationCS)
 (ConfigurationManager.GetSection("siteProperties"));
 labApplicationName.Text = siteConfig.applicationName;
 labDBServer.Text = siteConfig.databaseServer;
 labDBName.Text = siteConfig.databaseName;
 labDBUserName.Text = siteConfig.databaseUserName;
 labDBUserPassword.Text = siteConfig.databaseUserPassword;
 labEmailServer.Text = siteConfig.emailServer;

See Also

Recipe 12.2

Example 12-9. Custom section handler class (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration
Imports System.Xml

Namespace ASPNetCookbook.VBCustomConfigHandlers
 ''' <summary>
 ''' This class provides a custom site configuration handler.
 ''' </summary>
 Public Class SiteConfigHandlerVB
 Implements IConfigurationSectionHandler

 '''***
 ''' <summary>

 ''' This routine provides the creation of the SiteConfigurationVB object
 ''' from the passed section of the web.config file
 ''' </summary>
 '''
 ''' <param name="parent">Set to the parent of this section</param>
 ''' <param name="configContext">Set the HttpContext of the current
 ''' request
 ''' </param>
 ''' <param name="section">Set to the XML node containing the
 ''' configuration data to be used to create this object
 ''' </param>
 ''' <returns>SiteConfigHandlerVB initialied from the passed section
 ''' of the web.config file
 ''' </returns>
 Public Function Create(ByVal parent As Object, _
 ByVal configContext As Object, _
 ByVal section As XmlNode) As Object _

 Implements IConfigurationSectionHandler.Create

 Dim siteConfig As SiteConfigurationVB
 Dim attributes As XmlAttributeCollection

 attributes = section.Attributes
 With attributes
 siteConfig = _
 New SiteConfigurationVB(.GetNamedItem("applicationName").Value, _
 .GetNamedItem("databaseServer").Value, _
 .GetNamedItem("databaseName").Value, _
 .GetNamedItem("databaseUserName").Value, _
 .GetNamedItem("databaseUserPassword").Value, _
 .GetNamedItem("emailServer").Value)

 End With 'attributes
 Return (siteConfig)
 End Function 'Create
 End Class 'SiteConfigHandlerVB

 'The following class provides the container returned by
 'the SiteConfigHandlerVB
Public Class SiteConfigurationVB
 Private mApplicationName As String
 Private mDatabaseServer As String
 Private mDatabaseName As String
 Private mDatabaseUserName As String
 Private mDatabaseUserPassword As String
 Private mEmailServer As String

 Public ReadOnly Property applicationName() As String
 Get
 Return (mApplicationName)
 End Get

 End Property 'applicationName

 Public ReadOnly Property databaseServer() As String
 Get
 Return (mDatabaseServer)
 End Get
 End Property 'databaseServer

 Public ReadOnly Property databaseName() As String
 Get
 Return (mDatabaseName)
 End Get
 End Property 'databaseName

 Public ReadOnly Property databaseUserName() As String
 Get
 Return (mDatabaseUserName)
 End Get
 End Property 'databaseUserName

 Public ReadOnly Property databaseUserPassword() As String
 Get
 Return (mDatabaseUserPassword)
 End Get
 End Property 'databaseUserPassword

 Public ReadOnly Property emailServer() As String
 Get
 Return (mEmailServer)
 End Get
 End Property 'emailServer

 '''***
 ''' <summary>
 ''' This constructor creates the object and populates the attributes
 ''' with the passed values
 ''' </summary>
 Public Sub New(ByVal applicationName As String, _
 ByVal databaseServer As String, _
 ByVal databaseName As String, _
 ByVal databaseUserName As String, _
 ByVal databaseUserPassword As String, _
 ByVal emailServer As String)

 mApplicationName = applicationName
 mDatabaseServer = databaseServer
 mDatabaseName = databaseName
 mDatabaseUserName = databaseUserName
 mDatabaseUserPassword = databaseUserPassword
 mEmailServer = emailServer
 End Sub 'New
 End Class 'SiteConfigurationVB

End Namespace

Example 12-10. Custom section handler class (.cs)

using System;
using System.Configuration;
using System.Xml;

namespace ASPNetCookbook.CSCustomConfigHandlers
{
 /// <summary>
 /// This class provides a custom site configuration handler.
 /// </summary>
 public class SiteConfigHandlerCS : IConfigurationSectionHandler
 {
 ///***
 /// <summary>
 /// This routine provides the creation of the SiteConfigurationVB object
 /// from the passed section of the web.config file
 /// </summary>
 ///
 /// <param name="parent">Set to the parent of this section</param>
 /// <param name="configContext">Set the HttpContext of the current
 /// request
 /// </param>
 /// <param name="section">Set to the XML node containing the
 /// configuration data to be used to create this object
 /// </param>
 /// <returns>SiteConfigHandlerVB initialied from the passed section
 /// of the web.config file
 /// </returns>

 public Object Create(Object parent,
 Object configContext,
 XmlNode section)
 {
 SiteConfigurationCS siteConfig = null;
 XmlAttributeCollection attributes = null;

 attributes = section.Attributes;
 siteConfig =
 new SiteConfigurationCS(
 attributes.GetNamedItem("applicationName").Value,
 attributes.GetNamedItem("databaseServer").Value,
 attributes.GetNamedItem("databaseName").Value,
 attributes.GetNamedItem("databaseUserName").Value,
 attributes.GetNamedItem("databaseUserPassword").Value,

 attributes.GetNamedItem("emailServer").Value);

 return (siteConfig);
 } // Create
 } // SiteConfigHandlerCS

 // The following class provides the container returned by
 // the SiteConfigHandlerCS
 public class SiteConfigurationCS
 {
 private String mApplicationName = null;
 private String mDatabaseServer = null;
 private String mDatabaseName = null;
 private String mDatabaseUserName = null;
 private String mDatabaseUserPassword = null;
 private String mEmailServer = null;
 public String applicationName
 {
 get
 {
 return (mApplicationName);
 }
 } // applicationName
 public String databaseServer
 {
 get
 {
 return (mDatabaseServer);
 }
 } // databaseServer

 public String databaseName
 {
 get
 {
 return (mDatabaseName);
 }
 } // databaseName

 public String databaseUserName
 {
 get
 {
 return (mDatabaseUserName);
 }
 } // databaseUserName

 public String databaseUserPassword
 {
 get
 {
 return (mDatabaseUserPassword);

 }
 } // databaseUserPassword

 public String emailServer
 {
 get
 {
 return (mEmailServer);
 }
 } // emailServer

 //**
 //
 // ROUTINE: Constructor
 //
 // DESCRIPTION: This constructor creates the object and populates the
 // attributes with the passed values
 //--
 public SiteConfigurationCS(String applicationName,
 String databaseServer,
 String databaseName,
 String databaseUserName,
 String databaseUserPassword,
 String emailServer)
 {
 mApplicationName = applicationName;
 mDatabaseServer = databaseServer;
 mDatabaseName = databaseName;
 mDatabaseUserName = databaseUserName;
 mDatabaseUserPassword = databaseUserPassword;
 mEmailServer = emailServer;
 } // SiteConfigurationCS
 } // SiteConfigurationCS
}

Example 12-11. Changes to web.config to use the custom section handler

<?xml version="1.0"?>
<configuration>
<configSections>
 <section name="siteProperties"
 type="ASPNetCookbook.VBCustomConfigHandlers.SiteConfigHandlerVB,
 VBCustomConfigHandlers" />

</configSections>

<system.web>

 …

</system.web>

<!-- Setting for custom configuration section handler in chapter 12
 -->
<siteProperties applicationName="ASP.NET Cookbook"
 databaseServer="192.168.0.1"
 databaseName="ASPNetCookbook_DB"
 databaseUserName="aspnetcookbook"
 databaseUserPassword="efficient"
 emailServer="mail@mailservices.com" />
</configuration>

Example 12-12. Sample web form using custom configuration data (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH12CustomConfigHandlerVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH12CustomConfigHandlerVB"
 Title="Custom Config Handler" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Writing Custom Configuration Handlers (VB)
 </div>
 <table width="60%" align="center" border="0">
 <tr>
 <td align="right" width="50%" class="labelText">
 applicationName = </td>
 <td width="50%" class="labelText">
 <asp:Label ID="labApplicationName" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right" class="labelText">

 databaseServer = </td>
 <td class="labelText">
 <asp:Label ID="labDBServer" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right" class="labelText">
 databaseName = </td>
 <td class="labelText">
 <asp:Label ID="labDBName" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right" class="labelText">
 databaseUserName = </td>
 <td class="labelText">
 <asp:Label ID="labDBUserName" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right" class="labelText">
 databaseUserPassword = </td>
 <td class="labelText">
 <asp:Label ID="labDBUserPassword" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right" class="labelText">
 emailServer = </td>
 <td class="labelText">
 <asp:Label ID="labEmailServer" runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 12-13. Sample web form using custom configuration data code-
behind (.vb)

Option Explicit On
Option Strict On

Imports ASPNetCookbook.VBCustomConfigHandlers
Imports System
Imports System.Configuration

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH12CustomConfigHandlerVB.aspx
 ''' </summary>
 Partial Class CH12CustomConfigHandlerVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Dim siteConfig As SiteConfigurationVB

 siteConfig = CType(ConfigurationManager.GetSection("siteProperties"), _
 SiteConfigurationVB)
 labApplicationName.Text = siteConfig.applicationName
 labDBServer.Text = siteConfig.databaseServer
 labDBName.Text = siteConfig.databaseName
 labDBUserName.Text = siteConfig.databaseUserName
 labDBUserPassword.Text = siteConfig.databaseUserPassword
 labEmailServer.Text = siteConfig.emailServer

 End Sub 'Page_Load
 End Class 'CH12CustomConfigHandlerVB
End Namespace

Example 12-14. Sample web form using custom configuration data code-
behind (.cs)

using ASPNetCookbook.CSCustomConfigHandlers;
using System;
using System.Configuration;
using System.Web.Configuration;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH12CustomConfigHandlerCS.aspx
 /// </summary>
 public partial class CH12CustomConfigHandlerCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 SiteConfigurationCS siteConfig = null;

 siteConfig = (SiteConfigurationCS)
 (ConfigurationManager.GetSection("siteProperties"));
 labApplicationName.Text = siteConfig.applicationName;
 labDBServer.Text = siteConfig.databaseServer;
 labDBName.Text = siteConfig.databaseName;
 labDBUserName.Text = siteConfig.databaseUserName;
 labDBUserPassword.Text = siteConfig.databaseUserPassword;
 labEmailServer.Text = siteConfig.emailServer;
 } // Page_Load
 } // CH12CustomConfigHandlerCS
}

Recipe 12.8. Encrypting web.config Sections

Problem

You have sensitive data in your web.config file, such as the connection string used to access your
database, that you do not want available in plain text.

Solution

Use the Protected Configuration feature to encrypt the sensitive information stored in web.config:

Add the sensitive information to your web.config, such as a <connectionStrings> element:

 <configuration>
 <connectionStrings>
 <add name="sqlConnectionString"
 connectionString="Data Source=localhost;
 Initial Catalog=ASPNetCookbook;
 UID=ASPNetCookbook_User;PWD=w0rk;
 persist security info=False;Connection Timeout=30;" />
 </connectionStrings>

 …

 </configuration>

1.

Add a <machineKey> element to your web.config:

 <configuration>

 …

 <system.web>
 <machineKey validationKey="AutoGenerate,IsolateApps"
 decryptionKey="AutoGenerate,IsolateApps" />
 </system.web>
 </configuration>

2.

3.

Run the aspnet_regiis.exe tool to encrypt the sensitive data element, such as the
<connectionStrings> element with the following command:

 aspnet_regiis -pe "connectionStrings" -app "[Your Application Name]"

3.

Run the aspnet_regiis.exe tool to encrypt the <machineKey> element:

 aspnet_regiis -pe "system.web/machineKey" -app "[Your Application Name]"

4.

Run the aspnet_regiis.exe tool to grant access to the key container by the ASP.NET identity:

 aspnet_regiis -pa "NetFrameworkConfigurationKey" "[ASP.NET User]"

5.

Discussion

Applications frequently contain sensitive data in their web.config files, such as a database connection
string that contains the credentials required to access the database. If this information is stored in
your web.config in plain text, anyone who gains access to the web.config file will have the credentials
to access the database for your application.

ASP.NET 1.x had no provisions for storing sensitive data in web.config other than in plain text.
ASP.NET 2.0 provides the ability to encrypt sensitive data in web.config and to decrypt the data
automatically when needed by your application without requiring any changes to your code.

The first step in encrypting elements in web.config is to add the element, such as
<connectionStrings>, and test your application to ensure the data has been entered correctly. This is
important since once the data is encrypted it cannot be changed without it first being decrypted
(decrypting is discussed later).

Next, you need to add a <machineKey> element to web.config. The <machineKey> element configures
the keys used for forms authentication cookie data, view state data, and managing the encrypted
element(s). The attributes of the <machineKey> element are described as follows:

decryptionKey

The decryptionKey attribute defines the key that will be used for encryption and decryption or
the process that will be used to generate the keys. The value can be set to "AutoGenerate",
"AutoGenerate,IsolateApps", or a string of hexadecimal characters.

"AutoGenerate,IsolateApps" is the default. When set to "AutoGenerate", ASP.NET generates a
randomkey. When the value is set to "AutoGenerate,IsolateApps", ASP.NET generates a
unique key for each application using each application's ID. Setting the value to a hexadecimal
string allows you to control the key and is required if your application runs on multiple servers
where the keys must be identical on each server.

decryption

The decryption attribute defines the hashing algorithmused for encrypting/decrypting the data.
The value can be Auto, AES, or 3DES. The default is Auto.

validationKey

The validationKey attribute defines the key that will be used for validation of encrypted data.
The validationKey is not used for encryption/decryption of web.config elements. It is used to
generate the message authentication code (MAC) when the enableViewStateMAC attribute is set
to true. The value can be set to "AutoGenerate", "AutoGenerate,IsolateApps", or a string of
hexadecimal characters. "AutoGenerate,IsolateApps" is the default. When set to
"AutoGenerate", ASP.NET generates a random key. When the value is set to
"AutoGenerate,IsolateApps", ASP.NET generates a unique key for each application using each
application's ID. Setting the value to a hexadecimal string will allow you to control the key and
will be required if your application runs on multiple servers where the keys must be identical on
each server.

validation

The validation attribute defines the type of encryption used for validating data. The value can
be AES, MD5, SHA1, or tripleDES. The default is SHA1.

Once web.config is set up, the aspnet_regiis.exe tool is used to performthe data encryption. Open a
command prompt and change to the %SystemRoot%\Microsoft.NET\Framework\%VersionNumber%\
folder where the aspnet_regiis.exe tool is located. To encrypt the <connectionStrings> element in
web.config, execute the following command in the command window, substituting the virtual path of
your application for [Your Application Name].

 aspnet_regiis -pe "connectionStrings" -app "[Your Application Name]"

The <connectionStrings> element of web.config will be changed with the sensitive data encrypted, as
follows. (The CipherValue elements have been shortened for clarity.)

 <configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">
 k<connectionStrings
 configProtectionProvider="RsaProtectedConfigurationProvider">
 <EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
 xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod

 Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>Rsa Key</KeyName>
 </KeyInfo>
 <CipherData>
 <CipherValue>VJyz/bFoxgJU2PWl…..</CipherValue>
 </CipherData>
 </EncryptedKey>
 </KeyInfo>
 <CipherData>
 <CipherValue>Bb/JK94rxfCphYQebP3s…..</CipherValue>
 </CipherData>
 </EncryptedData>
 </connectionStrings>

 …

</configuration>

The next step is to encrypt the <machineKey> element to protect the key information. To encrypt the
<machineKey> element, execute the following command in the command window, substituting the
virtual path of your application for [Your Application Name].

 aspnet_regiis -pe "system.web/machineKey" -app "[Your Application Name]"

The <machineKey> element of web.config file will be changed with the key data encrypted as follows.
(The CipherValue elements have been shortened for clarity.)

 <configuration xmlns="http://schemas.microsoft.com/.NetConfiguration/v2.0">

 …

 <system.web>
 <machineKey configProtectionProvider="RsaProtectedConfigurationProvider">
 <EncryptedData Type="http://www.w3.org/2001/04/xmlenc#Element"
 xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#tripledes-cbc" />
 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <EncryptedKey xmlns="http://www.w3.org/2001/04/xmlenc#">
 <EncryptionMethod
 Algorithm="http://www.w3.org/2001/04/xmlenc#rsa-1_5" />

 <KeyInfo xmlns="http://www.w3.org/2000/09/xmldsig#">
 <KeyName>Rsa Key</KeyName>
 </KeyInfo>
 <CipherData>
 <CipherValue>aVVNMATLnm48…..</CipherValue>
 </CipherData>
 </EncryptedKey>
 </KeyInfo>
 <CipherData>
 <CipherValue>f9/2H0sgeSeZIC/t…..</CipherValue>
 </CipherData>
 </EncryptedData>
 </machineKey>

 …

 </system.web>
 </configuration>

The final step to encrypting data in web.config is to grant access to the key container for the
ASP.NET user. The aspnet_regiis.exe tool is once again used with the following command,
substituting the ASP.NET user account on your server for [ASP.NET User]:

 aspnet_regiis -pa "NetFrameworkConfigurationKey" "[ASP.NET User]"

By default, the ASP.NET user is ASPNET when using Windows 2000 Server and NT
AUTHORITY\NETWORK SERVICE when using Windows 2003 Server. If you have
configured ASP.NET to use another user, you will need to use that user
account. The name of the ASP.NET user can be determined by creating an
ASP.NET page with the following content and displaying the page in a browser:

 <%@ Page Language="VB" %>
 <%
 Response.Write(System.Security.Principal.WindowsIdentity.
 GetCurrent().Name)
 %>

 <%@ Page Language="C#" %>
 <%
 Response.Write(System.Security.Principal.WindowsIdentity.
 GetCurrent().Name);
 %>

When determining the ASP.NET user, displaying this page while running in Visual
Studio 2005 will report the user as the logged in user, not the account under
which ASP.NET runs.

Granting access to the key container must be done on all servers where your
application will run. If you fail to grant access, ASP.NET will not be able to
decrypt the data in web.config.

If you need to change the encrypted data in web.config, you will need to decrypt the data, make the
required changes, and then encrypt the data again. The decryption is performed by using the
aspnet_regiis.exe tool, this time using pd command-line parameter:

 To decrypt the <connectionStrings> element:

 aspnet_regiis -pd "connectionStrings" -app "[Your Application Name]"

 To decrypt the <machineKey> element:

 aspnet_regiis -pe "system.web/machineKey" -app "[Your Application Name]"

See Also

"Encrypting Configuration Information Using Protected Configuration" in the MSDN Library

Chapter 13. Tracing and Debugging

13.0 Introduction

The recipes in this chapter show how you can locate problems in your ASP.NET applications by using
features that support tracing and debugging.

The first seven recipes show how to use tracing to pinpoint the causes of problems in your code.
Tracing allows you, through a configuration setting or page-level attribute, to have ASP.NET write a
whole host of information about the executing request to the page or to a trace log. We start by
discussing how you initiate page-and application-level tracing. We show how you can dynamically
turn on page-level tracing when an exception occurs. Next, we show you how to make tracing work
for componentsthose that will run on the web, as well as those that will be used elsewhere. The latter
technique is important when you don't want your use of tracing-related code to preclude you from
using a component outside of ASP.NET. We also show you how to write trace information to the event
log and send the information via email from within a component.

Finally, we discuss debugging, specifically how setting conditional breakpoints can be a powerful
technique for debugging your ASP.NET applications. Setting conditional breakpoints is especially
useful for stopping execution at a specific point in iteration-heavy code, the focus of one of this
chapter's recipes.

The recipes in this chapter are intended to help remove some of the mystery of tracing and
debugging, and, in the process, help you use these techniques earlier in the development cycle when
problems are often less costly to fix.

Recipe 13.2. Uncovering Page-Level Problems

Problem

You want to find the source of a problem that appears to be associated with a particular page of your
application, such as a page that completes its operations more slowly than desired.

Solution

Enable page-level tracing for the page in question by setting the trace attribute of the @ Page
directive in the .aspx file to "TRue" and then using TRace.Write (or TRace.Warn) statements as
warranted in your code-behind to write trace information to the trace output.

Examples 13-1, 13-2 through 13-3 show the code we've written to illustrate this solution. Example
13-1 shows the .aspx file for a typical ASP.NET page. The code-behind class for the page appears in
Examples 13-2 (VB) and 13-3 (C#). By running the page and analyzing the trace sequence, you can
see how long certain key operations are taking. The output with the trace sequence is shown in
Figure 13-1.

Discussion

Tracing tracks and presents the execution details about an HTTP request. The TraceContext class is
where ASP.NET stores information about an HTTP request and its trace information. You access the
TraceContext class through the Page.Trace property of an ASP.NET page. To enable tracing for the
page, be sure to set the trace attribute of the @ Page directive in the .aspx file to "TRue", as shown in
Example 13-1.

The traceContext class has two methods for writing statements into the trace log: Write and Warn.
The only difference is that Warn outputs statements in red so they are easier to spot in the trace log.
Both methods are overloaded and have three versions. If you pass a single string argument, ASP.NET
will write it to the Message column of the trace log, as shown in Figure 13-1. If you use two string
arguments, the first string will appear in the Category column and the second in the Message column.
If you use a third argument, it will have to be of type Exception and contain information about an
error, which ASP.NET then writes to the trace log.

If you've placed trace.Write or trace.Warn statements in your code, you will not have to worry about
removing them later. The common language runtime (CLR) will ignore them when tracing is disabled.
Disable page-level tracing before deploying your application to a production environment.

In our example, trace.Write is used three times to put custom messages into the trace sequence:
the first time to mark the start of the concatenations and the second to mark the end of the
concatenations. The third message outputs the average time for a string concatenation. The latter

shows how inefficient it is to use a classic concatenation operator (& or +) in ASP.NET string
operations. (See Recipe 19.2 for further discussion of this code as well as the advantages of using the
StringBuilder object to build strings over the classic concatenation operators.)

Figure 13-1. Sample tracing output

In Figure 13-1 the trace log (beginning with "Request Details") appears below the standard output for
the ASP.NET page enabled for trace. Here's an explanation of the "Trace Information" section
contents in the trace log:

Category

A custom trace category that you specified as the first argument in a trace.Write (or
trace.Warn) method call.

Message

A custom trace message that you specified as the second argument in a trace. Write (or
TRace.Warn) method call.

From First (s)

The time, in seconds, since the request processing was started (a running total).

From Last (s)

The time, in seconds, since the last message was displayed. This column is especially helpful
for seeing how long individual operations are taking.

See Also

Recipe 19.3

Example 13-1. Page-level tracing (.aspx)

<%@ Page Trace="True" Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH13TestPageLevelTracingVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH13TestPageLevelTracingVB"
 Title="Test Page Level Tracing" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Page-Level Tracing (VB)
 </div>
</asp:Content>

Example 13-2. For page-level tracing code-behind (.vb)

Option Explicit On

Option Strict On

Imports System

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH13TestPageLevelTracingVB.aspx
 ''' </summary>
 Partial Class CH13TestPageLevelTracingVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Const STRING_SECTION As String = "1234567890"

 Dim testStr As String
 Dim counter As Integer
 Dim startTime As DateTime
 Dim elapsedTime As TimeSpan
 Dim loops As Integer

 'output trace message indicating the start of the concatenations
 Trace.Write("Page_Load", "Before performing concatenations")

 'Measure the elapsed time for 10,000 classic string concatenations
 loops = 10000
 startTime = DateTime.Now()
 testStr = ""
 For counter = 1 To loops
 testStr &= STRING_SECTION
 Next

 'output trace message indicating the end of the concatenations
 Trace.Write("Page_Load", "After performing concatenations")

 'calculate the elapsed time for the string concatenations
 elapsedTime = DateTime.Now.Subtract(startTime)

 'Write average time per concatenation in milliseconds to trace sequence
 Trace.Write("Aver/concat", _
 (elapsedTime.TotalMilliseconds / loops).ToString("0.0000"))
 End Sub 'Page_Load
 End Class 'CH13TestPageLevelTracingVB
End Namespace

Example 13-3. For page-level tracing code-behind (.cs)

using System;
using System.Configuration;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH13TestPageLevelTracingCS.aspx
 /// </summary>
 public partial class CH13TestPageLevelTracingCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 const string STRING_SECTION = "1234567890";

 string testStr = null;
 DateTime startTime;
 TimeSpan elapsedTime;

 int counter;
 int loops;

 // output trace message indicating the start of the concatenations
 Trace.Write("Page_Load", "Before performing concatenations");

 // measure the elapsed time for 10000 classic string concatenations
 loops = 10000;
 startTime = DateTime.Now;
 testStr = "";
 for (counter = 1; counter <= loops; counter++)
 {
 testStr += STRING_SECTION;
 }

 // output trace message indicating the end of the concatenations
 Trace.Write("Page_Load", "After performing concatenations");

 // calculate the elapsed time for the string concatenations
 elapsedTime = DateTime.Now.Subtract(startTime);

 // Write average time per concatenation in milliseconds to trace sequence
 Trace.Write("Aver/concat",
 (elapsedTime.TotalMilliseconds / loops).ToString("0.0000"));
 } // Page_Load
 } // CH13TestPageLevelTracingCS
}

Recipe 13.3. Uncovering Application-Wide Problems

Problem

You want to find the sources of problems at any point in an application, but you don't want to have to
change every page to do so, nor do you want to disrupt the output of your application pages.

Solution

Enable application-level tracing in the application web.config file and view the AXD application trace
log for your application.

Locate the web.config file in the root directory of your application (or create one if it does not
exist).

1.

Enable application-level tracing by adding a <trace> element to the <system.web> section of
web.config and setting its enabled attribute to "true":

 <configuration>
 <system.web>
 <trace enabled="true" />

 </system.web>
 </configuration>

2.

View the application trace log by browsing to the trace.axd page from the application root, like
this:

http://localhost/<yourapplicationname>/trace.axd

3.

Figure 13-2 shows some sample trace log output.

Figure 13-2. Application-level tracing output (trace.axd)

http://localhost/<yourapplicationname>/trace.axd

Discussion

By adding a <trace> element to web.config and setting its enabled attribute to "TRue", you can
activate application-level tracing.

 <trace enabled="true" />

What happens is that ASP.NET collects trace information for each HTTP request to the application and
directs it to the application trace log. You can view the application trace log in the trace viewer. To
view the trace viewer, request trace.axd from the root of your application directory:

http://localhost/<yourapplicationname>/trace.axd

The trace.axd is not a page but rather a special URL intercepted by ASP.NET.
The trace.axd is an HTTP handler, the equivalent of an ISAPI extension.
Chapter 20 provides recipes on how to create your own HTTP handlers.

The trace.axd shows you a sequential listing of the HTTP requests processed by your application, as
shown in Figure 13-2.

Here are some of the more commonly used <trace> element attributes:

requestLimit

http://localhost/<yourapplicationname>/trace.axd

The default number of HTTP requests stored in the application trace log is 10. You can increase
the number of HTTP requests using the requestLimit attribute:

 <trace enabled="true" requestLimit="40" />

Once the limit is reached, if the mostRecent attribute is set false, then no other HTTP requests will be
logged until the application is restarted, or you hit the "clear current trace" link on the trace.axd page
(see the upper-right corner of Figure 13-2), or the query string clear=1 is passed to trace.axd, like
so:

http://localhost/<yourapplicationname>/trace.axd?clear=1

mostRecent

The default value is false, which indicates that once the requestLimit is reached, no additional
trace information is stored. You can set the value to TRue if you want to see the most recent
requests.

pageOutput

If, in addition to viewing the trace.axd file, you want to see trace information displayed at the
bottom of the page that it is associated with, add pageOutput="true" to the <trace> element:

 <trace enabled="true" pageOutput="true" />

The trace information you will see is identical to what would appear had you placed TRace="true" in
the @ Page directive for the page (see Recipe 13.1 for details).

localOnly

To show trace information to the local user (i.e., the browser making the request is on the
machine serving the request) but not to remote users, ensure the <trace> element includes
localOnly="true":

 <trace enabled="true" pageOutput="true" localOnly="true" />

If you are viewing the trace log in the trace viewer and you want to see specific information about a
request, like the kind you see in Figure 13-1, click the "View Details" link to the right.

When deploying your application to a production environment, you can explicitly disable trace.axd by
placing <httpHandler> elements like these in web.config:

http://localhost/<yourapplicationname>/trace.axd?clear=1

 <configuration>
 <system.web>
 <httpHandlers>
 <remove verb="*" path="trace.axd" />
 </httpHandlers>
 </system.web>
 </configuration>

See Also

Recipe 13.1 and Chapter 20

Recipe 13.4. Pinpointing the Cause of an Exception

Problem

You want to identify problems only when an exception occurs.

Solution

Dynamically turn on page-level tracing from within the Catch block of your exception handler and
write to the trace log.

In the code-behind class for the page, use the .NET language of your choice to:

Set Page.Trace.IsEnabled = true in the Catch block of your exception handler.1.

Write to the trace log by using a TRace.Write of the form TRace.Write("Exception", "Message",
exc).

2.

Figure 13-3 shows the appearance of some exception information in the trace sequence. Examples
13-4, 13-5 through 13-6 show the .aspx file and VB and C# code-behind files for the application that
produces this result.

Discussion

ASP.NET processes and displays trace statements only when tracing is enabled. However, what if you
don't want to see the trace log all the time but only when an exception occurs? The answer is to turn
tracing on dynamically for the page. You can then write the exception information to the trace log
and debug the problem from there.

Our example that illustrates this solution is primitive, in that it forces an exception. Though this is not
something you would normally do in production code, it does allow us to show the infrastructure
needed to control tracing at runtime.

When the exception occurs, the exception handler enables the trace output by setting
TRace.IsEnabled to true. For the exception information to appear in the trace sequence, you must
use a TRace.Write of the form trace.Write("Exception", "Message", exc) where exc is the Exception

object defined in the catch statement.

Additionally, the code limits who sees the trace sequence, something you might want to consider if
you are loathe to show tracing information to remote users when an exception occurs. Before
activating tracing, the program checks to see whether the application is being run from the local

machine (i.e., the browser making the request is on the machine serving the request). It does so by
using the Request object to get the local IP address from the server variables. It compares this local
address to the loopback address, a special IP number (127.0.0.1) that is designated for the software
loopback interface of a machine. If it is not equal to the loopback address, a further comparison will
be made to see if the local IP address from the server variables is the same as the local IP address
that accompanied the request. The results of the comparison are used to determine whether to
enable tracing and display the exception information in the trace sequence.

Figure 13-3. Exception information in the trace sequence

The URLs for page requests on the local machine can be in the form
http://localhost/site/page or http://<server>/site/page (where <server> is the

local server name), so it is necessary to check for the loopback IP address as
well as the IP address. If the page were requested using the server name in the
URL, it would not be detected as a local request if the second check were not
performed.

See Also

Search IPAddress.IsLoopback method in the MSDN library for another similar approach.

Example 13-4. Pinpointing the cause of an exception (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH13TestDynamicPageTracingVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH13TestDynamicPageTracingVB"
 Title="Test Dynamic Page Tracing" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Pinpointing the Cause of an Exception (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr>
 <td align="center" class="LabelText">

 <input id="chkOnlyLocal" runat="server" type="checkbox" />
 Show Only If Request Is Local
 </td>
 </tr>
 <tr>
 <td align="center">

 <input id="btnCauseException" runat="server"
 type="button"
 value="Cause Exception"
 onserverclick="btnCauseException_ServerClick" />
 </td>
 </tr>
 </table>
</asp:Content>

http://localhost/site/page
http://<server>/site/page

Example 13-5. Pinpointing the cause of an exception code-behind (.vb)

Option Explicit On
Option Strict On

Imports System

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH13TestDynamicPageTracingVB.aspx
 ''' </summary>
 Partial Class CH13TestDynamicPageTracingVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the cause exception
 ''' button click event. It is responsible for causing an exception
 ''' to demonstrate dynamic tracing

 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnCauseException_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim list As ArrayList

 Try
 'force an exception by accessing the list without creating it first
 list.Add(0)

 Catch exc As Exception
 'enable tracing and output the exception information
 If ((Not chkOnlyLocal.Checked) OrElse _
 ((chkOnlyLocal.Checked) And (requestIsFromLocalMachine()))) Then
 Trace.IsEnabled = True
 Trace.Write("Exception", _
 "Demonstration of dynamic tracing", _
 exc)
 End If
 End Try
 End Sub 'btnCauseException_ServerClick

 '''***
 ''' <summary>
 ''' This routine checks to see if the page request came from the local
 ''' machine.
 ''' </summary>
 '''

 ''' <returns>True if the request is from the local machine. Else, False
 ''' </returns>
 '''
 ''' <remarks>
 ''' NOTE: Since requests on a local machine can be in the form
 ''' http://localhost/site/page or http://server/site/page,
 ''' two checks are required. The first is for the localhost
 ''' loopback IP address (127.0.0.1) and the second is for the actual
 ''' IP address of the requestor.
 ''' </remarks>
 Private Function requestIsFromLocalMachine() As Boolean
 Dim isLocal As Boolean
 Dim localAddress As String

 ' Is browser fielding request from localhost?
 isLocal = Request.UserHostAddress.Equals("127.0.0.1")
 If (Not isLocal) Then
 ' Get local IP address from server variables
 localAddress = Request.ServerVariables.Get("LOCAL_ADDR")

 ' Compare local IP with IP address that accompanied request
 isLocal = Request.UserHostAddress.Equals(localAddress)
 End If

 Return (isLocal)
 End Function 'IsRequestFromLocalMachine
 End Class 'CH13TestDynamicPageTracingVB
End Namespace

Example 13-6. Pinpointing the cause of an exception code-behind (.cs)

using System;
using System.Collections;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH13TestDynamicPageTracingCS.aspx
 /// </summary>
 public partial class CH13TestDynamicPageTracingCS : System.Web.UI.Page
 {

 ///***
 /// <summary>
 /// This routine provides the event handler for the cause exception
 /// button click event. It is responsible for causing an exception

 /// to demonstrate dynamic tracing
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnCauseException_ServerClick(object sender,
 System.EventArgs e)
 {
 ArrayList list = null;

 try
 {
 // force an exception by accessing the list without creating it first
 list.Add(0);
 } // try

 catch (Exception exc)
 {
 // enable tracing and output the exception information
 if ((!chkOnlyLocal.Checked) ||
 ((chkOnlyLocal.Checked) &&(requestIsFromLocalMachine())))
 {
 Trace.IsEnabled = true;
 Trace.Write("Exception",
 "Demonstration of dynamic tracing",
 exc);
 }
 } // catch
 } // btnCauseException_ServerClick

 ///***
 /// <summary>
 /// This routine checks to see if the page request came from the local
 /// machine.
 /// </summary>
 ///
 /// <returns>True if the request is from the local machine. Else, False
 /// </returns>
 ///
 /// <remarks>
 /// NOTE: Since requests on a local machine can be in the form
 /// http://localhost/site/page or http://server/site/page,
 /// two checks are required. The first is for the localhost
 /// loopback IP address (127.0.0.1) and the second is for the actual
 /// IP address of the requestor.
 /// </remarks>
 private Boolean requestIsFromLocalMachine()
 {
 Boolean isLocal;
 string localAddress;

 // Is browser fielding request from localhost?

 isLocal = Request.UserHostAddress.Equals("127.0.0.1");
 if (!isLocal)
 {
 // Get local IP address from server variables
 localAddress = Request.ServerVariables.Get("LOCAL_ADDR");
 // Compare local IP with IP address that accompanied request
 isLocal = Request.UserHostAddress.Equals(localAddress);
 }

 return (isLocal);
 } // IsRequestFromLocalMachine
 } // CH13TestDynamicPageTracingCS
}

Recipe 13.5. Uncovering Problems Within Web
Application Components

Problem

You want to identify problems within a component of your web application, but your attempts to do
so don't seem to work. When you make a call to Trace.Write in the business object, you get a
compilation error or the debugger jumps right over the call and no output appears in the trace
sequence.

Solution

Import the System.Web namespace and reference the current HTTP context when performing a
trace.Write from within the component.

In the component class, use the .NET language of your choice to:

Import the System.Web namespace.1.

Reference the current HTTP context when performing a TRace.Write,asin
HTTPContext.Current.Trace.Write.

2.

The sample component we've written to illustrate this solution appears in Examples 13-7 (VB) and
13-8 (C#). Example 13-9 shows the .aspx file used to test the sample component. The code-behind
for the test page appears in Examples 13-10 (VB) and 13-11 (C#). Figure 13-4 shows some sample
output, including the resulting trace sequence.

Discussion

For trace.Write to work from within a component, you must be able to access the context for the
current HTTP request. The easiest way to accomplish this is to import the System.Web namespace and
access the HTTPContext.Current property from within the component.

If a component is not part of your web application, you will need to add a
reference to the System.Web.dll assembly in your project. You do this in Visual
Studio by selecting the project containing the component in the Solution
Explorer. Right-click, and then select Add Reference. In the .NET tab of the
displayed dialog box, select System.Web.dll from the list of components, click
Select, and click OK.

The HTTPContext provides access to the trace object that allows your application to write trace
information, as shown in Examples 13-7 (VB) and 13-8 (C#).

There is one major caveat to this sample: the disadvantage of referencing the
current HTTP context in your component is that it does not allow the
component to be used in non-web applications. If you need to share
components in web and non-web applications, you may want to consider
creating a Listener subclass instead, as described in Recipe 13.5.

See Also

Recipe 13.5

Figure 13-4. Trace sequence from testing the component

Example 13-7. The business service class (.vb)

Option Explicit On
Option Strict On

Imports System

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a "web" component for demonstrating outputting

 ''' trace information from within a class
 ''' </summary>
 Public Class CH13TestWebComponentVB

 Private mStr As String

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the string in the object
 ''' </summary>
 Public Property theString() As String
 Get
 Return (mStr)
 End Get
 Set(ByVal Value As String)
 mStr = Value
 End Set
 End Property 'theString

 '''***
 ''' <summary>
 ''' This routine provides the ability to add the passed string to the
 ''' private string in this object one or more times.
 ''' </summary>
 '''
 ''' <param name="stringToAdd">Set to the string that is part of this object
 ''' </param>
 ''' <param name="numberOfCopies">Set to the number of copies to add
 ''' </param>
 Public Sub addToString(ByVal stringToAdd As String, _
 ByVal numberOfCopies As Integer)
 Dim counter As Integer
 Dim startTime As DateTime
 Dim elapsedTime As TimeSpan
 Dim averageTime As Double

 'output trace message indicating the start of the concatenations
 HttpContext.Current.Trace.Write("In Component", _
 "Before performing concatenations")

 'concatenation the passed string as requested
 startTime = DateTime.Now()
 For counter = 1 To numberOfCopies
 mStr &= stringToAdd
 Next

 'output trace message indicating the end of the concatenations
 HttpContext.Current.Trace.Write("In Component", _
 "After performing concatenations")

 'calculate the elapsed time for the string concatenations
 elapsedTime = DateTime.Now.Subtract(startTime)

 'Write average time per concatenation in milliseconds to trace sequence
 averageTime = elapsedTime.TotalMilliseconds / numberOfCopies
 HttpContext.Current.Trace.Write("In Component", _
 "Aver/concat = " &averageTime.ToString("0.0000"))
 End Sub 'addToString

 '''***
 ''' <summary>
 ''' This constructor creates the object and initializes the variables
 ''' in the object
 ''' </summary>
 Public Sub New()
 'initialize string in object
 mStr = ""
 End Sub 'New
 End Class 'CH13TestWebComponentVB
End Namespace

Example 13-8. The business service class (.cs)

using System;
using System.Data;
using System.Data.SqlClient;
using System.Web;
using System.Web.Caching;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a "web" component for demonstrating outputting
 /// trace information from within a class
 /// </summary>
 public class CH13TestWebComponentCS
 {
 private String mStr;

 ///***
 /// <summary>
 /// This property provides the ability to get/set the string in the object
 /// </summary>
 public String theString
 {
 get
 {
 return(mStr);
 }
 set

 {
 mStr = value;
 }
 } // theString

 ///***
 /// <summary>
 /// This routine provides the ability to add the passed string to the
 /// private string in this object one or more times.
 /// </summary>
 ///

 /// <param name="stringToAdd">Set to the string that is part of this object
 /// </param>
 /// <param name="numberOfCopies">Set to the number of copies to add
 /// </param>
 public void addToString(String stringToAdd,
 int numberOfCopies)
 {
 int counter;
 DateTime startTime;
 TimeSpan elapsedTime;
 Double averageTime;

 // output trace message indicating the start of the concatenations
 HttpContext.Current.Trace.Write("In Component",
 "Before performing concatenations");

 // concatenation the passed string as requested
 startTime = DateTime.Now;
 for (counter = 1; counter <numberOfCopies; counter++)
 {
 mStr += stringToAdd;
 }

 // output trace message indicating the end of the concatenations
 HttpContext.Current.Trace.Write("In Component",
 "After performing concatenations");

 // calculate the elapsed time for the string concatenations
 elapsedTime = DateTime.Now.Subtract(startTime);

 // Write average time per concatenation in milliseconds to trace sequence
 averageTime = elapsedTime.TotalMilliseconds / numberOfCopies;
 HttpContext.Current.Trace.Write("In Component",
 "Aver/concat = " + averageTime.ToString("0.0000"));

 } // addToString

 ///***
 /// <summary>
 /// This constructor creates the object and initializes the variables

 /// in the object
 /// </summary>
 public CH13TestWebComponentCS()
 {
 // initialize string in object
 mStr = "";
 } // CH13TestWebComponentCS
 } // CH13TestWebComponentCS
}

Example 13-9. Code to test tracing in the component (.aspx)

<%@ Page Trace="True" Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH13TestTraceWithinWebComponentVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH13TestTraceWithinWebComponentVB"
 Title="Test Trace Within Web Component" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Tracing Within Web Components (VB)
 </div>
</asp:Content>

Example 13-10. Code to test tracing in the component code-behind (.vb)

Option Explicit On
Option Strict On

Imports System

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH13TestTraceWithinWebComponentVB.aspx
 ''' </summary>
 Partial Class CH13TestTraceWithinWebComponentVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''

 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim webComponent As CH13TestWebComponentVB

 'create the "web aware" component
 webComponent = New CH13TestWebComponentVB

 'add a string to the string in the component 1000 times
 webComponent.addToString("1234567890", _
 1000)

 End Sub 'Page_Load
 End Class 'CH13TestTraceWithinWebComponentVB
End Namespace

Example 13-11. Code to test tracing in the component code-behind (.cs)

using System;
using System.Configuration;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH13TestTraceWithinWebComponentCS.aspx
 /// </summary>
 public partial class CH13TestTraceWithinWebComponentCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 CH13TestWebComponentCS webComponent = null;

 // create the "web aware" component
 webComponent = new CH13TestWebComponentCS();

 // add a string to the string in the component 1000 times
 webComponent.addToString("1234567890",

 1000);
 } // Page_Load
 } // CH13TestTraceWithinWebComponentCS
}

Recipe 13.6. Uncovering Problems Within Dual-Use
Components

Problem

Because you intend to use a business component in web and non-web applications, you want to
enable tracing within the component without having to reference its current HTTP context.

Solution

Modify web.config, as shown in Example 13-12, to add the WebPageTraceListener listener to the
Listeners collection and make it available to your application.

In your non-web-specific components, add plain-vanilla TRace.Write statements to output any
desired information to the trace log, as shown in our sample component in Examples 13-13 (VB) and
13-14 (C#).

A web form and the associated VB and C# code-behind we've written to test the tracing in our non-
web-specific component are shown in Examples 13-15, 13-16 through 13-17.

Discussion

The .NET Framework uses the concept of trace listeners in its handling of trace messages. By default,
the TraceListeners collection contains a single listener (DefaultTraceListener) when you enable
tracing. Additional listeners can be added via the web.config file or programmatically. When a
TRace.Write is executed, all listeners in the TRaceListeners collection receive and process the
message. This mechanism allows you to add trace statements to your components without the need
to add a reference to the System.Web assembly.

ASP.NET 1.x does not provide any functionality to write trace information within your application's
business and data tiers and display it in the page trace data. If you need this functionality for your 1.x
application, you will have to write a custom trace listener. ASP.NET 2.0 provides the
WebPageTraceListener class to support writing trace information from anywhere in your application
and displaying it in the page trace information.

The custom WebPageTraceListener is available by adding the entry to web.config, shown in Example
13-12.

When adding a WebPageTraceListener to your web.config file, you must specify
the type correctly. The type attribute must be specified as shown here:

 type="namespace, assembly"

The namespace must be the fully qualified namespace of the
WebPageTraceListener. The assembly must be the name of the assembly
containing the WebPageTraceListener (System.Web).

Our example business service class is nearly identical to the one we used in Recipe 13.4. Here are the
differences:

The imports (or using) statement at the beginning of the class is changed from System.Web to
System.Diagnostics. (The System.Diagnostics namespace provides the abstract base class for
the trace listeners.)

The HttpContext.Current.Trace.Write statements are changed to trace.Write.

Our test web form, like our example business service class, is nearly identical to our test web form
used in Recipe 13.4. The only difference is that it uses our example business service class.

There are two advantages to the approach this recipe takes over the previous recipe:

You can use plain-vanilla TRace.Writes in your component; they don't have to reference the
current HTTP context, thus maintaining the component's compatibility for non-web uses.

You can turn tracing on and off via a configuration file.

All classes containing Trace statements must be compiled with tracing enabled.
If tracing is not enabled, the Trace statements will not be compiled into the
output and, thus, will not be executed in the application.

Trace statements can be enabled by explicitly adding the TRACE compiler
directive to the top of the classes in which you want tracing enabled:

 #CONST TRACE = true

 #define TRACE

Alternately, tracing can be enabled for the entire application in web.config:

 <configuration>

 …

 <system.codedom>
 <compilers>
 <compiler language="VB"
 extension=".vb"
 compilerOptions="/d:Trace=true"
 type="Microsoft.VisualBasic.VBCodeProvider,
 System,
 Version=2.0.0.0,
 Culture=neutral,
 PublicKeyToken=b77a5c561934e089" />
 </compilers>
 </system.codedom>
 </configuration>

 <configuration>

 …

 <system.codedom>
 <compilers>
 <compiler language="c#;cs;csharp"
 extension=".cs"
 compilerOptions="/d:TRACE"
 type="Microsoft.CSharp.CSharpCodeProvider,
 System,
 Version=2.0.3500.0,
 Culture=neutral,
 PublicKeyToken=b77a5c561934e089" />

 </compilers>
 </system.codedom>

 …

 </configuration>

See Also

Recipe 13.4

Example 13-12. Web.config settings to add the trace listener

<trace autoflush="true" indentsize="0">
 <listeners>
 <add name="WebPageTraceListener"
 type="System.Web.WebPageTraceListener,
 System.Web,
 Version=2.0.3600.0,
 Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a" />
 </listeners>
</trace>

Example 13-13. Business service class with plain-vanilla Trace.Writes
(.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Diagnostics

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a "non-web" component for demonstrating outputting
 ''' trace information from within a class
 ''' </summary>
 Public Class CH13TestNonWebComponentVB

 Private mStr As String

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the string in the object
 ''' </summary>
 Public Property theString() As String
 Get
 Return (mStr)
 End Get
 Set(ByVal Value As String)
 mStr = Value
 End Set
 End Property 'theString

 '''***

 ''' <summary>
 ''' This routine provides the ability to add the passed string to the
 ''' private string in this object one or more times.
 ''' </summary>
 '''
 ''' <param name="stringToAdd">Set to the string that is part of this object
 ''' </param>
 ''' <param name="numberOfCopies">Set to the number of copies to add
 ''' </param>
 Public Sub addToString(ByVal stringToAdd As String, _
 ByVal numberOfCopies As Integer)
 Dim counter As Integer
 Dim startTime As DateTime
 Dim elapsedTime As TimeSpan
 Dim averageTime As Double

 'output trace message indicating the start of the concatenations
 Trace.Write("In Non-web Component", _
 "Before performing concatenations")

 'concatenation the passed string as requested
 startTime = DateTime.Now()
 For counter = 1 To numberOfCopies
 mStr &= stringToAdd
 Next

 'output trace message indicating the end of the concatenations
 Trace.Write("In Non-web Component", _
 "After performing concatenations")

 'calculate the elapsed time for the string concatenations
 elapsedTime = DateTime.Now.Subtract(startTime)

 'Write average time per concatenation in milliseconds to trace sequence
 averageTime = elapsedTime.TotalMilliseconds / numberOfCopies
 Trace.Write("In Non-web Component", _
 "Aver/concat = " &averageTime.ToString("0.0000"))
 End Sub 'addToString

 '''***
 ''' <summary>
 ''' This constructor creates the object and initializes the variables
 ''' in the object
 ''' </summary>
 Public Sub New()
 'initialize string in object
 mStr = ""
 End Sub 'New
 End Class 'CH13TestNonWebComponentVB
End Namespace

Example 13-14. Business service class with plain-vanilla Trace.Writes (.cs)

using System;
using System.Diagnostics;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a "non-web" component for demonstrating outputting
 /// trace information from within a class
 /// </summary>
 public class CH13TestNonWebComponentCS
 {
 private String mStr;

 ///***
 /// <summary>
 /// This property provides the ability to get/set the string in the object
 /// </summary>
 public String theString
 {
 get
 {
 return(mStr);
 }
 set
 {
 mStr = value;
 }
 } // theString

 ///***
 /// <summary>
 /// This routine provides the ability to add the passed string to the
 /// private string in this object one or more times.
 /// </summary>
 ///
 /// <param name="stringToAdd">Set to the string that is part of this object
 /// </param>
 /// <param name="numberOfCopies">Set to the number of copies to add
 /// </param>
 public void addToString(String stringToAdd,
 int numberOfCopies)
 {
 int counter;
 DateTime startTime;
 TimeSpan elapsedTime;
 Double averageTime;

 // output trace message indicating the start of the concatenations
 Trace.Write("In Non-web Component",
 "Before performing concatenations");

 // concatenation the passed string as requested
 startTime = DateTime.Now;
 for (counter = 1; counter <numberOfCopies; counter++)
 {
 mStr += stringToAdd;
 }

 // output trace message indicating the end of the concatenations
 Trace.Write("In Non-web Component",
 "After performing concatenations");

 // calculate the elapsed time for the string concatenations
 elapsedTime = DateTime.Now.Subtract(startTime);

 // Write average time per concatenation in milliseconds to trace sequence
 averageTime = elapsedTime.TotalMilliseconds / numberOfCopies;
 Trace.Write("In Non-web Component",
 "Aver/concat = " + averageTime.ToString("0.0000"));
 } // addToString

 ///***
 /// <summary>
 /// This constructor creates the object and initializes the variables
 /// in the object
 /// </summary>
 public CH13TestNonWebComponentCS()
 {
 // initialize string in object
 mStr = "";
 } // CH13TestNonWebComponentCS
 } // CH13TestNonWebComponentCS
}

Example 13-15. Code to test tracing in the non-web component (.aspx)

<%@ Page Trace="true" Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH13TestTraceWithinNonWebComponentVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH13TestTraceWithinNonWebComponentVB"
 Title="Test Trace Within NonWeb Component" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Tracing Within Non-Web Components (VB)
 </div>
</asp:Content>

Example 13-16. Code to test tracing in the non-web component code-
behind (.vb)

Option Explicit On
Option Strict On

Imports System

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH13TestTraceWithinNonWebComponentVB.aspx
 ''' </summary>
 Partial Class CH13TestTraceWithinNonWebComponentVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim nonWebComponent As CH13TestNonWebComponentVB
 'create the "non-web aware" component
 nonWebComponent = New CH13TestNonWebComponentVB

 'add a string to the string in the component 1000 times
 nonWebComponent.addToString("1234567890", _
 1000)
 End Sub 'Page_Load
 End Class 'CH13TestTraceWithinNonWebComponentVB
End Namespace

Example 13-17. Code to test tracing in the non-web component code-
behind (.cs)

using System;
using System.Configuration;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH13TestTraceWithinNonWebComponentCS.aspx
 /// </summary>
 public partial class CH13TestTraceWithinNonWebComponentCS :
 System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)

 {
 CH13TestNonWebComponentCS nonwebComponent = null;
 // create the "non-web aware" component
 nonwebComponent = new CH13TestNonWebComponentCS();

 // add a string to the string in the component 1000 times
 nonWebComponent.addToString("1234567890",
 1000);
 } // Page_Load
 } // CH13TestTraceWithinNonWebComponentCS
}

Recipe 13.7. Writing Trace Data to the Event Log with
Controllable Levels

Problem

You want your application to output trace information to the event log and, at the same time, control
what level of information is output.

Solution

Modify web.config to:

Add the EventLogTraceListener listener to the Listeners collection and make it available to
your application, as shown in Example 13-18.

1.

Add the TraceSwitch, as shown in Example 13-18.2.

In the classes you want to output trace information, create a TRaceSwitch object using the name of
the traceSwitch you added to the web.config file, and use the WriteIf and WriteLineIf methods of
the TRace class to output the required messages, as we demonstrate in our sample application shown
in Examples 13-19, 13-20 through 13-21.

Discussion

The technique we advocate for writing trace information to the event log involves adding the
EventLogTraceListener to the listener collection in web.config to write the trace information to the
event log. We find it useful to control the level of messages output to the event log, such as
outputting only error messages or outputting error and warning messages. Controlling the level of
messages that are output involves the use of switches (more about this in a minute).

As discussed in Recipe 13.5, you can add additional listeners to the traceListeners collection via the
web.config file. When a TRace.Write or trace.WriteLine is executed, all listeners in the
TRaceListeners collection receive and process their output.

The support that the .NET Framework provides for TRaceListeners is more powerful when coupled
with switchesw. Switches provide the ability to control when trace information is sent to the
traceListeners configured for your application.

Two switch types are provided in the .NET Framework: BooleanSwitch and TRaceSwitch. The
BooleanSwitch class supports two states (on and off) that turn the trace output on and off. The

traceSwitch class supports five levels (off, error, warning, info, and verbose) to provide the ability to
output messages only for the configured levels.

You must first add the switch and listener information to your web.config file, as shown in Example
13-18. The switch data includes the name of the switch and the value for the switch. The switch
name is the name used in your code to access the switch configuration. The value defines the
message level to output, as shown in Table 13-1.

Table 13-1. Switch level values

Value Meaning

0 Output no messages

1 Output only error messages

2 Output error and warning messages

3 Output error, warning, and informational messages

4 Output all messages

To output trace messages that use the switch information, you need to create a traceSwitch object
passing the name of the switch and a general description of the switch. After creating the
traceSwitch, you use it with the WriteIf and WriteLineIf methods of the trace class to output your
messages. The first parameter of either method defines the level for which the message should be
output. In other words, if you only want the message to be output when the switch is configured for
"warnings," set the first parameter to the traceWarning property of the switch you created. The
second parameter should be set to the message you want to output.

We are not outputting the trace information to the web form, as we have in
other examples in this chapter, so it is unnecessary to add the TRace="true"
statement to the @ Page directive in the .aspx page or to turn on application-
level tracing in the web.config file.

The name used in the constructor of the TRaceSwitch must match the name of
the switch in the web.config file. If you fail to use the exact name defined in the
web.config file, you can wind up spending a great deal of time trying to
determine why your messages are not being output as expected.

In a web application, referencing the TRace class without further qualifying the
namespace will actually reference the System.Web.Trace class, which does not
support the WriteIf and WriteLineIf methods. To access the TRace class in the
System.Diagnostics namespace that provides the WriteIf and WriteLineIf
methods, fully qualify the reference:

 System.Diagnostics.Trace.WriteIf(level,
 Message)

See Also

Recipe 13.5

Example 13-18. web.config settings for adding the trace listener and trace
switch

<configuration>

 …

 <system.diagnostics>
 <switches>
 <!-- This switch controls messages written to the event log.
 To control the level of message written to the log set
 the value attribute as follows:
 "0" - output no messages
 "1" - output only error messages
 "2" - output error and warning messages
 "3" - output error, warning, and informational messages
 "4" - output all messages
 -->
 <add name="EventLogSwitch" value="1"/>
 </switches>

 <trace autoflush="true" indentsize="0">
 <listeners>
 <add name="EventLogTraceListener"
 type="System.Diagnostics.EventLogTraceListener,
 System,
 Version=2.0.0.0,
 Culture=neutral,
 PublicKeyToken=b77a5c561934e089"
 initializeData="Application" />

 </listeners>
 </trace>
 </system.diagnostics>
</configuration>

Example 13-19. Writing trace information as a function of trace level
(.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH13TestTracingWithLevelControlVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH13TestTracingWithLevelControlVB"

 Title="Test Tracing With Level Control" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Tracing With Output To Event Log with Trace Levels (VB)
 </div>
</asp:Content>

Example 13-20. Writing trace information as a function of trace level (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Diagnostics

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH13TestTracingWithLevelControlVB.aspx
 ''' </summary>
 Partial Class CH13TestTracingWithLevelControlVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>

 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim generalTraceSwitch As TraceSwitch

 'create the trace switch
 generalTraceSwitch = New TraceSwitch("EventLogSwitch", _
 "Used throughout the application")

 'write trace data if error level is enabled
 System.Diagnostics.Trace.WriteIf(generalTraceSwitch.TraceError, _
 "This is an error message")

 'write trace data if warning level is enabled
 System.Diagnostics.Trace.WriteIf(generalTraceSwitch.TraceWarning, _
 "This is an warning message")

 'write trace data if info level is enabled
 System.Diagnostics.Trace.WriteIf(generalTraceSwitch.TraceInfo, _
 "This is an info message")

 'write trace data if verbose level is enabled
 System.Diagnostics.Trace.WriteIf(generalTraceSwitch.TraceVerbose, _
 "This is an verbose message")

 End Sub 'Page_Load
 End Class 'CH13TestTracingWithLevelControlVB
End Namespace

Example 13-21. Writing trace information as a function of trace level (.cs)

using System;
using System.Diagnostics;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH13TestTracingWithLevelControlCS.aspx
 /// </summary>
 public partial class CH13TestTracingWithLevelControlCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///

 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 TraceSwitch generalTraceSwitch = null;

 // create the trace switch
 generalTraceSwitch = new TraceSwitch("EventLogSwitch",
 "Used throughout the application");

 // write trace data if error level is enabled
 System.Diagnostics.Trace.WriteIf(generalTraceSwitch.TraceError,
 "This is an error message");

 // write trace data if warning level is enabled
 System.Diagnostics.Trace.WriteIf(generalTraceSwitch.TraceWarning,
 "This is an warning message");

 // write trace data if info level is enabled
 System.Diagnostics.Trace.WriteIf(generalTraceSwitch.TraceInfo,
 "This is an info message");

 // write trace data if verbose level is enabled
 System.Diagnostics.Trace.WriteIf(generalTraceSwitch.TraceVerbose,
 "This is an verbose message");
 } // Page_Load
 } // CH13TestTracingWithLevelControlCS
}

Recipe 13.8. Sending Trace Data via Email with
Controllable Levels

Problem

You want your application to email trace information and, at the same time, control what level of
information is sent.

Solution

Create your own trace listener that inherits from the traceListener class and overrides the Write and
WriteLine methods to email their output. A sample trace listener we've written to demonstrate this
solution is shown in Example 13-22 (VB) and Example 13-23 (C#).

Next, modify your web.config file to add the custom TRaceListener and TRaceSwitch, as shown in
Example 13-24 (VB) and Example 13-25 (C#).

In the classes you want to output trace information, create a traceSwitch object using the name of
the TRaceSwitch you added to the web.config file, and then use the WriteIf and WriteLineIf
methods of the TRace class to output the required messages, as described in Recipe 13.6.

Discussion

The technique we advocate for emailing trace information involves creating your own custom trace
listener. The purpose of the custom trace listener is to override the Write and WriteLine methods
such that the information normally written to the trace sequence is emailed instead, as shown in
Examples 13-22 (VB) and 13-23 (C#). When building a trace listener for this purpose, we find it useful
to control the level of messages emailed, such as sending only error messages or sending error and
warning messages. Controlling the level of messages that are output involves the use of switches, as
described in Recipe 13.6.

To provide the ability to configure the parameters of the email sent, we have added configuration
elements to the <appSettings> element in web.config, as shown below. These provide the ability to
change the to address, from address, subject, and email server used to send the email, without
having to recompile the code.

 <configuration>

 …

 <appSettings>
 <add key="EmailServer" value="mail.adelphia.net" />
 <add key="CH13EmailListenerToAddress" value="msmith@smith.com" />
 <add key="CH13EmailListenerFromAddress" value="appMessage@myapp.com" />

 <add key="CH13EmailListererSubject" value="Application Message" />
 </appSettings>

 …

 </configuration>

See Also

Recipes 13.5 and 13.6

Example 13-22. Custom TraceListener for sending email (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Diagnostics
Imports System.Net.Mail

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides a trace listener that sends all trace messages
 ''' via email.
 ''' </summary>
 Public Class CH13EmailListenerVB
 Inherits TraceListener

 '''***
 ''' <summary>
 ''' This routine writes the passed message to the event log
 ''' </summary>
 '''
 ''' <param name="message">Set to the message to write</param>
 Public Overloads Overrides Sub Write(ByVal message As String)
 sendEmail(message)
 End Sub 'Write

 '''***
 ''' <summary>
 ''' This routine writes the passed message to the event log

 ''' </summary>
 '''
 ''' <param name="category">Set to the category for the message</param>
 ''' <param name="message">Set to the message to write</param>
 Public Overloads Overrides Sub Write(ByVal category As String, _
 ByVal message As String)
 sendEmail(category &": " &message)
 End Sub 'Write

 '''***
 ''' <summary>
 ''' This routine writes the passed message to the event log with a CR/LF
 ''' </summary>
 '''

 ''' <param name="message">Set to the message to write</param>
 Public Overloads Overrides Sub WriteLine(ByVal message As String)
 sendEmail(message)
 End Sub 'WriteLine

 '''***
 ''' <summary>
 ''' This routine writes the passed message to the event log with a CR/LF
 ''' </summary>
 '''
 ''' <param name="category">Set to the category for the message</param>
 ''' <param name="message">Set to the message to write</param>
 Public Overloads Overrides Sub WriteLine(ByVal category As String, _
 ByVal message As String)
 sendEmail(category &": " &message)
 End Sub 'WriteLine

 '''***
 ''' <summary>
 ''' This routine sends the passed message to the email address(es)
 ''' defined in web.config
 ''' </summary>
 '''
 ''' <param name="message"></param>
 Private Sub sendEmail(ByVal message As String)
 Dim toAddress As String
 Dim fromAddress As String
 Dim subject As String
 Dim client As SmtpClient
 Dim emailServer As String

 'get the to/from addressses and subject from web.config
 toAddress = ConfigurationManager.AppSettings("CH13EmailListenerToAddress")
 fromAddress = ConfigurationManager.AppSettings("CH13EmailListenerFromAddress")
 subject = ConfigurationManager.AppSettings("CH13EmailListererSubject")

 'send the message

 emailServer = ConfigurationManager.AppSettings("EmailServer")
 client = New SmtpClient(emailServer)
 client.Send(fromAddress, _
 toAddress, _
 subject, _
 message)
 End Sub 'sendEmail
 End Class 'CH13EmailListenerVB
End Namespace

Example 13-23. Custom TraceListener for sending email (.cs)

using System;
using System.Configuration;
using System.Diagnostics;
using System.Net.Mail;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides a "non-web" component for demonstrating outputting
 /// trace information from within a class
 /// </summary>
 public class CH13EmailListenerCS : TraceListener
 {
 ///***
 /// <summary>
 /// This routine writes the passed message to the event log
 /// </summary>
 ///
 /// <param name="message">Set to the message to write</param>
 public override void Write(String message)
 {
 sendEmail(message);
 } // Write

 ///***
 /// <summary>
 /// This routine writes the passed message to the event log
 /// </summary>
 ///
 /// <param name="category">Set to the category for the message</param>
 /// <param name="message">Set to the message to write</param>
 public override void Write(String category,
 String message)
 {
 sendEmail(category + ": " + message);

 } // Write

 ///***
 /// <summary>
 /// This routine writes the passed message to the event log with a CR/LF
 /// </summary>
 ///
 /// <param name="message">Set to the message to write</param>
 public override void WriteLine(String message)
 {
 sendEmail(message);
 } // WriteLine

 ///***
 /// <summary>
 /// This routine writes the passed message to the event log with a CR/LF
 /// </summary>
 ///
 /// <param name="category">Set to the category for the message</param>
 /// <param name="message">Set to the message to write</param>
 public override void WriteLine(String category,
 String message)

 {
 sendEmail(category + ": " + message);
 } // WriteLine

 ///***
 /// <summary>
 /// This routine sends the passed message to the email address(es)
 /// defined in web.config
 /// </summary>
 ///
 /// <param name="message"></param>
 private void sendEmail(String message)
 {
 String toAddress;
 String fromAddress;
 String subject;
 SmtpClient client;
 String emailServer;

 // get the to/from addressses and subject from web.config
 toAddress = ConfigurationManager.
 AppSettings["CH13EmailListenerToAddress"];
 fromAddress = ConfigurationManager.
 AppSettings["CH13EmailListenerFromAddress"];
 subject = ConfigurationManager.
 AppSettings["CH13EmailListererSubject"];

 // send the message
 emailServer = ConfigurationManager.AppSettings["EmailServer"];

 client = new SmtpClient(emailServer);
 client.Send(fromAddress,
 toAddress,
 subject,
 message);
 } // sendEmail
 } // CH13EmailListenerCS
}

Example 13-24. web.config settings for adding the trace listener and trace
switch (.vb)

<configuration>
 <appSettings>
 <add key="EmailServer" value="mail.adelphia.net" />
 <add key="CH13EmailListenerToAddress" value=" msmith@smith.com" />
 <add key="CH13EmailListenerFromAddress" value="appMessage@myapp.com" />
 <add key="CH13EmailListererSubject" value="Application Message" />
 </appSettings>

 …

 <system.diagnostics>
 <switches>

 <!-- This switch controls messages written to the event log.
 To control the level of message written to the log set
 the value attribute as follows:
 "0" - output no messages
 "1" - output only error messages
 "2" - output error and warning messages
 "3" - output error, warning, and informational messages
 "4" - output all messages
 -->
 <add name="EventLogSwitch" value="1"/>
 </switches>

 <trace autoflush="true" indentsize="0">
 <listeners>
 <add name="CookbookEventLogListener"
 type="ASPNetCookbook.VBExamples.CH13EmailListenerVB, __code" />
 </listeners>
 </trace>
 </system.diagnostics>
</configuration>

Example 13-25. web.config settings for adding the trace listener and trace
switch (.cs)

<configuration>
 <appSettings>
 <add key="EmailServer" value="mail.adelphia.net" />
 <add key="CH13EmailListenerToAddress" value=" msmith@smith.com" />
 <add key="CH13EmailListenerFromAddress" value="appMessage@myapp.com" />
 <add key="CH13EmailListererSubject" value="Application Message" />
 </appSettings>

 …

 <system.diagnostics>
 <switches>
 <!-- This switch controls messages written to the event log.
 To control the level of message written to the log set
 the value attribute as follows:
 "0" - output no messages
 "1" - output only error messages
 "2" - output error and warning messages
 "3" - output error, warning, and informational messages
 "4" - output all messages
 -->
 <add name="EventLogSwitch" value="1"/>
 </switches>

 <trace autoflush="true" indentsize="0">
 <listeners>
 <add name="CookbookEventLogListener"
 type="ASPNetCookbook.CSExamples.CH13EmailListenerCS, __code" />
 </listeners>

 </trace>
 </system.diagnostics>
</configuration>

Recipe 13.9. Using a Breakpoint to Stop Execution of an
Application When a Condition Is Met

Problem

You have some fairly complicated code that is having a problem after many iterations, and you need
an easy way to stop execution when the conditions are met.

Solution

Set a conditional breakpoint using an expression in the Visual Studio debugger. The value of the
expression will determine whether program execution breaks when the breakpoint is hit.

To set a conditional breakpoint in the Visual Studio debugger:

Set a breakpoint in the usual fashion by clicking in the gray border to the left of the line where
you want execution to break.

1.

Right-click the breakpoint and select the Condition command from the menu.2.

Use the Conditions dialog box to set the conditions for the break, as shown in Figure 13-5 .
Typically, you'll set a conditional expression like any of these:

 counter = 5000

 i=100 AND j=150

 message.Length > 0

 counter == 5000

 i==100 && j==150

 message.Length > 0

3.

When you run the program, execution will break at the location when the expression is true or has
changed, depending on the option you've chosen in the dialog box.

Discussion

You can view the contents of the Visual Studio Locals window to verify the values of the variables
involved in the expression. Access the Locals window by selecting the Debug Windows Locals
command; the Locals window is accessible only when the Visual Studio Debugger is active.

Figure 13-5. Setting a conditional breakpoint in Visual Studio

Another approach is to set a hit count by selecting the Hit Count command from the menu. The hit
count lets you specify how many times the breakpoint is hit before the debugger enters break mode.
For example, you might choose to break when the hit count is equal to 100. The debugger will break
only when the hit count reaches the target number.

See Also

All the rules for setting breakpoint expressions are available from Visual Studio Help under the
"Expressions in the Debugger" topic, which is accessible from the Breakpoint Properties dialog box
(the expression evaluator accepts most expressions written in Visual Basic or C#).

Chapter 14. Web Services

14.0 Introduction

Web services hold the promise of revolutionizing the way that organizations of all kinds share data.
They provide a standard, universal means of data exchange within the grasp of the average
programmer. And beyond that, they are easy to get started with.

For those new to the subject, web services are modular applications that can be described, published,
located, and invoked over standard Internet protocols using standardized XML messaging.
Applications use the XML-based SOAP for the exchange of information in a loosely coupled,
distributed environment. Applications posted to the Web are described with the Web Services
Description Language (WSDL) and are registered with a private or public service registry using the
UDDI standard, such as http://uddi.microsoft.com or http://uddi.ibm.com.

This chapter shows you how to deal with a number of common web service scenarios and overcome
some of the typical problems you might encounter. Detailed coverage of web services would require
an entire book. For a tutorial on web services, we recommend Programming .NET Web Services, by
Alex Ferrara and Matthew Mac-Donald (O'Reilly).

Web Service Enhancements (WSE) 2.0 is an add-on for Visual Studio that
simplifies the development and deployment of secure web services. For more
information on WSE, see
http://msdn.microsoft.com/webservices/webservices/building/wse/default.aspx.

http://uddi.microsoft.com
http://uddi.ibm.com
http://msdn.microsoft.com/webservices/webservices/building/wse/default.aspx

Recipe 14.2. Creating a Web Service

Problem

You want to create your own web service.

Solution

Use Visual Studio 2005 to create a new web service and then add methods to expose the functionality
required for your web service.

To create the new web service:

On the Visual Studio 2005 File menu, choose New Web Site….1.

When the New Web Site dialog box is displayed, select the ASP.NET Web Site template, the
desired language, and the location for the web site.

2.

Right-click on the new web site in the Solution Explorer, select Add New Item, and select the
Web Service template.

3.

Enter the name of the web service in the Name text box, select the desired language, and click
Add.

4.

Visual Studio 2005 creates a folder for the web site that contains an .asmx file and code-behind files
for the web service, like those shown in Examples 14-2 , 14-3 , 14-4 through 14-5 . The web service
is fully functional at this point but is a shell with no useful functionality.

Visual Studio 2005 places the code-behind files for web services in the
App_Code directory instead of placing them in the same folder as the .asmx
file, as Visual Studio 2003 did.

You need to add methods to the code-behind to expose the functionality required for your web
service. The code-behind shown in Examples 14-6 (VB) and 14-7 (C#) shows a method we have
added to our example web service to return a list of books from a database.

You can add a web service to an existing web application by selecting the web
site in the Solution Explorer and then selecting Add New Item from the Website
menu. When the Add New Item dialog box is displayed, select the Web Service
template, enter the desired name of the web service, enter the desired
language, and click Add. Any number of web services can be added to a web
application.

Discussion

Web services are a useful tool for communicating with remote systems or with systems built with
technologies different from those used to build your application.

Web services are convenient for wrapping legacy COM components. This is
especially true when you need to access the functionality of those components
from a different domain than where the components reside and the domains do
not have a trust relationship.

Visual Studio 2005 simplifies the creation of web services. With a few menu selections, you can
quickly build a web service shell that you can use to create the functionality required by your
application.

In ASP.NET, a web service consists of an .asmx file and a code-behind class that provides the
required functionality. The content of an .asmx file consists of a single line that contains a WebService
directive. The line is like the @ Page directive used in the .aspx file but with Page replaced by
WebService :

 <%@ WebService Language="VB"
 CodeBehind="~/App_Code/CH14QuickWebServiceVB1.vb"
 Class="VBWebServices.CH14QuickWebServiceVB1" %>

 <%@ WebService Language="C#"
 CodeBehind="~/App_Code/CH14QuickWebServiceCS1.cs"
 Class="CSWebServices.CH14QuickWebServiceCS1" %>

The code-behind file for a web service consists of a class that inherits from
System.Web.Services.WebService .

 Public Class CH14QuickWebServiceVB1
 Inherits System.Web.Services.WebService
 …

 End Class 'CH14QuickWebServiceVB1

 public class CH14QuickWebServiceCS1 : System.Web.Services.WebService
 {
 …
 } // CH14QuickWebServiceCS1

In addition, Visual Studio 2005 adds a WebService attribute to the class definition. Though not
explicitly required, the WebService attribute lets you define the namespace for the web service. By
default, the namespace is set to http://tempuri.org/ , but you will typically want to set this to the URI
representing your company, such as http://www.dominiondigital.com/ .

 <WebService(Namespace:="http://www.dominiondigital.com/")> _
 <WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
 Public Class CH14QuickWebServiceVB1
 Inherits System.Web.Services.WebService

 …

 End Class 'CH14QuickWebServiceVB1

 [WebService(Namespace = "http://www.dominiondigital.com/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 public class CH14QuickWebServiceCS1 : System.Web.Services.WebService
 {
 …
 } // CH14QuickWebServiceCS1

Visual Studio 2005 automatically adds a WebServiceBinding attribute to web
service classes, as shown previously. This attribute indicates that the web
service conforms to the Web Services Interoperability Basic Profile specification
(WS-I BP 1.1). For more information on the web services interoperability, see
http://www.ws-i.org .

To add useful functionality to the web service, you create methods as you would for any other class,
except that you precede each method definition with a WebMethod attribute. The WebMethod attribute
informs Visual Studio 2005 the method is to be exposed as part of the web service.

For instance, the getBookList method shown in our example queries a database for a list of books
and returns the list in a DataSet . The number of books retrieved is defined by the numberOfBooks
parameter. Nothing special is done in the code to support the web service. Visual Studio 2005 and the
.NET Framework take care of the creation of the XML and the SOAP wrapper used to transfer the

http://www.ws-i.org

data to the client.

One of the big advantages to creating web services with Visual Studio 2005 and ASP.NET is the
testing and debugging functionality provided. ASP.NET provides a series of web pages that create a
test harness that can be used to test all the exposed methods of the web service. Visual Studio 2005
lets you set breakpoints in your web service code so you can step through it to verify its operation.

The test harness created by Visual Studio 2005 can be used only if your web
methods use .NET data types for the passed parameters.

To test a web service, run your project in Visual Studio 2005 in debug mode and access the .asmx file
for the web service. ASP.NET will display a page listing all of the methods exposed by the web
service, as shown in Figure 14-1 .

Figure 14-1. Methods exposed by the web service

In this example, clicking on the getBookList method displays another page where you can enter the
required numberOfBooks parameter value and invoke (execute) the method. Though not shown in
Figure 14-2 , this page displays the content of the XML-encoded request and response messages for
the method using SOAP, Http Get, and Http Post. These samples allow you to examine the data that
is exchanged when the method is called.

Figure 14-2. Invoking the method

When you click the Invoke button, ASP.NET generates an Http Get request and submits it to the web
service. The web service responds with an Http response containing the requested data. In our
example, the XML shown in Example 14-1 is returned from the web service when the numberOfBooks
parameter is set to 10 .

See Also

http://www.ws-i.org for information on Web Service Interoperability

Example 14-1. XML returned with numberOfBooks parameter set to 10

<?xml version="1.0" encoding="utf-8"?>
<DataSet xmlns="http://www.dominiondigital.com/">
 <xs:schema id="NewDataSet" xmlns=""
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="NewDataSet" msdata:IsDataSet="true"
 msdata:UseCurrentLocale="true">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element name="Table">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Title" type="xs:string" minOccurs="0"/>
 <xs:element name="ISBN" type="xs:string" minOccurs="0"/>
 <xs:element name="Publisher" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
 </xs:schema>

http://www.ws-i.org

 <diffgr:diffgram xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
xmlns:diffgr="urn:schemas-microsoft-com:xml-diffgram-v1">

 <NewDataSet xmlns="">
 <Table diffgr:id="Table1" msdata:rowOrder="0">
 <Title>.Net Framework Essentials</Title>
 <ISBN>0-596-00302-1</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Table>
 <Table diffgr:id="Table2" msdata:rowOrder="1">
 <Title>Access Cookbook</Title>
 <ISBN>0-596-00084-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Table>

 …

 <Table diffgr:id="Table10" msdata:rowOrder="9">
 <Title>Developing ASP Components</Title>
 <ISBN>1-565-92750-8</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Table>
 </NewDataSet>
 </diffgr:diffgram>
</DataSet>

Example 14-2. Quick web service .asmx file (.vb)

<%@ WebService Language="VB"
 CodeBehind="~/App_Code/CH14QuickWebServiceVB1.vb"
 Class="VBWebServices.CH14QuickWebServiceVB1" %>

Example 14-3. Quick web service code-behind (.vb)

Option Explicit On
Option Strict On

Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

Namespace VBWebServices
 ''' <summary>
 ''' This class provides the code-behind for CH14QuickWebServiceVB1.asmx
 ''' </summary>
 <WebService(Namespace:="http://www.dominiondigital.com/")> _
 <WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
 Public Class CH14QuickWebServiceVB1
 Inherits System.Web.Services.WebService

 Public Sub CH11QuickWebServiceVB1()

 End Sub

 <WebMethod()> _
 Public Function HelloWorld() As String
 Return "Hello World"
 End Function

 End Class 'CH14QuickWebServiceVB1
End Namespace

Example 14-4. Quick web service .asmx file (.cs)

<%@ WebService Language="C#"
 CodeBehind="~/App_Code/CH14QuickWebServiceCS1.cs"
 Class="CSWebServices.CH14QuickWebServiceCS1" %>

Example 14-5. Quick web service code-behind (.cs)

using System;
using System.Web;
using System.Collections;
using System.Web.Services;
using System.Web.Services.Protocols;

namespace CSWebServices
{
 /// <summary>
 /// This class provides the code-behind for CH14QuickWebServiceCS1.asmx
 /// </summary>
 [WebService(Namespace = "http://www.dominiondigital.com/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 public class CH14QuickWebServiceCS1 : System.Web.Services.WebService
 {

 public CH14QuickWebServiceCS1()
 {

 }

 [WebMethod]
 public string HelloWorld()
 {
 return "Hello World";
 }

 } // CH14QuickWebServiceCS1
}

Example 14-6. Code-behind with method for obtaining a list of books (.vb)

Option Explicit On
Option Strict On

Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb
Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

Namespace VBWebServices
 ''' <summary>
 ''' This class provides the code-behind for CH14QuickWebServiceVB2.asmx
 ''' </summary>

 <WebService(Namespace:="http://www.dominiondigital.com/")> _
 <WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
 Public Class CH14QuickWebServiceVB2
 Inherits System.Web.Services.WebService

 '''***
 ''' <summary>
 ''' This routine gets the list of books from the database.
 ''' </summary>
 '''
 ''' <param name="numberOfBooks">Set to the number of books to retrieve
 ''' </param>
 ''' <returns>DataSet containing the list of books</returns>
 <WebMethod()> _
 Function getBookList(ByVal numberOfBooks As Integer) As DataSet
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dSet As DataSet = Nothing
 Dim cmdText As String
 Dim strSQL As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 cmdText = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(cmdText)
 dbConn.Open()

 'build the query string used to get the data from the database
 strSQL = "SELECT Top " & numberOfBooks.ToString() & " " & _
 "Title, ISBN, Publisher " & _
 "FROM Book " & _
 "ORDER BY Title"

 'create a new dataset and fill it with the book data
 dSet = New DataSet
 da = New OleDbDataAdapter(strSQL, dbConn)
 da.Fill(dSet)

 'return the list of books
 Return (dSet)

 Finally
 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Function 'getBookList
 End Class 'CH14QuickWebServiceVB2
End Namespace

Example 14-7. Code-behind with method for obtaining a list of books (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web;
using System.Web.Services;

namespace CSWebServices
{
 /// <summary>
 /// This module provides the code behind for the CH14QuickWebServiceCS2.asmx
 /// </summary>
 [WebService(Namespace = "http://www.dominiondigital.com/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 public class CH14QuickWebServiceCS2 : System.Web.Services.WebService
 {
 ///***
 /// <summary>
 /// This routine gets the list of books from the database.
 /// </summary>
 ///
 /// <param name="numberOfBooks">Set to the number of books to retrieve
 /// </param>
 /// <returns>DataSet containing the list of books</returns>
 [WebMethod]
 public DataSet getBookList(int numberOfBooks)
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataSet dSet = null;
 String connectionStr = null;
 String cmdText = null;

 try
 {

 // get the connection string from web.config and open a connection
 // to the database
 connectionStr = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(connectionStr);
 dbConn.Open();

 //build the query string used to get the data from the database
 cmdText = "SELECT Top " + numberOfBooks.ToString() + " " +

 "Title, ISBN, Publisher " +
 "FROM Book " +
 "ORDER BY Title";

 // create a new dataset and fill it with the book data
 dSet = new DataSet();
 da = new OleDbDataAdapter(cmdText, dbConn);
 da.Fill(dSet);

 //return the list of books
 return (dSet);

 } // try

 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // getBookList
 } // CH14QuickWebServiceCS2
}

Recipe 14.3. Consuming a Web Service

Problem

You need to use a web service created by another group in your company to access data your
application requires.

Solution

Add a web reference to an existing ASP.NET project using Visual Studio 2005. Create an instance of
the web service class in your application and call its methods.

To add a web reference to an ASP.NET project in Visual Studio 2005:

Select the project in the Solution Explorer, right-click, and select Add Web Reference from the
context menu.

1.

In the Add Web Reference dialog box, enter the URL of the web service you want to consume,
as shown in Figure 14-3 , set the name for the web reference, and click the Add Reference
button.

2.

Visual Studio 2005 will create all the files needed to consume the web service and will place them in
the App_WebReferences folder. The files include a .disco , a .discomap , and a .wsdl file for the web
service.

After adding the web reference, create an instance of the web service class and call its methods in the
code-behind class for the page. Examples 14-8 , 14-9 through 14-10 show the .aspx file as well as VB
and C# code-behind files for an example we've written to create an instance of the web service class
from Recipe 14.1 and call its methods.

Figure 14-3. Adding a web reference

Discussion

Visual Studio 2005 makes consumption of a web service easy by creating all of the plumbing for you.
You don't have to worry about creating proxy classes and the SOAP messages; it's all done for you
when you add a web reference.

In our example that illustrates the solution, the web service created in Recipe 14.1 is used to obtain a
list of books and display the list in a DataGrid . We have accomplished this by writing just a few lines
of code.

The first step in consuming a web service is to add a web reference to your project by selecting the
project in the Solution Explorer, right-clicking, and selecting Add Web Reference from the context
menu. You need to enter the URL of the web service you want to consume. This is normally the full
URL of the .asmx file or the WSDL file of the web service. When the web service resides on your own
computer, as is the case with our example for this recipe, a URL such as the following will do:

http://localhost/ASPNetCookbook/VBWebServices/CH14QuickWebServiceVB2.asmx

When adding a web reference, select Add Web Referencenot Add Reference.
Add Reference is used to add a reference to an assembly on the local server.
Add Web Reference is used to add a reference to a web service.

After entering the URL of the .asmx or WSDL file of the web service, the Add Web Reference dialog
box displays the operations provided by the web service in the left pane.

http://localhost/ASPNetCookbook/VBWebServices/CH14QuickWebServiceVB2.asmx

The web reference name should be changed to remove the tight coupling to a specific server because
the server hosting the web service can change. For our example, we have renamed the web
reference to ExampleWebServices , as shown in Figure 14-3 .

When you click Add Reference, Visual Studio 2005 creates and adds to your project all the files
needed to make a web service available to your application, including a disco file, which helps the
application locate the service, and a WSDL file, which defines the services available from the web
service. Then, it creates a proxy class that you use to access the web service. (The proxy class
interfaces with the web service and provides a local representation of the service.) The web reference
is given the name provided in the Add Web Reference dialog box.

Visual Studio 2003 created a physical class called Reference as the proxy class.
Visual Studio 2005 does not create the physical class but generates a "virtual"
proxy class that is not visible in the project.

After you add a web reference to the service you plan to employ, you need to create an instance of
the proxy class. For example, here's how we create an instance of the proxy class for the example
web service in Recipe 14.1:

 bookServices = New ExampleWebServices.CH14QuickWebServiceVB2

 bookServices = new ExampleWebServices.CH14QuickWebServiceCS2();

In our example, the getBookList method is called to obtain a DataSet containing the book list.
Though this method call looks like a standard method call, the proxy class is calling the web service
to get the data.

 books = bookServices.getBookList(NUMBER_OF_BOOKS)

 books = bookServices.getBookList(NUMBER_OF_BOOKS);

For our example, the DataSet returned by the web service is bound to a DataGrid on the form to
display the list of books:

 dgBooks.DataSource = books
 dgBooks.DataBind()

 dgBooks.DataSource = books;
 dgBooks.DataBind();

By creating all the plumbing required to access web services, which would be tedious to write and
error-prone if you had to do it yourself, Visual Studio 2005 makes using web services in your
applications more practical. This is true if the web service provider and consumer are both .NET
implementations, because most of the data types provided by the Common Language Runtime (CLR)
can be used in the web service interfaces. (See the ".NET Web Service Idiosyncrasies" sidebar in
Recipe 14.3 for more on this topic.)

Web services provided by other technology platforms, such as Java, can be consumed by .NET
applications. Java and other platforms do not have a set of rich data types that match the CLR data
types, so the interface must be designed using simple data types. The details of consuming a web
service from other technologies are beyond the scope of this book.

See Also

Recipe 14.1; if you need to use web services created with Java, see Java Web Services , by Dave
Chappell and Tyler Jewell (O'Reilly).

Example 14-8. Consuming a web service (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH14ConsumingAWebServiceVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH14ConsumingAWebServiceVB"
 Title="Consuming A WebService" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Consuming a Web Service (VB)
 </div>
 <div align="center">
 <asp:DataGrid id="dgBooks"
 runat="server"
 BorderColor="000080"

 BorderWidth="2px"
 AutoGenerateColumns="True"
 width="90%" />
 </div>
</asp:Content>

Example 14-9. Consuming a web service code-behind (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Data

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH14ConsumingAWebServiceVB.aspx
 ''' </summary>
 Partial Class CH14ConsumingAWebServiceVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Const NUMBER_OF_BOOKS As Integer = 10

 Dim bookServices As ExampleWebServices.CH14QuickWebServiceVB2
 Dim books As DataSet

 If (Not Page.IsPostBack) Then
 'create an instance of the web service proxy class
 bookServices = New ExampleWebServices.CH14QuickWebServiceVB2

 'get the books from the service
 books = bookServices.getBookList(NUMBER_OF_BOOKS)

 'bind the book list to the datagrind on the form
 dgBooks.DataSource = books
 dgBooks.DataBind()
 End If
 End Sub 'Page_Load
 End Class 'CH14ConsumingAWebServiceVB
End Namespace

Example 14-10. Consuming a web service code-behind (.cs)

using System;
using System.Data;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH14ConsumingAWebServiceCS.aspx
 /// </summary>
 public partial class CH14ConsumingAWebServiceCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 const int NUMBER_OF_BOOKS = 10;

 ExampleWebServices.CH14QuickWebServiceCS2 bookServices = null;
 DataSet books = null;

 if (!Page.IsPostBack)
 {
 // create an instance of the web service proxy class
 bookServices = new ExampleWebServices.CH14QuickWebServiceCS2();

 // get the books from the service
 books = bookServices.getBookList(NUMBER_OF_BOOKS);

 // bind the book list to the datagrind on the form
 dgBooks.DataSource = books;
 dgBooks.DataBind();
 }
 } // Page_Load
 } // CH14ConsumingAWebServiceCS
}

Recipe 14.4. Creating a Web Service That Returns a
Custom Object

Problem

You want to create a web service that returns a custom object because none of the .NET data types
meets your needs.

Solution

Create a class that encapsulates the data you need and use it as the return type of a method of your
web service.

To demonstrate this solution, we have created the custom class, BookData, shown in Examples 14-11
(VB) and 14-12 (C#). The class encapsulates information about books stored in a database. A class
that uses a web service that returns book information from a database using the custom class is
shown in Examples 14-13 (VB) and 14-14 (C#). Examples 14-15, 14-16 through 14-17 show the
.aspx file and VB and C# code-behind files for our application that demonstrates how we use the web
service. Figure 14-4 shows the Solution Explorer in Visual Studio 2005 with the files used for this
recipe and other recipes in this chapter.

Figure 14-4. Solution Explorer showing files for this recipe

Discussion

Web services use XML to transfer data, and rely on the CLR to serialize most data types to XML. If
you create an object that contains public properties or variables of the types the CLR can serialize,
the CLR will serialize the object for you with no additional coding when it is used as the return type of
a web service.

A custom object to be returned by a web service must meet two requirements. First, the object must
contain only data types that can be serialized (they must implement the ISerializable interface). All
of the .NET base data types and the majority of its complex data types can be serialized. The notable
exceptions are DataTable (in ASP.NET 1.x), DataRow, and DataView.

Second, the class defining the object must include a public default constructor (one with no
parameters). The CLR uses this constructor to serialize the object.

Let's take a look at the code we have written to illustrate this solution. To begin with, we have
created the class shown in Examples 14-11 (VB) and 14-12 (C#), which encapsulates the data that a
method of the web service will return. The class consists of the four sections shown in Table 14-1.

Table 14-1. Elements of the class returned by the sample web service

Element Description

Private
attributes

Used to store the object data

Element Description

Public
properties

Used to access the object data

First
constructor

Used to create the object and populate it with data for a specific book

Second
constructor

Provides the default public constructor required for serialization and provides the
ability to create an object with all default values

The class shown in Examples 14-13 (VB) and 14-14 (C#) implements our web service. To make our
example more useful, the getBookList method described in Recipe 14.1 is included in this class. For
more on the getBookList web service method, refer to Recipe 14.1.

In our example, the getBookData method creates an instance of the BookData class and uses it as the
return type for the method. The ID of the required book is passed to provide the constructor the
information it needs to create the object and populate it with the requested book data:

 bookInfo = New BookData(bookID)
 Return (bookInfo)

 bookInfo = new BookData(bookID);
 return (bookInfo);

Our .aspx file, shown in Example 14-15, uses a ListBox to display a list of available books and a
group of Literal controls to display the title, ISBN, and other details about the book.

The Page_Load method in our example's code-behind, shown in Examples 14-16 (VB) and 14-17
(C#), is responsible for populating the ListBox with the list of available books. Our first step is to
create an instance of the web service proxy class:

 bookServices = New ExampleBookServices.CH14BookServicesVB

 bookServices = new ExampleBookServices.CH14BookServicesCS();

In our example, the web reference was renamed ExampleBookServices and the
class that implements the web service is named CH14BookServicesVB (or
CH14BookServicesCS).

Public
properties

Used to access the object data

First
constructor

Used to create the object and populate it with data for a specific book

Second
constructor

Provides the default public constructor required for serialization and provides the
ability to create an object with all default values

The class shown in Examples 14-13 (VB) and 14-14 (C#) implements our web service. To make our
example more useful, the getBookList method described in Recipe 14.1 is included in this class. For
more on the getBookList web service method, refer to Recipe 14.1.

In our example, the getBookData method creates an instance of the BookData class and uses it as the
return type for the method. The ID of the required book is passed to provide the constructor the
information it needs to create the object and populate it with the requested book data:

 bookInfo = New BookData(bookID)
 Return (bookInfo)

 bookInfo = new BookData(bookID);
 return (bookInfo);

Our .aspx file, shown in Example 14-15, uses a ListBox to display a list of available books and a
group of Literal controls to display the title, ISBN, and other details about the book.

The Page_Load method in our example's code-behind, shown in Examples 14-16 (VB) and 14-17
(C#), is responsible for populating the ListBox with the list of available books. Our first step is to
create an instance of the web service proxy class:

 bookServices = New ExampleBookServices.CH14BookServicesVB

 bookServices = new ExampleBookServices.CH14BookServicesCS();

In our example, the web reference was renamed ExampleBookServices and the
class that implements the web service is named CH14BookServicesVB (or
CH14BookServicesCS).

Our next step is to call the getBookList method of the proxy class to get a list of available books:

 books = bookServices.getBookList(NUMBER_OF_BOOKS)

 books = bookServices.getBookList(NUMBER_OF_BOOKS);

After getting the list, the data is bound to the ListBox by setting the DataSource property to the
DataSet containing the list of books. The DataTextField is set to the column in the DataSet containing
the title of the book to define what will be displayed in the ListBox. The DataValueField is set to the
column in the DataSet containing the BookID to identify the book when an item is selected. Finally, the
DataBind method is called to bind the data in the DataSet to the ListBox:

 lstBooks.DataSource = books
 lstBooks.DataTextField = "Title"
 lstBooks.DataValueField = "BookID"
 lstBooks.DataBind()

 lstBooks.DataSource = books;
 lstBooks.DataTextField = "Title";
 lstBooks.DataValueField = "BookID";
 lstBooks.DataBind();

Rather than attempting to handle the case where the user does not select a book in the ListBox, we
have simplified our example by selecting the first book in the list and then calling the getBookDetails
method (described next):

 lstBooks.SelectedIndex = 0
 getBookDetails()

 lstBooks.SelectedIndex = 0;
 getBookDetails();

The getBookDetails method is responsible for calling the web service that retrieves the details of the
selected book. The getBookData method that is exposed by the web service is responsible for
returning a custom object.

First, the method gets the ID of the selected book from the ListBox:

 bookID = CInt(lstBooks.SelectedItem.Value)

 bookID = System.Convert.ToInt32(lstBooks.SelectedItem.Value);

Next, an instance of the web service proxy class is created and the getBookData method is called to
get the details of the book from the web service:

 bookServices = New ExampleBookServices.CH14BookServicesVB
 bookInfo = bookServices.getBookData(bookID)

 bookServices = new ExampleBookServices.CH14BookServicesCS();
 bookInfo = bookServices.getBookData(bookID);

The controls used to display the book details are initialized with the data in the BookData object
returned from the web service:

 litTitle.Text = bookInfo.title
 litIsbn.Text = bookInfo.Isbn
 litDescription.Text = bookInfo.description
 litPublisher.Text = bookInfo.publisher
 litListPrice.Text = bookInfo.listPrice.ToString("0.00")
 litDate.Text = bookInfo.publishDate.ToShortDateString()

 litTitle.Text = bookInfo.title;
 litIsbn.Text = bookInfo.Isbn;
 litDescription.Text = bookInfo.description;
 litPublisher.Text = bookInfo.publisher;
 litListPrice.Text = bookInfo.listPrice.ToString("0.00");
 litDate.Text = bookInfo.publishDate.ToShortDateString();

One of the primary benefits of encapsulating data as we have in this example is the improvement in
the performance of the web service. By returning the custom BookData object from our web service,
all of the data is retrieved in a single call. If each piece of data for the book is obtained using
separate calls, the application's performance will decrease. When you use a web service to retrieve
data, return the largest possible block of data for each call. This reduces the significant overhead of
serializing the data to XML and wrapping it with SOAP and HTTP protocol wrappers.

See Also

Recipe 14.1

.NET Web Service Idiosyncrasies

Web services produced and consumed by .NET applications can use any of the data types
of the CLR that implement the ISerializable interface. If your web services need to be
consumed by other technologies, such as Java, it will be necessary to limit the data types
to simple types, such as integer, string, etc. In addition, .NET web services use
Document Literal encoding by default, while many other technologies use RPC encoding.
These factors must be considered when developing web services that are produced and
consumed by different technologies.

Web services return data only

Web services let you pass data between applications; however, they cannot pass
behavior. If you create a typical class that provides methods to act on the data in the
instantiated object and use it as the return type from a web service method, you will find
the methods to act on the data are unavailable when the object is returned. Though the
object created by the web service and the object created by the application consuming
the web service have the same name, they are not created from the same class. The
BookData proxy class (VB version) created for our example is shown here and does not
resemble the BookData class shown in Example 14-11. Essentially, it is a structure
containing the data exposed by the class returned by the web service.

 <System.Xml.Serialization.XmlTypeAttribute([Namespace]:="http://
 www.dominiondigital.com")> _
 Public Class BookData

 '<remarks/>
 Public title As String

 '<remarks/>
 Public Isbn As String

 '<remarks/>
 Public description As String

 '<remarks/>
 Public publisher As String

 '<remarks/>
 Public listPrice As Single

 '<remarks/>

 Public publishDate As Date

 '<remarks/>
 Public bookID As Integer
 End Class

Example 14-11. Custom class (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace VBWebServices
 ''' <summary>
 ''' This class provides the data class used to encapsulate book data
 ''' returned from a web service
 ''' </summary>
 Public Class BookData
 'private attributes
 Private mBookID As Integer
 Private mTitle As String
 Private mIsbn As String
 Private mDescription As String
 Private mPublisher As String
 Private mListPrice As Single
 Private mPublishDate As DateTime

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the book ID
 ''' </summary>
 Public Property bookID() As Integer
 Get
 Return (mBookID)
 End Get
 Set(ByVal Value As Integer)
 mBookID = Value
 End Set
 End Property 'bookID

 '''***
 ''' <summary>

 ''' This property provides the ability to get/set the title
 ''' </summary>
 Public Property title() As String
 Get
 Return (mTitle)
 End Get
 Set(ByVal Value As String)
 mTitle = Value
 End Set
 End Property 'title

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the ISBN

 ''' </summary>
 Public Property Isbn() As String
 Get
 Return (mIsbn)
 End Get
 Set(ByVal Value As String)
 mIsbn = Value
 End Set
 End Property 'Isbn

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the description
 ''' </summary>
 Public Property description() As String
 Get
 Return (mDescription)
 End Get
 Set(ByVal Value As String)
 mDescription = Value
 End Set
 End Property 'description

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the publisher
 ''' </summary>
 Public Property publisher() As String
 Get
 Return (mPublisher)
 End Get
 Set(ByVal Value As String)
 mPublisher = Value
 End Set
 End Property 'publisher

 '''***

 ''' <summary>
 ''' This property provides the ability to get/set the listPrice
 ''' </summary>
 Public Property listPrice() As Single
 Get
 Return (mListPrice)
 End Get
 Set(ByVal Value As Single)
 mListPrice = Value
 End Set
 End Property 'listPrice

 '''***
 ''' <summary>
 ''' This property provides the ability to get/set the publishDate

 ''' </summary>
 Public Property publishDate() As DateTime
 Get
 Return (mPublishDate)
 End Get
 Set(ByVal Value As Date)
 mPublishDate = Value
 End Set
 End Property 'publishDate

 '''***
 ''' <summary>
 ''' This constructor creates the object and populates it with data for
 ''' the passed book ID.
 ''' </summary>
 '''
 ''' <param name="ID">Set to the ID of the book from which to create the
 ''' object
 ''' </param>
 Public Sub New(ByVal ID As Integer)
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dTable As DataTable = Nothing
 Dim dRow As DataRow = Nothing
 Dim connectionStr As String
 Dim cmdText As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 connectionStr = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(connectionStr)
 dbConn.Open()

 'build the query string used to get the data from the database

 cmdText = "SELECT BookID, Title, ISBN, Description, Publisher, " & _
 "ListPrice, PublishDate " & _
 "FROM Book " & _
 "WHERE BookID=" & ID.ToString()

 'create a new data table and fill it with the book data
 dTable = New DataTable
 da = New OleDbDataAdapter(cmdText, dbConn)
 da.Fill(dTable)

 'populate object with the book data read from the database
 dRow = dTable.Rows(0)
 bookID = CInt(dRow.Item("BookID"))
 title = CStr(dRow.Item("Title"))
 Isbn = CStr(dRow.Item("ISBN"))
 description = CStr(dRow.Item("Description"))

 publisher = CStr(dRow.Item("Publisher"))
 listPrice = CSng(dRow.Item("ListPrice"))
 publishDate = CDate(dRow.Item("PublishDate"))

 Finally
 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'New

 '***
 '
 ' ROUTINE: New
 '
 ' DESCRIPTION: This constructor creates the object will default values
 '--
 Public Sub New()
 bookID = -1
 title = ""
 Isbn = ""
 description = ""
 publisher = ""
 listPrice = 0
 publishDate = DateTime.MinValue
 End Sub 'New
 End Class 'BookData
End Namespace

Example 14-12. Custom class (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web;

namespace CSWebServices
{
 /// <summary>
 /// This class provides the data class used to encapsulate book data
 /// returned from a web service
 /// </summary>
 public class BookData
 {
 // private attributes
 private int mBookID;
 private string mTitle;
 private string mIsbn;
 private string mDescription;
 private string mPublisher;

 private Decimal mListPrice;
 private DateTime mPublishDate;

 ///***
 /// <summary>
 /// This property provides the ability to get/set the book ID
 /// </summary>
 public int bookID
 {
 get
 {
 return (mBookID);
 }
 set
 {
 mBookID = value;
 }
 } // bookID

 ///***
 /// <summary>
 /// This property provides the ability to get/set the title
 /// </summary>
 public string title
 {
 get
 {
 return (mTitle);
 }
 set

 {
 mTitle = value;
 }
 } // title

 ///***
 /// <summary>
 /// This property provides the ability to get/set the ISBN
 /// </summary>
 public string Isbn
 {
 get
 {
 return (mIsbn);
 }
 set
 {
 mIsbn = value;
 }
 } // Isbn

 ///***
 /// <summary>
 /// This property provides the ability to get/set the description
 /// </summary>
 public string description
 {
 get
 {
 return (mDescription);
 }
 set
 {
 mDescription = value;
 }
 } // description

 ///***
 /// <summary>
 /// This property provides the ability to get/set the publisher
 /// </summary>
 public string publisher
 {
 get
 {
 return (mPublisher);
 }
 set
 {
 mPublisher = value;
 }
 } // publisher

 ///***
 /// <summary>
 /// This property provides the ability to get/set the listPrice
 /// </summary>
 public Decimal listPrice
 {
 get
 {
 return (mListPrice);
 }
 set
 {
 mListPrice = value;
 }
 } // listPrice

 ///***
 /// <summary>
 /// This property provides the ability to get/set the publishDate
 /// </summary>

 public DateTime publishDate
 {
 get
 {
 return (mPublishDate);
 }
 set
 {
 mPublishDate = value;
 }
 } // publishDate

 ///***
 /// <summary>
 /// This constructor creates the object and populates it with data for
 /// the passed book ID.
 /// </summary>
 ///
 /// <param name="ID">Set to the ID of the book from which to create the
 /// object
 /// </param>
 public BookData(int ID)
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataTable dTable = null;
 DataRow dRow = null;
 string connectionStr = null;
 string cmdText = null;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 connectionStr = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(connectionStr);
 dbConn.Open();

 //build the query string used to get the data from the database
 cmdText = "SELECT BookID, Title, ISBN, Description, Publisher, " +
 "ListPrice, PublishDate " +
 "FROM Book " +
 "WHERE BookID=" + ID.ToString();

 // create a new data table and fill it with the book data
 dTable = new DataTable();
 da = new OleDbDataAdapter(cmdText, dbConn);
 da.Fill(dTable);

 // populate object with the book data read from the database
 dRow = dTable.Rows[0];

 bookID = (int)(dRow["BookID"]);
 title = (string)(dRow["Title"]);
 Isbn = (string)(dRow["ISBN"]);
 description = (string)(dRow["Description"]);
 publisher = (string)(dRow["Publisher"]);
 listPrice = (Decimal)(dRow["ListPrice"]);
 publishDate = (DateTime)(dRow["PublishDate"]);
 }

 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 }

 //**
 //
 // ROUTINE: BookData
 //
 // DESCRIPTION: This constructor creates the object will default values
 //---
 public BookData()
 {
 bookID = -1;
 title = "";

 Isbn = "";
 description = "";
 publisher = "";
 listPrice = 0;
 publishDate = DateTime.MinValue;
 }
 } // BookData
}

Example 14-13. Web service returning a custom object (.vb)

Option Explicit On
Option Strict On

Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb
Imports System.Web
Imports System.Web.Services
Imports System.Web.Services.Protocols

Namespace VBWebServices
 ''' <summary>

 ''' This class provides the code-behind for CH14BookServicesVB.asmx
 ''' </summary>
 <WebService(Namespace:="http://www.dominiondigital.com/")> _
 <WebServiceBinding(ConformsTo:=WsiProfiles.BasicProfile1_1)> _
 Public Class CH14BookServicesVB
 Inherits System.Web.Services.WebService

 '''***
 ''' <summary>
 ''' This routine gets the list of books from the database.
 ''' </summary>
 '''
 ''' <param name="numberOfBooks">Set to the number of books to retrieve
 ''' </param>
 ''' <returns>DataSet containing the list of books</returns>
 <WebMethod()> _
 Function getBookList(ByVal numberOfBooks As Integer) As DataSet
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dSet As DataSet = Nothing
 Dim connectionStr As String
 Dim cmdText As String

 Try
 'get the connection string from web.config and open a connection
 'to the database
 connectionStr = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(connectionStr)
 dbConn.Open()

 'build the query string used to get the data from the database
 cmdText = "SELECT Top " & numberOfBooks.ToString() & " " & _
 "BookID, Title, ISBN, Publisher " & _
 "FROM Book " & _
 "ORDER BY Title"

 'create a new dataset and fill it with the book data
 dSet = New DataSet
 da = New OleDbDataAdapter(cmdText, dbConn)
 da.Fill(dSet)

 'return the list of books
 Return (dSet)

 Finally
 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Function 'getBookList

 '''***
 ''' <summary>
 ''' This routine gets the data for the passed book
 ''' </summary>
 '''
 ''' <param name="bookID">Set to the ID of the book for which the data is
 ''' required
 ''' </param>
 ''' <returns>BookData containing the data for the requested book</returns>
 <WebMethod()> _
 Function getBookData(ByVal bookID As Integer) As BookData

 Dim bookInfo As BookData

 'create a new BookData object containing the requested data
 bookInfo = New BookData(bookID)
 Return (bookInfo)
 End Function ' getBookData
 End Class 'CH14BookServicesVB
End Namespace

Example 14-14. Web service returning a custom object (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web;
using System.Web.Services;

namespace CSWebServices
{
 /// <summary>
 /// This module provides the code behind for the CH14BookServicesCS.asmx
 /// </summary>
 [WebService(Namespace = "http://www.dominiondigital.com/")]
 [WebServiceBinding(ConformsTo = WsiProfiles.BasicProfile1_1)]
 public class CH14BookServicesCS : System.Web.Services.WebService
 {
 ///***
 /// <summary>
 /// This routine gets the list of books from the database.
 /// </summary>
 ///
 /// <param name="numberOfBooks">Set to the number of books to retrieve
 /// </param>
 /// <returns>DataSet containing the list of books</returns>
 [WebMethod]
 public DataSet getBookList(int numberOfBooks)
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;

 DataSet dSet = null;
 String connectionStr = null;
 String cmdText = null;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 connectionStr = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(connectionStr);
 dbConn.Open();

 //build the query string used to get the data from the database
 cmdText = "SELECT Top " + numberOfBooks.ToString() + " " +
 "BookID, Title, ISBN, Publisher " +
 "FROM Book " +

 "ORDER BY Title";

 // create a new dataset and fill it with the book data
 dSet = new DataSet();
 da = new OleDbDataAdapter(cmdText, dbConn);
 da.Fill(dSet);

 //return the list of books
 return (dSet);
 } // try

 finally
 {
 // cleanup
 if (dbConn != null)
 {
 dbConn.Close();
 }
 } // finally
 } // getBookList

 ///***
 /// <summary>
 /// This routine gets the data for the passed book
 /// </summary>
 ///
 /// <param name="bookID">Set to the ID of the book for which the data is
 /// required
 /// </param>
 /// <returns>BookData containing the data for the requested book</returns>
 [WebMethod]
 public BookData getBookData(int bookID)
 {
 BookData bookInfo = null;

 // create a new BookData object containing the requested data
 bookInfo = new BookData(bookID);
 return (bookInfo);
 } // getBookData
 } // CH14BookServicesCS
}

Example 14-15. Using the web service returning a custom object (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH14CustomObjectWithWebServiceVB.aspx.vb"

 Inherits="ASPNetCookbook.VBExamples.CH14CustomObjectWithWebServiceVB"
 Title="Web Service Returning A Custom Object" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Returning a Custom Object From a Web Service (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr>
 <td align="center" class="MenuItem">

Available Books

 <asp:ListBox ID="lstBooks" Runat="server"
 AutoPostBack="True"
 OnSelectedIndexChanged="lstBooks_SelectedIndexChanged" />
 </td>
 </tr>
 <tr>
 <td>

 <table width="60%" align="center"
 border="1"
 cellpadding="5" cellspacing="0" class="MenuItem">
 <tr>
 <td width="25%" align="right">Title: </td>
 <td width="75%">
 <asp:Literal ID="litTitle" Runat="server" /></td>
 </tr>
 <tr>
 <td width="25%" align="right">ISBN: </td>
 <td width="75%">
 <asp:Literal ID="litIsbn" Runat="server" /></td>
 </tr>
 <tr>
 <td width="25%" align="right">Description: </td>
 <td width="75%">
 <asp:Literal ID="litDescription" Runat="server" /></td>
 </tr>
 <tr>
 <td width="25%" align="right">Publisher: </td>
 <td width="75%">
 <asp:Literal ID="litPublisher" Runat="server" /></td>

 </tr>
 <tr>
 <td width="25%" align="right">List Price: </td>
 <td width="75%">
 <asp:Literal ID="litListPrice" Runat="server" /></td>
 </tr>
 <tr>
 <td width="25%" align="right">Date: </td>
 <td width="75%">
 <asp:Literal ID="litDate" Runat="server" /></td>
 </tr>

 </table>
 </td>
 </tr>
 </table>
</asp:Content>

Example 14-16. Using the web service returning a custom object code-
behind (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Data

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code behind for
 ''' CH14CustomObjectWithWebServiceVB.aspx
 ''' </summary>
 Partial Class CH14CustomObjectWithWebServiceVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Const NUMBER_OF_BOOKS As Integer = 20

 Dim bookServices As ExampleBookServices.CH14BookServicesVB
 Dim books As DataSet

 If (Not Page.IsPostBack) Then
 'create an instance of the web service proxy class
 bookServices = New ExampleBookServices.CH14BookServicesVB

 'get the books from the service
 books = bookServices.getBookList(NUMBER_OF_BOOKS)

 'bind the book list to the listbox on the form
 lstBooks.DataSource = books
 lstBooks.DataTextField = "Title"

 lstBooks.DataValueField = "BookID"
 lstBooks.DataBind()

 'select the first item in the list and get the details
 lstBooks.SelectedIndex = 0
 getBookDetails()
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the book listbox selected
 ''' index changed event. It is responsible for getting the book data
 ''' for the selected book
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub lstBooks_SelectedIndexChanged(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'get the data for the selected book
 getBookDetails()
 End Sub 'lstBooks_SelectedIndexChanged

 '''***
 ''' <summary>
 ''' This routine gets the details for the currently selected book and
 ''' initializes the controls on the with the data.
 ''' </summary>
 Private Sub getBookDetails()
 Dim bookServices As ExampleBookServices.CH14BookServicesVB
 Dim bookInfo As ExampleBookServices.BookData
 Dim bookID As Integer

 'get the currently selected book
 bookID = CInt(lstBooks.SelectedItem.Value)

 'create an instance of the web service proxy class
 'and get the book data
 bookServices = New ExampleBookServices.CH14BookServicesVB
 bookInfo = bookServices.getBookData(bookID)

 'set the controls on the form to display the book data
 litTitle.Text = bookInfo.title
 litIsbn.Text = bookInfo.Isbn
 litDescription.Text = bookInfo.description
 litPublisher.Text = bookInfo.publisher
 litListPrice.Text = bookInfo.listPrice.ToString("0.00")
 litDate.Text = bookInfo.publishDate.ToShortDateString()

 End Sub 'getBookDetails
 End Class 'CH14CustomObjectWithWebServiceVB

End Namespace

Example 14-17. Using the web service returning a custom object code-
behind (.cs)

using System;
using System.Data;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code behind for
 /// CH14CustomObjectWithWebServiceCS.aspx
 /// </summary>
 public partial class CH14CustomObjectWithWebServiceCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {

 const int NUMBER_OF_BOOKS = 20;

 ExampleBookServices.CH14BookServicesCS bookServices = null;
 DataSet books = null;

 if (!Page.IsPostBack)
 {
 // create an instance of the web service proxy class
 bookServices = new ExampleBookServices.CH14BookServicesCS();

 // get the books from the service
 books = bookServices.getBookList(NUMBER_OF_BOOKS);

 // bind the book list to the listbox on the form
 lstBooks.DataSource = books;
 lstBooks.DataTextField = "Title";
 lstBooks.DataValueField = "BookID";
 lstBooks.DataBind();

 // select the first item in the list and get the details

 lstBooks.SelectedIndex = 0;
 getBookDetails();
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the book listbox selected
 /// index changed event. It is responsible for getting the book data
 /// for the selected book
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void lstBooks_SelectedIndexChanged(Object sender,
 System.EventArgs e)
 {
 // get the data for the selected book
 getBookDetails();
 } // lstBooks_SelectedIndexChanged

 ///***
 /// <summary>
 /// This routine gets the details for the currently selected book and
 /// initializes the controls on the with the data.
 /// </summary>
 private void getBookDetails()
 {
 ExampleBookServices.CH14BookServicesCS bookServices = null;
 ExampleBookServices.BookData bookInfo = null;
 int bookID;

 // get the currently selected book
 bookID = System.Convert.ToInt32(lstBooks.SelectedItem.Value);

 // create an instance of the web service proxy class
 // and get the book data
 bookServices = new ExampleBookServices.CH14BookServicesCS();
 bookInfo = bookServices.getBookData(bookID);

 // set the controls on the form to display the book data
 litTitle.Text = bookInfo.title;
 litIsbn.Text = bookInfo.Isbn;
 litDescription.Text = bookInfo.description;
 litPublisher.Text = bookInfo.publisher;
 litListPrice.Text = bookInfo.listPrice.ToString("0.00");
 litDate.Text = bookInfo.publishDate.ToShortDateString();
 } // getBookDetails
 } // CH14CustomObjectWithWebServiceCS
}

Recipe 14.5. Setting the URL of a Web Service at Runtime

Problem

You need to set the URL of the web service at runtime.

Solution

In the code-behind class for your page, set the URL property of the proxy class to the required URL
after instantiating the proxy object, as shown here:

 bookServices = New ExampleBookServices.CH14BookServicesVB
 bookServices.Url = _
 "http://michaelk2/aspnetcookbook2vb/VBWebServices/CH14BookServicesVB.asmx"

 bookServices = new ExampleBookServices.CH14BookServicesCS();
 bookServices.Url =
 "http://michaelk2/aspnetcookbook2cs/CSWebServices/CH14BookServicesCS.asmx";

Better still, by storing the URL in web.config and setting the URL property of the proxy class at
runtime from the web.config setting, you can avoid changing the code whenever the URL changes.

Discussion

The ability to configure an application without having to recompile its code every time you make a
change in the location of its resources can be a time-saver. Since the URL for a web service can
change, code your application to set the URL at runtime.

Whenever you add a web reference to a project, Visual Studio 2005 adds an entry to the
<appSettings> section of the web.config containing the URL of the web reference, as shown here for
the two web references added for the recipes in this chapter:

 <appSettings>
 <add key="ExampleWebServices.CH14QuickWebServiceVB2"
 value="http://localhost/…/CH14QuickWebServiceVB2.asmx"/>

 <add key="ExampleBookServices.CH14BookServicesVB"
 value="http://localhost/…/CH14BookServicesVB.asmx"/>
 </appSettings>

 <appSettings>
 <add key="ExampleWebServices.CH14QuickWebServiceCS2"
 value="http://localhost/…/CH14QuickWebServiceCS2.asmx"/>
 <add key="ExampleBookServices.CH14BookServicesCS"
 value="http://localhost/…/CH14BookServicesCS.asmx"/>
 </appSettings>

By using the URL in web.config and setting the URL property of the web service at runtime, no code
changes are required when the URL changes:

 bookServices.Url = _
 ConfigurationManager.AppSettings.Item("ExampleBookServices.CH14BookServicesVB")

 bookServices.Url =
 ConfigurationManager.AppSettings["ExampleBookServices.CH14BookServicesCS"];

Chapter 15. Dynamic Images

15.0 Introduction

The ability to draw or retrieve and display graphic images on your web pages on the fly can add
powerful functionality to an application. This is a nearly impossible task in classic ASP unless you use
a third-party component. By contrast, the drawing library provided in the .NET Framework simplifies
creating your own images when you need them. Indeed, it provides the ability to do almost anything
you can imagine for image generation. The examples shown in this chapter show you how to:

Draw button images on the fly using text generated during the running of your application

Create bar charts on the fly

Display images stored in a database

Display thumbnails from full-sized images stored in a database

These represent a sampling of what you can do with the .NET drawing libraries and a little bit of
custom code.

Recipe 15.2. Drawing Button Images on the Fly

Problem

You need to create a button image on the fly using text generated during the running of your
application.

Solution

Create a web form that is responsible for creating the button image using the System.Drawing classes
and then streaming the image to the Response object.

In the .aspx file, enter an @ Page directive, but omit any head or body tags. The @ Page directive links
the ASP.NET page to the code-behind class that draws the image.

In the code-behind class for the page, use the .NET language of your choice to:

Import the System.Drawing and System.Drawing.Imaging namespaces.1.

Create a makeButton (or similarly named) method that creates a bitmap for a button using text
generated during the running of the applicationfor example, text passed in the URL.

2.

Create a MemoryStream object and save the bitmap in JPEG format (or other format) to the
memory stream.

3.

Write the resulting binary stream to Response object.4.

Examples 15-1, 15-2 through 15-3 show the .aspx file and VBand C# code-behind files for an
application that creates a button image whose label is provided by the application user.

To use a dynamically generated image in your application, you need to set the Src attribute of the
image tags for your button bitmaps to the URL of the ASP.NET page that creates the images, passing
the image text in the URL.

In the .aspx file for the page, add an img tag for displaying the dynamically created image.

In the code-behind class for the page that uses the image, use the .NET language of your choice to
set to the Src attribute of the image tag to the URL for the web form that will draw the image,
passing the text it needs in the URL.

Examples 15-4, 15-5 through 15-6 show the .aspx file and VB and C# code-behind files for an
application that uses the dynamic image generation. Figure 15-1 shows some typical output from the
application.

Figure 15-1. Creating a button image on the fly

Discussion

Creating button images on the fly can be handy for two reasons. First, using button images may help
provide the look you want for your application. Second, generating them on the fly can avoid having
to create and save a whole series of button images to the file system on the prospect they may be
needed someday. For example, you might want to use images to improve the appearance of reports.

The approach we favor for generating images on the fly involves first drawing them and then
streaming the images to the Response object. How does this work? The process begins when the
browser first makes a request for a page to display. During the page rendering, whenever the
browser encounters an image tag, it sends a request for that image to the server. The browser
expects the server to stream the requested image back to the browser with the content type set to
indicate an image of a certain type is being returnedfor example, image/jpg, indicating an image in
JPEG format. Our approach does that, but with a twist. Instead of a static image, which is the norm,
our approach returns an image that has been created on the fly on the server. The browser neither
knows nor cares where the stream is coming from, which is why our approach works well.

Two web forms are used in our example that illustrates this solution. The first one renders no HTML
but processes a user request for a dynamically created button image. A second web form is used to
display the requested image.

The .aspx file of the first form contains no head or body; it contains the @ Page directive to link the
code-behind class for the page.

In the Page_Load event handler of the code-behind of the first page, the text for the image button
passed in the URL is retrieved and passed to the makeButton method in the buttonText parameter to
create the button image.

The makeButton method first creates the font that will be used to label the button image and then
measures the space that will be required to display the text. Because we have no Graphics object in
this scenario and a Graphics object cannot be created by itself (it must always be associated with a
specific device context), we have to create a Bitmap solely for the purpose of creating the Graphics

object. Here, a dummy one-pixel-by-one-pixel bitmap is created:

 bfont = New Font("Trebuchet MS", 10)
 button = New Bitmap(1, 1, PixelFormat.Format32bppRgb)
 g = Graphics.FromImage(button)
 tSize = g.MeasureString(buttonText, bfont)

 bfont = new Font("Trebuchet MS", 10);
 button = new Bitmap(1, 1, PixelFormat.Format32bppRgb);
 g = Graphics.FromImage(button);
 tSize = g.MeasureString(buttonText, bfont);

Next, we need to calculate the size of the image required to contain the text, allowing for some space
around the text. The constants HORT_PAD and VERT_PAD are used to define the space at the ends of the
text and above/below the text.

 buttonWidth = CInt(Math.Ceiling(tSize.Width + (HORT_PAD * 2)))
 buttonHeight = CInt(Math.Ceiling(tSize.Height + (VERT_PAD * 2)))

 buttonWidth = Convert.ToInt32(Math.Ceiling(tSize.Width + (HORT_PAD * 2)));
 buttonHeight = Convert.ToInt32(Math.Ceiling(tSize.Height + (VERT_PAD * 2)));

Now that we know how big to create the image, the Bitmap used for the button image can be
created. The PixelFormat.Format32bppRgb defines the Bitmap to be 32 bits per pixel, using eight bits
each for the red, green, and blue color components. For the image being created, the format is not
that important. For more graphically appealing images, however, the format plays a significant role.

 button = New Bitmap(buttonWidth, _
 buttonHeight, _
 PixelFormat.Format32bppRgb)

 button = new Bitmap(buttonWidth,
 buttonHeight,
 PixelFormat.Format32bppRgb);

Next, the entire image is filled with a background color. This requires creating a brush with the
desired color and calling the FillRectangle method with the full size of the image being created.

(Remember, the graphics coordinates always start at 0.) The FromHtml method of the
ColorTranslator class is used to convert the HTML style color designation to the color required for
the brush being created.

 g = Graphics.FromImage(button)
 g.FillRectangle(New SolidBrush(ColorTranslator.FromHtml("#F0F0F0")), _
 0, _
 0, _
 buttonWidth - 1, _
 buttonHeight - 1)

 g = Graphics.FromImage(button);
 g.FillRectangle(new SolidBrush(ColorTranslator.FromHtml("#F0F0F0")),
 0,
 0,
 buttonWidth - 1,
 buttonHeight - 1);

When filling an image with a background color, be careful of the color choices
you make, since browsers do not consistently display all colors. It is best to
stick to the 216 colors of the web-safe palette.

After filling the button image background color, a border is drawn around the perimeter of the image.
This requires creating a pen with the desired color and width to do the drawing.

 g.DrawRectangle(New Pen(Color.Navy, 2), _
 0, _
 0, _
 buttonWidth - 1, _
 buttonHeight - 1)

 g.DrawRectangle(new Pen(Color.Navy, 2),
 0,
 0,
 buttonWidth - 1,
 buttonHeight - 1);

Finally, the text is drawn in the center of the image button. The centering is accomplished by
offsetting the upper-left corner of the text block by the same amount as the spacing that was allowed
around the text.

 g.DrawString(buttonText, _
 bfont, _
 New SolidBrush(Color.Navy), _
 HORT_PAD, _
 VERT_PAD)

 g.DrawString(buttonText,
 bfont,
 new SolidBrush(Color.Navy),
 HORT_PAD,
 VERT_PAD);

When the button image bitmap is returned to the Page_Load method, we need to create a
MemoryStream object and save the bitmap in JPEG format to the memory stream. (We chose the JPEG
format because it happened to work well with the images in this example. Depending on the
circumstances, you may need to use another format, such as GIF.)

 ms = New MemoryStream
 button.Save(ms, ImageFormat.Jpeg)

 ms = new MemoryStream();
 button.Save(ms, ImageFormat.Jpeg);

The final step in generating the button image is to write the binary stream to the Response object.
This requires setting the ContentType property to match the format we saved the image to in the
memory stream. In this example, the image was saved in JPEG format, so the ContentType must be
set to image/jpg. This informs the browser that the stream being returned is an image of the proper
type. We use the BinaryWrite method to write the image to the Response object.

 Response.ContentType = "image/jpg"
 Response.BinaryWrite(ms.ToArray())

 Response.ContentType = "image/jpg";
 Response.BinaryWrite(ms.ToArray());

Using our example web form that dynamically creates button images requires setting the Src

attribute of the image tag to the URL for the web form just described, passing the text for the image
in the URL. A sample URL is shown here:

 src="CH15CreateButtonVB.aspx?ButtonText=Dynamic"

In our example, the Src attribute of the img tag is set in the create button click event of the test page
code-behind.

Dynamically generating images can be resource intensive. To improve your
application's performance, the generated images should be cached. Recipe 16.2
provides an example of how to cache the results as a function of the data
passed in the QueryString.

See Also

Recipe 16.2 and MSDN Help for more on the .NET drawing libraries

Example 15-1. Create images dynamically (.aspx)

 <%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="CH15CreateButtonVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH15CreateButtonVB" %>

Example 15-2. Create images dynamically code-behind (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Drawing
Imports System.Drawing.Imaging
Imports System.IO

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH15CreateButtonVB.aspx
 ''' </summary>
 Partial Class CH15CreateButtonVB

 Inherits System.Web.UI.Page

 'constants used to create URLs to this page
 Public Const PAGE_NAME As String = "CH15CreateButtonVB.aspx"
 Public Const QS_BUTTON_TEXT As String = "ButtonText"

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim buttonText As String
 Dim button As Bitmap
 Dim ms As MemoryStream
 'get button text from the query string and create the image
 buttonText = Request.QueryString(QS_BUTTON_TEXT)
 button = makeButton(buttonText)

 'write image to response object
 ms = New MemoryStream
 button.Save(ms, ImageFormat.Jpeg)
 Response.ContentType = "image/jpg"
 Response.BinaryWrite(ms.ToArray())
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine creates a button with the passed text.
 ''' </summary>
 '''
 ''' <param name="buttonText">
 ''' Set to the text to place on the button
 ''' </param>
 '''
 ''' <returns>Bitmap of button that was created</returns>
 Private Function makeButton(ByVal buttonText As String) As Bitmap
 'define the space around the text on the button
 Const HORT_PAD As Integer = 10
 Const VERT_PAD As Integer = 2

 Dim button As Bitmap
 Dim g As Graphics
 Dim bfont As Font
 Dim tSize As SizeF
 Dim buttonHeight As Integer
 Dim buttonWidth As Integer

 'create the font that will used then create a dummy button to get
 'a graphics object that provides the ability to measure the height
 'and width required to display the passed string
 bfont = New Font("Trebuchet MS", 10)
 button = New Bitmap(1, 1, PixelFormat.Format32bppRgb)
 g = Graphics.FromImage(button)
 tSize = g.MeasureString(buttonText, bfont)

 'calculate the size of button required to display the text adding
 'some space around the text
 buttonWidth = CInt(Math.Ceiling(tSize.Width + (HORT_PAD * 2)))
 buttonHeight = CInt(Math.Ceiling(tSize.Height + (VERT_PAD * 2)))

 'create a new button using the calculated size
 button = New Bitmap(buttonWidth, _
 buttonHeight, _
 PixelFormat.Format32bppRgb)
 'fill the button area
 g = Graphics.FromImage(button)
 g.FillRectangle(New SolidBrush(ColorTranslator.FromHtml("#F0F0F0")), _
 0, _
 0, _
 buttonWidth - 1, _
 buttonHeight - 1)

 'draw a rectangle around the button perimeter using a pen width of 2
 g.DrawRectangle(New Pen(Color.Navy, 2), _
 0, _
 0, _
 buttonWidth - 1, _
 buttonHeight - 1)

 'draw the text on the button (centered)
 g.DrawString(buttonText, _
 bfont, _
 New SolidBrush(Color.Navy), _
 HORT_PAD, _
 VERT_PAD)
 g.Dispose()
 Return (button)
 End Function 'makeButton
 End Class 'CH15CreateButtonVB
End Namespace

Example 15-3. Create images dynamically code-behind (.cs)

using System;

using System.Drawing;
using System.Drawing.Imaging;
using System.IO;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH15CreateButtonCS.aspx
 /// </summary>
public partial class CH15CreateButtonCS : System.Web.UI.Page
{
 // constants used to create URLs to this page
 public const String PAGE_NAME = "CH15CreateButtonCS.aspx";
 public const String QS_BUTTON_TEXT = "ButtonText";

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 String buttonText = null;
 Bitmap button = null;
 MemoryStream ms = null;

 // get button text from the query string and create image
 buttonText = Request.QueryString[QS_BUTTON_TEXT];
 button = makeButton(buttonText);

 // write image to response object
 ms = new MemoryStream();
 button.Save(ms, ImageFormat.Jpeg);
 Response.ContentType = "image/jpg";
 Response.BinaryWrite(ms.ToArray());
 } // Page_Load

 ///***
 /// <summary>
 /// This routine creates a button with the passed text.
 /// </summary>
 ///
 /// <param name="buttonText">
 /// Set to the text to place on the button
 /// </param>
 private Bitmap makeButton(String buttonText)
 {
 // define the space around the text on the button

 const int HORT_PAD = 10;
 const int VERT_PAD = 2;

 Bitmap button = null;
 Graphics g = null;
 Font bfont = null;
 SizeF tSize;
 int buttonHeight;
 int buttonWidth;

 // create the font that will used then create a dummy button to get
 // a graphics object that provides the ability to measure the height
 // and width required to display the passed string
 bfont = new Font("Trebuchet MS", 10);
 button = new Bitmap(1, 1, PixelFormat.Format32bppRgb);
 g = Graphics.FromImage(button);
 tSize = g.MeasureString(buttonText, bfont);

 // calculate the size of button required to display the text adding
 // some space around the text
 buttonWidth = Convert.ToInt32(Math.Ceiling(tSize.Width +
 (HORT_PAD * 2)));
 buttonHeight = Convert.ToInt32(Math.Ceiling(tSize.Height +
 (VERT_PAD * 2)));

 // create a new button using the calculated size
 button = new Bitmap(buttonWidth,
 buttonHeight,
 PixelFormat.Format32bppRgb);

 // fill the button area
 g = Graphics.FromImage(button);
 g.FillRectangle(new SolidBrush(ColorTranslator.FromHtml("#F0F0F0")),
 0,
 0,
 buttonWidth - 1,
 buttonHeight - 1);

 // draw a rectangle around the button perimeter using a pen width of 2
 g.DrawRectangle(new Pen(Color.Navy, 2),
 0,
 0,
 buttonWidth - 1,
 buttonHeight - 1);

 // draw the text on the button (centered)
 g.DrawString(buttonText,
 bfont,
 new SolidBrush(Color.Navy),
 HORT_PAD,
 VERT_PAD);
 g.Dispose();

 return (button);
 } // makeButton
 } // CH15CreateButtonCS
}

Example 15-4. Using the dynamically created images (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH15TestCreateButtonVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH15TestCreateButtonVB"
 Title="Test Dynamic Button Creation" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Test Dynamic Button Creation (VB)
 </div>
 <table width="50%" align="center" border="0">
 <tr>
 <td class="labelText">Text For Button: </td>
 <td>
 <asp:TextBox ID="txtButtonText" Runat="server" />
 </td>
 <td>
 <input id="btnCreate" runat="server"
 type="button"
 value="Create"
 name="btnCreate"
 onserverclick="btnCreate_ServerClick"/>
 </td>
 </tr>
 <tr>
 <td id="tdCreatedButton" runat="server"
 colspan="3"
 align="center"
 class="labelText">

 Last Button Created - <img id="imgButton" runat="server"
 border="0" src=""
 align="middle" alt="button"/>
 </td>
 </tr>
 </table>
</asp:Content>

Example 15-5. Using the dynamically created images code-behind (.vb)

Option Explicit On
Option Strict On

Imports System

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH15TestCreateButtonVB.aspx
 ''' </summary>
 Partial Class CH15TestCreateButtonVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Not Page.IsPostBack) Then
 'make image button table cell invisible initially
 tdCreatedButton.Visible = False
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the create button click
 ''' event. It is responsible for initializing the source property of the
 ''' image button to the URL of the dynamic button creation page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnCreate_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs) _
 'update the image tag with the URL to the page that will
 'create the button and with the button text in the URL
 imgButton.Src = "CH15CreateButtonVB.aspx?ButtonText=" & _
 txtButtonText.Text
 tdCreatedButton.Visible = True
 End Sub 'btnCreate_Click
 End Class 'CH15TestCreateButtonVB
End Namespace

Example 15-6. Using the dynamically created images code-behind (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH15TestCreateButtonCS.aspx
 /// </summary>
 public partial class CH15TestCreateButtonCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 // make image button table cell invisible initially
 tdCreatedButton.Visible = false;
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the create button click
 /// event. It is responsible for initializing the source property of the
 /// image button to the URL of the dynamic button creation page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnCreate_ServerClick(Object sender,
 System.EventArgs e)
 {
 // update the image tag with the URL to the aspx page that will
 // create the button and with the button text in the URL
 imgButton.Src = "CH15CreateButtonCS.aspx?ButtonText=" +
 txtButtonText.Text;
 tdCreatedButton.Visible = true;
 } // btnCreate_ServerClick

 } // CH15TestCreateButtonCS
}

Recipe 15.3. Creating Bar Charts on the Fly

Problem

You want to create a bar chart on the fly without having to resort to a commercial package.

Solution

Use a combination of data binding with a Repeater control and the well-known HTML trick of
stretching an image to create the bars.

In the .aspx file, add a Repeater control with an ItemTemplate .

In the code-behind class for the page, use the .NET language of your choice to:

Assign the data source to the Repeater control and bind it.1.

In the ItemDataBound event handler called for each item in the Repeater , set the width of the
bar in the passed Repeater row.

2.

Figure 15-2 shows some typical output. Examples 15-7 , 15-8 through 15-9 show the .aspx file and
VB and C# code-behind files for an application that implements this solution.

Discussion

This recipe provides a simple approach that combines data binding and HTML tricks to create a bar
graph with little coding and without the need to purchase any additional components. By using more
complex HTML, you can add more labels and other enhancements to this recipe, which may make it
more useful for your situation.

Figure 15-2. Creating a bar chart output dynamically

The example we use to illustrate this solution generates a bar chart from chapter and problem data in
a database. (The source of the data is not that important; the technique for generating the graph on
the fly is the focus of this recipe.) The bar chart is created from an HTML table, with the top row used
to label the chart.

This recipe advocates using a Repeater control to generate the rows in a table that represent the bars
on the chart. The rows generated by the Repeater are defined in the ItemTemplate element, which in
our example contains two columns. The first column is used to output the chapter number. In our
example, the chapter number is obtained by binding the cell text to the Chapter column in the data
source.

The second column contains the bar representing the number of problems in the chapter. The bar is
created by using an HTML image tag with the source set to a one-pixel-by-one-pixel image. The
height and width attributes of the image "stretch" the image to the size of the bar needed to
represent the number of problems in the chapter. In our example, the height is set to a fixed value of
15 pixels, but the width is adjusted to represent the number of problems in the chapter. The width is
adjusted in the code-behind and is discussed later.

The second column also contains a label to indicate the number of problems in the chapter. The
number of problems in a chapter is obtained by binding the cell text to the ProblemCount column in
the data source. This label is placed at the end of the bar with a non-breaking space () to
separate the label from the end of the bar.

The Page_Load method in the example code-behind reads the data from the database and then binds
the data to the Repeater control on the page.

The code-behind class also implements the ItemDataBound event handler to provide the ability to
adjust the width of the image used for the bar. The ItemDataBound event executes once per row in
the Repeater as the row is data bound. In this event, we need to get a reference to the HTML image
in the row using the FindControl method of the row and set the width of the image to reflect the
number of problems in the chapter represented by the row.

If this recipe does not provide the richness you need for your chart, you can create an image using
the concepts presented in Recipe 15.1. The System.Drawing classes provide all of the functionality to
create sophisticated charts using the GDI+ Library. They do require more coding, however, as you
must build your graphs from the ground up using the basic ingredients of pen, brush, point,
rectangle, etc.

See Also

Recipe 15.1 and MSDN Help for more information on the System.Drawing class

Example 15-7. Creating a bar chart dynamically (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH15CreateChartVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH15CreateChartVB"
 Title="Create Chart" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Dynamic Chart Creation (VB)
 </div>
 <table align="center" border="2" cellpadding="10">
 <tr>
 <td>
 <table cellpadding="0" cellspacing="0" border="0">
 <tr>
 <td align="center" colspan="2" class="subHeading">
 Problems Per Chapter

</td>
 </tr>
 <asp:Repeater ID="repChartBar" Runat="server"
 OnItemDataBound="repChartBar_ItemDataBound">
 <ItemTemplate>
 <tr>
 <td class="labelText">
 <%#Eval("Chapter")%>
 </td>
 <td class="labelText">
 <img id="imgChartBar" runat="server"
 src="images/blueSpacer.gif" border="0"
 height="15" align="middle" alt="bar"/>

 [<%#Eval("ProblemCount")%>]
 </td>
 </tr>
 </ItemTemplate>
 </asp:Repeater>
 </table>
 </td>
 </tr>
 </table>
</asp:Content>

Example 15-8. Create bar chart dynamically code-behind (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration.ConfigurationManager
Imports System.Data
Imports System.Data.Common
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH15CreateChartVB.aspx
 ''' </summary>
 Partial Class CH15CreateChartVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dbConn As OleDbConnection = Nothing
 Dim dc As OleDbCommand
 Dim dr As OleDbDataReader
 Dim strConnection As String
 Dim strSQL As String

 If (Not Page.IsPostBack) Then
 Try

 'get the connection string from web.config and open a connection
 'to the database
 strConnection = _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 strSQL = "SELECT DISTINCT ChapterID AS Chapter, " & _
 "count(*) AS ProblemCount " & _
 "FROM Problem " &_
 "GROUP BY ChapterID"

 dc = New OleDbCommand(strSQL, dbConn)
 dr = dc.ExecuteReader()

 'set the source of the data for the repeater control and bind it
 repChartBar.DataSource = dr
 repChartBar.DataBind()

 Finally
 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine is the event handler that is called for each item in the
 ''' repeater after a data bind occurs. It is responsible for setting the
 ''' width of the bar in the passed repeater row to reflect the number of
 ''' problems in the chapter the row represents
 ''' </summary>
 '''
 ''' <param name="sender"></param>
 ''' <param name="e"></param>
 ''' <remarks></remarks>
 Protected Sub repChartBar_ItemDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.RepeaterItemEventArgs)
 Dim img As System.Web.UI.HtmlControls.HtmlImage

 'get a reference to the image used for the bar in the row
 img = CType(e.Item.FindControl("imgChartBar"), _
 System.Web.UI.HtmlControls.HtmlImage)

 'set the width to the number of problems in the chapter for this row
 'multiplied by a constant to stretch the bar a bit more
 img.Width = _
 CInt(CType(e.Item.DataItem, DbDataRecord)("ProblemCount")) * 10

 End Sub 'repChartBar_ItemDataBound
 End Class 'CH15CreateChartVB
End Namespace

Example 15-9. Creating a bar chart dynamically code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.Common;
using System.Data.OleDb;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH15CreateChartCS.aspx
 /// </summary>
 public partial class CH15CreateChartCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 OleDbConnection dbConn = null;
 OleDbCommand dc = null;
 OleDbDataReader dr = null;
 string strConnection = null;
 String strSQL = null;

 if (!Page.IsPostBack)
 {
 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 strSQL = "SELECT DISTINCT ChapterID AS Chapter, " +
 "count(*) AS ProblemCount " +
 "FROM Problem " +
 "GROUP BY ChapterID";
 dc = new OleDbCommand(strSQL, dbConn);
 dr = dc.ExecuteReader();

 // set the source of the data for the repeater control and bind it
 repChartBar.DataSource = dr;
 repChartBar.DataBind();
 }

 finally
 {
 // clean up
 if (dbConn != null)
 {
 dbConn.Close();
 }
 }
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine is the event handler that is called for each item in the
 /// repeater after a data bind occurs. It is responsible for setting the
 /// width of the bar in the passed repeater row to reflect the number of
 /// problems in the chapter the row represents.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void repChartBar_ItemDataBound(Object sender,
 System.Web.UI.WebControls.RepeaterItemEventArgs e)
 {
 System.Web.UI.HtmlControls.HtmlImage img = null;

 // get a reference to the image used for the bar in the row
 img = (System.Web.UI.HtmlControls.HtmlImage)
 (e.Item.FindControl("imgChartBar"));

 // set the width to the number of problems in the chapter for this row
 // multiplied by a constant to stretch the bar a bit more
 img.Width =
 (int)(((DbDataRecord)(e.Item.DataItem))["ProblemCount"]) * 10;
 } // repChartBar_ItemDataBound
 } // CH15CreateChartCS
}

Recipe 15.4. Displaying Images Stored in a Database

Problem

Your application stores images in a database that you want to display on a web form.

Solution

Create a web form that reads the image data from the database and streams the image to the
Response object.

In the .aspx file, enter an @ Page directive and omit any head or body tags to link the .aspx page to
the code-behind class that retrieves and displays the images:

Read the image ID that is generated by the running applicationfor example, the image ID
passed in the URL for accessing the web form.

1.

Open a connection to the database that contains the images.2.

Build a query string, and read the byte array of the desired image from the database.3.

Set the content type for the image and write it to the Response object.4.

Examples 15-10 , 15-11 through 15-12 show the .aspx file and VB and C# code-behind files for an
application that implements the image-building portion of the solution.

To use this dynamic image generation technique in your application, set the src attribute of the
image tags used to display the images to the URL of the ASP.NET page that reads the images from
the database, passing the image ID in the URL.

In the .aspx file for the page, add an img tag for displaying the image.

In the code-behind class for the page that uses the image, use the .NET language of your choice to
set the src attribute of the image tag to the URL for the web form just described, passing the ID of
the image in the URL.

Examples 15-13 , 15-14 through 15-15 show the .aspx file and VB and C# code-behind files for an
application that uses the dynamic image generation. Figure 15-3 shows some typical output from the
application.

Discussion

If you have images in a database that you want to display on a web form, chances are you've
considered using an image tag to display them. Nevertheless, you may be searching for a practical

way to set the image tag's src attribute and move the image data to the browser while maintaining
the maximum flexibility in selecting the images you need.

The solution we favor involves creating a web form that reads an image from a database and streams
it to the Response object. A convenient way to specify the image to read from the database is to
include an image ID in the URL used to call the web form that retrieves and returns the image to the
browser.

Figure 15-3. Displaying images from a database

Our example that illustrates this solution consists of two web forms. The first web form renders no
HTML but instead processes the request for reading an image from the database. The second web
form is used to demonstrate displaying an image from the database.

The .aspx file of the first form contains no head or body; it simply contains the @ Page directive to
link the page to its code-behind class.

The Page_Load method of the code-behind performs the following four steps to retrieve the requested
image from the database and send it to the browser:

Retrieve the ID of the requested image from the URL.1.

Read the byte array of the image from the database.2.

Set the ContentType of the type of image stored in the database (GIF in this example).3.

4.

2.

3.

Write the byte array of the image to the Response object.4.

To use the ASP.NET page to retrieve images from the database, we need to set the src attribute of
an image tag to the name of the page just described, passing the ID of the desired image in the URL.
A sample URL is shown here:

 src="CH15ImageFromDatabaseVB.aspx?ImageID=13"

In our example, the src attribute of an img tag is set in the view image button click event of the test
page code-behind.

The performance of this solution can be significantly improved by caching the images retrieved from
the database instead of retrieving them for each request. Refer to Recipe 16.3 for an example of how
to cache the results as a function of the data passed in the QueryString .

An HttpHandler can be used to implement the same functionality described in this recipe. Refer to
Recipe 20.1 for an example of retrieving images from a database using an HttpHandler .

Images can be stored in a database using the technique described in Recipe 18.4.

See Also

Recipes 16.2, 18.4, and 20.1

Example 15-10. Reading images from a database (.aspx)

<%@ Page Language="VB" AutoEventWireup="false"
 CodeFile="CH15ImageFromDatabaseVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH15ImageFromDatabaseVB" %>

Example 15-11. Reading images from a database code-behind (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Configuration.ConfigurationManager
Imports System.Data
Imports System.Data.Common
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples

 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH15ImageFromDatabaseVB.aspx
 ''' </summary>
 Partial Class CH15ImageFromDatabaseVB
 Inherits System.Web.UI.Page

 'constants used to create URLs to this page
 Public Const PAGE_NAME As String = "CH15ImageFromDatabaseVB.aspx"
 Public Const QS_IMAGE_ID As String = "ImageID"
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dbConn As OleDbConnection = Nothing
 Dim dCmd As OleDbCommand
 Dim imageData() As Byte
 Dim strConnection As String
 Dim strSQL As String
 Dim imageID As String

 If (Not Page.IsPostBack) Then
 Try
 'get the ID of the image to retrieve from the database
 imageID = Request.QueryString(QS_IMAGE_ID)

 'get the connection string from web.config and open a connection
 'to the database
 strConnection = _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 strSQL = "SELECT ImageData " &_
 "FROM BookImage " &_
 "WHERE BookImageID=?"
 dCmd = New OleDbCommand(strSQL, dbConn)
 dCmd.Parameters.Add(New OleDbParameter("BookImageID", imageID))
 imageData = CType(dCmd.ExecuteScalar(), Byte())

 'set the content type for the image and write it to the response
 Response.ContentType = "image/gif"
 Response.BinaryWrite(imageData)

 Finally

 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End If
 End Sub 'Page_Load
 End Class 'CH15ImageFromDatabaseVB
End Namespace

Example 15-12. Reading images from a database code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.Common;
using System.Data.OleDb;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH15ImageFromDatabaseCS.aspx
 /// </summary>
 public partial class CH15ImageFromDatabaseCS : System.Web.UI.Page
 {
 // constants used to create URLs to this page
 public const String PAGE_NAME = "CH15ImageFromDatabaseCS.aspx";
 public const String QS_IMAGE_ID = "ImageID";

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 OleDbConnection dbConn = null;
 OleDbCommand dCmd = null;
 byte[] imageData = null;
 String strConnection = null;
 String strSQL = null;
 String imageID = null;

 if (!Page.IsPostBack)
 {
 try
 {
 // get the ID of the image to retrieve from the database
 imageID = Request.QueryString[QS_IMAGE_ID];

 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 strSQL = "SELECT ImageData " +
 "FROM BookImage " +
 "WHERE BookImageID=?";
 dCmd = new OleDbCommand(strSQL, dbConn);
 dCmd.Parameters.Add(new OleDbParameter("BookImageID", imageID));
 imageData = (byte[])(dCmd.ExecuteScalar());

 // set the content type for the image and write it to the response
 Response.ContentType = "image/gif";
 Response.BinaryWrite(imageData);
 }
 finally
 {
 // clean up
 if (dbConn != null)
 {
 dbConn.Close();
 }
 }
 }
 } // Page_Load
 } // CH15ImageFromDatabaseCS
}

Example 15-13. Displaying images from a database (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH15TestImageFromDatabaseVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH15TestImageFromDatabaseVB"
 Title="Test Image From Database" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Display Image From Database (VB)
 </div>
 <table align="center" width="50%" border="0">
 <tr>
 <td>
 <asp:DropDownList ID="ddImages" Runat="server" />
 </td>
 <td>
 <input id="btnViewImage" runat="server"
 type="button"
 value="View"
 onserverclick="btnViewImage_ServerClick"/>
 </td>
 </tr>
 <tr>
 <td id="tdSelectedImage" runat="server"
 colspan="2" align="center" class="subHeading">

 Selected Image

 </td>
 </tr>
 </table>
</asp:Content>

Example 15-14. Displaying images from a database code-behind (.vb)

Option Explicit On
Option Strict On

Imports System.Configuration
Imports System.Data
Imports System.Data.Common
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH15TestImageFromDatabaseVB.aspx

 ''' </summary>
 Partial Class CH15TestImageFromDatabaseVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dbConn As OleDbConnection = Nothing
 Dim dc As OleDbCommand
 Dim dr As OleDbDataReader
 Dim strConnection As String
 Dim strSQL As String

 If (Not Page.IsPostBack) Then
 'initially hide the selected image since one is not selected
 tdSelectedImage.Visible = False

 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 strSQL = "SELECT BookImageID, Title " &_
 "FROM BookImage"
 dc = New OleDbCommand(strSQL, dbConn)
 dr = dc.ExecuteReader()

 'set the source of the data for the repeater control and bind it
 ddImages.DataSource = dr
 ddImages.DataTextField = "Title"
 ddImages.DataValueField = "BookImageID"
 ddImages.DataBind()
 Finally
 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End If
 End Sub 'Page_Load

 '''***

 ''' <summary>
 ''' This routine provides the event handler for the view image click event.
 ''' It is responsible for setting the src attibute of the imgBook tag to
 ''' the page that will retrieve the image data from the database and
 ''' stream to the browser.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnViewImage_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'set the source for the selected image tag
 imgBook.Src = "CH15ImageFromDatabaseVB.aspx?ImageID=" &_
 ddImages.SelectedItem.Value.ToString()
 'make the selected image visible
 tdSelectedImage.Visible = True
 End Sub 'btnViewImage_ServerClick
 End Class 'CH15TestImageFromDatabaseVB
End Namespace

Example 15-15. Displaying images from a database code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH15TestImageFromDatabaseCS.aspx
 /// </summary>
 public partial class CH15TestImageFromDatabaseCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 OleDbConnection dbConn = null;
 OleDbCommand dc = null;

 OleDbDataReader dr = null;
 String strConnection = null;
 String strSQL = null;

 if (!Page.IsPostBack)
 {
 // initially hide the selected image since one is not selected
 tdSelectedImage.Visible = false;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 strSQL = "SELECT BookImageID, Title " +
 "FROM BookImage";
 dc = new OleDbCommand(strSQL, dbConn);
 dr = dc.ExecuteReader();

 // set the source of the data for the repeater control and bind it
 ddImages.DataSource = dr;
 ddImages.DataTextField = "Title";
 ddImages.DataValueField = "BookImageID";
 ddImages.DataBind();
 }

 finally
 {
 // clean up
 if (dbConn != null)
 {
 dbConn.Close();
 }
 }
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the view image click
 /// event. It is responsible for setting the src attibute of the imgBook
 /// tag to the page that will retrieve the image data from the database
 /// and stream it to the browser.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>

 protected void btnViewImage_ServerClick(Object sender,
 System.EventArgs e)
 {
 // set the source for the selected image tag
 imgBook.Src = "CH15ImageFromDatabaseCS.aspx?ImageID=" +
 ddImages.SelectedItem.Value.ToString();

 // make the selected image visible
 tdSelectedImage.Visible = true;
 } // btnViewImage_ServerClick
 } // CH15TestImageFromDatabaseCS
}

Recipe 15.5. Displaying Thumbnail Images

Problem

You want to display a page of images stored in your database and scaled on the fly to thumbnail
format.

Solution

Implement the first of the two ASP.NET pages described in Recipe 15.3, changing the Page_Load
method in the code-behind class to scale the full-sized image retrieved from the database to the
appropriate size for a thumbnail presentation.

In the Page_Load method of the code-behind class for the page, use the .NET language of your choice
to:

Create a System.Drawing.Image object from the byte array retrieved from the database.1.

Use a constant to define the height of the thumbnail and calculate the width to maintain the
aspect ratio of the image.

2.

Use the GetThumbnailImage method of the Image object to scale the image to the desired size.3.

Load the thumbnail image into a MemoryStream and write it to the Response object.4.

Examples 15-16 and 15-17 show the VB and C# code-behind class for our example that illustrates
this solution. (See the CH15ImageFromDatabaseVB .aspx file and VB and C# code-behind files in
Recipe 15.3 for our starting point.)

To display the thumbnails, create another ASP.NET page, add a DataList control with image tags in
the ItemTemplate, and use data binding to set the src attributes of the image tags.

In the .aspx file for the page:

Use a DataList control to provide the ability to generate a list using data binding.1.

Use a HeaderTemplate to label the table of images.2.

Use an ItemTemplate to define an image that is displayed in the DataList.3.

In the code-behind class for the page, use the .NET language of your choice to:

1.

3.

Open a connection to the database.1.

Read the list of images from the database.2.

Assign the data source to the DataList control and bind it.3.

Set the src attribute of the image tags used to display the thumbnail images in the
ItemDataBound event of the DataList.

4.

Examples 15-18, 15-19 through 15-20 show the .aspx file and VB and C# code-behind files for the
application that uses the dynamically generated images. The output produced by the page is shown
in Figure 15-4.

Figure 15-4. Displaying thumbnails output

Discussion

The rationale for this recipe is similar to that of Recipe 15.3. You need a convenient way to display
images from a database, in this case a page of thumbnail images, and it must efficiently move the
image data to the browser while maintaining the maximum flexibility in selecting images from the
data store.

This recipe uses the same approach as in Recipe 15.3 where, with one page, an image is retrieved
from the database and streamed to the browser, and a second page is used to generate the image
requests and display the results, which is a set of thumbnails here. Additionally, the image retrieval
page must scale the images to thumbnail size.

In our example that demonstrates the solution, the Page_Load method of the code-behind for the
image building page (the CH15ThumbnailFromDatabase page) is modified to scale the full-size image

retrieved from the database to the appropriate size for a thumbnail presentation.

The first step to scale the image is to create a System.Drawing.Image object from the byte array
retrieved from the database. This requires loading the byte array into a MemoryStream and using the
FromStream method of the Image class to create the image.

Next, we need to calculate how much to reduce the image. A constant is used to define the height of
the thumbnail, and the width is calculated by determining how much the height is being reduced and
multiplying the value times the width of the full-size image.

Reduce the height and width by the same scale factor to keep the aspect ratio
correct. If the height or width is reduced by a different amount, the image will
be distorted.

Handling mixed calculations of integers and doubles can result in unexpected
results. Visual Basic is more tolerant and will allow the division of two integers
with the quotient set to a variable of type double and result in the correct
value. C# will return an integer result from the division of two integers,
truncating the result. It is best to cast at least the numerator to the type of the
resultant variable.

Now that the width and height of the thumbnail are determined, the GetThumbnailImage method of
the full-size image can be used to return a scaled-down image to use as the thumbnail.

Once the thumbnail image is created, it can be loaded into a MemoryStream and written to the
Response object in the same manner described in Recipe 15.3.

The web form used to display the thumbnails uses a DataList control to provide the ability to
generate the list using data binding. The DataList is configured to display four columns horizontally
by setting the RepeatColumns attribute to "4" and the RepeatDirection attribute to "Horizontal". This
will start a new row in the table used to display the images after every fourth image.

A HeaderTemplate is used to label the table of images. The template can contain any HTML that can
be properly displayed in a table. In this example, the template consists of a single table row
containing a single cell with the heading for the table. The colspan attribute is set to "4" to cause the
cell to span across all columns in the table, and the align attribute is set to "center" to center the
heading.

An ItemTemplate is used to define an item displayed in the DataList. In this example, the template
consists of an img tag that has the ID and Runat attributes set to provide access to the item from the
code-behind.

The Page_Load method in the code-behind reads the list of images from the database and binds them
to the DataList control. This is accomplished by opening a connection to the database, querying for a
list of the image IDs, then setting the DataSource and calling the dataBind method of the DataList.
The only data we need from the database is the list of IDs for the images. These will be used to set
the image sources, and the reading of the image data will be done by the code described earlier.

The src attribute of the image tags used to display the thumbnail images is set in the ItemDataBound

event of the DataList. The ItemDataBound event is executed for every item in the DataList, including
the header. Therefore, it is important to check the item type since image tags only appear in the data
items. Data items can be an Item or an AlternatingItem.

If the item is a data item, we need to get a reference to the image control in the item. This is
accomplished by using the FindControl method of the item to locate the image control using the ID
assigned in the .aspx file. This reference must be cast to an HtmlImage type since the return type of
FindControl is an Object.

Once a reference to the image is obtained, the src attribute can be set to the name of the ASP.NET
page that is used to generate the thumbnail image passing the ID of the image in the URL.

The ID of the image is obtained from the DataItem method of the item. This must be cast to a
DbDataRecord type to allow "looking up" the ID of the image using the name of the column included in
the SQL query used in the bindData method described earlier.

This example presents a useful method of displaying thumbnails of images stored in a database.
When used with reasonably small images, the performance is acceptable for most applications. If the
images are large, however, you may want to create the thumbnail images offline and store them in
the database to avoid the performance hit for real-time conversion.

See Also

Recipes 15.1 and 15.3

Example 15-16. Page_Load method for generating thumbnail image (.vb)

Imports System.Configuration
Imports System.Data
Imports System.Data.Common
Imports System.Data.OleDb
Imports System.Drawing
Imports System.Drawing.Imaging
Imports System.IO

 …

 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 'height of the thumbnail created from the original image
 Const THUMBNAIL_HEIGHT As Integer = 75

 Dim dbConn As OleDbConnection
 Dim dc As OleDbCommand
 Dim imageData() As Byte
 Dim strConnection As String
 Dim strSQL As String
 Dim ms As MemoryStream

 Dim fullsizeImage As Image
 Dim thumbnailImage As Image
 Dim thumbnailWidth As Integer
 Dim imageID As String

 If (Not Page.IsPostBack) Then
 Try
 'get the ID of the image to retrieve from the database
 imageID = Request.QueryString(QS_IMAGE_ID)

 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 strSQL = "SELECT ImageData " &_
 "FROM BookImage " &_
 "WHERE BookImageID=" & imageID
 dc = New OleDbCommand(strSQL, dbConn)
 imageData = CType(dc.ExecuteScalar(), Byte())

 'create an image from the byte array
 ms = New MemoryStream(imageData)
 fullsizeImage = System.Drawing.Image.FromStream(ms)

 'calculate the amount to shink the height and width
 thumbnailWidth = _
 CInt(Math.Round((CDbl(THUMBNAIL_HEIGHT) / _
 fullsizeImage.Height) * fullsizeImage.Width))

 'create the thumbnail image
 thumbnailImage = fullsizeImage.GetThumbnailImage(thumbnailWidth, _
 THUMBNAIL_HEIGHT, _
 Nothing, _
 IntPtr.Zero)
 'write thumbnail to the response object
 ms = New MemoryStream
 thumbnailImage.Save(ms, ImageFormat.Jpeg)
 Response.ContentType = "image/jpg"
 Response.BinaryWrite(ms.ToArray())

 Finally
 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End If
End Sub 'Page_Load

Example 15-17. Page_Load method for generating thumbnail image (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Drawing;
using System.Drawing.Imaging;
using System.IO;

 …

 protected void Page_Load(object sender, EventArgs e)
 {
 // height of the thumbnail created from the original image
 const int THUMBNAIL_HEIGHT = 75;

 OleDbConnection dbConn = null;
 OleDbCommand dc = null;
 byte[] imageData = null;
 String strConnection = null;
 String strSQL = null;
 MemoryStream ms = null;
 System.Drawing.Image fullsizeImage = null;
 System.Drawing.Image thumbnailImage = null;
 int thumbnailWidth;
 String imageID = null;

 if (!Page.IsPostBack)
 {
 try
 {
 // get the ID of the image to retrieve from the database
 imageID = Request.QueryString[QS_IMAGE_ID];

 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 strSQL = "SELECT ImageData " +
 "FROM BookImage " +
 "WHERE BookImageID=" + imageID;
 dc = new OleDbCommand(strSQL, dbConn);

 imageData = (byte[])(dc.ExecuteScalar());

 // create an image from the byte array
 ms = new MemoryStream(imageData);
 fullsizeImage = System.Drawing.Image.FromStream(ms);

 // calculate the amount to shink the height and width
 thumbnailWidth =
 Convert.ToInt32(Math.Round((Convert.ToDouble(THUMBNAIL_HEIGHT) /
 fullsizeImage.Height) * fullsizeImage.Width));

 // create the thumbnail image
 thumbnailImage = fullsizeImage.GetThumbnailImage(thumbnailWidth,
 THUMBNAIL_HEIGHT,
 null,
 IntPtr.Zero);

 // write thumbnail to the response object
 ms = new MemoryStream();
 thumbnailImage.Save(ms, ImageFormat.Jpeg);
 Response.ContentType = "image/jpg";
 Response.BinaryWrite(ms.ToArray());
 }

 finally
 {
 if (dbConn != null)
 {
 dbConn.Close();
 }
 }
 }
} // Page_Load

Example 15-18. Displaying thumbnail images (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH15TestThumbnailsFromDatabaseVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH15TestThumbnailsFromDatabaseVB"
 Title="Display Thumbnails" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Display Thumbnail Images (VB)
 </div>
 <div align="center">
 <asp:DataList ID="dlImages" Runat="server"
 RepeatColumns="4" RepeatDirection="Horizontal"
 RepeatLayout="Table" Width="50%"
 OnItemDataBound="dlImages_ItemDataBound">
 <HeaderTemplate>
 <tr>
 <td colspan="4" class="subHeading" align="center">
 Thumbnails of Images In Database

 </td>
 </tr>
 </HeaderTemplate>
 <ItemTemplate>

 </ItemTemplate>
 </asp:DataList><
 </div>
</asp:Content>

Example 15-19. Displaying thumbnail images code-behind (.vb)

Option Explicit On
Option Strict On

Imports System.Configuration.ConfigurationManager
Imports System.Data
Imports System.Data.Common
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH15TestThumbnailsFromDatabaseVB.aspx
 ''' </summary>
 Partial Class CH15TestThumbnailsFromDatabaseVB
 Inherits System.Web.UI.Page
 '''***

 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dbConn As OleDbConnection = Nothing
 Dim dc As OleDbCommand
 Dim dr As OleDbDataReader
 Dim strConnection As String
 Dim strSQL As String

 If (Not Page.IsPostBack) Then
 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDb.OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 strSQL = "SELECT BookImageID " &_
 "FROM BookImage"
 dc = New OleDbCommand(strSQL, dbConn)
 dr = dc.ExecuteReader()

 'set the source of the data for the repeater control and bind it
 dlImages.DataSource = dr
 dlImages.DataBind()

 Finally
 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine is the event handler that is called for each item in the
 ''' datalist after a data bind occurs. It is responsible for setting the
 ''' source of the image tag to the URL of the page that will generate the
 ''' thumbnail images with the ID of the appropriate image for the item.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>

 ''' <param name="e">Set to the event arguments</param>
 Protected Sub dlImages_ItemDataBound(ByVal sender As Object, _
 ByVal e As System.Web.UI.WebControls.DataListItemEventArgs)

 Dim img As System.Web.UI.HtmlControls.HtmlImage

 'make sure this is an item in the data list (not header etc.)
 If ((e.Item.ItemType = ListItemType.Item) Or _
 (e.Item.ItemType = ListItemType.AlternatingItem)) Then
 'get a reference to the image used for the bar in the row
 img = CType(e.Item.FindControl("imgThumbnail"), _
 System.Web.UI.HtmlControls.HtmlImage)
 'set the source to the page that generates the thumbnail image
 img.Src = "CH15ThumbnailFromDatabaseVB.aspx?ImageID=" &_
 CStr(CType(e.Item.DataItem, DbDataRecord)("BookImageID"))
 End If
 End Sub 'dlImages_ItemDataBound
 End Class 'CH15TestThumbnailsFromDatabaseVB
End Namespace

Example 15-20. Displaying thumbnail images code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.Common;
using System.Data.OleDb;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH15TestThumbnailsFromDatabaseCS.aspx
 /// </summary>
 public partial class CH15TestThumbnailsFromDatabaseCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {

 OleDbConnection dbConn = null;
 OleDbCommand dc = null;
 OleDbDataReader dr = null;
 String strConnection = null;
 String strSQL = null;

 if (!Page.IsPostBack)
 {
 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();
 // build the query string and get the data from the database
 strSQL = "SELECT BookImageID " +
 "FROM BookImage";
 dc = new OleDbCommand(strSQL, dbConn);
 dr = dc.ExecuteReader();

 // set the source of the data for the repeater control and bind it
 dlImages.DataSource = dr;
 dlImages.DataBind();
 }

 finally
 {
 // clean up
 if (dbConn != null)
 {
 dbConn.Close();
 }
 }
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine is the event handler that is called for each item in the
 /// datalist after a data bind occurs. It is responsible for setting the
 /// source of the image tag to the URL of the page that will generate the
 /// thumbnail images with the ID of the appropriate image for the item.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void dlImages_ItemDataBound(Object sender,
 System.Web.UI.WebControls.DataListItemEventArgs e)
 {
 System.Web.UI.HtmlControls.HtmlImage img = null;

 // make sure this is an item in the data list (not header etc.)
 if ((e.Item.ItemType == ListItemType.Item) ||
 (e.Item.ItemType == ListItemType.AlternatingItem))
 {
 // get a reference to the image used for the bar in the row
 img = (System.Web.UI.HtmlControls.HtmlImage)
 (e.Item.FindControl("imgThumbnail"));

 // set the source to the page that generates the thumbnail image
 img.Src = "CH15ThumbnailFromDatabaseCS.aspx?ImageID=" +
 (((DbDataRecord)(e.Item.DataItem))["BookImageID"]).ToString();
 }
 } // dlImages_ItemDataBound
 } // CH15TestThumbnailsFromDatabaseCS
}

Chapter 16. Caching

16.0 Introduction

ASP.NET gives you the ability to cache the output of pages or portions of pages in memory to
improve performance. The main reason to cache is to reduce the latency and increase the scalability
of an application while reducing the server resources required to deliver its page content. Latency is a
measure of the time it takes for an application to respond to a user request. Scalability is the ability
of an application to handle increased numbers of users. If a page is cached on the server, the
rendered HTML stored in memory is served instead of a freshly generated page from the server.
Because it takes less time for the client to get the page and display it, your web site will seem more
responsive.

If pages are completely static, deciding to cache them is a no-brainer. But the decision gets trickier if
pages must vary their content in response to one of the following:

Query string parameters

Client browser type (e.g., Internet Explorer, Netscape, and so on)

Custom parameters

Database content

Sometimes it makes sense to cache such pages, and sometimes not, as you will soon see.

ASP.NET provides the ability to cache data items to enhance performance. But what if the data items
occasionally change? Does it still make sense to cache them? The answer is a definite yes, provided
you know how to refresh the cache when the data changes.

ASP.NET 2.0 now allows for many new caching possibilities, including database-triggered cache
invalidation and the ability to create custom cache dependencies. The recipes in this chapter cover
how to use these new capabilities in the context of some of the more useful caching scenarios.
Nevertheless, ASP.NET 2.0 caching is a large topic that will undoubtedly spawn many articles and to
cover it exhaustively would be beyond the scope of this book.

Recipe 16.2. Caching Pages

Problem

You want to cache the pages in your application.

Solution

Add the @ OutputCache directive to the top of the .aspx file of each page you want to cache with the
VaryByParam attribute set to "None":

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH16CachePageVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH16CachePageVB"
 Title="Caching ASPX Pages" %>
 <%@ OutputCache Duration="5" VaryByParam="None" %>

 …

Discussion

This recipe shows the minimum changes required to an .aspx file to cache a page of your ASP.NET
application. Only one @ OutputCache directive can be included per page, and the Duration and
VaryByParam attributes are required.

You specify how long the page is to be retained in the cache by setting the Duration attribute to the
desired time in seconds. In our example directive, the page will be rendered on the first request for
the page and placed in the cache. For five seconds, all subsequent requests for the page will be
delivered from the cached copy. After five seconds, the page will again be rendered.

The duration can be set to any positive integer value (12,147,483,647), which allows caching a page
for roughly 68 years. You may be tempted to use very large numbers; however, every cached page
uses server resources, and, if the page is not needed frequently, you will tie up server resources
unnecessarily.

The VaryByParam attribute is used to define parameters that determine which cached copy of a page
should be sent to the client. If your page does not vary, set the VaryByParam attribute to "None" and a
single copy of the page will be saved in the cache. For an example of caching multiple copies of a
rendered page as a function of the values in the query string, see Recipe 16.2.

Not all pages should be cached. Caching pages used for data input or login functions can result in
some odd behavior. Table 16-1 provides some guidelines for deciding when to cache a page.

Table 16-1. Suggestions for caching pages

Page type
Should it be

cached?
Comment

Completely static Yes
A single copy of the rendered page will be saved in the
cache.

Contents change as a
function of query string
values

Possibly
Multiple copies of the rendered page will need to be
saved in the cache (see Recipe 16.2).

Static, but rendered page
varies by client browser

Yes
One copy of the rendered page will be saved in the
cache for each major version of a browser (see Recipe
16.3).

Input form No
Caching an input form page can result in the data
entered by one user being displayed to another.

Dynamically created from
database

Possibly
ASP.NET 2.0 provides the ability to have the cached
data expire as a function of changes to the contents of
the database (see Recipe 16.5).

See Also

Recipes 16.2, 16.3, and 16.5

Recipe 16.3. Caching Pages Based on Query String
Parameter Values

Problem

You want to use page caching to improve the performance of your application, but the contents of
your pages vary depending on the values of parameters in the query string.

Solution

Add the @ OutputCache directive to the .aspx file of each page you want to cache with the
VaryByParam attribute set to the names of the parameters used in the query string:

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH16CachePageByQuerystringVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH16CachePageByQuerystringVB"
 Title="Cache Page By Querystring" %>
 <%@ OutputCache Duration="10" VaryByParam="DistrictID;SchoolID" %>

 …

Discussion

Programmers commonly pass information in the query string that is used to define what is displayed
on a page. Because the page content is dependent on one or more parameters, the basic caching
example shown in Recipe 16.1 cannot be used. Fortunately, ASP.NET provides the ability to cache
multiple copies of a page by defining the dependent parameters.

You define the parameters ASP.NET will use to cache copies of a page by setting the VaryByParam
attribute to a semicolon-separated list of the parameters used in the query string to define the page
contents. For each page request, ASP.NET checks the values of the indicated parameters in the query
string. If the parameter values match the parameter values of a copy of the page in the cache, the
copy from the cache will be sent to the browser. If the parameter values do not match, the page will
be rendered by your code, added to the cache, and sent to the browser.

In our example, the VaryByParam attribute is set to DistrictID;SchoolID, which causes ASP.NET to
check the URL of each page request for the DistrictID and SchoolID parameters in the query string.
An example URL is shown here:

 http://michaelk3/aspnetcookbook2vb/CH16CachePageByQuerystringVB.aspx?
 DistrictID=1&SchoolID=2

When ASP.NET receives the request for this page, it will check to see if a copy of the page exists in
the cache for DistrictID=1 and SchoolID=2. If the copy exists in the cache, it will be sent to the
browser without rerendering the page, which can improve your application's responsiveness,
especially if database access was required to render the page. If a copy for DistrictID=1 and
SchoolID=2 is not in the cache, the page will be rendered by the server.

The VaryByParam attribute can be set to * to cause ASP.NET to cache a copy of
the rendered page for every variation in parameters. This can result in caching
more copies than you anticipate and generally should not be used.

Care should be taken in defining the duration for storing the page in the cache.
If the duration is set to a large value and a large number of unique page
requests are received within the duration period, server resources could be
depleted.

This recipe deals with how to cache different versions of a rendered page as a function of its query
string parameters. This same approach can be used to cache different versions of a page depending
on form data when the page is posted back to the server. To cache versions as a function of posted
parameters, use the names of the controls on the form (text boxes, checkboxes, and the like) in the
VaryByParam attribute.

See Also

Recipe 16.1

http://michaelk3/aspnetcookbook2vb/CH16CachePageByQuerystringVB.aspx?

Recipe 16.4. Caching Pages Based on Browser Type and
Version

Problem

You have a page with static content that you want to cache, but the page is rendered differently for
some browsers.

Solution

Add the @ OutputCache directive to the .aspx file of each page you want to cache with the
VaryByCustom attribute set to "browser":

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH16CacheByCustomStringVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH16CacheByCustomStringVB"
 Title="Cache By Custom String" %>
 <%@ OutputCache Duration="10" VaryByParam="none"
 VaryByCustom="browser" %>
 …

Discussion

The way in which a page is rendered often depends on the characteristics and version number of the
browser making the request. ASP.NET handles most of this variation behind the scenes by sensing
the browser type and its version and rendering the HTML and JavaScript in a suitable format.

The variation in a rendered page from one browser type to another can cause problems if you
implement caching as described in Recipe 16.1. For example, if a request is made for a page of this
type by Internet Explorer 6.x, the page is rendered and stored in the cache. If a request for the same
page is made by a Netscape 4.x browser before the cached copy expires, the Internet Explorer 6.x
version will be sent to the browser. This generally results in a poorly displayed or improperly
functioning page.

ASP.NET provides the ability to cache browser-specific versions of the rendered page by setting the
VaryByCustom attribute of the OutputCache element to "browser". When VaryByCustom is set to
"browser", ASP.NET will check the browser name and major version of the browser making the page
request (e.g., 4.x, 5.x, 6.x, etc.) to see if a copy of the rendered page is stored in the cache that

matches them. If so, the cached version will be sent as the response. Otherwise, the page will be
rendered as usual, stored in the cache, and delivered to the browser.

The only VaryByCustom attribute value that ASP.NET provides built-in support for is "browser";
however, with additional coding, this attribute can be used to control the caching of a page by any
variation you choose. Recipe 16.4 provides an example of using the VaryByCustom attribute to cache a
page based on the browser type and full version number.

The VaryByParam attribute is required even though it is not being used in this
example. Setting the value to "none" disables the caching by parameter. If you
fail to include the VaryByParam attribute, a parse error will result when the page
is requested.

See Also

Recipes 16.1 and 16.4

Recipe 16.5. Caching Pages Based on Developer-Defined
Custom Strings

Problem

You have pages in your application you want to cache but ASP.NET does not provide built-in support
for the dependencies you need, such as browser type and full version number.

Solution

Add the @ OutputCache directive at the top of the .aspx file of each page you want to cache. Set the
VaryByCustom attribute to the name of a custom string, such as "BrowserFullVersion":

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH16CacheByCustomStringVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH16CacheByCustomStringVB"
 Title="Cache By Custom String" %>
 <%@ OutputCache Duration="10" VaryByParam="none"
 VaryByCustom="BrowserFullVersion" %>

 …

Override the GetVaryByCustomString method in global.asax and write code that builds a unique string
for the value you have assigned to the VaryByCustom attribute. Examples 16-1 and 16-2 show VB and
C# GetVaryByCustomString method to return a full browser version number.

Discussion

ASP.NET provides the ability to control the caching of pages as a function of custom strings that you
provide, which gives you the ability to control the caching by variations not directly supported by
ASP.NET. In the example we use to illustrate this solution, we show how to cache pages based on the
browser type, its major version number (integer portion of version number), and its minor version
number (the decimal portion of the version number).

The first step in this recipe is to add the @ OutputCache directive shown earlier to the .aspx file of the
page you plan to cache. Set the VaryByCustom attribute to the name of the string that is to be used to
determine caching. In our example, we have named the string "BrowserFullVersion".

Next, you need to override the GetVaryByCustomString method in global.asax to return the full
browser version when the passed parameter (arg) is set to "BrowserFullVersion". This provides a
unique string for each browser and version to allow ASP.NET to differentiate between the browsers
and use the cached version of the page accordingly.

This technique is not limited to caching by browser version. You can use almost any information to
identify pages that should be cached separately. For example, you could use a value stored in a
cookie to determine the uniqueness of a page. The cookie collection is accessed through the Request
object in the same manner as the Browser data (context.Request.Cookies).

One thing you cannot use is Session information. The reason for this is that when
GetVaryByCustomString is called, session information has not been retrieved from session storage.
The session ID is available but not the session data. If you need to use a value related to a specific
session, the data will have to be stored in a cookie first and used as described previously.

Unlike other attributes in the @ OutputCache directive, the VaryByCustom
attribute can contain only one value. It cannot be set to a semicolon-delimited
string, because the entire unparsed value is passed to the
GetVaryByCustomString method. Your code in the GetVaryByCustomString will
have to perform the parsing if you want to use multiple values for a single
page.

See Also

Search for "Caching Versions of a Page, Based on Custom Strings" in the MSDN library.

Example 16-1. GetVaryByCustomString method in global.asax (.vb)

'''***
''' <summary>
''' This routine provides the ability to set custom string values to
''' control the page or page fragment caching based on values assigned
''' to the VaryByCustom attribute of the OutputCache directive.
''' </summary>
'''
''' <param name="context">Set to the current Http context</param>
''' <param name="custom">
''' Set to the custom string that specifies which cached response is
''' used to respond to the current request
''' </param>
'''
''' <returns>
''' Set to a string containing the full browser verion
''' </returns>
Public Overrides Function GetVaryByCustomString(_
 ByVal context As System.Web.HttpContext, _

 ByVal custom As String) As String
 Dim value As String = Nothing

 'if argument is requesting the full browser version, build a string
 'containing the browser name, major version, and minor version
 If (custom.Equals("BrowserFullVersion")) Then
 value = "BrowserFullVersion =" & _
 context.Request.Browser.Browser & _
 context.Request.Browser.MajorVersion.ToString() & "." & _
 context.Request.Browser.MinorVersion.ToString()
 End If

 Return (value)
End Function 'GetVaryByCustomString

Example 16-2. GetVaryByCustomString method in global.asax (.cs)

'''***
/// <summary>
/// This routine provides the ability to set custom string values to
/// control the page or page fragment caching based on values assigned
/// to the VaryByCustom attribute of the OutputCache directive.
/// </summary>
///
/// <param name="context">Set to the current Http context</param>
/// <param name="custom">
/// Set to the custom string that specifies which cached response is
/// used to respond to the current request
/// </param>
///
/// <returns>
/// Set to a string containing the full browser verion
/// </returns>
public override string GetVaryByCustomString(System.Web.HttpContext context,
 string custom)
{
 String value = null;

 // if argument is requesting the full browser version, build a string
 // containing the browser name, major version, and minor version
 if custom.Equals("BrowserFullVersion")
 {
 value = "BrowserFullVersion =" +
 context.Request.Browser.Browser +
 context.Request.Browser.MajorVersion.ToString() + "." +
 context.Request.Browser.MinorVersion.ToString();
 }

 return (value);
} // GetVaryByCustomString

Recipe 16.6. Caching Pages Based on Database
Dependencies

Problem

You have pages in your application you want to cache but the data on the pages is retrieved from a
database.

Solution

Configure SQL Server to support notifications when data changes (not required for SQL Server 2005
and SQL Server Express Edition), configure your application to use SQL dependencies by adding the
<sqlCacheDependency> element to web.config, and add the @ OutputCache directive at the top of the
.aspx file of each page you want to cache.

Discussion

ASP.NET 1.x provided many ways to cache data with dependencies, but caching data with database
dependencies was not one of them. Fortunately, ASP.NET 2.0 has added the ability to cache pages
with dependencies on data in a SQL Server database. SQL Server 7.0, 2000, 2005, MSDE, and SQL
Server Express Edition are all supported, in one form or another.

The key to determining when cache content should be made to expire is knowing when the data in
the database changes, which differs depending on the vintage of the SQL Server product your
application uses.

SQL Server 2005 and SQL Server Express Edition provide notification events that can be used to
notify an application the data has changed. This approach is referred to as notification-based
invalidation. What's more, neither one requires any configuration changes to support this capability,
so you can skip to the portion of the discussion where we describe adding the <sqlCacheDependency>
element to web.config.

SQL Server 7, 2000, and MSDE do not support notification events. Instead, the ability to determine
when data has changed is implemented by ASP.NET polling a table added to your database. This is
referred to as polling-based invalidation. The table (AspNet_SqlCacheTablesForChangeNotification)
contains a single row per table being monitored. When the data in a monitored table changes, a
trigger is fired that changes the value for the changeId column in the row for the monitored table.
The change in the changeId value will be what ASP.NET uses to determine if the data for the
monitored table has changed.

If your application uses one of these earlier SQL Server products, your database will need to be

altered to support notification when data changes.

Microsoft provides two options for configuring your database to support notifications. The first option
is to use the aspnet_regsql command-line tool. You must first configure the database to support
notifications and then specify the tables to be monitored. Use these commands to configure your
database.

 Run this command to configure your database for notifications:
 aspnet_regsql -S [server] -E -d [database] -ed

 Run this command to configure a table in your database for notifications:
 aspnet_regsql -S [server] -E -d [database] -et -t [table]

 Where:
 [server] is the name or IP address of your SQL Server
 [database] is the name of the database to enable
 [table] is the name of the table to enable

To see all of the options available for configuring your database with the commandline tool, enter the
following command:

 aspnet_regsql -?

The second option for configuring your database for notifications is to use the methods of the
SqlCacheDependencyAdmin class. Examples 16-3 (VB) and 16-4 (C#) show the code required to
configure your database programmatically. Methods are shown for enabling the database, enabling
tables, disabling tables, and disabling the database.

A reference will need to be added to your project for the System.Web.Caching
and System.Web.Data.SqlClient assemblies to configure your database
programmatically.

After configuring your database, you need to add the <sqlCacheDependency> element to your
web.config to configure ASP.NET to poll your database:

 <?xml version="1.0"?>
 <configuration>
 <system.web>

 …

 <caching>
 <sqlCacheDependency enabled = "true" pollTime = "60000" >

 <databases>
 <add name="ASPNetCookbook"
 connectionStringName = "sqlConnectionString" />
 </databases>
 </sqlCacheDependency>
 </caching>

 …

 </system.web>
 </configuration>

The pollTime attribute defines the rate at which the AspNet_SqlCacheTablesForChangeNotification
table is queried to determine if any data in the monitored tables has changed. The units are in
milliseconds.

The name attribute of the <add> element of the <databases> element defines the name for the
database that will be used in your application when defining SQL dependencies for pages. This does
not have to be the database name.

The connectionStringName attribute must be set to the name of a connection string in the
<connectionStrings> element of web.config.

A pollTime attribute can be added to the <add> element for a database to use
different poll rates for each database. When the pollTime is specified for an
individual database, it overrides the setting in the <sqlCacheDependency>
element.

Now that everything is configured, you can cache pages using the database dependency by adding
the @ OutputCache directive to your pages:

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH16CachedByDatabaseDependencyVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH16CachedByDatabaseDependencyVB"
 Title="Cache By Database Dependency" %>
 <%@ OutputCache Duration="86400" VaryByParam="None"
 SqlDependency="ASPNetCookbook:Book" %>

 …

The SqlDependency attribute is set to the name of the database (as defined in web.config) and the
table that should be used as the dependency for the page. You can specify multiple databases and
tables by providing a semicolon-separated list of databases and tables.

When using SQL Server 7, 2000, or MSDE, the finest granularity for determining
if data has changed is the table. If any data is added, edited, or deleted in the
table, ASP.NET will see it as a change and cause the cache to expire even if it is
data that is not explicitly used in your page. This will even occur if a row is
updated and the data is not changed.

The ability to cache data dependent on the database contents is a powerful addition to ASP.NET 2.0.
This recipe only touches on the functionality available. Refer to Recipe 16.8 and the MSDN Library
(search for SqlCacheDependency) for more information of the possibilities available in your application.

See Also

Recipe16.8 and the MSDN Library (search for SqlCacheDependency)

Example 16-3. Methods for programmatically configuring your database
for cache expiration (.vb)

'''***
''' <summary>
''' This routine provides the ability to enable the database defined in
''' the passed connection string for notifications that are used for
''' SQL dependency cache invalidations
''' </summary>
'''
''' <param name="connectionStr">
''' Set to the connection string to the database for which notifications
''' are to be enabled
''' </param>
Public Shared Sub enableDatabaseNotifications(ByVal connectionStr As String)
 Try
 'enable the database for notifications
 SqlCacheDependencyAdmin.EnableNotifications(connectionStr)

 Catch exc As UnauthorizedAccessException
 'user specified in the connection string does not have permissions
 'to create tables, etc. in the database
 'production application should handle this exception as required
 Throw

 Catch exc As SqlException
 'other SQL error occurred
 'production application should handle this exception as required
 Throw

 End Try

End Sub 'enableDatabaseNotifications

'''***
''' <summary>
''' This routine provides the ability to enable the the passed table
''' for notifications used for SQL dependency cache invalidations
''' </summary>
'''
''' <param name="connectionStr">
''' Set to the connection string to the database containing the table
''' to enable
''' </param>
''' <param name="tableName">
''' Set to the name of the table to be enabled for notifications
''' </param>
Public Shared Sub enableTableNotifications(ByVal connectionStr As String,_
 ByVal tableName As String)
 Try
 'enable the passed table for notifications
 SqlCacheDependencyAdmin.EnableTableForNotifications(connectionStr, _
 tableName)
 Catch exc As UnauthorizedAccessException
 'user specified in the connection string does not have permissions
 'to create triggers, etc in the database
 'production application should handle this exception as required
 Throw

 Catch exc As SqlException
 'other SQL error occurred
 'production application should handle this exception as required
 Throw
 End Try
End Sub 'enableTableNotifications

'''***
''' <summary>
''' This routine provides the ability to disable notifications for the
''' database defined in the passed connection string
''' </summary>
'''
''' <param name="connectionStr">
''' Set to the connection string to the database for which notifications
''' are to be disabled
''' </param>
Public Shared Sub disableDatabaseNotifications(ByVal connectionStr As String)
 Try
 'disable the database notifications
 SqlCacheDependencyAdmin.DisableNotifications(connectionStr)

 Catch exc As UnauthorizedAccessException
 'user specified in the connection string does not have permissions
 'to delete tables, etc. in the database

 'production application should handle this exception as required
 Throw

 Catch exc As SqlException
 'other SQL error occurred
 'production application should handle this exception as required
 Throw
 End Try
End Sub 'disableDatabaseNotifications

'''***
''' <summary>
''' This routine provides the ability to disable the the passed table
''' for notifications used for SQL dependency cache invalidations
''' </summary>
'''
''' <param name="connectionStr">
''' Set to the connection string to the database containing the table
''' to disable
''' </param>
''' <param name="tableName">
''' Set to the name of the table to be disabled
''' </param>
Public Shared Sub disableTableNotifications(ByVal connectionStr As String,_
 ByVal tableName As String)
 Try
 'enable the passed table for notifications
 SqlCacheDependencyAdmin.DisableTableForNotifications(connectionStr,_
 tableName)

 Catch exc As UnauthorizedAccessException
 'user specified in the connection string does not have permissions
 'to delete triggers, etc in the database
 'production application should handle this exception as required
 Throw

 Catch exc As SqlException
 'other SQL error occurred
 'production application should handle this exception as required
 Throw
 End Try
End Sub 'disableTableNotifications

Example 16-4. Methods for programmatically configuring your database
for cache expiration (.cs)

'''***

/// <summary>
/// This routine provides the ability to enable the database defined in
/// the passed connection string for notifications that are used for
/// SQL dependency cache invalidations
/// </summary>
///
/// <param name="connectionStr">
/// Set to the connection string to the database for which notifications
/// are to be enabled
/// </param>
public static void enableDatabaseNotifications(String connectionStr)
{
 try
 {
 // enable the database for notifications
 SqlCacheDependencyAdmin.EnableNotifications(connectionStr);
 }

 catch (UnauthorizedAccessException exc)
 {
 // user specified in the connection string does not have permissions
 // to create tables, etc. in the database
 // production application should handle this exception as required
 throw;
 }

 catch (SqlException exc)
 {
 // other SQL error occurred
 // production application should handle this exception as required
 throw;
 }
} // enableDatabaseNotifications

'''***
/// <summary>
/// This routine provides the ability to enable the the passed table
/// for notifications used for SQL dependency cache invalidations
/// </summary>
///
/// <param name="connectionStr">
/// Set to the connection string to the database containing the table
/// to enable
/// </param>
/// <param name="tableName">
/// Set to the name of the table to be enabled for notifications
/// </param>
public static void enableTableNotifications(String connectionStr,
 String tableName)
{
 try
 {

 // enable the passed table for notifications
 SqlCacheDependencyAdmin.EnableTableForNotifications(connectionStr,
 tableName);
 }

 catch (UnauthorizedAccessException exc)
 {
 // user specified in the connection string does not have permissions
 // to create triggers, etc in the database
 // production application should handle this exception as required
 throw;
 }

 catch (SqlException exc)
 {
 // other SQL error occurred
 // production application should handle this exception as required
 throw;
 }
} // enableTableNotifications

'''***
/// <summary>
/// This routine provides the ability to disable notifications for the
/// database defined in the passed connection string
/// </summary>
///
/// <param name="connectionStr">
/// Set to the connection string to the database for which notifications
/// are to be disabled
/// </param>
public static void disableDatabaseNotifications(String connectionStr)
{
 try
 {
 // disable the database notifications
 SqlCacheDependencyAdmin.DisableNotifications(connectionStr);
 }

 catch (UnauthorizedAccessException exc)
 {
 // user specified in the connection string does not have permissions
 // to delete tables, etc. in the database
 // production application should handle this exception as required
 throw;
 }

 catch (SqlException exc)
 {
 // other SQL error occurred
 // production application should handle this exception as required
 throw;

 }
 } // disableDatabaseNotifications

'''***
/// <summary>
/// This routine provides the ability to disable the the passed table
/// for notifications used for SQL dependency cache invalidations
/// </summary>
///
/// <param name="connectionStr">
/// Set to the connection string to the database containing the table
/// to disable
/// </param>
/// <param name="tableName">
/// Set to the name of the table to be disabled
/// </param>
public static void disableTableNotifications(String connectionStr,
 String tableName)
{
 try
 {
 // enable the passed table for notifications
 SqlCacheDependencyAdmin.DisableTableForNotifications(connectionStr,
 tableName);
 }

 catch (UnauthorizedAccessException exc)
 {
 // user specified in the connection string does not have permissions
 // to delete triggers, etc in the database
 // production application should handle this exception as required
 throw;
 }

 catch (SqlException exception)
 {
 // other SQL error occurred
 // production application should handle this exception as required
 throw;
 }
} // disableTableNotifications

Recipe 16.7. Caching User Controls

Problem

You have data entry pages in your application that cannot be cached, but the pages contain user
controls that do not change and you want to cache them.

Solution

Add the @ OutputCache directive at the top of each .ascx file of the user controls you want to cache:

 <%@ OutputCache Duration="5" VaryByParam="none" %>

Discussion

This solution is the same as that described in Recipe 16.1, except that it is applied to a user control. In
fact, all of the solutions described previously in this chapter can be applied to user controls.

User controls have one caching feature unavailable to pages: a user control can be cached as a
function of its properties. This is quite handy because many times a user control, like a header or
global navigation bar, varies as a function of its properties, not the parameters passed to the page on
which it is used.

To see this in action for yourself, we suggest implementing the user control example described in
Recipe 5.1 and adding the @ OutputCache directive shown here at the top of the .ascx file for the
header user control:

 <%@ OutputCache Duration="15"
 VaryByControl="headerImage;dividerColor;dividerHeight" %>

A copy of the user control will be cached for every combination of the headerImage, dividerColor,
and dividerHeight property values used in the application.

Though this example is not all that useful, since the header on a page is generally consistent within
an application, the example demonstrates the ability to cache user controls as a function of the
property values. A more practical but longer example would be the implementation of a global
navigation bar that incorporates different images as a function of the page currently displayed in the

application.

When caching user controls in pages, verify that the control is valid before
accessing any properties of the control. When the page is first displayed, the
user control will be created and will be available to the page. Subsequent page
requests, while the user control is residing in the cache, will not create the
control, and the variable used to reference the control will be set to "Nothing"
(VB) or "null" (C#). If your code attempts to access the user control without
first checking the control's validity, a null reference exception will be thrown.

See Also

Recipe 5.1

Recipe 16.8. Caching Application Data

Problem

Your application draws on data that is expensive to create from a performance perspective, so you
want to store it in memory to be accessed by users throughout the lifetime of the application. The
problem is that the data changes occasionally and you need to refresh the data after it changes.

Solution

Place the data in the Cache object with a dependency set to the source of the data so the data will be
reloaded when it changes. Examples 16-5 and 16-6 show the code we've written to demonstrate this
solution. In this case, we have created a class, CH16CacheService, with methods that place some
sample XML book data in the Cache object. In our example, the book data is automatically removed
from the cache any time the XML file is changed.

Discussion

The Cache object in ASP.NET provides the ability to store application data in a manner similar to the
storing of data in the Application object. The Cache object, unlike the Application object, lets you
specify that the cached data is to be replaced at a specified time or whenever there is a change to
the original source of the data.

Examples 16-5 (VB) and 16-6 (C#) show the CH16CacheService class with two methods we created
for this example. The first method (getBookData) provides access to the data stored in the Cache
object with the appropriate checking (to ensure the data is still valid) and reloading as required. The
getBookData method performs the following operations:

Gets a reference to the book data in the Cache object1.

Checks the reference to ensure the data is still valid and reloads the data using the
loadBookDataInCache method if it is not

2.

Returns a reference to the book data3.

The second method (loadBookDataInCache) provides the ability to load the book data initially into the
Cache. It performs the following operations:

Reads the book data from the XML file into a DataSet1.

2.

1.

Stores the DataTable in the DataSet in the Cache object2.

Returns a reference to the book data3.

When the DataTable in the DataSet is stored in the Cache object, three parameters are passed to the
Insert method of the Cache object. The first parameter is the "key" value used to access the data in
the cache. A constant is used here since the key value is needed in several places in the code. The
second parameter is the DataTable containing the book data. The third parameter is the dependency
on the XML file that was the original source of the data. By adding this dependency, the data is
automatically removed from the cache any time the XML file is changed.

 context.Cache.Insert(CAC_BOOK_DATA, _
 ds.Tables(BOOK_TABLE), _
 New CacheDependency(xmlFilename))

 context.Cache.Insert(CAC_BOOK_DATA,
 ds.Tables[BOOK_TABLE],
 new CacheDependency(xmlFilename));

A DataTable is being stored in the Cache object instead of a DataSet because a
DataTable uses less system resources and the extra functionality of a DataSet is
not needed.

The getBookData method provides access to the data stored in the Cache object with the appropriate
checking to ensure the data is still valid and reloading it as required.

The first step to retrieving the cached data is to get a reference to the book data in the Cache object:

 bookData = CType(context.Cache.Item(CAC_BOOK_DATA), _
 DataTable)

 bookData = (DataTable)(context.Cache[CAC_BOOK_DATA]);

Next, the reference must be checked to ensure the data is still valid and, if it is not, the data must be
reloaded using the loadBookDataInCache method:

 If (IsNothing(bookData)) Then

 'data is not in the cache so load it
 bookData = loadBookDataInCache(context)
 End If

 if (bookData == null)
 {
 // data is not in the cache so load it
 bookData = loadBookDataInCache(context);
 }

The caching object provides many additional features not described in our example, including the
ability to replace the data based on a specified time and the ability to have one object in the cache be
dependent on another object in the cache. For more information on these topics, refer to the MSDN
documentation on the Cache and CacheDependency objects. For an example of caching application data
dependent on data in a database, see Recipe 16.8.

Avoiding Race Conditions

The code shown in our example is designed to avoid a race condition that can result in a
difficult-to-find error. The race condition is best described by example. Assume the
following code was used (VB code shown):

 1 If (IsNothing(context.Cache.Item(CAC_BOOK_DATA)) then
 2 loadBookDataInCache(context)
 3 End If
 4 bookData = Ctype(context.Cache.Item(CAC_BOOK_DATA), _
 5 DataTable)

The code shown on line 1 checks to see if the book data exists in the cache, but it does
not retrieve the data. If the data is valid, the next line of code to execute will be line 4. If
the dependency causes the data to be removed from the cache between the execution of
lines 1 and 4, a null reference exception will be thrown at line 4 because the data is no
longer in the cache.

This example precludes the problem by retrieving the data as the first step and then
checking to see if the data is valid. Because you have a copy of the data, you do not care
if the data is removed from the cache. Likewise, the loadBookDataInCache method
returns the data to avoid the same race condition problem.

See Also

Recipe 16.8 and MSDN documentation on the Cache and CacheDependency

Example 16-5. Using application data in cache (.vb)

Option Explicit On
Option Strict On

Imports System.Data
Imports System.Data.SqlClient

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides caching functions used in chapter 16
 ''' </summary>
 Public Class CH16CacheService

 'the following constant used to define the name of the variable used to
 'store the book data in the cache object
 Private Const CAC_BOOK_DATA As String = "BookData"

 '''***
 ''' <summary>
 ''' This routine reads the book data from an XML file and places it in
 ''' the cache object.
 ''' </summary>
 '''
 ''' <param name="context">Set to the current Http context</param>
 '''
 ''' <returns>DataTable containing book data loaded into the cache</returns>
 Private Shared Function loadBookDataInCache(ByVal context As HttpContext) _
 As DataTable
 Const BOOK_TABLE As String = "Book"

 Dim xmlFilename As String
 Dim ds As DataSet

 'read book data from XML file
 xmlFilename = context.Server.MapPath("xml") & "\books.xml"
 ds = New DataSet
 ds.ReadXml(xmlFilename)

 'store datatable with book data in cache scope with a
 'dependency to the original XML file
 context.Cache.Insert(CAC_BOOK_DATA, _
 ds.Tables(BOOK_TABLE), _
 New CacheDependency(xmlFilename))

 'return the data added to the cache
 Return (ds.Tables(BOOK_TABLE))
 End Function 'loadBookDataInCache

 '''***
 ''' <summary>
 ''' This routine gets the book data from cache and reloads the cache if
 ''' required.
 ''' </summary>
 '''
 ''' <param name="context">Set to the current Http context</param>
 '''
 ''' <returns>DataTable containing book data from the cache</returns>
 Public Shared Function getBookData(ByVal context As HttpContext) _
 As DataTable
 Dim bookData As DataTable

 'get the book data from the cache
 bookData = CType(context.Cache.Item(CAC_BOOK_DATA), _
 DataTable)

 'make sure the data is valid
 If (IsNothing(bookData)) Then
 'data is not in the cache so load it
 bookData = loadBookDataInCache(context)
 End If

 Return (bookData)
 End Function 'getBookData
 End Class 'CH16CacheService
End Namespace

Example 16-6. Using application data in cache (.cs)

using System;
using System.Data;
using System.Data.SqlClient;
using System.Web;
using System.Web.Caching;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides caching functions used in chapter 16
 /// </summary>
 public class CH16CacheService
 {

 // the following constant used to define the name of the variable used to
 // store the book data in the cache object
 private const String CAC_BOOK_DATA = "BookData";

 '''***
 /// <summary>
 /// This routine reads the book data from an XML file and places it in
 /// the cache object.
 /// </summary>
 ///
 /// <param name="context">Set to the current Http context</param>
 ///
 /// <returns>DataTable containing book data loaded into the cache</returns>
 private static DataTable loadBookDataInCache(HttpContext context)
 {
 const String BOOK_TABLE = "Book";

 String xmlFilename = null;
 DataSet ds = null;

 // read book data from XML file
 xmlFilename = context.Server.MapPath("xml") + "\\books.xml";
 ds = new DataSet();
 ds.ReadXml(xmlFilename);

 // store datatable with book data in cache scope with a
 // dependency to the original XML file
 context.Cache.Insert(CAC_BOOK_DATA,
 ds.Tables[BOOK_TABLE],
 new CacheDependency(xmlFilename));

 // return the data added to the cache
 return (ds.Tables[BOOK_TABLE]);
 } // loadBookDataInCache

 '''***
 /// <summary>
 /// This routine gets the book data from cache and reloads the cache if
 /// required.
 /// </summary>
 ///
 /// <param name="context">Set to the current Http context</param>
 ///
 /// <returns>DataTable containing book data from the cache</returns>
 public static DataTable getBookData(HttpContext context)
 {
 DataTable bookData = null;

 // get the book data from the cache
 bookData = (DataTable)(context.Cache[CAC_BOOK_DATA]);

 // make sure the data is valid

 if (bookData == null)
 {
 // data is not in the cache so load it
 bookData = loadBookDataInCache(context);
 }
 return (bookData);
 } // getBookData
 } // CH16CacheService
}

Recipe 16.9. Caching Application Data Based on Database
Dependencies

Problem

Your application draws on data stored in database that is expensive to create from a performance
perspective, so you want to store the data in memory, where it can be accessed by users throughout
the lifetime of the application. The problem is that the data changes occasionally and you need to
refresh the data when it changes.

Solution

Configure your SQL Server database and add the <sqlCacheDependency> element to web.config as
described in Recipe 16.5, store the data in the Cache with a SqlCache-Dependency, and access the
data in the Cache as required in your application.

The application we have implemented to demonstrate the solution is shown in Examples 16-7, 16-8
through 16-9. Example 16-7 shows the .aspx file used to display the cached data, and Examples 16-8
(VB) and 16-9 (C#) show the code-behind classes for the page.

Discussion

ASP.NET 2.0 has added a SqlCacheDependency class that can be used to create a dependency to data
in a database. The SqlCacheDependency class uses the same infrastructure described in Recipe 16.5 to
determine if the data in the database has changed and to cause the data to expire in the Cache when
it has.

Once the configuration of SQL Server and the <sqlCacheDependency> element has been added to your
web.config, as described in Recipe 16.5, adding data to the Cache with a dependency to data in the
database is easy. All that is required is to create an instance of a SqlCacheDependency class defining
the database (as delineated in web.config) and table for the dependency and pass this instance when
inserting the data in the Cache:

 sqlDep = New SqlCacheDependency("ASPNetCookbook", _
 "Book")

 Context.Cache.Insert(CAC_BOOK_DATA, _
 bookData, _
 sqlDep)

 sqlDep = new SqlCacheDependency("ASPNetCookbook",
 "Book");

 Context.Cache.Insert(CAC_BOOK_DATA,
 bookData,
 sqlDep);

If you are using SQL Server 2005, you can create a SqlCacheDependency object by passing a
SqlCommand object to the constructor. Using this approach provides a more explicit definition of the
data that is monitored and used for expiring the data in the Cache because a SqlCommand can contain
any SQL statement complete with a WHERE clause:

 cmdText = "SELECT Title, PublishDate, ListPrice " & _
 "FROM Book " & _
 "WHERE PublishDate>='01/01/2005'"
 sqlCmd = New SqlCommand(cmdText, _
 dbConn)
 sqlDep = New SqlCacheDependency(sqlCmd)

 cmdText = "SELECT Title, PublishDate, ListPrice " +
 "FROM Book " +
 "WHERE PublishDate>='01/01/2005'";
 sqlCmd = New SqlCommand(cmdText,
 dbConn);
 sqlDep = New SqlCacheDependency(sqlCmd);

As this recipe shows, being able to cache application data based on a database dependency has
become easy in ASP.NET 2.0. At the same time, it represents an improvement in the way that
ASP.NET applications can be built and deployed.

The caching of data based on database dependencies should not be used for in-
memory databases, since it results in replicating the data in memory with no
appreciable performance gain.

See Also

Recipe 16.5

Example 16-7. Expiring cache data with a database dependency (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH16ExpireDatabaseDependentCacheDataVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH16ExpireDatabaseDependentCacheDataVB"
 Title="Cache Data With Database Dependency" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Cache Data With Database Dependency (VB)
 </div>
 <div align="center" class="labelText">
 <asp:Label ID="labCacheStatus" runat="server" />
 </div>

 <asp:GridView ID="gvBooks" Runat="Server"
 AllowPaging="false"
 AllowSorting="false"
 AutoGenerateColumns="false"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 Caption=""
 HorizontalAlign="Center"
 Width="90%" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 <Columns>
 <asp:BoundField DataField="Title"
 HeaderText="Title" />
 <asp:BoundField HeaderText="Publish Date"
 DataField="PublishDate"
 ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:MMM dd, yyyy}" />
 <asp:BoundField HeaderText="List Price"
 DataField="ListPrice"
 ItemStyle-HorizontalAlign="Center"
 DataFormatString="{0:C2}" />
 </Columns>
 </asp:GridView>
</asp:Content>

Example 16-8. Expiring cache data with a database dependency code-
behind (.vb)

Option Explicit On

Option Strict On

Imports System.Configuration
Imports System.Data
Imports System.Data.SqlClient

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH16ExpireDatabaseDependentCacheDataVB.aspx
 ''' </summary>
 Partial Class CH16ExpireDatabaseDependentCacheDataVB
 Inherits System.Web.UI.Page

 Private Const CAC_BOOK_DATA As String = "CH16BookData"

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim bookData As DataTable
 Dim dbConn As SqlConnection = Nothing
 Dim da As SqlDataAdapter = Nothing
 Dim strConnection As String
 Dim cmdText As String
 Dim sqlDep As SqlCacheDependency = Nothing
 Dim retrievedFromCache As Boolean = True

 If (Not Page.IsPostBack) Then
 'get the book data from the cache
 bookData = CType(Cache(CAC_BOOK_DATA), _
 DataTable)

 'make sure the data is valid
 If (IsNothing(bookData)) Then
 'data is not in the cache so load it
 retrievedFromCache = False
 strConnection = ConfigurationManager. _
 ConnectionStrings("sqlConnectionString").ConnectionString
 dbConn = New SqlConnection(strConnection)
 dbConn.Open()

 cmdText = "SELECT Title, PublishDate, ListPrice " & _
 "FROM Book " & _
 "ORDER BY Title"
 da = New SqlDataAdapter(cmdText, dbConn)

 bookData = New DataTable
 da.Fill(bookData)

 'create the SQL dependency to the database table where the
 'data was retrieved
 sqlDep = New SqlCacheDependency("ASPNetCookbook", _
 "Book")

 'store book data in cache with a SQL dependency
 Context.Cache.Insert(CAC_BOOK_DATA, _
 bookData, _
 sqlDep)
 End If 'If (IsNothing(bookData))

 'set the source of the data for the gridview control and bind it
 gvBooks.DataSource = bookData
 gvBooks.DataBind()

 'set the label indicating where the data came from
 If (retrievedFromCache) Then
 labCacheStatus.Text = "Data was retrieved from the cache"
 Else
 labCacheStatus.Text = "Data was retrieved from the database"
 End If
 End If 'If (Not Page.IsPostBack)
 End Sub 'Page_Load
 End Class 'CH16ExpireDatabaseDependentCacheDataVB
End Namespace

Example 16-9. Expiring cache data with a database dependency code-
behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.SqlClient;
using System.Web.Caching;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH16ExpireDatabaseDependentCacheDataCS.aspx
 /// </summary>
 public partial class CH16ExpireDatabaseDependentCacheDataCS :
 System.Web.UI.Page
 {

 private const String CAC_BOOK_DATA = "CH16BookData";

 '''***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 DataTable bookData = null;
 SqlConnection dbConn = null;
 SqlDataAdapter da = null;
 String strConnection;
 String cmdText;
 SqlCacheDependency sqlDep = null;
 Boolean retrievedFromCache = true;

 if (!Page.IsPostBack)
 {
 // get the book data from the cache
 bookData = (DataTable)(Cache[CAC_BOOK_DATA]);

 // make sure the data is valid
 if (bookData == null)
 {
 // data is not in the cache so load it
 retrievedFromCache = false;
 strConnection = ConfigurationManager.
 ConnectionStrings["sqlConnectionString"].ConnectionString;
 dbConn = new SqlConnection(strConnection);
 dbConn.Open();

 cmdText = "SELECT Title, PublishDate, ListPrice " +
 "FROM Book " +
 "ORDER BY Title";

 da = new SqlDataAdapter(cmdText, dbConn);
 bookData = new DataTable();
 da.Fill(bookData);

 // create the SQL dependency to the database table where the
 // data was retrieved
 sqlDep = new SqlCacheDependency("ASPNetCookbook",
 "Book");

 // store book data in cache with a SQL dependency
 Context.Cache.Insert(CAC_BOOK_DATA,
 bookData,

 sqlDep);
 } // If (IsNothing(bookData))

 // set the source of the data for the gridview control and bind it
 gvBooks.DataSource = bookData;
 gvBooks.DataBind();
 // set the label indicating where the data came from
 if (retrievedFromCache)
 {
 labCacheStatus.Text = "Data was retrieved from the cache";
 }
 else
 {
 labCacheStatus.Text = "Data was retrieved from the database";
 }
 } // If (Not Page.IsPostBack)
 } // Page_Load
 } // CH16ExpireDatabaseDependentCacheDataCS
}

Recipe 16.10. Caching Data Sources

Problem

You are using data sources in your application and you would like to cache the data source to improve the
performance of your application.

Solution

Set the EnableCaching property of the data source to true and set the CacheDuration property to the
desired expiration time:

 dSource.EnableCaching = True
 dSource.CacheDuration = 5

 dSource.EnableCaching = true;
 dSource.CacheDuration = 5;

Discussion

The data sources available in ASP.NET 2.0 (XmlDataSource, ObjectDataSource , and SqlDataSource)
provide built-in support for caching. By using this built-in support, the data source will automatically cache
the data it pulls from the data store. In other words, you do not need to handle the insertion and retrieval
of the data source in the Cache explicitly, which simplifies the code in your application.

To use the built-in caching support in data sources, you need to set a couple of properties. First, you need
to set the EnableCaching property to TRue to enable the caching of the data source.

Next, you need to define when the cached data expires by setting the CacheDuration property to the
number of seconds after which the cached data is invalidated.

Optionally, you can set the CacheExpirationPolicy property to alter the way the CacheDuration time is
used to cause the cache data to expire. Setting the CacheExpirationPolicy to
DataSourceCacheExpiry.Absolute causes the cached data source to expire the number of seconds defined
in the CacheDuration after the data source is first created. Setting the CacheExpirationPolicy to
DataSourceCacheExpiry.Sliding causes the time to reset each time the data source is accessed, creating a
sliding expiration window.

If you are using a SqlDataSource or an ObjectDataSource , you can set the SqlCacheDependency property to
the database and table on which the data source is dependent to cause the cached data to expire when

the data in the database change. If the data is dependent on more than one database and/or table, the
dependencies can be specified in a semicolon-delimited list:

 'Use the following if the data is dependent on a single database and table
 dSource.SqlCacheDependency = "ASPNetCookbook:Book"

 'Use the following if the data is dependent on more than one database
 'and/or table
 dSource.SqlCacheDependency = "ASPNetCookbook:Book;ASPNetCookbook:Problem"

 // Use the following if the data is dependent on a single database and table
 dSource.SqlCacheDependency = "ASPNetCookbook:Book";

 // Use the following if the data is dependent on more than one database // and/or table
 dSource.SqlCacheDependency = "ASPNetCookbook:Book;ASPNetCookbook:Problem";

Setting the SqlCacheDependency requires configuring your SQL Server database and
web.config , as described in Recipe 16.5.

See Also

Recipe 16.5

Chapter 17. Internationalization

17.0 Introduction

Recipe 17.2. Localizing Request/Response Encoding

Recipe 17.3. Providing Multiple Language Support

Recipe 17.4. Using Global Resources and Overriding Currency Formatting

17.0 Introduction

Internationalizing an application means making it world-ready. There are two processes involved:

Globalization

The process of designing an application so that it can adapt to different cultures

Localization

The process of translating the application's resources for a specific culture

Internationalizing an application requires explicit planning during the initial design. It generally
consists of three steps:

Designing for globalization by ensuring the application is culture and language neutral. In other
words, any content whose display depends on culture or language cannot be hardcoded in the
HTML or program code.

1.

Designing for localization by ensuring that no data that is culture-or language-specific is
contained in the code and that the required data is obtained from resource files.

2.

Creating specific resource files to support each culture and language.3.

A few samples of internationalization are included. If you need to internationalize an application, you
would do well to obtain training or purchase one of the many books dedicated to the subject.

Recipe 17.2. Localizing Request/Response Encoding

Problem

You are developing an application for a specific region, and you want to tell the browser which
character set to use in rendering the page.

Solution

Set the requestEncoding and responseEncoding attributes of the <globalization> element in
web.config to the desired character set:

 <system.web>
 <globalization requestEncoding="iso-8859-1" responseEncoding="iso-8859-1" />
 </system.web>

Discussion

The HTTP header returned to the browser in response to a request contains information not displayed
but, nevertheless, controls how the browser displays the content it receives. Included in the header is
information that specifies which character set has been used to encode the response data and, by
implication, which character set the browser should use to display it.

The request and response encoding information for a page request can be
viewed by setting the trace attribute of the @ Page directive to true and
viewing the Request Details section.

ASP.NET lets you specify the character set used to encode the response data using the
responseEncoding attribute of the <globalization> element in the web.config file, as shown earlier.
The responseEncoding attribute can be set to any valid character set. Table 17-1 lists some of the
more common character sets used for European languages (English, French, German, and others).

Table 17-1. Common character sets

Character set
name

Description

iso-8859-1 Commonly called Latin 1; covers the Western European languages

iso-8859-2 Commonly called Latin 2; covers the Central and Eastern European languages

Windows-1252 Windows version of the character set covering the Western European languages

utf-8
Technically not a character set but an encoding scheme to provide the ability to
encode Unicode characters as a sequence of bytes

The character set information provided in the response headers is not
guaranteed to be honored because the client machine may not have the
suggested character set installed. If Internet Explorer is being used, it will
prompt the user to install the required character set. If the character set is not
installed, IE will use the character set defined by the computer's region locale
setting. Other browsers may respond differently.

The requestEncoding attribute is used to specify the assumed encoding for incoming requests. This
includes posted data and data passed in the URL. Generally, the requestEncoding attribute is set to
the same character set as the responseEncoding attribute.

If your web.config file does not contain a <globalization> element with responseEncoding and
requestEncoding attributes set to a particular character set, the values defined in the machine.config
file are used instead. By default, requests and responses are encoded in utf-8 format. If your
machine.config file does not contain a <globalization> element with the responseEncoding and
requestEncoding attributes set to the given character set, the encoding defaults to the computer's
region locale setting.

The character set can be defined on a page-by-page basis by placing the <meta>
tag shown here in the header section of the HTML (or .aspx) file:

 <meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1">

This approach is not recommended, though, for two reasons. First, you need to
add a <meta> tag to every page of your application, which implies some
associated maintenance should any changes be required. Second, some
browsers interpret <meta> tags only after they have rendered a page, which can
cause the page to be rendered twice.

See Also

The "<globalization> Element" in the MSDN Library

Recipe 17.3. Providing Multiple Language Support

Problem

You want to support multiple languages in your application without developing multiple versions of each page.

Solution

Use resource files to provide the text for each user interface element in the languages you wish to support, add
attributes to the static controls in your .aspx files to set their text automatically from the resource files at
runtime, set the culture and uiCulture attributes of the <globalization> element in web.config to auto , and
set the values for dynamic controls in the code-behind class.

Use Visual Studio 2005 to create the root resource file and add the resource attributes to the controls in your
.aspx files as follows:

Open the .aspx file that you want to localize.1.

Switch to Design mode.2.

Select Tools Generate Local Resource from the menu. Visual Studio 2005 will add a meta:resourcekey
attribute to all server controls in the file and create a root resource file with entries for each of the server
controls.

3.

Duplicate the root resource file for each language and culture to be supported by your application, setting
the values to the resource items as appropriate for the language.

4.

Set the culture and uiCulture attributes of the <globalization> element in web.config to auto :

 <globalization culture="auto" uiCulture="auto" />

5.

In the code-behind class for each page that needs to support multiple languages, use the .NET language of
your choice to:

Set the values of controls used for date and currency.1.

Set the text of any controls that need to be set programmatically.2.

Examples 17-1 , 17-2 through 17-3 show the .aspx file and VB and C# code-behind files for an application we've
written to demonstrate this solution. The output is shown in Figures 17-1 (English) and 17-2 (German).

2.

Examples 17-4 and 17-5 show the English and German resource files used in this example.

Figure 17-1. Multiple language outputEnglish

Figure 17-2. Multiple language outputGerman

Discussion

ASP.NET 1.x provides extensive support for internationalizing applications; however, it requires you to write a
lot of code to set the text or values of every control that needs to be localized. In addition, the creation of the
required resource files is tedious. ASP.NET 2.0 and Visual Studio 2005 have made the task of internationalizing
an application much easier.

First, Visual Studio 2005 provides the ability to create the root resource file automatically for an ASPX page.
Resource files for a specific ASPX page are referred to as local resource files. These .resx files contain the
localization information for a single ASPX page.

To create the root resource file, open the desired .aspx file, switch to Design mode, and then select Tools
Generate Local Resources from the menu. Visual Studio will create a resource file and add an item for each
server control on the page. The resource file will be named the same as the page with a .resx extension and is
placed in the App_LocalResources folder of your application.

Second, during the process of creating the resource file, Visual Studio adds a meta:resourcekey attribute to
each of the server controls. This attribute is used by ASP.NET at runtime to set the value of the control
automatically with the appropriate value from the resource file. You no longer need to provide code for every
item on a page that must be localized. The only code you have to write is for setting the value of controls that
do not contain static text, such as dates, time, and other values that must be set programmatically.

In the example we have provided to demonstrate multiple language support, the ASPX page displays a welcome
message, the language setting from the browser request, the current date, a currency sample, and an
example of a control that is set programmatically, as shown in Figures 17-1 (English) and 17-2 (German). The
welcome message and the labels for each of the displayed items are set without writing any code.

The Page_Load method in the code-behind provides the code required to set the values of the controls. To set
the Language Setting, we identify the user's preferred language from the collection of acceptable languages
returned with the page request. The language collection can contain zero or more languages, so we must
ensure at least one language is in the collection. Because the language collection usually lists the languages in
the order preferred by the user, selecting the first language in the list is generally acceptable.

In a production application, you may want to verify that your application supports the
first language in the collection; if it does not, continue through the collection looking for
a supported language.

Next, we set the values of the current date and sample currency. No special code is required. Set the values as
you would in a single language application. The framework will take care of localizing the date and currency
values using the culture and UI culture for the user's preferred language.

Finally, we set the value of the Programmatically Set Value control to demonstrate how you can
programmatically retrieve an entry from the resource file. To retrieve a value from the local resource file, use
the GetLocalResourceObject method of the current page (MyClass or Me in VB, this in C#) passing the name of
the required resource.

In ASP.NET 1.x, you had to handle the creation of the ResourceManager as well as setting the Culture and UI
Culture of the current thread to support a localized application. ASP.NET 2.0 does all of this work for you.

The ResourceManager will handle all the dirty work of finding the resource file for the user's language, as well as
defaulting to the root resource file if a language is requested that is not supported by your application. It is able
to find the appropriate resource file because of a very strict naming convention used for the files.

The root resource file for local resources (resources for a specific page) is named the same as the page with a
.resx extension. In our example, the root resource is named CH17InternationalCultureVB.aspx.resx .

The names for additional language files must include the root name combined with the culture and subculture
information in the format shown next, where Rootname is the root filename, <languagecode> defines the two-
letter language code derived from ISO-639-1, and <country/regioncode> defines the two-letter country or
region code from ISO-3166. The languagecode should be lowercase and the country/regioncode in uppercase.

 Rootname.<languagecode>-<country/regioncode>

For instance, the resource file containing text in German for our example is named
CH17InternationalCultureVB.aspx.resx.de-DE , where de indicates the German language and DE designates
the German localization of the language (as opposed to Austrian, Swiss, etc.).

To find the required resource file, the resource manager uses the root name of the resource file and appends
the UI Culture name to create the name of the resource file applicable to the user's language. The resource

manager then attempts to locate the resource file using a fairly complex set of rules. For our example, let's
keep it simple and say that if the specific resource file is not found on a first attempt, the root resource file will
be used instead. (Refer to "Packaging and Deploying Resources" in the MSDN documentation for the full set of
rules defining where the .NET runtime looks for resource files.)

Visual Studio 2005 provides a new resource file editor that makes creating and editing resource files easier than
in previous versions, providing the ability to manage image resources and string resources.

To add a local resource file, select the App_LocalResources folder in the Solution Explorer, right-click, select Add
New Item , and then select Resource File . The file must be named as described earlier. Figures 17-3 and 17-4
show the English and German resource files in the resource editor for our example.

Figure 17-3. English Resource File (CH17InternationalCultureVB.aspx.resx)

Figure 17-4. German Resource File (CH17InternationalCultureVB.aspx.de-
DE.resx)

You can test your application for the supported languages by changing the preferred language in Internet
Explorer. Select Tools Internet Options from the IE menu. Next, click the Languages button and the
Language Preference dialog box will be displayed, as shown in Figure 17-5 . Add the languages you need to test
your application. To test a specific language, move it to the top of the list of languages.

Using resource files in an international application provides a cost-effective method for
implementing the needed support for multiple languages. One thing to keep in mind
when designing your application is the performance impact caused by "looking up" every
string at runtime. This will result in longer rendering times for the pages. Your
international application may require a more powerful web server than you would
generally specify for a single language application.

Figure 17-5. Setting language preference in IE

This example shows how to use local resource files for an individual page. In many applications, this results in
duplication of resource data used on multiple pages. ASP.NET 2.0 supports global resources in addition to local
resources. Recipe 17.3 provides an example of using global resources as well as overriding the UI Culture
when currency must always be displayed in a specific currency format.

See Also

Recipe 17.3 and "Packaging and Deploying Resources" in the MSDN documentation for the full set of rules
defining where the .NET runtime looks for resource files

Example 17-1. Multiple language support (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH17InternationalCultureVB.aspx.vb"

 Inherits="ASPNetCookbook.VBExamples.CH17InternationalCultureVB"
 Title="Internationalization - Culture and UI Culture"
 meta:resourcekey="PageResource1" Culture="auto" UICulture="auto" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 <asp:Localize ID="locHeading" runat="server"
 meta:resourcekey="locHeadingResource1"
 Text="Internationalization - Culture and UI Culture (VB)" />
 </div>
 <table width="60%" align="center" border="0" class="labelText">
 <tr>
 <td align="center" colspan="2">
 <asp:Literal id="litWelcome" Runat="server"
 Text="Welcome to Localization"
 meta:resourcekey="litWelcomeResource1" />

 </td>
 </tr>
 <tr>
 <td align="right" width="50%">
 <asp:Literal id="litLanguageSettingLabel" Runat="server"
 meta:resourcekey="litLanguageSettingLabelResource1" />
 :
 </td>
 <td width="50%">
 <asp:Literal id="litLanguageSetting" Runat="server"
 meta:resourcekey="litLanguageSettingResource1" />
 </td>
 </tr>
 <tr>
 <td align="right" width="50%">
 <asp:Literal id="litDateLabel" Runat="server"
 Text="Date Sample"
 meta:resourcekey="litDateLabelResource1" />
 :
 </td>
 <td width="50%">
 <asp:Literal id="litDate" Runat="server"
 meta:resourcekey="litDateResource1" />
 </td>
 </tr>
 <tr>
 <td align="right" width="50%">
 <asp:Literal id="litCostLabel" Runat="server"
 Text="Currency Sample"
 meta:resourcekey="litCostLabelResource1" />

 :
 </td>
 <td width="50%">
 <asp:Literal id="litCost" Runat="server"
 meta:resourcekey="litCostResource1" />
 </td>
 </tr>

 <tr>
 <td align="right" width="50%">
 <asp:Literal id="litProgrammaticallySetLabel" Runat="server"
 Text="Programmatically Set Value"
 meta:resourcekey="litProgrammaticallySetLabelResource1" />
 :
 </td>
 <td width="50%">
 <asp:Literal id="litProgrammaticallySet" Runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 17-2. Multiple language support code-behind (.vb)

Option Explicit On
Option Strict On

Imports System

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH17InternationalCultureVB.aspx
 ''' </summary>
 Partial Class CH17InternationalCultureVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Const sampleValue As Single = 12345.67

 'set the control displaying the browser culture setting
 If ((Not IsNothing(Request.UserLanguages)) AndAlso _
 (Request.UserLanguages.Length > 0)) Then
 litLanguageSetting.Text = Request.UserLanguages(0)
 Else
 litLanguageSetting.Text = "None"
 End If

 'set the sample date to the current date
 litDate.Text = DateTime.Now.ToShortDateString()

 'set the sample currency value
 litCost.Text = sampleValue.ToString("C")

 'set a control programmatically from the local resource file
 litProgrammaticallySet.Text = _
 CStr(MyClass.GetLocalResourceObject("ProgrammaticallySetValue"))
 End Sub 'Page_Load
 End Class 'CH17InternationalCultureVB
End Namespace

Example 17-3. Multiple language support code-behind (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH17InternationalCultureCS.aspx
 /// </summary>
 public partial class CH17InternationalCultureCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 const double sampleValue = 12345.67;

 // set the control displaying the browser culture setting
 if ((Request.UserLanguages != null) &&

 (Request.UserLanguages.Length > 0))
 {
 litLanguageSetting.Text = Request.UserLanguages[0];
 }
 else
 {
 litLanguageSetting.Text = "None";
 }

 // set the sample date to the current date
 litDate.Text = DateTime.Now.ToShortDateString();

 // set the sample currency value
 litCost.Text = sampleValue.ToString("C");

 // set a control programmatically from the local resource file
 litProgrammaticallySet.Text =
 (String)(this.GetLocalResourceObject("ProgrammaticallySetValue"));
 } // Page_Load
 } // CH17InternationalCultureCS
}

Example 17-4. English resource file

<?xml version="1.0" encoding="utf-8"?>
<root>
 <xsd:schema id="root" xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" />
 <xsd:element name="root" msdata:IsDataSet="true">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="metadata">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="name" use="required" type="xsd:string" />
 <xsd:attribute name="type" type="xsd:string" />
 <xsd:attribute name="mimetype" type="xsd:string" />
 <xsd:attribute ref="xml:space" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="assembly">
 <xsd:complexType>
 <xsd:attribute name="alias" type="xsd:string" />
 <xsd:attribute name="name" type="xsd:string" />

 </xsd:complexType>
 </xsd:element>
 <xsd:element name="data">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
 msdata:Ordinal="1" />
 <xsd:element name="comment" type="xsd:string" minOccurs="0"
 msdata:Ordinal="2" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"
 msdata:Ordinal="1" />
 <xsd:attribute name="type" type="xsd:string"
 msdata:Ordinal="3" />
 <xsd:attribute name="mimetype" type="xsd:string"
 msdata:Ordinal="4" />
 <xsd:attribute ref="xml:space" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="resheader">

 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
 msdata:Ordinal="1" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <resheader name="resmimetype">
 <value>text/microsoft-resx</value>
 </resheader>
 <resheader name="version">
 <value>2.0</value>
 </resheader>
 <resheader name="reader">
 <value>System.Resources.ResXResourceReader, System.Windows.Forms,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
 </value>
 </resheader>
 <resheader name="writer">
 <value>System.Resources.ResXResourceWriter, System.Windows.Forms,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
 </value>
 </resheader>
 <data name="litCostLabelResource1.Text" xml:space="preserve">
 <value>Currency Sample</value>
 </data>

 <data name="litDateLabelResource1.Text" xml:space="preserve">
 <value>Date Sample</value>
 </data>
 <data name="litLanguageSettingLabelResource1.Text" xml:space="preserve">
 <value>Language Setting</value>
 </data>
 <data name="litProgrammaticallySetLabelResource1" xml:space="preserve">
 <value>Programmatically Set</value>
 </data>
 <data name="litWelcomeResource1.Text" xml:space="preserve">
 <value>Welcome to Localization</value>
 </data>
 <data name="locHeadingResource1.Text" xml:space="preserve">
 <value>Internationalization - Culture and UI Culture (VB)</value>
 </data>
 <data name="PageResource1.Title" xml:space="preserve">
 <value>Internationalization - Culture and UI Culture</value>
 </data>
 <data name="ProgrammaticallySetValue" xml:space="preserve">
 <value>Just a Test</value>
 </data>
</root>

Example 17-5. German resource file

<?xml version="1.0" encoding="utf-8"?>
<root>
 <xsd:schema id="root" xmlns="" xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xsd:import namespace="http://www.w3.org/XML/1998/namespace" />
 <xsd:element name="root" msdata:IsDataSet="true">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element name="metadata">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 <xsd:attribute name="name" use="required" type="xsd:string" />
 <xsd:attribute name="type" type="xsd:string" />
 <xsd:attribute name="mimetype" type="xsd:string" />
 <xsd:attribute ref="xml:space" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="assembly">
 <xsd:complexType>
 <xsd:attribute name="alias" type="xsd:string" />

 <xsd:attribute name="name" type="xsd:string" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="data">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
 msdata:Ordinal="1" />
 <xsd:element name="comment" type="xsd:string" minOccurs="0"
 msdata:Ordinal="2" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required"
 msdata:Ordinal="1" />
 <xsd:attribute name="type" type="xsd:string"
 msdata:Ordinal="3" />
 <xsd:attribute name="mimetype" type="xsd:string"
 msdata:Ordinal="4" />
 <xsd:attribute ref="xml:space" />
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="resheader">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="value" type="xsd:string" minOccurs="0"
 msdata:Ordinal="1" />
 </xsd:sequence>
 <xsd:attribute name="name" type="xsd:string" use="required" />
 </xsd:complexType>
 </xsd:element>
 </xsd:choice>

 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 <resheader name="resmimetype">
 <value>text/microsoft-resx</value>
 </resheader>
 <resheader name="version">
 <value>2.0</value>
 </resheader>
 <resheader name="reader">
 <value>System.Resources.ResXResourceReader, System.Windows.Forms,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
 </value>
 </resheader>
 <resheader name="writer">
 <value>System.Resources.ResXResourceWriter, System.Windows.Forms,
 Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089
 </value>
 </resheader>
 <data name="litCostLabelResource1.Text" xml:space="preserve">
 <value>Währung-Probe</value>

 </data>
 <data name="litDateLabelResource1.Text" xml:space="preserve">
 <value>Datum-Probe</value>
 </data>
 <data name="litLanguageSettingLabelResource1.Text" xml:space="preserve">
 <value>Spracheneinstellung</value>
 </data> <data name="litProgrammaticallySetLabelResource1" xml:space="preserve">
 <value>Programmatically Satz</value>
 </data>
 <data name="litWelcomeResource1.Text" xml:space="preserve">
 <value>Willkommen zur Lokalisation</value>
 </data>
 <data name="locHeadingResource1.Text" xml:space="preserve">
 <value>Internationalisierung - Kultur und UI Kultur</value>
 </data>
 <data name="PageResource1.Title" xml:space="preserve">
 <value>Internationalisierung - Kultur und UI Kultur</value>
 </data>
 <data name="ProgrammaticallySetValue" xml:space="preserve">
 <value>Nur ein Test</value>
 </data>
</root>

Recipe 17.4. Using Global Resources and Overriding
Currency Formatting

Problem

You want to reuse resources throughout your international application, and you must always display
currency with the U.S. dollar symbol, but all other text must follow the language setting in the
browser.

Solution

Create a root global resource for your application, add the required items, explicitly set the values of
static text in the .aspx files, set the culture and uiCulture attributes of the <globalization> element
in web.config to auto, and set the values for dynamic controls in the code-behind class overriding the
UI Culture when setting currency values.

Create a global resource file as follows:

Create an App_GlobalResources folder in the root of your application.

Add a resource file to the App_GlobalResources folder.

Edit the resource file to include the required items.

Duplicate the root resource file for each language and culture to be supported by your
application, setting the values to the resource items as appropriate for the language.

In the .aspx files of your application:

Explicitly set the values for all controls that display static text.

Set the culture and uiCulture attributes of the <globalization> element in web.config to auto;

 <globalization culture="auto" uiCulture="auto" />

In the code-behind class for each page that needs to support multiple languages, use the .NET
language of your choice to:

Set the values of controls used for date.

Set the values of controls used for currency overriding the UI Culture to be en-US.

Set the text of any controls that need to be set programmatically.

Examples 17-7, 17-8 through 17-9 show the .aspx file and VB and C# code-behind files for an
application we've written to demonstrate this solution. Example 17-6 shows the web.config settings
for globalization.

Discussion

It is not uncommon to have an international application that needs to use the same resources in
multiple pages and needs to display dates, a currency value, or other data in a format specific to a
language or culture that is not the default. For example, you might need to display currency values in
U.S. dollars but all text and dates in the local language of the user. ASP.NET provides support for
both requirements.

Global resources are resources that can be used throughout an application (see Recipe 17.2 for an
example of using local resources). They are identical in format to local resource files but must be
created manually and are placed in the App_GlobalResources folder of your application. Though they
must be created manually, the resource editor in Visual Studio 2005 simplifies the task.

Like local resources, the data from global resources can be used to set the values of controls in your
ASPX pages without requiring you to write any code. The technique used is different, however.
Instead of using meta:resourcekey attributes in the server controls, you explicitly set the properties
of the controls.

 <asp:Literal id="litLanguageSettingLabel" Runat="server"
 Text="<%$ Resources: ASPNetCookbook2, WelcomeToLocalizationResource %>" />

The syntax for the command is shown below, where <Root Resource Filename> is the name of the
root global resource file and <Resource ID> is the ID of the specific resource item in the file.

 <%$ Resources: <Root Resource Filename>, <Resource ID> %>

To override the formatting of currency values to be displayed in a specific format, such as U.S.
dollars, you must set the format provider to a CultureInfo object that is in turn set to the desired UI
Culture, as shown below. If you need to set currency values in many places in your application, you
should implement a single method that applies the setting. This will make changes simpler to carry
out when they are required.

 litCost.Text = sampleValue.ToString("C", _

 New CultureInfo("en-US"))

 litCost.Text = sampleValue.ToString("C",
 new CultureInfo("en-US"));

When you need to set values programmatically, global resources have a significant advantage over
local resources. The global resources are strongly typed, and Intellisense is fully supported. Setting a
value from a global resource is identical to using the property of a class, as shown below, where the
name of our root global resource file is ASPNetCookbook2 and the name of the resource item is
ProgrammaticallySetValue:

 litProgrammaticallySet.Text = _
 Resources.ASPNetCookbook2.ProgrammaticallySetValue

 litProgrammaticallySet.Text =
 Resources.ASPNetCookbook2.ProgrammaticallySetValue;

This recipe and Recipe 17.2 have only touched on the features available in Visual Studio 2005 and
ASP.NET 2.0 for internationalizing an application. Search for "ASP.NET Web Page Resources
Overview" in the MSDN Library for additional information.

See Also

Recipe 17.2 and "ASP.NET Web Page Resources Overview" in the MSDN Library

Example 17-6. web.config settings for globalization

<?xml version="1.0"?>
<configuration>
 <system.web>

 …

 <!-- GLOBALIZATION
 This section sets the globalization settings of the application.
 -->
 <globalization culture="auto" uiCulture="auto" />
 </system.web>
</configuration>

Example 17-7. Global Resources and Overriding Currency (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH17InternationalOverridingCultureVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH17InternationalOverridingCultureVB"
 Title="<%$ Resources: ASPNetCookbook2, HeadingResource %>" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 <asp:Localize ID="locHeading" runat="server"
 Text="<%$ Resources: ASPNetCookbook2, HeadingResource %>" />
 </div>
 <table width="60%" align="center" border="0" class="labelText">
 <tr>
 <td align="center" colspan="2">
 <asp:Literal id="litWelcome" Runat="server"
 Text="<%$ Resources: ASPNetCookbook2, WelcomeToLocalizationResource %>" />
 </td>
 </tr>
 <tr>
 <td align="right" width="50%">
 <asp:Literal id="litLanguageSettingLabel" Runat="server"
 Text="<%$ Resources: ASPNetCookbook2, WelcomeToLocalizationResource %>" />
 :
 </td>
 <td width="50%">
 <asp:Literal id="litLanguageSetting" Runat="server" />
 </td>
 </tr>

 <tr>
 <td align="right" width="50%">
 <asp:Literal id="litDateLabel" Runat="server"
 Text="<%$ Resources: ASPNetCookbook2, SampleDateLabel %>" />
 :
 </td>
 <td width="50%">
 <asp:Literal id="litDate" Runat="server" />
 </td>
 </tr>
 <tr>
 <td align="right" width="50%">
 <asp:Literal id="litCostLabel" Runat="server"
 Text="<%$ Resources: ASPNetCookbook2, SampleCostLabelResource %>" />
 :
 </td>
 <td width="50%">
 <asp:Literal id="litCost" Runat="server" />
 </td>

 </tr>
 <tr>
 <td align="right" width="50%">
 <asp:Literal id="litProgrammaticallySetLabel" Runat="server"
 Text="<%$ Resources: ASPNetCookbook2, ProgrammaticallySetLabel %>" />
 :
 </td>
 <td width="50%">
 <asp:Literal id="litProgrammaticallySet" Runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 17-8. Global Resources and Overriding Currency (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Globalization

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH17InternationalOverridingCultureVB.aspx
 ''' </summary>
 Partial Class CH17InternationalOverridingCultureVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.

 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Const sampleValue As Single = 12345.67

 'set the control displaying the browser culture setting
 If ((Not IsNothing(Request.UserLanguages)) AndAlso _
 (Request.UserLanguages.Length > 0)) Then
 litLanguageSetting.Text = Request.UserLanguages(0)
 Else

 litLanguageSetting.Text = "None"
 End If

 'set the sample date to the current date
 litDate.Text = DateTime.Now.ToShortDateString()

 'set the sample currency value forcing US formatting
 litCost.Text = sampleValue.ToString("C", _
 New CultureInfo("en-US"))

 'set a control programmatically from the global resource file
 litProgrammaticallySet.Text = _
 Resources.ASPNetCookbook2.ProgrammaticallySetValue
 End Sub 'Page_Load
 End Class 'CH17InternationalOverridingCultureVB
End Namespace

Example 17-9. Global Resources and Overriding Currency (.cs)

using System;
using System.Globalization;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH17InternationalOverridingCultureCS.aspx
 /// </summary>
 public partial class CH17InternationalOverridingCultureCS :
 System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>

 protected void Page_Load(object sender, EventArgs e)
 {
 const double sampleValue = 12345.67;

 // set the control displaying the browser culture setting
 if ((Request.UserLanguages != null) &&
 (Request.UserLanguages.Length > 0))

 {
 litLanguageSetting.Text = Request.UserLanguages[0];
 }
 else
 {
 litLanguageSetting.Text = "None";
 }

 // set the sample date to the current date
 litDate.Text = DateTime.Now.ToShortDateString();

 // set the sample currency value forcing US formatting
 litCost.Text = sampleValue.ToString("C",
 new CultureInfo("en-US"));

 // set a control programmatically from the global resource file
 litProgrammaticallySet.Text =
 Resources.ASPNetCookbook2.ProgrammaticallySetValue;
 } // Page_Load
 } // CH17InternationalOverridingCultureCS
}

Chapter 18. File Operations
18.0 Introduction

Recipe 18.2. Downloading a File from the Web Server

Recipe 18.3. Uploading a File to the Web Server

Recipe 18.4. Processing an Uploaded File Without Storing It on the Filesystem

Recipe 18.5. Storing the Contents of an Uploaded File in a Database

18.0 Introduction

Downloading a file from a server is a common requirement of web applications, whereas uploading a
file is less so. For example, you might want your application to allow users to download PDF, binary,
or image files to their browsers. Alternatively, you might have a content management system to
which you want to let users upload images or binary files.

ASP.NET provides an easy-to-use and flexible infrastructure for completing either task. You can
download a file to the browser for display, storage, or printing by streaming it to the Response object,
a simple task in ASP.NET.

Uploading a file to the web server for storage is straightforward, particularly with the FileUpload
control introduced with ASP.NET 2.0.

Sometimes you may want to upload a file to the server for processing only, without storing it there,
and at other times you may need to store the contents of an uploaded file to a database. For
example, you might want to do the former to avoid having to deal with problems associated with files
being uploaded with the same names, inadvertently filling the hard drive, or allowing the ASP.NET
write privileges on the local filesystem. Storing an uploaded file in a database is useful when you
want to keep a complete record of the file set apart from the web server's files system. The recipes in
this chapter show you how to do all of these things.

Recipe 18.2. Downloading a File from the Web Server

Problem

You need to provide the ability for a user to download a file from the web server.

Solution

Use the Directory and FileInfo classes to gather and present the names of the files you want to
make available for download to the user. Display their names in a ListBox with a button to initiate
the download. When the user clicks the button, stream the selected file to the browser.

In the .aspx file, add a ListBox and a Download (or equivalently named) button.

In the code-behind class for the page, use the .NET language of your choice to:

Create a list of available files to download using the GetFiles method of the Directory class.1.

Populate the ListBox with the filenames by binding the list of files to the ListBox.2.

Process the Download button click event and stream the selected file to the browser using the
Response object.

3.

Examples 18-1, 18-2 through 18-3 show the .aspx file and VB and C# code-behind files for an
application that illustrates our solution by populating the ListBox with a list of files located in the
application's images directory. The populated ListBox is shown in Figure 18-1, and the prompt that is
output when the user selects a file and clicks the Download button is shown in Figure 18-2.

Figure 18-1. Listing files to be downloaded

Discussion

Downloading a file to the browser for display, storage, or printing is a common requirement of a web
application. PDF and Word files are perhaps the most commonly downloaded file types though image,
audio, video, and text files are common also.

Downloading a file from a server is a two-step process. The first step is to gather and present to the
user a list of the available files that can be downloaded, along with a button to initiate the download.
The second step is to process the button click event and stream the selected file to the browser.

Figure 18-2. File download user prompt

In our example, we use a ListBox to present a list of available files to the user. The list is populated
in the Page_Load method of the code-behind with a list of files located in the images directory of the
application. (In a production application, you may want to create a download folder instead.)

To populate the ListBox, we use the GetFiles method of the Directory class to gather the fully
qualified filenames of the files in the specified folder and return them as an array. The GetFiles
method returns a fully qualified filename for each file it finds, so our code needs to remove the path
information for each file to simplify the list we present to the user.

Next, we bind the files array to the ListBox and select the first entry in the list.

Selecting the first entry in the list will simplify the code because no validation is
required if we can always assume an item is selected.

When the user clicks the Download button to initiate the download, the btnDownload_ServerClick
method in the code-behind executes. In this routine, we use the MapPath method of the Server class
to create a fully qualified filename, which we use to instantiate a FileInfo object to provide easy
access to the length of the file needed for the download.

To stream a file to a browser, you must write it to the Response object. The first step in writing a file
to the Response object is to call its Clear method to remove any data currently in the buffer stream.
If the Response object contains data and you attempt to write a file to it, you will receive a corrupted
file error.

Before writing the file, use the AddHeader method of the Response object to add the name of the file
being downloaded and its length to the output stream. You must use the ContentType method to
specify the content type of the file. In this example, the type is set to application/octet-stream so
the browser will treat the output stream as a binary stream and prompt the user to select a location
to which to save the file. In your own application you may want to set the content type to an explicit
file type, such as application/PDF or application/msword. Setting the content type to the explicit file
type allows the browser to open it with the application defined to handle the specified file type on the
client machine.

Now you are ready to write the file to the Response object using Response.WriteFile. When the
operation is complete, call Response.End to send the file to the browser.

Things to remember when downloading files:

Any code that appears after the Response.End statement will not be
executed. The Response.End statement sends all buffered data in the
Response object to the client, stops the execution of the page, and raises
the Application_EndRequest event. For more information on the
application behavior when calling Response.End, refer to Knowledge Base
article KB312629.

The only data that can be included in the Response stream is from the file
to download. If any other data is included, the downloaded file will be
corrupted. This may occur if your application uses the
Application_EndRequest method to append a footer to all pages.

In our example, a list of files currently residing on the filesystem is presented to the user to select
from and download. If your application is going to create the file dynamically, it will be unnecessary
to present a list or to save the file to the filesystem. Instead, remove the ListBox and add whatever
controls are needed to collect the information you need to dynamically create the file. When the user
clicks Download, create your file and generate a byte array containing the file data. Instead of using
the WriteFile method of the Response object, use the BinaryWrite method, as shown here:

 Response.BinaryWrite([your byte array])

 Response.BinaryWrite([your byte array]);

For another approach to implementing the solution described in this example using an HTTP handler,
refer to Recipe 20.2.

See Also

Recipe 20.2 for implementing file downloads with an HTTP handler; Knowledge Base article KB312629
for more information on the system operation when Response.End, Response.Redirect, and

Server.Transfer are called

Example 18-1. Downloading a file (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH18FileDownloadVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH18FileDownloadVB"
 Title="File Download" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 File Download (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr>
 <td align="center">
 <asp:ListBox ID="lstFiles" Runat="server" Rows="6" />
 </td>
 </tr>
 <tr>
 <td align="center">

 <input id="btnDownload" runat="server"
 type="button"
 value="Download"
 onserverclick="btnDownload_ServerClick" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 18-2. Downloading a file code-behind (.vb)

Option Explicit On
Option Strict On

Imports System.IO

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH18FileDownloadVB.aspx
 ''' </summary>
 Partial Class CH18FileDownloadVB

 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim files() As String
 Dim index As Integer

 If (Not Page.IsPostBack) Then
 'get list of files in the images directory (just for example here)
 files = Directory.GetFiles (Server.MapPath("images"))

 'for display purposes, remove the path to the file
 For index = 0 To files.Length - 1
 files(index) = New FileInfo(files(index)).Name
 Next index

 'bind the list of files to the ListBox on the form
 lstFiles.DataSource = files
 lstFiles.DataBind()

 'select the first entry in the list
 'NOTE: This is done to simplify the example since preselecting an
 ' item eliminates the needs to verify an item was selected
 lstFiles.SelectedIndex = 0
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the download button click
 ''' event. It is responsible for reading the selected file from the file
 ''' system and streaming it to the browser.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnDownload_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim file As FileInfo
 Dim filename As String

 'get the fully qualified name of the selected file
 filename = Server.MapPath("images") & "\" & _
 lstFiles.SelectedItem.Text

 'get the file data since the length is required for the download
 file = New FileInfo(filename)
 'write it to the browser
 Response.Clear()
 Response.AddHeader("Content-Disposition", _
 "attachment; filename=" & lstFiles.SelectedItem.Text)
 Response.AddHeader("Content-Length", _
 file.Length.ToString())
 Response.ContentType = "application/octet-stream"
 Response.WriteFile(filename)
 Response.End()
 End Sub 'btnDownload_ServerClick
 End Class 'CH18FileDownloadVB
End Namespace

Example 18-3. Downloading a file code-behind (.cs)

using System;
using System.IO;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH18FileDownloadCS.aspx
 /// </summary>
 public partial class CH18FileDownloadCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 string[] files = null;
 int index;

 if (!Page.IsPostBack)
 {
 // get list of files in the images directory
 files = Directory.GetFiles(Server.MapPath("images"));

 // for display purposes, remove the path to the file

 for (index = 0; index < files.Length; index++)
 {
 files[index] = new FileInfo(files[index]).Name;
 }
 // bind the list of files to the ListBox on the form
 lstFiles.DataSource = files;
 lstFiles.DataBind();

 // select the first entry in the list
 // NOTE: This is done to simplify the example since preselecting an
 // item eliminates the needs to verify an item was selected
 lstFiles.SelectedIndex = 0;
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the download button click
 /// event. It is responsible for reading the selected file from the file
 /// system and streaming it to the browser.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnDownload_ServerClick(Object sender,
 System.EventArgs e)
 {
 FileInfo file;
 String filename;

 //get the fully qualified name of the selected file
 filename = Server.MapPath("images") + "\\" +
 lstFiles.SelectedItem.Text;

 // get the file data since the length is required for the download
 file = new FileInfo(filename);

 // write it to the browser
 Response.Clear();
 Response.AddHeader("Content-Disposition",
 "attachment; filename=" + lstFiles.SelectedItem.Text);
 Response.AddHeader("Content-Length",
 file.Length.ToString());
 Response.ContentType = "application/octet-stream";
 Response.WriteFile(filename);
 Response.End();
 } // btnDownload_ServerClick
 } // CH18FileDownloadCS
}

Recipe 18.3. Uploading a File to the Web Server

Problem

You need to provide the ability for a user to upload a file to the web server filesystem.

Solution

Add to your page a FileUpload control and a button to initiate the upload process. When the user
clicks the button, the code-behind can save the file to the filesystem.

Create a folder within your application file structure where the uploaded files will be placed, such as
as one named uploads.

In the .aspx file:

Add a FileUpload control.1.

Add an Upload (or equivalently named) button.2.

In the code-behind class for the page, use the .NET language of your choice to:

Verify, in the Upload button click event handler, that the file content has been uploaded by
checking the HasFile property of the FileUpload control.

1.

Save the file to the local filesystem on the server using the SaveAs method of the FileUpload
object.

2.

Example 18-4 shows the .aspx file for an application we've written to demonstrate this solution by
allowing you to browse for a file and uploading the chosen file to your web server's local filesystem
when you click the Upload button. The code-behind files for the application are shown in Examples
18-5 (VB) and 18-6 (C#). The UI for uploading a file is shown in Figure 18-3.

Figure 18-3. UI for uploading a file

Discussion

Most applications do not require uploading files to a web server. Nevertheless, here are a few
examples of applications for which this capability comes in handy:

Departmental content management system

Uploading images or documents

Technical support site

Uploading error logs and defective documents or files

Graphics library

Allowing users to be able to make their own graphics file submissions

When uploading files is needed, the support provided by ASP.NET makes the implementation
straightforward.

The application we've written to illustrate the solution allows you to browse for a file and upload the
chosen file to your web server's local filesystem when you click the Upload button. For all that it
accomplishes, the application requires a remarkably small amount of code.

The .aspx file must also include a FileUpload control. This causes the browser to render the input
element with a Browse…button to allow the user to browse to the file to upload.

To give your user the ability to initiate the upload, you'll want to add an Upload button to your .aspx
file. Your .aspx file can contain as many controls as you need to allow users to interact with the
application, such as other input controls or dropdowns. The user's data will be submitted like any
other form for use on the server side.

Place code to save the uploaded file to the server in the Upload button click event handler of the
code-behind. Before saving the file, confirm that the file upload completed successfully. This can be
done by checking the HasFile property of the FileUpload control to ensure it is set to true. A

production application should use validation controls to check this condition and output an error
message to the user. Refer to Chapter 3 for a discussion of validation controls.

After you verify the file has been uploaded, it can be saved to the filesystem. The SaveAs method of
the FileUpload object saves the uploaded file contents to a file on the web server. It requires a fully
qualified filename on the web server. As shown in the example, we get the name of the file from the
FileName property of the FileUpload control and then build a fully qualified filename for the storage
location and name on the web server.

By default, the account under which ASP.NET runs does not have permission to
write files to the filesystem of the server. The account used varies with the
server on which your application runs and depends on whether your application
uses impersonation.

The name of the ASP.NET user can be determined by creating an ASP.NET page
with the following content and displaying the page in a browser:

 <%@ Page Language="VB" %>
 <% Response.Write(System.Security.Principal.WindowsIdentity.
 GetCurrent().Name) %>

 <%@ Page Language="C#" %>
 <%Response.Write(System.Security.Principal.WindowsIdentity.
 GetCurrent().Name); %>

You will need to modify the security settings on the folder used for uploads to
allow the account used by ASP.NET to write to the folder. The steps for doing
so vary somewhat for the different flavors of Windows, but the basic steps are
these:

Using Windows Explorer, browse to the folder where the uploaded files will
be saved.

1.

Access the security settings by right-clicking on the folder, selecting
Properties, and selecting the Security tab.

2.

Add the user account and allow write access.3.

By default, file uploads are limited to 4MB. Any attempt to upload a file larger
than 4MB will result in an error message. The error message is generated by
ASP.NET before any of your code runs; therefore, you have no control over the
message being displayed.

You can change the maximum file size that can be uploaded by changing the
maxRequestLength attribute of the httpRuntime element in the web.config file, as
shown here (the value must be set in kilobytes):

 <httpRuntime executionTimeout="90"
 maxRequestLength="4096"
 useFullyQualifiedRedirectUrl="false"
 minFreeThreads="8" minLocalRequestFreeThreads="4"
 requestLengthDiskThreshold="1024"
 appRequestQueueLimit="100"/>

See Also

Chapter 3 for validation examples

Example 18-4. File upload (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH18FileUploadVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH18FileUploadVB"
 Title="File Upload" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 File Upload (VB)
 </div>
 <table width="90%" align="center" border="0">
 <tr>
 <td align="center">
 <asp:FileUpload ID="fuUpload" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="center">

 <input id="btnUpload" runat="server"
 type="button"
 value="Upload"

 onserverclick="btnUpload_ServerClick" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 18-5. File upload code-behind (.vb)

Option Explicit On
Option Strict On

Imports System.IO

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH18FileUploadVB.aspx
 ''' </summary>
 Partial Class CH18FileUploadVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the upload button click
 ''' event. It is responsible saving the file to the local filesystem.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnUpload_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'make sure file was specified and was found
 If (fuUpload.HasFile) Then
 fuUpload.SaveAs(Server.MapPath("uploads") & _
 "\" & fuUpload.FileName)
 End If
 End Sub 'btnUpload_ServerClick
 End Class 'CH18FileUploadVB
End Namespace

Example 18-6. File upload code-behind (.cs)

using System;
using System.IO;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH18FileUploadCS.aspx
 /// </summary>
 public partial class CH18FileUploadCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the upload button click
 /// event. It is responsible saving the file to the local filesystem.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnUpload_ServerClick(Object sender,
 System.EventArgs e)
 {
 // make sure file was specified and was found
 if (fuUpload.HasFile)
 {
 fuUpload.SaveAs(Server.MapPath("uploads") +
 "\\" + fuUpload.FileName);
 }
 } // btnUpload_ServerClick
 } // CH18FileUploadCS
}

Recipe 18.4. Processing an Uploaded File Without
Storing It on the Filesystem

Problem

You want a user to be able to upload a file to the web server for immediate processing without having
to first store the file.

Solution

Implement the solution described in Recipe 18.2. Instead of writing the file to the filesystem, use the
input stream containing the uploaded file to process the data.

For the .aspx file, follow the steps for implementing the .aspx file in Recipe 18.2 and then, if you like,
add a control that will show the results of the processingfor example, a GridView control to display
the contents of an uploaded XML file.

In the code-behind file for the page, use the .NET language of your choice to:

Verify, in the Upload button click event handler, that the file has been uploadedthat is, that the
HasFile property of the FileUpload control is set to TRue and (if appropriate) that it is a valid
XML file.

1.

Load the updated data and, if you elected to include a control for showing the contents of the
uploaded file, bind the uploaded data to the controlfor example, a GridView control.

2.

Examples 18-8 , 18-9 through 18-10 show the .aspx file and VB and C# code-behind files for an
application we've written to illustrate this solution. The initial output is identical to Recipe 18.2's
example output and is shown in Figure 18-3 .

Discussion

This recipe demonstrates the concept of uploading files and processing them without having to store
them to the local filesystem, as you might do with the contents of an XML file for example. This
eliminates the problems of files being uploaded with the same names, inadvertently filling the hard
drive, and the security aspects of allowing the ASP.NET write privileges on the local filesystem.

The example we've written to illustrate this solution is similar to the one described in Recipe 18.2,
except that instead of saving the file contents to the filesystem, we process it immediately by loading
the uploaded data into a DataSet and binding the DataSet to a GridView . What's more, our example
uses the basic .aspx file described in Recipe 18.2 with a few changes to support using the page for
uploading an XML file and displaying its contents.

In the Page_Load method of the code-behind, the table containing the upload controls is made visible
and the GridView invisible. (We'll switch the visibility of the two at a later stage to display the
contents of the processed file.)

When the user clicks the Upload button, the btnUpload_ServerClick method is executed. The code for
ensuring a file was uploaded is identical to our example code in Recipe 18.2, except that, because this
example is expecting XML data, an additional check is added to ensure the uploaded file is an XML
file. Since the same page is used to display the contents of the uploaded file, the table containing the
upload controls needs to be made invisible and the GridView used to display the contents of the
uploaded file made visible.

Next, we use the File Content property of the FileUpload control to get the file content to load the
data into the DataSet . In our example, the XML file shown in Example 18-7 is being uploaded and,
because of its formatting, can be read directly into the DataSet . With other types of data, you may
need to do other processing. In addition, production code should validate the content type of the
posted file and the contents of the file to ensure the uploaded file is valid.

The last step in our example is to bind the GridView on the form to the DataSet containing the
uploaded XML data. Figure 18-4 shows the output for the uploaded and processed file. For more
information on data binding, refer to the recipes in Chapter 2 .

Figure 18-4. Uploaded and processed file output

See Also

Chapter 3 for validation controls; FileUpload class documentation in the MSDN library for more
information on file uploads

Example 18-7. uploaded XML file

<Root>
 <Book>
 <BookID>1</BookID>
 <Title>Access Cookbook</Title>
 <ISBN>0-596-00084-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>2</BookID>
 <Title>ASP.NET Cookbook</Title>
 <ISBN>0-596-00378-1</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>3</BookID>
 <Title>Perl Cookbook</Title>
 <ISBN>1-565-92243-3</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>4</BookID>
 <Title>Java Cookbook</Title>
 <ISBN>0-596-00170-3</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>5</BookID>
 <Title>JavaScript Application Cookbook</Title>
 <ISBN>1-565-92577-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>6</BookID>
 <Title>VB .Net Language in a Nutshell</Title>
 <ISBN>0-596-00092-8</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>7</BookID>
 <Title>Programming Visual Basic .Net</Title>
 <ISBN>0-596-00093-6</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>8</BookID>
 <Title>Programming C#</Title>
 <ISBN>0-596-00117-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>9</BookID>

 <Title>.Net Framework Essentials</Title>
 <ISBN>0-596-00165-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>10</BookID>
 <Title>COM and .Net Component Services</Title>
 <ISBN>0-596-00103-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
</Root>

Example 18-8. Upload file and process (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH18FileUploadAndProcessVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH18FileUploadAndProcessVB"
 Title="File Upload And Process" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 File Upload And Process (VB)
 </div>
 <!-- The following table is displayed when the user is
 uploading a file -->
 <table id="tabUpload" runat="server"
 align="center"
 width="60%"
 border="0">
 <tr>
 <td align="center">
 <asp:FileUpload ID="fuUpload" runat="server" />
 </td>
 </tr>
 <tr>
 <td align="center">

 <input id="btnUpload" runat="server"
 type="button"
 value="Upload"
 onserverclick="btnUpload_ServerClick" />
 </td>
 </tr>
 </table>

 <!-- The following gridView is displayed to show the data from
 the uploaded file -->

 <asp:GridView ID="gvUploadedData" runat="server"
 AutoGenerateColumns="true"
 BorderColor="#000080"
 BorderStyle="Solid"
 BorderWidth="2px"
 Caption=""
 HorizontalAlign="Center"
 Width="90%" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <RowStyle cssClass="tableCellNormal" />
 <AlternatingRowStyle cssClass="tableCellAlternating" />
 </asp:GridView>
</asp:Content>

Example 18-9. Upload file and process code-behind (.vb)

Option Explicit On
Option Strict On

Imports System.Data
Imports System.IO
Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH18FileUploadAndProcessVB.aspx
 ''' </summary>
 Partial Class CH18FileUploadAndProcessVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 If (Not Page.IsPostBack) Then
 'make the table containing the upload controls visible and
 'the gridview with the uploaded data invisible
 tabUpload.Visible = True
 gvUploadedData.Visible = False
 End If
 End Sub 'Page_Load

 '***

 '
 ' ROUTINE: btnUpload_ServerClick
 '
 ' DESCRIPTION:
 '--
 ''' <summary>
 ''' This routine provides the event handler for the upload button click
 ''' event. It is responsible saving the file to the local filesystem.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnUpload_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim dSet As DataSet

 'make sure file was specified and was found
 If ((fuUpload.HasFile) AndAlso _
 (fuUpload.PostedFile.ContentType.Equals("text/xml"))) Then
 'make the table containing the upload controls invisible and
 'the datagrid with the uploaded data visible
 tabUpload.Visible = False
 gvUploadedData.Visible = True

 'load uploaded data into the dataset
 dSet = New DataSet
 dSet.ReadXml(fuUpload.FileContent)
 'bind the data to the datagrid on the form
 gvUploadedData.DataSource = dSet
 gvUploadedData.DataBind()
 Else
 'production code should notify user of upload error here
 End If
 End Sub 'btnUpload_ServerClick
 End Class 'CH18FileUploadAndProcessVB
End Namespace

Example 18-10. Upload file and process code-behind (.cs)

using System;
using System.Data;
using System.IO;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for

 /// CH18FileUploadAndProcessCS.aspx
 /// </summary>
 public partial class CH18FileUploadAndProcessCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 if (!Page.IsPostBack)
 {
 // make the table containing the upload controls visible and
 // the gridview with the uploaded data invisible
 tabUpload.Visible = true;
 gvUploadedData.Visible = false;
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the upload button click
 /// event. It is responsible saving the file to the local filesystem.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnUpload_ServerClick(Object sender,
 System.EventArgs e)
 {
 DataSet dSet;

 // make sure file was specified and was found
 if ((fuUpload.HasFile) &&
 (fuUpload.PostedFile.ContentType.Equals("text/xml")))
 {
 // make the table containing the upload controls invisible and
 // the datagrid with the uploaded data visible
 tabUpload.Visible = false;
 gvUploadedData.Visible = true;

 // load uploaded data into the dataset
 dSet = new DataSet();
 dSet.ReadXml(fuUpload.FileContent);

 // bind the data to the datagrid on the form
 gvUploadedData.DataSource = dSet;
 gvUploadedData.DataBind();

 }
 else
 {

 // production code should notify user of upload error here
 }
 } // btnUpload_ServerClick
 } // CH18FileUploadAndProcessCS
}

Recipe 18.5. Storing the Contents of an Uploaded File in
a Database

Problem

You need to provide the ability for a user to upload a file to the web server that will be processed
later, so you want to store the file in the database.

Solution

Implement the solution described in Recipe 18.2. When the user clicks a button to initiate the upload
process, instead of writing the file to the filesystem, use the input stream containing the uploaded file
along with ADO.NET to write the file to a database.

For the .aspx file, follow the steps for implementing the .aspx file in Recipe 18.2.

In the code-behind class for the page, use the .NET language of your choice to:

Process the Upload button click event and verify that a file has been uploaded.1.

Open a connection to the database.2.

Build the command used to add the data to the database and insert the file data.3.

The application we've written to demonstrate this solution uses the same .aspx file as Recipe 18.2's
example (see Example 18-4). The code-behind for our application is shown in Examples 18-11 (VB)
and 18-12 (C#). The initial output is the same as Recipe 18.2's example output and is shown in
Example 18-3.

Discussion

Storing an uploaded file in a database is useful when a complete, unmodified upload record is
required to be set apart from the web server's filesystem, when the file contains sensitive
information, or when additional metadata needs to be stored with the file. It is common to store the
uploaded data in a database and then process the data immediately or by another program outside
of the web application. We will not go into that here, though.

The example we've written to demonstrate this solution includes a button to initiate the upload
process and uses the input stream containing the uploaded file along with ADO.NET to write the file to
a database. The example uses the same code as Recipe 18.2, changing only the actions performed in

the btnUpload_ServerClick method of the code-behind. After verifying that a file has been uploaded,
a connection is made to the database.

We then create an OleDbCommand with the CommandText property set to a parameterized SQL INSERT
statement to store the filename, the file size, and the contents of the file in the database. We use a
parameterized query to handle the binary data contained in the file.

The FileData column of our database needs to be able to handle the binary data contained in the file.
For SQL Server, the data type should be VarBinary or image. Even if the uploaded files are text files,
use a binary field for storage of the data. Text files can contain Unicode or utf-8-encoded characters
that SQL Server cannot store in text fields, which results in a SQL exception being thrown.

Next, three parameters are added to the parameter collection of the command object and the values
are set with the uploaded file information. Because our example uses OleDb, which does not support
named parameters as the SQL provider does, the parameters must be added in the same order they
appear in the INSERT statement.

The Filename and Filesize parameters require creating the parameter and setting the value. The
Filedata parameter is created in the same manner; however, the value must be set to a byte array.
A byte array of the uploaded file data is available using the FileBytes property of the FileUpload
control.

The last step is to set the connection property of the command to the connection opened earlier and
executing the command. The ExecuteNonQuery method of the command object is used because no
data is being returned by the command.

See Also

Recipe 18.2 for the base code used for this recipe and a discussion of the size limits on uploaded files

Example 18-11. Storing uploaded file to database code-behind (.vb)

Protected Sub btnUpload_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim dbConn As OleDbConnection = Nothing
 Dim dcmd As OleDbCommand
 Dim strConnection As String

 Try
 'make sure file was uploaded
 If (fuUpload.HasFile) Then
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'build the command used to add the data to the database
 dcmd = New OleDbCommand
 dcmd.CommandText = "INSERT INTO FileUpload " & _
 "(Filename, Filesize, FileData) " & _
 "VALUES " & _
 "(?, ?, ?)"

 'create the paramters and set the values for the file data
 dcmd.Parameters.Add(New OleDbParameter("Filename", _
 fuUpload.FileName))

 dcmd.Parameters.Add(New OleDbParameter("Filesize", _
 fuUpload.PostedFile.ContentLength))

 dcmd.Parameters.Add(New OleDbParameter("FileData", _
 fuUpload.FileBytes))

 'insert the file data
 dcmd.Connection = dbConn
 dcmd.ExecuteNonQuery()
 End If
 Finally
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
End Sub 'btnUpload_ServerClick

Example 18-12. Storing uploaded file to database code-behind (.cs)

protected void btnUpload_ServerClick(Object sender,
 System.EventArgs e)
{
 OleDbConnection dbConn = null;
 OleDbCommand dcmd = null;
 String strConnection;

 try
 {
 // make sure file was uploaded
 if (fuUpload.HasFile)
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);

 dbConn.Open();

 // build the command used to add the data to the database
 dcmd = new OleDbCommand();
 dcmd.CommandText = "INSERT INTO FileUpload " +
 "(Filename, Filesize, FileData) " +
 "VALUES " +
 "(?, ?, ?)";

 // create the paramters and set the values for the file data
 dcmd.Parameters.Add(new OleDbParameter("Filename",
 fuUpload.FileName));

 dcmd.Parameters.Add(new OleDbParameter("Filesize",
 fuUpload.PostedFile.ContentLength));

 dcmd.Parameters.Add(new OleDbParameter("FileData",
 fuUpload.FileBytes));
 // insert the file data
 dcmd.Connection = dbConn;
 dcmd.ExecuteNonQuery();
 }
 }
 finally
 {
 if (dbConn != null)
 {
 dbConn.Close();
 }
 }
} // btnUpload_ServerClick

Chapter 19. Performance

19.0 Introduction

Recipe 19.2. Reducing Page Size by Selectively Disabling the ViewState

Recipe 19.3. Speeding Up String Concatenation with a StringBuilder

Recipe 19.4. Speeding Up Read-Only Data Access

Recipe 19.5. Speeding Up Data Access to a SQL Server Database Using the SQL Provider

19.0 Introduction

Performance has been a concern of ours throughout this book, and we have endeavored to provide
you with production-ready code that will perform well in any setting. And when a recipe involves
trade-offs between performance and ease of implementation, we strive to bring these to your
attention. Nevertheless, when an application is not performing as well as you would like, you can
improve matters by altering its handling of the following elements:

ViewState

You can often improve a page's performance by disabling the ViewState for the page or some
of its controls, but you have to be aware of the consequences.

String concatenation

You've probably heard that it is better to use the StringBuilder object to build strings rather
than the classic concatenation operators (& and +). But you may be wondering how much
better it is and if it applies to your situation.

Data access

With the different options available for data access, ways to improve data access performance
exist, especially when choosing between the two primary methods for reading data from a
databasei.e., via a DataReader or a DataAdapter.

SQL Server managed provider

For the sake of database interoperability, the bulk of the recipes in this book show how to
access data using the OleDB managed provider. Yet because of the performance that can be
garnered, much can be said for using the SQL Server managed provider instead when you
know the application will always access SQL Server 7.0 or later.

All of these topics are addressed in the recipes in this chapter.

Like all other programming tools, ASP.NET and the common language runtime (CLR) provide many
different ways to accomplish a given task. And because each application is unique and there is no one
"right" way to approach it, every application's performance is worthy of review, mitigated by its
frequency of use and its significance. With this in mind, you may want to consider these
performance-oriented recipes as much for their approaches to performance tuning as for their line-
for-line coding techniques.

As you evaluate the comparisons we've made in this chapter between different data access methods,
you should know that the measurements were made on a 1.7 GHz Pentium 4 PC with 1GB of

memory. Your mileage may vary.

The side-by-side test results presented in this chapter's examples should be
used to compare the relative differences between data access methods. The
time to retrieve data is a function of the hardware, the database, the
fragmentation of the data, and other variables.

Recipe 19.2. Reducing Page Size by Selectively Disabling
the ViewState

Problem

You want to reduce the size of your application pages to improve performance.

Solution

Review each page of your application and each of its controls to determine if the ViewState is
required. Disable the ViewState where it is not explicitly needed.

In the code for the page, use the .NET language of your choice to do either of the following:

Disable the ViewState for the page by setting the EnableViewState attribute in the @ Page
directive to False. (Alternatively, set Page.EnableViewState to False in the code-behind.)

Disable the ViewState for individual controls on the page by setting the control's
EnableViewState attribute to False. (Alternatively, set the control's EnableViewState property to
False in the code-behind.)

To illustrate these performance improvements, we took two examples from Chapter 2 and optimized
them by disabling the ViewState. In the first example, we took the ASP. NET page created for Recipe
2.22, which displays a grid containing books and price data, and disabled the ViewState at the page
level. Table 19-1 shows the page and ViewState size before and after the optimization.

Table 19-1. ViewState performance improvement for Recipe 2.22 example

 Before optimization After optimization

Page size 9,947 bytes 6,766 bytes

ViewState size 3,362 bytes 162 bytes

In the second example, we have used the ASP.NET page created in Recipe 2.10 and disabled the
ViewState for the row controls within the DataGrid that appears within the page body. Example 19-1
shows the .aspx file for this application. The code-behind class for the application is shown in
Example 19-2 (VB) and Example 19-3 (C#). Table 19-2 shows the page and ViewState sizes before

and after optimization.

Table 19-2. ViewState performance improvement for Recipe 2.10 example

 Before optimization After optimization

Page size 9,448 bytes 6,378 bytes

ViewState size 3,734 bytes 670 bytes

Discussion

The ViewState is used to keep track of the state of each control on a page and to rehydrate the
control upon postback to the server. Because of its ability to maintain state when a page is posted
back to the server, the use of the ViewState reduces the amount of code you would have to write.
Thanks to the ViewState, you no longer need to extract values from the posted form for processing
or reset the control values when you display the page again, as is the case with classic ASP. The
controls are accessed as they were when the page was initially generated.

Though use of the ViewState significantly reduces your coding and maintenance efforts, it comes at a
cost. All of the data required to keep track of the control's state is stored in a hidden input control in
the HTML page as shown next. Depending on the number and types of controls you use on your
pages, the ViewState can get large, resulting in a decrease in performance. Because the ViewState
data is sent to the browser when the page is rendered and returned to the server as part of the
postback, a performance hit occurs when the page is first displayed and when the page is posted
back to the server. Performance is degraded not so much by the generation of the ViewState data
when the page is first rendered, but rather by the transfer of the extra ViewState data to and from
the browser on postbacks, as well as by the processing of the data by the browser. Here is a typical
ViewState input control:

 <input type="hidden" name="_ _VIEWSTATE"
 value="dDwtOTQzNjg3NDE1O3Q8O2w8aTwxPjs"/>

While "byte counters" will be quick to disable the ViewState completely because of its inevitable
negative impact on performance, a compromise is available that provides the best of both worlds:
selectively disable ViewState because it is not needed for all pages or controls. By reviewing each of
the pages in your application, you can improve the application's performance without losing the
benefits of the ViewState.

The first step when reviewing a page is to determine if the page does a postback to itself. If not, then
the ViewState can be disabled for the entire page. This is done by setting the EnableViewState
attribute in the @ Page directive to false:

 <%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"

 AutoEventWireup="false"
 CodeFile="CH19ViewStatePerformanceVB1.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH19ViewStatePerformanceVB1"
 Title="ViewState Performance"
 EnableViewState="false" %>

Alternately, you can place this line of code in the Page_Load method to disable the ViewState for the
entire page:

 Page.EnableViewState = False

 Page.EnableViewState = False;

Even with the ViewState disabled for a page, a few bytes will remain in the value setting of the
hidden input control. If you are determined to remove all traces of the ViewState, you must remove
the form element or remove the runat="server" attribute from the form element. Either action can
cause maintenance issues later, and the resulting savings of fewer than 50 bytes in a 20KB page has
no measurable performance impact, so we do not recommend this remedy.

If the page does a postback to itself, you will need to review each of the controls on the page. For
each control, you need to determine if any state information is required by the control upon
postback. If no state information is required, the ViewState for the control can be disabled.

The example page created in Recipe 2.22 displays a grid containing books and price data. The page
has no "action" controls; therefore, this page has no mechanism to postback to itself and is a good
candidate for disabling the ViewState at the page level, a conclusion presented in the results shown in
Table 19-1. After this optimization, the page size is 68% of the original size and the ViewState
represents less than 2.4% of the optimized page.

The example page created in Recipe 2.10 is a good candidate for performance improvement. This
page is similar to the page created in Recipe 2.22 but has three "action" controls used to sort the data
in the grid. Clicking on the column headers in the grid causes the page to be posted back to itself
with the data sorted by the column clicked; therefore, this page cannot have the ViewState disabled
at the page level.

Because the ViewState cannot be disabled at the page level, we need to review each control to
determine if the ViewState is needed. The page contains two controls, a content control and a
DataGrid control. The content control contains no "action" controls and no programmatically set
content; therefore, the ViewState for the content control can be disabled using the code shown here:

 <asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody"
 enableviewstate="false">

While you might be tempted to disable the ViewState for the DataGrid, because all of the data is
regenerated on each postback, you cannot. ASP.NET needs the ViewState information for the
controls within the header of the DataGrid to process its click events and to execute the
dgBooks_SortCommand method. If you disable the ViewState for the DataGrid, the postback will occur
but none of the event handlers will be called.

A DataGrid is a container of controls. At its highest level, a DataGrid consists of a header control and
one or more row controls. In this example, only the header contains "action" controls and because
the data in each row are regenerated with each postback, the ViewState for the row controls can be
disabled using the code shown here:

 For Each item In dgBooks.Items
 item.EnableViewState = False
 Next

 foreach (DataGridItem item in dgBooks.Items)
 {
 item.EnableViewState = false;
 }

Code that programmatically disables the ViewState of individual controls, must
be executed every time the page is rendered. In addition, the disabling of
controls within a DataGrid must be performed after data binding.

The results in Table 19-2 confirm the advantage of this optimization. By disabling the ViewState for
the content control and for each row in the DataGrid, we have reduced the size of the ViewState and
the overall page size as well. After optimization, the page size is 68% of the original size and the
ViewState represents less than 11% of the optimized page.

ASP.NET 2.0 has removed the information needed for control postback from the
ViewState; the postback information is now contained within the ControlState.
This separation of control functionality from data provides more flexibility in
disabling the ViewState to reduce the size of pages. The ControlState is
implemented in most ASP.NET server controls. The DataGrid is one of the
server controls that does not use the ControlState.

If a GridView had been used in this example instead, such as the one shown in
Recipe 2.14, the ViewState for the entire GridView could have been disabled
without affecting the functionality of the page.

See Also

Recipes 2.10, 2.14, and 2.22

Example 19-1. Modified .aspx file from Recipe 2.10

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH19ViewStatePerformanceVB2.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH19ViewStatePerformanceVB2"
 Title="View State Performance" %>
<asp:Content ID="pageBody" Runat="server" ContentPlaceHolderID="PageBody"
 enableviewstate="false">
 <div align="center" class="pageHeading">
 Improving ViewState Performance of Recipe 2-10 (VB)
 </div>
 <asp:DataGrid id="dgBooks" runat="server"
 BorderColor="#000080"
 BorderWidth="2px"
 HorizontalAlign="Center"
 AutoGenerateColumns="False"
 Width="90%"
 AllowSorting="True"
 OnSortCommand="dgBooks_SortCommand" >
 <HeaderStyle HorizontalAlign="Center" CssClass="tableHeader" />
 <ItemStyle cssClass="tableCellNormal" />
 <AlternatingItemStyle cssClass="tableCellAlternating" />

 <Columns>
 <asp:BoundColumn DataField="Title"
 SortExpression="Title" />
 <asp:BoundColumn DataField="ISBN"
 ItemStyle-HorizontalAlign="Center"
 SortExpression="ISBN" />
 <asp:BoundColumn DataField="Publisher"
 ItemStyle-HorizontalAlign="Center"
 SortExpression="Publisher" />
 </Columns>
 </asp:DataGrid>
</asp:Content>

Example 19-2. Optimized code-behind for Recipe 2.10 (.vb)

Option Explicit On
Option Strict On

Imports System.Configuration
Imports System.Data

Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for

 ''' CH19ViewStatePerformanceVB2.aspx
 ''' </summary>
 Partial Class CH19ViewStatePerformanceVB2
 Inherits System.Web.UI.Page
 'the following enumeration is used to define the sort orders
 Private Enum enuSortOrder
 soAscending = 0
 soDescending = 1
 End Enum
 'strings to use for the sort expressions and column title
 'separate arrays are used to support the sort expression and titles
 'being different
 Private ReadOnly sortExpression() As String = {"Title", "ISBN", "Publisher"}
 Private ReadOnly columnTitle() As String = {"Title", "ISBN", "Publisher"}

 'the names of the variables placed in the viewstate
 Private Const VS_CURRENT_SORT_EXPRESSION As String = "currentSortExpression"
 Private Const VS_CURRENT_SORT_ORDER As String = "currentSortOrder"

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim defaultSortExpression As String
 Dim defaultSortOrder As enuSortOrder
 If (Not Page.IsPostBack) Then
 'sort by title, ascending as the default
 defaultSortExpression = sortExpression(0)
 defaultSortOrder = enuSortOrder.soAscending

 'store current sort expression and order in the viewstate then
 'bind data to the DataGrid
 ViewState(VS_CURRENT_SORT_EXPRESSION) = defaultSortExpression

 ViewState(VS_CURRENT_SORT_ORDER) = defaultSortOrder
 bindData(defaultSortExpression, _
 defaultSortOrder)
 End If

 'disable the ViewState for controls that do not need it

 disableViewState()
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the datagrid sort event.
 ''' It is responsible rebinding the data to the datagrid by the selected
 ''' column.
 ''' </summary>
 '''
 ''' <param name="source">Set to the source of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub dgBooks_SortCommand(ByVal source As Object, _
 ByVal e As DataGridSortCommandEventArgs)
 Dim newSortExpression As String
 Dim currentSortExpression As String
 Dim currentSortOrder As enuSortOrder

 'get the current sort expression and order from the viewstate
 currentSortExpression = CStr(ViewState(VS_CURRENT_SORT_EXPRESSION))
 currentSortOrder = CType(ViewState(VS_CURRENT_SORT_ORDER), enuSortOrder)

 'check to see if this is a new column or the sort order
 'of the current column needs to be changed.
 newSortExpression = e.SortExpression
 If (newSortExpression = currentSortExpression) Then
 'sort column is the same so change the sort order
 If (currentSortOrder = enuSortOrder.soAscending) Then
 currentSortOrder = enuSortOrder.soDescending
 Else
 currentSortOrder = enuSortOrder.soAscending
 End If
 Else
 'sort column is different so set the new column with ascending
 'sort order
 currentSortExpression = newSortExpression
 currentSortOrder = enuSortOrder.soAscending
 End If
 'update the view state with the new sort information
 ViewState(VS_CURRENT_SORT_EXPRESSION) = currentSortExpression
 ViewState(VS_CURRENT_SORT_ORDER) = currentSortOrder

 'rebind the data in the datagrid
 bindData(currentSortExpression, _
 currentSortOrder)
 End Sub 'dgBooks_SortCommand

 '''***
 ''' <summary>
 ''' This routine queries the database for the data to displayed and binds
 ''' it to the datagrid
 ''' </summary>

 '''

 ''' <param name="sortExpression">Set to the sort expression to use for
 ''' sorting the data</param>
 ''' <param name="sortOrder">Set to the requried sort order</param>
 Private Sub bindData(ByVal sortExpression As String, _
 ByVal sortOrder As enuSortOrder)
 Dim dbConn As OleDbConnection = Nothing
 Dim da As OleDbDataAdapter = Nothing
 Dim dTable As DataTable = Nothing
 Dim strConnection As String
 Dim strSQL As String
 Dim index As Integer
 Dim col As DataGridColumn = Nothing
 Dim colImage As String
 Dim strSortOrder As String
 Try
 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 If (sortOrder = enuSortOrder.soAscending) Then
 strSortOrder = " ASC"
 Else
 strSortOrder = " DESC"
 End If
 strSQL = "SELECT Title, ISBN, Publisher " & _
 "FROM Book " & _
 "ORDER BY " & sortExpression & _
 strSortOrder

 da = New OleDbDataAdapter(strSQL, dbConn)
 dTable = New DataTable
 da.Fill(dTable)

 'loop through the columns in the datagrid updating the heading to
 'mark which column is the sort column and the sort order
 For index = 0 To dgBooks.Columns.Count - 1
 col = dgBooks.Columns(index)

 'check to see if this is the sort column
 If (col.SortExpression = sortExpression) Then
 'this is the sort column so determine whether the ascending or
 'descending image needs to be included
 If (sortOrder = enuSortOrder.soAscending) Then
 colImage = " "
 Else
 colImage = " "

 End If
 Else
 'This is not the sort column so include no image html
 colImage = ""
 End If 'If (col.SortExpression = sortExpression)

 'set the title for the column
 col.HeaderText = columnTitle(index) & colImage
 Next index

 'set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dTable
 dgBooks.DataBind()

 Finally
 'cleanup
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'bindData

 '''***
 ''' <summary>
 ''' This routine disables the ViewState for all controls on the page
 ''' that do not need to use it.
 ''' </summary>
 Private Sub disableViewState()
 Dim item As DataGridItem
 'disable the ViewState for each row in the DataGrid
 For Each item In dgBooks.Items
 item.EnableViewState = False
 Next item
 End Sub 'disableViewState
 End Class 'CH19ViewStatePerformanceVB2
End Namespace

Example 19-3. Optimized code-behind for Recipe 2.10 (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.Common;
using System.Data.OleDb;
using System.Web.UI.HtmlControls;
using System.Web.UI.WebControls;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH19ViewStatePerformanceCS2.aspx

 /// </summary>
 public partial class CH19ViewStatePerformanceCS2 : System.Web.UI.Page
 {
 // the following enumeration is used to define the sort orders
 private enum enuSortOrder
 {
 soAscending = 0,
 soDescending = 1
 }

 // strings to use for the sort expressions and column title
 // separate arrays are used to support the sort expression and titles
 // being different
 static readonly String[] sortExpression =
 new String[] { "Title", "ISBN", "Publisher" };
 static readonly String[] columnTitle =
 new String[] { "Title", "ISBN", "Publisher" };

 // the names of the variables placed in the viewstate
 static readonly String VS_CURRENT_SORT_EXPRESSION = "currentSortExpression";;
 static readonly String VS_CURRENT_SORT_ORDER = "currentSortOrder";

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event. It
 /// is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 private void Page_Load(object sender, System.EventArgs e)
 {
 String defaultSortExpression;
 enuSortOrder defaultSortOrder;

 if (!Page.IsPostBack)
 {
 // sort by title, ascending as the default
 defaultSortExpression = sortExpression[0];
 defaultSortOrder = enuSortOrder.soAscending;

 // bind data to the DataGrid
 this.ViewState.Add(VS_CURRENT_SORT_EXPRESSION, defaultSortExpression);
 this.ViewState.Add(VS_CURRENT_SORT_ORDER, defaultSortOrder);
 bindData(defaultSortExpression,
 defaultSortOrder);

 }
 // disable the ViewState for controls that do not need it
 disableViewState();
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the datagrid sort event.
 /// It is responsible rebinding the data to the datagrid by the selected
 /// column.
 /// </summary>
 ///
 /// <param name="source">Set to the source of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void dgBooks_SortCommand(Object source,
 System.Web.UI.WebControls.DataGridSortCommandEventArgs e)
 {
 String newSortExpression = null;
 String currentSortExpression = null;
 enuSortOrder currentSortOrder;

 // get the current sort expression and order from the viewstate
 currentSortExpression =
 (String)(this.ViewState[VS_CURRENT_SORT_EXPRESSION]);
 currentSortOrder =
 (enuSortOrder)(this.ViewState[VS_CURRENT_SORT_ORDER]);
 // check to see if this is a new column or the sort order
 // of the current column needs to be changed.
 newSortExpression = e.SortExpression;
 if (newSortExpression == currentSortExpression)
 {
 // sort column is the same so change the sort order
 if (currentSortOrder == enuSortOrder.soAscending)
 {
 currentSortOrder = enuSortOrder.soDescending;
 }
 else
 {
 currentSortOrder = enuSortOrder.soAscending;

 }
 }
 else
 {
 // sort column is different so set the new column with ascending
 // sort order
 currentSortExpression = newSortExpression;
 currentSortOrder = enuSortOrder.soAscending;
 }

 // update the view state with the new sort information
 this.ViewState.Add(VS_CURRENT_SORT_EXPRESSION, currentSortExpression);

 this.ViewState.Add(VS_CURRENT_SORT_ORDER, currentSortOrder);

 // rebind the data in the datagrid
 bindData(currentSortExpression,
 currentSortOrder);
 } // dgBooks_SortCommand

 ///***
 /// <summary>
 /// This routine provides the event handler for the page index changed
 /// event of the datagrid. It is responsible for setting the page index
 /// from the passed arguments and rebinding the data.
 /// </summary>
 ///
 /// <param name="source">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void dgBooks_PageIndexChanged(Object source,
 System.Web.UI.WebControls.DataGridPageChangedEventArgs e)
 {
 String currentSortExpression;
 enuSortOrder currentSortOrder;

 // set new page index and rebind the data
 dgBooks.CurrentPageIndex = e.NewPageIndex;

 // get the current sort expression and order from the viewstate
 currentSortExpression =
 (String)(this.ViewState[VS_CURRENT_SORT_EXPRESSION]);
 currentSortOrder =
 (enuSortOrder)(this.ViewState[VS_CURRENT_SORT_ORDER]);
 // rebind the data in the datagrid
 bindData(currentSortExpression,
 currentSortOrder);
 } // dgCustomers_PageIndexChanged

 ///***
 /// <summary>
 /// This routine queries the database for the data to displayed and binds
 /// it to the datagrid
 /// </summary>
 ///
 /// <param name="sortExpression">Set to the sort expression to use for
 /// sorting the data</param>
 /// <param name="sortOrder">Set to the requried sort order</param>
 private void bindData(String sortExpression,
 enuSortOrder sortOrder)
 {
 OleDbConnection dbConn = null;
 OleDbDataAdapter da = null;
 DataTable dTable = null;
 String strConnection = null;

 String strSQL = null;
 int index = 0;
 DataGridColumn col = null;
 String colImage = null;
 String strSortOrder = null;

 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 if (sortOrder == enuSortOrder.soAscending)
 {
 strSortOrder = " ASC";
 }
 else
 {
 strSortOrder = " DESC";
 }

 strSQL = "SELECT Title, ISBN, Publisher " +
 "FROM Book " +
 "ORDER BY " + sortExpression +
 strSortOrder;

 da = new OleDbDataAdapter(strSQL, dbConn);
 dTable = new DataTable();
 da.Fill(dTable);

 // loop through the columns in the datagrid updating the heading to
 // mark which column is the sort column and the sort order
 for (index = 0; index < dgBooks.Columns.Count; index++)
 {
 col = dgBooks.Columns[index];
 // check to see if this is the sort column
 if (col.SortExpression == sortExpression)
 {
 // this is the sort column so determine whether the ascending or
 // descending image needs to be included
 if (sortOrder == enuSortOrder.soAscending)
 {
 colImage = " ";
 }
 else
 {
 colImage = " ";
 }

 }
 else
 {
 // This is not the sort column so include no image html
 colImage = "";
 } // if (col.SortExpression == sortExpression)

 // set the title for the column
 col.HeaderText = columnTitle[index] + colImage;
 } // for index

 // set the source of the data for the datagrid control and bind it
 dgBooks.DataSource = dTable;
 dgBooks.DataBind();
 } // try

 finally
 {
 //clean up
 if (dbConn != null)
 {

 dbConn.Close();
 }
 } // finally
 } // bindData

 ///***
 /// <summary>
 /// This routine disables the ViewState for all controls on the page
 /// that do not need to use it.
 /// </summary>
 private void disableViewState()
 {
 // disable the ViewState for each row in the DataGrid
 foreach (DataGridItem item in dgBooks.Items)
 {
 item.EnableViewState = false;
 }
 } // disableViewState
 } // CH19ViewStatePerformanceCS2
}

Recipe 19.3. Speeding Up String Concatenation with a
StringBuilder

Problem

You want to reduce the time spent concatenating strings in an application that performs this
operation repeatedly.

Solution

Concatenate strings with a StringBuilder object instead of the classic & and + concatenation
operators.

Examples 19-4, 19-5 through 19-6 show the .aspx file and the VB and C# code-behind files for our
application that demonstrates the performance difference between using the classic string operators
and a StringBuilder object to perform concatenation. Our example concatenates two strings
repeatedly and calculates the average time per concatenation for the two approaches. The output of
the application is shown in Figure 19-1.

Figure 19-1. Measuring string concatenation performance output

Discussion

In the CLR, strings are immutable, which means that once they have been created they cannot be
changed. If you concatenate the two strings, str1 and str2, shown in the following code fragment,
the resulting value of str1 will be 1234567890:

 str1 = "12345"
 str2 = "67890"
 str1 = str1 & str2

 str1 = "12345";
 str2 = "67890";
 str1 = str1 + str2;

The way in which this concatenation is accomplished may come as a bit of a surprise to you. Since
str1 cannot be changed (it is immutable), it is disposed of and a new string str1 is created that
contains the concatenation of str1 and str2. As you might expect, a lot of overhead is associated
with this operation.

The StringBuilder object provides a faster method of concatenating strings. A StringBuilder object
treats strings as an array of characters that can be altered without re-creating the object. When a
StringBuilder object is created, the CLR allocates a block of memory in which to store the string. As
characters are added to a StringBuilder object, they are stored in the available memory block. If the
additional characters will not fit within the current block, additional memory is allocated to store the
new data.

The default capacity of a StringBuilder is 16 characters, but the number can be set to any value up
to 2,147,483,647 characters, the maximum size of an integer type. If you know approximately how
long the final string will be, you can improve performance by setting the maximum size when the
StringBuilder is created, which reduces the number of additional memory allocations that must be
performed.

As Figure 19-1 shows, the performance difference between classic concatenation and concatenation
using a StringBuilder object is dramatic. Classic concatenation averaged 2.6703 milliseconds per
concatenation, while using a StringBuilder object averaged 0.0004 milliseconds per concatenation,
which is nearly 7,000 times faster.

StringBuilder objects are not limited to concatenation: they can support inserting, removing,
replacing, and appending formatted strings. The StringBuilder is a significant improvement over the
classic manipulation of strings.

The question arises as to when classic string manipulation or a StringBuilder
should be used. Every application is different. However, if you are performing a
concatenation of fewer than 510 strings outside of a loop (done only once), you
should probably use classic string manipulation because of the overhead of
creating a StringBuilder object. Any time you are performing string
manipulations within a loop or are combining many string fragments, a
StringBuilder should be used. If you are unsure, create a test similar to the
one we use in our examples for this recipe and measure the two approaches
yourself.

See Also

In the MSDN Library, search for "Use StringBuilder for Complex String Manipulation."

Example 19-4. Measuring string concatenation performance (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH19StringConcatenationPerformanceVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH19StringConcatenationPerformanceVB"
 Title="String Concatenation Performance" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Page Heading (VB)
 </div>
 <table width="70%" align="center" border="0">
 <tr>
 <td> </td>
 <td align="center" class="subHeading">Time Per Concatenation (mSec)</td>
 </tr>
 <tr>
 <td class="labelText">Classic Concatentation</td>
 <td id="cellClassic" runat="server" align="center" class="labelText"></td>
 </tr>
 <tr>
 <td class="labelText">Using StringBuilder</td>
 <td id="cellSB" runat="server" align="center" class="labelText"></td>
 </tr>
 </table>
</asp:Content>

Example 19-5. Measuring string concatenation performance code-behind
(.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH19StringConcatenationPerformanceVB.aspx
 ''' </summary>
 Partial Class CH19StringConcatenationPerformanceVB
 Inherits System.Web.UI.Page
 '''***

 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Const STRING_SECTION As String = "1234567890"

 Dim testStr As String
 Dim testStrBuilder As StringBuilder
 Dim counter As Integer
 Dim startTime As DateTime
 Dim elapsedTime As TimeSpan
 Dim loops As Integer

 'measure the elapsed time for 10000 classic string concatenation
 loops = 10000
 startTime = DateTime.Now()
 testStr = ""
 For counter = 1 To loops
 testStr &= STRING_SECTION
 Next

 elapsedTime = DateTime.Now.Subtract(startTime)

 'set the table cell value to the average time per concatenation
 'in milliseconds
 cellClassic.InnerText = _
 (elapsedTime.TotalMilliseconds / loops).ToString("0.0000")

 'measure the elapsed time for 1,000,000 stringbuilder concatenations
 'NOTE: Many more loops were used to provide a measureable time period
 loops = 1000000
 startTime = DateTime.Now()
 testStrBuilder = New StringBuilder
 For counter = 1 To loops
 testStrBuilder.Append(STRING_SECTION)
 Next

 elapsedTime = DateTime.Now.Subtract(startTime)

 'set the table cell value to the average time per concatenation
 'in milliseconds
 cellSB.InnerText = _

 (elapsedTime.TotalMilliseconds / loops).ToString("0.0000")
 End Sub 'Page_Load
 End Class 'CH19StringConcatenationPerformanceVB
End Namespace

Example 19-6. Measuring string concatenation performance code-behind
(.cs)

using System;
using System.Text;

namespace ASPNetCookbook.CSExamples

{
 /// <summary<
 /// This class provides the code-behind for
 /// CH19StringConcatenationPerformanceCS.aspx
 /// </summary>
 public partial class CH19StringConcatenationPerformanceCS : \
 System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param<
 protected void Page_Load(object sender, EventArgs e)
 {
 const string STRING_SECTION = "1234567890";

 string testStr = null;
 StringBuilder testStrBuilder = null;
 DateTime startTime;
 TimeSpan elapsedTime;
 int counter;
 int loops;

 // measure the elapsed time for 10000 stringbuilder concatenations
 loops = 10000;
 startTime = DateTime.Now;
 testStr = "";
 for (counter = 1; counter <= loops; counter++)
 {
 testStr += STRING_SECTION;
 }

 elapsedTime = DateTime.Now.Subtract(startTime);

 // set the table cell value to the average time per concatenation
 // in milliseconds
 cellClassic.InnerText =
 (elapsedTime.TotalMilliseconds / loops).ToString("0.0000");

 // measure the elapsed time for 1,000,000 classic string concatenation
 // NOTE: Many more loops were used to provide a measureable time period
 loops = 1000000;
 startTime = DateTime.Now;
 testStrBuilder = new StringBuilder();
 for (counter = 1; counter <= loops; counter++)
 {
 testStrBuilder.Append(STRING_SECTION);
 }

 elapsedTime = DateTime.Now.Subtract(startTime);

 // set the table cell value to the average time per concatenation
 // in milliseconds
 cellSB.InnerText =
 (elapsedTime.TotalMilliseconds / loops).ToString("0.0000");
 } // Page_Load } // CH19StringConcatenationPerformanceCS }

Recipe 19.4. Speeding Up Read-Only Data Access

Problem

You want to speed up read-only data access to a database in your application.

Solution

Use a DataReader instead of a DataAdapter to access the data.

Examples 19-7, 19-8 through 19-9 show the .aspx file and VB and C# code-behind files for our
application that demonstrates the performance difference between a DataReader and a DataAdapter
using the OleDB managed provider. Figure 19-2 shows the output of the application. Refer to Recipe
19.4 for an equivalent example using the SQL Server managed provider.

Discussion

The CLR provides two primary methods for reading data from a database. The first is to use a
DataReader, and the second is to use a DataAdapter in conjunction with a DataTable or DataSet.

Figure 19-2. Measuring data reader and data adapter performance output

The DataReader provides forward, read-only access to the data read from the database. It provides
no mechanisms for randomly accessing the data.

A DataAdapter, along with a DataTable or DataSet, provides random access to data. In addition, the
data can be changed in the DataTable or DataSet, and the DataAdapter can be used to update the

data in the database.

Of the two access methods, the DataReader is the lightest and fastest and is preferable when you
need to only read the data, as reflected in the results we show for our sample application in Figure
19-2. Our example reads 10KB and 100KB records from a SQL Server database table containing
500KB rows. The table contains five columns, of which three are retrieved in the query. The data
indicates that using a DataAdapter is anywhere from 3868% slower than using a DataReader.

See Also

Recipe 19.4

Example 19-7. Measuring data reader and data adapter performance
(.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH19DataAccessPerformanceVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH19DataAccessPerformanceVB"
 Title="Data Access Performance" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Data Access Performance Using OleDB Provider (VB)
 </div>
 <table width="70%" align="center" border="0" class="dataEntry">
 <tr>
 <td align="center">Rows Read</td>
 <td align="center">OleDBDataReader Time (mSec)</td>
 <td align="center">OleDBDataAdaptor Time (mSec)</td>
 </tr>
 <tr>
 <td align="center">10,000</td>
 <td id="cellDR10K" runat="server" align="center"></td>
 <td id="cellDA10K" runat="server" align="center"></td>

 </tr>
 <tr>
 <td align="center">100,000</td>
 <td id="cellDR100K" runat="server" align="center"></td>
 <td id="cellDA100K" runat="server" align="center"></td>
 </tr>
 </table>
</asp:Content>

Example 19-8. Measuring data reader and data adapter performance
code-behind (.vb)

Option Explicit On
Option Strict On

Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH19DataAccessPerformanceVB.aspx
 ''' </summary>
 Partial Class CH19DataAccessPerformanceVB
 Inherits System.Web.UI.Page

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name='sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dbConn As OleDbConnection = Nothing
 Dim strConnection As String
 Dim elapsedTime As TimeSpan

 Try
 'get the connection string from web.config and open connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'get times for 10,000 records
 elapsedTime = getDataAdapterTime(dbConn, 10000)
 cellDA10K.InnerText = elapsedTime.TotalMilliseconds.ToString("0.0000")

 elapsedTime = getDataReaderTime(dbConn, 10000)
 cellDR10K.InnerText = elapsedTime.TotalMilliseconds.ToString("0.0000")

 'get times for 100,000 records
 elapsedTime = getDataAdapterTime(dbConn, 100000)
 cellDA100K.InnerText = elapsedTime.TotalMilliseconds.ToString("0.0000";)

 elapsedTime = getDataReaderTime(dbConn, 100000)
 cellDR100K.InnerText = elapsedTime.TotalMilliseconds.ToString("0.0000")

 Finally
 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine retrieves the passed number of records from the database
 ''' using an OleDBDataReader and returns the elapsed time
 ''' </summary>
 '''
 ''' <param name="dbConn">
 ''' Set to an open connection to the database
 ''' </param>
 ''' <param name="numberOfRecords">
 ''' Set to the number of records to read
 ''' </param>
 '''
 ''' <returns>
 ''' Timespan set to the elapsed time requried to read the data
 ''' </returns>
 Private Function getDataReaderTime(ByVal dbConn As OleDbConnection, _
 ByVal numberOfRecords As Integer) _
 As TimeSpan
 Dim dCmd As OleDbCommand = Nothing
 Dim dr As OleDbDataReader = Nothing
 Dim strSQL As String
 Dim startTime As DateTime
 Dim elapsedTime As TimeSpan
 Dim bookTitle As String
 Dim isbn As String
 Dim price As Decimal

 Try
 startTime = DateTime.Now()

 'build the query string and get the data from the database
 strSQL = "SELECT Top " & numberOfRecords.ToString() & " " & _
 "BookTitle, ISBN, Price " & _
 "FROM PerformanceTesting " & _
 "ORDER BY PerformanceTestingID"

 'read the data from the database
 dCmd = New OleDbCommand(strSQL, dbConn)

 dr = dCmd.ExecuteReader()
 Do While (dr.Read())
 bookTitle = CStr(dr.Item("BookTitle"))
 isbn = CStr(dr.Item("ISBN"))
 price = CDec(dr.Item("Price"))
 Loop

 'return the elapsed time
 elapsedTime = DateTime.Now.Subtract(startTime)
 getDataReaderTime = elapsedTime

 Finally
 If (Not IsNothing(dr)) Then
 dr.Close()
 End If
 End Try
 End Function 'getDataReaderTime

 '''***
 ''' <summary>
 ''' This routine retrieves the passed number of records from the database
 ''' using an OleDbDataAdapter and returns the elapsed time
 ''' </summary>
 '''
 ''' <param name="dbConn">
 ''' Set to an open connection to the database
 ''' </param>
 ''' <param name="numberOfRecords">
 ''' Set to the number of records to read
 ''' </param>
 '''
 ''' <returns>
 ''' Timespan set to the elapsed time requried to read the data
 ''' </returns>
 Private Function getDataAdapterTime(ByVal dbConn As OleDbConnection, _
 ByVal numberOfRecords As Integer) _
 As TimeSpan
 Dim da As OleDbDataAdapter
 Dim dTable As DataTable
 Dim strSQL As String
 Dim startTime As DateTime
 Dim elapsedTime As TimeSpan

 startTime = DateTime.Now()

 'build the query string and get the data from the database
 strSQL = "SELECT Top " & numberOfRecords.ToString() & " " & _
 "BookTitle, ISBN, Price " & _
 "FROM PerformanceTesting " & _
 "ORDER BY PerformanceTestingID"

 'read the data from the database
 da = New OleDbDataAdapter(strSQL, dbConn)
 dTable = New DataTable
 da.Fill(dTable)

 'return the elapsed time
 elapsedTime = DateTime.Now.Subtract(startTime)
 getDataAdapterTime = elapsedTime
 End Function 'getDataAdapterTime
 End Class 'CH19DataAccessPerformanceVB
End Namespace

Example 19-9. Measuring data reader and data adapter performance
code-behind (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH19DataAccessPerformanceCS.aspx
 /// </summary>
 public partial class CH19DataAccessPerformanceCS : System.Web.UI.Page
 {

 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 OleDbConnection dbConn = null;
 String strConnection;
 TimeSpan elapsedTime;
 try
 {
 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.

 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // get times for 10,000 records
 elapsedTime = getDataAdapterTime(dbConn, 10000);
 cellDA10K.InnerText = elapsedTime.TotalMilliseconds.ToString("0.0000");

 elapsedTime = getDataReaderTime(dbConn, 10000);
 cellDR10K.InnerText = elapsedTime.TotalMilliseconds.ToString("0.0000");

 // get times for 100,000 records
 elapsedTime = getDataAdapterTime(dbConn, 100000);
 cellDA100K.InnerText = elapsedTime.TotalMilliseconds.ToString("0.0000");

 elapsedTime = getDataReaderTime(dbConn, 100000);
 cellDR100K.InnerText = elapsedTime.TotalMilliseconds.ToString("0.0000");
 }

 finally
 {
 if (dbConn != null)
 {
 dbConn.Close();
 }
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine retrieves the passed number of records from the database
 /// using an OleDBDataReader and returns the elapsed time
 /// </summary>
 ///
 /// <param name="dbConn">
 /// Set to an open connection to the database
 /// </param>
 /// <param name="numberOfRecords">
 /// Set to the number of records to read
 /// </param>
 ///
 /// <returns>
 /// Timespan set to the elapsed time requried to read the data
 /// </returns>

 private TimeSpan getDataReaderTime(OleDbConnection dbConn,
 int numberOfRecords)
 {
 OleDbCommand dCmd = null;
 OleDbDataReader dr = null;
 string strSQL = null;
 DateTime startTime;

 TimeSpan elapsedTime;
 String bookTitle;
 String isbn;
 Decimal price;

 try
 {
 startTime = DateTime.Now;

 // build the query string used to get the data from the database
 strSQL = "SELECT Top " + numberOfRecords.ToString() + " " +
 "BookTitle, ISBN, Price " +
 "FROM PerformanceTesting " +
 "ORDER BY PerformanceTestingID";

 // read the data from the database
 dCmd = new OleDbCommand(strSQL, dbConn);
 dr = dCmd.ExecuteReader();
 while (dr.Read())
 {
 bookTitle = (String)(dr["BookTitle"]);
 isbn = (String)(dr["ISBN"]);
 price = Convert.ToDecimal(dr["Price"]);
 }

 //return the elapsed time
 elapsedTime = DateTime.Now.Subtract(startTime);
 return (elapsedTime);

 }

 finally
 {
 // clean up
 if (dr != null)
 {

 dr.Close();
 }
 }
 } // getDataReaderTime

 ///***
 /// <summary>
 /// This routine retrieves the passed number of records from the database
 /// using an OleDbDataAdapter and returns the elapsed time
 /// </summary>
 ///
 /// <param name="dbConn">
 /// Set to an open connection to the database
 /// </param>
 /// <param name="numberOfRecords">

 /// Set to the number of records to read
 /// </param>
 ///
 /// <returns>
 /// Timespan set to the elapsed time requried to read the data
 /// </returns>

 private TimeSpan getDataAdapterTime(OleDbConnection dbConn,
 int numberOfRecords)
 {
 OleDbDataAdapter da = null;
 DataTable dTable = null;

 string strSQL = null;
 DateTime startTime;
 TimeSpan elapsedTime;

 startTime = DateTime.Now;

 // build the query string used to get the data from the database
 strSQL = "SELECT Top " + numberOfRecords.ToString() + " " +
 "BookTitle, ISBN, Price " +
 "FROM PerformanceTesting " +
 "ORDER BY PerformanceTestingID";

 // read the data from the database
 da = new OleDbDataAdapter(strSQL, dbConn);
 dTable = new DataTable();
 da.Fill(dTable);

 // return the elapsed time
 elapsedTime = DateTime.Now.Subtract(startTime);
 return (elapsedTime);
 } // getDataAdapterTime
 } // CH19DataAccessPerformanceCS
}

Recipe 19.5. Speeding Up Data Access to a SQL Server
Database Using the SQL Provider

Problem

You want to speed up data access in an application that will always be used with SQL Server.

Solution

Use the SQL Server managed provider instead of the OleDB managed provider for accessing the data
in the database.

In the code-behind class for the page, open a connection to a SQL Server database using the
SQLConnection class and then use the SqlCommand, SqlDataReader, and SqlDataAdapter objects as
required by your application.

To test the SQL provider, we have implemented our example from Recipe 19.3 and replaced the
geTDataReaderTime and geTDataAdapterTime methods in the code-behind with the code shown in
Examples 19-10 (VB) and 19-11 (C#). The output of the test is shown in Figure 19-3.

Figure 19-3. Performance using SQL managed provider output

Discussion

The CLR provides four managed providers for accessing data in a database: SQL, OleDB, ODBC, and
Oracle. The OleDB and ODBC providers can be used to access virtually any databaseincluding SQL
Server, Access, Oracle, and many othersusing an OleDB (or ODBC) layer. OleDB communicates to a
data source through the OleDB service component, which provides connection pooling and transaction
services, and the OleDB provider for the data source. In contrast, the SQL Server provider uses a

proprietary protocol to access SQL Server directly, eliminating the additional layer of the OleDB
service component and thereby improving performance. It can only be used to access SQL Server
7.0 or a later release, however.

Comparing the results in Examples 19-10 (VB) and 19-11 (C#) with the results shown in Recipe 19.3
indicates that the SQL Server provider is faster than the OleDB provider when accessing SQL Server;
access using a DataReader is approximately twice as fast, while access using a DataAdapter is 75100%
faster.

The data also indicates that when using the SQL Server provider, the difference between using the
DataReader and the DataAdapter is more significant. The DataAdapter is 8088% slower than the
DataReader with the SQL Server provider.

See Also

Recipe 19.3; search for "The .NET Framework Data Provider for SQL Server" in the MSDN Library

Example 19-10. Methods using SQL provider (.vb)

'''***
''' <summary>
''' This routine retrieves the passed number of records from the database
''' using a SqlDataReader and returns the elapsed time
''' </summary>
'''
''' <param name="dbConn">
''' Set to an open connection to the database
''' </param>
''' <param name="numberOfRecords">
''' Set to the number of records to read

''' </param>
'''
''' <returns>
''' Timespan set to the elapsed time requried to read the data
''' </returns>
Private Function getDataReaderTime(ByVal dbConn As SqlConnection, _
 ByVal numberOfRecords As Integer) _ As TimeSpan
 Dim dCmd As SqlCommand = Nothing
 Dim dr As SqlDataReader = Nothing
 Dim strSQL As String
 Dim startTime As DateTime
 Dim elapsedTime As TimeSpan
 Dim bookTitle As String
 Dim isbn As String
 Dim price As Decimal

 Try

 startTime = DateTime.Now()

 'build the query string and get the data from the database
 strSQL = "SELECT Top " & numberOfRecords.ToString() & " " & _
 "BookTitle, ISBN, Price " & _
 "FROM PerformanceTesting " & _
 "ORDER BY PerformanceTestingID"

 'read the data from the database
 dCmd = New SqlCommand(strSQL, dbConn)
 dr = dCmd.ExecuteReader()
 Do While (dr.Read())
 bookTitle = CStr(dr.Item("BookTitle"))
 isbn = CStr(dr.Item("ISBN"))
 price = CDec(dr.Item("Price"))
 Loop

 'return the elapsed time
 elapsedTime = DateTime.Now.Subtract(startTime)
 getDataReaderTime = elapsedTime

 Finally
 If (Not IsNothing(dr)) Then
 dr.Close()
 End If
 End Try End Function 'getDataReaderTime

 '''***
 ''' <summary>
 ''' This routine retrieves the passed number of records from the database
 ''' using a SqlDataAdapter and returns the elapsed time
 ''' </summary>
 '''

''' <param name="dbConn">
''' Set to an open connection to the database
''' </param>
''' <param name="numberOfRecords">
''' Set to the number of records to read
''' </param>
'''
''' <returns>
''' Timespan set to the elapsed time requried to read the data
''' </returns>
Private Function getDataAdapterTime(ByVal dbConn As SqlConnection, _
 ByVal numberOfRecords As Integer) _
 As TimeSpan
 Dim da As SqlDataAdapter
 Dim dTable As DataTable
 Dim strSQL As String
 Dim startTime As DateTime
 Dim elapsedTime As TimeSpan

 startTime = DateTime.Now()

 'build the query string and get the data from the database
 strSQL = "SELECT Top " & numberOfRecords.ToString() & " " & _
 "BookTitle, ISBN, Price " & _
 "FROM PerformanceTesting " & _
 "ORDER BY PerformanceTestingID"

 'read the data from the database
 da = New SqlDataAdapter(strSQL, dbConn)
 dTable = New DataTable
 da.Fill(dTable)

 'return the elapsed time
 elapsedTime = DateTime.Now.Subtract(startTime)
 getDataAdapterTime = elapsedTime
End Function 'getDataAdapterTime

Example 19-11. Methods using SQL provider (.cs)

///***
/// <summary>
/// This routine retrieves the passed number of records from the database
/// using a SqlDataReader and returns the elapsed time
/// </summary>
///
/// <param name="dbConn">
/// Set to an open connection to the database
/// </param>
/// <param name="numberOfRecords">
/// Set to the number of records to read
/// </param>
///

/// <returns>
/// Timespan set to the elapsed time requried to read the data
/// </returns>
private TimeSpan getDataReaderTime(SqlConnection dbConn,
 int numberOfRecords)
{
 SqlCommand dCmd = null;
 SqlDataReader dr = null;
 string strSQL = null;
 DateTime startTime;
 TimeSpan elapsedTime;
 String bookTitle;
 String isbn;

 Decimal price;

 try
 {
 startTime = DateTime.Now;

 // build the query string used to get the data from the database
 strSQL = "SELECT Top " + numberOfRecords.ToString() + " " +
 "BookTitle, ISBN, Price " +
 "FROM PerformanceTesting " +
 "ORDER BY PerformanceTestingID";

 // read the data from the database
 dCmd = new SqlCommand(strSQL, dbConn);
 dr = dCmd.ExecuteReader();
 while (dr.Read())
 {
 bookTitle = (String)(dr["BookTitle"]);
 isbn = (String)(dr["ISBN"]);
 price = Convert.ToDecimal(dr["Price"]);

 }

 //return the elapsed time
 elapsedTime = DateTime.Now.Subtract(startTime);
 return (elapsedTime);

 }
 finally
 {
 // clean up
 if (dr != null)
 {
 dr.Close();
 }
 }
} // getDataReaderTime

///***
/// <summary>

/// This routine retrieves the passed number of records from the database
/// using a SqlDataAdapter and returns the elapsed time
/// </summary>
///
/// <param name="dbConn">
/// Set to an open connection to the database
/// </param>
/// <param name="numberOfRecords">
/// Set to the number of records to read
/// </param>
///

/// <returns>
/// Timespan set to the elapsed time requried to read the data
/// </returns>
private TimeSpan getDataAdapterTime(SqlConnection dbConn,
 int numberOfRecords)
{
 SqlDataAdapter da = null;
 DataTable dTable = null;
 string strSQL = null;
 DateTime startTime;
 TimeSpan elapsedTime;

 startTime = DateTime.Now;
 // build the query string used to get the data from the database
 strSQL = "SELECT Top " + numberOfRecords.ToString() + " " +
 "BookTitle, ISBN, Price " +
 "FROM PerformanceTesting " +
 "ORDER BY PerformanceTestingID";

 // read the data from the database
 da = new SqlDataAdapter(strSQL, dbConn);
 dTable = new DataTable();
 da.Fill(dTable);

 // return the elapsed time
 elapsedTime = DateTime.Now.Subtract(startTime);
 return (elapsedTime);
} // getDataAdapterTime

Chapter 20. HTTP Handlers

20.0 Introduction

Recipe 20.2. Creating a Reusable Image Handler

Recipe 20.3. Creating a File Download Handler

20.0 Introduction

An HTTP handler is a class that intercepts and handles requests for a resource of a given type on a
web server. HTTP handlers are a key feature of ASP.NET. For instance, when you request an .aspx
file, a built-in HTTP handler intercepts the request and takes charge of loading and executing the
.aspx file. ASP.NET also provides built-in HTTP handlers for .asmx, .ascx, .cs, and .vb files, as well as
other file types. The <httpHandlers> element of the machine.config file contains a list of the standard
HTTP handlers configured for your web server.

Overriding ASP.NET's Built-in HTTP Handlers

The <httpHandlers> element in machine.config defines how ASP.NET handles requests for
all of the standard file extensions found in most ASP.NET applications. These include
.aspx, .asmx, .ascx, .cs, .vb, .vbproj, .csproj, .soap, and many others. By placing your
own handler settings in web.config, you can override those defined in machine.config.
The override maps incoming requests to the appropriate IHttpHandler class you define
(see Recipe 20.1's "Discussion" section for more details). The override can be for a single
URL or for all requests with a given extension.

You can extend the built-in handlers provided by ASP.NET or write your own. A custom HTTP handler
is useful when you want to handle requests by your application for a given resource on your own. For
example, custom handlers are useful for returning binary data, such as the contents of an image file,
or for handling the processing necessary to access a resource stored in a database. HTTP handlers
provide a good mechanism for building reusable assemblies for your web applications, such as a
general purpose file download module able to handle requests for almost any file type. Each of these
ideas is illustrated in the recipes in this chapter.

HTTP handlers are similar to the ISAPI extensions used to implement classic ASP for IIS. However,
whereas ISAPI extensions are difficult to implement and can only be implemented in C++, HTTP
handlers are supported by ASP.NET and can be implemented in any .NET language.

Recipe 20.2. Creating a Reusable Image Handler

Problem

You want to create a reusable assembly that retrieves image data from a database and processes it
before sending it to a browser.

Solution

Create an HTTP handler to read the image data from the database and send it to the browser.

To implement a custom, reusable HTTP handler:

Create a separate Class Library project in Visual Studio.1.

Create a class in the project that implements the IHttpHandler interface and then place code to
handle the request in the ProcessRequest method.

2.

Compile the project as an assembly and place the assembly in the bin directory of your web
project.

3.

Add an <httpHandlers> element to the web.config file in your web project referencing your
custom HTTP handler.

4.

Reference the URL of the HTTP handler in your application.5.

Examples 20-3 and 20-4 show the VB and C# class files we've written to implement an image handler
as an HTTP handler. Examples 20-5 , 20-6 through 20-7 show the .aspx file and VB and C# code-
behind files for our application that demonstrates the use of the HTTP handler.

Discussion

HTTP handlers are classes that implement the IHttpHandler interface. Implementing the
IHttpHandler interface requires the implementation of two methods: IsReusable and ProcessRequest
. IsReusable is a property that explicitly returns a Boolean value that indicates if the HTTP handler
can be reused by other HTTP requests. For synchronous handlers, like our example, the property
should always return false so the handler is not pooled (kept in memory). The ProcessRequest
method is where the work is performed and you should place code that processes the requests here.

To create a reusable HTTP handler, you need to eliminate all application-specific code from the class.
You must compile the class as a separate .NET assembly and place the assembly in the bin directory
of each application that uses it.

To create an assembly that contains only the handler code, you need to create a separate Class

Library project in Visual Studio. In our example, we have named the project CH20 ImageHandlerVB (or
CH20ImageHandlerCS for C#), resulting in an assembly that has the same name as the project. We
then compile the assembly, place it in the bin directory of the web project, and add a reference to the
assembly.

When you create a new Class Library project for your HTTP handler, you will
need to add a reference to the System.Web assembly. This is required because
the IHttpHandler interface and HttpContext class used by the HTTP handler are
defined in the System.Web assembly.

In our example that demonstrates this solution, we have already stored GIF images in a database
that can be retrieved and displayed in a browser using our HTTP handler as if they were standard
image files. To demonstrate the HTTP handler, we created an ASP.NET page that contains a
DropDownList , a View button, and an HTML img tag. The DropDownList displays the descriptions of
the images stored in the database. When you make a selection from the list and click the View
button, the src attribute for the img tag is set to the URL of our HTTP handler with the ID of the image
in the URL. When the page is displayed, the browser requests the image from our HTTP handler,
which retrieves the ID of the requested image from the URL, reads the data from the database for the
image, and streams the image data to the browser. Figure 20-1 shows the output of the page used
to test our HTTP handler.

The image handler implemented in our example needs several pieces of data to retrieve an image
from the database. These include the following:

The connection string for the database

The name of the table containing the image data

The name of the column that uniquely identifies an image (the primary key)

The name of the column containing the image data

A unique identifier (ID) for the image that is to be displayed

To be reusable, none of this data can be coded directly into the handler. To get around this problem
in our example, we declare four public constants in the image handler class we can use to specify the
names of the variables in Application scope that contain the database information. In addition, the
image ID to be downloaded will be passed in the URL used to access the handler (described later).

Figure 20-1. Output from HTTPHandler test page

The application variables defined by the constants are initialized in the Application_Start method of
the global.asax class, which is executed when an application is started. If you initialize your
application variables in the Application_Start method, they will always be available when HTTP
requests are processed. The code to implement this approach is in Examples 20-1 and 20-2 .

To create the image handler, you need to create a class that implements IHttpHandler and its two
methods, IsReusable and ProcessRequest . Add the code to process requests made to the handler to
the ProcessRequest method. As mentioned, IsReusable is a property that returns a Boolean value
indicating if the HTTP handler can be reused by other HTTP requests. Because our example is a
synchronous handler, the property returns false so the handler is not pooled (kept in memory).

In our example, the first step in processing a request for an image is to get the ID of the requested
image from the URL that is being processed by the handler.

Next, a connection to the database needs to be opened. The connection string is obtained from an
Application scope variable defined by the APP_CONNECTION_STR constant shown in Examples 20-1
(VB) and 20-2 (C#). The name of the database table, along with the columns containing the unique
identifier and the image data, are obtained from the Application scope variables described earlier.
These are used to create the SQL statement required to read the image data from the database.

The next step in our example is to read the image data from the database using the ExecuteScalar
method of the command object. The ExecuteScalar method returns a generic Object , so the return
value must be cast to the type of data stored in the database. In this case, it must be cast to a byte
array.

The image data stored in the database for our example is in GIF format, so the content type is set to
"image/GIF " to inform the browser of the data type being sent. After setting the content type, the
image data is written to the Response object using the BinaryWrite method.

If your image is of another type, you will need to set the ContentType
accordingly. Other choices for images include image/jpeg, image/tiff , and
image/png .

To use the handler, we have to add information to the <httpHandlers> element of the web.config file
of the application to tell ASP.NET which URL requests it should route to our custom image handler.
You insert this information using an add element and its attributes. The verb attribute defines the
types of requests that are routed to the HTTP handler. The allowable values are *, GET, HEAD , and
POST . The value * is a wildcard that specifies that all request types are to be routed to the handler.

The path attribute defines the URL(s) that are to be processed by the HTTP handler. The path can be
set to a single URL, or to a less specific value such as *.images to have the HTTP handler process all
requests for URLs with an images extension. In our example, we are setting the path to a specific
URL (ImageHandlerVB.aspx for the VB example or ImageHandlerCS.aspx for the C# example).

IIS routes requests with the extensions .asax , .ascx , .ashx , .asmx , .aspx ,
.axd , .config ,.cs , .csproj , .lic , .rem , .resources , .resx , .soap , .vb , .vbproj
, .vsdisco , and .webinfo to ASP.NET for processing.

To use an HTTP handler for requests with other extensions, IIS must be
configured to send the requests with the desired extensions to the
aspnet_isapi.dll .

The type attribute defines the name of the assembly and class within the assembly that will process
the request in the format type ="class name, assembly ". The class name must be identified by its

full namespace. Here is the code necessary to add a reference to the image handler to an application
web.config file:

<configuration>
 <system.web>

 …

 <httpHandlers>
 <add verb="*" path="ImageHandlerVB.aspx"
 type="ASPNetCookbook.VBExamples.HttpHandlers.ImageHandlerVB,
 CH20ImageHandlerVB" />
 </httpHandlers>

 …

 </system.web>
</configuration>

<configuration>
 <system.web>

 …

 <httpHandlers>
 <add verb="*" path="ImageHandlerCS.aspx"
 type="ASPNetCookbook.CSExamples.HttpHandlers.ImageHandlerCS,
 CH20ImageHandlerCS" />
 <add verb="*" path="FileDownloadHandlerCS.aspx"
 type="ASPNetCookbook.CSExamples.HttpHandlers.FileDownloadHandlerCS,
 CH20FileDownloadHandlerCS"/>
 </httpHandlers>

 …

 </system.web>
</configuration>

To use the HTTP handler to retrieve images from the database, we need to set the src attribute of
image tags that will use the HTTP handler to the name of the HTTP handler defined in the path
attribute of the entry added to web.config , passing the ID of the desired image in the URL. In our
example, the src attribute of an img tag is set in the view image button click event of the test page
code-behind. Here is a sample URL:

 src="ImageHandlerVB.aspx?ImageID=13"

The HTTP handler does not have to be implemented in the same language as
the application. The C# image handler can be used in VB projects or vice versa.

See Also

Recipe 15.3; search "Introduction to HTTP Handlers" in the MSDN library

Example 20-1. Application variable initialization for image handler (.vb)

<%@ Application Language="VB" %>
<%@ Import namespace="ASPNetCookbook.VBExamples.HttpHandlers" %>

<script RunAt="server">

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the application start
 ''' event. It is responsible for initializing application variables.

 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 Dim strConnection As String

 'get the connection string from web.config
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString

 'Set application variables used in image HTTP handler example
 Application.Add(ImageHandlerVB.APP_CONNECTION_STR, strConnection)
 Application.Add(ImageHandlerVB.APP_IMAGE_TABLE, "BookImage")
 Application.Add(ImageHandlerVB.APP_IMAGE_ID_COLUMN, "BookImageID")
 Application.Add(ImageHandlerVB.APP_IMAGE_DATA_COLUMN, "ImageData")
 End Sub

</script>

Example 20-2. Application variable initialization for image handler (.cs)

<%@ Application Language="C#" %>
<%@ Import namespace="ASPNetCookbook.CSExamples.HttpHandlers" %>

<script RunAt="server">

 ///***
 /// <summary>
 /// This routine provides the event handler for the application start
 /// event. It is responsible for initializing application variables.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 void Application_Start(Object sender, EventArgs e)
 {
 String strConnection = null;

 // get the connection string from web.config
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;

 // Set application variables used in image HTTP handler example
 Application.Add(ImageHandlerCS.APP_CONNECTION_STR,
 strConnection);
 Application.Add(ImageHandlerCS.APP_IMAGE_TABLE,
 "BookImage");
 Application.Add(ImageHandlerCS.APP_IMAGE_ID_COLUMN,
 "BookImageID");

 Application.Add(ImageHandlerCS.APP_IMAGE_DATA_COLUMN,
 "ImageData");
 } // Application_Start

</script>

Example 20-3. Image HTTP handler (.vb)

Option Explicit On
Option Strict On

Imports System.Configuration
Imports System.Data
Imports System.Data.OleDb
Imports System.Web

Namespace ASPNetCookbook.VBExamples.HttpHandlers

 ''' <summary>
 ''' This class provides an image handler as an HTTP handler.
 ''' </summary>
 Public Class ImageHandlerVB
 Implements IHttpHandler

 'The following constant is used in the URL used to access this handler to
 'define the image required
 Public Const QS_IMAGE_ID As String = "ImageID"

 'The following constants define the name of the application variables
 'used to define the database connection string and database table
 'information required to retrieve the required image
 Public Const APP_CONNECTION_STR As String = "DBConnectionStr"
 Public Const APP_IMAGE_TABLE As String = "DBImageTable"
 Public Const APP_IMAGE_ID_COLUMN As String = "DBImageIDColumn"
 Public Const APP_IMAGE_DATA_COLUMN As String = "DBImageDataColumn"

 '''***
 ''' <summary>
 ''' This property defines whether another HTTP handler can reuse this
 ''' instance of the handler.
 ''' </summary>
 '''
 ''' <returns>False</returns>
 ''' <remarks>
 ''' False is always returned since this handler is synchronous and is
 ''' not pooled.
 ''' </remarks>
 Public ReadOnly Property IsReusable() As Boolean _
 Implements IHttpHandler.IsReusable
 Get
 Return (False)
 End Get
 End Property 'IsReusable

 '''***
 ''' <summary>
 ''' This routine provides the processing for the http request. It is
 ''' responsible for reading image data from the database and writing it
 ''' to the response object.
 ''' </summary>
 '''
 ''' <param name="context">Set to the current HttpContext</param>
 Public Sub ProcessRequest(ByVal context As HttpContext) _
 Implements IHttpHandler.ProcessRequest

 Dim dbConn As OleDbConnection = Nothing
 Dim dCmd As OleDbCommand = Nothing
 Dim strConnection As String
 Dim imageTable As String
 Dim imageIDColumn As String

 Dim imageDataColumn As String
 Dim cmdText As String
 Dim imageID As String
 Dim imageData() As Byte

 Try
 'get the ID of the required image from the querystring
 imageID = context.Request.QueryString(QS_IMAGE_ID)

 'get connection string from application scope and open connection
 'to the database
 strConnection = CStr(context.Application(APP_CONNECTION_STR))
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'get the name of the database table and columns where the image
 'data is stored then create the SQL to read the data from
 'the database
 imageTable = CStr(context.Application(APP_IMAGE_TABLE))
 imageIDColumn = CStr(context.Application(APP_IMAGE_ID_COLUMN))
 imageDataColumn = CStr(context.Application(APP_IMAGE_DATA_COLUMN))

 cmdText = "SELECT " & imageDataColumn & _
 " FROM " & imageTable & _
 " WHERE " & imageIDColumn & "=?"

 dCmd = New OleDbCommand(cmdText, dbConn)
 dCmd.Parameters.Add(New OleDbParameter("ImageID", _
 imageID))

 'get the image data
 imageData = CType(dCmd.ExecuteScalar(), Byte())

 'write the image data to the reponse object
 context.Response.ContentType = "image/gif"
 context.Response.BinaryWrite(imageData)

 Finally
 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End Sub 'ProcessRequest
 End Class 'ImageHandlerVB
End Namespace

Example 20-4. Image HTTP handler (.cs)

using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;
using System.Web;

namespace ASPNetCookbook.CSExamples.HttpHandlers
{
 /// <summary>
 /// This class provides an image handler as an HTTP handler.
 /// </summary>
 public class ImageHandlerCS : IHttpHandler
 {
 // The following constant is used in the URL used to access this handler
 // to define the image required
 public const string QS_IMAGE_ID = "ImageID";

 // The following constants defines the name of the application variables
 // used to define the database connection string and database table
 // information required to retrieve the required image
 public const string APP_CONNECTION_STR = "DBConnectionStr";
 public const string APP_IMAGE_TABLE = "DBImageTable";
 public const string APP_IMAGE_ID_COLUMN = "DBImageIDColumn";
 public const string APP_IMAGE_DATA_COLUMN = "DBImageDataColumn";

 ///***
 /// <summary>
 /// This property defines whether another HTTP handler can reuse this
 /// instance of the handler.
 /// </summary>
 ///
 /// <returns>false</returns>
 /// <remarks>
 /// false is always returned since this handler is synchronous and is
 /// not pooled.
 /// </remarks>
 public bool IsReusable
 {
 get
 {

 return (false);
 }
 } // IsReusable

 ///***
 /// <summary>
 /// This routine provides the processing for the http request. It is
 /// responsible for reading the file from the local filesystem and
 /// writing it to the response object.
 /// </summary>

 ///
 /// <param name="context">Set to the current HttpContext</param>
 public void ProcessRequest(HttpContext context)
 {
 OleDbConnection dbConn = null;
 OleDbCommand dCmd = null;
 String strConnection = null;
 String imageTable = null;
 String imageIDColumn = null;
 String imageDataColumn = null;
 String strSQL = null;
 String imageID = null;
 byte[] imageData = null;

 try
 {
 // get the ID of the required image from the querystring
 imageID = context.Request.QueryString[QS_IMAGE_ID];

 // get connection string from application scope and open connection
 // to the database
 strConnection = (String)(context.Application[APP_CONNECTION_STR]);
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // get the name of the database table and columns where the image
 // data is stored then create the SQL to read the data from
 // the database
 imageTable = (String)(context.Application[APP_IMAGE_TABLE]);
 imageIDColumn = (String)(context.Application[APP_IMAGE_ID_COLUMN]);
 imageDataColumn = (String)(context.Application[APP_IMAGE_DATA_COLUMN]);

 strSQL = "SELECT " + imageDataColumn +
 " FROM " + imageTable +
 " WHERE " + imageIDColumn + "=?";

 dCmd = new OleDbCommand(strSQL, dbConn);
 dCmd.Parameters.Add(new OleDbParameter("ImageID",
 imageID));
 imageData = (byte[])(dCmd.ExecuteScalar());

 // write the image data to the reponse object
 context.Response.ContentType = "image/gif";
 context.Response.BinaryWrite(imageData);
 } // try

 finally
 {
 // clean up
 if (dbConn != null)
 {
 dbConn.Close();

 }
 } // finally
 } // ProcessRequest
 } // ImageHandlerCS
}

Example 20-5. Using the image HTTP handler (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH20TestHTTPImageHandlerVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH20TestHTTPImageHandlerVB"
 Title="Test HTTP Image Handler" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Test HttpHandler For Images (VB)
 </div>
 <table width="50%" align="center" border="0">
 <tr>
 <td>
 <asp:DropDownList ID="ddImages" Runat="server" />
 </td>
 <td>
 <input id="btnViewImage" runat="server"
 type="button"
 value="View"
 onserverclick="btnViewImage_ServerClick" />
 </td>
 </tr>
 <tr>
 <td id="tdSelectedImage" runat="server"
 colspan="2"
 align="center"
 class="subHeading">

 Selected Image

 </td>
 </tr>
 </table>
</asp:Content>

Example 20-6. Using the image HTTP handler code-behind (.vb)

Option Explicit On
Option Strict On

Imports ASPNetCookbook.VBExamples.HttpHandlers
Imports System.Configuration
Imports System.Data
Imports System.Data.Common
Imports System.Data.OleDb

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH20TestHTTPImageHandlerVB.aspx
 ''' </summary>
 Partial Class CH20TestHTTPImageHandlerVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Dim dbConn As OleDbConnection = Nothing
 Dim dc As OleDbCommand
 Dim dr As OleDbDataReader
 Dim strConnection As String
 Dim strSQL As String

 If (Not Page.IsPostBack) Then
 Try
 'initially hide the selected image since one is not selected
 tdSelectedImage.Visible = False

 'get the connection string from web.config and open a connection
 'to the database
 strConnection = ConfigurationManager. _
 ConnectionStrings("dbConnectionString").ConnectionString
 dbConn = New OleDbConnection(strConnection)
 dbConn.Open()

 'build the query string and get the data from the database
 strSQL = "SELECT BookImageID, Title " & _
 "FROM BookImage " & _
 "ORDER BY Title"
 dc = New OleDbCommand(strSQL, dbConn)
 dr = dc.ExecuteReader()

 'set the source of the data for the repeater control and bind it
 ddImages.DataSource = dr
 ddImages.DataTextField = "Title"
 ddImages.DataValueField = "BookImageID"
 ddImages.DataBind()

 Finally
 'clean up
 If (Not IsNothing(dbConn)) Then
 dbConn.Close()
 End If
 End Try
 End If
 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the view image click
 ''' event. It is responsible for setting the src attibute of the
 ''' imgBook tag to the URL of the HTTP handler that will deliver the
 ''' image content.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnViewImage_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 'set the source for the selected image tag
 imgBook.Src = "ImageHandlerVB.aspx?" & _
 ImageHandlerVB.QS_IMAGE_ID & "=" & _
 ddImages.SelectedItem.Value.ToString()

 'make the selected image visible
 tdSelectedImage.Visible = True
 End Sub 'btnViewImage_ServerClick
 End Class 'CH20TestHTTPImageHandlerVB
End Namespace

Example 20-7. Using the image HTTP handler code-behind (.cs)

using ASPNetCookbook.CSExamples.HttpHandlers;
using System;
using System.Configuration;
using System.Data;
using System.Data.OleDb;

namespace ASPNetCookbook.CSExamples

{
 /// <summary>
 /// This class provides the code-behind for
 /// CH20TestHTTPImageHandlerCS.aspx
 /// </summary>

 public partial class CH20TestHTTPImageHandlerCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 OleDbConnection dbConn = null;
 OleDbCommand dc;
 OleDbDataReader dr;
 String strConnection;
 String strSQL;

 if (!Page.IsPostBack)
 {
 try
 {
 // initially hide the selected image since one is not selected
 tdSelectedImage.Visible = false;

 // get the connection string from web.config and open a connection
 // to the database
 strConnection = ConfigurationManager.
 ConnectionStrings["dbConnectionString"].ConnectionString;
 dbConn = new OleDbConnection(strConnection);
 dbConn.Open();

 // build the query string and get the data from the database
 strSQL = "SELECT BookImageID, Title " +
 "FROM BookImage " +
 "ORDER BY Title";
 dc = new OleDbCommand(strSQL, dbConn);
 dr = dc.ExecuteReader();

 // set the source of the data for the repeater control and bind it
 ddImages.DataSource = dr;
 ddImages.DataTextField = "Title";
 ddImages.DataValueField = "BookImageID";
 ddImages.DataBind();

 }

 finally
 {
 // clean up
 if (dbConn != null)
 {
 dbConn.Close();

 }
 }
 }
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the view image click
 /// event. It is responsible for setting the src attibute of the
 /// imgBook tag to the URL of the HTTP handler that will deliver the
 /// image content.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnViewImage_ServerClick(Object sender,
 System.EventArgs e)
 {
 // set the source for the selected image tag
 imgBook.Src = "ImageHandlerCS.aspx?" +
 ImageHandlerCS.QS_IMAGE_ID + "=" +
 ddImages.SelectedItem.Value.ToString();

 // make the selected image visible
 tdSelectedImage.Visible = true;
 } // btnViewImage_ServerClick
 } // CH20TestHTTPImageHandlerCS
}

Recipe 20.3. Creating a File Download Handler

Problem

You want to create a general-purpose file handler to download files of any type where the name of
the file being downloaded is provided at runtime.

Solution

Create an HTTP handler to read the required file from the filesystem and send it to the browser. The
steps for creating an HTTP handler are defined in Recipe 20.1.

Examples 20-8 and 20-9 show the VB and C# class files we've written to implement a file download
HTTP handler. Examples 20-10, 20-11 through 20-12 show the .aspx file and the VB and C# code-
behind files for our application that demonstrates the use of the file download HTTP handler.

Discussion

Of the many ways you might implement a reusable file download routine that can handle almost any
file type, creating an HTTP handler makes the most sense. HTTP handlers are designed to process
requests for resources, and a file download request is a special instance of such a request.

The file download HTTP handler described in our example downloads a file from the local filesystem to
the user's system. The name of the file to download is passed in the URL used to access the HTTP
handler.

The first step in implementing the file download HTTP handler is to create a class that implements
IHttpHandler. The class can be part of your web project, or if you want it to be reusable across
applications, you can place it in a project by itself so a separate assembly can be created, as
described in Recipe 20.1.

As discussed in the previous recipe, implementing the IHttpHandler interface requires the
implementation of two methods: IsReusable and ProcessRequest. IsReusable is a property that
explicitly returns a Boolean value that indicates if the HTTP handler can be reused by other HTTP
requests. For synchronous handlers like our example, the property should always return false so the
handler is not pooled (kept in memory).

The ProcessRequest method provides all of the functionality required to download the file. The first
step is to retrieve the name of the file that is to be downloaded from the URL that is being processed
by the handler.

In our example, we provide only the filename in the URL that calls the handler because all files to be

downloaded are intended to be located in a single Downloads directory associated with the
application. However, because a fully qualified filename is required for the download along with the
size of the file, a FileInfo object is created passing the fully qualified name of the file to the
constructor. The path to the Downloads directory is obtained using Server.MapPath, which translates
a relative path within the web application to a fully qualified path on the web server's filesystem.

Review how you've implemented your file download handler to ensure a hacker
cannot download files you do not intend to have downloaded. For example, if
you do not restrict downloadable files to a single area, as we have done in our
example, a hacker could possibly enter the following to download your
web.config file:

http://aspnetcookbook/FileDownloadHandlerVB.aspx?
filename=web.config

By restricting downloadable files to a single area and providing the path
information in your code instead of in the URL, you can block a hacker from
accessing restricted folders. In addition, you can use filesystem security to
improve the security of your application.

To send a file to the browser, you must write it to the Response object. Passing data in the response
object is the only way to return data to the browser. Based on the content type (described later), the
browser processes the data returned using the Response object.

The first step in writing the data to the Response object is to clear any data in the object because no
other data can be included with the file or a corrupted file error will occur.

The AddHeader method of the Response object is then used to add the name of the file being
downloaded and its length.

The content type then needs to be set. In our example, it is set to application/octet-stream so it
will be treated by the browser as a binary stream and prompt the user to select the location to save
the file. For your application, you may want to set the content type to the explicit file type, such as
application/PDF or application/msword. Setting the content type to the explicit file type allows the
browser to open it with the application defined to handle the specified file type on the client machine.
For more information on content types, consult http://www.w3c.org.

The file is written to the Response object and the response is ended to send the file to the browser.

The web.config file for our application must have an entry in the <httpHandlers> element to tell
ASP.NET which URL requests need to be routed to the file download HTTP handler. You use the add
element and its attributes to specify each custom handler. The verb attribute of the add element
defines the types of requests that are routed to the HTTP handler. The allowable values are *, GET,
HEAD, and POST. The value * is a wildcard for all request types.

The path attribute defines the URL(s) that are to be processed by the HTTP handler. The path can be
a single URL, as shown later, or it can be set to something like *.download to have the HTTP handler
process all requests for URLs with a download extension. (See the note in Recipe 20.1 regarding
request extensions.)

The type attribute defines the name of the assembly and class within the assembly that will process

http://aspnetcookbook/FileDownloadHandlerVB.aspx?
http://www.w3c.org

the request in the format type="class name, assembly". The class must be identified by its full

namespace. The following code shows how to add a reference to the file download handler to the
web.config file of our sample application:

 <configuration>
 <system.web>

 …

 <httpHandlers>
 <add verb="*" path="FileDownloadHandlerVB.aspx"
 type="ASPNetCookbook.VBExamples.HttpHandlers.FileDownloadHandlerVB,
 CH20FileDownloadHandlerVB"/>
 </httpHandlers>

 …

 </system.web>
 </configuration>

 <configuration>
 <system.web>

 …

 <httpHandlers>
 <add verb="*" path="FileDownloadHandlerCS.aspx"
 type="ASPNetCookbook.CSExamples.HttpHandlers.FileDownloadHandlerCS,
 CH20FileDownloadHandlerCS"/>
 </httpHandlers>

 …

 </system.web>
 </configuration>

To use the HTTP handler (described earlier) to download files, we need to set the href attribute of an
HTML anchor tag to the name of the file download HTTP handler defined in the path attribute of the
entry added to web.config, passing the name of the file to download in the URL. In our example, the
HRef attribute of the anchor tag is set in the Page_Load method of the test page. Here is a sample of
the URL:

 href="FileDownloadHandlerVB.aspx?Filename=SampleDownload.txt"

This example demonstrates downloading a file that exists on the web server. The code can be altered
to pass additional data in the URL, programmatically generate the file, and send it to the browser
without saving it to the filesystem. This could be useful if you are dynamically creating a PDF or a
CSV file requested by the user.

See Also

Recipe 20.1 for techniques on how to create a generic, reusable HTTP handler; http://www.w3c.org
for information on content types

Example 20-8. File download HTTP handler (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.IO
Imports System.Web

Namespace ASPNetCookbook.VBExamples.HttpHandlers
 ''' <summary>
 ''' This class provides a file download handler as an HTTP handler.
 ''' </summary>
 Public Class FileDownloadHandlerVB
 Implements IHttpHandler

 'The following constant is used in the URL used to access this handler to
 'define the file to download
 Public Const QS_FILENAME As String = "Filename"

 'the following constant defines the folder containing downloadable files
 Private Const DOWNLOAD_FOLDER As String = "Downloads"
 '''***
 ''' <summary>
 ''' This property defines whether another HTTP handler can reuse this
 ''' instance of the handler.
 ''' </summary>
 '''
 ''' <returns>False</returns>
 ''' <remarks>
 ''' False is always returned since this handler is synchronous and is
 ''' not pooled.
 ''' </remarks>
 Public ReadOnly Property IsReusable() As Boolean _
 Implements IHttpHandler.IsReusable

http://www.w3c.org

 Get
 Return (False)
 End Get
 End Property 'IsReusable

 '''***
 ''' <summary>
 ''' This routine provides the processing for the http request. It is
 ''' responsible for reading the file from the local filesystem and
 ''' writing it to the response object.
 ''' </summary>
 '''
 ''' <param name="context">Set to the current HttpContext</param>
 Public Sub ProcessRequest(ByVal context As HttpContext) _
 Implements IHttpHandler.ProcessRequest

 Dim file As FileInfo
 Dim filename As String

 'get the filename from the querystring
 filename = context.Request.QueryString(QS_FILENAME)

 'get the file data since the length is required for the download
 file = New FileInfo(context.Server.MapPath(DOWNLOAD_FOLDER) & "\" & _
 filename)

 'write it to the browser
 context.Response.Clear()
 context.Response.AddHeader("Content-Disposition", _
 "attachment; filename=" & filename)
 context.Response.AddHeader("Content-Length", _
 file.Length.ToString())

 context.Response.ContentType = "application/octet-stream"
 context.Response.WriteFile(file.FullName)
 context.Response.End()
 End Sub 'ProcessRequest
 End Class 'FileDownloadHandlerVB
End Namespace

Example 20-9. File download HTTP handler (.cs)

using System;
using System.IO;
using System.Web;

namespace ASPNetCookbook.CSExamples.HttpHandlers

{
 /// <summary>
 /// This class provides a file download handler as an HTTP handler.
 /// </summary>
 public class FileDownloadHandlerCS : IHttpHandler
{
 // The following constant is used in the URL used to access this handler
 // to define the file to download
 public const string QS_FILENAME = "Filename";

 //the following constant defines the folder containing downloadable files
 private const string DOWNLOAD_FOLDER = "Downloads";

 ///***
 /// <summary>
 /// This property defines whether another HTTP handler can reuse this
 /// instance of the handler.
 /// </summary>
 ///
 /// <returns>false</returns>
 /// <remarks>
 /// false is always returned since this handler is synchronous and is
 /// not pooled.
 /// </remarks>
 public bool IsReusable
 {
 get
 {
 return (false);
 }
 } // IsReusable

 ///***
 /// <summary>
 /// This routine provides the processing for the http request. It is
 /// responsible for reading the file from the local filesystem and
 /// writing it to the response object.

 /// </summary>
 ///
 /// <param name="context">Set to the current HttpContext</param>
 public void ProcessRequest(HttpContext context)
 {
 FileInfo file = null;
 string filename = null;

 // get the filename from the querystring
 filename = context.Request.QueryString[QS_FILENAME];

 // get the file data since the length is required for the download
 file = new FileInfo(context.Server.MapPath(DOWNLOAD_FOLDER) + "\\" +

 filename);

 // write it to the browser
 context.Response.Clear();
 context.Response.AddHeader("Content-Disposition",
 "attachment; filename=" + filename);
 context.Response.AddHeader("Content-Length",
 file.Length.ToString());
 context.Response.ContentType = "application/octet-stream";
 context.Response.WriteFile(file.FullName);
 context.Response.End();
 } // ProcessRequest
 } // FileDownloadHandlerCS
}

Example 20-10. Using the file download HTTP handler (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH20TestHTTPFileDownloadHandlerVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH20TestHTTPFileDownloadHandlerVB"
 Title="Test HTTP File Download Handler" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 HTTP Handler For File Downloads (VB)
 </div>
 <div align="center" class="subHeading">

 Click the link below to download the sample file using an HTTP Handler

 </div>
</asp:Content>

Example 20-11. Using the file download HTTP handler code-behind (.vb)

Option Explicit On
Option Strict On

Imports ASPNetCookbook.VBExamples.HttpHandlers

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH20TestHTTPFileDownloadHandlerVB.aspx
 ''' </summary>
 Partial Class CH20TestHTTPFileDownloadHandlerVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Const FILE_TO_DOWNLOAD As String = "SampleDownload.txt"

 'set the text and href of the download anchor
 anDownload.InnerText = FILE_TO_DOWNLOAD
 anDownload.HRef = "FileDownloadHandlerVB.aspx?" & _
 FileDownloadHandlerVB.QS_FILENAME & "=" & _
 FILE_TO_DOWNLOAD
 End Sub 'Page_Load
 End Class 'CH20TestHTTPFileDownloadHandlerVB
End Namespace

Example 20-12. Using the file download HTTP handler code-behind (.cs)

using ASPNetCookbook.CSExamples.HttpHandlers;
using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH20TestHTTPFileDownloadHandlerCS.aspx
 /// </summary>
 public partial class CH20TestHTTPFileDownloadHandlerCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)

 {
 const string FILE_TO_DOWNLOAD = "SampleDownload.txt";
 // set the text and href of the download anchor
 anDownload.InnerText = FILE_TO_DOWNLOAD;
 anDownload.HRef = "FileDownloadHandlerCS.aspx?" +
 FileDownloadHandlerCS.QS_FILENAME + "=" +
 FILE_TO_DOWNLOAD;
 } // Page_Load
 } // CH20TestHTTPFileDownloadHandlerCS
}

Chapter 21. Assorted Tips

21.0 Introduction

Recipe 21.2. Accessing HTTP-Specific Information from Within a Class

Recipe 21.3. Executing External Applications

Recipe 21.4. Transforming XML to HTML

Recipe 21.5. Determining the User's Browser Type

Recipe 21.6. Dynamically Creating Browser-Specific Stylesheets

Recipe 21.7. Saving and Reusing HTML Output

Recipe 21.8. Sending Mail

Recipe 21.9. Dynamic Menus

Recipe 21.10. Adding Breadcrumbs

21.0 Introduction

This chapter contains an assortment of recipes that don't fit conveniently into the other chapters of
the book. If there is a common theme among them, it is that they illustrate that the .NET
Framework's class libraryspecifically the classes that support ASP.NETis more expansive than you
might expect. Indeed, ASP.NET provides the functionality to support almost everything an application
needs. You just have to be willing to dig deep enough to find it.

Recipe 21.2. Accessing HTTP-Specific Information from
Within a Class

Problem

You want to create a business service class that can be used by any page in your site, and you want
it to have access to the HTTP-specific information available in web pagesthat is, all the server objects
used by the application.

Solution

Add a reference to the System.Web assembly in your business service project and a companion
Imports statement (or using statement in C#) to your class, and use the Current property of the
HttpContext object to access the desired server objects.

In the business service class, use the .NET language of your choice to:

Add a reference to System.Web.1.

Import the System.Web namespace.2.

Reference the current HTTP context when accessing server objects, as in
HTTPContext.Current.Session.

3.

Examples 21-1 and 21-2 show the VB and C# class files for an example business service that
implements this solution.

Discussion

By referencing the Current property of the HttpContext object in the business class, your code has
full access to all the server objects used in web applications. This includes the ability to access all
information about the request being made, the response being returned, session data, and
application data. For more information, refer to the HttpContext class in the MSDN documentation.

When you create an ASP.NET application with Visual Studio .NET, all the pages and classes of the
web project have access to the HTTP-specific information. This is because Visual Studio automatically
adds a reference to System.Web when you create the project. When you create a Class Library
project, the technique commonly used to create reusable assemblies, Visual Studio does not
automatically add the reference to System.Web. You can do so manually, however, by right-clicking
the project in the Solution Explorer and selecting Add Reference from the context menu. When the

Add Reference dialog box appears, choose the System.Web.dll component from the .NET tab.

If you are not using Visual Studio for your project, you can add the reference as part of the compile
command. The following fragments show how we do this for our example:

 vbc /target:library /reference:System.Web.dll /out:BusinessService.dll
 BusinessService.vb

 csc /target:library /reference:System.Web.dll /out:BusinessService.dll
 BusinessService.cs

In the class requiring access to the HTTP-specific information, add an Imports statement (or using
statement in C#) for the System.Web assembly. Adding this statement imports the namespace and
provides access to the HTTP objects without having to fully qualify each reference to the object,
making the code more readable and easier to maintain. The difference in access methods is shown
here:

 'access to the Session object when Imports statement is included
 value = CStr(HttpContext.Current.Session("someData"))

 'access to the Session object when the Imports statement is NOT included
 value = CStr(System.Web.HttpContext.Current.Session("someData"))

 // access to the Session object when Imports statement is included
 value = (string)(HttpContext.Current.Session["someData"]);

 // access to the Session object when the Imports statement is NOT included
 value = (string)(System.Web.HttpContext.Current.Session["someData"]);

By adding the reference and Imports (or using) statement to your business service projects, your
code has full access to all the server objects used in web applications.

Providing access to the server objects in your business classes is useful and
necessary for some services, but it should not be universally applied. When
your business service requires access to the HTTP-specific information, it can
no longer be used in non-web applications, reducing its reusability.

See Also

HttpContext class documentation in the MSDN Library

Example 21-1. Accessing HTTP-specific information (.vb)

Imports System.Web

Public Class BusinessService

 Public Sub doSomething()
 Dim value As String

 value = CStr(HttpContext.Current.Session("someData"))

 'use the data from session as required
 End Sub
End Class 'BusinessService

Example 21-2. Accessing HTTP-specific information (.cs)

using System.Web;

namespace CSMisc
{
 public class BusinessService
 {
 public BusinessService()
 {
 string value;

 value = (string)(HttpContext.Current.Session["someData"]);

 // use the data from session as required
 }
 }
}

Recipe 21.3. Executing External Applications

Problem

You need to run an external application from your web application to perform a required operation.

Solution

Use the System.Diagnostics.Process.Start method to call your external application.

In the code-behind class for the page, use the .NET language of your choice to:

Import the System.Diagnostics namespace.1.

Create a ProcessStartInfo object, passing the name of the external application to run along
with any required command-line parameters.

2.

Set the working directory to the location of the external application.3.

Start the external application process by calling the Start method of the Process class, passing
the ProcessStartInfo object.

4.

Examples 21-3 and 21-4 show the relevant portion of the sample VB and C# codebehind files that
illustrate this solution.

Discussion

Applications frequently must interface with other applications or systems that use different
technologies. At the same time, it may be impractical to migrate these applications to the new
platforms or to provide web service wrappers to gain access to the applications. Sometimes, the only
practical solution is to execute another program to perform the required operation. For example, you
may have an existing application that exports data from your COBOL accounting program to a format
usable by other systems. The common language runtime (CLR) provides a set of classes to support
running other applications from within the .NET environment. These classes are part of the
System.Diagnostics assembly.

The first step to running an external application from within ASP.NET applications is to create a
ProcessStartInfo object and to pass it the name of the application to run along with any command-
line parameters it might require. In our example, we use the Java runtime to execute a Java program
called AJavaProgram. In our case, the name of the application to run is java and the name of the Java
program to run, AJavaProgram, is the only required command-line parameter.

 si = New ProcessStartInfo("java", _
 "AJavaProgram")

 si = new ProcessStartInfo("java",
 "AJavaProgram");

Next, the working directory is set to the location of the Java application. For this example, the Java
application (AJavaProgram.class) is located in the root directory of the ASP.NET application, so
Server.MapPath is passed . to get the fully qualified path to the root directory:

 si.WorkingDirectory = Server.MapPath(".")

 si.WorkingDirectory = Server.MapPath(".");

The ProcessStartInfo class has been changed in Version 2.0 of the .NET
Framework with the addition of the UserName and Password properties, along
with a modification in the use of the UseShellExecute property. In Version 2.0,
if the UserName property is set to Nothing (null in C#), the UseShellExecute
property must be set to false, or an InvalidOperation-Exception will be
thrown. Refer to the ProcessStartInfo class documentation in the MSDN
Library for more information.

The application is then started by calling the Start method of the Process class passing the
ProcessStartInfo object containing the application information. The Start method is shared (or
static), which does not require instantiating a Process object.

 proc = Process.Start(si)

 proc = Process.Start(si);

To wait for the process to complete before continuing execution of the ASP.NET application, the
WaitForExit method is called, optionally passing a maximum time to wait. Once the WaitForExit
method is called, page execution is paused until the process completes or the timeout occurs. If you
do not need to wait on the process to complete, calling the WaitForExit method will be unnecessary.

 proc.WaitForExit()

 proc.WaitForExit();

If the process takes longer to complete than the passed timeout value, the
process will not be terminated; it will continue until completion. If you do not
want the process to continue executing, your application can terminate it by
calling the kill method of the process object.

By default, external applications are run using the ASP.NET user account. As a result, you may need
to change the permissions for the ASP.NET account depending on the operations the external
application performs. Take care when giving the ASP.NET user additional permissions to avoid
creating security problems on your server.

The user account used by ASP.NET is defined in the userName attribute of the
processModel element in the machine.config file. By default, the userName
attribute is set to machine, which is a special username indicating the ASP.NET
user. The userName can be set to any local or domain username that you want
ASP.NET to run under.

See Also

ProcessStartInfo class documentation in the MSDN Library

Example 21-3. Running an external application (.vb)

Imports System.Diagnostics

 …

Dim proc As Process
Dim si As ProcessStartInfo

'create a new start information object with the program to execute
'and the command line parameters
si = New ProcessStartInfo("java", _
 "AJavaProgram")

'set the working directory where the external program is located
si.WorkingDirectory = Server.MapPath(".")
si.UseShellExecute = False

'start a new process using the start information object
proc = Process.Start(si)

'wait for process to complete before continuing
proc.WaitForExit()

Example 21-4. Running an external application (.cs)

using System;
using System.Diagnostics;

 …

Process proc = null;
ProcessStartInfo si = null;

// create a new start information object with the program to execute
// and the command line parameters
si = new ProcessStartInfo("java",
 "AJavaProgram");

// set the working directory where the external program is located
si.WorkingDirectory = Server.MapPath(".");
si.UseShellExecute = false;

// start a new process using the start information object
proc = Process.Start(si);

// wait for process to complete before continuing
proc.WaitForExit();

Recipe 21.4. Transforming XML to HTML

Problem

The content for your application is in XML format, and you need to transform it to HTML for display in
a browser.

Solution

Use an ASP.NET XML control and set its DocumentSource property to the XML document you need to
transform and the transformSource property to the XSLT document that specifies the transformation
to be performed.

In the .aspx file, place an asp:Xml control where you want the HTML from the transformation to be
placed in the page.

In the code-behind class for the page, use the .NET language of your choice to:

Set the DocumentSource property of the XML control to the relative path to the XML document to
convert.

1.

Set the transformSource property to the relative path to the XSLT document.2.

Examples 21-5 , 21-6 through 21-7 show the .aspx file and VB and C# code-behind files for an
application that demonstrates this solution. The XML used as the source is shown in Example 21-8 ,
and the XSLT used to transform the XML is shown in Example 21-9 . The output transformed to HTML
is shown in Figure 21-1 .

Discussion

XML is becoming the predominant format for storing content. XML provides a platform-independent
format that can be converted to many other formats, including HTML. By storing the content for your
web application in XML, the same content can be transformed to the HTML needed for display in a
standard browser or the HTML needed for a PDA.

In our example to illustrate this solution, an XML document containing book information (Example 21-
8) is transformed into an HTML table using an XSLT document (Example 21-9). The transformation
is performed by an Xml server control.

Figure 21-1. Transforming XML to HTML output

When you use an Xml control to do the work, you need to set only two of its properties to convert
XML to HTML. The DocumentSource property needs to be set to the relative path to the XML document
to convert, and the TRansformSource property needs to be set to the relative path to the XSLT
document, as we have done in our example:

 xmlTransform.DocumentSource = "xml/books.xml"
 xmlTransform.TransformSource = "xml/books.xslt"

 xmlTransform.DocumentSource = "xml//books.xml";
 xmlTransform.TransformSource = "xml//books.xslt";

Most controls that use files require a fully qualified name of the file on the web
server. However, the Xml control requires a relative path from the root folder of
the web site to the XML and XSLT files. Setting the properties to fully qualified
paths will result in an exception being thrown.

The majority of the work to perform an XSL transformation is in the creation of the XSLT. An XSLT
document is a specially formatted XML document and, as such, requires a declaration defining the
version of XML and the encoding of the document.

In addition, elements indicating that the document is an XSL stylesheet and defining the output

method are required:

 <?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

 …

 </xsl:stylesheet>

In XSLT, templates are used to replace specific content in the XML document with the template
defined in an xsl:template element. In our example, two templates are used. The first template
defines the base structure of the HTML table that will be used to display the XML content when it is
converted to HTML, as shown here:

 <!-- output main table with header row -->
 <xsl:template match="Root">
 <table width="80%" border="1" cellspacing="0" cellpadding="4" align="center">
 <tr class="tableHeader" bgcolor="#000080">
 <td width="50%" align="center" >Title</td>
 <td width="25%" align="center" >ISBN</td>
 <td width="25%" align="center" >Publisher</td>
 </tr>
 <xsl:apply-templates select="Book" />
 </table>
 </xsl:template>

This template instructs the conversion to apply additional templates using the Book element of the
XML document as a source for the data:

 <xsl:apply-templates select="Book"/>

The xsl:apply-templates element is roughly equivalent to a for loop that would iterate through each
Book element in the XML document applying our second template:

 <!-- output a row in the table for each Book node in the XML document -->
 <xsl:template match="Book" >
 <tr class="tableCellNormal" bgcolor="#FFFFE0">
 <td width="50%">
 <xsl:value-of select="Title"/>
 </td>
 <td width="25%" align="center">

 <xsl:value-of select="ISBN" />
 </td>
 <td width="25%" align="center">
 <xsl:value-of select="Publisher" />
 </td>
 </tr>
 </xsl:template>

This template generates a row for the base HTML table for each Book element in the XML document.
Each cell in the table contains an xsl:value-of element that instructs the transformation to insert the
value of the element indicated by the select attribute in the cell.

XSLT is powerful and can be used to perform complex transformations, including transformations that
dynamically vary according to passed parameters, and is not limited to converting XML to HTML. To
learn the techniques of XSLT, these books are recommended: XSLT and the XSLT Cookbook , both
from O'Reilly.

See Also

XSLT , by Doug Tidwell (O'Reilly); XSLT Cookbook , by Sal Mangano (O'Reilly)

Example 21-5. Transforming XML to HTML (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH21TransformingXMLToHTMLVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH21TransformingXMLToHTMLVB"
 Title="Transforming XML To HTML" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Transform XML To HTML (VB)
 </div>
 <div align="center">

 <asp:Xml ID="xmlTransform" Runat="server" />
 </div>
</asp:Content>

Example 21-6. Transforming XML to HTML code-behind (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH21TransformingXMLToHTMLVB.aspx
 ''' </summary>
 Partial Class CH21TransformingXMLToHTMLVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 'set the names of the XML and XSLT documents used in the
 'transformation

 xmlTransform.DocumentSource = "xml/books.xml"
 xmlTransform.TransformSource = "xml/books.xslt"
 End Sub 'Page_Load
 End Class 'CH21TransformingXMLToHTMLVB
End Namespace

Example 21-7. Transforming XML to HTML code-behind (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH21TransformingXMLToHTMLCS.aspx
 /// </summary>
 public partial class CH21TransformingXMLToHTMLCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 // set the names of the XML and XSLT documents used in the
 // transformation
 xmlTransform.DocumentSource = "xml//books.xml";
 xmlTransform.TransformSource = "xml//books.xslt";
 } // Page_Load
 } // CH21TransformingXMLToHTMLCS
}

Example 21-8. XML source used for transformation

<Root>
 <Book>
 <BookID>1</BookID>
 <Title>Access Cookbook</Title>
 <ISBN>0-596-00084-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>2</BookID>
 <Title>ASP.NET Cookbook</Title>
 <ISBN>0-596-00378-1</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>3</BookID>

 <Title>Perl Cookbook</Title>
 <ISBN>1-565-92243-3</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>4</BookID>
 <Title>Java Cookbook</Title>
 <ISBN>0-596-00170-3</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>5</BookID>
 <Title>JavaScript Application Cookbook</Title>
 <ISBN>1-565-92577-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>6</BookID>
 <Title>VB .Net Language in a Nutshell</Title>
 <ISBN>0-596-00092-8</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>7</BookID>
 <Title>Programming Visual Basic .Net</Title>
 <ISBN>0-596-00093-6</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>8</BookID>
 <Title>Programming C#</Title>
 <ISBN>0-596-00117-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>9</BookID>
 <Title>.Net Framework Essentials</Title>
 <ISBN>0-596-00165-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
 <Book>
 <BookID>10</BookID>
 <Title>COM and .Net Component Services</Title>
 <ISBN>0-596-00103-7</ISBN>
 <Publisher>O'Reilly</Publisher>
 </Book>
</Root>

Example 21-9. XSLT used to transform HTML

<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

 <!-- output main table with header row -->
 <xsl:template match="Root">
 <table width="80%" border="1" cellspacing="0" cellpadding="4" align="center">
 <tr class="tableHeader" bgcolor="#000080">
 <td width="50%" align="center" >Title</td>
 <td width="25%" align="center" >ISBN</td>
 <td width="25%" align="center" >Publisher</td>
 </tr>
 <xsl:apply-templates select="Book" />
 </table>
 </xsl:template>

 <!-- output a row in the table for each Book node in the XML document -->
 <xsl:template match="Book" >
 <tr class="tableCellNormal" bgcolor="#FFFFE0">
 <td width="50%"><xsl:value-of select="Title"/></td>
 <td width="25%" align="center"><xsl:value-of select="ISBN" /></td>
 <td width="25%" align="center"><xsl:value-of select="Publisher" /></td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

Recipe 21.5. Determining the User's Browser Type

Problem

Your application requires the use of a specific browser and you want to determine if the required
browser is being used before allowing a user to access your application.

Solution

Use the properties of the Request.Browser object to determine the browser type and version, and
take the action required by your application.

In the code-behind class for the page, use the .NET language of your choice to:

Use the Browser property of the Request.Browser object to return a string representing the full
browser type, such as IE in the case of Internet Explorer.

1.

Use the Version property of the Request.Browser object to return a string that represents the
major and minor version of the browser, such as 6.0 in the case of IE 6.0.

2.

Take action accordingly, such as outputting a message indicating whether the user's browser is
compatible with the application.

3.

Examples 21-10, 21-11 through 21-12 show the .aspx file and the VB and C# code-behind files for an
application that demonstrates the solution. The output of our example program is shown in Figure
21-2.

Figure 21-2. Determining the user's browser

Discussion

With different browsers in use today and the significant variation in their capabilities, determining the
type of browser being used is common. Based on the browser, you may need to inform the user that
the browser is incompatible with your application or output different HTML to support the specific
browser.

Our example demonstrates the functionality provided in ASP.NET to determine the browser type and
version, and then outputs this information along with a message indicating if the user's browser is
compatible with the application. The .aspx file contains two asp:Literal controls used to output
messages to the user. The first outputs the browser version information, and the second informs the
user if his browser is compatible with the application.

In the Page_Load method of the code-behind, the Browser and Version properties of the
Request.Browser object are used to create a message to inform the user of the detected browser
version. The Browser property returns a string such as IE, Firefox, or Opera. The Version property
returns a string that represents the major and minor version of the browser. For Internet Explorer
6.0, for instance, the Browser property will return IE, and the Version property will return 6.0.

Next, the browser type and major version number are compared to the minimum requirements for
the application (IE and Version 5). If the browser is IE 5.0 or later, a message is displayed indicating
the browser is compatible with the application. Otherwise, a message is displayed indicating the
application requires IE 5.0 or later.

For your application, you might want to check the browser version on the home page. If the browser
is compatible with your application, output the home page normally. Otherwise, redirect the user to a
message page indicating the browser requirements.

The Request.Browser object contains many properties that are not used in this example but may be
useful in your application. Table 21-1 lists some of the commonly used properties. For a complete list
of the available properties, refer to the documentation on the HttpBrowserCapabilities class in the
MSDN Library.

Table 21-1. Commonly used browser object properties

Property Description

Browser Returns a string indicating the browser type (IE, Firefox, Opera, etc.)

Cookies Returns a Boolean value indicating if the browser supports cookies

JavaScript Returns a Boolean value indicating if the browser supports JavaScript

MajorVersion
Returns an integer value indicating the major version of the browser (integer portion
of the browser version)

MinorVersion
Returns a double value indicating the minor version of the browser (decimal portion
of the browser version)

Version Returns a string representing the full browser version (integer and decimal portion)

Properties that return Boolean values, such as Cookies and JavaScript, indicate
what the browser is capable of supporting but not necessarily the current
configuration. If the browser supports cookies but the user has configured the
browser to disable cookies, the Cookies property will still return true.

See Also

HttpBrowserCapabilities documentation in the MSDN Library

Example 21-10. Determining the user browser type (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH21DeterminingBrowserVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH21DeterminingBrowserVB"
 Title="Determining Browser" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Determining User Browser (VB)
 </div>

 <table width="90%" align="center" border="0">
 <tr>
 <td align="center" class="labelText">
 <asp:Literal ID="litBrowser" Runat="server" />

 <asp:Literal ID="litMessage" Runat="server" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 21-11. Determining the user browser type code-behind (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH21DeterminingBrowserVB.aspx
 ''' </summary>
 Partial Class CH21DeterminingBrowserVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 'output user browser
 litBrowser.Text = "Your browser is " & _
 Request.Browser.Browser & " " & _
 Request.Browser.Version

 'check to see if it is an acceptable version
 If ((Request.Browser.Browser.Equals("IE")) AndAlso _
 (Request.Browser.MajorVersion >= 5)) Then
 'output message indicating it is OK
 litMessage.Text = "It is compatible with this application."
 Else
 'output message indicating IE 5 or later must be used
 litMessage.Text = "This application requires IE 5.0 or later."
 End If
 End Sub 'Page_Load
 End Class 'CH21DeterminingBrowserVB
End Namespace

Example 21-12. Determining the user browser type code-behind (.cs)

using System;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH21DeterminingBrowserCS.aspx
 /// </summary>
 public partial class CH21DeterminingBrowserCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///

 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 // output user browser
 litBrowser.Text = "Your browser is " +
 Request.Browser.Browser + " " +
 Request.Browser.Version;

 // check to see if it is an acceptable version
 if ((Request.Browser.Browser.Equals("IE")) &
 (Request.Browser.MajorVersion >= 5))

 {
 // output message indicating it is OK
 litMessage.Text = "It is compatible with this application.";
 }
 else
 {
 // output message indicating IE 5 or later must be used
 litMessage.Text = "This application requires IE 5.0 or later.";
 }
 } // Page_Load
 } // CH21DeterminingBrowserCS
}

Recipe 21.6. Dynamically Creating Browser-Specific
Stylesheets

Problem

You need to vary the look and feel of your application pages depending on the platform (Mac or
Windows) being used.

Solution

Place an asp:Literal control in the head section of the .aspx file, and then set the text property of
the control to an HTML style element created programmatically in the code-behind. Use the
properties of the Request.Browser object to determine the platform type and control the generation of
the style element.

In the .aspx file, place an asp:Literal control in the head section.

In the code-behind class for the page, use the .NET language of your choice to:

Use the Platform property of the Request.Browser object to obtain the browser's platform.1.

Check the platform string for the presence of the substring, such as "mac", which indicates
whether the browser is running on a Mac platform.

2.

Based on the platform, programmatically create the HTML style element.3.

Set the Text property of the asp:Literal control in the head section of the .aspx file to the
created HTML style elements.

4.

The .aspx file used for this example is shown in Example 21-13. The code-behind is shown in
Examples 21-14 (VB) and 21-15 (C#).

Discussion

HTML is not always rendered the same. Different browsers and platforms render the HTML in various
ways. This sometimes requires using a different stylesheet as a function of the browser or platform
the browser is running on (Windows, Mac, etc.) to get the same visual effect. Refer to the Platform
property of the HttpBrowserCapabilities class in the MSDN Library for a complete list of platforms
detected.

For instance, the displayed size of a font of a given point size is larger on the Windows platform than
on the Mac platform. This is caused by the difference in screen resolution. The Mac platform uses a
display resolution of 72 dots/inch (DPI), resulting in 1 point being equivalent to 1 pixel. The Windows
platform uses a display resolution of 96 DPI, resulting in 1 point being equivalent to 1 1/3 pixels. To
display a font the same size on both platforms, the point size must change as a function of the
platform.

Our example programmatically generates a different stylesheet depending on whether the browser is
running on a Windows or a Mac platform. It creates a stylesheet in the HTML that has four classes
defined for a small, regular, large, and extra-large font. This technique is not new to ASP.NET, but
the method of generating the stylesheet dynamically is much easier. Figure 21-3 shows the output of
our example on a PC platform. Figure 21-4 shows the output on a Mac platform without generating a
stylesheet specific to the Mac (the fonts are smaller than the ones in Figure 21-3). Figure 21-5 shows
the output on a Mac platform using a specific stylesheet (the fonts are the same size as the ones in
Figure 21-3).

Figure 21-3. Example program output for PC platform

Figure 21-4. Example program output for Mac platform without specific
stylesheet

Figure 21-5. Example program output for Mac platform with specific
stylesheet

Server controls can be placed almost anywhere in an .aspx file and are not restricted to the body
section of the page. In our example, an asp:Literal control is placed in the head section of the .aspx
file to provide a mechanism to output a stylesheet in the HTML sent to the browser.

 <head>
 <title>Dynamically Generating Stylesheet</title>
 <link rel="Stylesheet" href="css/ASPNetCookbook.css" />
 <asp:Literal id="litStylesheet" runat="server" />
 </head>

Any control that returns data when a form is submitted must be within the open
and close form elements.

In the Page_Load method of the code-behind, the platform the browser is running on is obtained from
the Platform property of the Request.Browser object. The platform name is converted to lowercase to
simplify the check for the specific platform.

The platform string is checked for the presence of the substring mac, which indicates the browser is
running on a Mac platform.

After determining the platform, four variables are set to indicate the point size to use for the small,
regular, large, and extra-large fonts.

Next, a StringBuilder is used to create the HTML style element. The style element includes a class
for smallFont, regFont, largeFont, and xLargeFont. Each class contains a font-family style along
with a font-size style. The font size is set using the variables described earlier.

Finally, the Text property of the asp:Literal control placed in the head section of the .aspx file is set
to the style element.

Here is the resulting style element rendered in the HTML for the Windows platform:

 <style type='text/css'>
 .smallFont
 {font-family: Verdana, Arial, Helvetica, sans-serif; font-size:8pt; }
 .regFont
 {font-family: Verdana, Arial, Helvetica, sans-serif; font-size:10pt; }
 .largeFont
 {font-family: Verdana, Arial, Helvetica, sans-serif; font-size:14pt; }
 .xLargeFont
 {font-family: Verdana, Arial, Helvetica, sans-serif; font-size:18pt; }
 </style>

Here is the resulting style element rendered in HTML for the Mac platform:

 <style type='text/css'>
 .smallFont
 {font-family: Verdana, Arial, Helvetica, sans-serif; font-size:11pt; }
 .regFont
 {font-family: Verdana, Arial, Helvetica, sans-serif; font-size:13pt; }
 .largeFont
 {font-family: Verdana, Arial, Helvetica, sans-serif; font-size:19pt; }
 .xLargeFont
 {font-family: Verdana, Arial, Helvetica, sans-serif; font-size:24pt; }
 </style>

The classes in the stylesheet can be used like any other class that is hardcoded in the HTML or
provided in a cascading stylesheet (CSS):

 <table width="90%" align="center" border="0">
 <tr>
 <td align="center" class="smallFont">
 This is the small font.
 </td>
 </tr>
 <tr>
 <td align="center" class="regFont">
 This is the regular font.
 </td>
 </tr>
 <tr>
 <td align="center" class="largeFont">

 This is the large font.
 </td>

 </tr>
 <tr>
 <td align="center" class="xLargeFont">
 This is the extra large font.
 </td>
 </tr>
 </table>

The solution provided in this recipe can be placed in a user control, giving you the ability to reuse the
code in all pages of your application. Refer to Chapter 5 for examples of user controls.

An alternate solution to generating the stylesheet programmatically would be to place a link element
in the head section and set the href attribute to a different prebuilt cascading stylesheet as a
function of the browser and/or platform. This approach will yield better performance because the
stylesheet would not be built for each page request.

To implement the alternate solution, place the following link element in the head section of the .aspx
file. Add the / at the end to close the element or an exception will be thrown when ASP.NET parses
the page.

 <link id="linkCSS" runat="server" rel="stylesheet" />

In the Page_Load method of the code-behind, add the href attribute to the linkCSS control setting the
value to the required cascading stylesheet. The href attribute must be added using the Add method
of the Attributes collection because the generic HTML server control does not have an href property.

 check the users platform
 platform = Request.Browser.Platform.ToLower()

 'set font sizes as a function of the platform
 If (platform.IndexOf("mac") > -1) Then
 'platform is a Mac so add Mac CSS
 linkCSS.Attributes.Add("href", _
 "css/Mac.css")
 Else
 'since not a Mac, assume Windows and add Windows CSS
 '(production app may want to do additional checks if
 'required for styles)
 linkCSS.Attributes.Add("href", _
 "css/Windows.css")
 End If

 string platform = null;

 // check the users platform
 platform = Request.Browser.Platform.ToLower();

 // set font sizes as a function of the platform
 if (platform.IndexOf("mac") > -1)
 {

 // platform is a Mac so add Mac CSS
 linkCSS.Attributes.Add("href",
 "css/Mac.css");
 }
 else
 {
 // since not a Mac, assume Windows and add Windows CSS
 // (production app may want to do additional checks if
 // required for styles)
 linkCSS.Attributes.Add("href",
 "css/Windows.css");
 }

The resulting link element for the Windows platform is shown next. An href attribute has been
added to the rendered HTML, with the value set to the required cascading stylesheet:

 <link id="linkCSS" rel="stylesheet" href="Windows.css"></link>

The code for this alternate example can be placed in a user control to provide easy reuse in all of the
pages in your application. Refer to Chapter 5 for examples of user controls.

See Also

Chapter 5 for user control examples; MSDN Library for more information on the
HttpBrowserCapabilities class and Platform property values

Example 21-13. Dynamically generated stylesheet (.aspx)

<%@ Page Language="VB"
 AutoEventWireup="false"
 CodeFile="CH21DynamicallyGeneratingStyleSheetVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH21DynamicallyGeneratingStyleSheetVB" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head>
 <title>Dynamically Generating Stylesheet</title>
 <link rel="Stylesheet" href="css/ASPNetCookbook.css" />
 <asp:Literal id="litStylesheet" runat="server" />
</head>
<body>
 <form id="form1" runat="server">
 <div align="center" class="header">

 </div>
 <div align="center" class="pageHeading">
 Dynamically Generating A Stylesheet (VB)
 </div>

 <table width="90%" align="center" border="0">
 <tr>

 <td align="center" class="smallFont">
 This is the small font.
 </td>
 </tr>
 <tr>
 <td align="center" class="regFont">
 This is the regular font.
 </td>
 </tr>
 <tr>
 <td align="center" class="largeFont">
 This is the large font.
 </td>
 </tr>
 <tr>
 <td align="center" class="xLargeFont">
 This is the extra large font.
 </td>
 </tr>
 </table>
 </form>
</body>
</html>

Example 21-14. Dynamically generated stylesheet code-behind (.vb)

Option Explicit On
Option Strict On

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH21DynamicallyGeneratingStyleSheetVB.aspx
 ''' </summary>
 Partial Class CH21DynamicallyGeneratingStyleSheetVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load
 Const FONT_FAMILY As String = _
 "font-family: Verdana, Arial, Helvetica, sans-serif;"

 Dim platform As String
 Dim smFontSize As String
 Dim regFontSize As String
 Dim largeFontSize As String

 Dim xLargeFontSize As String
 Dim styleTag As StringBuilder

 'check the users platform
 platform = Request.Browser.Platform.ToLower()

 'set font sizes as a function of the platform
 If (platform.IndexOf("mac") > -1) Then
 'platform is a Mac
 smFontSize = "11"
 regFontSize = "13"
 largeFontSize = "19"
 xLargeFontSize = "24"
 Else
 'since not a Mac, assume Windows (production app may want to
 'do additional checks if required for styles)
 smFontSize = "8"
 regFontSize = "10"
 largeFontSize = "14"
 xLargeFontSize = "18"

 End If

 'create style tag
 styleTag = New StringBuilder("<style type='text/css'>" & _
 Environment.NewLine)

 'output the smallFont class
 styleTag.Append(".smallFont {" & FONT_FAMILY & _
 " font-size:" & smFontSize & "pt;}" & _
 Environment.NewLine)

 'output the regFont class
 styleTag.Append(".regFont {" & FONT_FAMILY & _
 " font-size:" & regFontSize & "pt;}" & _
 Environment.NewLine)

 'output the largeFont class
 styleTag.Append(".largeFont {" & FONT_FAMILY & _
 " font-size:" & largeFontSize & "pt;}" & _
 Environment.NewLine)

 'output the xLargeFont class
 styleTag.Append(".xLargeFont {" & FONT_FAMILY & _
 " font-size:" & xLargeFontSize & "pt;}" & _
 Environment.NewLine)

 'close the style tag
 styleTag.Append("</style>" & Environment.NewLine)

 'set literal in Head section to output style sheet
 litStylesheet.Text = styleTag.ToString()
End Sub 'Page_Load

 End Class 'CH21DynamicallyGeneratingStyleSheetVB
End Namespace

Example 21-15. Dynamically generated stylesheet code-behind (.cs)

using System;
using System.Text;

namespace ASPNetCookbook.CSExamples
{
 /// <summary>
 /// This class provides the code-behind for
 /// CH21DynamicallyGeneratingStyleSheetCS.aspx
 /// </summary>

 public partial class CH21DynamicallyGeneratingStyleSheetCS :
 System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 const string FONT_FAMILY =
 "font-family: Verdana, Arial, Helvetica, sans-serif;";

 string platform = null;
 string smFontSize = null;
 string regFontSize = null;
 string largeFontSize = null;
 string xLargeFontSize = null;
 StringBuilder styleTag = null;

 // check the users platform
 platform = Request.Browser.Platform.ToLower();

 // set font sizes as a function of the platform
 if (platform.IndexOf("mac") > -1)
 {
 // platform is a Mac
 smFontSize = "11";
 regFontSize = "13";
 largeFontSize = "19";
 xLargeFontSize = "24";
 }
 else
 {

 // since not a Mac, assume Windows (production app may want to
 // do additional checks if required for styles)
 smFontSize = "8";
 regFontSize = "10";
 largeFontSize = "14";
 xLargeFontSize = "18";
 }

 // create style tag
 styleTag = new StringBuilder("<style type='text/css'>" +
 Environment.NewLine);

 // output the smallFont class
 styleTag.Append(".smallFont {" + FONT_FAMILY +

 " font-size:" + smFontSize + "pt;}" +
 Environment.NewLine);

 // output the regFont class
 styleTag.Append(".regFont {" + FONT_FAMILY +
 " font-size:" + regFontSize + "pt;}" +
 Environment.NewLine);

 // output the largeFont class
 styleTag.Append(".largeFont {" + FONT_FAMILY +
 " font-size:" + largeFontSize + "pt;}" +
 Environment.NewLine);

 // output the xLargeFont class
 styleTag.Append(".xLargeFont {" + FONT_FAMILY +
 " font-size:" + xLargeFontSize + "pt;}" +
 Environment.NewLine);

 // close the style tag
 styleTag.Append("</style>" + Environment.NewLine);

 // set literal in Head section to output style sheet
 litStylesheet.Text = styleTag.ToString();
 } // Page_Load
 } // CH21DynamicallyGeneratingStyleSheetCS
}

Recipe 21.7. Saving and Reusing HTML Output

Problem

To improve the performance of pages that rarely change, you want to capture the output of those
pages and save it for reuse when those pages are requested.

Solution

Create the page that contains the desired content as you would any other page, including the server
controls you need. At the end of the Page_Load method, use the RenderControl method of the Page
control to generate the HTML, and save the HTML to a file.

In the code-behind class for the page, use the .NET language of your choice to:

Create an HtmlTextWriter to use for rendering the page.1.

Use the RenderControl method of the Page control to render the output of the page to the
HtmlTextWriter.

2.

Save the rendered output to a file and redirect to another page.3.

Examples 21-16 and 21-17 show the VB and C# code-behind files for our application that
demonstrates this solution.

Discussion

Occasionally, it's beneficial to save the HTML output from a generated page. This is commonly done
when using the saved HTML can significantly improve web site performance. If the content of a page
is static, for example, there is no point in dynamically generating HTML each time the page is
requested. Until the advent of ASP.NET, the only way to save the HTML was to use the "Save as
Complete Web Page" feature of Internet Explorer or another browser. Though this method does save
the HTML, it copies all of the page images to the local machine and changes the image references to
point to the local copies. If you are trying to improve performance by capturing a static copy of the
page to use on your web server, this technique will work poorly.

With ASP.NET, you can easily capture the HTML exactly as it would be sent to the browser. For our
example that illustrates this solution, we have used the page from Recipe 21.3 and added code to the
Page_Load method to save the rendered output.

The RenderControl method of the Page control provides the ability to render the output of the page to

the HtmlTextWriter passed to the method. Unfortunately, the HtmlTextWriter does not provide any
methods for reading the contents, so a little more work is required to access the rendered HTML.

By creating a StringBuilder and then using it to create a StringWriter, which is used to create the
required HtmlTextWriter, the contents of the HtmlTextWriter are available by way of the original
StringBuilder. This works because the underlying storage mechanism for the StringWriter is a
StringBuilder, and because the StringWriter (a stream) is used to create the HtmlTextWriter, the
RenderControl method is writing the rendered output to the StringBuilder. Here is our example code
to accomplish this:

 renderedOutput = New StringBuilder()
 strWriter = New StringWriter(renderedOutput)
 tWriter = New HtmlTextWriter(strWriter)

 renderedOutput = new StringBuilder();
 strWriter = new StringWriter(renderedOutput);
 tWriter = new HtmlTextWriter(strWriter);

After creating the HtmlTextWriter, the RenderControl method of the Page is called to render the
HTML for the page:

 Page.RenderControl(tWriter)

 Page.RenderControl(tWriter);

Now that the rendered HTML is available, it needs to be saved to a file on the server. This can be
accomplished by creating the file with a FileStream and using a StreamWriter to write the rendered
output in the StringBuilder to the file:

 filename = Server.MapPath(".") & "\" & OUTPUT_FILENAME
 outputStream = New FileStream(filename, _
 FileMode.Create)
 sWriter = New StreamWriter(outputStream)
 sWriter.Write(renderedOutput.ToString())
 sWriter.Flush()

 filename = Server.MapPath(".") + "\\" + OUTPUT_FILENAME;
 outputStream = new FileStream(filename,
 FileMode.Create);

 sWriter = new StreamWriter(outputStream);
 sWriter.Write(renderedOutput.ToString());
 sWriter.Flush();

The last step is to redirect to another page. This is necessary because allowing the page to be
displayed would result in an additional rendering and an exception being thrown indicating the page
has more than one server-side form element. If you need the page to be displayable anyway, a
parameter can be passed in the querystring and checked in the code to determine if the output
should be rendered and written to a file or handled normally.

This technique can be used for individual controls in the same manner as for the entire page. For
example, if you have a page that contains a DataGrid and you want the rendered HTML for just the
DataGrid, you can call the RenderControl method of the DataGrid and then save the output, as
described earlier.

See Also

Recipe 21.3

Example 21-16. Capturing rendered output (.vb)

Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 Const OUTPUT_FILENAME As String = "CH21CaptureRenderedOutputVB.html"

 Dim renderedOutput As StringBuilder
 Dim strWriter As StringWriter

 Dim tWriter As HtmlTextWriter
 Dim outputStream As FileStream = Nothing
 Dim sWriter As StreamWriter = Nothing
 Dim filename As String
 Dim nextPage As String

 Try
 'set the names of the XML and XSLT documents used in the
 'transformation
 xmlTransform.DocumentSource = "xml/books.xml"
 xmlTransform.TransformSource = "xml/books.xslt"

 'create a HtmlTextWriter to use for rendering the page
 renderedOutput = New StringBuilder
 strWriter = New StringWriter(renderedOutput)
 tWriter = New HtmlTextWriter(strWriter)

 'render the page output
 Page.RenderControl(tWriter)

 'save the rendered output to a file
 filename = Server.MapPath(".") & "\" & OUTPUT_FILENAME
 outputStream = New FileStream(filename, _
 FileMode.Create)
 sWriter = New StreamWriter(outputStream)
 sWriter.Write(renderedOutput.ToString())
 sWriter.Flush()

 'redirect to another page
 'NOTE: Continuing with the display of this page will result in the
 ' page being rendered a second time which will cause an exception
 ' to be thrown
 nextPage = "DisplayMessage.aspx?" & _
 "PageHeader=Information" & "&" & _
 "Message1=HTML Output Saved To " & OUTPUT_FILENAME
 Response.Redirect(nextPage)

 Finally
 'clean up
 If (Not IsNothing(outputStream)) Then
 outputStream.Close()
 End If

 If (Not IsNothing(tWriter)) Then
 tWriter.Close()
 End If

 If (Not IsNothing(strWriter)) Then
 strWriter.Close()
 End If
 End Try
End Sub 'Page_Load

Example 21-17. Capturing rendered output (.cs)

protected void Page_Load(object sender, EventArgs e)
{
 const string OUTPUT_FILENAME = "CH21CaptureRenderedOutputCS.html";

 StringBuilder renderedOutput = null;
 StringWriter strWriter = null;
 HtmlTextWriter tWriter = null;
 FileStream outputStream = null;
 StreamWriter sWriter = null;

 String filename = null;
 String nextPage = null;

 try
 {
 // set the names of the XML and XSLT documents used in the
 // transformation
 xmlTransform.DocumentSource = "xml//books.xml";
 xmlTransform.TransformSource = "xml//books.xslt";

 // create a HtmlTextWriter to use for rendering the page
 renderedOutput = new StringBuilder();
 strWriter = new StringWriter(renderedOutput);
 tWriter = new HtmlTextWriter(strWriter);

 // render the page output
 Page.RenderControl(tWriter);

 // save the rendered output to a file
 filename = Server.MapPath(".") + "\\" + OUTPUT_FILENAME;
 outputStream = new FileStream(filename,
 FileMode.Create);
 sWriter = new StreamWriter(outputStream);
 sWriter.Write(renderedOutput.ToString());
 sWriter.Flush();

 // redirect to another page
 // NOTE: Continuing with the display of this page will result in the
 // page being rendered a second time which will cause an exception
 // to be thrown
 nextPage = "DisplayMessage.aspx?" +
 "PageHeader=Information" + "&" +
 "Message1=HTML Output Saved To " + OUTPUT_FILENAME;
 Response.Redirect(nextPage);
 }

 finally
 {

 // clean up
 if (outputStream != null)
 {
 outputStream.Close();
 }

 if (tWriter != null)
 {
 tWriter.Close();
 }

 if (strWriter != null)
 {

 strWriter.Close();
 }
 }
} // Page_Load

Recipe 21.8. Sending Mail

Problem

You want the user of your application to be able to send email.

Solution

Create a form to allow the user to enter the email information. When the user submits the form to
the server, build a MailMessage object from the email information and then send the email using the
SmtpClient class.

In the .aspx file:

Create a form to capture the sender's email address, the recipient's email address, the subject,
and the message.

1.

Add a Send button that initiates the sending of the email.2.

In the code-behind class for the page, use the .NET language of your choice to:

Create a MailMessage object, which is used as a container for the mail message, setting the
sender email address, recipient email address, subject, and body using the constructor
parameters.

1.

Create a SmtpClient object setting the email server using the constructor parameter.2.

Call the Send method to perform the send operation.3.

Examples 21-18 , 21-19 through 21-20 show the .aspx file and the VB and C# code-behind files for
an application we've written to demonstrate this solution. The output of the application is shown in
Figure 21-6 .

Discussion

Sending email is a common requirement in web applications. In classic ASP, third-party controls are
required to send email. In ASP.NET, all of the functionality required to send email is provided and is
very easy to use.

Figure 21-6. Send email form output

To send email, you need the sender's email address, the recipient's email address, the subject, and
the message. In our example that illustrates this solution, a form is used to collect the information.
The form includes a Send button that initiates the sending of the email.

When the Send button is clicked, the btnSend_ServerClick method in the code-behind is executed.
This method is responsible for collecting the information from the form and sending the email. For
simplicity, no validation is performed on the data in our example; however, you should provide
validation of the data in your application. Refer to Chapter 3 for data validation examples.

The first step in sending an email is to create a MailMessage object. This object is used as a container
for the mail message, as shown in our example. The sender email address, recipient email address,
subject, and message body are set using the constructor parameters.

The sender email address, recipient email address, and subject should always
be set to valid values. Spam filters typically check these fields, and, if any are
blank, the mail message may be branded as spam. In addition, some spam
filters check the format of the recipient email address, and the more thorough
spam filters will verify if the sender email address is valid.

After the MailMessage is initialized, a SmtpClient object is created setting the email server that will
send the email message using the constructor parameter and the Send method will be called to
perform the send operation.

In Version 2.0 of the .NET Framework, a new namespace (System.Net.Mail)
has been added to provide support for sending email. The classes provided in
System.Web.Mail in Version 1.x have been deprecated and should not be used
for new applications. They are still provided to support applications developed
for 1.x, though.

Our example shows the case of an email sent to a single recipient. To send the email to multiple
recipients, add the recipient email addresses to the To collection property.

Copies and blind copies can be sent by adding the email address of the copied recipients to the CC
collection property and the email address of the blind copy recipient to the Bcc collection property.

Attachments can be included with the email by adding MailAttachment objects to the Attachments
collection, as shown here, where [filename] is the fully qualified path to the file that you need to

attach to the mail message:

 emailMessage.Attachments.Add(New Attachment([filename]))

 emailMessage.Attachments.Add(new Attachment([filename]));

See Also

Chapter 3 for data validation

Example 21-18. Sending email (.aspx)

<%@ Page Language="VB" MasterPageFile="~/ASPNetCookbookVB.master"
 AutoEventWireup="false"
 CodeFile="CH21SendingEmailVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH21SendingEmailVB"
 Title="Sending Email" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Sending Email (VB)
 </div>
 <table width="60%" align="center" border="0">
 <tr>
 <td width="50%" align="right" class="labelText">Sender Email: </td>
 <td width="50%">
 <input id="txtSenderEmail" runat="server" />
 </td>
 </tr>
 <tr>
 <td width="50%" align="right" class="labelText">Recipient Email: </td>
 <td width="50%">
 <input id="txtRecipientEmail" runat="server" />
 </td>
 </tr>
 <tr>
 <td width="50%" align="right" class="labelText">Subject: </td>

 <td width="50%">
 <input id="txtSubject" runat="server" />
 </td>
 </tr>
 <tr>
 <td width="50%" align="right" class="labelText">Message: </td>
 <td width="50%">
 <textarea id="txtMessage" runat="server" rows="4" cols="20"></textarea>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="center">

 <input id="btnSend" runat="server"
 type="button"
 value="Send"
 onserverclick="btnSend_ServerClick" />
 </td>
 </tr>
 </table>
</asp:Content>

Example 21-19. Sending email code-behind (.vb)

Option Explicit On
Option Strict On

Imports System
Imports System.Net.Mail

Namespace ASPNetCookbook.VBExamples
 ''' <summary>
 ''' This class provides the code-behind for
 ''' CH21SendingEmailVB.aspx
 ''' </summary>
 Partial Class CH21SendingEmailVB
 Inherits System.Web.UI.Page
 '''***
 ''' <summary>
 ''' This routine provides the event handler for the page load event. It
 ''' is responsible for initializing the controls on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Private Sub Page_Load(ByVal sender As Object, _
 ByVal e As System.EventArgs) Handles Me.Load

 End Sub 'Page_Load

 '''***
 ''' <summary>
 ''' This routine provides the event handler for the send button click

 ''' event. It is responsible for sending an email based on the data
 ''' entered on the page.
 ''' </summary>
 '''
 ''' <param name="sender">Set to the sender of the event</param>
 ''' <param name="e">Set to the event arguments</param>
 Protected Sub btnSend_ServerClick(ByVal sender As Object, _
 ByVal e As System.EventArgs)
 Dim emailMessage As MailMessage
 Dim emailAttachement As Attachment
 Dim filename As String
 Dim client As SmtpClient
 Dim emailServer As String

 'build the mail message with an attachment
 emailMessage = New MailMessage(txtSenderEmail.Value, _
 txtRecipientEmail.Value, _
 txtSubject.Value, _
 txtMessage.Value)

 'add an attachment
 filename = Server.MapPath("downloads") & "\SampleEmailAttachment.txt"
 emailAttachement = New Attachment(filename)
 emailMessage.Attachments.Add(emailAttachement)

 'get the email server and send the email
 emailServer = ConfigurationManager.AppSettings("EmailServer")
 client = New SmtpClient(emailServer)
 client.Send(emailMessage)
 End Sub 'btnSend_ServerClick
 End Class 'CH21SendingEmailVB
End Namespace

Example 21-20. Sending email code-behind (.cs)

using System;
using System.Configuration;
using System.Net.Mail;

namespace ASPNetCookbook.CSExamples
{

 /// <summary>
 /// This class provides the code-behind for
 /// CH21SendingEmailCS.aspx
 /// </summary>
 public partial class CH21SendingEmailCS : System.Web.UI.Page
 {
 ///***
 /// <summary>
 /// This routine provides the event handler for the page load event.
 /// It is responsible for initializing the controls on the page.
 /// </summary>
 ///

 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void Page_Load(object sender, EventArgs e)
 {
 } // Page_Load

 ///***
 /// <summary>
 /// This routine provides the event handler for the send button click
 /// event. It is responsible for sending an email based on the data
 /// entered on the page.
 /// </summary>
 ///
 /// <param name="sender">Set to the sender of the event</param>
 /// <param name="e">Set to the event arguments</param>
 protected void btnSend_ServerClick(Object sender,
 System.EventArgs e)
 {
 MailMessage emailMessage;
 Attachment emailAttachement;
 String filename;
 SmtpClient client;
 String emailServer;

 // build the mail message with an attachment
 emailMessage = new MailMessage(txtSenderEmail.Value,
 txtRecipientEmail.Value,
 txtSubject.Value,
 txtMessage.Value);

 // add an attachment
 filename = Server.MapPath("downloads") + "\\SampleEmailAttachment.txt";
 emailAttachement = new Attachment(filename);
 emailMessage.Attachments.Add(emailAttachement);

 // get the email server and send the email
 emailServer = ConfigurationManager.AppSettings["EmailServer"];
 client = new SmtpClient(emailServer);
 client.Send(emailMessage);

 } //btnSend_ServerClick
 } // CH21SendingEmailCS
}

Recipe 21.9. Dynamic Menus

Problem

You want to use a dynamic menu in your application to provide a compact means for a user to
navigate within your application, and you want to accomplish this without using a third-party control.

Solution

Create a Web.sitemap file to define the pages and navigation in your application. Create a .master
file containing a SiteMapDataSource control and a Menu control with the DataSourceID set to the ID of
the SiteMapDataSource control and other HTML common to all pages in your application. Use the
.master file as the master page for all pages in your application that require the dynamic menu.

In the Web.sitemap file:

Add a siteMapNode element for each section of your application.1.

Add a siteMapNode element for each page in the sections.2.

In the .master file:

Add a SiteMapDataSource control.1.

Add a Menu control.2.

Set the DataSourceID attribute of the Menu control to the value of the ID attribute of the
SiteMapDataSource control.

3.

In the .aspx files that require the dynamic menu, set the MasterPageFile attribute of the @ Page
directive to the name of the .master file.

Example 21-21 shows the Web.sitemap file, Example 21-22 shows the .master file, and Example 21-
23 shows the .aspx file for this example. Figure 21-7 shows the output of the test page with the
dynamic menu in the static state. Figure 21-8 shows the output with the dynamic menu expanded.

Figure 21-7. Dynamic menu in static state

Discussion

Dynamic menus are common in applications. They provide an excellent means of navigating complex
applications while minimizing the page real estate that must be dedicated to the menu. In ASP.NET
1.x, no support for dynamic menus was provided. You had to use a third-party control or take on the
daunting task of creating your own using JavaScript and DHTML. ASP.NET 2.0 provides a site
navigation infrastructure that can be used to create dynamic menus, as well as breadcrumb trails
(see Recipe 21.9), without writing any code.

Figure 21-8. Dynamic menu expanded

The first step to creating a dynamic menu is to create a Web.sitemap file. The Web.sitemap file is an
XML file that provides the definition of the page structure of your application and the navigation to
the pages within your application. The file consists of a hierarchical structure of siteMapNode elements

that define the levels for the dynamic menu:

 <?xml version="1.0" encoding="utf-8" ?>
 <siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode>
 <siteMapNode title="Online Examples"
 description="Run the examples on-line">
 <siteMapNode title="1. Master Pages"
 description="Master Page Recipes">
 <siteMapNode url="CH01QuickContentPageVB.aspx"
 title="Quick Master Page"
 description="Quick Master Page" />
 <siteMapNode url="CH01NestedMasterContentPageVB.aspx"
 title="Nested Master Pages"
 description="Nested Master Pages" />
 <siteMapNode url="CH01SetMasterPageAtRuntimeVB.aspx"
 title="Set Master Page At Runtime"
 description="Set Master Page At Runtime" />
 </siteMapNode>

 …

 </siteMapNode>
</siteMap>

The url attribute defines the URL of the page that will be displayed when the menu item is selected.
The title attribute provides the text that will be displayed in the menu and the description attribute
provides the text for the tool tip that will be displayed when the user hovers over the menu item.

The url attribute can be omitted for menu items that are used to group child
items but have no page associated with them.

The value of the url attribute must be unique for every siteMapNode element in
the Web.sitemap file. If the file contains duplicate urls , an exception will be
thrown the first time the file is read.

The next step is to create .master file with a SiteMapDataSource control and a Menu control with the
DataSourceID attribute of the Menu control set to the ID of the SiteMapDataSource control. By default,
the SiteMapDataSource uses the XmlSiteMapProvider supplied with ASP.NET 2.0 to provide a data
source that can be used by the Menu control to render the dynamic menu.

Dynamic menus are generally used on many pages within an application. To
support the reuse, place the menu in a user control or a master page.

The Menu control has many attributes that can be used to define the look and feel of the dynamic
menu. The menu can be displayed horizontally or vertically by setting the Orientation attribute to
the desired orientation. The number of menu levels displayed all of the time is controlled by the
StaticDisplayLevels attribute. Other attributes are available to define nearly every aspect of the
menu. Refer to the Menu control documentation in the MSDN Library for information on all of the
available attributes.

The Web.sitemap file requires a single siteMapNode element as a child of the
siteMap root element. To display a menu that has multiple items at the top
level, leave all attributes of the first siteMapNode element undefined and set the
StaticDisplayLevels attribute of the Menu control to 2 .

The final step is to use the .master file you created to display the dynamic menu throughout your
application. Refer to the recipes in Chapter 1 for more information on using master pages.

The site navigation infrastructure provides an excellent means to define the structure of your
application and the navigation within it. By using the Web.sitemap file, any changes to the navigation
can be made in a single place with no code changes or recompilation required. The site navigation
infrastructure can be used to generate the breadcrumb trail used in many applications to display the
current location within the application and to provide an easy way to navigate back to a previous
location. Refer to Recipe 21.9 for an example of using the infrastructure to display a breadcrumb trail.

See Also

Chapter 1 ; Recipe 21.9; the Menu control in the MSDN Library

Example 21-21. Web.sitemap file

<?xml version="1.0" encoding="utf-8" ?>
<siteMap xmlns="http://schemas.microsoft.com/AspNet/SiteMap-File-1.0" >
 <siteMapNode>
 <siteMapNode title="Online Examples"
 description="Run the examples on-line">
 <siteMapNode title="1. Master Pages"
 description="Master Page Recipes">
 <siteMapNode url="CH01QuickContentPageVB.aspx"
 title="Quick Master Page"
 description="Quick Master Page" />
 <siteMapNode url="CH01NestedMasterContentPageVB.aspx"
 title="Nested Master Pages"

 description="Nested Master Pages" /

 <siteMapNode url="CH01SetMasterPageAtRuntimeVB.aspx"
 title="Set Master Page At Runtime"
 description="Set Master Page At Runtime" />
 </siteMapNode>
 <siteMapNode title="2. Tabular Data"
 description="Tabular Data Recipes">
 <siteMapNode url="CH02QuickAndDirtyGridViewVB.aspx"
 title="Quick Tabular Display"
 description="Quick Tabular Display" />
 <siteMapNode url="CH02TemplatesWithRepeaterVB.aspx"
 title="Templates With Repeater"
 description="Templates With Repeater" />
 <siteMapNode url="CH02DatagridAscDescSortingVB.aspx"
 title="DataGrid With Sorting"
 description="DataGrid With Sorting" />
 <siteMapNode url="CH02GridViewWithTotalsRowVB.aspx"
 title="GridView With Totals Row"
 description="GridView With Totals Row" />
 </siteMapNode>
 <siteMapNode title="3. Validation"
 description="Validation Recipes">
 <siteMapNode url="CH03RequiredFieldValidationVB.aspx"
 title="Required Field Validation"
 description="Required Field Validation" />
 <siteMapNode url="CH03RangeValidationVB.aspx"
 title="Range Validation"
 description="Range Validation" />
 </siteMapNode>

 <siteMapNode title="4. Forms"
 description="Form Recipes">
 <siteMapNode url="CH04SettingDefaultSubmitButtonCS.aspx"
 title="Default Submit Button"
 description="Default Submit Button" />
 <siteMapNode url="CH04SurveyDataCS1.aspx"
 title="Using Wizard Control"
 description="Using Wizard Control" />
 <siteMapNode url="CH04SetFocusCS1.aspx"
 title="Setting Initial Focus"
 description="Setting Initial Focus" />
 </siteMapNode>
 <siteMapNode title="5. User Controls"
 description="User Control Recipes">
 <siteMapNode url="CH05DisplayHeaderCS.aspx"
 title="Page Header"
 description="Page Header" />
 <siteMapNode url="CH05UserControlCommTestCS.aspx"
 title="User Control Communication"
 description="User Control Communication" />
 </siteMapNode>
 <siteMapNode title="6. Custom Controls"
 description="Custom Control Recipes">

 <siteMapNode url="CH06DisplayQuickAndDirtyControlCS1.aspx"
 title="Quick and Dirty Custom Control"
 description="Quick and Dirty Custom Control" />
 <siteMapNode url="CH06DisplayControlWithStateCS1.aspx"
 title="Custom Control With State"
 description="Custom Control With State" />
 </siteMapNode>
 <siteMapNode title="7. Maintaining State"
 description="Maintaining State Recipes" />
 <siteMapNode title="8. Error Handling"
 description="Error Handling Recipes" />
 <siteMapNode title="9. Security"
 description="Security Recipes" />
 <siteMapNode title="10. Personalization"
 description="Personalization Recipes" />
 <siteMapNode title="11. Web Parts"
 description="Web Parts Recipes" />
 <siteMapNode title="12. Configuration"
 description="Configuration Recipes" />
 <siteMapNode title="13. Tracing and Debugging"
 description="Tracing and Debugging Recipes" />
 <siteMapNode title="13. Web Services"
 description="Web Services Recipes" />
 <siteMapNode title="14. Web Services"
 description="Web Services Recipes" />
 <siteMapNode title="15. Dynamic Images"
 description="Dynamic Image Recipes" />
 <siteMapNode title="16. Caching"
 description="Caching Recipes" />

 <siteMapNode title="17. Internationalization"
 description="Internationalization Recipes" />
 <siteMapNode title="18. File Operations"
 description="File Operation Recipes" />
 <siteMapNode title="19. Performance"
 description="Performance Recipes" />
 <siteMapNode title="20. Http Handlers"
 description="Http Handler Recipes" />
 <siteMapNode title="21. Assorted Tips"
 description="Assorted Tips Recipes">
 <siteMapNode url="CH21TestDynamicMenuVB.aspx"
 title="Dynamic Menus"
 description="Dynamic Menus" />
 <siteMapNode url="CH21TestBreadcrumbsVB.aspx"
 title="Dynamic Menus with Breadcrumbs"
 description="Dynamic Menus with Breadcrumbs" />
 </siteMapNode>
 </siteMapNode>
 <siteMapNode url="CodeDownload.aspx"
 title="Downloads"
 description="Download the code and database for the book">
 <siteMapNode url="ASPNetCookbook2VB.zip"

 title="VB Code"
 description="Download the VB.NET Code" />
 <siteMapNode url="ASPNetCookbook2CS.zip"
 title="C# Code"
 description="Download the C# Code" />
 <siteMapNode url="ASPNetCookbookDB.zip"
 title="Database"
 description="Download the database" />
 </siteMapNode>
 <siteMapNode url="Feedback.aspx"
 title="Feedback"
 description="Send us feedback on the book" />
 <siteMapNode url="Errata.aspx"
 title="Errata"
 description="Submit errata" />
 </siteMapNode>
</siteMap>

Example 21-22. Dynamic menu master page (.master)

<%@ Master Language="VB"
 AutoEventWireup="false" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">
 <title>Dynamic Menu Master Page</title>
 <link rel="Stylesheet" href="css/ASPNetCookbook.css" />
</head>
<body>

 <form id="form1" runat="server">
 <div class="headerBlue">
 <div class="headerLeftColumn">

 </div>
 <div class="headerRightColumn">
 <asp:SiteMapDataSource ID="menuSource" runat="server" />
 <asp:menu ID="Menu1" runat="server"
 DataSourceID="menuSource"
 Orientation="Horizontal"
 StaticDisplayLevels="2"
 BackColor="#f0f0f0"
 ForeColor="#6B0808"
 Font-Size="8pt"
 Font-Bold="true"
 StaticMenuItemStyle-HorizontalPadding="5"

 StaticMenuItemStyle-VerticalPadding="0"
 StaticHoverStyle-BackColor="#6B0808"
 StaticHoverStyle-ForeColor="#FFFFFF"
 DynamicMenuItemStyle-BackColor="#f0f0f0"
 DynamicMenuItemStyle-ForeColor="#0000A0"
 DynamicMenuItemStyle-BorderStyle="Solid"
 DynamicMenuItemStyle-BorderColor="#c0c0c0"
 DynamicMenuItemStyle-HorizontalPadding="5"
 DynamicMenuItemStyle-BorderWidth="1"
 DynamicHoverStyle-BackColor="#6B0808"
 DynamicHoverStyle-ForeColor="#FFFFFF"
 width="100%"
 Height="35" >
 </asp:menu>
 </div>
 </div>
 <div>
 <asp:ContentPlaceHolder ID="PageBody" Runat="server" >
 <div align="center">

 <h4>Default Content Displayed When No Content Is Provided
 In Content Pages</h4>
 </div>
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

Example 21-23. Test page for dynamic menu (.aspx)

<%@ Page Language="VB" MasterPageFile="~/CH21DynamicMenu.master"
 AutoEventWireup="false"
 CodeFile="CH21TestDynamicMenuVB.aspx.vb"
 Inherits="ASPNetCookbook.VBExamples.CH21TestDynamicMenuVB"

 title="Test Dynamic Menu" %>
<asp:Content ID="pageBody" runat="server" ContentPlaceHolderID="PageBody">
 <div align="center" class="pageHeading">
 Test Dynamic Menu (VB)
 </div>
</asp:Content>

Recipe 21.10. Adding Breadcrumbs

Problem

You want to use a dynamic menu in your application and display a breadcrumb trail to show the
current location within the application and to provide an easy way for the user to navigate back to a
previous location.

Solution

Implement the dynamic menu solution described in Recipe 21.8 and add a SiteMapPath control to the
.master file. Use the .master file as the master page for all pages in your application that require the
dynamic menu and the breadcrumb trail.

Example 21-24 shows the .master file used to display the dynamic menu and breadcrumb trail.
Figure 21-9 shows the output a sample page with the breadcrumb trail displayed.

Figure 21-9. Sample page with dynamic menu and breadcrumb trail

Discussion

To improve the user experience, applications commonly display a breadcrumb trail to show the
current location within the application and to provide an easy way to navigate back to a previous
location. The site navigation infrastructure provided in ASP.NET 2.0 can be used to display a
breadcrumb trail using the data in the Web.sitemap file that is also used to as the data source for
dynamic menus (see Recipe 21.8).

Once you have the site structure defined in the Web.sitemap file, as described in Recipe 21.8, all that
is required is to add a SiteMapPath control to the .master file that will be used as the master page for

your application pages that need to display a breadcrumb trail.

The SiteMapPath control uses the site map provider defined by the SiteMapProvider attribute. If the
SiteMapProvider attribute is not defined, the SiteMapPath control will use the default
SiteMapProvider, which by default is the XmlSiteMapProvider.

The SiteMapPath control displays a series of nodes that match the hierarchy defined in the
Web.sitemap file from the root SiteMapNode to the SiteMapNode used to define the currently displayed
page. All nodes from the root node to the current page node will be displayed in the breadcrumb trail.
By default, all nodes except the current node will be defined as hyperlinks to provide the ability to
navigate back up the hierarchy.

If a node in the Web.sitemap file does not have the url attribute defined, the
node text will be displayed in the breadcrumb trail but it will not be a hyperlink.

If you want the current node displayed as a hyperlink, you can set the RenderCurrentNodeAsLink
attribute to true.

If a page is displayed that does not have a SiteMapNode element in the
Web.sitemap file, the breadcrumb trail will not be displayed.

The SiteMapPath control provides many attributes that can be used to define the look and feel of the
rendered breadcrumb trail. In addition, it provides the ability to define templates to be used for the
root node (RootNodeTemplate), the current node (CurrentNodeTemplate), the nodes in between the
root and current node (NodeTemplate), and the separator used between the nodes
(PathSeparatorTemplate). The combination of the templates and attributes provides nearly unlimited
ways to display your breadcrumb trail.

The XmlSiteMapProvider along with the SiteMapDataSource, Menu, and SiteMapPath controls will meet
the menu system needs of most applications. Other controls can be used if they do not meet the
needs of your application, such as using the treeView control instead of the Menu control. In addition,
all of the controls can be manipulated programmatically if you need to adjust their output more.

See Also

Recipe 21.8; the Menu, SiteMapPath, and treeView controls in the MSDN Library

Example 21-24. Master page with dynamic menu and breadcrumb trail
(.master)

<%@ Master Language="VB"

 AutoEventWireup="false" %>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >
<head id="Head1" runat="server">
 <title>Dynamic Menu Master Page</title>
 <link rel="Stylesheet" href="css/ASPNetCookbook.css" />
</head>
<body>
 <form id="form1" runat="server">
 <div class="headerBlue">
 <div class="headerLeftColumn">

 </div>
 <div class="headerRightColumn">
 <asp:SiteMapDataSource ID="menuSource" runat="server" />
 <asp:menu ID="Menu1" runat="server"
 DataSourceID="menuSource"
 Orientation="Horizontal"
 StaticDisplayLevels="2"
 BackColor="#f0f0f0"
 ForeColor="#6B0808"
 Font-Size="8pt"
 Font-Bold="true"
 StaticMenuItemStyle-HorizontalPadding="5"
 StaticMenuItemStyle-VerticalPadding="0"
 StaticHoverStyle-BackColor="#6B0808"
 StaticHoverStyle-ForeColor="#FFFFFF"
 DynamicMenuItemStyle-BackColor="#f0f0f0"
 DynamicMenuItemStyle-ForeColor="#0000A0"
 DynamicMenuItemStyle-BorderStyle="Solid"
 DynamicMenuItemStyle-BorderColor="#c0c0c0"
 DynamicMenuItemStyle-HorizontalPadding="5"
 DynamicMenuItemStyle-BorderWidth="1"
 DynamicHoverStyle-BackColor="#6B0808"
 DynamicHoverStyle-ForeColor="#FFFFFF"
 width="100%"
 Height="35" >
 </asp:menu>
 </div>
 </div>
 <div>
 <asp:SiteMapPath ID="SiteMapPath1" runat="server"
 NodeStyle-Font-Bold="false"
 NodeStyle-ForeColor="#0000A0"
 Font-Size="8pt"
 CurrentNodeStyle-Font-Bold="true"
 CurrentNodeStyle-ForeColor="#6B0808"
 CurrentNodeStyle-Font-Underline="false"
 PathSeparator=" » " >
 <RootNodeTemplate>

 Home
 </RootNodeTemplate>
 </asp:SiteMapPath>
 </div>

 <div>
 <asp:ContentPlaceHolder ID="PageBody" Runat="server" >
 <div align="center">

 <h4>Default Content Displayed When No Content Is Provided
 In Content Pages</h4>
 </div>
 </asp:ContentPlaceHolder>
 </div>
 </form>
</body>
</html>

About the Authors

Micahel A. Kittel has nearly 30 years experience in the software industry. He has been working with
Microsoft technologies for more than 10 years and with ASP.NET since the alpha release of 1.0. He
has been the system architect and led the development of applications for Lexis-Nexis, Plow &
Hearth, ReturnBuy, and many others. Michael has a Microsoft Certified Solutions Developer
certification and is currently a managing consultant at Dominion Digital, Inc.
(www.dominiondigital.com), a firm that specializes in helping companies envision and achieve
maximum business value from investments.

Geoffrey T. LeBlond is the coauthor of Using 1-2-3, the first computer book that sold over 1 million
copies. Geoff is the author of numerous computer books and was the developer of Oriel, an early
scripting language for Microsoft Windows. More recently, Geoff has been focusing his attention on
developing web applications using ASP and ASP.NET.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of ASP.NET 2.0 Cookbook, Second Edition, is a thorny woodcock (Murex
pecten). This carnivorous marine snail is indigenous to the IndoPacific region of the world and is
commonly found in the shallow waters off the coast of Japan's sandy beaches. Averaging 13
centimeters in length, the woodcock's elongated shell contains a stunning spine of thorns, and at first
glance might be mistaken for the skeleton of a fish. While scientists are uncertain of the evolutionary
advantages of this shell structure, some theorize that it serves to help ward off fish and other
predators. They also believe the woodcock's needles may prevent the creature from being lodged in
the soft sand and mud of its habitat.

The thorny woodcock has been immortalized in Western folklore, in which it is commonly referred to
as the Venus comb or mermaid's comb. The animal's shell of needles is mythically purported to be
the definitive fine-toothed comb, ideally suited for brushing even the delicate hair of a goddess.

Shell collectors are also drawn to the unique beauty of the thorny woodcock. Although its shell is not
particularly rare, it is quite fragile, and a woodcock with a fully intact skeleton of thorns is a highly
prized specimen for the distinguished conchologist.

Matt Hutchinson was the production editor for ASP.NET 2.0 Cookbook, Second Edition. GEX, Inc.
provided production services. Abby Fox, Genevieve d'Entremont, and Colleen Gorman provided
quality control.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from Animate Creation. Karen Montgomery produced the cover
layout with Adobe InDesign CS using Adobe's ITC Garamond font.

David Futato designed the interior layout. This book was converted by Keith Fahlgren to FrameMaker
5.5.6 with a format conversion tool created by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra
that uses Perl and XML technologies. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear
in the book were produced by Robert Romano, Jessamyn Read, and Lesley Borash using Macromedia
FreeHand MX and Adobe Photoshop CS. The tip and warning icons were drawn by Christopher Bing.
This colophon was written by Sanders Kleinfeld.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

<configuration> element

<customErrors> element

<forms> element

<globalization> element

<httpRuntime> element

<machineKey> element

<sqlCacheDependency> element

<system.web> element

<trace> element

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

access restriction

 all application pages 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 roles and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 security

 selected application pages

AlternatingItemStyle element

anonymous profiles 2nd 3rd 4th 5th 6th 7th 8th 9th

 migrating 2nd

anonymousIdentification element

Application object

application settings 2nd 3rd 4th 5th

application state

application-level error handling 2nd 3rd 4th 5th 6th 7th 8th 9th

application-level tracing 2nd 3rd

application-specific logic

applications

 caching data 2nd 3rd 4th 5th 6th

 database dependencies and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

 components 2nd 3rd 4th

 external 2nd 3rd

ArrayList class

arrays as group of checkboxes 2nd 3rd 4th 5th 6th

ASP.NET State Service

attributes

 checkboxes and

 custom controls 2nd 3rd 4th 5th 6th 7th 8th

 RoleManager

 SqlMembershipProvider

 SqlRoleProvider

authentication

 Forms

 membership

 Passport

 Windows 2nd 3rd 4th 5th 6th 7th 8th 9th

authorization

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

bar charts 2nd 3rd 4th 5th 6th 7th

bindData method

borders

 color

 width

breadcrumb trail 2nd 3rd

browser-specific stylesheets

browsers

 caching

 user's type 2nd 3rd 4th 5th

button images 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

buttons

 Details

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

caching

 application data 2nd 3rd 4th 5th

 data sources

 pages

 strings 2nd

 user controls

Cascading Style Sheets (CSS)

CatalogZone control

character sets

charts

checkboxes

 attributes

CheckBoxList control

classes

 Directory

 HTTP-specific information 2nd 3rd

 TraceContext

CLR (Common Language Runtime)

code-behind classes 2nd

color

columnar data 2nd 3rd 4th 5th 6th 7th

Columns element

Common Language Runtime (CLR)

communication 2nd 3rd 4th 5th

CompareValidator control

concatenation

 performance and

 strings 2nd 3rd

conditional breakpoints

configuration

 file hierarchy

consuming

 web services

 other technologies

consuming web services 2nd 3rd 4th 5th 6th

content management system

content pages

 generating quickly

 master pages

 assigning master to

content placeholders

Control class (System.Web.UI)

Control State 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

controls

 CheckBoxList

 CompareValidator

 DataGrid

 editing data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 FileUpload

 forms

 GridView

 HTML 2nd 3rd 4th 5th 6th

 RangeValidator

 RequiredFieldValidator

 tabular data

 DataGrid

 DataList

 Repeater

 selecting 2nd 3rd

 user controls

cookies

 Forms authentication

CSS (Cascading Style Sheets)

custom controls

 attributes and 2nd 3rd 4th 5th 6th 7th 8th

 Control State 2nd 3rd 4th 5th 6th 7th 8th

 HTML 2nd 3rd 4th 5th 6th

 numeric input

 state 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th

 ViewState and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

data access

data binding

 GridView control and

 Repeater control and

data entry

 database entries 2nd 3rd 4th 5th 6th 7th

 fields

 require match 2nd 3rd 4th 5th

 requiring 2nd

 numeric 2nd 3rd 4th

data sources

data types

DataAdapter

databases

 access speed

 dependencies

 application data caching and 2nd 3rd 4th 5th 6th

 page caching and 2nd 3rd 4th

 entries

 images stored 2nd 3rd 4th 5th 6th 7th 8th 9th

 uploaded file contents 2nd 3rd 4th

DataGrid

 controls

 navigation

 XML file display in table

DataGrid control

 direct page navigation

 editing

 data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 first/last button

 navigation and

 PagerStyle-Mode attribute

 PagerStyle-PageButton attribute

 paging

 large datasets 2nd 3rd 4th 5th 6th

 paging and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 large datasets

 sorting and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 tabular data

 XML file data 2nd 3rd 4th 5th 6th

DataReader

DataSet class

datasets

 paging large

date formatting 2nd 3rd 4th 5th 6th 7th

debugging

 breakpoint setting

 introduction

DeclarativeCatalogPart control

default button 2nd 3rd 4th 5th

DefaultTraceListener

Details button

dgBooks_PageIndexChanged event handler

dgProblems_CancelCommand method

dgProblems_EditCommand method

dgProblems_UpdateCommand method

Directory class

dnyamic menus 2nd 3rd 4th 5th 6th

 breadcrumb trail 2nd

Document Literal encoding

downloads

 files 2nd 3rd 4th 5th

 from web server 2nd 3rd 4th 5th 6th 7th

drop-down lists 2nd 3rd 4th

dual-use components 2nd 3rd

dynamic images

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Edit command buttons

EditCommandColumn column type

editing

 DataGrid control

 built-in facilities

email

 sending 2nd 3rd 4th 5th 6th

 trace data 2nd 3rd 4th 5th 6th

encryption

 web.config sections 2nd 3rd 4th 5th

error handling

 error messages 2nd 3rd 4th 5th 6th 7th

error messages

Eval method

event delegates

event handlers

 RowDataBound

event log trace data 2nd 3rd 4th

EventLogTraceListener

external applications 2nd 3rd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

fields

 data entry

 range requirements 2nd 3rd 4th 5th 6th

 text

FileInfo class

files

 configuration

 downloads

 HTTP handler creation 2nd 3rd 4th 5th 6th 7th 8th

 uploading

 contents storage in database 2nd

FileUpload control

First/Last navigation 2nd 3rd 4th 5th 6th

focus

 form controls 2nd 3rd 4th 5th

Forms

 authentication

 cookie

forms

 controls 2nd 3rd

 multiple page simulation 2nd 3rd 4th 5th 6th 7th 8th 9th

 validation errors 2nd 3rd

Forms authentication

 cookie

From First(s)

From Last(s)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

GetAllInactiveProfiles method

global resources 2nd 3rd 4th 5th

globalization

 resource reuse 2nd 3rd 4th 5th

graphics library

GridView control

 ButtonField

 columnar data

 content update

 delete confirmation pop up 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 details pop-up window 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 editing and 2nd 3rd 4th 5th 6th 7th 8th 9th

 navigation and 2nd 3rd 4th 5th 6th 7th 8th

 paging 2nd 3rd 4th 5th 6th 7th

 rows

 Select button

 sorting and 2nd 3rd 4th 5th 6th 7th

 totals row 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Handles keyword

hashtables

 data display 2nd 3rd 4th 5th 6th

 DataList control

HeaderStyle element

HeaderTemplate

hidden text fields

HTML

 controls 2nd 3rd 4th 5th

 output 2nd 3rd 4th 5th 6th

 transforming XML to 2nd 3rd 4th 5th 6th 7th

 user controls

HTTP handlers

 built-in

 file download handler creation 2nd 3rd 4th 5th 6th 7th 8th

 introduction

HTTP runtime settings 2nd 3rd

HTTP-specific information 2nd 3rd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

IHttpHandler interface

IIS

image handlers 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

images

 button images 2nd

 thumbnails 2nd 3rd 4th 5th 6th

 thumbnails displaying

 multiple requests and 2nd

 thumbnails, displaying

 between postbacks 2nd 3rd 4th

inactive profiles

information

 personalization

 user 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

information availability 2nd 3rd 4th 5th

internationalization

 globalization

 resources 2nd 3rd 4th

 language support 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 localization

IPostBackDataHandler interface

ItemTemplate

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

JavaScript

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

key/value pairs

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

languages 2nd 3rd 4th 5th 6th 7th 8th 9th

latency

libraries

LoadControlState method

localization

 request/response encoding 2nd

login 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Login control

loopback address

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

maintaining state

makeButton method

.master file

master pages

 changing

 content pages

 including other content 2nd

 setting at runtime 2nd 3rd

MasterPageFile property

membership

 authentication and

 security and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 SQL Server and

 web parts and

menus 2nd 3rd

 breadcrumb trail 2nd

messages

 trace log

method-level error handling 2nd 3rd 4th 5th 6th

methods

 bindData

 dgProblems_CancelCommand

 dgProblems_EditCommand

 dgProblems_UpdateCommand

 Eval

 GetAllInactiveProfiles

 LoadControlState

 makeButton

 OpenWebConfiguration

 ReadXMl

 RenderContents

 SaveControl State

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

navigation

 tables

 GridView 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd

 next/previous buttons 2nd 3rd 4th

 tabular data 2nd 3rd 4th 5th 6th 7th 8th

 user controls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

nesting master pages

Next button 2nd 3rd 4th 5th 6th 7th

number formatting 2nd 3rd 4th 5th 6th

numeric input 2nd 3rd 4th 5th 6th 7th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

OpenWebConfiguration method

output 2nd 3rd 4th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

page headers 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

page state

page-level error handling 2nd 3rd 4th 5th

page-level tracing

 exceptions and 2nd 3rd 4th 5th

Page_Error event handler

Page_Load method

PageCatalogPart control

pages

 applications

 caching

 caching

 browser type/version and

 custom strings and 2nd 3rd

 size 2nd 3rd 4th

paging

 DataGrid and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

parameter values

Passport authentication

pattern matching 2nd 3rd 4th

performance

 data access and

 ViewState and

personalization

 web parts and

personalized themes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

pop-up windows 2nd 3rd 4th 5th 6th 7th 8th 9th

postbacks 2nd

Previous button 2nd 3rd 4th 5th 6th

profile property

ProfileManager class

profiles

 anonymous 2nd 3rd 4th 5th 6th 7th 8th

 data removal 2nd 3rd 4th 5th 6th 7th 8th 9th

 inactive

 included information

 uses

programmatic validation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

properties

 MasterPageFile

 personalized (web parts)

 profile

 Theme

Protected Configuration

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

query strings

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

race conditions

RangeValidator control

read-only access speed 2nd 3rd 4th 5th

ReadXml method (DataSet class)

RegisterHiddenField method

Render method

RenderContents method

Repeater control

 bar chart creation

requests

RequiredFieldValidator control

resources 2nd 3rd 4th 5th

response encoding 2nd 3rd

reusable image handlers 2nd 3rd 4th 5th 6th

reusable web parts 2nd 3rd 4th 5th 6th

role manager

RoleManager

RowDataBound event handler

runtime

 master pages 2nd

 web services URL setting

runtime settings 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

SaveControlState method

scalability

security

 membership 2nd 3rd 4th 5th 6th 7th 8th 9th

 roles 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Select button

selection 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

sending email 2nd 3rd 4th 5th 6th

serializable classes

server controls as web parts 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

Server.Transfer method

session state

 maintaining

 multiple web servers 2nd 3rd 4th 5th 6th 7th

 state

 maintaining

sessions 2nd 3rd 4th

.skin files

Solution Explorer

sorting

 GridView control

 tabular data 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

SQL provider 2nd 3rd 4th 5th

SQL Server

 managed provider

 Member and Role providers

SqlMembershipProvider attributes

SqlProfileProvider attributes

SqlRoleProvider attributes

state

 application

 ASP.NET State Service

 custom controls 2nd

 maintaining (see maintaining state) page state

 session state

 multiple web servers

 value 2nd 3rd 4th 5th 6th

state server

stored procedures

streaming to browser

StringBuilder 2nd 3rd 4th 5th 6th

strings

 concatenation

 StringBuilder and 2nd 3rd 4th 5th

 custom 2nd 3rd 4th

submitting forms

 default button setup 2nd 3rd

 to different page 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

switches

System.Drawing classes

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

tabular data

 column formatting 2nd 3rd 4th 5th

 controls

 DataGrid

 DataGrid control

 sort order

 XML file data

 display

 enhancing

 quick and dirty 2nd 3rd 4th

 editing

 DataGrid control and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 GridView and 2nd 3rd 4th 5th 6th 7th 8th

 HeaderTemplate

 introduction

 ItemTemplate

 navigation

 direct page 2nd 3rd 4th 5th 6th 7th

 first/last 2nd

 row insertion 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 row selection 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 sorting

 order 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th

 totals row

technical support site

TextBox server control 2nd 3rd 4th 5th

Theme property

themes

 CSS

 personalized 2nd 3rd

thumbnail images 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

totals row 2nd 3rd 4th 5th 6th 7th 8th 9th

trace listeners

trace log

Trace.Write

TraceContext class

TraceListeners collection

TraceSwitch

tracing

 application component problems 2nd 3rd 4th 5th 6th 7th

 application-level 2nd

 page-level problems

 switches and

 trace data

 emailing

 writing to event log 2nd 3rd 4th 5th

Try…Catch…Finally block

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

uploads

 processing without storing 2nd 3rd

 storing contents in database 2nd 3rd 4th

 to web server 2nd 3rd 4th 5th

user controls

 add dynamically 2nd 3rd 4th 5th

 as web parts 2nd 3rd 4th 5th 6th 7th 8th

 caching

 communication 2nd 3rd

 HTML

 navigation 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

user selection 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

users

 browser type 2nd 3rd 4th 5th

 information 2nd 3rd 4th

 personalized themes

 registration 2nd 3rd 4th 5th 6th 7th

 roles 2nd 3rd 4th 5th 6th 7th 8th

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

validation

 data entry

 require field match 2nd 3rd 4th

 groups

 login support 2nd 3rd 4th 5th 6th 7th 8th 9th

 user registration 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 programmatic 2nd 3rd 4th

validators

ViewState

 custom controls and

 disabling

 page size viewing and 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

ViewState object

Visual Studio debugger

VS_CURRENT_SORT_ORDER constant

VS_CURRRENT_SORT_EXPRESSION constant

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

Web Part control set

web parts

 communication 2nd 3rd

 custom 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

 membership and

 personalization and

 personalized properties

 reusable 2nd 3rd 4th

 user controls as 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

Web Parts control set

 WebPartZone

web server

 downloads

 session state 2nd 3rd 4th

 uploading files to 2nd 3rd 4th 5th

Web Service Enhancements (WSE)

web services

 consuming 2nd 3rd

 creating 2nd

 custom objects 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Web Services Description Language (WSDL)

web.config file

 <appSettings> section

 application settings

 configuration 2nd 3rd 4th 5th 6th 7th 8th

 configuration elements 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th

 error messages

 modifying

 structure

 uses

WebControl class (System.Web.UI.WebControls)

WebPageTraceListener

WebPartConnection control

WebPartManager control

WebPartZone control 2nd

WebService attribute

Windows authentication 2nd 3rd 4th 5th 6th 7th 8th 9th

Wizard control

WSE (Web Service Enhancements)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

XML

 file data display in table 2nd 3rd 4th 5th 6th 7th

 transforming to HTML 2nd

	ASP.NET Cookbook, 2nd Edition
	Table of Contents
	Copyright
	Preface

	Chapter 1. Master Pages
	1.0 Introduction
	Recipe 1.2. Generating a Quick Master/Content Page Arrangement
	Recipe 1.3. Extending a Master Page's Content to Include Content for Other Application Pages
	Recipe 1.4. Changing Which Master Page Is Used Without Modifying All Affected Application Pages
	Recipe 1.5. Setting the Master Page at Runtime

	Chapter 2. Tabular Data
	Introduction
	Recipe 2.2. Selecting the Right Tabular Control
	Recipe 2.3. Generating a Quick-and-Dirty Tabular Display
	Recipe 2.4. Enhancing the Output of a Tabular Display
	Recipe 2.5. Displaying Data from an XML File
	Recipe 2.6. Displaying an Array as a Group of Checkboxes
	Recipe 2.7. Displaying Data from a Hashtable
	Recipe 2.8. Adding Next/Previous Navigation to a DataGrid
	Recipe 2.9. Adding First/Last Navigation to a DataGrid
	Recipe 2.10. Adding Direct Page Navigation to a DataGrid
	Recipe 2.11. Sorting Data in Ascending/Descending Order Within a DataGrid
	Recipe 2.12. Combining Sorting and Paging in a DataGrid
	Recipe 2.13. Paging Through a Record-Heavy DataGrid
	Recipe 2.14. Editing Data Within a DataGrid
	Recipe 2.15. Navigating and Sorting Within a GridView
	Recipe 2.16. Updating a GridView Without Refreshing the Whole Page
	Recipe 2.17. Editing Data in a GridView
	Recipe 2.18. Inserting a Row Within a GridView
	Recipe 2.19. Formatting Columnar Data in a GridView
	Recipe 2.20. Allowing Selection Anywhere Within a GridView
	Recipe 2.21. Adding a Delete Confirmation Pop-Up
	Recipe 2.22. Displaying a Pop-Up Details Window
	Recipe 2.23. Adding a Totals Row to a GridView

	Chapter 3. Validation
	3.0 Introduction
	Recipe 3.2. Requiring That Data Be Entered in a Field
	Recipe 3.3. Requiring Data to Be in a Range
	Recipe 3.4. Requiring That Two Data Input Fields Match
	Recipe 3.5. Requiring Data to Match a Predefined Pattern
	Recipe 3.6. Requiring That a Drop-Down List Selection Be Made
	Recipe 3.7. Requiring Data to Match a Database Entry
	Recipe 3.8. Using Validation Groups to Support Login and New User Registration Within a Single Form
	Recipe 3.9. Performing Validation Programmatically to Execute Your Own Application-Specific Logic

	Chapter 4. Forms
	4.0 Introduction
	Recipe 4.2. Setting the Default Button to Submit a Form
	Recipe 4.3. Submitting a Form to a Different Page
	Recipe 4.4. Simulating Multipage Forms Problem
	Recipe 4.5. Setting the Initial Focus to a Specific Control Problem
	Recipe 4.6. Setting the Focus to a Control with a Validation Error

	Chapter 5. User Controls
	5.0 Introduction
	Recipe 5.2. Sharing a Page Header on Multiple Pages
	Recipe 5.3. Creating a Customizable Navigation Bar
	Recipe 5.4. Reusing Code-Behind Classes
	Recipe 5.5. Communicating Between User Controls
	Recipe 5.6. Adding User Controls Dynamically

	Chapter 6. Custom Controls
	6.0 Introduction
	Recipe 6.2. Combining HTML Controls in a Single Custom Control
	Recipe 6.3. Creating a Custom Control with Attributes
	Recipe 6.4. Creating a Custom Control with State
	Recipe 6.5. Using the Control State with Custom Controls
	Recipe 6.6. Customizing an ASP.NET TextBox Server Control

	Chapter 7. Maintaining State
	7.0 Introduction
	Recipe 7.2. Maintaining Information Needed by All Users of an Application
	Recipe 7.3. Maintaining Information About a User Throughout a Session
	Recipe 7.4. Preserving Information Between Postbacks
	Recipe 7.5. Preserving Information Across Multiple Requests for a Page

	Chapter 8. Error Handling
	8.0 Introduction
	Recipe 8.2. Handling Errors at the Method Level
	Recipe 8.3. Handling Errors at the Page Level
	Recipe 8.4. Handling Errors at the Application Level
	Recipe 8.5. Displaying User-Friendly Error Messages

	Chapter 9. Security
	9.0 Introduction
	Recipe 9.2. Restricting Access to All Application Pages
	Recipe 9.3. Restricting Access to Selected Application Pages
	Recipe 9.4. Restricting Access to Application Pages by Role
	Recipe 9.5. Using Windows Authentication
	Recipe 9.6. Using Membership and Roles

	Chapter 10. Profiles and Themes
	10.0 Introduction
	Recipe 10.2. Using Profiles
	Recipe 10.3. Inheriting a Profile
	Recipe 10.4. Using and Migrating Anonymous Profiles
	Recipe 10.5. Managing User Profiles
	Recipe 10.6. Using Themes
	Recipe 10.7. User-Personalized Themes

	Chapter 11. Web Parts
	11.0 Introduction
	Recipe 11.2. Using Server Controls and User Controls as Web Parts
	Recipe 11.3. Creating a Reusable Web Parts Catalog
	Recipe 11.4. Creating a Custom Web Part
	Recipe 11.5. Communicating Between Web Parts
	Recipe 11.6. Persisting Personalized Web Part Properties

	Chapter 12. Configuration
	12.0 Introduction
	Recipe 12.2. Overriding Default HTTP Runtime Parameters in web.config
	Recipe 12.3. Adding Custom Application Settings in web.config
	Recipe 12.4. Displaying Custom Error Messages
	Recipe 12.5. Maintaining Session State Across Multiple Web Servers
	Recipe 12.6. Accessing Other web.config Configuration Elements
	Recipe 12.7. Adding Your Own Configuration Elements to web.config
	Recipe 12.8. Encrypting web.config Sections

	Chapter 13. Tracing and Debugging
	13.0 Introduction
	Recipe 13.2. Uncovering Page-Level Problems
	Recipe 13.3. Uncovering Application-Wide Problems
	Recipe 13.4. Pinpointing the Cause of an Exception
	Recipe 13.5. Uncovering Problems Within Web Application Components
	Recipe 13.6. Uncovering Problems Within Dual-Use Components
	Recipe 13.7. Writing Trace Data to the Event Log with Controllable Levels
	Recipe 13.8. Sending Trace Data via Email with Controllable Levels
	Recipe 13.9. Using a Breakpoint to Stop Execution of an Application When a Condition Is Met

	Chapter 14. Web Services
	14.0 Introduction
	Recipe 14.2. Creating a Web Service
	Recipe 14.3. Consuming a Web Service
	Recipe 14.4. Creating a Web Service That Returns a Custom Object
	Recipe 14.5. Setting the URL of a Web Service at Runtime

	Chapter 15. Dynamic Images
	15.0 Introduction
	Recipe 15.2. Drawing Button Images on the Fly
	Recipe 15.3. Creating Bar Charts on the Fly
	Recipe 15.4. Displaying Images Stored in a Database
	Recipe 15.5. Displaying Thumbnail Images

	Chapter 16. Caching
	16.0 Introduction
	Recipe 16.2. Caching Pages
	Recipe 16.3. Caching Pages Based on Query String Parameter Values
	Recipe 16.4. Caching Pages Based on Browser Type and Version
	Recipe 16.5. Caching Pages Based on Developer-Defined Custom Strings
	Recipe 16.6. Caching Pages Based on Database Dependencies
	Recipe 16.7. Caching User Controls
	Recipe 16.8. Caching Application Data
	Recipe 16.9. Caching Application Data Based on Database Dependencies
	Recipe 16.10. Caching Data Sources

	Chapter 17. Internationalization
	17.0 Introduction
	Recipe 17.2. Localizing Request/Response Encoding
	Recipe 17.3. Providing Multiple Language Support
	Recipe 17.4. Using Global Resources and Overriding Currency Formatting

	Chapter 18. File Operations
	18.0 Introduction
	Recipe 18.2. Downloading a File from the Web Server
	Recipe 18.3. Uploading a File to the Web Server
	Recipe 18.4. Processing an Uploaded File Without Storing It on the Filesystem
	Recipe 18.5. Storing the Contents of an Uploaded File in a Database

	Chapter 19. Performance
	19.0 Introduction
	Recipe 19.2. Reducing Page Size by Selectively Disabling the ViewState
	Recipe 19.3. Speeding Up String Concatenation with a StringBuilder
	Recipe 19.4. Speeding Up Read-Only Data Access
	Recipe 19.5. Speeding Up Data Access to a SQL Server Database Using the SQL Provider

	Chapter 20. HTTP Handlers
	20.0 Introduction
	Recipe 20.2. Creating a Reusable Image Handler
	Recipe 20.3. Creating a File Download Handler

	Chapter 21. Assorted Tips
	21.0 Introduction
	Recipe 21.2. Accessing HTTP-Specific Information from Within a Class
	Recipe 21.3. Executing External Applications
	Recipe 21.4. Transforming XML to HTML
	Recipe 21.5. Determining the User's Browser Type
	Recipe 21.6. Dynamically Creating Browser-Specific Stylesheets
	Recipe 21.7. Saving and Reusing HTML Output
	Recipe 21.8. Sending Mail
	Recipe 21.9. Dynamic Menus
	Recipe 21.10. Adding Breadcrumbs

	About the Authors
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

