
http://lib.ommolketab.ir
http//lib.ommolketab.ir

ffirs.indd iffirs.indd i 12/30/11 12:05:23 PM12/30/11 12:05:23 PM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

GAME AND GRAPHICS PROGRAMMING FOR IOS

AND ANDROID® WITH OPENGL® ES 2.0

INTRODUCTION .xvii

CHAPTER 1 Getting Started . 1

CHAPTER 2 Setting Up Your Graphic Projections . 9

CHAPTER 3 Dealing with Complex Geometry . 29

CHAPTER 4 Building a Scene . 57

CHAPTER 5 Optimization .81

CHAPTER 6 Real-Time Physics . 97

CHAPTER 7 Camera . 129

CHAPTER 8 Pathfi nding . 151

CHAPTER 9 Audio and Other Cool Game Programming Stuff 171

CHAPTER 10 Advanced Lighting . 207

CHAPTER 11 Advanced FX . 237

CHAPTER 12 Skeletal Animation . 259

INDEX . 273

ffirs.indd iffirs.indd i 1/11/12 8:20:58 AM1/11/12 8:20:58 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ffirs.indd iiffirs.indd ii 1/11/12 8:20:59 AM1/11/12 8:20:59 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Game and Graphics Programming

for iOS and Android®

with OpenGL® ES 2.0

ffirs.indd iiiffirs.indd iii 1/11/12 8:21:00 AM1/11/12 8:21:00 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ffirs.indd ivffirs.indd iv 1/11/12 8:21:00 AM1/11/12 8:21:00 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Game and Graphics Programming

for iOS and Android®

with OpenGL® ES 2.0

Romain Marucchi-Foino

John Wiley & Sons, Inc.

ffirs.indd vffirs.indd v 1/11/12 8:21:00 AM1/11/12 8:21:00 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Game and Graphics Programming for iOS and Android® with OpenGL® ES 2.0

This edition fi rst published 2012

Copyright ©2012 Romain Marucchi-Foino

Registered offi ce

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom

For details of our global editorial offi ces, for customer services and for information about how to apply for permission to
reuse the copyright material in this book please see our web site at www.wiley.com.

The right of the author to be identifi ed as the author of this work has been asserted in accordance with the Copyright,
Designs and Patents Act 1988.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK
Copyright, Designs and Patents Act 1988, without the prior permission of the publisher.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic books.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and
product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective
owners. The publisher is not associated with any product or vendor mentioned in this book. This publication is designed
to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding
that the publisher is not engaged in rendering professional services. If professional advice or other expert assistance is
required, the services of a competent professional should be sought.

978-1-119-97591-5
978-1-119-97626-4 (ebk)
978-1-119-97627-1 (ebk)
978-1-119-97628-8 (ebk)

A catalogue record for this book is available from the British Library.

ffirs.indd viffirs.indd vi 1/11/12 8:21:02 AM1/11/12 8:21:02 AM

Downloaded from: www.bookarchive.ws

http://www.wiley.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

ABOUT THE AUTHOR

ROMAIN MARUCCHI-FOINO is the original author and founder of the popular mobile game engine
SIO2 (http://sio2interactive.com). Formerly a game engine developer, Romain has dedicated
his efforts to build a state-of-the-art game engine for mobile devices using OpenGL ES since the
arrival of the iPhone. He is currently working as the lead 3D programmer for sio2interactive
.com, the offi cial developer of the SIO2 Engine, which powers thousands of games and 3D
 applications throughout the App Store and the Android market. His experience in the mobile game
industry has led him to contribute his work to many online communities, publications, and blogs.

ABOUT THE TECHNICAL EDITOR

EFFIE C. LEE is a self-employed game and graphics designer who has been working in the game
industry for the last 4 years. With a bachelor’s degree in Computer Science and a real passion
for electronic games and computer graphics, she has been involved in multiple mobile game
productions. With her wide range of knowledge in the game development process, she has been
professionally working as a 2D and 3D graphics designer, game programmer (scripting), and web
designer for game sites, as well as managing game quality assurance and localization. If you would
like to reach her, send an email to effiecl@gmail.com.

ffirs.indd viiffirs.indd vii 1/11/12 8:21:02 AM1/11/12 8:21:02 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ffirs.indd viiiffirs.indd viii 1/11/12 8:21:02 AM1/11/12 8:21:02 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

VP CONSUMER AND TECHNOLOGY

PUBLISHING DIRECTOR

Michelle Leete

ASSOCIATE DIRECTOR—BOOK CONTENT

MANAGEMENT

Martin Tribe

ASSOCIATE PUBLISHER

Chris Webb

SENIOR ACQUISITIONS EDITOR

Chris Katsaropoulos

ASSISTANT EDITOR

Ellie Scott

ASSOCIATE MARKETING DIRECTOR

Louise Breinholt

SENIOR MARKETING EXECUTIVE

Kate Parrett

EDITORIAL MANAGER

Jodi Jensen

SENIOR PROJECT EDITOR

Sara Shlaer

DEVELOPMENT AND COPY

EDITOR

Kathryn Duggan

TECHNICAL EDITOR

Effi e C. Lee

SENIOR PRODUCTION EDITOR

Debra Banninger

PROOFREADER

Nancy Carrasco

INDEXER

Robert Swanson

COVER DESIGNER

LeAndra Young

COVER IMAGE

© iStock / Vladislav Ociacia

CREDITS

ffirs.indd ixffirs.indd ix 1/11/12 8:21:02 AM1/11/12 8:21:02 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ffirs.indd xffirs.indd x 1/11/12 8:21:03 AM1/11/12 8:21:03 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

CONTENTS

INTRODUCTION xvii

CHAPTER 1: GETTING STARTED 1

Software Requirements 2

For iOS Developers 2

For Android Developers 2

Downloading the Book’s SDK 4

Importing Projects 5

For iOS Developers 5

For Android Developers 5

The Template 7

Summary 8

CHAPTER 2: SETTING UP YOUR GRAPHIC PROJECTIONS 9

The Three Basic Types of Projections 10

Orthographic 2D Projection 11

Program and Project Initialization 12

Vertex and Fragment Shader 14

Linking a Shader Program 17

The Drawing Code 19

Orthographic Projection 23

Getting Orthographic 23

Perspective Projection 26

Summary 27

CHAPTER 3: DEALING WITH COMPLEX GEOMETRY 29

The Wavefront File Format 29

Cube.obj 30

Cube.mtl 31

Preparing the OBJ Viewer Code 31

Loading an OBJ 32

Building the Shaders 35

The Vertex Shader 35

The Fragment Shader 36

Vertex Buff er Object 36

Storing the Vertex Data 37

ftoc.indd xiftoc.indd xi 12/30/11 8:28:31 AM12/30/11 8:28:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xii

CONTENTS

Building the Vertex Data Array VBO 38

Building the Element Array VBO 39

Building the VAO 40

Rendering Momo 42

Handling Touche 44

Per-Vertex Lighting 46

Vertex Shader Light Calculation 46

Modifying the Fragment Shader 47

More Uniforms 48

Making Momo Furrier 50

Loading the Texture 50

Adjusting the Vertex Data 51

Adding UV Support to the Vertex Shader 52

Adding Texture Support to Your Fragment Shader 53

Binding the Texture 53

Summary 54

CHAPTER 4: BUILDING A SCENE 57

Handling Multiple Objects 58

The Code Structure 58

Loading and Drawing the Scene 59

The Shaders Code 63

The Diff erent Object Types 64

The Drawing Sequence 64

Fixing the Scene 65

Uber Shader 65

Using Your Uber Shader 66

Render Loop Objects Categorization 69

Double-Sided 71

Per-Pixel Lighting 73

Making the Vertex Shader Even Fatter 73

Getting the Fragment Shader More Uber 74

Wrapping Up the Implementation 76

Summary 79

CHAPTER 5: OPTIMIZATION 81

The Base App 82

Triangles to Triangle Strips 82

Building Triangle Strips 83

Texture Optimization 84

Adding 16-Bit Texture Conversion 85

ftoc.indd xiiftoc.indd xii 12/30/11 8:28:32 AM12/30/11 8:28:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xiii

CONTENTS

PVR Texture Compression 86

Faking Details 87

Bump Mapping Implementation 87

Precision Qualifi ers Optimization 88

The Normal Map Lighting Calculation 90

Adding Specularity 91

Geometry and Shaders LOD 92

Texture Atlas 93

Managing States in Software 94

Automatic Shader Optimization 94

Summary 95

CHAPTER 6: REAL-TIME PHYSICS 97

Types of Physical Objects 98

Physics Shapes 98

Using Bullet 100

Hello Physics 100

Collision Callbacks, Triggers, and Contacts 105

Contact-Added Callback 105

Near Callback 107

Contact Points 108

2D Physics 110

More Shapes! 110

Building the Physical Objects 113

Camera Tracking 114

User Interactions 116

The Game Logic 117

3D Physics 120

The Bullet File Format 120

3D Pinball Game 122

Summary 127

CHAPTER 7: CAMERA 129

Touch and Go! 130

The Camera Frustum 132

How to Build the Frustum 133

Frustum Clipping Implementation 134

More Clipping Functions 135

Camera Fly Mode 136

First-Person Camera with Collision Detection 140

3D Camera Tracking 143

ftoc.indd xiiiftoc.indd xiii 12/30/11 8:28:33 AM12/30/11 8:28:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xiv

CONTENTS

Third-Person Camera with Collision 145

Summary 149

CHAPTER 8: PATHFINDING 151

Recast and Detour 151

Navigation 152

Creating the Navigation Mesh 153

3D Physics Picking 155

Player’s Auto Drive 159

Visualizing the Way Points 161

Catch Me If You Can! 163

Know Your Enemy 165

Game State Logic 167

Summary 170

CHAPTER 9: AUDIO AND OTHER COOL GAME
PROGRAMMING STUFF 171

OpenAL 172

OGG Vorbis 173

Hello World OpenAL Style 174

Initializing OpenAL 174

Static In-Memory Sound Playback 175

Positional Sound Source 176

Piano Game 178

Loading a Static and Streamed Sound 178

Color Picking 182

Piano Game Logic 185

Final Adjustments 188

Rolling Ball Game 190

GFX Shaders 190

Linking the Positional Sound Sources 191

Accelerometer-Driven Camera 195

Cheap FX 198

Game Logic and Tweaks 200

Summary 205

CHAPTER 10: ADVANCED LIGHTING 207

Types of Lamps 208

Let There Be Light 208

Directional Lamp Shader 211

Struct as Uniforms 214

ftoc.indd xivftoc.indd xiv 12/30/11 8:28:33 AM12/30/11 8:28:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xv

CONTENTS

Point Light 217

Point Light Shader Code 218

Light Attenuation 221

Point Light with Attenuation Code 222

The Attenuation Uniforms 223

Spherical Point Light 224

Tweaking the Point Light Code 225

Spot Light 227

Spot Light Shader Code 229

Multiple Lights 231

Making the Shader Program Dynamic 233

Summary 234

CHAPTER 11: ADVANCED FX 237

Render to Texture 238

Post-Processing Eff ects 238

First Rendering Pass 241

Second Pass 242

Fullscreen Pass and Blur Shader 243

Projected Texture 246

Projector Shader 249

Projected Real-Time Shadows 250

Casting Shadows Using the Depth Texture 253

A Few More Words about the Frame Buff er Object 254

Particles 255

Summary 257

CHAPTER 12: SKELETAL ANIMATION 259

Traditional vs. Modern Animation Systems 260

The MD5 File Format 261

Loading an MD5 Mesh 261

Animating the Mesh 264

LERP 266

SLERP 267

Blending Animation 267

Additive Blending 269

Summary 271

INDEX 273

ftoc.indd xvftoc.indd xv 12/30/11 8:28:33 AM12/30/11 8:28:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

flast.indd xviflast.indd xvi 12/31/11 9:40:22 AM12/31/11 9:40:22 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

INTRODUCTION

WELCOME TO Game and Graphics Programming for iOS and Android with OpenGL ES 2.0. This
book is not your usual “OpenGL Hello Triangle” book — it’s not meant to explain the “why”
(Google is there for that), but rather, to show you the “how.” This book will strictly teach you what
works and what doesn’t when it comes to game and graphics programming.

Using more than 50 unique tutorials (which also include some full game frameworks), this book
adopts a straightforward practical approach (probably never seen before) that only focuses on what
you need to learn to insure that you will be able to create a game.

You will learn all the necessary elements in order to create a full-fl edged game with rich 3D graphics.
If you are looking for an aggressive teaching method that enables you to quickly move forward to
create your dream game, this book is for you!

WHO THIS BOOK IS FOR

Be aware that this is not a beginner book. It is an intermediate-level book that assumes you
are familiar with linear algebra (matrices, vectors, and quaternions), you have a strong C/C++
programming background, you have at least touched base with OpenGL or OpenGL ES, and you
basically know how computer graphics work in general.

If you have this necessary knowledge, and want to make lightning-fast progress in game and
graphics programming, then you have found the right publication. This book is written for people
who want to learn the hardcore stuff fast in order to be able to create and push a full-fl edged game
on the App Store and the Android Market.

WHAT THIS BOOK COVERS

Basically everything you need to know in order to create a full game is included in this book. You
will learn about all aspects of creating a game, such as loading 3D geometries and textures; how to
handle materials, shaders, sounds, cameras, clipping, physics, AI, pathfi nding, skeletal animations;
and a lot more.

By the end of this book you will be able to apply the knowledge you’ve learned and combine the
different tutorials you’ve completed to create your own state-of-the-art game.

HOW THIS BOOK IS STRUCTURED

This book is structured in such a way that pretty much all chapters depend on each other. Each
chapter shows you progressively how to master the necessary techniques to be able to handle the
next chapter.

flast.indd xviiflast.indd xvii 12/31/11 9:40:23 AM12/31/11 9:40:23 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xviii

INTRODUCTION

Here is a list of all the chapters and what will be covered in each of them:

Chapter 1, “Getting Started” — You will learn how to set up your development
environment, download this book’s SDK, import and re-compile the tutorials, and deal with
the template project that you will be using throughout this publication.

Chapter 2, “Setting Up Your Graphic Projections” — Since you have a running template,
I will show you how to set up the necessary projection matrix to be able to handle 2D,
2.5D, or 3D. You will also learn how to draw simple geometry onscreen and handle a
camera matrix.

Chapter 3, “Dealing with Complex Geometry” — You will create a Wavefront OBJ viewer
that will allow you to learn how to load complex geometry from disk. You will also learn
how to load and create textures, deal with basic lighting, and respond to touch events.

Chapter 4, “Building a Scene” — This chapter will extend the knowledge that you’ve
learned in Chapter 3 and will explain how to handle a more complex scene. You will learn
about drawing sequences and how to create reusable shaders.

Chapter 5, “Optimization” — In this chapter, I will show you techniques that will allow
you to optimize the performance of your drawing. You will touch base with texture
compression and shader optimization, and learn how to convert triangles to triangle strips
as well as other tips and tricks to get better FPS.

Chapter 6, “Real-Time Physics” — Since you will know by now how to handle a scene
properly, this chapter is about adding real-time physics behaviors to your scene using Bullet.
I will show you how to create a physical world and add physical entities to it. You will then
learn how to handle in code different techniques that will allow you to add logic upon
collision callbacks or based on the contact points between two or more physical entities.

Chapter 7, “Camera” — This chapter will focus entirely on cameras. You will learn to build
frustum planes and will be able to determine the visibility of each object of your scene in the
fi eld of view of a camera. I will then show you how to implement multiple types of cameras,
including a full-fl edged fi rst- and third-person camera with collision, ready to be used in
your own apps.

Chapter 8, “Pathfi nding” — Artifi cial intelligence (AI) and pathfi nding will play an important
role inside your games, and that’s what this chapter is all about. You will learn how to use the
Recast and Detour libraries to build a navigation mesh and have entities moving automatically
in the scene. In this chapter, I will also demonstrate how to use True Type Font to generate a
font texture and draw dynamic text onscreen.

Chapter 9, “Audio and Other Cool Game Programming Stuff” — This one is all about
audio using OpenAL. In this chapter, you will learn how to load OGG Vorbis sound fi les
and either stream them from memory in real time or statically store them in audio memory.
I will also introduce how to create 3D positional and ambient sound sources and will touch
base on how to use the accelerometer, along with how to animate textures and create other
miscellaneous effects.

➤

➤

➤

➤

➤

➤

➤

➤

➤

flast.indd xviiiflast.indd xviii 12/31/11 9:40:23 AM12/31/11 9:40:23 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

INTRODUCTION

xix

Chapter 10, “Advanced Lighting” — This chapter will teach you how to apply dynamic
lighting, probably one of the hardest things to master in game and graphics programming.
You will create multiple types of lights from directional to spot lights and will learn how to
handle them in real time.

Chapter 11, “Advanced FX” — This chapter is all about special effects. You will learn how
to create fullscreen post-processing effects, project textures, and real-time shadows, as well
as how to handle particles.

Chapter 12, “Skeletal Animation” — Last but not least, you will learn how to handle
skeletal animation using the MD5 fi le format. I will teach you how to load and draw a mesh
attached to a skeleton. You will then load action fi les and learn how to mix them using
different types of blending methods.

You will fi nd that this book will not simply show you the theory, but it will also show you how to
apply the knowledge that you gain in each chapter to real game scenarios.

As you can see, this book is packed full of useful knowledge that you will need on a daily basis
while programming games or 3D applications. There is plenty enough content in here to get you
started with real game and graphics programming in no time!

WHAT YOU NEED TO USE THIS BOOK

If you are planning to develop for iOS, all you need is a Mac that can support the latest version
of the iOS SDK (for more information, visit http://developer.apple.com). An iDevice is optional
since the iOS SDK provides out-of-the-box an iPhone/iPod Touch and iPad simulator, which you
can use to develop and test your application. And it is fully compatible with everything contained
in this book.

If you are planning to develop for Android, what you need is a Mac or a PC with an operating system
that is supported by the Android SDK (for more information, visit http://developer.android
.com). Also, you will need an Android device with OpenGL ES 2.0 support, because the simulator
bundled with the Android SDK only supports OpenGL ES 1.0.

In addition, this book uses Blender as its 3D modeling software (because it is free and open source).
So to be able to test, tweak, and re-export all the test scenes used in the book’s SDK, go grab a copy
at http://blender.org.

CONVENTIONS

To help you get the most from the text and keep track of what’s happening, the following
conventions are used throughout this book:

New terms and important words are in italics.

File names, URLs, variables, and code within text are shown like this: templateApp.cpp.

➤

➤

➤

➤

➤

flast.indd xixflast.indd xix 12/31/11 9:40:24 AM12/31/11 9:40:24 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xx

INTRODUCTION

Code blocks are shown like this:

#include “templateApp.h”

TEMPLATEAPP templateApp = { templateAppInit,
 templateAppDraw };

SDK SOURCE CODE

The offi cial SDK used in this book is available at www.wrox.com for download (packaged as a .zip
fi le). The SDK contains the fi nal end results of all the tutorials covered in this publication. It also
includes the full source code of the SDK and all the original assets used in the tutorials, so you will
have access to the 2D/3D scenes and can recompile them from scratch freely.

➤

Because many books have similar titles, you may fi nd it easiest to search by ISBN;
this book’s ISBN is 978-1-119-97591-5.

In addition, I also personally maintain the book’s
SDK (using GIT version control system) on the
offi cial website of the GFX 3D Engine (the free
and open source mini 3D game and graphics
engine that you’ll be using in this book, featured
in Figure 1), which is available at the following
address: http://gfx.sio2interactive.com.

The latest SDK revisions of the book along with
all quick bug fi xes can be found at the GFX 3D
Engine site instantly since it’s easier for me to just
update the source code using version control.
It might take a bit more time for the offi cial SDK
at www.wrox.com to be updated since this offi cial
SDK version is carefully maintained by the publisher, but you could just be patient and wait for the
offi cial release. It’s up to you.

It is also worth mentioning that on the GFX 3D Engine site (http://gfx.sio2interactive.com),
you can fi nd support forums for this book’s SDK as well as the latest version of the GFX 3D engine.
This website also provides other 3D game and graphics-related demos, tutorials, and other materials
that are fully compatible with this book’s SDK.

FIGURE 1: GFX 3D Engine

Models and textures generously provided by

Ken Beyer (http://www.katsbits.com) and David

Radford (http://dmradford.com).

flast.indd xxflast.indd xx 12/31/11 9:40:24 AM12/31/11 9:40:24 AM

Downloaded from: www.bookarchive.ws

http://www.wrox.com
http://www.wrox.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

INTRODUCTION

xxi

ERRATA

We make every effort to ensure that there are no errors in the text or in the code. However, no one
is perfect, and mistakes do occur. If you fi nd an error in one of our books, like a spelling mistake or
faulty piece of code, we would be very grateful for your feedback. By sending in errata you may save
another reader hours of frustration and at the same time you will be helping us provide even higher
quality information.

To fi nd the errata page for this book, go to www.wrox.com and locate the title using the Search box
or one of the title lists. Then, on the book details page, click the Book Errata link. On this page you
can view all errata that has been submitted for this book and posted by Wrox editors. A complete
book list including links to each book’s errata is also available at www.wrox.com/misc-pages/
booklist.shtml.

If you don’t spot “your” error on the Book Errata page, go to www.wrox.com/contact/
techsupport.shtml and complete the form there to send us the error you have found. We’ll check
the information and, if appropriate, post a message to the book’s errata page and fi x the problem in
subsequent editions of the book.

P2P.WROX.COM

For author and peer discussion, join the P2P forums at p2p.wrox.com. The forums are a Web-based
system for you to post messages relating to Wrox books and related technologies and interact with
other readers and technology users. The forums offer a subscription feature to e-mail you topics
of interest of your choosing when new posts are made to the forums. Wrox authors, editors, other
industry experts, and your fellow readers are present on these forums.

At http://p2p.wrox.com you will fi nd a number of different forums that will help you not only as
you read this book, but also as you develop your own applications. To join the forums, just follow
these steps:

 1. Go to p2p.wrox.com and click the Register link.

 2. Read the terms of use and click Agree.

 3. Complete the required information to join as well as any optional information you wish to
provide and click Submit.

 4. You will receive an e-mail with information describing how to verify your account and
complete the joining process.

You can read messages in the forums without joining P2P but in order to post your
own messages, you must join.

flast.indd xxiflast.indd xxi 12/31/11 9:40:44 AM12/31/11 9:40:44 AM

Downloaded from: www.bookarchive.ws

http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://www.wrox.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

xxii

INTRODUCTION

Once you join, you can post new messages and respond to messages other users post. You can
read messages at any time on the Web. If you would like to have new messages from a particular
forum e-mailed to you, click the Subscribe to this Forum icon by the forum name in the forum
listing.

For more information about how to use the Wrox P2P, be sure to read the P2P FAQs for answers to
questions about how the forum software works as well as many common questions specifi c to P2P
and Wrox books. To read the FAQs, click the FAQ link on any P2P page.

flast.indd xxiiflast.indd xxii 12/31/11 9:40:50 AM12/31/11 9:40:50 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

WHAT’S IN THIS CHAPTER?

Learning about the software used in this book

Downloading the book’s SDK

Understanding the SDK architecture

Importing projects into your IDE

Understanding this book’s template application

Learning how to work with the template code structure

In this chapter, you will fi rst start by setting up your development environment to be able to
work with this book’s tutorials and examples.

You will then receive a quick introduction about this book’s SDK and where to download it,
and learn about the different directories it contains. Then you will learn how to import this
book’s existing SDK projects and templates into your favorite IDE, as you will do throughout
this book when following the different tutorials.

Moving on to the last section of this chapter, you will learn about this book’s cross-platform
template project. And fi nally, this chapter concludes with a quick tutorial that will help you to
get familiar with the events of the template, as well as with the tone that will be used for all the
tutorials in this book.

➤

➤

➤

➤

➤

➤

1

c01.indd 1c01.indd 1 12/31/11 8:53:28 AM12/31/11 8:53:28 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 ❘ CHAPTER 1 GETTING STARTED

SOFTWARE REQUIREMENTS

This book’s content is built to run on iOS 5.x+ as well as for Android 2.x+, the latest and most
stable versions of these two mobile operating systems at the time this book was written.

For iOS Developers

To use this book for iOS, all you have to do is to grab a copy of the latest iOS SDK available at
http://developer.apple.com, and install it on your Mac.

Out-of-the-box the iOS SDK provides a simulator with full GLES v2 support, so even if you do not
have an iOS device, or do not have an offi cial iOS Developer Certifi cation from Apple, you can still
make full use of this book.

For Android Developers

To set up your environment for Android, it is unfortunately not as easy as for iOS. First go to
http://developer.android.com/sdk/installing.html and follow the instructions to install the
Android SDK, Eclipse, and the ADT plug-in. Please note that the Android SDK version used for this
book was v2.3.4, but later versions should also work as well.

All the code in this book uses C/C++, which means that you will have to install Android Native
Code support. To fi nalize the installation of your development environment, follow these steps:

 1. Grab a copy of the Android NDK at the following address: http://developer.android
.com/sdk/ndk/index.html. The version used at the time of writing this book was r5c,
but all examples and tutorials should work on later versions as well. Download the
Android NDK zip package and decompress it on your machine where you have read and
write access.

 2. In order to compile and debug native code using Eclipse, you will need to install the
Sequoyah plug-in. To do this, fi rst enable the repository that is located (from the Eclipse
main menu) in: Help ➪ Install New Software ➪ Available Software Sites ➪ Sequoyah
Metadata Repository. Then select the entry from the Work With combo box, and once the
repository data is loaded, select and install the Sequoyah Android Native Code Support, as
shown in Figure 1-1.

 3. Once Sequoyah is installed, go to (from the main menu): Eclipse Preferences ➪ Android ➪
Native Development and specify the location where you extracted the Android NDK in step 1,
as shown in Figure 1-2.

c01.indd 2c01.indd 2 12/31/11 8:53:33 AM12/31/11 8:53:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Software Requirements ❘ 3

FIGURE 1-1: Sequoyah Native Code Support plug-in

FIGURE 1-2: Specify the location of the Android NDK

c01.indd 3c01.indd 3 12/31/11 8:53:33 AM12/31/11 8:53:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 ❘ CHAPTER 1 GETTING STARTED

Congratulations — your Android development environment is now all set! However, please note that
in order to use this book with Android you will need an actual device with OpenGL ES 2.0 support.
The emulator provided by the Android SDK supports only OpenGL ES 1.x, not OpenGL ES 2.0.
So local deployment on the simulator is not possible on Android; only device deployment is
supported when using GLES 2.

DOWNLOADING THE BOOK’S SDK

Once your development environment is set up, you should now grab a copy of this book’s
SDK. The offi cial SDK is available for download at http://www.wrox.com. Alternatively,
if you wish to download it through GIT, go to the offi cial GFX 3D engine website, http://
gfx.sio2interactive.com, where you can fi nd detailed instructions.

If you have downloaded the zip fi le, simply decompress it in a directory that you have read and write
access to. If you have downloaded it using GIT, all the fi les and the SDK architecture are already
available on your drive.

The architecture of this book’s SDK is very simple. For more information, please refer to the
following directory list:

_chapter#-#: Contains the fi nal result that you should reproduce by reading the tutorials
in the book. At any time while reading this book, if you feel that the instructions are not
clear, or if you are unsure where to insert some code, or even if you simply want to preview
the fi nal result of a tutorial, open this directory. Inside the directory, you can then fi nd at
the root the source fi les used by the tutorial (respectively named templateApp.cpp and
templateApp.h) and two directories
that contain the project fi les for iOS and
Android. You can then load the project
into your IDE and rebuild it from scratch.

common: Contains the free and open
source GFX 3D engine (the mini game
and graphics engine that you will be
using in this book) source code of the
version that was used to create the
templates and tutorials for this book,
along with the source of the libraries the
engine depends on. The GFX 3D engine
is a very small and lightweight graphic
engine that is built with bits and pieces of my own professional engine. It is very small, fast,
fl exible, and scalable; and will allow you to render state-of-the-art graphics on your mobile
device, as shown in Figure 1-3.

data: In this directory, you can fi nd all the original assets that were used in each tutorial.
These assets are either linked dynamically to the projects (in the case of iOS) or simply
duplicated inside the assets directory of each Android tutorial. Please note that all the

➤

➤

➤

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 1-3: An FPS demo using the GFX 3D engine

Models and textures are generously provided by

David Radford (http://dmradford.com).

c01.indd 4c01.indd 4 12/31/11 8:53:34 AM12/31/11 8:53:34 AM

Downloaded from: www.bookarchive.ws

http://www.wrox.com
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Importing Projects ❘ 5

original project 3D scenes are available as .blend (the default fi le extension of Blender).
It is not mandatory, but highly suggested that you download a copy of Blender for your
platform, which is available at http://blender.org. This will enable you to study the way
the scenes are built and how the assets are linked and exported to the Wavefront OBJ (the
offi cial 3D model exchange format used in the book).

EULA: In here, you can fi nd all the End User License Agreements for the different libraries
that this book’s SDK relies on. If you plan to release a commercial application using this
book’s SDK, make sure that your application complies with all of these licenses.

glsloptimizerCL: Contains the source to a simple yet powerful command line program that
you can use to optimize your GLSL code (as demonstrated in Chapter 5, “Optimization”).

md5_exporter: A python script for Blender (v2.6x) that allows you to export bone animation
sequences created in Blender to the MD5 version 10 fi le format (script generously provided by
Paul Zirkle).

template: The original template project that you will be using when creating a new project
from scratch.

template_chapter#-#: In order to speed up and avoid redundancies, you will duplicate
these directories by following the tutorials throughout the book. This will give you a head
start and save you from having to rebuild everything from scratch using the default template
project.

IMPORTING PROJECTS

This book has over 50 tutorials, varying from the demonstration of a single technique to full-fl edged
games. To be able load and rebuild the projects from this book into your IDE, you will have to
import them. To do this, just follow the instructions in the subsection that corresponds to the type
of developer you are.

For iOS Developers

As usual for iOS developers, importing fi les is very easy. All you have to do to import a project
into XCode is simply double-click the .xcodeproj fi le. To compile, simply click the Build & Run
button.

For Android Developers

Things are a little bit more tedious if you’re using Eclipse. You need to import this book’s
projects as instructed in the following procedure. Of course, this procedure assumes that you
have properly installed and confi gured Android SDK, Android NDK, Eclipse Classic, the ADT
plug-in, and the Sequoyah Android Native Development plug-in (as described at the beginning of
this chapter).

➤

➤

➤

➤

➤

c01.indd 5c01.indd 5 12/31/11 8:53:35 AM12/31/11 8:53:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 ❘ CHAPTER 1 GETTING STARTED

Once you have confi gured all the necessary prerequisite fi les, follow these steps to import this
book’s project fi les:

 1. From the Eclipse main menu, select File ➪ New ➪ Android Project. The New Android
Project dialog should appear.

 2. In the Project name text box, enter the project name. Example: chapter2-1.

 3. Select the Create Project From Existing Source option.

 4. Click the Browse button, and then select the existing Android directory inside the chapter
or template project. Example: <path_to_sdk>/SDK/_chapter2-1/Android.

 5. Click the Finish button at the bottom of the dialog box.

Figure 1-4 illustrates each of these steps.

FIGURE 1-4: Importing an Android project into Eclipse

c01.indd 6c01.indd 6 12/31/11 8:53:35 AM12/31/11 8:53:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Template ❘ 7

Every time you want to open an existing Android project using Eclipse, you will have to go through
this importing procedure.

THE TEMPLATE

As briefl y mentioned earlier in this chapter, you will work mostly with the template project that is
provided inside this book’s SDK. This template is a C/C++ cross-platform project that initializes
internally for you a vanilla, ready-to-use OpenGLES 2 context. In addition, the template provides an
init and exit function callback, which you can just plug your creation and destruction code into.

The template also provides you with an easy-to-use callback mechanism that acts as a universal
HUB to handle all the platform-specifi c events for you.

Using this mechanism, all you have to do is to link a function callback for the specifi c event you
want to intercept, and you’ll receive updates for this event in real time. This mechanism covers all of
the touche events such as ToucheBegan, ToucheMoved, ToucheEnded, as well as the accelerometer
data. In other words, everything is already set up for you. You can just go ahead and create the code
as instructed in this book’s tutorials without having to worry about platform-specifi c issues.

As the title of this chapter says, it’s time to get started! In order to get familiar with both the template
and the type of tutorials you will be studying throughout this book, follow these instructions:

 1. Duplicate the template project directory at the root of the SDK and rename it template_test.

 2. Load the template_test project (following the appropriate importing method for your
platform as described previously) into your IDE, and then open the templateApp.cpp (for
iOS developers, it is located under the templateApp directory inside the Project Navigator;
for Android developers, you can fi nd it under the jni directory inside the Project Explorer
panel).

 3. Read the code comments that explain what each function is doing.

 4. Uncomment the following callbacks from the initialization (TEMPLATEAPP templateApp =
{): templateAppToucheBegan, templateAppToucheMoved, and templateAppToucheEnded.

 5. Move to the templateAppInit function and add the following code on the line before the
end bracket of the function:

 /* Use the built-in GFX cross-platform API to print on the
console (XCode) or LogCat (Eclipse) that the execution pointer
passes the templateAppInit function. */
 console_print(
 “templateAppInit, screen size: %dx%d\n”, width, height);

 6. On the line before the end bracket of the templateAppDraw function callback, add the
following code block:

 /* Specify that you want to use a chili red color to clear the
screen and spice up your app. */
 glClearColor(1.0f, 0.0f, 0.0f, 1.0f);
 /* Report that the execution pointer was here. */
 console_print(“templateAppDraw\n”);

c01.indd 7c01.indd 7 12/31/11 8:53:36 AM12/31/11 8:53:36 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 ❘ CHAPTER 1 GETTING STARTED

 7. Add the following line before the end bracket of the templateAppToucheBegan function:

 /* Print that the execution pointer enters the touche began
function and print the touche XY value as well as the number of
taps. */
 console_print(“templateAppToucheBegan,”
 “touche: %f,%f”
 “tap: %d\n”, x, y, tap_count);

 8. Repeat the same procedure as in step 7 for templateAppToucheMoved and
templateAppToucheEnded, updating the console_print text with the appropriate callback
function you are dealing with.

 9. Move on to the templateAppExit function that has already been linked to the atexit
built-in C function, and add the following line before the end bracket of the function:

 console_print(“templateAppExit...\n”);

 10. Build and run the application. While the application is running, observe the console or
LogCat (depending on which platform you are developing for). Touch the screen, move your
fi nger around, and monitor in real time on the console how and in which sequence events
are triggered internally.

SUMMARY

By stepping through this chapter, you now have your development environment set up. You have this
book’s SDK resident on your drive and have learned how to fi nd your way around its architecture.

You now know how to import new or existing projects into XCode or Eclipse, and have a good
overview of what the default template project can do for you.

You are now ready to embark on a very challenging journey in game and graphics programming.
Before moving on to the next chapter, make sure that you fully understand what has been covered
inside the different sections of this chapter.

c01.indd 8c01.indd 8 12/31/11 8:53:36 AM12/31/11 8:53:36 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Setting Up Your Graphic
Projections

WHAT’S IN THIS CHAPTER?

Understanding how the diff erent types of projection matrices work,

how to use them, and when

Getting familiar with the template application that comes with the

SDK and learning how to customize it for your specifi c needs

Building your fi rst practical application — learning how to set it up

and use the diff erent types of projections

Before you can draw any graphics onscreen, you fi rst need to create a projection matrix.
The type of graphics you plan to use will have a direct impact on the creation of this matrix.
Whether it is 2D, 2.5D, or 3D, each type of projection matrix will require a different
initialization, allowing you to create the necessary perspective for your specifi c needs.

In this chapter, you will learn about the three primary types of projections used in modern
mobile games and how to use them.

In addition, this chapter will teach you how to work with this book’s template project and
walk you through three progressive exercises. In these exercises, you will learn how to
manipulate the most common types of graphic projections and draw simple geometry onscreen;
handle vertex and fragment shaders and link them to a shader program; manipulate vertex
attributes and uniform variables; translate, rotate, and scale basic geometry; and create a simple
camera look-at matrix.

➤

➤

➤

2

c02.indd 9c02.indd 9 12/31/11 8:56:17 AM12/31/11 8:56:17 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10 ❘ CHAPTER 2 SETTING UP YOUR GRAPHIC PROJECTIONS

THE THREE BASIC TYPES OF PROJECTIONS

When drawing using OpenGL ES, you always have to keep in mind the sequence of your drawings
and in which perspective space you want to draw. Needless to say, this sequence will directly affect
the type of projection and the sequence of creation of your projection’s matrix.

For example, if you want to draw a heads-up display (HUD) that contains your character data on
top of your scene, you fi rst need to set up a 2D, 2.5D, or 3D perspective (depending on the type of
game you are working on), and then draw your game scene. After your scene is rendered in the color
buffer, you need to render your character life bar, ammo, etc. on top of it. Simply scaling your HUD
graphics onscreen to fi t the current drawing perspective would deteriorate their overall aspect ratio,
eventually making them distorted. Knowing this, the right way to draw the HUD of your game
would be to create a projection matrix that has a ratio of 1 unit to 1 pixel. Since your HUD consists
of multiple 2D graphics, and it is important to respect their ratio onscreen, a 1:1 2D projection will
allow you to draw them consistently onscreen.

There are three distinct types of projections that can be used in any game genre:

Orthographic 2D Projection: This type of projection is used to draw any HUD, as in the
example described previously. This type of projection was also used in the “old school”
side-scroller genre and other types of games, such as the classic Tetris and older grid-based
role-playing games. As mentioned, this type of projection will have a 1:1 ratio onscreen,
which means that the size of your drawing is directly affected by the size in pixels of the
squares (quads) that you are sending to the GPU (graphical processing unit). In a more
modern usage, this types of projection is mostly used only to draw menus, text, HUD,
or other types of static (or semi-dynamic) 2D information onscreen. Since a third level of
dimension is not available, and because the depth range is limited from -1 to 1 (with -1
being the nearest point onscreen and 1 the farthest), the use of the depth buffer is basically
obsolete and should be turned off. In addition, the rendering sequence should be done from
back to front to avoid overwriting pixels.

Orthographic (Ortho) Projection: This type of projection allows you to draw in a
semi-2D environment while still considering a third level of dimension, where the
perspective is strictly based on the current
screen ratio. This type of projection is
the one used by every modern 2D/2.5D
shoot ’em up-type game and real-time
strategy games. When using this type of
projection, you can still have access to
a third level of dimension and make full
use of the depth buffer. Figure 2-1 shows
an example of a game that uses a 2D
orthographic projection in conjunction
with the depth buffer.

Perspective Projection: This type of projection matrix is the one that you see at work
inside all fancy 3D games that render in real-time dynamic and realistic 3D worlds

➤

➤

➤

FIGURE 2-1: Ragdoll Launcher by SIO2 Interactive

c02.indd 10c02.indd 10 12/31/11 8:56:19 AM12/31/11 8:56:19 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Orthographic 2D Projection ❘ 11

onscreen. With this kind of projection,
you can simulate what a 3D world
would look like from a real human-eye
perspective. In addition to the screen
aspect ratio, this sort of projection takes
into consideration the fi eld of view
of the camera looking at the scene, as in
the futuristic car game for iOS shown
in Figure 2-2.

ORTHOGRAPHIC 2D PROJECTION

Now it’s time to get your hands dirty and start looking at the necessary code to set up a 2D
orthographic projection matrix.

In this section, you will create from scratch a simple program using the template project from this
book’s SDK. Your fi rst app will use a screen projection to draw a scaled colored quad onscreen in
absolute pixel coordinates.

Before diving into the code, fi rst duplicate the template project directory located at the
root of the SDK. In order to do this, simply right-click on it and create a local copy of the
folder, and then rename it chapter2-1. Once the project is loaded into your favorite IDE,
locate the templateApp.cpp source fi le and open it in the code editor.

The fi rst step for you to get started with the tutorials of this chapter is to adjust your newly created
template project by removing the callback functions that you will not need for the exercises in this
chapter.

You will concentrate your efforts on the templateAppInit and the templateAppDraw function
callbacks, so you can remove the rest of the callbacks and code comments and have a clean template
to start working on. Modify the code so you get the following result:

#include “templateApp.h”

TEMPLATEAPP templateApp = { templateAppInit,
 templateAppDraw };

void templateAppInit(int width, int height) {
 atexit(templateAppExit);
 GFX_start();
 glViewport(0, 0, width, height);
}

void templateAppDraw(void) {
 glClear(GL_COLOR_BUFFER_BIT);
}

void templateAppExit(void) {
}

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 2-2: Sky Racer by SIO2 Interactive

c02.indd 11c02.indd 11 12/31/11 8:56:20 AM12/31/11 8:56:20 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12 ❘ CHAPTER 2 SETTING UP YOUR GRAPHIC PROJECTIONS

Program and Project Initialization

The following steps will guide you through the necessary procedure in order to set up global
variables used by your fi rst program. In addition, you will learn about the different types of
structures provided in this book’s SDK that will help you manipulate different aspects of your
programs, such as shaders and loading assets from disk. You will also learn how to create your fi rst
2D screen projection matrix, using the API provided in the SDK.

 1. At the top of the templateApp.cpp source fi le (on the line just before the templateAppInit
function declaration), defi ne your vertex and fragment shader fi lenames as follows:

#defi ne VERTEX_SHADER (char *)”vertex.glsl”
#defi ne FRAGMENT_SHADER (char *)”fragment.glsl”

 2. Declare a fl ag to toggle ON (1) or OFF (0) the shader debugging functionalities. No
debugging usually means faster shader compilation, but no errors will be reported, and the
result is undefi ned if an error does occur. Therefore, you should keep this fl ag toggle ON
while you are developing your program.

#defi ne DEBUG_SHADERS 1

 3. Create an empty PROGRAM structure for managing all your shader programs, as follows:

PROGRAM *program = NULL;

The PROGRAM structure is the one that you are going to use throughout this book to handle
shader programs. The full source code of the implementation is available inside the SDK/
common/program.cpp and program.h source fi les. The code of the SHADER structures linked
to the PROGRAM can be found inside the shader.cpp and shader.h source fi les, which are
also located inside the SDK/common directory of the book’s source code package. Basically,
this pre-made structure handles all interactions between the vertex and fragment shaders
and the main shader program. This allows you to compile your shaders and link them to a
shader program automatically. In addition, this structure provides you with an easy-to-use
way to gain access to uniform variable(s) and vertex attributes that are automatically
assigned by the GPU. It also provides an easy-to-use callback mechanism that allows you to
access, set, and modify these uniform variables in real time.

 4. Declare a MEMORY structure pointer as follows:

MEMORY *m = NULL;

This object is also part of the SDK and basically behaves like FILE in C, with the exception
that all the work is done in memory. On mobile devices, the system memory is the fastest
way to deal with data. In this exercise, you are going to use this structure to read your
shader fi les from disk. As a general rule, you should avoid disk access if possible. By using
this structure instead, you will get a better loading speed and more fl exibility when loading
your assets.

 5. In this step, you’ll modify the content of templateAppInit to suit your needs. Since it’s
the fi rst time you’re working with this function, I’ll explain a few things, starting with the

c02.indd 12c02.indd 12 12/31/11 8:56:20 AM12/31/11 8:56:20 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Orthographic 2D Projection ❘ 13

fi rst function call. This call uses the standard atexit function, which will allow you to get
a feedback when the application exits. You can then program the necessary code to fl ush
whatever is still alive in memory. For every tutorial and exercise in this book, make sure
that the templateAppExit is always linked to atexit, as in the following line:

void templateAppInit(int width, int height) {
 atexit(templateAppExit);

 6. Start the GLES initialization using the GFX helper function, which is also part of this
book’s SDK:

 GFX_start();

This line initializes all the OpenGL ES standard machine states to make sure that
everything is set up properly, regardless of the current driver of the device you are using. For
more information concerning the GFX_start function, do not hesitate to consult its source
code located in SDK/common/gfx.cpp.

Quick side note on the GFX implementation: It also provides matrix manipulation
functionalities that are not available in GLES2, and mimics the matrix mechanism found in
GLES1 and GL desktop implementations.

By using the GFX helpers, you can easily push, pop, load, and multiply matrices and gain
direct access to the model view, projection, normal, and texture matrix in a similar fashion
as you would normally do with the older version of OpenGL ES and OpenGL.

 7. Use the standard glViewport command to set the GL viewport with the current screen
dimensions:

 glViewport(0, 0, width, height);

 8. Now use the GFX_set_matrix mode function to tell the GFX implementation to focus the
projection matrix in order for you to setup your 2D projection:

 GFX_set_matrix_mode(PROJECTION_MATRIX); {

 9. Declare two temporary float variables to hold half of the screen width and height, as
follows:

 fl oat half_width = (fl oat)width * 0.5f,
 half_height = (fl oat)height * 0.5f;

 10. Next you need to make sure that the current projection matrix is clean. To clean it up,
simply load the identity matrix using the following function call.

 GFX_load_identity();

 11. Now you are ready to set up your 2D screen projection using the GFX_set_orthographic_2d
function by passing in parameters half of the screen dimensions on both the positive and
negative side of the origin of the viewport matrix (left, width, right, height). This operation

c02.indd 13c02.indd 13 12/31/11 8:56:21 AM12/31/11 8:56:21 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 ❘ CHAPTER 2 SETTING UP YOUR GRAPHIC PROJECTIONS

will position the point of origin, or pivot point if you prefer, of the projection matrix right
in the middle of the screen using a 1:1 ratio between GL units and screen pixels.

 GFX_set_orthographic_2d(-half_width,
 half_width,
 -half_height,
 half_height);

 12. Next, in order to be consistent with OGL, translate the matrix to the bottom left of the
screen as follows:

 GFX_translate(-half_width, -half_height, 0.0f);

As you might already know, OpenGL uses the bottom-left corner of the color buffer as the
0,0 coordinate. The GFX_translate function call you’ve just inserted will translate the
default location of the matrix to be aligned with the GL color buffer coordinate. This will
ensure that all your drawings will be relative to the bottom-left corner of the screen.

 13. As mentioned earlier in this chapter, you don’t really need to use the depth buffer when
using this type of projection because most of the time when using this mode, you simply
want to overwrite the color buffer. So turn off the depth buffer as follows:

 glDisable(GL_DEPTH_TEST);

 14. Since the depth buffer is OFF, you can also turn OFF the depth mask.

 glDepthMask(GL_FALSE);
 }

Vertex and Fragment Shader

Because the purpose of this book is to present you with a straightforward approach to implementing
the different elements of a game and graphic engine, I will not go into detail about the specifi cs
of the GLSL ES language. For more information about GLSL ES, feel free to visit http://www
.khronos.org/registry/gles/specs/2.0/GLSL_ES_Specification_1.0.17.pdf.

Before moving on with core code to load the necessary vertex and fragment shaders for this exercise
inside the templateAppInit function, you fi rst need to create a vertex and fragment shader.

Since shaders are all text based, you can use any text editor that you want to write them. For this
example, create two empty shader fi les. Name them vertex.glsl and fragment.glsl, and save
them at the root of the current exercise directory (SDK/chapter2-1/).

To package these two shaders and make them accessible within your app bundle, you need to link
them to your project.

If you are an XCode user, simply select the two .glsl fi les using Finder, then drag and drop them
directly inside the Resources directory of your project tree, and confi rm the operation.

If you are an Eclipse user, simply select the two .glsl, fi les and then copy and paste them inside the
assets directory of your project.

c02.indd 14c02.indd 14 12/31/11 8:56:21 AM12/31/11 8:56:21 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Orthographic 2D Projection ❘ 15

For both iOS and Android, the shader fi les will be bundled within your application and will be
accessible at runtime. In addition, please take note that from now on, I will refer to this procedure
every time you will be required to link an asset to your project (since it will be the same for models,
textures, sounds, physics fi les, etc.).

vertex.glsl

For this example, you are simply going to draw a colored square onscreen. First, you need to write
the necessary code to transform the vertices, and then you need to get the color for each vertex and
send it over to the fragment shader for pixel processing. To do this, open the vertex.glsl fi le and
execute the following steps:

 1. On the fi rst line of the vertex shader, you will have to defi ne a uniform variable (meaning
that the value of this variable can be manipulated within your C/C++ code). This variable
is going to hold the result of the current projection matrix multiplied by the current model
view matrix in order to transform each and every vertex that will be sent down to the
shader to be displayed onscreen.

uniform mediump mat4 MODELVIEWPROJECTIONMATRIX;

 2. Then you need to have a variable to contain the vertex position that the vertex shader is
currently handling. In order to handle this type of variable, you need to declare it using the
attribute specifi er, and because it’s handling the vertex position, call it POSITION,
as shown here:

attribute mediump vec4 POSITION;

 3. The quad will also receive a color associated with each vertex position. So declare another
variable using the attribute keyword to defi ne the color per vertex, and name it COLOR:

attribute lowp vec4 COLOR;

 4. As mentioned previously, vertex shaders strictly deal with vertices, so in order to be able
to pass the COLOR variable to the fragment shader for pixel processing, you have to use a
middleman variable that will send this color over to the fragment shader. The specifi er used
for this type of task is varying, and since you have declared COLOR in uppercase as the
attribute, you can call this one color (lowercase).

varying lowp vec4 color;

 5. Next, you need to insert the main function of the shader. Just like in C/C++, every shader
is required to have a main function in order to determine the default entry point of the
execution pointer.

void main(void) {

 6. Every time you have to process a vertex and make it visible onscreen, you will have to use
the built-in gl_Position variable. In order to be able to see this vertex onscreen, you will

c02.indd 15c02.indd 15 12/31/11 8:56:22 AM12/31/11 8:56:22 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 ❘ CHAPTER 2 SETTING UP YOUR GRAPHIC PROJECTIONS

have to assign it the result of the vertex position multiplied by the projection matrix and the
model view matrix, just like this:

 gl_Position = MODELVIEWPROJECTIONMATRIX * POSITION;

 7. Only one crucial operation remains to set up your vertex shader: sending the vertex color
to the fragment shader. In order to do this, simply assign the value COLOR to the varying
variable color so the value can be associated with the similar variable inside the fragment
shader that you will create in a minute.

 color = COLOR;
} /* Close the main function */

 8. Save the fi le.

A Few Words about Precision Qualifi ers

Before moving on with the fragment shader code, you might already notice that before declaring any
variables in GLSL ES, you have the opportunity to use a precision qualifi er.

Especially implemented for GLSL ES, precision qualifi ers can control the level of fl oating-point precision
(including vectors and matrices) as well as integer variables. When used wisely, these qualifi ers can
drastically increase the performance of your shader programs and improve their execution time.

The less time it takes the GPU to execute your shader programs, the more GL instructions can be
added, giving you the opportunity to render more complex drawing onscreen while keeping an
acceptable frame rate.

Table 2.1 lists the precision keywords and their ranges for fl oats and integers.

TABLE 2-1: Precision Qualifi ers Table

PRECISION FLOATING POINT RANGE INTEGER RANGE

highp �2^62 to 2^62 �2^16 to 2^16

mediump �2^14 to 2^14 �2^10 to 2^10

lowp �2.0 to 2.0 �2^8 to 2^8

fragment.glsl

It’s time to write the fragment shader for this exercise. As you might have guessed, the fragment
shaders strictly deal with pixel-based operations. In this fi rst example, there won’t be too much code
inside your fragment shader; however, as you are going forward in this book, the level of complexity
will drastically increase.

Use the text editor of your choice to open fragment.glsl, and then follow these steps to create
your fi rst fragment shader:

c02.indd 16c02.indd 16 12/31/11 8:56:22 AM12/31/11 8:56:22 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Orthographic 2D Projection ❘ 17

 1. Declare a varying variable named color using the same syntax as the one you declared in
the vertex.glsl fi le. Since they are exactly the same, and since both of them are declared
using the varying specifi er, the shader compiler will automatically associate them and
will send you the value that you have set in the vertex shader to your fragment shader for
processing.

varying lowp vec4 color;

 2. Now create the main entry point of your fragment shader by inserting the main function:

void main(void) {

 3. To assign the color that you specify in your vertex shader, simply assign the varying
variable color to the built-in gl_FragColor:

 gl_FragColor = color;
}

 4. Save the fi le.

Linking a Shader Program

It’s now time to attack the necessary code to actually link your vertex and fragment shader to the
PROGRAM structure.

Since this is the fi rst example in this book, and since you are going to work with the PROGRAM
structure and its functionalities in subsequent chapters, I’m going to walk you through the full
initialization process.

Now let’s go back to templateApp.cpp, or more precisely, back to the templateAppInit function.

 1. First, you have to initialize your program variable pointer, so add the following line:

 program = PROGRAM_init((char *)”default”);

This function will automatically assign the required memory and set the whole structure
to be blank and ready to receive other commands in order to successfully link a shader
program. The last parameter of this function, the name, is strictly there for your
convenience. In this exercise, you are basically only going to deal with one PROGRAM. But
you will have to deal with multiple PROGRAM structures as you are progressing throughout
this book, so this function will enable you to associate a name with them for identifi cation
purposes.

 2. Next, you need to create a new vertex and fragment SHADER pointer by calling their
associated _init function as follows:

 program->vertex_shader = SHADER_init(VERTEX_SHADER,
 GL_VERTEX_SHADER);
 program->fragment_shader = SHADER_init(FRAGMENT_SHADER,
 GL_FRAGMENT_SHADER);

c02.indd 17c02.indd 17 12/31/11 8:56:22 AM12/31/11 8:56:22 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18 ❘ CHAPTER 2 SETTING UP YOUR GRAPHIC PROJECTIONS

The fi rst parameter of the SHADER_init function represents the internal name to use for the
shader, and the second one represents the type so GLES can associate them accordingly.

As you can see, you have now initialized the two SHADER pointers of the PROGRAM structure.
Alternatively, you could initialize them as independent SHADER pointers and attach them
manually to your PROGRAMs before the linking phase, making them reusable.

 3. In order to be able to load the shaders you’ve created from disk, you now need to load their
content in memory. To do this, simply use the MEMORY structure like this:

 m = mopen(VERTEX_SHADER, 1);

The fi rst parameter is the fi le name, and the next parameter lets you specify whether the
path is relative to the application or not (either 1 for yes or 0 or no).

 4. For safety purposes, and in order to see how the loading mechanism behind mopen works,
effectuate a pointer check on the m variable as follows:

 if(m) {

Please take note that if the fi le fails to load, the pointer will be NULL. A non-empty pointer
will confi rm that the fi le has been loaded and currently resides in memory.

 5. Now you need to compile your vertex shader code that is currently contained inside the
MEMORY buffer pointer (m->buffer) by passing it to the SHADER_compile function as
follows:

 if(!SHADER_compile(program->vertex_shader,
 (char *)m->buffer,
 DEBUG_SHADERS)) exit(1);

The fi rst parameter of this function is, of course, a valid SHADER structure pointer that
represents the shader you want to compile the code for. The next parameter is the shader
source, which in this case is accessible from memory. The last parameter allows you to
toggle debugging functionalities ON or OFF.

As you can see from the preceding code, if the SHADER_compile function fails to compile
the code, the function will return 0. In this case, this will trigger an early exit and call the
templateAppExit function.

 6. Enter the following code to free the MEMORY structure pointer m, because you are going to
reuse it for loading the fragment shader in the next step.

 }
 m = mclose(m);

 7. It’s time to load the fragment shader and compile it. To do this, simply reuse the same
loading code structure that you used for the vertex shader, except this time, you have to
specify the FRAGMENT_SHADER fi le as shown here:

 m = mopen(FRAGMENT_SHADER, 1);
 if(m) {

c02.indd 18c02.indd 18 12/31/11 8:56:23 AM12/31/11 8:56:23 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Orthographic 2D Projection ❘ 19

 if(!SHADER_compile(program->fragment_shader,
 (char *)m->buffer,
 DEBUG_SHADERS)) exit(2);
 }
 m = mclose(m);

You now have your vertex and fragment shader properly compiled and ready to be linked
to your shader PROGRAM. Please note that it takes at least one valid and compiled vertex
shader and one valid and compiled fragment shader to be able to successfully link a shader
program; otherwise, the shader compiler will fail and report an error on the system console.

 8. Call the PROGRAM_link function in order to execute the fi nal linking phase of your vertex
and fragment shader:

 if(!PROGRAM_link(program, DEBUG_SHADERS)) exit(3);

Take note that similar to the previous SHADER_compile function, the last parameter of
PROGRAM_link determines if the debug functionality should be used. And as previously
mentioned, if an error occurs, the function will return 0 and the error message(s) will be
reported on the system console.

The Drawing Code

The next step in order to get your app up and running is to deal with the templateAppDraw
function. In this function, you will plug in the necessary code to be able to actually render
something onscreen. In addition, you will also set up the different vertex attributes and control the
uniform variable within your application.

Preparing the Frame

Before being able to actually start drawing something, you fi rst have to prepare the data that you
need in order render a single frame. At this point, one important piece is missing before any frame
can be displayed onscreen. You need to actually declare all the vertices and the vertex color as well
as the visual transformation that your quad will use to be displayed onscreen. To do this, just follow
these steps:

 1. Start by declaring some 2D positions (the vertices) that will then be linked together in order
to draw a quad onscreen. To declare the vertices, insert the following declaration right after
the start bracket of templateAppDraw:

 static const fl oat POSITION[8] = {
 0.0f, 0.0f, // Down left (pivot point)
 1.0f, 0.0f, // Up left
 0.0f, 1.0f, // Down right
 1.0f, 1.0f // Up right
 };

 2. You now need to declare the vertex colors and associate them with the vertex position
array you created in step 1. For this, all you have to do is to declare them in the same order
as their counterpart in the POSITION array. As a result, the fi rst vertex will be associated

c02.indd 19c02.indd 19 12/31/11 8:56:23 AM12/31/11 8:56:23 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20 ❘ CHAPTER 2 SETTING UP YOUR GRAPHIC PROJECTIONS

with the fi rst RGBA color, the second vertex with the second color, and so on. Now append
this code:

 static const fl oat COLOR[16] = {
 1.0f /* R */, 0.0f /* G */, 0.0f /* B */, 1.0f /* A */, /* Red */
 0.0f, 1.0f, 0.0f, 1.0f, /* Green */
 0.0f, 0.0f, 1.0f, 1.0f, /* Blue */
 1.0f, 1.0f, 0.0f, 1.0f /* Yellow */
 };

 3. Now that you have all the necessary values required to draw, it’s time to start constructing
the rendering loop of your application. First, specify which color value will be used to
clean the color buffer (in this case, a light gray) by inserting the following code before the
glClear function call:

 glClearColor(0.5f, 0.5f, 0.5f, 1.0f);

 4. In order to avoid overwriting pixels, you need to tell OpenGL to clear the color buffer every
time the templateAppDraw function is called, as follows:

 glClear(CL_COLOR_BUFFER_BIT);

 5. In step 1, you basically created a 1 by 1 pixel quad, which will be really hard to see
onscreen. To make the quad more visible onscreen, all you have to do is scale it on the X
and Y axis by adding this code:

 /* Select the model view matrix. */
 GFX_set_matrix_mode(MODELVIEW_MATRIX);
 /* Reset it to make sure you are going to deal with a clean
identity matrix. */
 GFX_load_identity();
 /* Scale the quad to be 100px by 100px. */
 GFX_scale(100.0f, 100.0f, 0.0f);

Drawing the Quad

The next logical step is to start calling the necessary APIs to tell the GPU to actually draw something
onscreen. To do this, follow these steps:

 1. Make sure that you have a valid shader program ID by adding the following if statement:

 if(program->pid) {

As you might already know, GLES indexes always start at 1, so if the compilation of one
of your shaders fails, the program->pid will be 0 and the subsequent code will not be
executed.

 2. Declare two temporary variables that you will use to hold the vertex attribute and uniform
locations, as follows:

 char attribute, uniform;

c02.indd 20c02.indd 20 12/31/11 8:56:24 AM12/31/11 8:56:24 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Orthographic 2D Projection ❘ 21

These locations are necessary in order to effectuate the bridge between your application
data and the GPU data.

 3. Now you have to tell the GPU which program you want to use for drawing; otherwise, the
GPU won’t know what to do with the data that is sent to it. To do this, call the following:

 glUseProgram(program->pid);

 4. Enter the following code to retrieve your uniform variable location from video memory:

 uniform =
 PROGRAM_get_uniform_location(program,
 (char *)”MODELVIEWPROJECTIONMATRIX”);

Please note that the variable name you wish to retrieve the location for has to be exactly the
same as the one you declared in your shader code.

 5. The location of the uniform variable has now been retrieved, and it’s time to actually update
the data on the GPU. To do this, enter the following code:

 glUniformMatrix4fv(
 /* The location value of the uniform. */
 uniform,
 /* How many 4x4 matrix */
 1,
 /* Specify to do not transpose the matrix. */
 GL_FALSE,
 /* Use the GFX helper function to calculate the result of the
current model view matrix multiplied by the current projection matrix. */
 (fl oat *)GFX_get_modelview_projection_matrix());

 6. Now you’ll deal with the vertex attributes in a similar fashion as in the previous step.
Retrieve the location of the vertex position by entering the following:

 attribute =
 PROGRAM_get_vertex_attrib_location(program,
 (char *)”POSITION”);

 7. Once you have the location of the POSITION attribute, you can tell GLES to enable this
vertex attribute location by using the glEnableVertexAttribArray function as follows:

 glEnableVertexAttribArray(attribute);

Remember that OpenGL ES is a machine state–based implementation, so you have to make
sure that everything you want to use is enabled, and everything that you do not need is
disabled.

 8. Now you need to tell GLES which data to use for this attribute. To do this, use the
glVertexAttribPointer function as follows:

 glVertexAttribPointer(
 /* The attribute location */

c02.indd 21c02.indd 21 12/31/11 8:56:24 AM12/31/11 8:56:24 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

22 ❘ CHAPTER 2 SETTING UP YOUR GRAPHIC PROJECTIONS

 attribute,
 /* How many elements; XY in this case, so 2. */
 2,
 /* The variable type. */
 GL_FLOAT,
 /* Do not normalize the data. */
 GL_FALSE,
 /* The stride in bytes of the array delimiting the elements,
in this case none. */
 0,
 /* The vertex position array pointer. */
 POSITION);

 9. Do the same for the COLOR array by entering the following code:

 attribute =
 PROGRAM_get_vertex_attrib_location(program,
 (char *)”COLOR”);
 glEnableVertexAttribArray(attribute);
 glVertexAttribPointer(attribute,
 4,
 GL_FLOAT,
 GL_FALSE,
 0,
 COLOR);

 10. Now call the glDrawArrays function to tell the GPU to draw the data using a specifi c mode
starting from which index in the array and to use how many data:

 glDrawArrays(
 /* The drawing mode. */
 GL_TRIANGLE_STRIP,
 /* Start at which index. */
 0,
 /* Start at which index. */
 4);
} /* Close the program->pid check. */

 11. Finally call the GFX_error helper function, as a safety measure. This function will check if
a GL error occurs while drawing the current frame (if an error occurs, it will be printed on
the console for XCode users or LogCat for Eclipse users).

 GFX_error();

Cleaning Up

Move to the templateAppExit function and follow these few steps in order to clean up what has
been assigned in memory:

 1. Right after the start bracket of the function, insert a simple print to notify that the
application exits:

 printf(“templateAppExit...\n”);

c02.indd 22c02.indd 22 12/31/11 8:56:24 AM12/31/11 8:56:24 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Orthographic Projection ❘ 23

 2. Then do a pointer check on the MEMORY structure variable m since it may be still allocated when
the execution pointer reaches this line and if it is, simply free it using the mclose function:

 if(m) m = mclose(m);

 3. Add the following code to effectuate a similar check as in step 2 but this time on the two
SHADER structures as well as for the PROGRAM structure, and free them if necessary:

 if(program && program->vertex_shader)
 program->vertex_shader = SHADER_free(program->vertex_shader);
 if(program && program->fragment_shader)
 program->fragment_shader = SHADER_free(program->fragment_shader);
 if(program)
 program = PROGRAM_free(program);

You are now ready to run the program, so hit the build and run
button! You should have the same result running as shown in Figure 2-3.

This concludes the section on 2D orthographic projections. After reading
this section, you are now able to draw a simple colored quad using a 2D
orthographic projection where 1 unit equals 1 pixel. As you progress,
you will realize that you will be able to reuse this implementation to
draw HUD and menus onscreen for your game.

ORTHOGRAPHIC PROJECTION

In this section, you will learn how to create a scaled orthographic
projection that will allow you to use the screen aspect ratio to establish
a simple perspective view. In order to explore the orthographic
possibilities, you will start by simply modifying the code that you created
in the previous section. You will then add a new dimension to your
existing coordinate system. Finally, you will create a simple camera using
a look-at matrix, which allows you to specify the position and the eye
direction of the viewer inside a three-dimensional scene.

Getting Orthographic

First duplicate the previous project, chapter2-1 (located in the SDK directory), and rename the copy
for chapter2-2. You are now ready to modify the project to integrate an orthographic projection.
Follow these steps:

 1. Locate the GFX_set_matrix_mode function call inside the templateAppInit function, and
remove the block of code between the brackets {}.

 2. Insert the following lines of code between the {} to replace the previous screen projection
with an orthographic projection initialization:

 /* Clean the projection matrix by loading an identity matrix. */
 GFX_load_identity();
 GFX_set_orthographic(

FIGURE 2-3: Your fi rst

ortho 2D projection

c02.indd 23c02.indd 23 12/31/11 8:56:25 AM12/31/11 8:56:25 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24 ❘ CHAPTER 2 SETTING UP YOUR GRAPHIC PROJECTIONS

 /* The screen ratio. */
 (fl oat)height / (fl oat)width,
 /* The scale of the orthographic projection; the higher to 0,
the wider the projection will be. */
 5.0f,
 /* The aspect ratio. */
 (fl oat)width / (fl oat)height,
 /* The near clipping plane distance. */
 1.0f,
 /* The far clipping plane distance. */
 100.0f,
 /* The rotation angle of the projection. */
 0.0f);

Pay attention to the near and far clipping planes — these planes basically control at which
distance from the viewer the geometry can be seen. If your vertices after transformation
fall behind the far clipping plane or before the near clipping plane, you won’t be able to see
them onscreen because they will be clipped.

The last parameter of the GFX_set_orthographic function allows you to control the
rotation angle of the projection. Most modern devices have the ability to fl ip the screen
according to the current orientation of the device. You can then use this parameter to adjust
your scene orientation based on your device orientation.

 3. Add the following code after the orthographic projection setup call:

 glDisable(GL_CULL_FACE);

This function tells GLES to not clip backfaces. In order to gain more speed, most modern
GPUs automatically analyze triangles to determine whether they are facing the viewer or
not, and if not, automatically discard them at an early stage to avoid extra calculations.
Later in this tutorial, you will animate the quad, so you have to be sure that it will draw
properly onscreen regardless of its rotation angle. You do not want the GPU to discard any
vertex data onscreen if the quad becomes inverted.

 4. Overwrite the POSITION array declaration in the templateAppDraw function with the
following:

 static const fl oat POSITION[12] = {
 -0.5f, 0.0f, -0.5f, // Bottom left
 0.5f, 0.0f, -0.5f,
 -0.5f, 0.0f, 0.5f,
 0.5f, 0.0f, 0.5f // Top right
};

Notice that you have now added a third dimension to your vertex position data. Since you
are now moving from an XY screen coordinate system to an XYZ coordinate system where
the positive Z axis represents the up vector, shift the pivot point of your quad to revolve
around X:0 Y:0, Z:0.

 5. Since the depth buffer and depth mask need to be fully active (not like in the previous
example), you have to tell OpenGL ES to clean the depth buffer every frame:

glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

c02.indd 24c02.indd 24 12/31/11 8:56:25 AM12/31/11 8:56:25 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Orthographic Projection ❘ 25

 6. To begin creating the camera matrix, locate the GFX_scale function call inside the
templateAppDraw function and replace it with the following variable declarations:

 /* The eye position in world coordinates. */
 vec3 e = { 0.0f, -3.0f, 0.0f },
 /* The position in world space where the eye is looking. */
 c = { 0.0f, 0.0f, 0.0f },
 /* Use the positive Z axis as the up vector. */
 u = { 0.0f, 0.0f, 1.0f };

 7. Next, call the GFX_look_at function, use e, c, and u as parameters:

 GFX_look_at(&e, &c, &u);

This GFX_look_at call will create the necessary look-at matrix. For more information about
the math behind this function, feel free to consult the source code in SDK/common/gfx.cpp.

 8. It’s time to animate the quad onscreen! First, you need to create a static float variable
that will increment dynamically to animate the Y location of the quad pivot point. To do
this, enter the following code:

 static float y = 0.0f;
 /* Increment the Y location value every frame. */
 y += 0.1f;

 9. Use the following GFX_translate function to translate the pivot of the quad on the Y axis:

 GFX_translate(0.0f /* X */,
 y,
 0.0f /* Z */);

 10. Since you already have the variable Y, you can reuse it to also animate the rotation of the
quad using the GFX_rotate function:

 GFX_rotate(/* Boost the angle a bit by multiplying it. */
 y * 50.0f,
 /* X axis */
 1.0f,
 /* Y axis */
 1.0f,
 /* Z axis */
 1.0f);

This function takes four parameters: the fi rst one represents the rotation angle in degrees,
and the next three represent the axis that should be affected by the rotation angle.

 11. In step 4, you modifi ed the size of each POSITION component. In order for GLES to be able
to draw the quad properly using the new tri-dimensional vertex position array, you need to
adjust the parameter of glVertexAttribPointer from 2 (XY) to 3 (XYZ), as follows:

 glVertexAttribPointer(attribute,
 /* 2 */ 3,

c02.indd 25c02.indd 25 12/31/11 8:56:26 AM12/31/11 8:56:26 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

26 ❘ CHAPTER 2 SETTING UP YOUR GRAPHIC PROJECTIONS

 GL_FLOAT,
 GL_FALSE,
 0,
 POSITION);

Build and run the program! You should now see the quad rotating on
the X, Y, and Z axes (as shown in Figure 2-4), and then disappear after
a while when the Y location is above 100 (which means that it has been
clipped by the far plane).

Congratulations! You have successfully set up an orthographic
projection, used the depth buffer, created a full-fl edged 3D object (albeit
a very simple object — but hey, that’s a start!). You were able to animate
it onscreen using translation and rotation, and you have set up a basic
look-at matrix to simulate a camera in world space. Quite a lot for a start
already!

As you might have already noticed, when the quad is rotating onscreen,
the projection does not seem quite right — especially when the quad has
a hard angle onscreen. This is because the projection is strictly based on
the screen and aspect ratio (no real perspective). However, this type of
mode is used by many 3D editing software programs because it provides
a straight look at the geometry that the viewer is facing. It is also ideal for some 2D or 2.5D games
(since the depth buffer can still be used while drawing) that have a static camera angle looking
down at a scene panning left, right, forward, and backward, giving it a true 2.5D aspect.

This concludes this section on orthographic projection. In the next section, you are going to fi x the
slight perspective problem that occurred in orthographic projection by adding a fi eld of view. This
fi eld of view represents the eye angle of the viewer, creating a real 3D projection matrix.

PERSPECTIVE PROJECTION

In this section, you will learn how to set up a true 3D perspective view. This is basically the last
type of projection that this book will teach you, and it will be the type of projection that will be
used in almost all examples and exercises in the rest of this book.

Once again, before diving in with more code, simply duplicate the project from the last section
(chapter2-2), and for consistency, rename the duplicated project folder for chapter2-3.

Since you already have all the necessary code in place, changing from ortho projection to a true 3D
perspective projection couldn’t be easier! Basically all you have to do is to locate the GFX_set_
orthographic function inside templateAppInit, and replace the function call with the following:

 GFX_set_perspective(
 /* Field of view angle in degree. */
 45.0f,
 /* The screen aspect ratio. */
 (fl oat)width / (fl oat)height,
 /* The near clipping plane. */

FIGURE 2-4: Orthographic

quad

c02.indd 26c02.indd 26 12/31/11 8:56:26 AM12/31/11 8:56:26 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary ❘ 27

 0.01f,
 /* The far clipping plane. */
 100.0f,
 /* The device screen orientation in angle to use. */
 0.0f);

As you can see, this function is almost the same as GFX_set_
orthographic, with the exception of the fi rst parameter, the fi eld of
view (FOV). When it comes to FOV, the larger the angle is, the wider
the perspective will be; and the smaller the angle, the narrower the
projection.

Optionally, before you have a test run at the app, you can also remove or
comment the GFX_translate call (located inside the templateAppDraw) to
be able to really observe the effect of the 3D perspective on the projection
matrix while the quad is rotating.

At this point, build and go! You should see something similar to what’s
shown in Figure 2-5.

While running the application, observe how the projection matrix created
by the GFX_set_perspective function is different from the one you
created earlier. The major difference is that the quad looks good from
every angle, because the perspective matrix calculation includes the fi eld
of view and represents the way someone would look at the quads in the
real world.

SUMMARY

This chapter showed you how to set up all three primary projection matrices that directly affect the
perspective of your drawings. Using those projections, you can now create any type of 2D, 2.5D, or
3D game.

You also learned how to set up and draw a basic shape onscreen, use the depth buffer, manipulate
vertex attributes and uniform variables, create a look-at matrix to manipulate the viewer eye
location and direction, and a lot more. Pretty good for a start, don’t you think?

Even if you don’t fully realize it yet, you now have all the basic knowledge that you need to start
creating some real games and 3D apps!

Before you move on with the next chapter, I suggest that you go back over this chapter’s exercises
and make sure that you fully understand everything that has been demonstrated. In addition, you
should try to modify some parameters just to get more familiar with the overall program structures
and possibilities.

As an extra exercise, try to mix a screen projection with an orthographic or a 3D perspective
projection by moving the projection matrix creation code from the templateAppInit function to the
templateAppDraw function.

FIGURE 2-5: Quad

rendered using a true

3D perspective

c02.indd 27c02.indd 27 12/31/11 8:56:27 AM12/31/11 8:56:27 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c02.indd 28c02.indd 28 12/31/11 8:56:27 AM12/31/11 8:56:27 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Dealing with Complex Geometry

WHAT’S IN THIS CHAPTER?

Loading complex geometry from disk using the Wavefront fi le

format

Building VBOs and VAOs using custom geometry data

Handling touch screen events

Loading a PNG fi le from disk and converting it to a usable texture

Implementing per-vertex lighting calculations

In games, as in graphic programming, it is important to be able to load external mesh data.
Hard-coding geometry information inside your apps would just not be practical. From a
simple crate to an entire level, every asset used in games has been exported from 2D or 3D
software and loaded at initialization.

In this chapter, you will learn how to handle the Wavefront OBJ format using the loader that
comes with this book’s SDK. In addition to model loading, you will learn how to read the
Wavefront material fi les. You’ll also discover how to use the pre-made functions of the book’s
SDK to load a PNG texture from disk. You will also learn how to handle and work with
complex geometry using vertex buffer objects (VBOs) and vertex array objects (VAOs).

By the end of this chapter, you will have built from scratch a 3D viewer, able to load a custom
OBJ fi le along with its associated texture. In addition, your viewer will also be able to support
dynamic lighting, and will respond to the user touch to rotate the 3D model in real time.

THE WAVEFRONT FILE FORMAT

Over the years, the Wavefront fi le format has almost become a standard for exchanging
geometry data between different 3D software. The format is simple, well documented, and
open, which makes it perfect for basic 3D data exchanges. For example, the popular Pixologic

➤

➤

➤

➤

➤

3

c03.indd 29c03.indd 29 12/31/11 9:01:00 AM12/31/11 9:01:00 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

30 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

ZBrush relies extensively on this format to communicate with other state-of-the-art 3D software
such as Autodesk’s Maya and 3ds Max, and the free open-source Blender suite.

The Wavefront format consists of two distinct fi le types: .OBJ and .MTL. The OBJ fi le contains all
vertex positions, vertex normals, and UV coordinates of one or multiple 3D objects. Every time an
OBJ fi le is exported, another fi le is written along with it: a material (MTL) fi le.

The MTL fi le contains the data for all materials that are used by one or multiple objects inside the
OBJ fi le. The MTL fi le also contains information such as the diffuse and ambient color, texture fi le
names (and on which channel they are assigned), and other material-specifi c parameters.

For more information about the Wavefront OBJ standards, you can consult http://www
.martinreddy.net/gfx/3d/OBJ.spec. For information about the MTL fi le standards and
specifi cations, go to http://paulbourke.net/dataformats/mtl/.

Cube.obj

One of the great things about the Wavefront fi le format is that it’s text-based, and you can open
it directly using any text editor. This makes it a very good format to start with when it comes
to loading complex geometry, because it’s very easy to understand and to parse in code. Before
jumping right in to the coding part of this section, take a quick look at the following OBJ fi le in
order to understand how it is constructed:

mtllib cube.mtl
o Cube
v 1.0 1.0 -1.0
v 1.0 -1.0 -1.0
v -1.0 -1.0 -1.0
v -1.0 1.0 -1.0
v 1.0 1.0 1.0
v 1.0 -1.0 1.0
v -1.0 -1.0 1.0
v -1.0 1.0 1.0
vt 0.0 0.0
vt 1.0 0.0
vt 1.0 1.0
vt 0.0 1.0
vn 0.0 1.0 0.0
vn -1.0 0.0 0.0
vn 0.0 -1.0 0.0
vn 1.0 0.0 0.0
vn 1.0 0.0 0.0
vn 0.0 0.0 1.0
vn 0.0 0.0 -1.0
usemtl Material_diffuse.jpg
f 5/1/1 1/2/1 4/3/1
f 5/1/1 4/3/1 8/4/1
f 3/1/2 7/2/2 8/3/2
f 3/1/2 8/3/2 4/4/2
f 2/1/3 6/2/3 3/4/3
f 6/2/3 7/3/3 3/4/3
f 1/1/4 5/2/4 2/4/4
f 5/2/5 6/3/5 2/4/5
f 5/1/6 8/2/6 6/4/6

c03.indd 30c03.indd 30 12/31/11 9:01:03 AM12/31/11 9:01:03 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

f 8/2/6 7/3/6 6/4/6
f 1/1/7 2/2/7 3/3/7
f 1/1/7 3/3/7 4/4/7

With just a quick glance at the fi le content, you can tell what most lines represent — starting with
mtllib, which represents the material library associated with the geometry fi le. Then you can fi nd an
object declaration, represented by the token o, followed by each set of indexed vertex positions (v).
Next comes the indexed texture coordinates (vt), also known as UVs, and the vertex normals (vn).

After the vertex data declaration, the usemtl line specifi es which material will be used for the incoming
faces. Then, for each face, three sets of vertex positions, UV, and normal index are specifi ed (the f lines).
Each of these sets basically represents a triangle. Wavefront OBJ also supports a quad (which would be
read as four sets); however, since every face representation in GLES has to be defi ned as a triangle, make
sure you triangulate the faces of your meshes before you export them to the OBJ format.

Cube.mtl

Now take a closer look at the fi le content for the material fi le associated with the Cube.obj fi le that
you previously studied.

newmtl Material
Ns 96.078431
Ka 0.0 0.0 0.0
Kd 0.64 0.64 0.64
Ks 0.5 0.5 0.5
Ni 1.0
d 1.0
illum 2
map_Kd diffuse.png

Once again, this is pretty straightforward. First the material name is specifi ed using the newmtl tag,
and then all of the parameters associated with it are listed (very similar to an OBJ mesh). If you are
already familiar with lighting calculations, you probably recognize standard terms such as Ka and
Kd, which represent the ambient and diffuse color component of a material. As you are progressing,
all these variables will be available to you within your code. You can then program your shaders
based on these variables.

Finally comes all the textures associated with the material, and which channel they are bound to. In
this example, the map_Kd line specifi es the diffuse texture. If a texture is associated to the ambient
channel, it would be map_Ka; the same goes for the rest of the channels.

PREPARING THE OBJ VIEWER CODE

Before you start coding, you have to prepare the template project that you will be using for
the rest of this chapter. First, create a copy of the template directory and name the copy
chapter3-1. Then open the related project fi le for your device. Once this is done, clean
up or add to the project fi le the necessary code to obtain the following structure inside the
templateApp.cpp:

#include “templateApp.h”

TEMPLATEAPP templateApp = { templateAppInit,

Available for
download on
Wrox.com

Available for
download on
Wrox.com

Preparing the OBJ Viewer Code ❘ 31

c03.indd 31c03.indd 31 12/31/11 9:01:03 AM12/31/11 9:01:03 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

32 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

 templateAppDraw,
 templateAppToucheBegan,
 templateAppToucheMoved };

void templateAppInit(int width, int height) {
 atexit(templateAppExit);
 GFX_start();
 glViewport(0.0f, 0.0f, width, height);
}

void templateAppDraw(void) {
 glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
 glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
}

void templateAppToucheBegan(float x, float y, unsigned int tap_count) {
}

void templateAppToucheMoved(float x, float y, unsigned int tap_count) {
}

void templateAppExit(void) {
}

Notice this time, you are going to use two new function callbacks: templateAppToucheBegan
and templateAppToucheMoved. Later in this chapter, you will use these callbacks to integrate the
necessary code to gather the touche location onscreen that you will use to manipulate the rotation of
the object inside your OBJ viewer.

LOADING AN OBJ

In order to get started, link the model.obj and model.mtl fi les located inside SDK/data/
chapter3-1 to your project.

Since you are now linking assets to your program, also create the two fi les respectively named
 vertex.glsl and fragment.glsl. Now save them on disk inside the SDK/chapter3-1 directory,
and link them to your project (as you did before).

Now it’s time to start preparing the base program. Follow these steps:

 1. At the top of the templateApp.cpp fi le, right after the #include, create the following
defi nes, globals, and variables:

/* The OBJ fi le name on disk. */
#defi ne OBJ_FILE (char *)”model.obj”
/* Your vertex and fragment shader fi les. */
#defi ne VERTEX_SHADER (char *)”vertex.glsl”
#defi ne FRAGMENT_SHADER (char *)“fragment.glsl“
#defi ne DEBUG_SHADERS 1
/* The main OBJ structure that you will use to load the .obj. */

c03.indd 32c03.indd 32 12/31/11 9:01:04 AM12/31/11 9:01:04 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OBJ *obj = NULL;
/* Pointer to an mesh inside the OBJ object. */
OBJMESH *objmesh = NULL;
/* Shader program structure pointer. */
PROGRAM *program = NULL;

This is really nothing new, with the exception of the OBJ variables. First there’s the OBJ_
FILE, which controls the fi le that will be loaded by the viewer at loading time. (You can
change this to a different fi le later on for testing purposes if you like.) Next, the obj and
objmesh variables are declared. The fi rst variable is the main structure that you will be using
for loading complex geometries from a fi le. The second variable is a pointer to a mesh inside
the obj structure, from which you can gain access to all the vertex data that composes the
geometry as well as the triangle lists created for each material that the mesh is using.

 2. Right after the TEMPLATEAPP templateApp declaration block, create the following function:

void program_draw_callback(void *ptr) {
}

You will use this function later as a callback that will be used by the PROGRAM structure. By
linking it to the structure, this function will be automatically triggered every time you call
PROGRAM_draw (another helper function). This will allow you at runtime to set or update
your uniform variables before the shader program gets bound using glUseProgram.

 3. Fill in the function code by inserting the following source between the function brackets
({}):

 /* Convert the void * in the parameter to a valid PROGRAM pointer. */
 PROGRAM *curr_program = (PROGRAM *)ptr;

 /* Loop counter */
 unsigned int i = 0;

 /* Loop while there are some uniform variables */
 while(i != curr_program->uniform_count) {

 /* Check if the current uniform is the
MODELVIEWPROJECTIONMATRIX. If yes, enter the condition clause
to update the matrix data. */
 if(!strcmp(curr_program->uniform_array[i].name,
 “MODELVIEWPROJECTIONMATRIX”)) {

 /* Update the matrix. */
 glUniformMatrix4fv(
 /* The uniform location. */
 curr_program->uniform_array[i].location,
 /* Number of matrix. */
 1,
 /* Don’t transpose the matrix. */
 GL_FALSE,
 /* The result of the current projection matrix multiplied
by the model view matrix. */
 (fl oat *)GFX_get_modelview_projection_matrix()

Loading an OBJ ❘ 33

c03.indd 33c03.indd 33 12/31/11 9:01:04 AM12/31/11 9:01:04 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

34 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

);
 } /* End if */

 /* Next uniform please... */
 ++i;
 } /* End while */

You’ve just created a dynamic loop that will check for all the uniform variables available in
the shader program and gain control to set them independently. You can link this callback
to one or multiple shaders and handle all uniform variable updates at one unifi ed point in
code. At the moment, you don’t have much to handle, but when your programs become
more complex, this will become quite handy.

 4. Now it’s time to create the code of templateAppInit and set up the 3D projection
matrix. To do this, insert the following block right after the glViewport call:

 GFX_set_matrix_mode(PROJECTION_MATRIX);
 GFX_load_identity();
 GFX_set_perspective(45.0f,
 (fl oat)width / (fl oat)height,
 0.1f,
 100.0f,
 0.0f);

 5. Create a new shader program using the following PROGRAM helper function to
automatically load, compile, and link the shader program:

 program = PROGRAM_create(
 /* The shader program name. */
 (char *)”default”,
 /* The vertex shader fi le. */
 VERTEX_SHADER,
 /* The fragment shader fi le. */
 FRAGMENT_SHADER,
 /* Use relative fi le path. */
 1,
 /* Debug program and shaders. */
 DEBUG_SHADERS,
 /* Not in use for now. */
 NULL,
 /* The draw function callback that you previously declared in
steps 2 and 3. */
 program_draw_callback);

 6. The last piece of code for this section is actually to place the loading call to store the .obj
fi le content in memory and parse it using the OBJ_load function:

 obj = OBJ_load(OBJ_FILE, 1);

That’s it for now. You’ve successfully created the code to load an .obj fi le from disk as well
as its associated .mtl fi le. You can now access everything using the obj variable pointer.

Please note that the OBJ loading implementation itself is around a thousand lines of code, and
unfortunately, it cannot be fully covered in this book. However, this book’s SDK/common folder

c03.indd 34c03.indd 34 12/31/11 9:01:05 AM12/31/11 9:01:05 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

includes the obj.cpp and obj.h fi les, which you can study and customize in order to load OBJ fi les
inside your own apps.

BUILDING THE SHADERS

Before you dive into the VBO and VAO creation for the geometry, you fi rst need to create the shader
code for this program.

At this point, your goal is to simply draw the geometry. Your shader will have to be able to
transform the vertex position. And this time, since the OBJ format doesn’t support vertex color, you
will be using the vertex normals and convert them to RGB values so you can at least see a color-
shaded geometry onscreen.

In addition, since the GLES shading language doesn’t provide you with any type of runtime debugging
functionalities, it’s common practice to convert different types of data (in this case, the vertex
normals) to RGB values in order to be able to debug your shaders. Keep in mind that this is the
closest way in GLSL to be able to debug data in a similar fashion as you would do with a good old
printf.

The Vertex Shader

Open the vertex.glsl fi le that you created earlier, and follow these steps:

 1. Declare a uniform matrix that you will use to transform the vertex positions:

uniform mediump mat4 MODELVIEWPROJECTIONMATRIX;

 2. Declare a vertex attribute to hold the vertex position:

attribute mediump vec3 POSITION;

 3. Declare a new vertex attribute for the vertex normals, and a corresponding varying to be
able to bridge the value to the fragment shader:

attribute lowp vec3 NORMAL;
varying lowp vec3 normal;

Please take note that you use lowp as the precision qualifi er. Since the data is a normalized
vector in the range of -1 to 1, you can simply save a bit of memory bandwidth, at the
cost of precision. Before initializing any type of variables in your shaders, always think
about which precision qualifi er would be the most appropriate for the variable(s) you
are about to declare.

 4. To fi nalize the shader, create the main function using the following code:

void main(void) {
 normal = (NORMAL + 1.0) * 0.5;
 gl_Position = MODELVIEWPROJECTIONMATRIX * vec4(POSITION, 1.0);
}

Building the Shaders ❘ 35

c03.indd 35c03.indd 35 12/31/11 9:01:05 AM12/31/11 9:01:05 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

36 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

Here’s a quick note about the normal varying in this code: As mentioned earlier, vertex
 normal data are always represented by a normalized vector. But in this case, you want to
convert the data to RGB, so you have to make sure that the value range is from 0 to 1
(not -1 to 1). To convert the vector to a color, add 1.0, and then divide it by two (or
multiply by 0.5).

That’s it for the vertex shader (at least for now), so save the fi le and move on to the next section for
instructions on how to create the fragment shader for this program.

The Fragment Shader

Open the fragment.glsl fi le in your favorite text editor or inside your IDE.

 1. Bridge the normal variable as follows:

varying lowp vec3 normal;

 2. Create the main function, assigning the normal to the fragment color as follows:

void main(void) {
 gl_FragColor = vec4(normal, 1.0);
}

You now have both your vertex and fragment shader set up. It’s time to add the necessary code to
start sending vertex data to the shader program. For this, you will fi rst have to create and use a
VBO and (optionally) a VAO.

Vertex Buff er Object

In this section, you’ll use the geometry vertex data that you retrieved while loading the OBJ, and
actually transform it into a form that GLES understands.

In the previous chapter, all you did was manually declare all the vertex positions and colors
and then send them over and over every frame. That works, of course, but it is obviously not as
optimized as it should be. Constantly sending the data to the video memory is not the preferred way
to save bandwidth or to gain rendering speed.

You might not have noticed any performance drop in the previous chapter examples, because the
data sent was fairly small. But if you are sending thousands and thousands of vertex data this way
on every frame, you will start seeing drastic performance loss mainly caused by the overuse of the
bandwidth. Wouldn’t it be great if you could simply initialize the vertex data once, send it over to
the video memory, and then reuse it as long as you have to draw the geometry? That’s exactly what
a vertex buffer object (VBO) will do for you!

In the next exercise, you will learn how to build your own VBO using the vertex data loaded from
the OBJ fi le. You will then use this data to construct the geometry and cache it onto the video
memory. From there, all you have to do is refer this data using an index; and you can reuse this
index as many times as you need to.

c03.indd 36c03.indd 36 12/31/11 9:01:06 AM12/31/11 9:01:06 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Storing the Vertex Data

Get back to the templateAppInit function and start pasting the code in the following steps right
after the OBJ_load function call:

 1. Retrieve the pointer of the fi rst mesh inside the obj structure pointer:

 objmesh = &obj->objmesh[0];

 2. Declare a few local variables:

 /* To hold the vertex data. */
 unsigned char *vertex_array = NULL,
 /* The start position of the vertex data array. */
 *vertex_start = NULL;
 /* Loop counter. */
 unsigned int i = 0,
 /* To hold the current vertex index. */
 index = 0,
 /* Store the size in bytes between each vertex data type. */
 stride = 0,
 /* The total size in bytes of the vertex data array. */
 size = 0;

In order to get started, you’ll just deal with one mesh for the moment, but please note that
the OBJ loader in this book’s SDK has full multi-mesh support.

Also, pay attention in the next steps of this section, since a lot of variables are already con-
tained, or already declared inside the objmesh structure defi nition. This is strictly built for
your convenience so you don’t have to declare them manually every time you want to use
the load, and to avoid having to extend this chapter longer than it should be. Do not hesitate
to refer to the OBJ implementation (inside the obj.cpp and obj.h fi les) if you need more
information.

 3. Calculate the total size of the vertex data array so you can allocate the amount of memory
necessary to construct a GLES-friendly vertex data array for your VBO:

 /* Calculate the total size of the array based on the number of
independent vertex data multiplied by the size of a vertex position
and the size of a vertex normal. */
 size = objmesh->n_objvertexdata *
 sizeof(vec3) * sizeof(vec3);
 /* Allocate the total amount of bytes in memory. */
 vertex_array = (unsigned char *) malloc(size);
 /* Remember the starting memory address of the vertex array. */
 vertex_start = vertex_array;

 4. Construct the vertex data array based on the indexed vertex position and the vertex
normals contained in the objmesh structure:

 /* Loop while there is some vertex data. */
 while(i != objmesh->n_objvertexdata) {
 /* Get the current vertex data index. */
 index = objmesh->objvertexdata[i].vertex_index;

Building the Shaders ❘ 37

c03.indd 37c03.indd 37 12/31/11 9:01:06 AM12/31/11 9:01:06 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

38 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

 /* Append the vertex position to the vertex data array. */
 memcpy(vertex_array,
 &obj->indexed_vertex[index],
 sizeof(vec3));

 /* Increment the current memory position to move on to
the next insertion point. */
 vertex_array += sizeof(vec3);

 /* Insert the vertex normal at the current position. */
 memcpy(vertex_array,
 &obj->indexed_normal[index],
 sizeof(vec3));

 /* Move on to the next insertion point. */
 vertex_array += sizeof(vec3);

 /* Request the next vertex data index. */
 ++i; }

GLES has different types of support when it comes to handling VBO and vertex data arrays. You
could also have created one separate array for the position and another one for the normals (similar
to what you did in the previous chapter). However, what you have right now is a tightly packed
vertex data array, where all of the different data types are located near each other. This is the most-
optimized type of vertex data array that you could possibly construct. When the driver is going to
use this array for drawing, the memory jump to access each position and normal element will be
very short. As a result, keeping a tightly pack vertex data array will improve performance, and from
a driver standpoint, leave space for internal optimization (if implemented).

Building the Vertex Data Array VBO

Now that you have the vertex data array constructed in client memory, it’s time to build the VBO
and send this data to the server memory (the video memory). Starting where you left off at the end
of the previous exercise, continue to append the code as described in the following steps:

 1. Ask the driver to create a new buffer index for a VBO and make it active, as follows:

 /* Generate a new VBO id. */
 glGenBuffers(1, &objmesh->vbo);

 /* Make the id active and tell GLES that it should be represented
as a vertex data array buffer. */
 glBindBuffer(GL_ARRAY_BUFFER, objmesh->vbo);

 2. Transfer the vertex data array from local memory to the video memory:

 glBufferData(
 /* The type of data to associate the array with. */
 GL_ARRAY_BUFFER,
 /* The total size in bytes of the array. */
 size,
 /* The starting position of the array. */

c03.indd 38c03.indd 38 12/31/11 9:01:07 AM12/31/11 9:01:07 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 vertex_start,
 /* Since the data will not be updated every frame, tell GLES that
the data is static for internal driver optimization. */
 GL_STATIC_DRAW);

 /* Free the array from the local memory. */
 free(vertex_start);

 /* Deactivate the current VBO id attached as a vertex array buffer. */
 glBindBuffer(GL_ARRAY_BUFFER, 0);

Building the Element Array VBO

All complex geometry is constructed of one or multiple lists of triangles (basically one triangle list
per material). Each vertex position and vertex normal (as well as other types of data) is basically
shared by one or more triangles. If you were to draw the array that you’ve just constructed using
glDrawArrays, the result would be erroneous. What you have created is an array of unique vertex
data from an indexed cache. This means that there are no duplicates. The array you constructed
is the smallest possible array that can be used to represent the geometry, which contains a unique
combination of vertex position and vertex normal.

In order to be able to draw the mesh properly, you have to use the appropriate set of indices to
represent each triangle inside the vertex data array. You will then have to use this array of indices to
draw the geometry. This is by far the most optimized way to draw any type of complex geometry.
The indices array is fairly small, and as a default limitation of GLES, it has to be specifi ed as
unsigned short (2 bytes per index, or 16 bits if you prefer).

Of course, you could always pass this index array to the associated GLES drawing instruction
(glDrawElements), but you will end up sending this array of indices over and over again for every
frame. Since the goal of this section is to show you how to build and draw triangle-based geometry
as fast and in the most optimized way possible, the following steps introduce you to how to build a
VBO for the indices array of this geometry.

 1. Where you left the cursor (inside the templateAppInit) in the previous section, add the
code to generate a new id for the fi rst objmesh triangle list and make the current index
active, as follows:

 /* Generate a new VBO id for the indices. */
 glGenBuffers(1, &objmesh->objtrianglelist[0].vbo);

 /* Make the current index active, and specify to GLES that the
index is for an indices array (aka Element Array). */
 glBindBuffer(
 GL_ELEMENT_ARRAY_BUFFER,
 objmesh->objtrianglelist[0].vbo);

 2. In a similar fashion as you did for the array buffer, send the indices array to the GPU:

 glBufferData(
 /* The type of array. */

Building the Shaders ❘ 39

c03.indd 39c03.indd 39 12/31/11 9:01:07 AM12/31/11 9:01:07 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

40 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

 GL_ELEMENT_ARRAY_BUFFER,
 /* The total size of the indices array. */
 objmesh->objtrianglelist[0].n_indice_array *
 sizeof(unsigned short),
 /* The indices array. */
 objmesh->objtrianglelist[0].indice_array,
 /* Once again specify that the array is static as the indices
won’t change. */
 GL_STATIC_DRAW);

 /* Deactivate the current VBO id attached as an indices array. */
 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0);

Congratulations! You have now created two fully optimized VBOs: one for your vertex data, and
one for the indices data. From now on, every time you want to access these two distinct types of
data, all you have to do is to bind them using their respective ids.

It’s almost time to start drawing! But before that, in order to squeeze every bit of performance that
you can get from the hardware, the next section will introduce you to how to create a VAO. This
type of object will allow you to save many function calls when you’re dealing with any GLES array-
like function, and as a result, will save you a lot of bandwidth.

BUILDING THE VAO

In your endless quest of drawing as much polygons as fast as you can, the vertex array object (VAO)
will reveal itself to be quite handy. Before getting started, please note that this functionality is
available as a GLES extension, and it is not part of the standard GLES v2.x API specifi cations. The
functionalities of the VAO are only accessible if the GL_OES_vertex_array_object extension is
present on your device. Fortunately, it is implemented by most of the driver manufacturers, because
its effects are quite benefi cial for internal optimization purposes and to improve performance.

To give you a quick overview, a VAO enables you to build an “offl ine” drawing list of all gl
function calls that affect your vertex data. You can then refer to this list via an index during your
actual online drawing.

As a general rule, if the gl function or one of its parameters contains the term array, it can be used
inside a VAO list.

Now you’re ready to implement your fi rst VAO. Beginning at the point where you left off in the
previous exercise, follow these steps:

 1. Declare the following local variables and calculate the vertex array stride between the
different vertex data:

 unsigned char attribute;
 /* Vertex position size in bytes. */
 stride = sizeof(vec3)+
 /* Vertex normal size in bytes. */
 sizeof(vec3);

c03.indd 40c03.indd 40 12/31/11 9:01:08 AM12/31/11 9:01:08 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In the previous chapter, when you called glVertexAttribPointer, you left the stride
parameter at 0 since you had two independent arrays. But this time, you will have to use
this parameter since there is only one tightly packed vertex data array (also known as inter-
leaved array). The stride parameter tells the driver how many bytes it will have to jump in
order to access the next data type.

 2. Create a new VAO index and make it active as follows:

 glGenVertexArraysOES(1, &objmesh->vao);
 glBindVertexArrayOES(objmesh->vao);

From now on, every array-like function that you call will be added to the VAO “drawing
list” until the index is deactivated (set back to 0).

 3. Start building the VAO list bind including the call to set the array buffer to use:

 glBindBuffer(GL_ARRAY_BUFFER, objmesh->vbo);

 4. Include the following POSITION vertex attribute call inside the VAO list:

 /* Get the attribute location from the shader program. */
 attribute = PROGRAM_get_vertex_attrib_location(program,
(char *)”POSITION”);
 /* Enable the attribute location. */
 glEnableVertexAttribArray(attribute);
 glVertexAttribPointer(
 attribute, /* The location of the attribute. */
 3, /* The size of each component (in this case, 3 for XYZ). */
 GL_FLOAT, /* The type of data. */
 GL_FALSE, /* Do not normalize the vertex data. */
 stride, /* The size in bytes of the next vertex position. */
 (void *)NULL); /* No need to pass the vertex position array
because you are using a VBO. */

As you can see the declaration slightly changed; besides passing the stride parameter, this
time you do not have to pass the vertex position array. When using a VBO as an array or
element buffer, the last parameter of glVertexAttribPointer now represents the offset in
bytes where to fi nd the data. Since the array starts with the vertex position, that explains
the NULL value, which basically represents 0 (starting at the fi rst byte of the array).

 5. Now handle the vertex normals in the same way as you did for the vertex position, with the
exception of the last parameter of the vertex attribute pointer call:

 attribute = PROGRAM_get_vertex_attrib_location(program,
 (char *)”NORMAL”);
 glEnableVertexAttribArray(attribute);
 glVertexAttribPointer(
 attribute,
 3,
 GL_FLOAT,
 GL_FALSE,
 stride,
 BUFFER_OFFSET(sizeof(vec3)));

Building the VAO ❘ 41

c03.indd 41c03.indd 41 12/31/11 9:01:08 AM12/31/11 9:01:08 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

42 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

As mentioned in the previous step, you have to specify the offset (in bytes) to the next data
type. To do this, use the BUFFER_OFFSET macro (declared in type.h inside the common
directory of the SDK) to specify the offset size in bytes. If you had to use other vertex data
types, you would need to accumulate the offset between each data type based on the same
order that you inserted them inside your VBO vertex data array (more on that later in this
chapter).

 6. Now bind the array element buffer (your indices) as follows before closing the VAO list:

glBindBuffer(
 /* Bind the index as an indices buffer. */
 GL_ELEMENT_ARRAY_BUFFER,
 /* Pass the indices VBO index to activate its usage. */
 objmesh->objtrianglelist[0].vbo);

 7. The following function has two effects. It fi rst deactivates the current VAO. Second, it
compiles all the array-like commands that have been previously called, associating them to
the VAO index.

 glBindVertexArrayOES(0);

You’ve just created your fi rst VAO!

This section covered quite a few key GLES concepts that might be a bit scary and hard to
understand at fi rst. I suggest that you review the preceding VBO and VAO exercises to make sure
that you fully understand the meaning and the usage of each and every function as well as their
parameters.

In addition, you have probably noticed that a lot of variables were coming directly from the
objmesh structure, so feel free to dig inside the SDK/common/obj.cpp and obj.h source code if
you have problems grasping their meaning.

RENDERING MOMO

As you’ve probably already noticed, the learning curve applied in this book is growing
exponentially. Fortunately, all the effort you’ve put into this sample program thus far is about to pay
off. It’s now time to write the necessary code to actually draw the geometry onscreen.

Locate the templateAppDraw function (as usual inside the templateApp.cpp source fi le) and
execute the following steps:

 1. After the glClear function, create a look-at matrix and give a little backward offset on the
Y axis to actually be able to see the 3D model (which will obviously be located at 0, 0, 0), as
follows:

 GFX_set_matrix_mode(MODELVIEW_MATRIX);
 GFX_load_identity(); {
 vec3 e = { 0.0f, -4.0f, 0.0f },
 c = { 0.0f, 0.0f, 0.0f },
 u = { 0.0f, 0.0f, 1.0f };
 GFX_look_at(&e, &c, &u); }

c03.indd 42c03.indd 42 12/31/11 9:01:09 AM12/31/11 9:01:09 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 2. Now bind your VAO as follows:

 glBindVertexArrayOES(objmesh->vao);

By making the VAO index active, all the function calls inside the drawing list that you built
earlier are triggered in the background automatically by the driver. Everything that has to
be enabled is turned ON, and everything that should be disabled is turn OFF. This saves
you the burden of calling each and every one of these functions manually every frame, or
even to manually have to check what is ON and what is not in order to avoid saturating the
bandwidth with obsolete machine state switches.

 3. Now set the shader program for drawing as follows:

 PROGRAM_draw(program);

Since you have now linked a draw callback to the program pointer, calling this function will
automatically bind the shader program using glUseProgram and then send the execution
pointer inside the program_draw_callback. This will then allow you to set all your
uniform variables before letting GLES process the drawing call.

 4. Next comes the actual drawing statement. Since everything is set up, all you have to
do is this:

 /* Function to use when drawing using elements (aka indices). */
 glDrawElements(
 /* The order in which the indices are listed. */
 GL_TRIANGLES,
 /* How many indices have to be used for drawing. */
 objmesh->objtrianglelist[0].n_indice_array,
 /* The type of indices. */
 GL_UNSIGNED_SHORT,
 /* The start offset in bytes of the fi rst index; in this case, 0 or
NULL, since you want to start drawing from the fi rst index in the array. */
 (void *)NULL);

Notice how short this drawing process is compared to the one you used in the previous
chapter. You minimized it into literally three lines of code: binding the VAO, binding the
shader program, and drawing the triangles.

 5. Now you’re probably asking yourself: “Can I fi nally push the build button and execute the
program?!” Well technically, yes, but there’s still one last thing that you have to do: You need
to clean up everything that has been initialized. To do this, locate the templateAppExit
function and insert the following code to effectuate the cleanup:

 SHADER_free(program->vertex_shader);
 SHADER_free(program->fragment_shader);
 PROGRAM_free(program);
 OBJ_free(obj);

Rendering Momo ❘ 43

c03.indd 43c03.indd 43 12/31/11 9:01:09 AM12/31/11 9:01:09 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

44 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

You did it! Build and run the program and say hello to Momo (shown in
Figure 3-1). What you’re looking at on your screen is a fully color-shaded
“monkey” with vertex normals used as vertex color.

You have now created from scratch a basic OBJ viewer that’s able to load
an external 3D model from disk, and successfully rendered it onscreen
using an advanced data management technique.

Before moving forward with the rest of this chapter, I suggest that you
review every step. A lot of material was covered since the beginning of
this chapter, and it is important that you grasp it all before moving on.
Try, test, modify, experiment — you name it, do it! There’s plenty of
material here for you to spend another few hours experimenting, so
go for it!

HANDLING TOUCHE

In this section, you will learn how to use the templateAppToucheBegan
and templateAppToucheMoved event callbacks. Before starting with
more code, please note that these function callbacks are not linked to any
GL context. This means that if you directly call any gl function inside
these callbacks, they will most likely have no effect or will generate an
error. If you have to access, modify, or do any other type of operation that requires a gl function
inside the touche event functions, simply store the event information and process it inside the main
loop (the templateAppDraw function).

In this section, you’ll integrate into your OBJ viewer the necessary code to be able to rotate the
object onscreen based on user touch and swipe movement. But before you can do that, create
a new project to keep the previous code intact. Duplicate the chapter3-1 project, rename it
chapter3-2, and then load it inside your development interface.

At this point, what you want to do is write code that will allow the user to rotate the model on
the X and Z axes. So if the user swipes their fi nger from left to right, the model will rotate on the
Z axis; or if swiped from down to up, it will rotate on the X axis.

The steps are fairly easy since you have almost everything already set up.

 1. Append the following global variables to the one you previously declared at the top of the
templateApp.cpp source fi le:

/* Flag to auto rotate the mesh on the Z axis (demo reel style). */
unsigned char auto_rotate = 0;

/* Hold the touche location onscreen. */
vec2 touche = { 0.0f, 0.0f };

/* Store the rotation angle of the mesh. */
vec3 rot_angle = { 0.0f, 0.0f, 0.0f };

FIGURE 3-1: Momo from

the Apricot Open Game

Project, Yo Frankie

c03.indd 44c03.indd 44 12/31/11 9:01:10 AM12/31/11 9:01:10 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 2. Move to the templateAppToucheBegan function and add the following code to store the
touche location or to toggle autorotate:

 /* If you receive 2 taps, start/stop auto rotate. */
 if(tap_count == 2) auto_rotate = !auto_rotate;

 /* Remember the current touche position. */
 touche.x = x;
 touche.y = y;

 3. Paste the following code inside the templateAppToucheMoved function callback:

 /* Stop auto rotate. */
 auto_rotate = 0;
 /* Calculate the touche delta and assign it to the angle X and Z. */
 rot_angle.z += -(touche.x - x);
 rot_angle.x += -(touche.y - y);
 /* Remember the current touche position. */
 touche.x = x;
 touche.y = y;

Fairly simple and straightforward, right? First you disable autorotate, because it would
interfere with the user interaction. Then you simply calculate the touche delta and
add the value to the proper axis angle. And fi nally, you store the last touche location
onscreen so the next delta calculation will be up-to-date in case the user continues to
swipe the screen.

 4. The fi nal step consists of setting the rotation angle X and Z to the model view matrix to
rotate the model. Insert the following code before the PROGRAM_draw function call inside the
templateAppDraw; so the model view matrix uniform can be updated properly from the
program draw callback function:

 if(auto_rotate) rot_angle.z += 2.0f;
 GFX_rotate(rot_angle.x, 1.0f, 0.0f, 0.0f);
 GFX_rotate(rot_angle.z, 0.0f, 0.0f, 1.0f);

The code basically speaks for itself. The fi rst line increments the
current Z rotation if autorotate is ON. The next two lines sim-
ply rotate the model on the X and Z axes based on their current
angle. This will allow the users to move in whatever direction
they want the complex geometry rendered onscreen, just like in
Figure 3-2.

 5. Build and run the program. Try dragging Momo around and
double-tapping the screen to start and stop the autorotation.

That was a quick-and-dirty example of touche implementation. As you
go more deeply into this book, more and more complex interactions
will be added inside these touche function callbacks. The purpose of
this example was just to show you how simple and easy it is to add
code that enables users to interact with your 3D scenes on their touch
screens.

FIGURE 3-2: A touchy

monkey

Handling Touche ❘ 45

c03.indd 45c03.indd 45 12/31/11 9:01:11 AM12/31/11 9:01:11 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

46 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

PER-VERTEX LIGHTING

Per-vertex lighting is probably the easiest way to apply basic lighting to your models, and it is
actually the default method that is used in OpenGL ES v1.x.

In this section, you will implement a simple directional light source to illuminate the model and
learn how to calculate the intensity of the light (aka the Lambert factor) on each vertex. The
technique that will be demonstrated here will use the vertex normals that you set up earlier to
calculate how much the light direction vector will affect the color based on the current vertex
normal.

First start by duplicating the chapter3-2 project folder and rename it chapter3-3.

Vertex Shader Light Calculation

In order to change your existing shader to be able to pass the fi nal light color to the fragment
processing phase, open the vertex.glsl shader fi le (located inside the chapter3-3 directory).
Then follow these instructions:

 1. Replace the MODELVIEWPROJECTIONMATRIX uniform variable declaration line with the
following:

uniform mediump mat4 MODELVIEWMATRIX;
uniform mediump mat4 PROJECTIONMATRIX;
uniform mediump mat3 NORMALMATRIX;
uniform mediump vec3 LIGHTPOSITION;

This time you will handle the model view and projection matrix separately. Your shader
also needs to receive the current normal matrix, which is basically the result of the inverse,
transposed model view matrix, and fi nally, another uniform to receive the current light
position.

 2. Declare a new varying variable to be able to bridge the light RGB color of the vertex with
the fragment shader:

varying lowp vec3 lightcolor;

 3. Remove the varying identifi er of the normal variable declaration. You do not need to send
it over to the fragment shader, so make it a simple global variable for the current shader.

 4. Remove the main function declaration completely as well as its content. And start recreating
it by adding this code:

void main(void) {
 mediump vec3 position =
 vec3(MODELVIEWMATRIX * vec4(POSITION, 1.0));

The code you’ve just entered declares a new variable to store the result of the vertex position
in eye space. Later on, you will send the light position in that same space to the vertex shader,
so it’s important when it comes to lighting calculations to use the same “space” for each vari-
able that you will use in the equation. Otherwise, the lighting calculation will be wrong.

c03.indd 46c03.indd 46 12/31/11 9:01:11 AM12/31/11 9:01:11 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 5. Add the following code to multiply the vertex normal by the current NORMALMATRIX:

 normal = normalize(NORMALMATRIX * NORMAL);

Since your 3D model has the ability to be rotated by the user, it is important to rotate the
vertex normal accordingly. In addition, please note that the result is again normalized. This
is done as a precautionary measure in case you decide to use GFX_scale on the model view
matrix. In this case, in order to ensure that the light calculation is correct, you have to make
sure that the vertex normal is always normalized.

 6. Calculate the light direction for the current vertex position as follows:

 mediump vec3 lightdirection =
 normalize(LIGHTPOSITION - position);

 7. Now calculate the intensity of the light for the current vertex position, based on the light
direction vector, as follows:

 lowp fl oat ndotl =
 max(dot(normal, lightdirection), 0.0);

 8. Multiply the light intensity with the light color as follows:

 lightcolor = ndotl * vec3(1.0);

For this example, you’ve just declared a pure white light (vec3(1.0)). But if later on, you
want to test another color, simply replace this value with another RGB value, or simply cre-
ate a new uniform variable to dynamically update the light color from within the C/C++
interface.

 9. Finally, reuse the eye space position of the vertex calculated in step 4, and multiply it with
the projection matrix:

 gl_Position = PROJECTIONMATRIX * vec4(position, 1.0);
} /* End of the main function. */

Your vertex shader is now ready to calculate the light color based on how “hard” the light direction
vector is hitting the vertex position in eye space.

A lot of new uniform variables have been added, and you are going to need to modify the code
inside the templateApp.cpp to be able to handle them. But right now, let’s move on to the next
subsection and modify the fragment shader.

Modifying the Fragment Shader

As usual, the changes in the fragment shader are minimal, and it’s a good practice to keep it that
way (since every visible fragment onscreen will require you to execute the fragment shader). If you
are close to an object, several more calculations will be required from the fragment processing
phase, since the object’s representation onscreen will require more pixels. Conversely, if you are
far from the object, fewer calculations will be handled by the pixel processing phase, because the

Per-Vertex Lighting ❘ 47

c03.indd 47c03.indd 47 12/31/11 9:01:12 AM12/31/11 9:01:12 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

48 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

object does not require many pixels onscreen. Always keep these things in mind while creating your
shaders.

Now open fragment.glsl and follow these instructions to be able to add the light color to the
fragment color calculation:

 1. Get rid of the whole line that contains the declaration of the varying normal variable.
At this point, you don’t need it anymore.

 2. Create a new varying the same way you declared it earlier in the vertex shader for the
lightcolor:

varying lowp vec3 lightcolor;

 3. Next you have to modify the gl_FragColor to take into consideration the current value of
the light color. Replace the current main function of the shader with the following:

void main(void) {
 gl_FragColor = vec4(lightcolor, 1.0); }

 4. (As an alternative to step 3) At the moment, the fragment is only affected by the light
color and nothing else. In the real world, everything around you is fi rst affected by an
ambient color. You could optionally simulate that as well by adding an ambient color to the
fragment:

void main(void) {
 gl_FragColor = vec4(lightcolor, 1.0) + vec4(0.1); }

You are now done with modifying shaders. Next, you’ll add the necessary code to be able to handle
all the new uniforms that you have created.

More Uniforms

Next, you’re going to plug in the necessary code to handle your uniform variables. Open the
templateApp.cpp fi le and go to the program_draw_callback function. Then follow these steps:

 1. Erase the current if clause inside the while loop — it will be clearer and simpler to just
start with a new if block.

 2. Start the new if block with the MODELVIEWMATRIX uniform, as follows:

 /* If the current uniform is the model view matrix send it over to
the shader .*/
 if(!strcmp(curr_program->uniform_array[i].name,
 “MODELVIEWMATRIX”)) {
 glUniformMatrix4fv(
 curr_program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_modelview_matrix()); }

c03.indd 48c03.indd 48 12/31/11 9:01:12 AM12/31/11 9:01:12 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 3. Now deal with the projection matrix, in a similar way that you did for the model view
matrix in step 2:

 else if(!strcmp(curr_program->uniform_array[i].name,
 “PROJECTIONMATRIX”)) {
 glUniformMatrix4fv(
 curr_program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_projection_matrix()); }

 4. Now handle the normal matrix:

 else if(!strcmp(curr_program->uniform_array[i].name,
 “NORMALMATRIX”)) {
 glUniformMatrix3fv(
 curr_program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_normal_matrix()); }

Note that the normal matrix is a 3 by 3 matrix, not 4 by 4 like the projection or model view
matrix. It only contains rotation (and possibly a scale factor), but no location.

 5. Add another else if to send the light position in eye space:

 else if(!strcmp(curr_program->uniform_array[i].name,
 “LIGHTPOSITION”)) {
 /* Set the light position in eye space to be at the same location as
the viewer. */
 vec3 l = { 0.0f, 0.0f, 0.0f };
 glUniform3fv(
 curr_program->uniform_array[i].location,
 1,
 (fl oat *)&l); }

Leave the light position set to 0, 0, 0 in order to keep things
simple for the moment — these values represent the center of the
screen, aligned to the current viewer position. But do not hesitate
later on to try and test different XYZ values to fully understand
how the eye space representation works, as in this space the Z is
pointing towards the camera.

 6. Build and run the program.

Once Momo is loaded onto your device, rotate him around and
observe how the lighting calculation affects the shading of each vertex
position depending on the current direction of the light (see Figure 3-3).

FIGURE 3-3: Momo hit by

lighting

Per-Vertex Lighting ❘ 49

c03.indd 49c03.indd 49 12/31/11 9:01:13 AM12/31/11 9:01:13 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

50 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

MAKING MOMO FURRIER

Momo is indeed a cute little monkey, but right now he does not look as good as he should. He needs
a fur coat (in other words, a texture)!

This section is going to teach you how to use the diffuse texture (map_Kd) linked inside the MTL
fi le that you have been using so far. You will learn how to load the texture from disk and how to
modify your fragment shader to handle it.

The type of textures that you will be mostly using throughout this book is PNG. Loading
functionalities and a lot more can be accessed using the TEXTURE structure implementation available
within this book’s SDK. Once again, since the implementation is a few hundred lines of code, yours
truly doesn’t really have the luxury to cover it all in this book.

However, I’ll leave it to you as an exercise to dig into the SDK/common/texture.cpp and texture.h
source fi les for more information about PNG loading and how to create textures using OpenGL ES.
(There are plenty enough OpenGL texture tutorials available from Google, so no need to go into
detail on this.)

The PNG format is basically what I like to call an “all-in-one format” — it has compression, and it
supports RGB channels, grayscale, and alpha as well as color palettes. All these features make PNG
a very suitable format to use for game textures.

Before starting, do as you normally do every time you are starting a new section, and start by
duplicating chapter3-3 and this time, rename it chapter3-4.

Now, link the diffuse.png texture fi le that’s located inside SDK/data/chapter3-4 to your project.

Loading the Texture

In this section, you will learn how to load and use the texture linked by the token map_Kd inside the
model.mtl material fi le.

Before you proceed with the next steps, here’s a quick side note about textures. Textures in GLES
are expected to have a width and height size of a power of two (2, 4, 8, 16, 32, 64, 128 . . . up to the
maximum driver limit). Non–power of two texture (npot) support is either built-in or supported
through a GL extension that is usually driver independent. For example, on my Android device.
this extension is GL_IMG_texture_npot, but on my iOS devices, it is supported by default. As a
general rule, if you want your textures to display correctly on all devices, just insure that the width
and height size is a valid power of two that does not exceed the driver limit.

Now follow these few steps to learn how to load and apply a diffuse texture on Momo:

 1. Inside the templateApp.cpp, right after the #include statement insert the following
variable:

 TEXTURE *texture = NULL;

 2. Next, you need to load the texture in memory, generate a texture ID, and send over
the pixels to OpenGL ES. To do this, insert the following code before the end of the
templateAppInit function:

c03.indd 50c03.indd 50 12/31/11 9:01:13 AM12/31/11 9:01:13 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 texture = TEXTURE_create(
 /* Texture name. */
 obj->objmaterial[0].map_diffuse,
 /* Texture fi lename. */
 obj->objmaterial[0].map_diffuse,
 /* Use a relative path to fi nd the fi le. */
 1,
 /* Generate mipmaps. First time this term is mentioned, if you need more
information on mipmap please visit http://en.wikipedia.org/wiki/Mipmap. */
 TEXTURE_MIPMAP,
 /* Use a bilinear fi lter for the mipmaps. */
 TEXTURE_FILTER_2X,
 /* The anisotropic fi ltering factor (another new term), if you are not
familiar with it, visit http://en.wikipedia.org/wiki/Anisotropic_fi ltering.
For the current example, pass the value 0 to keep the texture isotropic. */
 0.0f);

 3. Your texture is now fully available for drawing, but before you can actually modify the code to
use it for drawing, you have to make sure that the memory will be deallocated properly. Jump
to the templateAppExit function and paste the following code before the end of the function:

 TEXTURE_free(texture);

Adjusting the Vertex Data

Since you’re planning on using texture, you will need UVs and as a result you have to modify the VBO
and VAO accordingly. Locate the VBO creation code (it’s right after the OBJ_load function call inside
the templateAppInit). Then follow these steps to modify the existing code to add UVs support:

 1. Modify the total size in bytes of the vertex data array. Locate the following line:

 size = objmesh->n_objvertexdata *
 sizeof(vec3) *
 sizeof(vec3);

And replace it with this:

 size = objmesh->n_objvertexdata *
 sizeof(vec3) * /* Vertex position. */
 sizeof(vec3) * /* Vertex normals. */
 sizeof(vec2); /* Texture UVs. */

 2. At the end of the while(i != objmesh->n_objvertexdata) block, right before
incrementing the loop (the line that contains ++i), insert the following code to handle the
insertion of the UV data in the array:

 memcpy(vertex_array,
 /* Get the index UV data for the current index attached to the
current vertex and insert it into the vertex_array. */
 &obj->indexed_uv[objmesh->objvertexdata[i].uv_index],
 sizeof(vec2));

 /* Move on to the insertion point. */
 vertex_array += sizeof(vec2);

Making Momo Furrier ❘ 51

c03.indd 51c03.indd 51 12/31/11 9:01:14 AM12/31/11 9:01:14 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

52 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

 3. Since you modifi ed the structure of the vertex data array, you will have to adjust the stride.
Locate the following line:

 stride = sizeof(vec3) +
 sizeof(vec3);

And replace it with this:

 stride = sizeof(vec3) + /* Vertex position. */
 sizeof(vec3) + /* Vertex normal. */
 sizeof(vec2); /* Vertex UV. */

 4. Finally all you have to do is to add another vertex attribute inside the VAO list. Append the
following code on the line just before the last glBindBuffer(GL_ELEMENT_ARRAY_
BUFFER call of the templateAppInit function:

 attribute = PROGRAM_get_vertex_attrib_location(program,
 (char *)”TEXCOORD0”);

 glEnableVertexAttribArray(attribute);
 glVertexAttribPointer(
 attribute,
 /* Vertex UV contains 2 fl oat, one for the U and one for the V
(obviously). */
 2,
 GL_FLOAT,
 GL_FALSE,
 stride,
 /* The number of bytes to jump to gain access to the UV. */
 BUFFER_OFFSET(
 sizeof(vec3) + /* Vertex position. */
 sizeof(vec3))); /* Vertex normal. */

You’ve now updated your VBO and VAO so they can handle the vertex UVs that are necessary to
“map” the texture on Momo.

Adding UV Support to the Vertex Shader

In this section, you will learn how to modify your existing shader program to support texture UVs.

In order to be able to actually see a texture inside your OBJ viewer, you fi rst have to create an
attribute and the necessary varying variables to bridge the UV data over to the fragment
processing phase. Follow these two easy steps to learn how to add texture coordinate support to
your vertex shader:

 1. At the top of the vertex.glsl fi le, declare a new vertex attribute for the texture coordinate
along with a varying, like this:

 attribute mediump vec2 TEXCOORD0;
 varying mediump vec2 texcoord0;

c03.indd 52c03.indd 52 12/31/11 9:01:14 AM12/31/11 9:01:14 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 2. Inside the main function, affect the attribute value to the varying as follows:

 texcoord0 = TEXCOORD0;

You are now able to process the UVs coordinate on a vertex basis and send the data over to the
fragment shader.

Adding Texture Support to Your Fragment Shader

Follow these steps to learn how to handle the texture unit, and texture coordinates to use for your
diffuse texture:

 1. Declare the following variable at the top of the fragment.glsl fi le:

varying mediump vec2 texcoord0;

 2. In order for OpenGL ES to be able to execute a UV based “pixel fetch” operation on your
texture, you have to tell it on which texture unit (or channel) to execute it. To do this, you
fi rst need to create a uniform variable to handle the texture channel number that you will
be using. There is a variable identifi er called sampler2D built into the GLSL language that’s
specifi cally reserved to do just that. To use this built-in variable, declare the following:

uniform sampler2D DIFFUSE;

 3. Replace the line that contains the gl_FragColor affectation by the following code to be
able to get the current pixel on the texture and modulate the resulting RGBA with the light
and ambient color:

 gl_FragColor =
 /* Fetch the pixel on the texture specifi ed by the current UV data. */
 texture2D(DIFFUSE, texcoord0) *
 vec4(lightcolor, 1.0) + /* The light color. */
 vec4(0.1); /* The ambient color. */

The process that you just created can be reused for any type of texture UVs and texture channels.
You can either use this code with a separate set of UVs, or use the same set on multiple texture
channels. Each texture has to match the unit that it has been assigned to (which you will learn about
in a moment).

In addition, by default, GLES 2.x requires driver manufacturers to make sure that at least eight
active texture units can be used. This is a physical limit, so keep it in mind while building your
shaders and applications.

Binding the Texture

Two small things are left in order to see the texture on your 3D model: First bind the texture to a
texture channel (or texture unit if you prefer), and second pass this channel number to the DIFFUSE
uniform variable.

Making Momo Furrier ❘ 53

c03.indd 53c03.indd 53 12/31/11 9:01:15 AM12/31/11 9:01:15 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

54 ❘ CHAPTER 3 DEALING WITH COMPLEX GEOMETRY

 1. In the templateApp.cpp fi le, just before the PROGRAM_draw call, paste the following code to
bind the texture to the fi rst unit:

 /* Activate the fi rst texture unit. */
 glActiveTexture(GL_TEXTURE0);

 /* Bind a texture to a specifi c texture channel; in this case,
0 (GL_TEXTURE0). */
 glBindTexture(
 /* Since your texture is a 2D texture, GL_TEXTURE_2D = sampler2D in your
fragment shader. */
 GL_TEXTURE_2D,
 /* Use the built-in variable tid (texture id) of the TEXTURE structure,
which represents the id for the texture that has been automatically
generated by GLES. */
 texture->tid);

 2. Move on to the program_draw_callback and append the following else if
to the existing if statement to be able to send the DIFFUSE texture channel id 0
(GL_TEXTURE0) to the shader program:

 else if(!strcmp(curr_program->uniform_array[i].name,
 “DIFFUSE”) &&
 !curr_program->uniform_array[i].constant) {
 /* Specify that the uniform is constant and will not change over
time, in order to always have to bind the same value over and over. */
 curr_program->uniform_array[i].constant = 1;
 glUniform1i(
 curr_program->uniform_array[i].location,
 0);
 } /* The fi rst texture channel. */

 3. Your screen should now display something similar to what’s
shown in Figure 3-4.

Before moving on to the next chapter, make sure you extensively test the
different parameters to get a feel for what is possible with what you have
learned.

In the next chapter, you will start getting deeper and deeper into
hardcore game and graphics programming; so make sure you grasp
everything covered in this chapter!

SUMMARY

In this chapter, you learned how to load and handle complex geometries
using any optimized VBO and VAO. You also learned how to use texture
loading and how to do basic per-vertex lighting.

FIGURE 3-4: Momo with

a coat

c03.indd 54c03.indd 54 12/31/11 9:01:15 AM12/31/11 9:01:15 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You have now been introduced to most of the core concepts that you’re going to need to deal with
on a daily basis as a game graphics programmer. But of course, there’s still a lot to learn, so keep
reading!

In the next chapter, you will learn how to handle the different types of objects commonly found
in a scene, as well as how to adjust their rendering sequence to draw them correctly onscreen.

Summary ❘ 55

c03.indd 55c03.indd 55 12/31/11 9:01:16 AM12/31/11 9:01:16 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c03.indd 56c03.indd 56 12/31/11 9:01:16 AM12/31/11 9:01:16 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Building a Scene

WHAT’S IN THIS CHAPTER?

Handling a scene with multiple objects

Classifying objects based on their material properties

Mixing solid, alpha tested, and transparent objects and rendering

them correctly

Creating and using Uber Shaders

Handling double-sided semitransparent objects, and other

alpha tricks

Implementing per-pixel lighting inside your fragment shaders

So far you have been rendering single objects. Whether it is in 2D or in 3D, it has been pretty
straightforward until now. In this chapter, you will learn how to handle a scene with multiple
objects of different types, including how to sort and draw these objects using a correct
rendering sequence.

You will progressively go through each aspect of rendering a complex scene. And you’ll fi x
each and every drawing issue as you go in order to end up with a perfectly rendered scene.

This chapter will also show you how to move the lighting calculation from the vertex to the
fragment shader in order to obtain a more realistic lighting effect.

You will also learn about the Uber Shader concept, which allows you to have multiple effects
contained inside one giant vertex and fragment shader fi le. And you’ll discover how to make
full use of this popular technique inside you own games and 3D apps.

➤

➤

➤

➤

➤

➤

4

c04.indd 57c04.indd 57 12/31/11 8:59:25 AM12/31/11 8:59:25 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

58 ❘ CHAPTER 4 BUILDING A SCENE

HANDLING MULTIPLE OBJECTS

Until now, you have been handling only a single object. Whether it’s a simple quad or a furry
monkey, it’s still just one set of vertex data drawn over and over again. In this chapter, you will
progressively discover how to handle and manage a simple, but relatively challenging, scene that
contains multiple objects, materials (shaders), and textures.

THE CODE STRUCTURE

As usual at the beginning of each chapter, start by duplicating the template project and
rename it chapter4-1. Now open the project fi le for your designated platform, and then
modify the code of the templateApp.cpp in order to start working with the following
structure:

#include “templateApp.h”
#define OBJ_FILE (char *)”scene.obj”
OBJ *obj = NULL;

TEMPLATEAPP templateApp = { templateAppInit,
 templateAppDraw };

void program_bind_attrib_location(void *ptr) {
 PROGRAM *program = (PROGRAM *)ptr;
}

/* This time you will use the material draw callback instead of the
program draw callback, since in this chapter you will work on a
material basis, not on a shader program basis. */
void material_draw_callback(void *ptr) {
 OBJMATERIAL *objmaterial = (OBJMATERIAL *)ptr;
 PROGRAM *program = objmaterial->program;
 unsigned int i = 0;
 while(i != program->uniform_count) {
 ++i;
 }
}

void templateAppInit(int width, int height) {
 atexit(templateAppExit);

 GFX_start();

 glViewport(0.0f, 0.0f, width, height);

 GFX_set_matrix_mode(PROJECTION_MATRIX);
 GFX_load_identity();
 GFX_set_perspective(45.0f,
 (float)width / (float)height,
 0.1f,
 100.0f,

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c04.indd 58c04.indd 58 12/31/11 8:59:28 AM12/31/11 8:59:28 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Loading and Drawing the Scene ❘ 59

 -90.0f); /* This time you will use a landscape view, so rotate the
projection matrix 90 degrees. */

 obj = OBJ_load(OBJ_FILE, 1);
}

void templateAppDraw(void) {
 glClearColor(0.5f, 0.5f, 0.5f, 1.0f);
 glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);

 GFX_set_matrix_mode(MODELVIEW_MATRIX);
 GFX_load_identity();
 vec3 e = { 0.0f, -6.0f, 1.35f }, /* The location of the camera. */
 c = { 0.0f, -5.0f, 1.35f }, /* Where the camera is looking. */
 u = { 0.0f, 0.0f, 1.0f };
 GFX_look_at(&e, &c, &u);
}

void templateAppExit(void) {
 unsigned i = 0;
 while(i != obj->n_objmaterial) {
 SHADER_free(obj->objmaterial[i].program->vertex_shader);
 SHADER_free(obj->objmaterial[i].program->fragment_shader);
 PROGRAM_free(obj->objmaterial[i].program);
 ++i;
 }
 OBJ_free(obj);
}

LOADING AND DRAWING THE SCENE

By now you are already familiar with most of the code, with the exception of the 90-degree fl ip of
the projection matrix to draw in landscape mode.

In addition, notice that this time you will be using an OBJ fi le named scene.obj. You can fi nd it
inside the SDK/data/chapter4-1 directory. Now link both the .obj and .mtl fi les along with all
the PNGs located in the same directory to your project.

In addition, you will need a vertex and fragment shader for this section. Create two new shader
fi les named vertex.glsl and fragment.glsl, save them inside the SDK/chapter4-1 folder, and
link them to your project. Then follow these steps to start implementing the necessary code to draw
the scene onscreen:

 1. Inside the templateAppInit function, locate the call to OBJ_load, and then add the following
code right after it to build the VBOs and VAO for all meshes contained in the OBJ fi le:

 /* Initialize the counter. */
 unsigned int i = 0;
 /* While there are some objects. */
 while(i != obj->n_objmesh) {
 /* Generate the VBOs and VAO for the current object. */

c04.indd 59c04.indd 59 12/31/11 8:59:28 AM12/31/11 8:59:28 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

60 ❘ CHAPTER 4 BUILDING A SCENE

 OBJ_build_mesh(obj, /* The OBJ structure to use. */
 i); /* The object index inside the OBJ structure. */
 /* Free all the vertex data related arrays. At this point, they have
all been transferred to the video memory by the OBJ_build_mesh call. */
 OBJ_free_mesh_vertex_data(obj, i);
 ++i; } /* Move to the next object. */

The OBJ_build_mesh function basically wraps all the VBO and VAO calls that you
manually coded in the previous chapter. (Don’t worry about the attribute locations —
you will be handling them a bit later in this section.)

 2. Load all the textures linked inside the MTL fi le and generate their texture IDs as follows:

 i = 0;
 while(i != obj->n_texture) {
 OBJ_build_texture(obj,
 i,
 /* By default the same as where the .mtl is located. */
 obj->texture_path,
 TEXTURE_MIPMAP,
 TEXTURE_FILTER_2X,
 0.0f);
 /* Next texture. */
 ++i;
}

 3. Now use the following code to link all textures to their respective materials and manually
create a shader program for each of them using the two shader fi les that you created
previously:

 i = 0;
 while(i != obj->n_objmaterial) {
 /* Link all textures to the material(s). */
 OBJ_build_material(obj,
 i,
 /* No need to pass a PROGRAM pointer. You’ll create one. */
 NULL);

 /* Use the following helper function to create a shader program for
each material using the same vertex and fragment shader fi le. */
 obj->objmaterial[i].program =
 PROGRAM_create((char *)”default”,
 (char *)”vertex.glsl”,
 (char *)”fragment.glsl”,
 1, /* Use a relative path. */
 1, /* Debug the shaders and program linking. */
 /* Custom callback to be able to specify the
attribute location before the linking phase of the shader program. */
 program_bind_attrib_location,
 /* Do not link the draw callback this time */
 NULL);

 /* Set the material draw callback to have direct access to the
material data before drawing. */

c04.indd 60c04.indd 60 12/31/11 8:59:28 AM12/31/11 8:59:28 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Loading and Drawing the Scene ❘ 61

 OBJ_set_draw_callback_material(obj,
 i,
 material_draw_callback);

 /* Next material. */
 ++i;
}

 4. Move on to the templateAppDraw function and insert on the next line right after the
GFX_look_at call the following block of code to loop through all the objects and draw them
onscreen:

 /* Initialize a counter. */
 unsigned int i = 0;

 /* Loop for each OBJMESH. */
 while(i != obj->n_objmesh) {

 /* Push the current model view matrix down. */
 GFX_push_matrix();

 /* Translate the model view matrix use the location XYZ of the
current mesh. */
 GFX_translate(obj->objmesh[i].location.x,
 obj->objmesh[i].location.y,
 obj->objmesh[i].location.z);

 /* Draw the mesh and its associated material(s) onscreen. */
 OBJ_draw_mesh(obj, i);

 /* Pop the model view matrix back. */
 GFX_pop_matrix();

 /* Next mesh. */
 ++i;
}

 5. Now move to the material_draw_callback function and insert inside the while loop
block the following block on the line just before the loop incrementation (++i):

 if(!strcmp(program->uniform_array[i].name,
 “DIFFUSE”)) {
 /* If a diffuse texture is specifi ed inside the MTL fi le, it will
always be bound to the second texture channel (GL_TEXTURE1). */
 glUniform1i(
 program->uniform_array[i].location,
 1);
 }

 else if(!strcmp(program->uniform_array[i].name,
 “MODELVIEWPROJECTIONMATRIX”)) {
 /* Send over the current model view matrix multiplied by
the projection matrix. */
 glUniformMatrix4fv(

c04.indd 61c04.indd 61 12/31/11 8:59:29 AM12/31/11 8:59:29 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

62 ❘ CHAPTER 4 BUILDING A SCENE

 program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_modelview_projection_matrix());
 }

Since you let the OBJ_build_material call handle the texture linking work for you, the
function is using predefi ned texture channels for each type of texture found inside the MTL
fi le material defi nition. Table 4.1 lists the texture channels available for each material and
which texture unit they will bind to.

TABLE 4-1: Default Texture Unit Attribution

MTL TEXTURE MAP TYPE CHANNEL SAMPLER2D

map_Ka Ambient GL_TEXTURE0 0

map_Kd Diff use GL_TEXTURE1 1

map_Ks Specular GL_TEXTURE2 2

disp

map_disp

map_Disp

Displacement map GL_TEXTURE3 3

bump

map_bump

map_Bump

Bump map GL_TEXTURE4 4

map_Tr Translucency GL_TEXTURE5 5

 6. Similar to the previous step, the OBJ_build_mesh function has handled the attributes
generation for you. You now have to tell the shader program which attributes location you
will be using. Please note that this can only be done before the linking phase of the shader
program. To do this, go to the program_bind_attrib_location function and add the
following before the end of the function bracket:

 glBindAttribLocation(program->pid, 0, “POSITION”);
 glBindAttribLocation(program->pid, 2, “TEXCOORD0”);

Refer to Table 4.2 for the full list of predefi ned attribute locations supported by the OBJ
loader that comes with the SDK.

TABLE 4-2: Default OBJ Loader Attribute Location

ATTRIBUTE TYPE ATTRIBUTE LOCATION AUTO-GENERATED DATA

POSITION 0 No

NORMAL 1 Yes

c04.indd 62c04.indd 62 12/31/11 8:59:29 AM12/31/11 8:59:29 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Shaders Code ❘ 63

ATTRIBUTE TYPE ATTRIBUTE LOCATION AUTO-GENERATED DATA

TEXCOORD0 2 No

TANGENT0 3 Yes

FNORMAL 4 Yes

You now have all the necessary code to load and draw your scene. As you can see, by using the
helper functions that come with the book’s SDK, you are drastically decreasing the number of lines
of code. At this point, all that’s left to be done is to write the necessary vertex and fragment shaders.

THE SHADERS CODE

Open the vertex shader fi le vertex.glsl, insert the following code, and then save the fi le:

uniform mediump mat4 MODELVIEWPROJECTIONMATRIX;
attribute mediump vec3 POSITION;
attribute mediump vec2 TEXCOORD0;
varying mediump vec2 texcoord0;
void main(void) {
 texcoord0 = TEXCOORD0;
 gl_Position = MODELVIEWPROJECTIONMATRIX * vec4(POSITION, 1.0);
}

Next, open fragment.glsl and insert the following fragment shader code, and then save the fi le:

uniform sampler2D DIFFUSE;
varying mediump vec2 texcoord0;
void main(void) {
 gl_FragColor = texture2D(DIFFUSE, texcoord0);
}

Now build and run the application and you should
now have the same as Figure 4-1 drawn onscreen.

As you can see, all the objects and textures
are properly applied. However, there are some
obvious major issues. The tree leaves are not
transparent — they completely cover the face of
our beloved monkey. In addition, if you take a
look at the material defi nition inside the
scene.mtl fi le, you will discover that the balloon
material should be semitransparent due to the
dissolve value (aka alpha).

In order to handle a proper drawing for all the objects, you will have to create multiple shaders in order
to handle all of the effects set in their material settings. However, before moving to more shader creation
code, you have to fi rst learn about the different object types that are commonly found in all 3D scenes.

FIGURE 4-1: Your fi rst scene using multiple objects

c04.indd 63c04.indd 63 12/31/11 8:59:29 AM12/31/11 8:59:29 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

64 ❘ CHAPTER 4 BUILDING A SCENE

THE DIFFERENT OBJECT TYPES

Basically, the few oddities mentioned at the end of the last section come to the fact that depending
on the type of objects that you are dealing with, you have to treat them differently — not only
from a shader point of view, but also from the drawing sequence that has to be used to draw
them properly.

There are basically three main types of objects that require your attention. Each of them can be
identifi ed based on their material settings. The term object is used at this stage to keep things clear
and simple. However, as you start to dive deeper into advanced game and graphic programming,
you will fi nd that a more appropriate term would be triangle list, because one object can contain
multiple materials and each of them has to be drawn using a separate triangle list.

At this stage, you can think of an object as a single mesh that has one material applied onto its
whole surface, keeping in mind that each distinct material will have a direct impact on the category
that object belongs to. The three main object categories that should be identifi ed at loading time are
as follows:

Solid object — This is the common object type. The object material does not have any alpha
value in its material properties. The textures associated with the material do not contain
any alpha channel; they are all either RGB or grayscale.

Alpha-tested object — This type is most commonly used for foliage or to represent eroded
surfaces such as rusty metal. You can identify this type if at least one of the textures of
the material has an alpha channel and an alpha test threshold to be used to exclude pixels
from being rendered.

Transparent object — A transparent object is basically the opposite of a solid object.
An object is considered transparent if an alpha other than 1.0 is specifi ed inside its material
property, or if at least one of the textures assigned to the material contains an alpha
channel. As a result, blending will need to be turned ON when drawing this type of object.

THE DRAWING SEQUENCE

At loading time, you need to be able to identify the type of each object. An object’s rendering order
will be directly affected by the object category it belongs to.

For example, if you have a semitransparent surface, you need to make sure that all objects behind
it are drawn fi rst. Otherwise, the rendering will look weird, because objects or parts of objects will
be missing or simply invisible.

That said, it basically comes down to a universal sequence for drawing each and every object type.
The simplest and most recommended sequence of rendering is as follow:

 1. Draw all your solid objects as they appear. Alternatively, you can sort the objects from front
to back (based on their distance from the viewer) to gain a bit of speed using an early Z test
with the depth buffer. This technique can help you avoid “overdrawing” smaller objects
that are occluded by larger ones, but it requires a bit more CPU for sorting the objects.

➤

➤

➤

c04.indd 64c04.indd 64 12/31/11 8:59:30 AM12/31/11 8:59:30 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Fixing the Scene ❘ 65

 2. Draw all the alpha-tested objects. As with the solid objects, you can order alpha-tested
objects from front to back to avoid processing unnecessary pixels in the fragment shader. And
for the sake of better performance at the cost of machine state changes, you can optionally
integrate them inside your solid object drawing list. This is assuming that the pixels of the
alpha-tested objects are not semitransparent (which are dealt with in the next step).

 3. Draw all your semitransparent objects, ordered from back to front based on their
distance from the current viewer location. Sorting them in this order will ensure that your
semitransparent surfaces are always drawn correctly.

This rendering sequence will help you avoid a lot of machine state switches while ensuring that your
scenes are rendered properly. You should be able to use this sequence for most of your 3D scenes.

In the next section, you’ll implement the necessary code to categorize every object in order to
properly fi x the drawing sequence of your current scene.

FIXING THE SCENE

Duplicate the project fi le from the previous section and rename it chapter4-2. Then open this new
project fi le.

Let’s start by analyzing the scene the way it is right now, and categorize each object. Momo, the tree
bark, the background, and the ground are rendering just fi ne with the current shader. All of these
belong to the solid objects category and do not require any other special care at the moment.

The balloon object has a dissolve (aka alpha) value of 0.65 in its material defi nition. This means
that you will have to turn on alpha blending and use the alpha value of the material to affect the
whole object opacity, making it semitransparent. As you might have already guessed, this object
belongs to the transparent object type. Since there are no other transparent objects at the moment,
there’s no point sorting it by distance. You will simply plug its drawing into a good location inside
your rendering sequence.

The only objects left to categorize are the tree leaves. Since their texture has an alpha channel,
what you want to do at the moment is to simply get rid of the alpha pixels in order to only keep
the contour of the leaves. For this, you will have to use alpha testing. This makes the leaves
an alpha-tested object.

Now that you have successfully classifi ed your objects, you will need to create the necessary shaders
for each type. Right now, you need two extra shaders: one for the balloon, and one for the tree
leaves (which is in fact one object).

You haven’t worked with many shader fi les so far, but once again, as the complexity of your scene
grows, you will require more and more shader fi les. It can be quite a burden to maintain two
different fi les for each different material and their variants. However, in the next section, you’ll
learn how to maintain multiple effects inside one vertex and fragment shader fi le.

Uber Shader

Wouldn’t it be nice to simply have a single shader program that can be dynamically adjusted to
handle all the effects that you want? That’s exactly what an Uber Shader will do for you.

c04.indd 65c04.indd 65 12/31/11 8:59:30 AM12/31/11 8:59:30 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

66 ❘ CHAPTER 4 BUILDING A SCENE

Uber Shaders use pre-processor macro defi nitions (#define) to toggle ON or OFF part of the GLSL
ES code contained in your vertex and fragment shader fi le(s). In your application, you can then
dynamically toggle only the part of the source you need before compilation time. This allows you to
re-use the same shader fi les to achieve a single effect or a combination of multiple effects.

This technique is very practical and enables you to avoid branching (if, else if, else) directly
inside your shaders. Vastly used by most of the modern game engines, this approach still has some
downsides. First, you will still need to bind ON and OFF multiple shader program IDs at drawing
time. In addition, as your Uber Shader grows in complexity, it might be become more and more
diffi cult to maintain.

Let’s fi rst start fi xing your app by adding the necessary code to your shader program so you can use
the Uber Shader method on the solid, semitransparent, and alpha tested objects of your scene.

At the moment, the vertex shader will stay the same for all your objects. So open the fragment
.glsl fi le and replace its content with this code:

uniform sampler2D DIFFUSE;
varying mediump vec2 texcoord0;
void main(void) {
 lowp vec4 diffuse_color = texture2D(DIFFUSE, texcoord0);

 #ifdef SOLID_OBJECT
 gl_FragColor = diffuse_color;
 #endif

 #ifdef ALPHA_TESTED_OBJECT
 /* NEW! If the alpha value of the texture diffuse color is
less than 0.5, discard the fragment. */
 if(diffuse_color.a < 0.5) discard;
 else gl_FragColor = diffuse_color;
 #endif

 #ifdef TRANSPARENT_OBJECT
 gl_FragColor = diffuse_color;
 /* NEW! Override the texture diffuse color alpha value (if any) with
the one contained in the material (you only have one at the moment, so you
can hardcode the value in the shader for now). */
 gl_FragColor.a = 0.65;
 #endif
}

Now you have three different effects contained inside the same fragment shader. Of course, this
is a pretty simple example, but as you begin creating more complex scenes with many objects and
materials, this approach will enable you to handle larger shaders with many effects and variants.

Using Your Uber Shader

What’s left to be done in order for you to be able to use the appropriate block of code that you plug
inside your Uber fragment shader is to trigger the necessary #define tag before compilation.

c04.indd 66c04.indd 66 12/31/11 8:59:31 AM12/31/11 8:59:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Fixing the Scene ❘ 67

Open the templateApp.cpp fi le and fi nd the following while loop inside the templateAppInit
function:

 i = 0;
 while(i != obj->n_objmaterial) {
 /* Loop Code */
 ++i; }
Replace that code block completely with the following:
 i = 0;
 /* Load the global vertex shader that you are going to use for all the
material shader programs. */
 MEMORY *vertex_shader = mopen((char *)”vertex.glsl”, 1);
 while(i != obj->n_objmaterial) {
 ++i;
 }

This loop structure will enable you to initialize and create your shader program. Next, you have to
dynamically enable the necessary shader code of your fragment shader, depending on the type of
object you’re dealing with. To do this, follow these steps:

 1. For each material that you will be creating in the loop, you will need to access a clean
copy of the fragment shader. Insert the following code on the next line after the while loop
start bracket:

MEMORY *fragment_shader = mopen((char *)”fragment.glsl”, 1);

 2. To make things easier, declare a local OBJMATERIAL pointer to handle the current material
you are dealing with and build the material as follows:

 OBJMATERIAL *objmaterial = &obj->objmaterial[i];
 OBJ_build_material(obj, i, NULL);

 3. Now insert the following code block to analyze the value of the dissolve parameter for the
current material and take the proper action in order to toggle the necessary #define
inside your fragment shader code:

 /* The material has no alpha, so it is considered a solid object.
In addition, please note that the current and following conditions are
strictly based on the dissolve value. However, in a real-world scenario,
an extra check has to be made on the number of bits of the texture to
analyze if it contains an alpha channel. And modifi cations in the shaders
are required to handle this type of scenario. */
 /* If dissolve is equal to one it means that the material you are
dealing with will be applied on solid objects. */
 if(objmaterial->dissolve == 1.0f)
 /* This function will insert the appropriate #defi ne code at an
arbitrary position in the current fragment shader memory stream that you
loaded in the previous step. */
 minsert(
 /* The memory stream. */
 fragment_shader,
 /* The code to insert. */

c04.indd 67c04.indd 67 12/31/11 8:59:31 AM12/31/11 8:59:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

68 ❘ CHAPTER 4 BUILDING A SCENE

 (char *)”#defi ne SOLID_OBJECT\n”,
 /* The character position in the stream to insert the code. In this
case, it’s 0, which represents the beginning of the stream. This way, only
the block of the marked the #ifdef SOLID_OBJECT will be enabled. */
 0);

 /* There’s no real way in an OBJ material fi le to tag an object for
alpha test. Simply use the 0.0 value on the dissolve parameter to tag the
object as an alpha-tested object. */
 else if(!objmaterial->dissolve)
 /* Insert the necessary code to enable the ALPHA_TESTED_OBJECT code
block of the shader by manually inserting the defi nition. */
 minsert(fragment_shader,
 (char *)”#defi ne ALPHA_TESTED_OBJECT\n”,
 0);

 /* Same as above except that if the object does not fall between
the two previous conditions, you have to treat it as a transparent
object. */
 else {
 minsert(fragment_shader,
 (char *)”#defi ne TRANSPARENT_OBJECT\n”,
 0);
 }

 4. You have now dynamically enabled the appropriate block of code for each object type.
It’s now time to compile the shader for the current material using the modifi ed source code
as follows:

 /* Use the objmaterial program pointer to initialize the
shader program. */
 objmaterial->program = PROGRAM_init(objmaterial->name);

 /* Create the vertex shader. */
 objmaterial->program->vertex_shader =
 SHADER_init((char *)”vertex”,
 GL_VERTEX_SHADER);

 /* Create the fragment shader. */
 objmaterial->program->fragment_shader =
 SHADER_init((char *)”fragment”,
 GL_FRAGMENT_SHADER);

 /* Compile both the vertex and fragment programs. */
 SHADER_compile(objmaterial->program->vertex_shader,
 (char *)vertex_shader->buffer,
 1);

 SHADER_compile(objmaterial->program->fragment_shader,
 (char *)fragment_shader->buffer,
 1);

 /* Link the bind attribute location callback BEFORE the linking phase
of the shader program to insure that the location of the attribute that you

c04.indd 68c04.indd 68 12/31/11 8:59:31 AM12/31/11 8:59:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Fixing the Scene ❘ 69

specify will be taken into consideration. */
 PROGRAM_set_bind_attrib_location_callback(
 objmaterial->program,
 program_bind_attrib_location);

 /* Link the shader program so you can use it for drawing. */
 PROGRAM_link(objmaterial->program, 1);

 /* Assign the draw callback to the material so you can receive
live feedback before drawing in order to update your uniform variables
based on the current material data. */
 OBJ_set_draw_callback_material(obj,
 i,
 material_draw_callback);

 /* Close and free the memory stream. */
 mclose(fragment_shader);

 5. And fi nally, paste the following code below the while loop end bracket to fl ush the vertex
shader code from memory:

 mclose(vertex_shader);

Render Loop Objects Categorization

You are almost there! Basically at this point, the only thing that’s left to be done is to implement the
same kind of categorization code inside your render loop. Locate the while loop block that’s being
used to render all the objects inside the templateAppDraw function, and get rid of it completely.

In the following steps, you will be replacing it with three different loops, one for each type of object
that you are going to draw.

 1. Start by re-implementing a new while loop, right after the unsigned int i = 0;
declaration, but this time for the solid objects only:

 /* Solid Objects */
 while(i != obj->n_objmesh) {
 /* Get the material pointer of the fi rst triangle list of the
current mesh. All your objects are using a single material, so only
one triangle list is available. By getting access to the fi rst
triangle list, you can now gain access to the material used by your
current mesh. You can then use the material dissolve property as you
did earlier to classify your object at render time. */
 OBJMATERIAL *objmaterial =
 obj->objmesh[i].objtrianglelist[0].objmaterial;

 /* Is it a solid object? */
 if(objmaterial->dissolve == 1.0f) {
 GFX_push_matrix();
 GFX_translate(obj->objmesh[i].location.x,
 obj->objmesh[i].location.y,
 obj->objmesh[i].location.z);

c04.indd 69c04.indd 69 12/31/11 8:59:31 AM12/31/11 8:59:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

70 ❘ CHAPTER 4 BUILDING A SCENE

 OBJ_draw_mesh(obj, i);
 GFX_pop_matrix(); }
 ++i;
 }

 2. Now run another type of condition to evaluate if it is an alpha-tested object (dissolve = 0):

 /* Alpha-Tested Objects */
 i = 0;
 while(i != obj->n_objmesh) {
 OBJMATERIAL *objmaterial =
 obj->objmesh[i].objtrianglelist[0].objmaterial;

 if(!objmaterial->dissolve) {
 GFX_push_matrix();
 GFX_translate(obj->objmesh[i].location.x,
 obj->objmesh[i].location.y,
 obj->objmesh[i].location.z);
 OBJ_draw_mesh(obj, i);
 GFX_pop_matrix(); }
 ++i;
 }

Note that since you only have one alpha-tested object (the leaves of the tree), there’s no
real need to sort the object by distance. However, keep in mind that if you have multiple
alpha-tested objects, the performance gain of sorting them from front to back based on
their distance from the viewer can be quite benefi cial.

 3. Now apply the same structure for the last object type to be drawn onscreen: the transparent
objects. But this time, you will have to tell the video card to enable blending and to use the
alpha value of the texture for the blend operation on each visible pixel, as follows:

 /* Tell the GPU to enable blending. */
 glEnable(GL_BLEND);
 /* Specify which source and destination function to use for
blending. In this case, all you want is the alpha value of the
fragment to be used by the blending operation to make your object
semitransparent. */
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

 /* Transparent Objects */
 i = 0;
 while(i != obj->n_objmesh) {
 OBJMATERIAL *objmaterial =
 obj->objmesh[i].objtrianglelist[0].objmaterial;
 /* If the current dissolve value doesn’t fi t the conditions of
the solid or alpha tested objects, the current object has to be
transparent, so draw it onscreen. */
 if(objmaterial->dissolve > 0.0f &&
 objmaterial->dissolve < 1.0f) {
 GFX_push_matrix();
 GFX_translate(obj->objmesh[i].location.x,
 obj->objmesh[i].location.y,

c04.indd 70c04.indd 70 12/31/11 8:59:32 AM12/31/11 8:59:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Fixing the Scene ❘ 71

 obj->objmesh[i].location.z);
 OBJ_draw_mesh(obj, i);
 GFX_pop_matrix(); }
 ++i;
 }
 /* Every time you enable a machine state, remember to turn it
back OFF when you don’t need it. This way, you won’t have any
surprises when drawing the next frame. */
 glDisable(GL_BLEND);

Well, that was quite a bit of code that you just
wrote, but it’s all to your advantage. You now
have all the necessary knowledge to be able to
draw a scene containing multiple object types.

Go ahead and build and execute your program.
You should see what’s shown in Figure 4-2 on
your screen.

It’s already better — at least you can see that
you get the alpha test and semitransparent object
right. But there are obviously still some issues.
Since the balloon is semitransparent, you should
be able to see its back faces before seeing the leg and belly of Momo. And as for the leaf of the tree,
unless a hurricane passed right through it, it should look a lot more bulky than that!

Do a quick review of the section code to make sure you grasp all the key concepts, and then jump
to the next section of this chapter to learn how to fi x your scene by implementing double-sided
rendering.

Double-Sided

Before implementing the key concept that will be demonstrated in this section, duplicate the last
section’s project and rename it chapter4-3.

When dealing with partially transparent or semitransparent geometry, you will have to determine if
the back face of the object should be visible.

Simply turning off GL_CULL_FACE (which allows you to control if either the front or back face
should be culled) wouldn’t do the trick.

You never know in which order the triangles will be sent to be drawn. And sorting all triangles in
real time based on their distance from the viewer (to ensure proper triangle rendering order) is too
expensive in terms of calculation and therefore out of the question.

Alternatively, you have to rely on another trick that will allow you to draw in the right order both
the front face and back face of an object that is semitransparent or partially transparent.

The most effi cient and best performing trick is to invert the side of the cull face and render the
geometry twice. Let’s start by implementing double-sided rendering on the balloon.

FIGURE 4-2: Your scene rendered with object

classifi cation

c04.indd 71c04.indd 71 12/31/11 8:59:32 AM12/31/11 8:59:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

72 ❘ CHAPTER 4 BUILDING A SCENE

Locate the OBJ_draw_mesh function call inside the while loop where you render the transparent
objects, and replace the function call with the following:

 glCullFace(GL_FRONT);
 OBJ_draw_mesh(obj, i);
 glCullFace(GL_BACK);
 OBJ_draw_mesh(obj, i);

What you just coded was a two-step drawing approach: First you tell the GPU to get rid of all
the front face of the mesh, and then you send the draw call. At this point, only the back faces are
processed. Then you invert the condition and render all the front faces (remember that it has to be
done from back to front for correct alpha sorting).

Congratulations! You have now implemented
double-sided rendering of semitransparent
objects. That was easy, right?

To visualize the result, build and execute the
program. You should notice right away that
the balloon is now rendered properly, as shown
in Figure 4-3.

Obviously this technique can only work with
hollow objects that are semitransparent or on
alpha-tested objects that are not using semitransparency. Since the alpha test is done on a pixel
basis, there’s no problem using this technique, because only the visible pixel will be written in the
depth buffer and color buffer.

To implement this method on your alpha-
tested objects, locate the while loop where you
render this kind and replace the OBJ_draw_
mesh function the same way you did for the
transparent object. Then build and run the
program. You should now see what’s shown in
Figure 4-4.

Your scene basically renders fi ne at the moment.
However, as you might have already noticed, the
contour of the leaves is pretty jaggy.

Let’s now use a different approach, and consider the alpha-tested object as a sub-class of
the transparent objects to be able to achieve a new range of effects. Since simply tweaking the
alpha-test threshold will only get rid of more or less pixels (depending on the value you are using),
the following technique can be used to properly handle smooth alpha-blended overlapping triangles
and can be used on foliage, just like the leaves of the tree.

To demonstrate how you can use this method, start by duplicating the last project and rename it
chapter4-4. Then follow these steps to change the rules of the game a bit:

FIGURE 4-3: Balloon rendered double-sided

FIGURE 4-4: Alpha-tested tree leaves using the

double-sided drawing approach

c04.indd 72c04.indd 72 12/31/11 8:59:32 AM12/31/11 8:59:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Per-Pixel Lighting ❘ 73

 1. Get rid of the whole while loop rendering block for the alpha-tested objects, or simply
comment it.

 2. Inside the transparent object while loop, change the if condition to the following:

 if(objmaterial->dissolve != 1.0f)

 3. Change the alpha-test value inside the fragment.glsl fi le. Since you are now using the
alpha channel of the texture in conjunction with alpha blending, the alpha-test threshold
doesn’t have to be as dramatic as 0.5.

 if(diffuse_color.a < 0.1) discard;

 4. Now build and run your program. You
will now see how much smoother the
leaves of the trees are, as demonstrated in
Figure 4-5.

PER-PIXEL LIGHTING

Let’s now use the power of the Uber Shader and
implement per-pixel lighting! So far, you have
been implementing per-vertex lighting, where
all the calculations were done inside the vertex
shader. As the name of the technique implies, you will now move the lighting calculations to the
fragment shader. Note that once again you will be using a directional light (basically simulating
the sun).

This section will introduce you to the Phong lighting model. In addition, this time you will directly
use the material values that you have been extracting from the MTL fi le and will directly plug them
inside the lighting equation.

Making the Vertex Shader Even Fatter

Start by duplicating the last section project and rename it chapter4-5. Then open the project fi le
and let’s get this show on the road!

 1. Open the vertex.glsl shader fi le and replace

uniform mediump mat4 MODELVIEWPROJECTIONMATRIX;

with the following code:

/* Declare a new entry inside your Uber Shader */
#ifdef LIGHTING_SHADER
 uniform mediump mat4 MODELVIEWMATRIX;
 uniform mediump mat4 PROJECTIONMATRIX;
 uniform mediump mat3 NORMALMATRIX;

FIGURE 4-5: Smooth tree leaves using alpha testing

and blending

c04.indd 73c04.indd 73 12/31/11 8:59:33 AM12/31/11 8:59:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

74 ❘ CHAPTER 4 BUILDING A SCENE

 attribute lowp vec3 NORMAL;

 /* Since the lighting calculation will be done inside the
fragment shader, declare two variables to bridge the vertex normal
and the vertex position to send them over. */
 varying lowp vec3 normal;
 varying mediump vec3 position;
#else
 uniform mediump mat4 MODELVIEWPROJECTIONMATRIX;
#endif

 2. Now replace the following gl_Position affectation code:

 gl_Position = MODELVIEWPROJECTIONMATRIX * vec4(POSITION, 1.0);

with this:

 #ifdef LIGHTING_SHADER
 /* Calculate the vertex position in eye space. */
 position = vec3(MODELVIEWMATRIX * vec4(POSITION, 1.0));
 /* Adjust the current vertex normal with the normal matrix. */
 normal = normalize(NORMALMATRIX * NORMAL);
 /* Multiply the eye position with the projection matrix to be
able to position the vertex onscreen. */
 gl_Position = PROJECTIONMATRIX * vec4(position, 1.0);
 #else
 gl_Position = MODELVIEWPROJECTIONMATRIX * vec4(POSITION, 1.0);
 #endif

Getting the Fragment Shader More Uber

As you can see, not much has changed compared to the approach that you studied in Chapter 3.
Only the value of the vertex normal and the vertex position are sent over to the fragment shader.
And using the power of the Uber Shader, you can now toggle ON or OFF whether or not to use
lighting calculation on top of the current effects that you have been using for each object.

Now save the vertex.glsl fi le (if you have not already done so) and open fragment.glsl. Then
follow these steps:

 1. At the top of the fragment.glsl fi le, insert the following code:

#ifdef LIGHTING_SHADER
 uniform mediump vec3 LIGHTPOSITION;
 uniform lowp vec3 AMBIENT_COLOR;
 uniform lowp vec3 DIFFUSE_COLOR;
 uniform lowp vec3 SPECULAR_COLOR;
 uniform mediump fl oat SHININESS;
 uniform lowp fl oat DISSOLVE;
 varying mediump vec3 position;
 varying lowp vec3 normal;
#endif

c04.indd 74c04.indd 74 12/31/11 8:59:34 AM12/31/11 8:59:34 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Per-Pixel Lighting ❘ 75

There are lots of new uniforms here, but you already had all of these values available. So
far, you have been ignoring all these parameters contained in the MTL fi le, but from now
on, you will make full use of them! All you have to do is tag the current material that you’re
going to be using to draw and send over the data. It couldn’t be easier, and you already have
all the structure to do so.

 2. On the next line right after you declare the diffuse_color variable (lowp vec4 diffuse_
color = texture2D(DIFFUSE, texcoord0);), insert the following code to handle the
lighting calculation:

 #ifdef LIGHTING_SHADER
 /* Remember the alpha value of the texture. */
 lowp fl oat alpha = diffuse_color.a;
 /* Use the light position in eye space with the vertex
position in eye space to calculate the light direction vector. */
 mediump vec3 L = normalize(LIGHTPOSITION - position);
 /* Invert the eye position vertex. */
 mediump vec3 E = normalize(-position);
 /* Calculate the refl ection vector of the light direction and
the current vertex normal that will be used for specular color
calculation. */
 mediump vec3 R = normalize(-refl ect(L, normal));
 /* Assign the ambient color. */
 mediump vec4 ambient = vec4(AMBIENT_COLOR, 1.0);
 /* Calculate the fi nal diffuse color. This calculation is
based on the multiplication of the material diffuse color with the
diffuse texture color and fi nally adjusted by the light intensity
calculation. */
 mediump vec4 diffuse = vec4(DIFFUSE_COLOR *
 diffuse_color.rgb, 1.0) *
 max(dot(normal, L), 0.0);
 /* Calculate the fi nal specular color. This calculation is
based on the specular color of the material affected by the
refl ection vector of the light and boosted by the shininess of the
material. */
 mediump vec4 specular = vec4(SPECULAR_COLOR, 1.0) *
 pow(max(dot(R, E), 0.0),
 SHININESS * 0.3);
 /* Calculate the fi nal fragment color by adding together all
the different colors that you have calculated above. */
 diffuse_color = vec4(0.1) + /* Scene Color. */
 ambient +
 diffuse +
 specular;
 /* In the calculation above, you lose the original alpha of the
texture, so you have to make sure to reassign it. */
 diffuse_color.a = alpha;
 #endif

 3. Finally, since you now have the uniform variable DISSOLVE available, simply modify
the gl_FragColor.a affectation inside the TRANSPARENT_OBJECT block defi nition with the
following code:

 gl_FragColor.a = DISSOLVE;

c04.indd 75c04.indd 75 12/31/11 8:59:34 AM12/31/11 8:59:34 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

76 ❘ CHAPTER 4 BUILDING A SCENE

Wrapping Up the Implementation

You are done modifying the shader fi les. (Did you notice how easy it was?) Now it’s time to modify
your current source code to handle all these new uniforms and send them over to your shader
program from within your app.

Open templateApp.cpp and follow the next few steps to fi nalize the implementation of the
per-pixel lighting:

 1. Start off by locating the line where you are initializing the vertex shader memory variable
(MEMORY *vertex_shader). Select it, cut it, and paste it on the next line right after the
MEMORY *fragment_shader initialization code. From now on the vertex shader will also
need to receive a dynamic macro defi nition, so you need to have access to a fresh copy for
every material.

 2. On the line before the PROGRAM_init function call, insert another condition based on the
illumination model of the material to determine whether or not the current material should
have lighting enabled.

 if(objmaterial->illumination_model) {
 minsert(vertex_shader,
 (char *)”#defi ne LIGHTING_SHADER\n”, 0);
 minsert(fragment_shader,
 (char *)”#defi ne LIGHTING_SHADER\n”, 0); }

The illumination model value found inside the MTL fi le determines if a material should
be part of the lighting calculation or not. If you open the .mtl fi le for the scene, you will
fi nd that every material has an illumination model (illum) value of 2, with the exception of
the background material, which is 0 because it represents a shadeless material.

 3. Locate the mclose(vertex_shader); line, select it, cut it, and paste it on the next line
right after the mclose(fragment_shader); call. This way, the vertex_shader variable
will be freed for each material and won’t leak.

 4. Since your vertex and fragment shaders are now using the vertex normals (when lighting is
ON), insert the following vertex attribute location affectation inside the program_bind_
attrib_location function:

 glBindAttribLocation(program->pid, 1, “NORMAL”);

 5. All that’s left to be done is to pass all the uniforms based on the current material values.
Jump to the material_draw_callback function and append the following else if (one for
each uniform) to the current condition block:

 /* The material dissolve (alpha) value. */
 else if(!strcmp(program->uniform_array[i].name,
 “DISSOLVE”)) {
 glUniform1f(program->uniform_array[i].location,
 objmaterial->dissolve);
 }

 /* The ambient color of the material. */

c04.indd 76c04.indd 76 12/31/11 8:59:34 AM12/31/11 8:59:34 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Per-Pixel Lighting ❘ 77

 else if(!strcmp(program->uniform_array[i].name,
 “AMBIENT_COLOR”)) {
 glUniform3fv(program->uniform_array[i].location,
 1,
 (fl oat *)&objmaterial->ambient);
 }

 /* The material diffuse color. */
 else if(!strcmp(program->uniform_array[i].name,
 “DIFFUSE_COLOR”)) {
 glUniform3fv(program->uniform_array[i].location,
 1,
 (fl oat *)&objmaterial->diffuse);
 }

 /* The specular color. */
 else if(!strcmp(program->uniform_array[i].name,
 “SPECULAR_COLOR”)) {
 glUniform3fv(program->uniform_array[i].location,
 1,
 (fl oat *)&objmaterial->specular);
 }

 /* The specular exponent (aka shininess) of the material. */
 else if(!strcmp(program->uniform_array[i].name,
 “SHININESS”)) {
 /* MTL range for specular exponent is in the range of 1 to 1000.
Convert it to the OpenGL standard shininess range of 1 to 128. */
 glUniform1f(program->uniform_array[i].location,
 objmaterial->specular_exponent * 0.128f);
 }

 6. Now append more else if cases to the code to be able to send the appropriate matrices to
the shader program, as follows:

 else if(!strcmp(program->uniform_array[i].name,
 “MODELVIEWMATRIX”)) {
 glUniformMatrix4fv(
 program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_modelview_matrix());
 }

 else if(!strcmp(program->uniform_array[i].name,
 “PROJECTIONMATRIX”)) {
 glUniformMatrix4fv(
 program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_projection_matrix());
 }

 else if(!strcmp(program->uniform_array[i].name,

c04.indd 77c04.indd 77 12/31/11 8:59:35 AM12/31/11 8:59:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

78 ❘ CHAPTER 4 BUILDING A SCENE

 “NORMALMATRIX”)) {
 glUniformMatrix3fv(
 program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_normal_matrix());
 }

 7. In the fi nal else if, you have to pass the light position in eye space in order to follow the
OpenGL standard. To convert an arbitrary position specifi ed in world space to eye space,
simply multiply it with the current model view matrix. At this point in the code, when the
execution point reaches the following code, the current model view matrix will be the one
used for the current object. So in order to calculate the appropriate eye position, you will
have to use the previous matrix in the stack, the one that is used for the camera. To do this,
insert the following code block:

 else if(!strcmp(program->uniform_array[i].name,
 “LIGHTPOSITION”)) {

 /* The light position in world space coordinates. */
 vec3 position = { 0.0f, -3.0f, 10.0f };
 vec3 eyeposition = { 0.0f, 0.0f, 0.0f };

 /* Convert the light position to eye space. */
 vec3_multiply_mat4(
 &eyeposition,
 &position,
 /* The current pushed matrix represents the transformation of
the object. You have to access the look-at matrix. For this, simply
specify to use the previous model view matrix. */
 &gfx.modelview_matrix[gfx.modelview_matrix_index - 1]);

 glUniform3fv(
 program->uniform_array[i].location,
 1,
 (fl oat *)&eyeposition); }

 8. Build and run your application. As you
can see in Figure 4-6, the scene is fully
lighted by a directional light (with the
exception of the background, of course).

Each surface is using its appropriate material
values extracted right from its corresponding
MTL fi le entry. Feel free to tweak and modify
these values to achieve better coloring, a crisper
shininess, or whatever you want. Try and test as
many different values as you can — this is the
best way to learn and to be able to predict how
things are going to appear onscreen.

FIGURE 4-6: Scene using per-pixel lighting based

on the Phong model

c04.indd 78c04.indd 78 12/31/11 8:59:35 AM12/31/11 8:59:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary ❘ 79

However, be aware that what you have been doing in this section is really heavy on the GPU! The
frame rate of your app has taken a drastic hit. You really have to be careful — even a small scene
with 5.5k of triangles requires a lot of fragment calculations as this scene occupies the whole screen.

You can test the current FPS (frames per second) by inserting the following code at the beginning of
each render loop (the fi rst block of instructions in templateAppDraw) used in this chapter:

 static unsigned int start = get_milli_time(),
 fps = 0;
 if(get_milli_time() - start >= 1000) {
 console_print(“FPS: %d\n”, fps);
 start = get_milli_time();
 fps = 0;
 }
 ++fps;

As you are progressing and adding more effects, you can see how drastically the FPS rate is going
down. While you’re building your own apps, keep in mind that every instruction costs, so you
should constantly monitor the FPS while developing.

At the moment, you are still learning and no real optimization has been done, which explains the
performance hit. As you are going through this book, you’ll learn about different optimization
techniques, so you can return to this section and apply what you have learned to increase the FPS.

On a side note, the best way to test optimization is by using a static scene (just like the one you
built), where the camera and the number of objects and effects are constant. Keep in mind that even
an increase of 5 FPS is a major gain on a mobile device!

SUMMARY

You now have all the necessary knowledge to be able to start building more complex scenes. From
now on, you should be able to spot and handle different object types and render them correctly
onscreen. You can adjust their rendering sequence, and render semitransparent, alpha-tested, and
blended objects double-sided if necessary.

Using the Uber Shader technique inside your own apps, you can now start building more and more
complex shaders and multiple combinations of effects. You have also been introduced to complex
per-pixel lighting, which allows you to add another level of realism to your scenes by simulating
real-life lighting calculation.

Before moving on to Chapter 5, where you are going to improve rendering performances, make sure
that you fully grasp all the techniques demonstrated in this chapter. And test, test, test, and test
again, as many parameters as you can before moving on to the next chapter. Trial and error is the
key to improvement and success!

c04.indd 79c04.indd 79 12/31/11 8:59:35 AM12/31/11 8:59:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c04.indd 80c04.indd 80 12/31/11 8:59:36 AM12/31/11 8:59:36 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

5
Optimization

WHAT’S IN THIS CHAPTER?

Optimizing your indices data by converting them from triangles

to triangle strips

Optimizing your textures and saving video memory

Implementing bump mapping to fake details and improve visual

quality

Implementing geometry and shader levels of detail

Using a texture atlas

Conceptualizing how to manage machine states in software to avoid

unnecessary GL calls

Using the Automatic Shader Optimizer that comes with the SDK

In the previous chapter, you noticed how much the frame rate was dropping as you were
adding more and more effects. Many factors affect performance, whether it is the size of your
textures, the memory usage, the amount of polygons, or the complexity of your shaders — you
need to be able to optimize each of them.

Always keep in mind that you are dealing with a portable device that has a pretty limited
amount of resources compared to desktop PCs. However, that doesn’t mean that you should
call it a day — there are still many tricks that can be done to improve performance.

This chapter will introduce you to many different optimization techniques that you can easily
integrate inside your own games and 3D applications.

➤

➤

➤

➤

➤

➤

➤

c05.indd 81c05.indd 81 12/31/11 9:00:32 AM12/31/11 9:00:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

82 ❘ CHAPTER 5 OPTIMIZATION

THE BASE APP

In this chapter, you will fi rst take a step backward in order to go
forward! Instead of creating a new full-fl edged scene with many objects,
you are going to work with one single object and progressively add the
necessary code to optimize it in full.

Now to speed things up a bit, this time you will start with
a base program. Instead of duplicating the good old template
project, duplicate the template_chapter5 project located at the
root of the SDK and rename it chapter5-1. Then open it with
Eclipse or XCode (depending on which mobile platform you

are working on) and briefl y study the code. It should look familiar to
you, since this base code is just a mix of the code you wrote in Chapter 3
(touche movement) and Chapter 4 (textures and material data).

Now build and execute the code. First say hi to Ramy (as in Figure 5-1)
and then make him do some little turns so you can analyze the geometry
you are dealing with. Also study the shaders used by the template and
the MTL fi le property.

TRIANGLES TO TRIANGLE STRIPS

So far what you have been doing is what I like to call stacking, which means that you haven’t really
cared about anything else except stacking triangles, textures, and all the necessary code to just
make it work.

This approach is okay for testing or learning purposes, but it won’t work in a real game scenario.
The performance loss was not noticeable at fi rst, because you were working with a single object,
but you witnessed it in full at the end of the previous chapter when you started assembling a more
complex scene.

Thus far, you have only learned how to build and use optimized VBO vertex data and VAO to
deal with the vertex data attributes, so you can rest assured that this is already as optimized as
it can be.

But what about your triangle indices? In this section, you will learn how to optimize them and, as a
result, drastically reduce the amount of triangle indices that have to be used for drawing.

The only mode of drawing that you have been handling up until now for complex geometry is
triangles (GL_TRIANGLES). However, OpenGL ES offers a more optimized and alternate route
to triangle drawing called GL_TRIANGLE_STRIP (which you briefl y used to draw the quad in
Chapter 2). Using this mode, you will be able to reuse the last two indices of a triangle and will
simply have to specify an extra index to create a new triangle.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 5-1: Say “Hi” to

Ramy!

c05.indd 82c05.indd 82 12/31/11 9:00:34 AM12/31/11 9:00:34 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Building Triangle Strips ❘ 83

In other words, instead of sending six indices to
draw a quad, only four are needed, just as you did
before in Chapter 2. And as the strip is progressing,
only one extra index is required to draw the next
triangle, and the next, and so on, as demonstrated in
Figure 5-2.

This is, of course, in an ideal world, where all
triangles and their edges are aligned in a way that
it would be easy for you to build a single strip out
of it. However, that will most likely never happen
on a real geometry; instead, the strip will have to be
stopped and then restarted by creating a degenerated
triangle. This process is called stitching.

Depending on the optimization, you may end up with more indices by using triangle strips than by
using good old triangles. If this happens, my suggestion is to simply fall back to triangles. But in
most cases, if your geometry is properly built, that won’t happen.

BUILDING TRIANGLE STRIPS

Now that you have learned the mechanics behind this optimization process, you can implement
them in your code. This book’s SDK includes the NvTriStrip library from NVIDIA (http://www
.nvidia.com/object/nvtristrip_library.html). This library allows you to send an arbitrary
set of triangle indices to the library, and then an algorithm is used internally by the API, based on a
vertex cache size that you can specify.

The higher the vertex cache size specifi ed, the lower the resulting indices array will be. Vertex cache
on modern mobile device GPUs is nonexistent, so the smaller the number of indices, the faster the
geometry will be drawn.

Now back to the chapter5-1 project, more precisely inside the templateApp.cpp source fi le, just
before calling the OBJ_build_mesh function add the following lines of code:

 console_print(“%s: %d: GL_TRIANGLES\n”,
 obj->objmesh[i].name,
 obj->objmesh[i].objtrianglelist[0].n_indice_array);

 /* Built-in method that implements the NvTriStrip library.
For more information, check the obj.cpp source code in order to implement
it inside your own apps. */
 OBJ_optimize_mesh(
 obj, /* The main OBJ pointer. */
 i, /* The index of the mesh to optimize */
 0); /* The vertex cache size to use (0 = default), which is
automatically set to 16 inside the NvTriStrip library. */

 console_print(“%s: %d: GL_TRIANGLE_STRIP\n”,
 obj->objmesh[i].name,
 obj->objmesh[i].objtrianglelist[0].n_indice_array);

FIGURE 5-2: Progressive triangle strip

c05.indd 83c05.indd 83 12/31/11 9:00:35 AM12/31/11 9:00:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

84 ❘ CHAPTER 5 OPTIMIZATION

Now build and run the program. Check the system console inside XCode or the LogCat
inside Eclipse to monitor the number of indices before and after optimization. You should now
see the following values on your console:

ram: 8730: GL_TRIANGLES

ram: 5371: GL_TRIANGLE_STRIP

As you can see, even using the default vertex cache size optimizes the indices quite a bit. As a result,
about 40-percent fewer indices will be required to draw the same geometry.

For the sake of this example, the optimization is done at initialization time, which will obviously
increase the loading time. However, in a real game or engine scenario, this optimization should be
done offl ine when you export your objects(s) using custom-made command-line tools.

As mentioned earlier, the cache size will have a direct impact on the fi nal number of indices the
strips will contain. To try this out, change the cache size value from 0 to 64 and run the program
again. You should now see the following values on your console:

ram: 8730: GL_TRIANGLES

ram: 4727: GL_TRIANGLE_STRIP

With this new vertex cache size, you were able to optimize the resulting indices even more, and this
time hit 46 percent. You can continue to increase the number only up to a certain point. In Ramy’s
case, a vertex cache of 128 is about the most that you can use to optimize the mesh, which will
result in an optimization of nearly 48 percent. This is not much of a gain, but it’s the best that the
library can do for you. Even with a higher cache number, it would only take longer to process for a
very little or no percentage increase.

With this optimization done, you can now draw almost two Ramys for the price of one (in terms of
indices that is). What a good deal!

TEXTURE OPTIMIZATION

Portable-device GPUs have a pretty limited amount of video memory compared to desktop cards.
Always remind your artists to keep their texture resolution as small as they can to save as much
memory as possible.

In order to have smooth textures from any distance away from the viewer, you (and your artists)
need to use mipmaps. And of course, the size of these mipmaps directly affects the necessary space
required in memory.

For example, even a simple RGBA texture of 512 by 512 (which represents absolutely no problem on
a desktop card) with full mipmaps generated will require up to 1,398,100 bytes in memory!

When the video memory is around 24 MB, the available amount of memory will go down really
fast. And the larger the texture, the slower the fetch operation will take to pick and interpolate
pixels.

The best solution to optimize the video memory usage is to fi rst resize your textures and then convert
them to 16 bits. OpenGL ES has prebuilt pixel types especially reserved for storing 16-bit textures:

c05.indd 84c05.indd 84 12/31/11 9:00:35 AM12/31/11 9:00:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Adding 16-Bit Texture Conversion ❘ 85

 GL_UNSIGNED_SHORT_4_4_4_4,
 GL_UNSIGNED_SHORT_5_5_5_1, and
 GL_UNSIGNED_SHORT_5_6_5.

Depending on the type of texture you are dealing with, you have to choose which pixel type is the
most appropriate to suit your needs. For example, an RGB texture should always be converted to
5_6_5 in order to keep the maximum color resolution for each color component.

When it comes to an RGBA texture, it depends on the way it is constructed. If your alpha channel is
only built of 255 and/or 0, the 5_5_5_1 type is the most appropriate (because the alpha value will be
either 1 or 0). If your alpha channel has multiple values ranging from 255 to 0, the 4_4_4_4 type is
mandatory to keep the desired alpha effect.

ADDING 16-BIT TEXTURE CONVERSION

It’s time to learn how to convert your 24- and 32-bit textures to 16 bits and save up to half of the
memory normally used on the video memory!

Inside the templateAppInit function, locate the OBJ_build_texture call and replace it with the
following lines:

 OBJ_build_texture(
 obj,
 i,
 obj->texture_path,
 /* Automatically convert the texture to 16 bits. */
 TEXTURE_MIPMAP | TEXTURE_16_BITS,
 TEXTURE_FILTER_2X,
 0.0f);

Now build and run your program! For the type of RGB texture that Ramy is using, the loss of texture
quality is barely noticeable. However, if you have a texture that contains some sort of pronounced
gradient, the loss will be a lot more noticeable. But this is still quite acceptable considering that you
are literally using up to half of the memory size originally required to draw the same texture.

For more information about the 16-bit conversion code, check the TEXTURE_convert_16_bits
function source located inside texture.cpp.

By default, when the OBJ_build_texture function receives the TEXTURE_16_BITS parameter, it
will analyze the type of texture that has to be converted. If the texture is RGB, this function will
automatically convert it to 5_6_5; or if the texture is RGBA, the function will convert it to 4_4_4_4.
Alternatively, you could force an RGBA texture to be converted to 5_5_5_1 by adding TEXTURE_16_
BITS_5551 to the texture parameter fl ags. Then your function call will look like this:

 OBJ_build_texture(
 obj,
 i,
 obj->texture_path,
 /* Force RGBA textures to be converted to 5_5_5_1 */
 TEXTURE_MIPMAP | TEXTURE_16_BITS | TEXTURE_16_BITS_5551,
 TEXTURE_FILTER_2X,
 0.0f);

c05.indd 85c05.indd 85 12/31/11 9:00:35 AM12/31/11 9:00:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

86 ❘ CHAPTER 5 OPTIMIZATION

Once again, the process of converting and optimizing your textures should be done offl ine during
export in order to minimize the loading time of your apps.

PVR TEXTURE COMPRESSION

Unfortunately, when it comes to 16-bit textures, there is no popular graphics format that is
especially built for or even supports them. You can either build your own, or if you have access to
the GL_IMG_texture_compression_pvrtc extension, you can use the PVR compression format for
your texture.

Developed by Imagination Technologies, the PVR format uses a proprietary compression scheme
that allows you to use 4 bits per pixel or 2 bits per pixel. This will reduce the memory size of your
texture to a ratio of 8:1 (PVRTC4bpp) or 16:1 (PVRTC2bpp).

On top of the awesome compression ratio,
you can also pre-generate mipmaps offl ine
and offl oad this work at export time. To
convert your PNGs (as well as other formats)
to PVR, you will fi rst need to grab a copy of
the PowerVR Insider SDK from http://www
.imgtec.com. Under the Utilities folder,
you have the choice of using either a GUI (as
shown in Figure 5-3) or a command-line tool
(perfect for offl ine automatic line conversion)
to automatically convert your texture to
PVR.

If you do have access to this extension (you
can verify this by checking your system
console for the GL extension previously
mentioned), duplicate the chapter5-1
project and rename it chapter5-2; then
follow the rest of the instructions in this section. Otherwise, skip this part and jump directly to the
next section.

First remove the PNG and MTL fi les from the Resources directory (for XCode users) or the assets
folder (Eclipse users). Then link the .PVR and .MTL fi les from SDK/data/chapter5-2 to your
project, and build and run the program.

If you compare the original 32-bit image to the image you get now, you will notice quite a
difference in quality. But with an 8:1 compression ratio in memory (or more), it’s a good
compromise.

For more information about how to implement the PVR texture loader that comes with the
SDK in your own games, check the TEXTURE_load_pvr function inside the texture.cpp source
fi le.

FIGURE 5-3: Imagination Technologies PVRTexTool

c05.indd 86c05.indd 86 12/31/11 9:00:36 AM12/31/11 9:00:36 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Faking Details ❘ 87

FAKING DETAILS

Another good way to improve the visual of
your scene is to use a technique called bump
mapping. This technique uses a pre-generated
texture that contains vertex normal information
that is baked from a high-detail polygon model.
By applying this normal map on the low polygon
model, it becomes virtually identical to the high
polygon model, as shown in Figure 5-4.

Bump Mapping Implementation

In order to implement simple bump mapping within your current app, duplicate the chapter5-1
project and rename it chapter5-3. Then open the project fi le within your favorite IDE and link the
char_ram_nor.png texture (located in SDK/data/chapter5-3) to your project.

The following steps will guide you through the full implementation of this technique:

 1. Open the templateApp.cpp fi le and locate the program_bind_attrib_location function.
Before the end of the function bracket, integrate the two following lines to bind the normal
and tangent attributes:

 glBindAttribLocation(program->pid, 1, “NORMAL”);
 glBindAttribLocation(program->pid, 3, “TANGENT0”);

You are already familiar with the normal attribute, but not the tangent. What it represents
is the direction vector of the UVs on the X axis. Since you have the normal and the tangent,
all that’s left to be done is to calculate their cross product to obtain the bi-tangent allowing
you to reconstruct a 3 by 3 matrix. You can then use this rotation matrix to convert your
data to tangent space. (If you are not familiar with the terms, visit http://en.wikipedia
.org/wiki/Normal_mapping.)

 2. Jump to the material_draw_callback function and append the following new else if
to the existing if block to be able to bind the normal map (the bump map) to the fourth
texture channel:

 else if(!strcmp(program->uniform_array[i].name,
 “BUMP”) &&
 !program->uniform_array[i].constant) {
 program->uniform_array[i].constant = 1;
 glUniform1i(program->uniform_array[i].location, 4);
 }

 3. Insert the following else if to be able to send the light position in eye space:

 else if(!strcmp(program->uniform_array[i].name,
 “LIGHTPOSITION”)) {
 vec3 position = { 0.0f, -3.0f, 4.0f };
 vec3 eyeposition = { 0.0f, 0.0f, 0.0f };

FIGURE 5-4: Bump mapping using GLSL ES

c05.indd 87c05.indd 87 12/31/11 9:00:36 AM12/31/11 9:00:36 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

88 ❘ CHAPTER 5 OPTIMIZATION

 vec3_multiply_mat4(
 &eyeposition,
 &position,
 &gfx.modelview_matrix[gfx.modelview_matrix_index - 1]);

 glUniform3fv(
 program->uniform_array[i].location,
 1,
 (fl oat *)&eyeposition);
 }

 4. Finally, set up the necessary code to send over the current normal matrix, like this:

 else if(!strcmp(program->uniform_array[i].name,
 “NORMALMATRIX”)) {
 glUniformMatrix3fv(program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_normal_matrix());
 }

Precision Qualifi ers Optimization

You are now about to attack the vertex shader portion of this program. Since this chapter is about
optimization, pay close attention to the qualifi ers used for each variable. Setting the best qualifi ers
can drastically increase the performance of your shaders.

While creating vertex or fragment shaders, always try to write the smallest amount of code
necessary to achieve the best possible effect. Always think about which instructions would be the
fastest for the GPU to execute.

To keep things simple in this example, instead of dividing a variable by 2, multiply it by 0.5, or
avoid normalization when the two vectors that you multiply are already normalized.

Every microsecond or millisecond that you can save will pay off on a large scale, because
microseconds will become milliseconds and will let you gain more frames.

Now it’s time to write some code! Open the vertex.glsl fi le and then follow these steps:

 1. On the line after the PROJECTIONMATRIX uniform declaration, insert the following code to
handle the normal matrix and the light position uniforms:

/* This matrix is already normalized (since you do not use scale),
so there’s no need to use any other precision qualifi er than lowp. */
uniform lowp mat3 NORMALMATRIX;
/* The light position is not normalized, so you have no choice but to
use at least mediump. */
uniform mediump vec3 LIGHTPOSITION;

 2. On the line after the TEXCOORD0 declaration, insert the following vertex attribute data:

/* Always use lowp when dealing with the normal attribute, because it
should always be normalized outside the shader. */
attribute lowp vec3 NORMAL;

c05.indd 88c05.indd 88 12/31/11 9:00:37 AM12/31/11 9:00:37 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Faking Details ❘ 89

/* As with the normal, the tangent should always be normalized. */
attribute lowp vec3 TANGENT0;

As you might have noticed, this time you are using a lowp qualifi er with the TEXCOORD0
attribute. The texture UVs for Ramy are in the range of 0 to 1, so there’s no need to use a
mediump qualifi er since you are not tiling the texture.

 3. On the line right after the varying variable texcoord0 declaration, insert the follow
varyings:

/* The current vertex position in tangent space. */
varying mediump vec3 position;
/* The light direction in tangent space. */
varying lowp vec3 lightdirection_ts;

 4. Replace the whole content of the main function with the following code:

 mediump vec3 tmp; /* Temp variable. */

 /* Rotate the normal and the tangent by the current normal matrix. Since
the normal, tangent, and normal matrix are all normalized, you can save two
normalize instruction calls.*/
 lowp vec3 normal = NORMALMATRIX * NORMAL;
 lowp vec3 tangent = NORMALMATRIX * TANGENT0;

 /* Calculate the binormal (or bi-tangent if you prefer) based on the
current normal and tangent. The cross-product of two normalized vectors
will always be normalized, which explains the lowp precision qualifi er.*/
 lowp vec3 binormal = cross(normal, tangent);

 /* Calculate the current vertex position in eye space. */
 position = vec3(MODELVIEWMATRIX * vec4(POSITION, 1.0));

 /* Since you just calculated the position in eye space, you can
use the current value and multiply it by the projection matrix to be
able to see the current vertex on screen. */
 gl_Position = PROJECTIONMATRIX * vec4(position, 1.0);

 /* Calculate the light direction in eye space and normalize it. */
 lowp vec3 lightdirection_es =
 normalize(LIGHTPOSITION - position);

 /* Transform the light direction in eye space to tangent space. */
 lightdirection_ts.x = dot(lightdirection_es, tangent);
 lightdirection_ts.y = dot(lightdirection_es, binormal);
 lightdirection_ts.z = dot(lightdirection_es, normal);

 /* Since the light calculation will be done in tangent space,
also convert the current position in eye space to tangent space and
invert it. */
 tmp.x = dot(position, tangent);
 tmp.y = dot(position, binormal);
 tmp.z = dot(position, normal);

c05.indd 89c05.indd 89 12/31/11 9:00:37 AM12/31/11 9:00:37 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

90 ❘ CHAPTER 5 OPTIMIZATION

 position = -normalize(tmp);

 /* Bridge over the texture coordinate. */
 texcoord0 = TEXCOORD0;

As you can see, you did quite a bit of optimization on this vertex shader already, that otherwise
would be somewhat heavy to execute. You used as many lowp qualifi ers as you possibly could, and
avoided a lot of unnecessary normalization.

If you always keep in mind the best possible precision qualifi ers for each variable and use as few
instructions as necessary, you will see a drastic performance gain on a large scale.

The Normal Map Lighting Calculation

You now have all the necessary data calculated within your vertex shader, and you have bridged the
sensitive variables to be accessible from your fragment shader. Next, open the fragment.glsl fi le
and include the following modifi cations:

 1. Start off by declaring the normal map sampler at the top of your shader fi le. To do this,
insert the following code on the line right after the DIFFUSE sampler2D declaration:

uniform sampler2D BUMP;

 2. Now insert the varying variables that you declared earlier on the line right after the
texcoord0 varying declaration, like this:

/* Notice that originally in the vertex shader, this variable
precision qualifi er was declared as mediump. But since you
normalized it before sending it to the fragment shader, you can now
declare it here as lowp. */
varying lowp vec3 position;
varying lowp vec3 lightdirection_ts;

 3. To see how the pixel values that you will convert to normal data will affect the visual of
the model, you’ll begin with the fi rst stage of the lighting calculation. To visualize this
technique, replace the content of the main function with the following:

 /* Get the current RGB data from the bump map and convert it into
a normal value. */
 lowp vec3 normal = texture2D(BUMP, texcoord0).rgb * 2.0 - 1.0;

 /* Now calculate the intensity (aka Lambert factor) based on the
light direction vector and the normal, which are now both in tangent
space. */
 lowp fl oat intensity = max(dot(lightdirection_ts, normal), 0.0);
 /* Set the default ambient color. */
 gl_FragColor = vec4(0.1);
 /* Check if you have an intensity. */
 if(intensity > 0.0) {
 /* Add to the current fragment the result of the intensity with the
current diffuse color of the material. */
 gl_FragColor += vec4(DIFFUSE_COLOR, 1.0) * intensity; }

c05.indd 90c05.indd 90 12/31/11 9:00:37 AM12/31/11 9:00:37 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Faking Details ❘ 91

 4. Build and run the program. Your screen should now display
what’s shown in Figure 5-5.

Observe how the normal map that you applied really accentuates
details that are basically nonexistent! Using this technique, you can
add more details to your scenes — at a relatively low cost compared to
what it would take to actually build geometry with this many
polygons.

The purpose of the preceding exercise was to introduce you to what this
technique is really all about under the hood. You can now replace the
last gl_FragColor affectation with the following in order to apply the
diffuse texture in the equation:

 gl_FragColor +=
 texture2D(DIFFUSE, texcoord0) *
 vec4(DIFFUSE_COLOR, 1.0) * intensity;

Build and run the program again. You will get the screen display shown
in Figure 5-6.

This technique works quite well with specularity. Adding the specular
component to the formula will make the details really stand out, as you’ll
learn in the next section.

Adding Specularity

Start by duplicating the chapter5-3 project directory and rename
it chapter5-4. Not much code will be added to this project, but by
completing this exercise, you will be able to compare the result with and
without specularity.

 1. Open the templateApp.cpp source fi le and insert the following
else if statements inside the loop of the material_draw_
callback function:

 /* Send over the specular color of the material. */
 else if(!strcmp(program->uniform_array[i].name,
 “SPECULAR_COLOR”)) {
 glUniform3fv(program->uniform_array[i].location,
 1,
 (fl oat *)&objmaterial->specular); }
 /* Set the shininess of the material. */
 else if(!strcmp(program->uniform_array[i].name,
 “SHININESS”)) {
 glUniform1f(program->uniform_array[i].location,
 objmaterial->specular_exponent * 0.128f); }

FIGURE 5-5: Normal

mapping

FIGURE 5-6: Normal

mapping + diff use texture

c05.indd 91c05.indd 91 12/31/11 9:00:37 AM12/31/11 9:00:37 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

92 ❘ CHAPTER 5 OPTIMIZATION

 2. Open the fragment.glsl shader fi le and add the following uniform variable after the
DIFFUSE_COLOR declaration:

/* Receive the specular color of the material. */
uniform lowp vec3 SPECULAR_COLOR;
/* Receive the shininess of the material. */
uniform mediump fl oat SHININESS;

 3. Replace the fi nal fragment affectation (the one set inside the if clause) with the following:

 /* Calculate the refl ection vector in order to determine the
specular intensity of the fragment. */
 lowp vec3 refl ectionvector =
 normalize(-refl ect(lightdirection_ts, normal));

 /* Calculate the fi nal fragment color including the specularity. */
 gl_FragColor +=
 texture2D(DIFFUSE, texcoord0) *
 vec4(DIFFUSE_COLOR, 1.0) *
 intensity
 +
 vec4(SPECULAR_COLOR, 1.0) *
 pow(max(dot(refl ectionvector, position), 0.0), SHININESS);

 4. Build and run the program.

You should be able to notice right away a huge visual difference from
the previous program. By adding specularity to the fi nal fragment
calculation, you’ve made Ramy look a lot better, and the details really
stand out, just like in Figure 5-7.

Mastering this technique will allow you to use more-advanced techniques
based on the same concept, such as specular mapping, parallax mapping,
and relief mapping among others.

This concludes the section on faking details. You have learned how to
implement simple bump mapping to add better details to your models
at a fairly low cost on GPU. You also have learned how to evaluate
the precision qualifi ers of each variable, trading precision for faster
calculations (and less storage).

Ready for more? Keep reading to discover other optimization techniques
that you’ll be able to use on a daily basis to improve the performance of
your scenes!

GEOMETRY AND SHADERS LOD

This technique consists of using different levels of detail (LODs) for a specifi c geometry or shader
based on the current distance of the object from the camera.

FIGURE 5-7: Shiny Ramy

c05.indd 92c05.indd 92 12/31/11 9:00:38 AM12/31/11 9:00:38 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Texture Atlas ❘ 93

To implement geometry LOD, you will have to create a different mesh for each level of detail that
you wish to use, where each level has fewer polygons than the previous one. You can create the
geometry for each level manually, or you can use your favorite 3D software to do it, or implement
manually some polygon reduction algorithm to generate them automatically.

At render time, you will need to calculate the object’s distance from the camera and analyze which
LOD to use. By implementing this technique, if a geometry is very close to the camera, it will be
very detailed, and as it goes far away from the camera, it will become less and less detailed.

You can also implement this same mechanism for your shaders, regardless if you choose to use
geometry LOD or not. Objects that are very close to the camera could use a bump mapping shader,
and as they move far away, they could progressively transition from per-pixel lighting to per-vertex
lighting. From there, you can use an Uber shader and create multiple versions of the shader program
inside one shader fi le, and then reassign them in real time to your materials. Or you could use
branching (if) inside your shader and pass the current level of detail calculated on your CPU as a
uniform variable.

When used wisely, these two approaches, either combined or used separately, can really improve the
rendering time of each frame (albeit at the cost of more memory usage).

TEXTURE ATLAS

This is a technique that can be used to optimize the texture usage and avoid multiple texture
switches at run time. A texture atlas is a large texture that contains multiple smaller textures. With
it, you can simply bind your texture once and draw all the objects that are using it. Then you can
move on to another set of objects that are using another atlas.

Atlases are great for GUIs as well as for objects
that have a UV range from 0 to 1. With some
tweaks, they can also be used for tiled textures.
To create a texture atlas, you can either use your
favorite image-manipulation program or use a
pre-made script for your preferred 3D software.
When drawn, an atlas can look like the one
displayed in Figure 5-8 (which was used for a
video player GUI).

To optimize the result of this technique, you
should try to put all the non-alpha textures
together in one atlas, and all the textures that use
an alpha channel into another atlas. By batching
objects of the same type and using the same atlas,
you will avoid a lot of unnecessary machine-state
switching, which will have a direct impact on
your frame rate.

FIGURE 5-8: Video player GUI texture atlas

c05.indd 93c05.indd 93 12/31/11 9:00:39 AM12/31/11 9:00:39 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

94 ❘ CHAPTER 5 OPTIMIZATION

MANAGING STATES IN SOFTWARE

As you know, OpenGL ES is a machine-state API, meaning that it is basically acting like a crane
carrying boxes to a dock. You tell it which boxes to pick up, and it will deliver them. But what if the
boxes have already been picked up or have already been delivered?

Switching machine states costs processing time, and some more than others. In fact every
instruction that you send to the driver costs!

For example, why would you ask the driver to turn blending ON when it is already ON, or to bind a
texture, a shader, a VBO or VAO that is already bound?

Some might think that using commands such as glIsEnabled or glGet variant to check or get a
specifi c state might be more convenient. However, on a large scale it will result in performance drop.

By asking multiple times per frame what the current state is or what resources are bound, you are
going to overfl ow the bandwidth between the client and the server with unnecessary calls that might
even stall the pipeline. The trick is to do this on the client side, and leave the GPU (server side) to do
what it is doing best: drawing!

This will require that you build a structure containing all of the fl ags, states, and IDs to keep track
of everything that you set on or off or bind. When designing your games, always try to centralize all
the GL calls in one place. For example, create one dynamic function that receives as parameters the
texture ID and the texture channel to bind it to. By using this function everywhere in your code, you
can then know exactly which texture ID is attached to which texture channel at any time. This way,
you can easily determine, on the client side, whether the texture should be bound or if it is already
bound.

Once again, when used wisely and on a large scale, maintaining machine states on the client side
will have a direct impact on the performance of all sorts of 3D apps.

AUTOMATIC SHADER OPTIMIZATION

As the complexity and the size of your shaders grow (especially in the case of an Uber shader), it will
become diffi cult to manually optimize your shader code. Fortunately there are tools available that
will automatically perform generic optimization directly on your GLSL ES code.

One such tool is the GLSL optimizer, which is a free downloadable open source package that you
can download from https://github.com/aras-p/glsl-optimizer. This package contains a C++
library that receives GLSL or GLSL ES shader fi les, executes a GPU-independent optimization on
them, and outputs back the optimized source code. It allows you to automatically strip dead code
and optimize arithmetic operations, along with many other code goodies.

For your convenience, this book’s SDK includes pre-built libraries in both Windows (32 bits)
and MacOS (32 bits and 64 bits) formats. In addition, I created a simple command-line program
for you that wraps around the main library functionalities. Please note that if your current
operating system version differs from the one I compiled, you’ll need to download the library

c05.indd 94c05.indd 94 12/31/11 9:00:39 AM12/31/11 9:00:39 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary ❘ 95

source fi les from https://github.com/aras-p/glsl-optimizer and re-compile it for your
platform.

To test the optimizer, fi rst create a copy of the chapter5-4 directory and rename it chapter5-5.
Then open the project fi le for your current platform under the SDK/glsloptimizerCL/ directory
and compile the executable.

Once the program is compiled, open either an MS-DOS (Windows) or a Terminal (MacOS) console
and browse to the directory where the executable is located.

If you are a Windows user, execute the following in your MS-DOS command prompt:

glsloptimizerCL.exe -in <pathtothesdk>/SDK/chapter5-5/vertex.glsl -out
<pathtothesdk>/SDK/chapter5-5/vertex.glsl -profile GL_VERTEX_SHADER

glsloptimizerCL.exe -in <pathtothesdk>/SDK/chapter5-5/fragment.glsl -out
 <pathtothesdk>/SDK/chapter5-5/fragment.glsl -profile GL_FRAGMENT_SHADER

If you are a MacOS (or Linux) user, run the following in a Terminal window:

./glsloptimizerCL -in <pathtothesdk>/SDK/chapter5-5/vertex.glsl -out
<pathtothesdk>/SDK/chapter5-5/vertex.glsl -profile GL_VERTEX_SHADER

./glsloptimizerCL -in <pathtothesdk>/SDK/chapter5-5/fragment.glsl -out
<pathtothesdk>/SDK/chapter5-5/fragment.glsl -profile GL_FRAGMENT_SHADER

Now open the chapter5-5 project fi le and view the vertex.glsl and fragment.glsl code. You
can see how much the code has changed compared to the original version that you manually created
in the previous section.

To insure that the optimization was in fact generated without any errors, build and run the
application. (If you’re an Eclipse user, remember to update the new shader fi les and copy and paste
them into the assets directory.)

You now have vertex and fragment shader source code that is fully independent and GPU-
optimized. It runs the exact same way as the shader you created in chapter5-4 — but technically
faster!

Once again, on a large scale, optimizing each and every shader used in your application will allow
you to gain crucial render time and will boost overall performance.

This concludes the chapter on optimization. You have been given a gold mine of tips and tricks!
Please review the different concepts and key techniques demonstrated in this chapter, and make sure
you grasp them all before moving on to the next chapter.

SUMMARY

Optimization is a never-ending quest! This chapter guided you through a few primary techniques of
optimization. You learned how to convert triangles to triangles strips, optimizing the indices data
by almost 50 percent! You also discovered how to economize memory by converting your 24- and
32-bit textures to 16 bits, and how to use the PVR texture compression format.

c05.indd 95c05.indd 95 12/31/11 9:00:39 AM12/31/11 9:00:39 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

96 ❘ CHAPTER 5 OPTIMIZATION

You can now fully use bump mapping in conjunction with a normal map generated in tangent space
to make a low polygon model look virtually the same as a high polygon model. With a bit of extra
coding, you can now integrate geometry and shader LOD within your app, trading speed at the cost
of more memory usage. On top of that, by converting multiple textures into one atlas, you can now
batch objects that use the same texture and avoid unnecessary texture binding.

In addition, you have been given all the necessary basics to start implementing your client-based
machine state system in order to avoid sending useless machine-state switches on your GPU. This
will save you bandwidth so you can crank up the realism of your scenes by adding more effects and
more polygons!

And fi nally, you learned how to automatically optimize your shaders, saving you the burden of
trying to fi gure out how every GLSL ES of each GPU is built (if such information exists). You can
now use a command-line program that does all this for you, and integrate it inside your game
development pipeline.

Having as much fun as I have so far? Stay tuned for the next chapter which is about real-time
physics.

c05.indd 96c05.indd 96 12/31/11 9:00:40 AM12/31/11 9:00:40 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Real-Time Physics

WHAT’S IN THIS CHAPTER?

Introducing the diff erent types of physics objects

Learning about the most popular physics shapes supported by the

Bullet physics library

Setting up a 3D physical world

Understanding how collision callbacks are working and how to use

them for game logic code

Implementing a 2D physics game similar to Angry Birds (a popular

game developed by Rovio Mobile Ltd.)

Learning about the .bullet fi le format and how to export it from

Blender

Implementing a 3D physics-based pinball machine using physics

constraints

Since the beginning of this book, you have been focusing only on graphics. It is indeed an
important part of your app, but games are not all about graphics! In this chapter, you will
learn how to integrate real-time 2D and 3D physics inside your apps.

You will discover how to use the Bullet physics library for collision detection as well as
for rigid and soft body dynamics. Bullet is open source and cross-platform, and can freely

➤

➤

➤

➤

➤

➤

➤

6

c06.indd 97c06.indd 97 12/31/11 9:02:42 AM12/31/11 9:02:42 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

98 ❘ CHAPTER 6 REAL-TIME PHYSICS

be used for commercial software. You can fi nd more information about Bullet at http://
bulletphysics.org, where you can also download the full SDK and have access to the latest API
and documentation.

TYPES OF PHYSICAL OBJECTS

Bullet supports multiple physical object types, which will allow you to make your geometries respond
in a specifi c way during real-time physics simulation. Before adding any type of physical body to your
scene, you should fi rst analyze what type of physical object it is in order to ensure that it behaves
properly inside your physical world.

The physics library includes the following object types for each of your collision objects:

Rigid Body — This type of object will respond to gravity and rolling physics.

Dynamic Body — This type is similar to Rigid Body, except the object does not respond to
rolling physics.

Soft Body — This type is typically used for cloth simulation or to represent soft volumetric
objects that can be bended and deformed. This type of physical body is extremely CPU-
intensive, and should be used with care on mobile devices.

Static — This type should be used to represent objects that cannot be moved, such as the
ground, walls, or similar motionless boundaries.

In each of the scenes where you integrate physics, you will use a combination of these object types.
Select them with care, depending on the way you want your objects to behave inside your 2D or
3D world.

PHYSICS SHAPES

For each object that will be part of your physics simulation, you will have to assign a specifi c physics
shape. This is referred to as a bound.

When choosing which bound would be the most appropriate for the object you are dealing with, you
need to be able to evaluate which basic shape would represent it the best. Figure 6-1 introduces
you to some of the collision bounds that Bullet supports, along with the data that has to be provided
at initialization time for each shape.

As you can see, you have the fl exibility to select between enough shapes to fi t with all types of
geometry outlines. Basic shapes don’t require explanations; however, if the bound of your geometry
doesn’t match any of them, you will have to choose either Triangle Mesh or Convex Hull.

➤

➤

➤

➤

c06.indd 98c06.indd 98 12/31/11 9:02:43 AM12/31/11 9:02:43 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Physics Shapes ❘ 99

As demonstrated in Figure 6-1, a triangle mesh will use the triangle’s index information to build
the collision shape for your geometry. This type works effectively on large static surfaces (such as
a terrain or irregular walls,) and can be used as a base representation for other more optimized
collision shapes such as BVH triangle mesh (which is a tree representation of bounding volumes) to
make them more performant.

For more complex shapes that have a small amount of vertices and that are not static in the scene —
no matter if it’s a dynamic shape or a rigid shape — you should use a convex hull represented by an
array of non-duplicated vertices. This way, you can avoid any extra calculations on the CPU for all
the vertices that are redundant.

When you’re selecting the collision boundaries for your geometry, you should always try to
approximate them to the most basic shapes. A triangle mesh or convex hull will obviously require
more processing time on the CPU than a box, sphere, or cylinder.

Another alternative to triangle mesh and hull is compound shapes, which are also fully supported
in Bullet. This type of collision bound allows you to merge multiple basic shapes into one. For
example, if you are dealing with a car, you could use a box for the frame and two large cylinders for
the front and back wheels.

In addition, always keep in mind that you should tag your geometry as physical objects only if they
are going to interact with either the player or with other objects as part of the physics simulation.
For example, adding physics properties to a skybox would be pointless and would only require more
processing for nothing — especially if the player in your game can’t even fl y!

FIGURE 6-1: Physics collision shapes

c06.indd 99c06.indd 99 12/31/11 9:02:44 AM12/31/11 9:02:44 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

100 ❘ CHAPTER 6 REAL-TIME PHYSICS

USING BULLET

Working with Bullet is quite easy. In order to integrate physics simulation inside your apps, the
fi rst thing that you will have to do is to initialize a physical world. Once initialized, you have to
add the different collision shapes that this world is built of and link these shapes to their designated
physical bodies.

The task can be done either by directly using the Bullet C++ API or by using the Bullet (.bullet)
fi le format. The Bullet fi le format can be automatically generated by most popular 3D software
programs that have Bullet support, or if an exporter is available.

Keep in mind that Bullet is only responsible for driving the physics simulation and basically has no
idea (graphics-wise) about the scene that you are drawing.

Once your physical world is created and your shapes are added, you will have to link the
transformation matrix of each physical body to the 2D or 3D geometry associated with it. As you
increment the simulation step, Bullet will return a 4 by 4 transformation matrix that will represent
the current model view matrix of the object (in world-space coordinates).

At this point, if you need to modify the transformation of an object, you will have to use the Bullet
API (discussed later in this chapter), because your geometry is now fully driven by it.

HELLO PHYSICS

Now it’s time for you to start diving
into the necessary code in order to learn
how to create a physical world and set
up some basic collision shapes. First,
duplicate template_chapter6 located
at the root of the SDK and rename it
chapter6-1. Once that’s done, open the
project inside your IDE and build and
run it. You should now see what’s shown
in Figure 6-2.

Before starting, have a quick look at the code of this base program. The program loaded the
Scene.obj fi le located in SDK/data/chapter6-1 and used the same shader that you created in
chapter3-1 when you were converting vertex normals to vertex color. This will be the base
program that you will start with for the exercises in this section.

Follow these steps to modify the base program in order to add physics:

 1. At the top of templateApp.cpp, where you declare the global variables, add the following
defi nitions:

/* The collision world confi guration. */
btSoftBodyRigidBodyCollisionConfi guration *collisionconfi guration = NULL;
/* The collision dispatcher to use for the collision world. */
btCollisionDispatcher *dispatcher = NULL;

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 6-2: Hello Physics base program

c06.indd 100c06.indd 100 12/31/11 9:02:44 AM12/31/11 9:02:44 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Hello Physics ❘ 101

/* Contain the algorithm to use to quickly calculate and maintain the
list of objects that are colliding, as well as the information about
the objects that intersect but are not close enough to collide. */
btBroadphaseInterface *broadphase = NULL;
/* Contain the algorithm to use to solve the physics constraints added to
the world (if any). */
btConstraintSolver *solver = NULL;
/* Declare a physical world variable capable of dealing with rigid and
soft bodies and their interactions. */
btSoftRigidDynamicsWorld *dynamicsworld = NULL;

 2. On the line just before the program_bind_attrib function declaration, create a new
function to be able to initialize the physical world:

void init_physic_world(void) {
 /* Initialize a new collision confi guration. */
 collisionconfi guration =
 new btSoftBodyRigidBodyCollisionConfi guration();

 /* Initialize the collision dispatcher. */
 dispatcher =
 new btCollisionDispatcher(collisionconfi guration);

 /* Determine which broad phase algorithm to use for the current
physical world. The btDbvtBroadphase is the one that gives the best result
(from what I’ve observed) on most of the mobile devices for generic
physical world. However Bullet offers many others; check the Bullet SDK
for more information.*/
 broadphase = new btDbvtBroadphase();

 /* Initialize the constraint solver. */
 solver = new btSequentialImpulseConstraintSolver();

 /* Now that you have all the necessary variables and algorithms
initialized, you are ready to create your physical world */
 dynamicsworld =
 new btSoftRigidDynamicsWorld(
 dispatcher,
 broadphase,
 solver,
 collisionconfi guration);

 /* And fi nally, set up the world gravity direction vector using the
same value as the gravity on earth by assigning it on the -Z axis. */
 dynamicsworld->setGravity(btVector3(0.0f, 0.0f, -9.8f)); }

 3. Declare a new function that is able to receive an OBJMESH pointer and a mass as parameters
in order to be able to create a new collision shape and rigid body:

void add_rigid_body(OBJMESH *objmesh, fl oat mass) {

 /* Create a new Box collision shape for the current mesh. */
 btCollisionShape *btcollisionshape =

c06.indd 101c06.indd 101 12/31/11 9:02:45 AM12/31/11 9:02:45 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

102 ❘ CHAPTER 6 REAL-TIME PHYSICS

 /* Use half of the dimension XYZ to represent the extent of the box
relative to its pivot point, which is already centered in the middle of
its bounding box. */
 new btBoxShape(btVector3(objmesh->dimension.x * 0.5f,
 objmesh->dimension.y * 0.5f,
 objmesh->dimension.z * 0.5f));

 /* Declare a btTransform variable to be able to contain the
transformation matrix of the object in a form that Bullet will understand. */
 btTransform bttransform;

 /* Declare a 4x4 matrix. */
 mat4 mat;
 /* Set up the identity matrix to make sure the matrix is clean. */
 mat4_identity(&mat);
 /* Declare 3 vectors to be able to hold the rotation of the mesh on
the XYZ axis. */
 vec4 rotx = { 1.0f, 0.0f, 0.0f, objmesh->rotation.x },
 roty = { 0.0f, 1.0f, 0.0f, objmesh->rotation.y },
 rotz = { 0.0f, 0.0f, 1.0f, objmesh->rotation.z };
 /* Translate the matrix. */
 mat4_translate(&mat, &mat, &objmesh->location);
 /* Rotate the matrix using a ZYX order. */
 mat4_rotate(&mat, &mat, &rotz);
 mat4_rotate(&mat, &mat, &roty);
 mat4_rotate(&mat, &mat, &rotx);

 /* Assign the current transformation matrix that you create using the
standard “OpenGL way” and send it over to the Bullet transform variable. */
 bttransform.setFromOpenGLMatrix((fl oat *)&mat);

 /* Create a new motion state in order for Bullet to be able to
maintain and interpolate the object transformation.*/
 btDefaultMotionState *btdefaultmotionstate =
 new btDefaultMotionState(bttransform);

 /* Create a Bullet vector to be able to hold the local inertia of
the object. */
 btVector3 localinertia(0.0f, 0.0f, 0.0f);
 /* If a mass greater than 0 is passed in a parameter to the function,
use it to calculate the local inertia. If a mass is equal to 0, it means
that the object is static and you do not need to execute this calculation. */
 if(mass > 0.0f)
 btcollisionshape->calculateLocalInertia(mass, localinertia);

 /* Create a new rigid body and link the information that you have
calculated above. Note that you are using the btRigidBody pointer already
contained in the OBJMESH structure to initialize the class. This way, when
you’re drawing, you can easily query the pointer in order to gain access to
its transformation matrix, which is from now on maintained by Bullet
internally. */
 objmesh->btrigidbody =
 new btRigidBody(mass,
 btdefaultmotionstate,

c06.indd 102c06.indd 102 12/31/11 9:02:45 AM12/31/11 9:02:45 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Hello Physics ❘ 103

 btcollisionshape,
 localinertia);

 /* Built inside the btRigidBody class, there is a void * variable that
allows you to associate a user-defi ned pointer to the rigid body.
By associating the current objmesh pointer to this data, you can then have
direct access to the OBJMESH structure at any time inside any Bullet-driven
functions and callbacks. */
 objmesh->btrigidbody->setUserPointer(objmesh);

 /* Add the new rigid body to your physical world. */
 dynamicsworld->addRigidBody(objmesh->btrigidbody); }

 4. Now build a new function to free the collision world as well as all the rigid bodies that
it contains:

void free_physic_world(void) {
 /* Loop while you’ve got some collision objects. */
 while(dynamicsworld->getNumCollisionObjects()) {
 /* Get the fi rst collision object in the list. */
 btCollisionObject *btcollisionobject =
 dynamicsworld->getCollisionObjectArray()[0];

 /* Try to upcast it to a rigid body. */
 btRigidBody *btrigidbody =
 btRigidBody::upcast(btcollisionobject);

 /* If the upcast is successful, the pointer will be != than NULL,
so you know that you are dealing with a valid btRigidBody. */
 if(btrigidbody) {
 /* Delete the collision shape. */
 delete btrigidbody->getCollisionShape();
 /* Delete the motion state. */
 delete btrigidbody->getMotionState();
 /* Remove the rigid body from the collision world. */
 dynamicsworld->removeRigidBody(btrigidbody);
 /* Remove the collision shape from the collision world. */
 dynamicsworld->removeCollisionObject(btcollisionobject);
 /* Delete the rigid body from the memory. */
 delete btrigidbody; }
 }
 /* Delete all the pointers that you have initialized inside the
init_physic_world. */
 delete collisionconfi guration; collisionconfi guration = NULL;
 delete dispatcher; dispatcher = NULL;
 delete broadphase; broadphase = NULL;
 delete solver; solver = NULL;
 delete dynamicsworld; dynamicsworld = NULL; }

 5. Move on to the templateAppInit function and insert the following on the next line after
the GFX_start call:

init_physic_world();

c06.indd 103c06.indd 103 12/31/11 9:02:46 AM12/31/11 9:02:46 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

104 ❘ CHAPTER 6 REAL-TIME PHYSICS

 6. Locate the OBJ_build_mesh function call and add the following code on the next line:

/* Get the current mesh pointer. */
OBJMESH *objmesh = &obj->objmesh[i];
/* Test the current mesh name to check if it is the Cube. If yes,
give it a rotation of 35 degrees on the XYZ axis; and then call the
add_rigid_body
function using the mesh pointer and passing in a mass of 1kg as a
parameter. */
if(!strcmp(objmesh->name, “Cube”)) {
 objmesh->rotation.x =
 objmesh->rotation.y =
 objmesh->rotation.z = 35.0f;
 add_rigid_body(objmesh, 1.0f); }
/* If it’s not the Cube, it must be the plane. Add it as a new rigid body
using a mass of 0 since you want it to be a static object. */
else add_rigid_body(objmesh, 0.0f);

 7. Inside templateAppDraw, locate the following code:

 GFX_translate(objmesh->location.x,
 objmesh->location.y,
 objmesh->location.z);

And replace it with the following to be able to query the current matrix maintained by
Bullet for the current object and multiply it with the current model view matrix:

 mat4 mat;
 objmesh->btrigidbody->getWorldTransform().getOpenGLMatrix(
 (fl oat *)&mat);
 GFX_multiply_matrix(&mat);

 8. Before the end of the templateAppDraw function, add the following line of code to increase
the physics simulation step based on a static time of 60fps:

 dynamicsworld->stepSimulation(1.0f / 60.0f);

 9. At this point, your program is ready to rock and roll. However, in order to keep your code
clean, add the following call inside the
templateAppExit function:

free_physic_world();

 10. Build and run your application.

You should now be able to visualize the physics
simulation in real time. You can observe the cube
falling down and landing on the plane, and fi nally
becoming steady — like in the real world — as
demonstrated in Figure 6-3. FIGURE 6-3: Hello Physics in action!

c06.indd 104c06.indd 104 12/31/11 9:02:46 AM12/31/11 9:02:46 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Collision Callbacks, Triggers, and Contacts ❘ 105

COLLISION CALLBACKS, TRIGGERS, AND CONTACTS

Having real-time physics running within your apps is great! However, in order to be able to add
logic code, you need to get some sort of feedback about what is happening in the simulation. That’s
where the collision callbacks, triggers, and contacts come in!

Using one of these approaches, you’ll be able to actually code the necessary logic that you want your
game to respond to, based on either the collision of two objects, or if their bounding boxes overlap
(near callback), or directly on the contact point(s) between two or more collision objects.

Bullet is pretty fl exible when it comes to collision callbacks and provides a multitude of different
ways to handle them. In this section, I will introduce you to the most useful and popular way of
getting feedback on collisions, as well as the method to loop through all contact points of your
physical world, so you can then use them within your applications. Because these triggers can be
called multiple times per frame, and the logic code that you’ll implement can become quite complex,
you’ll have to determine which one is the most appropriate for your needs.

For more information and other callbacks and Bullet trigger techniques, do not hesitate to refer to
the offi cial Bullet Wiki at http://www.bulletphysics.org/mediawiki-1.5.8/.

Contact-Added Callback

The fi rst type of callback that you’ll get familiar with is gContactAdded. This type will occur every
time a new contact point is added or updated. When the implementation triggers the function, you
can then get information about which collision shapes collide and the data of the manifold point
(the contact itself).

Now it’s time to implement this in code. First, duplicate the chapter6-1 project directory and
rename it chapter6-2. Open the project and jump right away to the add_rigid_body function.
Then follow these steps:

 1. In order for the contact-added callback to be triggered when a rigid body collision shape
collides with another, you have to mark it for custom material callback. Making all physics
objects respond to callback is not recommended. Only mark the objects that absolutely
need to receive callback to avoid unnecessary processing. To do this for the current tutorial,
insert the following lines before the end bracket of the function:

 /* Only mark the object name “Cube” to receive a contact-added
callback. */
 if(!strcmp(objmesh->name, “Cube”)) {
 /* Adjust the collision fl ags of the rigid body to tell Bullet to
trigger the callback function for this body by adding
CF_CUSTOM_MATERIAL_CALLBACK to the current fl ags. */
 objmesh->btrigidbody->setCollisionFlags(
 objmesh->btrigidbody->getCollisionFlags() |
 btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK); }

c06.indd 105c06.indd 105 12/31/11 9:02:47 AM12/31/11 9:02:47 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

106 ❘ CHAPTER 6 REAL-TIME PHYSICS

 2. Create a new function before the program_bind_attrib_location function declaration.
This function will be used later on as the contact-added callback function, so it has to be
declared prior to the assignment.

bool contact_added_callback(
/* The current contact point info. */
btManifoldPoint &btmanifoldpoint,
/* The fi rst collision object */
const btCollisionObject *btcollisionobject0,
/* The part number and index of the collision object (if using
multipart or compound collision shape). */
int part_0, int index_0,
/* The second collision object involved in the collision. */
const btCollisionObject *btcollisionobject1,
/* The part and index number of the second collision object. */
int part_1, int index_1) {

/* Remember the user pointer (setUserPointer) that you set up earlier?
It is now time to retrieve it to check which geometry you are dealing with.
To do this, fi rst extract which rigid body is associated to the current
collision object. Then cast the user pointer back to an OBJMESH pointer.
This way, all the variables and functions of the OBJMESH can be called or
manipulated within the callback. Very convenient! */
OBJMESH *objmesh0 = (OBJMESH *)
((btRigidBody *)btcollisionobject0)->getUserPointer();

OBJMESH *objmesh1 = (OBJMESH *)
((btRigidBody *)btcollisionobject1)->getUserPointer();

/* Print the name of the fi rst mesh. */
console_print(“Object #0: %s\n”, objmesh0->name);
/* Print the XYZ location on the mesh where the contact point is added. */
console_print(“Point #0: %.3f %.3f %.3f\n”,
 btmanifoldpoint.m_positionWorldOnA.x(),
 btmanifoldpoint.m_positionWorldOnA.y(),
 btmanifoldpoint.m_positionWorldOnA.z());

/* Same as above for the second mesh. */
console_print(“Object #1: %s\n”, objmesh1->name);
console_print(“Point #1: %.3f %.3f %.3f\n”,
 btmanifoldpoint.m_positionWorldOnB.x(),
 btmanifoldpoint.m_positionWorldOnB.y(),
 btmanifoldpoint.m_positionWorldOnB.z());

/* Print the normal vector at the current location of the contact point on
the second geometry. */
console_print(“Normal : %.3f %.3f %.3f\n”,
 btmanifoldpoint.m_normalWorldOnB.x(),
 btmanifoldpoint.m_normalWorldOnB.y(),
 btmanifoldpoint.m_normalWorldOnB.z());
console_print(“%d\n\n”, get_milli_time());

/* Return true only if you change any variables of the contact point
(such as the friction). */
return false; }

c06.indd 106c06.indd 106 12/31/11 9:02:47 AM12/31/11 9:02:47 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Collision Callbacks, Triggers, and Contacts ❘ 107

 3. Link the global contact-added collision callback function. To do this, add the following line
inside the templateAppInit function, right after the init_physic_world call:

 gContactAddedCallback = contact_added_callback;

 4. Now build and run the program, and look at the console (if you are using XCode) or at the
LogCat (if you are using Eclipse).

As the collision between the two objects occurs, the collision information is printed in real time.
When the object (the cube) becomes stable, the callback simply stops being called, because no new
contact points are added or updated.

Near Callback

Another type of callback is called near callback. This type is triggered when the bounding box of
two collision objects overlap. Based on which objects are about to collide, you can then add the
appropriate logic code. What I also personally like about this callback is that it can be used to
prevent objects from colliding when special cases occur — by making the collider act like a ghost.

Similar to the contact-added callback demonstrated in the previous exercise, the near callback is
also very easy to implement. Start by duplicating chapter6-1 and rename it chapter6-3. Then
follow these steps:

 1. Right before the program_bind_attrib_location function declaration, create a new
function as follows:

void near_callback(btBroadphasePair &btbroadphasepair,
 btCollisionDispatcher &btdispatcher,
 const btDispatcherInfo &btdispatcherinfo) {
 /* Retrieve the 2 meshes that are part of the collision. */
 OBJMESH *objmesh0 = (OBJMESH *)((btRigidBody *)
 (btbroadphasepair.m_pProxy0->m_clientObject))->getUserPointer();

 OBJMESH *objmesh1 = (OBJMESH *)((btRigidBody *)
 (btbroadphasepair.m_pProxy1->m_clientObject))->getUserPointer();

 console_print(“Object #0: %s\n”, objmesh0->name);
 console_print(“Object #1: %s\n”, objmesh1->name);
 console_print(“%d\n\n”, get_milli_time());

 /* Let Bullet continue to deal with the collision by sending the
information to the default near-callback function maintained internally. */
 btdispatcher.defaultNearCallback(btbroadphasepair,
 btdispatcher,
 btdispatcherinfo); }

 2. Inside templateAppInit, on the line after the init_physic_world call, insert the
following code line to link the callback directly to the dispatcher:

 dispatcher->setNearCallback(near_callback);

c06.indd 107c06.indd 107 12/31/11 9:02:48 AM12/31/11 9:02:48 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

108 ❘ CHAPTER 6 REAL-TIME PHYSICS

 3. Now build and run the program and monitor the console. You can instantly notice that,
unlike the previous callback you implemented, this one is continuously called, even if the
object becomes deactivated.

You have to be careful when using this callback, because the trigger will occur as long as the two
objects are near or touching each other.

However, this type is very convenient for multiple purposes. As mentioned earlier, in addition to
using this trigger to determine when the two bounding boxes of the objects collide, you can use
it to prevent collision between objects. You can test this by simply commenting the last call of the
function, like this:

 /*
 btdispatcher.defaultNearCallback(btbroadphasepair,
 btdispatcher,
 btdispatcherinfo);
 */

Then build and go! Observe how the collision between the cube and the plane is completely omitted.
You can use this trick inside your own games to avoid collisions between certain objects based
on logic.

Contact Points

The technique that will be demonstrated inside this section can be inserted anywhere in your code.
It consists of enumerating through all the contact points of all the physical objects that are currently
in contact with each other. Obviously, this can be quite expensive, especially if you have a lot
of objects.

To discover what you can do with this technique, start by duplicating the chapter6-1 project
directory and rename it chapter6-4. Then launch it within your IDE. Now add the following
structure before the end bracket of the templateAppDraw function:

 /* Retrieve the total amount of manifold points. */
 unsigned int n_manifolds =
 dynamicsworld->getDispatcher()->getNumManifolds();
 i = 0;
 /* Loop while there are some manifolds */
 while(i != n_manifolds) {
 /* Get the current manifold based on its index. */
 btPersistentManifold *manifold =
 dynamicsworld->getDispatcher()->getManifoldByIndexInternal(i);

 /* Retrieve the two mesh pointers for the first and second rigid bodies. */
 OBJMESH *objmesh0 = (OBJMESH *)
 ((btRigidBody *)manifold->getBody0())->getUserPointer();
 OBJMESH *objmesh1 = (OBJMESH *)
 ((btRigidBody *)manifold->getBody1())->getUserPointer();

 /* Initialize a counter and extract the number of contact point(s) the
current manifold contains. */

c06.indd 108c06.indd 108 12/31/11 9:02:48 AM12/31/11 9:02:48 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Collision Callbacks, Triggers, and Contacts ❘ 109

 unsigned int j = 0,
 n_contacts = manifold->getNumContacts();

 /* Loop while there are some contact points. */
 while(j != n_contacts) {
 /* Retrieve the current contact point information using the index. */
 btManifoldPoint &contact = manifold->getContactPoint(j);
 /* Print the current manifold index. */
 console_print(“Manifold : %d\n”, i);
 /* Print the current contact point index. */
 console_print(“Contact : %d\n”, j);
 /* Print the two rigid body names and the contact point’s world
position for each of them. */
 console_print(“Object #0: %s\n”, objmesh0->name);
 console_print(“Point #0: %.3f %.3f %.3f\n”,
 contact.getPositionWorldOnA().x(),
 contact.getPositionWorldOnA().y(),
 contact.getPositionWorldOnA().z());

 console_print(“Object #1: %s\n”, objmesh1->name);
 console_print(“Point #1: %.3f %.3f %.3f\n”,
 contact.getPositionWorldOnB().x(),
 contact.getPositionWorldOnB().y(),
 contact.getPositionWorldOnB().z());

 /* Print some miscellaneous information about the current contact point. */
 console_print(“Distance : %.3f\n”, contact.getDistance());
 console_print(“Lifetime : %d\n” , contact.getLifeTime());
 console_print(“Normal : %.3f %.3f %.3f\n”,
 contact.m_normalWorldOnB.x(),
 contact.m_normalWorldOnB.y(),
 contact.m_normalWorldOnB.z());

 console_print(“%d\n\n”, get_milli_time());
 /* Next contact point. */
 ++j; }
 /* Next manifold. */
 ++i; }

Build and run the application, and monitor the console to follow in real time the data related to
every collision and contact point.

You now have the ability to create higher-level logic based on the information you extracted using
this method. Whether it’s multiple contacts on a single geometry, or a single contact on multiple
geometries, you now have full control over everything that is happening inside your physical world!

This concludes the section on collision callbacks and contact points. There are, of course, many
more callbacks available, so check the Bullet website! However, with just the callbacks presented
to you in this section, you can get light collision feedback (contact-added) to full control (contact
points). And by using one or more of the three methods that you learned in this section, you can
create virtually everything that you can possibly imagine and implement the necessary logic for it.

Now it’s time to move on to some real in-game implementation using the knowledge that you’ve
gained since the beginning of this chapter!

c06.indd 109c06.indd 109 12/31/11 9:02:48 AM12/31/11 9:02:48 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

110 ❘ CHAPTER 6 REAL-TIME PHYSICS

2D PHYSICS

Thus far in this chapter, you’ve received a good
overview of how to set up a physical world, how
to add collision shapes and rigid bodies, and link
collision callbacks. Now let’s wrap it all up into a
small 2D game like the one shown in Figure 6-4.

I’m sure you recognize the style — it is very similar
to the popular mobile-device game Angry Birds
developed by Rovio Mobile Ltd. In this section,
you’ll discover how easy it is to create such a game
with what you’ve learned so far in this book.

For this example, you will still be using the default Bullet implementation (which can be used
for both 2D and 3D). However, embedded inside the library, you also have access to an
implementation especially built for 2D physics simulation: Box2d. If you are planning to only create
2D physics-based games, I suggest that you take a look at the Box2dDemo inside the Bullet SDK.

Enough said — let’s get started! First, duplicate the template_chapter6-5 directory from the SDK
root and rename it chapter6-5. (Please note that all of the assets that have been linked for this
game are available to you and located in SDK/data/chapter6-5.) Open the project, and study the
code structure implemented inside templateApp.cpp.

You are already familiar with all the code in this
project, so there’s nothing new here. However,
you can still take a look at all the assets and
shaders that have already been linked to this
project to get familiar with what you’re going to
be working with.

Now build and run the program. You should get
the result shown in Figure 6-5.

In the following subsections, you’ll modify the
existing code to turn the application into a basic
2D game with logic and physics!

More Shapes!

First let’s handle the creation of the physics shapes. Follow these steps:

 1. Locate the add_rigid_body function and add the following constant declaration on the line
just before the function initialization:

enum {
 BOX = 0,
 SPHERE = 1,
 CYLINDER = 2 };

FIGURE 6-4: 2D physics game featuring Momo

FIGURE 6-5: Game Over already!?

c06.indd 110c06.indd 110 12/31/11 9:02:49 AM12/31/11 9:02:49 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2D Physics ❘ 111

As you might have already noticed, the add_rigid_body function now contains new
parameters in addition to the ones you have been handling so far. In the previous section,
you only worked with a box shape, but this time you will be passing to the function more
specifi c parameters such as bounds (the one you just defi ned) and the parameter to defi ne
whether the physical body should be rigid or dynamic (in other words, whether it should
respond to rolling physics or not).

 2. Inside the add_rigid_body function, insert the following code to be able to handle multiple
collision shapes as well the other parameters received by the function:

 /* Initialize a blank collision shape pointer. */
 btCollisionShape *btcollisionshape = NULL;
 /* Create a conditional switch based on the type of bound. */
 switch (bound) {
 /* If the current bound is a box, do the same as in the previous
sections. */
 case BOX: {
 btcollisionshape =
 new btBoxShape(btVector3(objmesh->dimension.x * 0.5f,
 objmesh->dimension.y * 0.5f,
 objmesh->dimension.z * 0.5f));
 break; }
 /* If it’s a sphere, initialize a new sphere shape, passing in as a
parameter the radius of the mesh (which is automatically pre-calculated
when OBJ_mesh_build is called). */
 case SPHERE: {
 btcollisionshape =
 new btSphereShape(objmesh->radius);
 break; }
 /* Handle the cylinder shape, which is initialized the same way as a
Box shape, by passing the bounding box extend to the constructor. */
 case CYLINDER: {
 btcollisionshape =
 new btCylinderShapeZ(btVector3(objmesh->dimension.x * 0.5f,
 objmesh->dimension.y * 0.5f,
 objmesh->dimension.z * 0.5f));
 break; }
 }

 3. Prepare the transformation to be assigned to the motion state. However, this time, use the
btTransform API to set the location of the mesh as follows:

 btTransform bttransform;
 bttransform.setIdentity();
 /* Set the origin location of the transformation, which is basically
the pivot XYZ location of the object. Note that the origin should always be
the center of the bounding box of the object in world space coordinates. */
 bttransform.setOrigin(btVector3(objmesh->location.x,
 objmesh->location.y,
 objmesh->location.z));

c06.indd 111c06.indd 111 12/31/11 9:02:49 AM12/31/11 9:02:49 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

112 ❘ CHAPTER 6 REAL-TIME PHYSICS

 4. Initialize the motion state and a new rigid body, as follows:

btDefaultMotionState *btdefaultmotionstate = NULL;
btdefaultmotionstate = new btDefaultMotionState(bttransform);
btVector3 localinertia(0.0f, 0.0f, 0.0f);
/* If the function receives a positive mass, calculate the local inertia
tensor of the object. */
if(mass > 0.0f)
 btcollisionshape->calculateLocalInertia(mass, localinertia);
 objmesh->btrigidbody =
 new btRigidBody(mass,
 btdefaultmotionstate,
 btcollisionshape,
 localinertia);

 5. It’s time to handle the constraint on the XZ axis for the collision objects that have a
positive mass (non-static objects). Since your game is basically in 2D, and you are using an
orthographic projection, you want the physics simulation to occur only on these two axes.
In order to do this, add the following code:

 if(mass > 0.0f) {
 /* Constraint the linear velocity (the movement of the object) to the
XZ axis by setting 0 to the Y linear factor. */
 objmesh->btrigidbody->setLinearFactor(
 btVector3(1.0f, 0.0f, 1.0f));

 /* Check to see if the object is not a dynamic object. If it’s not,
you have to prevent the object from rolling on the XZ axis. To do this,
in the same way you handled the linear factor, pass 0 as the XZ value of
the angular factor of the rigid body. This way, all your non-dynamic
objects will roll only on the Y axis. */
 if(!dynamic_only)
 objmesh->btrigidbody->setAngularFactor(
 btVector3(0.0f, 1.0f, 0.0f));
 /* If the object is a fully dynamic object, set the XYZ angular factor
to 0, so the object (such as the bananas) won’t respond to rolling physics
at all. */
 else objmesh->btrigidbody->setAngularFactor(0.0f);
 }

 6. Add the newly created rigid body to your physical world, and link the OBJMESH pointer
to the rigid body user pointer as follows so you can reuse this data later on in the contact
added callback:

 objmesh->btrigidbody->setUserPointer(objmesh);
 dynamicsworld->addRigidBody(objmesh->btrigidbody);

That’s it for the add_rigid_body function. You have learned how to add new types of collision
shapes and you are now able to constrain movement and rotation on a particular axis. Not bad for
a start!

c06.indd 112c06.indd 112 12/31/11 9:02:49 AM12/31/11 9:02:49 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2D Physics ❘ 113

Building the Physical Objects

Your function to add a new rigid body is ready to be used. Now it’s time to actually send the mesh
from the scene to be dispatched to this function in order to start dynamically creating the collision
objects of your world.

 1. Locate the OBJ_build_mesh function call and insert the following code on the line after the
function invocation:

 /* For each momo, create a sphere shape, with a mass of 2kg that
responds to rolling physics. */
 if(strstr(objmesh->name, “momo”))
 add_rigid_body(objmesh, SPHERE, 2.0f, 0);

 /* For the barrels, create a cylinder shape with a mass of 1kg
(so Momo can bash them easily) that also responds to rolling physics. */
 else if(strstr(objmesh->name, “barrel”))
 add_rigid_body(objmesh, CYLINDER, 1.0f, 0);

 /* Initialize each plank as a box, with a mass of 1kg that also responds
to angular velocity. */
 else if(strstr(objmesh->name, “plank”))
 add_rigid_body(objmesh, BOX, 1.0f, 0);

 /* Create a static box for the ground. */
 else if(strstr(objmesh->name, “ground”))
 add_rigid_body(objmesh, BOX, 0.0f, 0);

 /* Create a static cylinder for the steel barrel. */
 else if(strstr(objmesh->name, “steel”))
 add_rigid_body(objmesh, CYLINDER, 0.0f, 0);

In this code, you reused what you learned in the previous exercise to handle the collision
shapes, and used an if/else if clause (based on the object names) to dynamically dispatch
them to the add_rigid_body function and create their collision shapes.

 2. Now you need to add another else if to handle the fruits. In addition to adding the
bananas to the physical world, you have to specify that when a new contact point is created,
the contact_added_callback function should be triggered (just like you did previously
in the “Contact-Added Callback” section). To do this, add the following code block:

 else if(strstr(objmesh->name, “banana”)) {
 /* Create a sphere shape for each banana that has a mass of 1kg
and that does not respond to rolling physics. You do not want the bananas
to start rolling around! */
 add_rigid_body(objmesh, SPHERE, 1.0f, 1);
 /* Add to the rigid body collision fl ags that appropriate tags to
respond to custom material callbacks (contact added) */
 objmesh->btrigidbody->setCollisionFlags(
 objmesh->btrigidbody->getCollisionFlags() |
 btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);

c06.indd 113c06.indd 113 12/31/11 9:02:50 AM12/31/11 9:02:50 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

114 ❘ CHAPTER 6 REAL-TIME PHYSICS

 3. You also do not want the bananas to respond to physics right away and start falling
down. You need to force the rigid body to be deactivated so it won’t be affected by the
gravity of the world right away, but will instead start responding to gravity only when
another collision object hits it. To do this, add the following lines:

 objmesh->btrigidbody->forceActivationState
 (ISLAND_SLEEPING); }

 4. Since you are already looping and analyzing each object name, this is the best time to hide
the “gameover” object. You will specify when this object should be visible later, when
you’re implementing the logic part of the game. But for right now, to prevent the object from
being rendered, simply add the following:

 else if(strstr(objmesh->name, “gameover”)) {
 objmesh->visible = 0;
 }

 5. In order to be able to update the matrices of your meshes, you need to insert the code to
query Bullet about the current OpenGL matrix states that the library is maintaining. To do
this, locate the line that calls GFX_translate and replace it with the following code:

 /* Check if the current mesh has a valid rigid body pointer. */
 if(objmesh->btrigidbody) {
 mat4 mat;
 /* Get the current transformation matrix from Bullet. */
 objmesh->btrigidbody->getWorldTransform().getOpenGLMatrix(
 (fl oat *)&mat);
 /* Update the X location based on the current OpenGL matrix value. */
 objmesh->location.x = mat.m[3].x;
 /* Multiply it with the current model view matrix. */
 GFX_multiply_matrix(&mat); }

 /* If the current object does not have a rigid body pointer, simply call
the GFX_translate function to position the object inside the world, as you
normally do. */
 else
 GFX_translate(objmesh->location.x,
 objmesh->location.y,
 objmesh->location.z);

Now build and run the application. Observe that “Game Over” is not rendering anymore, and that
the barrel and planks smoothly balance and align to create a stable stack of physics objects.

Camera Tracking

In this section, you will implement the necessary code to be able to track the current Momo in
action. You will fi rst have to establish a mechanism that is able to focus a specifi c mesh and use a
linear interpolation to follow it as it moves inside the 2D world. To do this, follow these steps:

c06.indd 114c06.indd 114 12/31/11 9:02:50 AM12/31/11 9:02:50 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2D Physics ❘ 115

 1. At the top of the templateApp.cpp, on the line after the vec2 start_pos, declare the
following variables:

/* Index of the current Momo. Since the momo objects are named respectively
momo1, momo2, and so on, keeping an index enables you to easily retrieve
the current OBJMESH pointer for the current index by dynamically creating
the name of the mesh in code. */
unsigned int momo_index = 0;
/* Pointer to the current Momo mesh. */
OBJMESH *momo = NULL;

 2. You now have the necessary variables in place, so create a new function right before the
load_game function declaration to get the next mesh named “momo” on demand:

void get_next_momo(void) {
 /* Temp. characters to dynamically create the mesh name. */
 char tmp[MAX_CHAR] = {“”};
 /* Loop counter. */
 unsigned int i = 0;
 /* Reset the global momo mesh pointer. */
 momo = NULL;
 /* Increase the current momo index. */
 ++momo_index;
 /* Dynamically create the mesh name based on the current index. */
 sprintf(tmp, “momo%d”, momo_index);
 /* Loop while you’ve got some mesh to be able to fi nd the mesh
with the corresponding name. */
 while(i != obj->n_objmesh) {
 if(strstr(obj->objmesh[i].name, tmp)) {
 /* You found the good mesh, so assign the OBJMESH pointer to the
global momo variable. */
 momo = &obj->objmesh[i];
 /* Disable the deactivation of the rigid body. Since the object
will be thrown in the air, it has to be active in order to respond to the
linear velocity movement that you are going to assign it. If the rigid body
is disabled, the object won’t respond, even if you affect the velocity.
By calling the line above, you can be sure that the object will stay
“alive” and ready to be thrown. */
 momo->btrigidbody->setActivationState(DISABLE_DEACTIVATION);
 /* You found the mesh return. */
 return;
 }
 /* Next mesh please... */
 ++i;
 }
}

 3. Now call the function you created in step 2 as the last instruction of the load_game
function:

get_next_momo();

c06.indd 115c06.indd 115 12/31/11 9:02:51 AM12/31/11 9:02:51 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

116 ❘ CHAPTER 6 REAL-TIME PHYSICS

 4. Move on to the templateAppDraw function and locate the line where you call GFX_look_at.
Then on the previous line, insert the following code to be able to track the current Momo:

 /* If you got an active momo. */
 if(momo) {
 /* Linearly interpolate the camera eye position with the current
location of momo on the X axis. */
 eye.x = eye.x * 0.98f + momo->location.x * 0.02f;
 /* Clamp the camera X position to be between the range of -2 to 3.5.
This way, even if Momo is going off screen, you will stop tracking it. */
 center.x =
 eye.x = CLAMP(eye.x, -2.0f, 3.5f); }

 5. Execute the program to visualize what you have done in code. Notice how smoothly the
camera interpolates to the left side of the screen where your army of Momo is located,
focusing on the fi rst one in the row.

This kind of camera interpolation can be used for multiple situations, it is fast and easy to
implement, and it makes movements behave pretty smoothly based on a customizable factor.

User Interactions

Everything is now set up for you to start throwing some Momos around! All you have to do right
now is add the following code inside the templateAppToucheEnded function:

 /* Make sure you’ve got an active momo first. */
 if(momo) {
 /* Force the activation state from DISABLE_DEACTIVATION to
ACTIVE_TAG. This way, as soon as the object is thrown in the air, it can
then become deactivated when it lands and becomes immobile. */
 momo->btrigidbody->forceActivationState(ACTIVE_TAG);
 /* Use the direction vector created by the swipe of the user to
assign the linear velocity of the object. In addition, to avoid a very high
velocity (since the vector is in pixels, and Bullet is working in meters),
adjust the value by multiplying it by 0.1f and clamping it in the range of
0 to 10. Note that the X and Y values are inverted because you are in
landscape mode. */
 momo->btrigidbody->setLinearVelocity(
 btVector3(CLAMP((y - start_pos.y) * 0.1f, 0.0f, 10.0f),
 0.0f,
 CLAMP((x - start_pos.x) * 0.1f, 0.0f, 10.0f))); }

You can now start to have a glimpse of the game play for this simple physics-based puzzle game.
Start it and swipe your fi nger on the screen. Observe how the fi rst Momo is affected by your
movement as it gets thrown in the air. Please note that you haven’t yet fully coded the game logic for
the game to behave as it should. In other words, only the basic mechanism has been implemented
so far — so don’t worry if you feel the current execution is not correct (for example, Momo is not
taking the banana). You will be implementing the full game workfl ow and complete the game logic
in the next section.

c06.indd 116c06.indd 116 12/31/11 9:02:51 AM12/31/11 9:02:51 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2D Physics ❘ 117

The Game Logic

There’s only one part left: the game logic! This section will show you how to implement and how
to handle the win/loose condition and how to restart the game. You will also fi x a few things, such
as preventing the player from continuously swiping the screen to give extra boosts to Momo. In
addition, you will learn how to determine and evaluate whether the current object is inactive or out
of bounds, along with other small fi xes that will make this basic game a bit more like a real game.
Follow these steps:

 1. Locate the line where you declare OBJMESH *momo, and then, beginning on the next line,
insert the following declarations:

OBJMESH *gameover = NULL; /* To remember the gameover object. */
unsigned char restart_game = 0, /* Flag to restart the game. */
 momo_launch = 0, /* Flag to let momo be throw. */
 banana = 0; /* Banana counter. */

 2. Inside the contact_added_callback function, on the line after the two OBJMESH *
declarations, paste the following code to insert the necessary logic to accumulate bananas
and remove them from the physical world:

 /* Check if one of the two objects involved in the collision is
a momo. */
 if((strstr(objmesh0->name, “momo”) ||
 strstr(objmesh1->name, “momo”))
 &&
 /* Check if one collision object is a banana. */
 (strstr(objmesh0->name, “banana”) ||
 strstr(objmesh1->name, “banana”))) {

 /* Declare an empty mesh pointer. */
 OBJMESH *objmesh = NULL;
 /* Declare an empty collision object pointer. */
 btCollisionObject *btcollisionobject = NULL;

 /* Check if the fi rst mesh is a banana. If yes, it means that
the other is obviously a momo. Store the objmesh pointer and the collision
object for the fi rst collision object. */
 if(strstr(objmesh0->name, “banana”)) {
 objmesh = objmesh0;
 btcollisionobject =
 (btCollisionObject *)btcollisionobject0; }
 /* If not, it means that the fi rst one is the momo and the
second one is the banana. Store the pointer information of the second
collision object and the mesh. */
 else {
 objmesh = objmesh1;
 btcollisionobject =
 (btCollisionObject *)btcollisionobject1; }

 /* Make the banana mesh invisible.*/
 objmesh->visible = 0;

 /* Decrease the banana counter. Don’t worry, you will implement

c06.indd 117c06.indd 117 12/31/11 9:02:51 AM12/31/11 9:02:51 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

118 ❘ CHAPTER 6 REAL-TIME PHYSICS

the incrementation of this variable in a moment. */
 --banana;

 /* The following lines will remove the banana from the physical
world. First delete the collision shape of the rigid body. */
 delete objmesh->btrigidbody->getCollisionShape();
 /* Delete the motion state. */
 delete objmesh->btrigidbody->getMotionState();
 /* Remove the rigid body from the physical world. */
 dynamicsworld->removeRigidBody(objmesh->btrigidbody);
 /* Remove the collision object from the physical world. */
 dynamicsworld->removeCollisionObject(btcollisionobject);
 /* Delete the rigid body from memory. */
 delete objmesh->btrigidbody;
 /* Reset the pointer to NULL, just to be clean. */
 objmesh->btrigidbody = NULL; }

At this point, just for testing purposes, you could execute the game and check the logic code
that you have just added. Momo can start eating bananas in real time! Try it!

 3. Inside the if clause brackets of the get_next_momo function, insert the following line at the
beginning of the block to reset the launch state for the next Momo (if any):

 momo_launch = 0;

 4. Move to the load_game function and locate the else if block where you are handling the
bananas physics properties. Then right before the end of the code block, add the following
code to increase the total number of bananas:

 ++banana;

By adding this line, every time you add a new banana to the physics world, you increase the
counter. This way, you can evaluate the counter later on, and if it reaches 0, the game is over
and the player needs to restart the game.

 5. Inside the “gameover” block (the next else if after step 4), add the following line before
the end bracket to be able to remember the gameover object pointer:

 gameover = objmesh;

 6. On the line just before you call get_next_momo, insert the following code to reset the
current Momo index number and reset the camera to its original position:

 momo_index = 0;
 momo_launch = 0;
 center.x =
 eye.x = 3.5f;

This will enable you to call the load_game function over and over, and all the game states
will be reset.

 7. Inside the templateAppDraw, on the line right after the glClear call, paste the following
lines:

c06.indd 118c06.indd 118 12/31/11 9:02:51 AM12/31/11 9:02:51 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2D Physics ❘ 119

 /* If the restart fl ag is != than 0, call the templateAppExit function
to clear the scene, and then reload it using the load_game function.
Finally, reset the restart_game fl ag back to 0 to avoid loading again and
again if the fl ag is raised. */
 if(restart_game) {
 templateAppExit();
 load_game();
 restart_game = 0; }

 8. At the end of the templateAppDraw function, insert the following logic code to determine if
you should request another Momo or if the current one is still active in the world:

 if(
 /* Make sure that you got a valid momo pointer. */
 momo &&
 /* Check the current velocity of the rigid body. If the speed is
greater than 20, it means that momo is falling out of bounds. */
 (momo->btrigidbody->getLinearVelocity().length() > 20.0f ||
 /* If the speed is less than 20, maybe the rigid body has stalled
somewhere, so this check is done to confi rm that the current rigid body is
deactivated .*/
 momo->btrigidbody->getActivationState() == ISLAND_SLEEPING))
 /* If either of the conditions above is true, select a new momo. */
 get_next_momo();

Note that, in order to keep things simple in this tutorial, you simply requested the next
object index. However, in case the current Momo is out of bounds, you should also remove
it from the physical world (like you did for the bananas) and make it invisible for rendering.
That way, you will avoid extra calculations on the CPU and GPU.

 9. You are currently at the perfect location in code to determine if the player wins or
loses. The condition for the player to win is if the number on the banana counter reaches 0.
The losing condition is if the momo variable is equal to NULL (the player already threw all the
available Momos) but there are still some bananas left (the index number increments, but
the mesh wasn’t found by the get_next_momo function). Append the following code to
interpret these conditions:

 if(!momo || !banana) {
 /* Put the gameover object visible. */
 gameover->visible = 1;
 /* Change the X and Z location of the gameover object to be in front of
the camera. */
 gameover->location.x = eye.x;
 gameover->location.z = eye.z; }

 10. If the game is over, the player has to be able to restart it. To set this up, simply add the
following lines at the beginning of the templateAppToucheEnded function:

 /* Check if the gameover object is visible and if the restart game state
is equal to 0. If yes, raise the restart fl ag and exit the callback. */
 if(gameover->visible && !restart_game) {
 restart_game = 1;
 return; }

c06.indd 119c06.indd 119 12/31/11 9:02:52 AM12/31/11 9:02:52 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

120 ❘ CHAPTER 6 REAL-TIME PHYSICS

 11. To prevent the player from giving the current Momo an extra boost for free, simply replace
the following if statement in templateAppToucheEnded:

 if(momo) {

with this statement:

 /* Make sure that you have a momo, and the momo has not been launched.
If it has, enter the condition and prevent any extra launches until
the next momo is selected by your game logic. */
 if(momo && !momo_launch) { momo_launch = 1;

 12. Build and run the game. You should now have the complete game running on your mobile
device, with real-time 2D physics, physics logic, and user
interaction fully implemented —
just like what was shown previously in Figure 6-4.

Wow! In less than 500 lines of code, you reproduced the base code
of a multi-million dollar game! (Just a few hundred more, and you’ll be
able to compete against both iOS and Android in the touch-screen game
world!) And you are only on Chapter 6 of this book — pretty cool!

Already thinking about taking over the App Store and the Android
Market with your game? Well maybe you should fi nish reading this book
fi rst — you still have a lot to learn from it, believe me!

Enjoy the moment for a bit while playing your game. Then move on to
the next section, where I will demonstrate how to handle more-complex
3D physics.

3D PHYSICS

At this point, you have all the necessary basics to crank things up a
notch and apply what you have learned so far in a 3D environment.
In this section, you will code a simple pinball machine like what’s shown
in Figure 6-6, and discover how to use the Bullet fi le format.

The knowledge that you will receive in this section will allow you to build full-fl edged 3D physical
worlds with collision shapes as well as static, dynamic, or rigid bodies and constraints. You will
also learn how to save them on disk and load them directly inside your own apps so you can interact
with them in code.

The Bullet File Format

The Bullet fi le format (fi les usually saved with the extension .bullet) allows you to export your
physical world along with all the collision object settings into one fi le that can then be loaded at
initialization time. The Bullet website provides downloadable plug-ins that will enable you to export
the physics settings that you create with your 3D editor to the Bullet fi le format.

FIGURE 6-6: 3D pinball

game

c06.indd 120c06.indd 120 12/31/11 9:02:52 AM12/31/11 9:02:52 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3D Physics ❘ 121

In Blender, this feature is built into the Blender Game Engine. And since Blender has full Bullet support,
everything that you set in the Game Engine Physics property panel can be exported to the Bullet fi le
format; however, in the case of physics constraints, only Rigid Body Joint is supported by Bullet.

If you want to do a test to see how to export a .bullet fi le from Blender, follow these steps:

 1. Switch the engine type from Blender Render (located in the top bar) to Blender Game.

 2. Select any mesh object in your scene and click the Physics button under the Properties
panel (located on the right side by default). You can then set all the physics properties of
the currently selected mesh just the way Bullet is expecting it. Repeat this process for every
physical object in your scene.

In addition, you can create physics constraints by clicking the Object Constraints button
on the property panel and then selecting Rigid Body Joint from the Add Constraint combo
box. From there, you can set up constraint properties and object relations, along with
other physics-based settings, and get direct visual feedback from your operations in the 3D
viewport.

 3. Once your physics properties and constraints of your world are all set, all you have to do is
to insert the following lines inside a new Python script (under the Scripting layout):

import PhysicsConstraints;
PhysicsConstraints.exportBulletFile(“<fullpath>/fi lename.bullet”)

 4. To call the script in order to save your .bullet fi le, you can create a Sensor. To do this,
select an object (such as the camera or any other object in your scene), and switch the layout
to Game Logic. Then create a new Sensor that links the script fi lename to the Script fi eld of
the controller, like the one shown in Figure 6-7.

FIGURE 6-7: Sensor to export a .bullet fi le

 5. To export the .bullet fi le, simply start the Blender Game Engine (by pressing P on your
keyboard when your mouse is over the 3D viewport), and then hit the spacebar to save the
fi le at the location that you specify in the script. Every time you change a physics property,
you have to repeat this step in order to update the .bullet fi le with the latest changes.

c06.indd 121c06.indd 121 12/31/11 9:02:53 AM12/31/11 9:02:53 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

122 ❘ CHAPTER 6 REAL-TIME PHYSICS

By using this approach, you can save a lot of time and lines of code, and you can even test your
physical world right inside the Blender Game Engine. From there, all you have to do is to link the
rigid body pointers back to your objects. All properties (including the transformation matrix) will
automatically be restored to the way you set them inside Blender.

Before you start building the pinball machine code (which you’ll be doing next), open the SDK/
data/chapter6-6/pinball.blend fi le (along with the different assets located in that same
directory) in Blender and study the physics properties and constraints for the Bullet physical world.

If you need more information about how to use Blender, just do a Google search and you’ll fi nd lots
of resources that will get you up-and-running in no time!

3D Pinball Game

Begin by duplicating the template_chapter6-6 project directory and rename it chapter6-6. Open
the project within your IDE, and then build and run at it. Your screen should now display what was
shown previously in Figure 6-6.

Now open the project and select the templateApp.cpp to have a quick look at the code before
getting started. The code and the structure look pretty much like the structure that you ended up
with at the end of the last section. However, this time you will be using a near callback and have a
new function to fi ll: the load_physic_world function, which is called by the load_game function
and where you are going to load the .bullet.

Bullet World Importer

Insert the following code to load the pinball.bullet inside the load_physic_world function.
Please note that the fi lename is declared and defi ned by the variable PHYSIC_FILE created at the top
of this source fi le.

 /* Declare the necessary class to be able to import a .bullet file and
link it to your current dynamic world that you have initialized in the
init_physic_world function. */
 btBulletWorldImporter *btbulletworldimporter =
 new btBulletWorldImporter(dynamicsworld);

 /* Now create a new in-memory stream and load pinball.bullet from disk. */
 MEMORY *memory = mopen(PHYSIC_FILE, 1);

 /* Send over the file content to the world importer. */
 btbulletworldimporter->loadFileFromMemory(
 (char *)memory->buffer, memory->size);

 /* Close and free the memory stream. */
 mclose(memory);

 /* At this point all the rigid bodies and constraints have been
re-created and are now present inside your dynamic world. All you have to
do now is loop through the rigid bodies and link their pointers to the
appropriate mesh. To do this start off by creating a new counter.*/
 unsigned int i = 0;

c06.indd 122c06.indd 122 12/31/11 9:02:53 AM12/31/11 9:02:53 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3D Physics ❘ 123

 /* Loop while there are some rigid bodies. */
 while(i != btbulletworldimporter->getNumRigidBodies()) {
 /* Get a OBJMESH pointer based on the name of the current rigid body.
Since you have exported your .obj and .bullet from Blender (presumably)
each mesh and rigid body has the same name. */
 OBJMESH *objmesh =
 OBJ_get_mesh(obj,
 /* Get the name of the current rigid body. */
 btbulletworldimporter->getNameForPointer(
 btbulletworldimporter->getRigidBodyByIndex(i)), 0);

 /* If you get a valid pointer it means that you have a match. */
 if(objmesh) {
 /* Link the btRigidBody pointer to the mesh. */
 objmesh->btrigidbody =
 (btRigidBody *)btbulletworldimporter->getRigidBodyByIndex(i);
 /* Set the user pointer so you can get back access to the OBJMESH
structure within any Bullet function callback (in this case the near
callback). */
 objmesh->btrigidbody->setUserPointer(objmesh);

 /* Tweak the restitution of the current rigid body. Since you are
working on a pinball, everything should be very bouncy. */
 objmesh->btrigidbody->setRestitution(0.75f); }

 /* Next rigid body please... */
 ++i; }
 /* At this point everything has been loaded and linked. Get rid of the
world importer in the memory. */
 delete btbulletworldimporter;

Build and run the app, and as it starts, pay attention to the balls located on the right side of the
screen. As you can see, they don’t fall down in space. This means that you now have all the pinball
table physics set up and your balls are ready to roll!

Getting a Ball

To animate your pinball, you fi rst have to be able to launch it on the table based on the user’s touch.
Follow these steps to set this up:

 1. At the top of the source fi le, on the line right above the btSoftRigidDynamicsWorld
variable declaration, insert these new variables:

 /* Represent the current ball index. Since the ball objects
are named ball1, ball2, ball3, and so on, you will use this variable to
implement a mechanism that is similar to the one you used in the previous
section with the Momo faces. */
unsigned char ball_index = 0,
 /* Flag to use to restart the game when all the balls
are depleted. */
 restart_game = 0;

/* Variable to use to contain the current ball mesh pointer. */
OBJMESH *ball = NULL;

c06.indd 123c06.indd 123 12/31/11 9:02:53 AM12/31/11 9:02:53 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

124 ❘ CHAPTER 6 REAL-TIME PHYSICS

 2. Create a new function before the declaration of the near_callback function to be able to
get the next ball mesh pointer based on the next index:

void get_next_ball(void) {
 /* String variable to dynamically create the current ball name
based on the current index. */
 char tmp[MAX_CHAR] = {“”};
 /* Increment the index. */
 ++ball_index;
 /* Generate the name of the current ball. */
 sprintf(tmp, “ball%d”, ball_index);
 /* Get the ball pointer based on the mesh name. */
 ball = OBJ_get_mesh(obj, tmp, 0);
}

 3. Move to the templateAppToucheBegan function and add the following code to launch a
new ball:

 /* Check if you got a valid ball pointer fi rst. If not, request a
new ball. */
 if(!ball) {
 get_next_ball();
 /* If you got a valid ball pointer. */
 if(ball) {
 /* Activate the rigid body. */
 ball->btrigidbody->setActivationState(ACTIVE_TAG);
 /* Give it a boost on the Y axis to launch the ball using the
setLinearVelocity function. */
 ball->btrigidbody->setLinearVelocity(
 btVector3(0.0f, 30.0f, 0.0f)); }
 }

To test the code you’ve just added, build and run the application. Then tap anywhere on the screen
to launch the fi rst ball on the pinball table.

Animate the Flippers

When you studied the blend fi le earlier, you probably noticed that the two fl ippers are using a hinge
constraint. In addition to preventing them from simply falling down, this will allow their rotation to
be constrained to a specifi c axis (in this case, the Z axis).

To be able to play the game, as soon as a new ball is launched on the table, the control should allow
the player to control the fl ipper.

Still inside the templateAppToucheBegan, append the following code before the end bracket of the
function to be able to give an angular velocity to the fl ippers when the user touches the screen:

 /* If you already have a valid ball pointer, you need to give control
over to the flippers. */
 else {
 /* Get the first flipper by querying the name. */
 OBJMESH *objmesh = OBJ_get_mesh(obj, “flipper1”, 0);

c06.indd 124c06.indd 124 12/31/11 9:02:54 AM12/31/11 9:02:54 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3D Physics ❘ 125

 /* Activate the rigid body. Since you are about to assign a new
angular velocity to it, it has to be alive first. */
 objmesh->btrigidbody->setActivationState(ACTIVE_TAG);
 /* Set a negative angular velocity (since the first flipper is
located on the right side and will respond to a negative rotation on the
Z axis). */
 objmesh->btrigidbody->setAngularVelocity(
 btVector3(0.0f, 0.0f, -30.0f));

 /* Do the same as above, but this time on the left flipper, assigning
a positive angular velocity on the Z axis. */
 objmesh = OBJ_get_mesh(obj, “flipper2”, 0);
 objmesh->btrigidbody->setActivationState(ACTIVE_TAG);
 objmesh->btrigidbody->setAngularVelocity(
 btVector3(0.0f, 0.0f, 30.0f));
 }

Execute the program and tap once to launch a new ball, and then tap again to activate the fl ippers.
You almost have a working pinball machine already! However, as soon you miss your shot with the
fi rst ball, there’s no way to be able to continue to play. Read the following section to learn how to
fi x this behavior.

Dead Balls

It’s time to code some logic inside the near_callback function. Basically, this logic should state
that when the ball reaches the bottom of the table, the player can launch a new ball, until there are
no more balls left.

Inside the Blender model fi le, there is an object named “out_of_bound” at the bottom of the table.
You will now use the near callback functionality to determine if one of the ball’s bounding boxes
gets near the bounding box of this object, which means that the current ball is dead and a new ball
should be sent on the table.

To implement this logic, go to the near_callback function and insert the following code on the line
before the btdispatcher.defaultNearCallback call:

 char tmp[MAX_CHAR] = {“”};
 /* Dynamically create the name of the mesh for the current ball. */
 sprintf(tmp, “ball%d”, ball_index);

 /* Check if the current collision involves the current ball and the
out of bound object. */
 if(ball &&
 (strstr(objmesh0->name, “out_of_bound”) ||
 strstr(objmesh0->name, tmp))
 &&
 (strstr(objmesh1->name, “out_of_bound”) ||
 strstr(objmesh1->name, tmp))) {
 /* If yes, simply reset the current ball mesh pointer to NULL,
which will indicate inside the templateAppToucheBegan function that a new
ball has to be thrown. */
 ball = NULL;
 }

c06.indd 125c06.indd 125 12/31/11 9:02:54 AM12/31/11 9:02:54 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

126 ❘ CHAPTER 6 REAL-TIME PHYSICS

Build and run the app. Now you can get another ball on the table as soon as the current ball lands
behind the fl ippers.

You almost have a full game here! All that’s left is to deal with the game over and restart
functionalities, which you’ll be doing next.

Game Over!

As things stand right now, when the last ball gets out of bounds, the player simply gets stuck. There
is no way for him or her to restart the game. Follow these steps to implement the fi nal logic code of
the game and make it a bit more like a real pinball machine game:

 1. Inside the load_game function, on the line right after the load_physic_world call, insert
the following line to make the object name “game_over” invisible when the game starts:

OBJ_get_mesh(obj, “game_over”, 0)->visible = 0;

 2. Move to the near_callback function and on the line above the ball = NULL call, insert
the following code to evaluate if the player has run out of balls.

/* Simulate to get the next ball. */
get_next_ball();
/* Restore the ball index back to normal, since get_next_ball will increase
it +1.
 */
--ball_index;
/* If there is no ball pointer (ball == NULL), it means that the
player ran out of balls. In this case, display the game_over object. */
if(!ball) OBJ_get_mesh(obj, “game_over”, 0)->visible = 1;

 3. Inside the templateAppToucheBegan callback, add the following if clause at the beginning
of the function to determine if the “game_over” object is visible, and if it is, the game
should be restarted:

 /* Check if the game_over object is visible. if yes, toggle the
restart fl ag and exit the callback. */
 if(OBJ_get_mesh(obj, “game_over”, 0)->visible) {
 restart_game = 1;
 return;
 }

 4. Now paste the following code at the top of templateAppDraw, right after the function
beginning bracket, to enable the game to restart:

 /* If you need to restart the game. */
 if(restart_game) {
 /* Free everything from the memory. */
 templateAppExit();
 /* Reload the game. */
 load_game();
 /* Reset the ball index. */
 ball_index = 0;

c06.indd 126c06.indd 126 12/31/11 9:02:54 AM12/31/11 9:02:54 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary ❘ 127

 /* Reset the restart fl ag. */
 restart_game = 0;
 }

 5. Build the game and run it. The player can now play this game in
its entirety and restart it as necessary.

You now have a fully working pinball machine running on your mobile
device, as displayed in Figure 6-8.

With just a bit more code and logic, you can add points based on which
object the ball collides with, add other fl ippers, or whatever you want
your game to do.

SUMMARY

You have learned a lot in this chapter, from 2D physics to full-fl edged
3D physics. You now have enough knowledge to be able to create
simple 2D and 3D games.

In this chapter, you implemented logic based on physics collision
callbacks, which will enable you to track when objects are colliding.
You can also gain full control over contact points and receive triggers and callbacks when the
bounding volumes of two collision objects are overlapping.

On top of all that, you learned how to export rigid bodies and physics constraints, and load them
back into your physical world using the Bullet fi le format.

Your arsenal is now equipped with the all the necessary knowledge to implement the Bullet physics
library in your 2D or 3D apps, set linear and angular velocity to be able to move collision objects in
real time, gain access to rigid bodies properties, and a lot more!

Before moving on, make sure to review all the code and techniques demonstrated in this chapter.
As you dive deeper and deeper into hard-core game and graphics programming, all of these concepts
have to be assimilated.

In the next chapter, you will learn how to effectuate basic object clipping and will discover how to
handle different types of cameras and camera controls.

FIGURE 6-8: Your fi rst

pinball machine in 3D

with real-time physics

c06.indd 127c06.indd 127 12/31/11 9:02:55 AM12/31/11 9:02:55 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c06.indd 128c06.indd 128 12/31/11 9:02:55 AM12/31/11 9:02:55 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Camera

WHAT’S IN THIS CHAPTER?

Building a touch-and-go camera

Implementing frustum clipping based on the current model view and

projection matrix

Building and integrating a fl y mode into your camera

Creating a fi rst-person shooter camera with collision detection

Building a 3D camera tracking system

Orbiting a camera around a specifi c object

Using a Bullet collision ray

Creating a third-person camera with collision detection

This chapter is all about cameras, the view matrix, and the frustum. You will learn how to
create fi ve different types of cameras through practical examples that will give you all the
necessary knowledge to either integrate them inside your apps or build your own.

Another important aspect of this chapter is clipping (how to determine if an object is visible
or not from the current camera view). This chapter will demonstrate how to use a universal
method based on the model view and a projection matrix to build the six planes that form the
view frustum.

Once the frustum is created, you will learn how to test the bounding box, bounding sphere,
and points against the frustum to determine their visibility. You will also discover how to get
the distance of a bound (perfect for geometry or shader LOD), and learn how to test if an
object is inside, outside, or intersects the frustum.

➤

➤

➤

➤

➤

➤

➤

➤

7

c07.indd 129c07.indd 129 12/31/11 9:06:56 AM12/31/11 9:06:56 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

130 ❘ CHAPTER 7 CAMERA

TOUCH AND GO!

In order to gently get started, let’s fi rst implement
what I like to call a touch-and-go camera control.
To quickly explain how this type of camera
works, as the user touches the screen and drags
their fi nger around, the camera will respond to
the direction vector of the touch onscreen.

Moving up and down has a direct impact on the
X and Y linear velocity of the camera, and left/
right control of the rotation of the Z axis. This
way, you can have a “semi fi rst-person” camera as
demonstrated in Figure 7-1.

To get started, duplicate the template_chapter7 project located (as usual) at the root
of the SDK, and rename the project directory chapter7-1. Then fi re up the project in
your favorite IDE, and study the code a bit before moving on with the necessary steps to
implement this camera system.

As you can see, an important part of the code is missing. The model view matrix is not affected
by any “look at” call, which means that if you execute the program, you won’t see anything
since there’s no view matrix. To implement a view matrix that will respond to the touch and drag
movements described at the beginning of this section, follow these steps:

 1. At the top of the templateApp.cpp, on the line right before the program_bind_attrib_
location declaration, create the following variables:

/* To contain the rotation on the Z axis of the camera. */
fl oat rotz = 0.0f;
/* To remember the current touche location. */
vec2 touche_location = { 0.0f, 0.0f },
 /* The touche delta (to use in the touche moved callback). */
 touche_delta = { 0.0f, 0.0f };
/* The current eye location of the camera in world coordinates. Give a
little offset on the Z axis to simulate the position of a “human” eye
looking at the scene. */
vec3 eye_location = { 0.0f, 0.0f, 1.84f };

 2. Before implementing the view matrix code, fi rst implement how the movements of an
onscreen touch will be interpreted. Jump to templateAppToucheBegan, and add the
following code between the function brackets:

 /* Remember the touche location when the onscreen movement starts. */
 touche_location.x = x;
 touche_location.y = y;

 3. Inside the templateAppToucheMoved, add the following code to convert the direction of the
touche into usable data:

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 7-1: Touch-and-go camera

c07.indd 130c07.indd 130 12/31/11 9:06:58 AM12/31/11 9:06:58 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Touch and Go! ❘ 131

 /* Calculate the XY delta (that you will use as a direction vector)
for the current movement onscreen and clamp the range of both the movement
and the rotation since you don’t want the movement to go wild because the
current delta unit is in pixels and the units inside your world are
in meters.

To insure a consistent movement on all platform, make sure you use
linear interpolation to smooth the values.

On iOS, the touche movements are already pretty smooth; however, on
Android, depending on the type of touch screen you are dealing with, you
might get some jaggy results. You will fi x this problem by interpolating
the touche location. */
 touche_delta.x = touche_delta.x * 0.9f +
 CLAMP(touche_location.x - x, -0.1f, 0.1f) * 0.1f;
 touche_delta.y = touche_delta.y * 0.9f +
 CLAMP(touche_location.y - y, -2.0f, 2.0f) * 0.1f;

 /* Remember the current location for the next touche movement pass. */
 touche_location.x = x;
 touche_location.y = y;

/* Convert the touche delta Y into a rotation angle as you did previously
in your OBJ viewer. But this time, the rotation will not be affected on the
complex geometry but on the camera view matrix. */
 rotz += touche_delta.y;

 4. To stop the movement, insert the following two lines of code inside the
templateAppToucheEnded event callback:

 touche_delta.x =
 touche_delta.y = 0.0f;

 5. Inside the templateAppDraw, locate the GFX_load_identity call. On the next line, insert
the following block of code to convert the touche delta into a direction vector and affect the
linear motion of the camera:

 /* The touche delta Y only affects the rotation, so check if you got a
value different than 0 to process the forward/backward movements. */
 if(touche_delta.x) {
 /* Declare the forward vector. In this case, the forward direction is
the position Y axis. */
 vec3 forward = { 0.0f, 1.0f, 0.0f },
 /* Declare the direction vector that you will use to affect the
current eye location of the camera. */
 direction;

 /* Rotate the current forward vector based on the current Z rotation.
By doing this, regardless of the rotation angle Z of the camera, up will
always be forward and down will always be backward. */
 fl oat r = rotz * DEG_TO_RAD,
 c = cosf(r),
 s = sinf(r);

c07.indd 131c07.indd 131 12/31/11 9:06:59 AM12/31/11 9:06:59 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

132 ❘ CHAPTER 7 CAMERA

 direction.x = c * forward.x - s * forward.y;
 direction.y = s * forward.x + c * forward.y;
 /* You now have a direction vector that is appropriately rotated to
the current coordinate system of the camera. Add the direction vector to
the eye_location to make the camera move. And use the touche_delta.x as the
speed factor. */
 eye_location.x += direction.x * -touche_delta.x;
 eye_location.y += direction.y * -touche_delta.x;
 }

 6. Now all you have to do is affect what you have calculated to the current model view matrix
to create the camera view matrix, as follows:

 /* First translate the model view matrix. */
 GFX_translate(eye_location.x,
 eye_location.y,
 eye_location.z);

 /* Then rotate it on the Z axis using the rotation controlled by the
movement of the onscreen touch. */
 GFX_rotate(rotz, 0.0f, 0.0f, 1.0f);

 /* Next, rotate the matrix of 90 degrees on the positive X axis to look
forward on the Y axis. */
 GFX_rotate(90.0f, 1.0f, 0.0f, 0.0f);

 /* Invert the current model view matrix to create a camera view matrix. */
 mat4_invert(GFX_get_modelview_matrix());

 7. Build and run the application. Once loaded, drag your fi nger up or down and hold it
onscreen to continue the movement in the direction you specify. To rotate the camera on the
Z axis, simply swipe your fi nger left or right depending on the direction you want to go.

THE CAMERA FRUSTUM

Inside any 3D application, your main goal is to
save as much processing as possible. Drawing only
the objects that are visible onscreen is crucial to
optimizing your application performance.

In this section, you will learn how to reconstruct
the six frustum planes that your camera view is
representing. Once you’ve created these planes,
you’ll be able to test the visibility of different
virtual geometric bounds against them.

These planes can be reconstructed in real time
using the current projection and model view
matrix as well as the clip start and clip end data.
The result of this reconstruction can basically be
represented by a pyramidal shape similar to the
one shown in Figure 7-2.

FIGURE 7-2: The camera frustum

c07.indd 132c07.indd 132 12/31/11 9:06:59 AM12/31/11 9:06:59 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Camera Frustum ❘ 133

The visibility test of an object can be executed on the frustum, which can be categorized in three
distinct results (as demonstrated in Figure 7-2): inside the frustum, outside the frustum, and
fi nally if it intersects the frustum. (If you have the colored version of the fi gure, green objects
are inside the frustum, red objects are outside the frustum, and yellow objects intersect with the
frustum.)

In game programming, most of the time only the fi rst two types are relevant (inside or outside the
frustum), since your main goal is to determine if a complex geometry is visible or not. However,
you could always implement a more-sophisticated algorithm based on the fact that a geometry is
intersecting the frustum, allowing you to clip part of the geometry.

How to Build the Frustum

The technique that I’m about to show you will work with any type of camera. Without going
into too much detail about the math behind this implementation (since you can just do a search on
Google for that), I will strictly focus on its usage in the code. For more information, feel free
to consult the function build_frustum in utils.cpp located in the common directory of the SDK
for the full code implementation. The code of this function might look scary at fi rst; however,
you only have to call it once every time your camera view matrix or projection matrix
changes.

Once the frustum planes are created, you can then use one of the following functions to test your
geometry against the frustum (also located in utils.cpp):

sphere_distance_in_frustum: By far my personal favorite, this function is fast (CPU-
wise) and works for every type of geometry. It returns 0 if the object is not in the frustum;
or if the object is in the frustum, it returns the current distance of the bounding sphere
from the viewer. The distance returned by the function can then be used for clipping (if
the distance is different than 0) and for geometry LOD and/or shader LOD (perfect!).
However, since the shape used is a sphere (and uses the radius of the object), if your object
is somewhat cube-shaped, the clipping will not be as tight as if you were using one of the
following box functions.

point_in_frustum: This function returns 1 or 0 to determine whether or not a point is
inside the frustum. This function is not really powerful alone; it has to be implemented with
an array of points to be powerful.

box_in_frustum: This function tests an axis-aligned bounding box against the frustum
based on the object’s XYZ dimension and its pivot point. It returns 1 if the object is visible,
or 0 if it is not.

sphere_intersect_frustum: This is for your convenience only. I personally always
implement it inside the 3D and game engines that I write, but never really make full use
of it. This function returns 1 if the object is fully visible, 0 if it is not, or 2 if the sphere is
partially inside the frustum.

box_intersect_frustum: This function is basically the same as sphere_intersect_
frustum, but it’s for an axis-aligned bounding box.

➤

➤

➤

➤

➤

c07.indd 133c07.indd 133 12/31/11 9:07:00 AM12/31/11 9:07:00 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

134 ❘ CHAPTER 7 CAMERA

Frustum Clipping Implementation

Now that you have a good overview of the API and the related helper functions, it’s time to
implement them inside your own applications.

Begin by duplicating the chapter7-1 directory and rename it chapter7-2. Then follow these steps:

 1. At the top of the templateApp.cpp, on the next line after the eye_location declaration,
insert the following variable to hold the frustum planes:

vec4 frustum[6];

 2. Locate the call to mat4_invert (inside the templateAppDraw function). At this point in the
execution, you have the latest projection and model view matrix, so on the next line after
the mat4_invert call, you can now build the frustum by calling the following:

 /* Build the frustum planes. Always make sure that you call this
function after the model view and project matrix have been fully updated;
otherwise, the frustum calculation will be wrong. */
 build_frustum(frustum,
 GFX_get_modelview_matrix(),
 GFX_get_projection_matrix());

 3. Delete the whole while loop block (still inside the templateAppDraw function) to render
the objects (including the counter variable i initialization), and replace it with the following
code block, which includes the bounding sphere frustum check to determine if the object
should be sent to the GPU for drawing or not:

 unsigned int i = 0,
 n = 0; /* Visible objects counter. */

 while(i != obj->n_objmesh) {
 OBJMESH *objmesh = &obj->objmesh[i];

 /* Get the distance of the current mesh in the frustum. */
 objmesh->distance =
 sphere_distance_in_frustum(frustum,
 &objmesh->location,
 objmesh->radius);

 /* If the distance of the mesh is != than 0, it means that the object
is visible, so you should draw it onscreen. */
 if(objmesh->distance) {
 GFX_push_matrix();
 GFX_translate(objmesh->location.x,
 objmesh->location.y,
 objmesh->location.z);
 glUniformMatrix4fv(
 program->uniform_array[0].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_modelview_projection_matrix());

c07.indd 134c07.indd 134 12/31/11 9:07:00 AM12/31/11 9:07:00 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Camera Frustum ❘ 135

 OBJ_draw_mesh(obj, i);
 GFX_pop_matrix();

 /* Increment the visible object counter. */
 ++n;
 }
 /* Increment the counter to test the next object. */
 ++i;
 }
 /* Report on the console the number of objects currently visible
in the frustum. */
 console_print(“Visible Objects: %d\n”, n);

You have now implemented object clipping inside your application. All objects that are outside the
frustum will not be sent to the video card for processing. Only the fully visible or partially visible
objects will be drawn onscreen.

If you need more information about how to calculate the bounding sphere radius or the bounding
box dimension of an arbitrary geometry, feel free to consult the OBJ_update_bound_mesh (SDK/
common/obj.cpp) function source. It includes the full code implementation.

Ready to test the code? Compile and execute the application, and then move around the scene. Pay
close attention to the Console (XCode) or LogCat (Eclipse) to check how many visible objects are
currently sent to the GPU based on your current camera view.

More Clipping Functions

As mentioned in the previous section, I personally prefer to use sphere_distance_in_frustum
as the generic clipping method inside my engines. However, depending on the situation or on your
requirements, other clipping methods may have to be used.

The following instructions are optional. This information is provided in case you want to test the
different clipping methods offered within the SDK so you can fi nd the best one to fi t your needs.

If you want to test the various clipping methods, duplicate the chapter7-2 directory and rename it
chapter7-2a. Then follow these steps:

 1. On the line above the if(objmesh->distance) call, insert the following code to declare
a variable that will hold half of the extend of the object dimension. This is the bounding
box size that you will have to use if you want to test the frustum clipping functions that are
effectuated on the bounding box of an object.

 vec3 dim = { objmesh->dimension.x * 0.5f,
 objmesh->dimension.y * 0.5f,
 objmesh->dimension.z * 0.5f };

 2. Replace the if(objmesh->distance) line with one of the following if statements,
depending on the method you want to test:

To test a single point in the frustum:

 if(point_in_frustum(frustum, &objmesh->location))

➤

c07.indd 135c07.indd 135 12/31/11 9:07:01 AM12/31/11 9:07:01 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

136 ❘ CHAPTER 7 CAMERA

To test the visibility of an axis-aligned bounding box against the frustum:

 if(box_in_frustum(frustum, &objmesh->location, &dim))

To test the visibility of a bounding sphere that may intersect the frustum:

 if(sphere_intersect_frustum(frustum,
 &objmesh->location,
 objmesh->radius))

To check if an axis-aligned bounding box is visible or not or if it intersects at least
one of the current frustum planes:

 if(box_intersect_frustum(frustum, &objmesh->location, &dim))

This concludes the section on clipping! You now have a new and very powerful weapon to add
to your arsenal. With this universal method, you can easily determine, and at a relatively low
processing cost, the visibility of any geometric object inside your camera view.

For the sake of this example, you have used 3D geometries, but the same clipping methods can also
be used for lamps, sounds, or anything else that can be represented by a virtual boundary in space.
Enjoy!

CAMERA FLY MODE

Since you have the necessary knowledge to create and use Euler-based cameras (as you did in the
previous exercises), and are able to clip objects in space, it’s time to crank it up a bit and implement
a more-complex camera behavior.

The type of camera implementation that will be
demonstrated in this section is similar to what’s
used in popular 3D software as well as in some
fi rst-person shooters. This type of camera allows
you to manipulate the view and “fl y” freely
around a scene, just like in Figure 7-3.

In the following exercise, you will implement
two virtual analog sticks that respond to touche
movements on both sides of the screen. When the
user smoothly touches the left side, it will allow
them to move forward and backward and strafe
left and right. Strong movement forward or backward will make the camera fl y in that direction.
And if the touche is on the right side of the screen, it will allow the user to move the camera XZ
rotation axis, just like in a fi rst-person shooter.

Begin this exercise by duplicating the template_chapter7-3 project directory and rename it
chapter7-3. Once again, this is just for convenience in order to give you a base framework for this
exercise.

➤

➤

➤

FIGURE 7-3: Camera fl y mode

c07.indd 136c07.indd 136 12/31/11 9:07:01 AM12/31/11 9:07:01 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Camera Fly Mode ❘ 137

The template already includes all the loading and rendering of the scene as well as the basic camera
code to look at the scene (as you implemented previously) and frustum culling.

If you build and run the program, you’ll see that everything is in place except for the camera
movement. To implement the camera movement, follow these steps:

 1. At the top of the templateApp.cpp, on the line right after the vec4 frustum initialization,
create the following global variables:

/* Since you are basically going to split the screen in two in order to
have the left and right sides as an independent analog stick, declare the
following variable to be able to remember the screen width in
landscape mode. */
fl oat screen_size = 0.0f;
/* Declare 2 two-dimensional vectors: one to remember the touche starting
location on the right side of the screen, and the other to calculate the
delta when the touche is moved. */
vec2 view_location,
 view_delta = { 0.0f, 0.0f };
/* Same as above for the view, but this time for the camera location.
In addition, create another variable for the movement delta. Note that you
declare it as a 3D vector because you will be using the Z as the force
factor to smooth the movement. */
vec3 move_location = { 0.0f, 0.0f, 0.0f },
 move_delta;

 2. Now go to the templateAppInit function and add the following line at the top of the
function code:

/* Remember the screen height (in landscape mode, the width of the
screen). */
screen_size = height;

 3. Before implementing the movement and the view in the rendering loop, jump to the
templateAppToucheBegan function and integrate the following user interaction:

 /* Analyze on which side of the screen the touche is emitted. And
depending on whether it’s on the left or the right, remember the starting
point of the touche for either the movement or the view. */
 if(y < (screen_size * 0.5f)) {
 move_location.x = x;
 move_location.y = y;
 }
 else {
 view_location.x = x;
 view_location.y = y;
 }

 4. Inside the templateAppToucheMoved, implement the following code to keep track of the
movement and the view rotation:

 /* First create a “dead zone” that occupies 10% of the screen size,
located at the center of the screen. This way, if the user is on one side
of the screen and swipes all the way to the other side, you can then stop

c07.indd 137c07.indd 137 12/31/11 9:07:01 AM12/31/11 9:07:01 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

138 ❘ CHAPTER 7 CAMERA

the movement. */
 if(y > ((screen_size * 0.5f) -
 (screen_size * 0.05f)) &&
 y < ((screen_size * 0.5f) +
 (screen_size * 0.05f))) {
 /* Stop the current movement for the view or if the camera is
on the move. */
 move_delta.z =
 view_delta.x =
 view_delta.y = 0.0f;
 /* In order to make things easier for the user, assign the current
location of the touche to be either the starting point of the view or the
movement, since you never know in which direction the user will move the
touche. */
 move_location.x = x;
 move_location.y = y;
 view_location.x = x;
 view_location.y = y;
 }
 /* If the touche start is on the left side of the screen, deal with it
as a camera movement. */
 else if(y < (screen_size * 0.5f)) {
 /* Store the current touche as a 3D vector. */
 vec3 touche = { x,
 y,
 0.0f };
 /* Calculate the delta to determine which direction the touche is
going. */
 vec3_diff(&move_delta,
 &touche,
 &move_location);
 /* Normalize the delta to have a direction vector in the range of
-1 to 1. */
 vec3_normalize(&move_delta, &move_delta);
 /* Calculate the force (basically the distance from the starting
movement location to the current touche location) and divide it by a factor
in pixels. This way, the closer to the starting point, the slower the
movement will be, and as the touch distance increases, the movement speed
will increase up to its maximum. */
 move_delta.z = CLAMP(
 vec3_dist(&move_location, &touche) / 128.0f,
 0.0f,
 1.0f);
 }
 /* Since the touche is on the right side of the screen, simply calculate
the delta for the view so you can then use it to manipulate the X and Z
rotation of the camera. */
 else {
 /* Calculate the view delta and linearly interpolate the values to
smooth things out a bit. */
 view_delta.x = view_delta.x * 0.75f +
 (x - view_location.x) * 0.25f;
 view_delta.y = view_delta.y * 0.75f +
 (y - view_location.y) * 0.25f;

 /* Remember the current location as the starting point for the next

c07.indd 138c07.indd 138 12/31/11 9:07:02 AM12/31/11 9:07:02 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Camera Fly Mode ❘ 139

movement (if any). */
 view_location.x = x;
 view_location.y = y;
 }

 5. The view movements will be stopped directly inside the rendering loop, because you
want the user to simply swipe once to rotate the camera in the desired angle. However,
for the camera movements, you don’t want the user to continuously swipe — you want
them to simply drag in one direction and, as long as the fi nger is on the screen, continue
in that direction. In order to stop the camera movements, add the following line inside the
templateAppToucheEnded function to reset the force when the touche is released:

 /* Stop the movement by setting the force to 0. */
 move_delta.z = 0.0f;

 6. You now have all the necessary data to be able to implement both the movement and the
view interaction inside the rendering loop and animate the camera in real time. Jump to the
templateAppDraw function and, on the line right after the GFX_load_identity call, add
the following code to let the user control the camera view rotation:

 /* First make sure that either the X or Y view_delta actually has a
value, in order to avoid processing movements for nothing. */
 if(view_delta.x || view_delta.y) {
 /* If the delta Y is active (!=0), affect it to the rotation Z of the
camera. */
 if(view_delta.y) rotz -= view_delta.y;
 /* If the delta X is active, affect it to the X rotation. And since
you don’t want the view to start fl ipping, clamp it in the range of 0 to
180. This way, the user will be restricted to look from straight up to
straight down (since forward is 90 degrees). */
 if(view_delta.x) {
 rotx += view_delta.x;
 rotx = CLAMP(rotx, 0.0f, 180.0f);
 }
 /* Set the deltas back to 0. */
 view_delta.x =
 view_delta.y = 0.0f;
 }

 7. Before moving on with the camera movement code, build and run your application. Once
it’s loaded, use the right side of the screen as an analog stick to test how the camera rotation
behaves with the code that you’ve just created.

 8. Now you need to handle the camera movements, since what you are trying to achieve is
something that behaves like the good old classic WASD control. To do this, implement
the forward and backward movements as well as the strafe left and right movements by
inserting the following code right after the one in step 6:

 /* Check if you have a force (!=0). */
 if(move_delta.z) {
 /* Rotate the move_delta coordinate system by the current Z rotation

c07.indd 139c07.indd 139 12/31/11 9:07:02 AM12/31/11 9:07:02 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

140 ❘ CHAPTER 7 CAMERA

of the camera. This way, forward will always be up backward will always be
down, left will always be left, and right will always be right. */
 vec3 forward;
 fl oat r = rotz * DEG_TO_RAD, /* Convert the rotz to radiant. */
 c = cosf(r), /* Get the cosine for the Z rotation. */
 s = sinf(r); /* Get the sine for the Z rotation. */
 /* Calculate the movement direction rotated on the Z axis; in other
words, the forward vector based on the movement direction (delta) using the
camera rotation space. */
 forward.x = c * move_delta.y - s * move_delta.x;
 forward.y = s * move_delta.y + c * move_delta.x;
 /* Add the vector to the current camera location and multiply it by a
factor (basically the camera speed) to regulate the movements. */
 location.x += forward.x * move_delta.z * 0.1f;
 location.y += forward.y * move_delta.z * 0.1f;
 }

 9. You have now implemented fully working, fi rst-person camera movements. Build and run
the app to get a feel of the movement control you’ve just coded.

 10. And now for the fi nale of this exercise, you will implement the fl y mode code. However, if
you just simply integrate the fl y mode code, when the user pushes forward or backward, the
Z location will be increased or decreased along with the X axis, which is probably not what
the user wants. To resolve this issue, you need to avoid dealing with the Z-axis incrementation
until the movement delta on the X axis is at its maximum value. The following code interprets
the method. You can append it right after where you left off in step 8, or more precisely, right
before the end bracket of the code you inserted for the step.

 /* Get the sine for the rotx and offset it 90 degrees to make sure it
fi ts with the world positive Y axis (the forward vector). */
 forward.z = sinf((rotx - 90.0f) * DEG_TO_RAD);
 /* If the movement delta on the X axis (either positive or negative) is
almost a fully straight movement (near -1 or 1), take in consideration the
Z elevation. */
 if(move_delta.x < -0.99f)
 location.z -= forward.z * move_delta.z * 0.1f;
 else if(move_delta.x > 0.99f)
 location.z += forward.z * move_delta.z * 0.1f;

 11. Run the code one more time and change the camera rotation on the X axis. Then give a full
straight movement on the left side of the screen to elevate the camera as you go forward.

Congratulations! You have now a fully functional camera that includes both fi rst-person and fl y mode
capabilities. Enjoy the moment fl ying around your scene, and then move on to the next section where
you will learn how to integrate a physics-based, fi rst-person camera that collides with the scene.

FIRST-PERSON CAMERA WITH COLLISION DETECTION

In this section, you will discover how to add collision detection on your camera by re-implementing
the fi rst person camera code of the previous exercise. But this time, you will add a physics bound
to the camera and, using the Bullet API, control the linear velocity of the collision shape to move
around the scene.

c07.indd 140c07.indd 140 12/31/11 9:07:02 AM12/31/11 9:07:02 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

First-Person Camera with Collision Detection ❘ 141

To get started quickly, duplicate the template_chapter7-4 folder and rename it chapter7-4. The
template already includes the same physics structure that you studied in the previous chapter, as well
as the fi rst-person camera control that you created in the previous section’s exercise.

You also have access to a .bullet fi le, which has already been linked to the project (located inside
the SDK/data/chapter7-4) and has been exported from the Blender scene used for this tutorial. So
before starting to code, study the untitled.blend fi le located in SDK/data/chapter7-4, because it
is slightly different than the one you have been using so far in this chapter.

More precisely, focus on the physics properties that have been set for each object. Basically, the
interior is using a static triangle mesh shape, and the cylinder object called “camera” uses a capsule
shape. You do not have stairs in this scene, but if you did, a capsule shape would be a lot smoother
to move around or climb stairs on compared to a cylinder that has a rough edge at its base.

The way to implement collision detection for your camera is to use the physics bound of an arbitrary
collision shape (in this case, a capsule) and then use its position (which is maintained by Bullet)
as the camera location. The collision object of the camera should be a dynamic object (no rolling
physics) in order for it to always stay straight in space.

Follow the next steps to convert your existing fi rst-person camera code into a fully functional, fi rst-
person camera that collides with the boundaries of your scene:

 1. At the top of the templateApp.cpp, on the line after the move_delta variable declaration,
add the following OBJMESH pointer variable to remember the camera collision object:

OBJMESH *camera = NULL;

 2. Inside the templateAppInit function, on the line right after the call to load_physic_
world, insert the following code to query and remember the camera mesh pointer, and then
once queried, force the physical object to be dynamic and make it invisible for rendering
(since you are strictly interested in the collision shape of the object and do not want to draw
the mesh itself onscreen):

 /* Query the camera mesh pointer. */
 camera = OBJ_get_mesh(obj, “camera”, 0);
 /* Set the rigid body to be a dynamic body. */
 camera->btrigidbody->setAngularFactor(0.0f);
 /* Make the object invisible at render time. */
 camera->visible = 0;

 3. Move to the templateAppDraw function and, on the line before the end bracket of the
if(move_delta.z), insert the following code to be able to affect the linear velocity of the
camera physical object based on the movement delta using the associated Bullet API:

 /* Assign the linear velocity of the collision object and multiply
the delta by 6.7m/s (the average distance that a human achieve while
running). */
 camera->btrigidbody->setLinearVelocity(
 btVector3(forward.x * move_delta.z * 6.7f,
 forward.y * move_delta.z * 6.7f,
 0.0f));

c07.indd 141c07.indd 141 12/31/11 9:07:03 AM12/31/11 9:07:03 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

142 ❘ CHAPTER 7 CAMERA

 /* Make sure that the rigid body is activated; otherwise, the
setLinearVelocity call above will have no effect, because the body
might be deactivated. */
 camera->btrigidbody->setActivationState(
 ACTIVE_TAG);

 4. Between the else statement brackets that are located right below the code you just
appended in step 3, insert the following line to put the camera physical object to sleep if
there is no movement. (If you don’t add this code, the inertia will start kicking in, and the
user will feel like they’re skating on ice.)

 camera->btrigidbody->setActivationState(ISLAND_SLEEPING);

 5. Right before the fi rst call to GFX_rotate, add the following line to use the camera object
location to position the eye of the viewer in space:

 GFX_translate(camera->location.x,
 camera->location.y,
 /* Give an offset on the Z axis since the location
represents the position of the object pivot point. You need to simulate a
real human eye looking at the scene, so add to the current Z value half of
the Z dimension of the object bounding box, to simulate that the eye
position is located at the top of the collision object. */
 camera->location.z +
 (camera->dimension.z * 0.5f));

 6. Inside the while(i != obj->n_objmesh), on the next line after calling GFX_push_
matrix, insert the following code to get the current transformation matrix associated with
the collision object to place your geometries (which are now controlled by Bullet) into space:

 mat4 mat;
 /* Ask Bullet to return the OpenGL matrix for the current mesh and store
it inside a 4x4 matrix. */
 objmesh->btrigidbody->getWorldTransform().getOpenGLMatrix(
 (fl oat *)&mat);
 /* Update the mesh location by copying the last row of the
matrix, to make sure the latest location will be used by the
clipping method (if any). */
 memcpy(&objmesh->location, (vec3 *)&mat.m[3], sizeof(vec3));
 /* Multiply the matrix by the current model view matrix. */
 GFX_multiply_matrix(&mat);

And that’s it! In six easy steps, you now have a
full-fl edged, fi rst-person camera with collision.
To test it, simply compile and run the program.
You should now end up with a scene like the one
shown in Figure 7-4 and be able to collide with
walls, which prevent you from going outside of
the room.

FIGURE 7-4: First-person shooter camera with

collision detection

c07.indd 142c07.indd 142 12/31/11 9:07:03 AM12/31/11 9:07:03 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3D Camera Tracking ❘ 143

3D CAMERA TRACKING

This section will teach you how to implement a static camera that is tracking an object in 3D space.
You can fi nd this type of camera implemented in some RPG and action games. Every time you move
the character inside a scene, the camera takes a static position and follows the movement of the
player. Based on the same approach, “on rail” cameras behave in a similar fashion while following a
predefi ned path.

To get started, duplicate the template_chapter7-5 project directory and rename it chapter7-5.
The template provides you with a basic structure where the scene that you have been using in the
previous section is automatically loaded.

Starting at a few meters from the ground, there is
a ball called “player.” This will be the entity that
you will control inside the scene, as demonstrated
in Figure 7-5.

Everything implemented in the template has
been previously explained. All that’s left to be
done is to implement the camera tracking and
the necessary code to move the ball inside the
scene based on the user movement direction. The
template provides you with all the basic scene
initialization as well as the physical world, so you don’t have to re-implement what you have already
touched base with. The same thing goes for the touche callbacks, because they also re-implement the
same movement mechanism that you coded earlier.

The only difference is that this time, the movement will have to be applied on the ball and not on
the camera itself. Follow these steps to learn how to use physics and a camera-tracking method to
control the ball entity in space:

 1. At the top of the templateApp.cpp, where the global variables for this program are defi ned
(on the next line right after the move_delta variable), insert the following set of variables
(which you will need throughout the program):

/* The variables that you are going to plug into the GFX_look_at function. */
vec3 eye,
 center,
 up = { 0.0f, 0.0f, 1.0f };
/* Global OBJMESH to remember the player object pointer. */
OBJMESH *player = NULL;

 2. On the line after the load_physic_world function call, insert the following code:

 /* Get the OBJMESH pointer for the player object. */
 player = OBJ_get_mesh(obj, “player”, 0);
 /* Set the friction of the rigid body to 10. With a high friction, the
ball will not spin on itself before moving to the appropriate location, but
will “stick” on the fl oor and execute the movement right away. */
 player->btrigidbody->setFriction(10.0f);

FIGURE 7-5: 3D camera tracking

c07.indd 143c07.indd 143 12/31/11 9:07:04 AM12/31/11 9:07:04 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

144 ❘ CHAPTER 7 CAMERA

 /* Copy the initial location of the ball to the eye variable and to the
center variable. This way, you have an initial location where the camera is
going to start looking when the program starts. */
 memcpy(&eye, &player->location, sizeof(vec3));
 memcpy(¢er, &player->location, sizeof(vec3));
 /* Give a little offset on the Y axis to make sure that the scene can be
covered by the camera eye position (well at least mostly). */
 eye.y -= 3.0f;

 3. Move to the templateAppDraw callback and, right after you clean up the model view matrix
(by calling GFX_load_identity), insert the following block of code to control the player
object. Note that this time, you will be using setAngularVelocity to be able to roll the
ball in the appropriate direction controlled by the user relative to the world coordinate
system.

 /* First check if you have a force. */
 if(move_delta.z) {
 /* Just like you did in the previous chapter for the capsule shape,
assign the movement delta (aka the direction vector) coming from the touch
screen to the ball collision shape. */
 player->btrigidbody->setAngularVelocity(
 /* Reverse the move_delta.x to fi t the current coordinate system. */
 btVector3(-move_delta.x * move_delta.z * 6.7f,
 move_delta.y * move_delta.z * 6.7f,
 0.0f));
 /* Activate the rigid body; otherwise, the setAngularVelocity call
will have no affect if the ball is deactivated. */
 player->btrigidbody->setActivationState(ACTIVE_TAG); }

 4. The last step is to actually set the position of the player object to be the camera target (the
center variable). However, you do not want to update it right away — the motion will
look a lot better if the transition of the center location is done smoothly. Right after the
block that you added in step 3, insert the following code to update and linearly interpolate
the current camera center position before sending it to the GFX_look_at function:

 /* Linearly interpolate the current center point of the camera with the
current location of the player object in space. */
 center.x = center.x * 0.975f + player->location.x * 0.025f;
 center.y = center.y * 0.975f + player->location.y * 0.025f;
 center.z = center.z * 0.975f + player->location.z * 0.025f;
 /* Feed the variables to the GFX_look_at function to create the view
matrix based on the current data. */
 GFX_look_at(&eye,
 ¢er,
 &up);

You did it again! In only a few steps, you have now implemented a completely different way of
handling the camera inside a scene. Feel free to build and run the app to test the code you just
created. Once the app is loaded, drag your fi nger on the touch screen to control the movement of the
ball inside the 3D world.

Please take note that at times, depending on the current camera angle, the control might look
inverted. This is because the movements are always in absolute world space coordinate. If you wish

c07.indd 144c07.indd 144 12/31/11 9:07:04 AM12/31/11 9:07:04 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Third-Person Camera with Collision ❘ 145

to compensate for this offset, simply rotate the control based on the camera Z rotation (as shown in
the next section of this chapter).

THIRD-PERSON CAMERA WITH COLLISION

As the title says, this section is about how to implement a third-person camera with collision. Once
again, you will use the ball as the main character in your scene. In this section’s tutorial, you will
learn how to implement a camera that orbits around the player and that is aware of the environment
around it. To do this, you will use a Bullet collision ray to detect if something stands between the
camera and the ball.

With the knowledge that you will gather in this section on how to use collision ray, this will
give you the opportunity to create more complex collision detection for your cameras. This will
allow you to create more complex behaviors for your own applications. So, let’s get started.

First, duplicate the project template_chapter7-6 directory and rename it chapter7-6.

The template is using the same touche code that you used in chapter7-4 (where half of the screen is
used for moving the camera, and the other half is used to control the view), and the rest of the code
is similar to chapter7-5.

In addition, for this tutorial, you will again use GFX_look_at instead of Euler angles, just to make
things easier to understand. Before getting started, make sure that you review the code (inside
templateApp.cpp).Once you’ve done that, follow these steps to implement a complete third-person
camera tracking system with collision:

 1. At the beginning of the templateApp.cpp, right after the OBJMESH *player declaration
code, insert the following global variables:

/* Variable that you are going to use to interpolate the current eye
position to the next. */
vec3 next_eye;
 /* The camera rotation on the X axis, with a default value of -165. */
fl oat rotx = -165.0f,
 /* To interpolate the camera rotation X. At initialization, give it
the same value as the initial X rotation. */
 next_rotx = rotx,
 /* Similar to the rotx variable, but for the Z axis rotation. */
 rotz = 180.0f,
 next_rotz = rotz,
 /* The camera will orbit around the player (the 3D ball).
This variable determines the default distance the eye should be from the
object (assuming there is no collision with the walls). */
 distance = -5.0f;

 2. On the line just above the templateAppDraw function callback, add the following code to
create a modifi ed version of the default btCollisionWorld::ClosestRayResultCallback
class. This new version will allow you to pass in parameter a btRigidBody pointer on top
of the two points that form the line of the collision ray. Then when the ray is executed, if the

c07.indd 145c07.indd 145 12/31/11 9:07:05 AM12/31/11 9:07:05 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

146 ❘ CHAPTER 7 CAMERA

object that the ray collides with is the same as the rigid body that you specify to the class, it
will simply ignore it, and the ray will continue trying to collide with something else.

class ClosestNotMeRayResultCallback:public
btCollisionWorld::ClosestRayResultCallback {
 public:
 ClosestNotMeRayResultCallback(
 btRigidBody *rb,
 const btVector3 &p1,
 const btVector3 &p2) :
 btCollisionWorld::ClosestRayResultCallback(p1, p2) {
 m_btRigidBody = rb; }

 virtual btScalar addSingleResult(
 btCollisionWorld::
 LocalRayResult &localray,
 bool normalinworldspace) {
 if(localray.m_collisionObject == m_btRigidBody)
 { return 1.0f; }
 return ClosestRayResultCallback::addSingleResult(
 localray, normalinworldspace);
 }

 protected:
 btRigidBody *m_btRigidBody;
};

In this implementation, you will be casting a ray from the player object to the eye position
to be able to determine if a wall (or something else) is blocking the way. Of course, the fi rst
object that the ray is going to collide with is the player. For this specifi c case, you have no
choice but to customize the default Bullet collision ray callback and re-implement your own
version of it (the preceding code) to be able to omit a certain rigid body as explained in this
step. Make sure that you fully understand this technique, because it can be used in many
other ways and in different variations.

 3. Inside the templateAppDraw function code, right after the GFX_load_identity, insert
the following code block to handle the rotation of the X and Z axis based on the user
movements:

 /* First check if the direction vector on the X or Y axis was triggered
from the user touche on the right side of the screen. */
 if(view_delta.x || view_delta.y) {
 /* If the Y is active (!=0), then add the value to the next Z
rotation. Since you are going to interpolate the rotation, you have to
assign the value to the next camera Z rotation. */
 if(view_delta.y) next_rotz -= view_delta.y;
 /* Same as above, but this time for the X rotation axis. In addition,
clamp the value in the range of -180 to -90 degrees to allow the camera to
only look from straight up to straight down. */
 if(view_delta.x) {
 next_rotx -= view_delta.x;
 next_rotx = CLAMP(next_rotx, -180.0f, -90.0f);
 }

c07.indd 146c07.indd 146 12/31/11 9:07:05 AM12/31/11 9:07:05 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Third-Person Camera with Collision ❘ 147

 /* Reset the view deltas to avoid triggering another pass inside this
block on the next rendering pass. */
 view_delta.x =
 view_delta.y = 0.0f;
 }

 4. Now, add the following code right where you left off in step 3 to be able to handle the
movement coming from the left side of the screen. This will also involve rotating the
coordinate system to fi t the current Z rotation of the camera, as you did previously.

 /* If you got a force coming from the left side of the screen. */
 if(move_delta.z) {
 /* Temp. variable to calculate the direction (aka forward) vector. */
 vec3 direction;
 /* Rotate the coordinate system to fi t the current Z rotation
of the camera. */
 fl oat r = rotz * DEG_TO_RAD,
 c = cosf(r),
 s = sinf(r);
 direction.x = c * move_delta.y - s * move_delta.x;
 direction.y = s * move_delta.y + c * move_delta.x;
 /* Assign the direction vector to the angular velocity of the ball. */
 player->btrigidbody->setAngularVelocity(
 btVector3(direction.y * (move_delta.z * 6.7f),
 -direction.x * (move_delta.z * 6.7f),
 0.0f));
 /* Make sure the state of the rigid body is active in order to
trigger the rotation. */
 player->btrigidbody->setActivationState(ACTIVE_TAG);
 }

 5. Integrate the following code where you left off in step 4 to calculate the next eye position
and make the camera orbit around the ball based on the X (rotx) and Z (rotz) rotations and
the distance parameter specifi ed at the top of the fi le:

 next_eye.x = player->location.x +
 distance *
 cosf(rotx * DEG_TO_RAD) *
 sinf(rotz * DEG_TO_RAD);

 next_eye.y = player->location.y -
 distance *
 cosf(rotx * DEG_TO_RAD) *
 cosf(rotz * DEG_TO_RAD);

 next_eye.z = player->location.z +
 distance *
 sinf(rotx * DEG_TO_RAD);

 6. At this point, you have calculated the next eye position where the camera is going to
interpolate to. But before integrating the interpolation code, you have to fi rst determine if

c07.indd 147c07.indd 147 12/31/11 9:07:05 AM12/31/11 9:07:05 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

148 ❘ CHAPTER 7 CAMERA

the camera can really go there. It is time to use a collision ray to ensure that the next_eye
position is not ending up behind a wall or one of the pillars:

 /* Declare the starting point and end point of the collision ray.
Basically what you are trying to achieve is that the ray starts from the
ball and aims straight at the next_eye position. If anything collides with
the ray (with the exception of the ball), you need to re-adjust the
next_eye position to be located where there is a hit. This will prevent the
camera from seeing through the walls and insure that the ball is focused at
all times. */

 btVector3 p1(player->location.x,
 player->location.y,
 player->location.z),

 p2(next_eye.x,
 next_eye.y,
 next_eye.z);
 /* Initialize the collision ray, passing in as parameters the ball rigid
body pointer and the start and end points of the ray. */
 ClosestNotMeRayResultCallback back_ray(player->btrigidbody,
 p1,
 p2);
 /* Launch the ray in 3D space. */
 dynamicsworld->rayTest(p1,
 p2,
 back_ray);
 /* If the collision ray got a hit. */
 if(back_ray.hasHit()) {
 /* Normalize the hit point normal. */
 back_ray.m_hitNormalWorld.normalize();
 /* Adjust the next_eye position to be located where the collision ray
hits inside the world. In addition, to make sure that the camera stays
inside the scene and does not simply “stick” on the wall, add a slight
offset based on the hit point normal. This will ensure that the camera
next_position will always be located in front of where the collision ray
hits. */
 next_eye.x = back_ray.m_hitPointWorld.x() +
 (back_ray.m_hitNormalWorld.x() * 0.1f);
 next_eye.y = back_ray.m_hitPointWorld.y() +
 (back_ray.m_hitNormalWorld.y()* 0.1f);
 next_eye.z = back_ray.m_hitPointWorld.z() +
 (back_ray.m_hitNormalWorld.z()* 0.1f);
 }

 7. Now add the following code to interpolate the rotation and the position of the camera:

 /* Linearly interpolate the rotation between the current and the next. */
 rotx = rotx * 0.9f + next_rotx * 0.1f;
 rotz = rotz * 0.9f + next_rotz * 0.1f;

 /* Same as for the rotation, but this time for the current eye position
and the next. */

c07.indd 148c07.indd 148 12/31/11 9:07:06 AM12/31/11 9:07:06 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary ❘ 149

 eye.x = eye.x * 0.95f + next_eye.x * 0.05f;
 eye.y = eye.y * 0.95f + next_eye.y * 0.05f;
 eye.z = eye.z * 0.95f + next_eye.z * 0.05f;

 /* Give an offset to the player Z location to make sure that the camera
is always looking at the top of the ball and not at its center. This way,
even in tight corners, the user will always be able to see in front of the
ball. */
 player->location.z += player->dimension.z * 0.5f;

 /* Feed the current eye position and player location to the GFX_look_at
function to be able to generate the view matrix. */
 GFX_look_at(&eye,
 &player->location,
 &up);

Build and run the program. You should now have
something similar to Figure 7-6 running on your
screen.

To interact with the ball, simply use the left side
of the screen as you would normally do with an
analog stick to make the ball roll in the direction
the camera is looking at. And to adjust the
rotation of the camera around the sphere, simply
swipe your fi nger in any direction on the right
side of the screen.

SUMMARY

This chapter covered fi ve different types of cameras. You now have the ability to integrate serious
fi rst- and third-person camera interactions inside your apps using the touch screen.

You can now orbit, rotate direction vectors, and cast 3D collision rays inside any type of scene.
In addition, you learned about frustum clipping, and can now determine the visibility of your
objects inside the camera view. This knowledge will also allow you to create more complex and/or
customized clipping systems that fi t your particular needs and requirements.

Once again, a lot of material was covered in this chapter, so make sure that you review and
understand all of the code implemented in this chapter and its exercises. You will reuse most of this
as you proceed through the rest of this book.

In the next chapter, you’ll learn about pathfi nding.

FIGURE 7-6: Third-person 3D camera with collision

c07.indd 149c07.indd 149 12/31/11 9:07:06 AM12/31/11 9:07:06 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c07.indd 150c07.indd 150 12/31/11 9:07:06 AM12/31/11 9:07:06 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Pathfi nding

WHAT’S IN THIS CHAPTER?

Introducing the Recast and Detour libraries

Building a navigation mesh from an arbitrary geometry using Recast

Creating a pathfi nding query and sending it over to Detour

Implementing physics picking (from 2D to 3D)

Implementing a CPU-based character auto-drive system

Implementing basic artifi cial intelligence using pathfi nding

Using a True Type Font fi le to print dynamic text on top of

your scenes

From fi rst-person shooter to point-and-click, pathfi nding plays an important role in navigating
levels and for artifi cial intelligence. Pathfi nding allows your characters to move to a specifi c
location by themselves, while avoiding obstacles. You can also use it to enable an NPC
(non-player character) to fi nd the player inside a scene, and a lot more.

RECAST AND DETOUR

In this chapter, you will be studying the Recast and Detour libraries. As a quick introduction,
Recast is a state-of-the-art library that allows you to construct a navigation mesh from
an arbitrary geometry, or a set of different geometries. And the Detour library supports
dynamic navigation tiles, crow simulation, ray casting, and dynamic obstacles that can be
generated at run time, as well as many other goodies, based on the navigation mesh created
by Recast.

➤

➤

➤

➤

➤

➤

➤

8

c08.indd 151c08.indd 151 12/31/11 9:07:55 AM12/31/11 9:07:55 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

152 ❘ CHAPTER 8 PATHFINDING

More information on Recast and Detour can be found at http://code.google.com/p/
recastnavigation/, where you can download the latest source code, SDK, and demo app
(as shown in Figure 8-1) from SVN.

FIGURE 8-1: Recast and Detour SDK demo app

A navigation mesh is very similar to a collision map. It’s a low-resolution model of the boundaries
where the player or NPC can and cannot go. Inside your games, you can either choose to create two
models (one for the collision map and one for the navigation mesh) or simply reuse the same model
if appropriate.

Once you have a navigation mesh created, you can use the Detour library, which offers pathfi nding
and spatial reasoning functions. The library will then allow you to pass a start and end point, and it
will return all the way points to get there, or as close as possible to your destination.

Time to start coding and explore how to implement all of this within your apps!

NAVIGATION

Duplicate the template_chapter8
project from the root of the SDK
and rename it chapter8-1. Take a
look at the source code inside the
templateApp.cpp and launch the
program to visualize what the result
looks like. Your screen should display
something similar to Figure 8-2.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 8-2: The maze

c08.indd 152c08.indd 152 12/31/11 9:07:57 AM12/31/11 9:07:57 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, you have a maze with physics loaded. If you swipe your fi nger up, down, left, and
right, you can control how the camera orbits around the maze. In addition, please take note that, as
usual, all the assets for this chapter can be found in the SDK/data/ directory.

CREATING THE NAVIGATION MESH

The goal of this fi rst implementation is to build the navigation mesh. For this demo, you will be
using the triangle mesh collision shape that forms the maze as the navigation mesh.

To create the navigation mesh, follow these steps:

 1. Declare the following global variables at the top of the templateApp.cpp on the next line
after the #include:

/* The player object (the blue arrow). */
OBJMESH *player = NULL;
/* The maze itself. */
OBJMESH *maze = NULL;
/* This is an easy-to-use structure that wraps up the Recast and Detour
low-level API into one object that can create a navigation mesh and that
you can use to query way points. The code is located inside the
navigation.cpp/.h fi le, which is inside the /common directory of the SDK.
The implementation is a bit too big to cover in detail in this chapter, so
the focus will just be on the code implementation and the usage of this
structure. */
NAVIGATION *navigation = NULL;

 2. Inside the templateAppInit function callback, right after the start bracket of the fi rst while
loop, insert the following code to adjust parameters for the agent (the player that will be
navigating the maze), and then build the navigation mesh for the maze:

/* If the current mesh is the maze. */
if(strstr(obj->objmesh[i].name, “maze”)) {
 /* Initialize the NAVIGATION structure. */
 navigation = NAVIGATION_init((char *)”maze”);

 /* Set up the height of the player, which is basically the same
as the Z dimension of the player. */
 navigation->navigationconfi guration.agent_height = 2.0f;

 /* Set up the radius of the player (the X dimension of the player
divided by 2). The confi guration parameters are really important, because
the navigation mesh will be built according to these settings. More tweaks
can be made by accessing the navigation->navigationconfi guration parameters
to fi t your needs. */
 navigation->navigationconfi guration.agent_radius = 0.4f;

 /* Build the navigation mesh. The function will return 1 if successful
or 0 if not. If the generation fails, it might be because the scene is too
small for the agent, or if there are no triangles that can be used. Always
make sure that you call this function before building or optimizing the

Creating the Navigation Mesh ❘ 153

c08.indd 153c08.indd 153 12/31/11 9:07:58 AM12/31/11 9:07:58 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

154 ❘ CHAPTER 8 PATHFINDING

mesh. */
 if(NAVIGATION_build(navigation, obj, i))
 { console_print(“Navigation generated.\n”); }
 else
 { console_print(“Unable to create the navigation mesh.”); }
}

 3. Still inside the templateAppInit function, right after the load_physic_world function
call, insert the following code to be able to get the OBJMESH pointer for the maze and the
player in order to set the player rigid body to be a dynamic object (no rolling physics):

 /* Get the player mesh pointer. */
 player = OBJ_get_mesh(obj, “player”, 0);
 /* Set the player to be a dynamic rigid body. */
 player->btrigidbody->setAngularFactor(0.0f);
 /* Get the maze object. */
 maze = OBJ_get_mesh(obj, “maze”, 0);
 /* Adjust the camera distance so it can frame the maze. */
 distance = maze->radius * 2.0f;

 4. Locate the GFX_look_at call inside the templateAppDraw function callback, and on the
preceding line, add the following code to synchronize the camera eye to always look at
the maze pivot point:

 center.x = maze->location.x;
 center.y = maze->location.y;
 center.z = maze->location.z;

 5. Inside the templateAppExit, right after the function start bracket, add the following line
to free the navigation object from the memory when the program quits:

 NAVIGATION_free(navigation);

 6. Optionally (for debugging purposes), you can add the following command inside the
templateAppDraw function on the line above the dynamicsworld->stepSimulation call.
This will draw, using a semi-transparent blue, the resulting triangles of the navigation
mesh generation:

 NAVIGATION_draw(navigation);

Now build and run the application and monitor the console (or LogCat) to make sure that the
navigation mesh has been generated properly.

To visualize what you have just created, you can load the maze.obj inside the RecastDemo app
(available within the Recast/Detour SDK) and build the navigation mesh using the same agent
parameters that you set in step 2. The result will look similar to Figure 8-3.

c08.indd 154c08.indd 154 12/31/11 9:07:59 AM12/31/11 9:07:59 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

All areas delimited by the black contour on the ground are areas that the agent can walk on.
You now have the collision mesh and the navigation mesh ready, so you can make the player walk
on the surface. All you have to do is to query Detour about where the player is and where it should
go, but in order to do this, you are going to need to be able to pick a position on the maze in 3D.

3D PHYSICS PICKING

In this section, you will learn how to pick a 3D point in space from your 2D screen. To do this, you
will be implementing a collision ray, as you did in the previous chapter; however, this time you will
be casting the ray from the current camera eye position to an arbitrary point on the far plane of the
frustum.

To keep things clear, duplicate the chapter8-1 project and rename it chapter8-2. Then load the
project inside your IDE and follow these steps:

 1. At the top of templateApp.cpp on the next line after the #include, declare the following
new global variable to be able to analyze when the user double-taps on the screen, which
will give you the necessary trigger in order to cast the collision ray:

unsigned char double_tap = 0;

FIGURE 8-3: The maze navigation mesh

3D Physics Picking ❘ 155

c08.indd 155c08.indd 155 12/31/11 9:07:59 AM12/31/11 9:07:59 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

156 ❘ CHAPTER 8 PATHFINDING

 2. Also declare the following two variables that you will use for the pathfi nding query and its
resulting points (if any):

/* The navigation path query. This structure will be used to construct the
query to be processed by Detour. */
NAVIGATIONPATH navigationpath_player;
/* The result of the query. If this structure is successful, it will be
fi lled by the way points (along with other data) that form the path. */
NAVIGATIONPATHDATA navigationpathdata_player;

 3. Now add the following line right after where you left off in step 2 to declare a 2 by 2 matrix
of integers to store the current viewport matrix, as the picking code that you are about to
implement needs to be aware of the screen dimension.

int viewport_matrix[4];

 4. It’s time to store the viewport matrix in the variable you created in the previous step with
the current viewport position and dimension. On the line right after the glViewport call
inside the templateAppInit function callback, insert the following code to query the
viewport matrix directly from GLES:

 /* Query OpenGLES to return the current viewport matrix (which is
basically set with the glViewport command). */
 glGetIntegerv(GL_VIEWPORT, viewport_matrix);

 5. At the top of the templateAppToucheBegan, right after the function start bracket, add the
following code to handle the double-tap trigger:

 /* Check if the screen received a double-tap. */
 if(tap_count == 2) double_tap = 1;

 6. Now back to the render function. On the line after the GFX_look_at function call, insert
the following code to effectuate 3D picking on the maze collision object. (This is a large
chunk of code, so pay close attention to the code comments.)

if(double_tap) {
 /* Variable to hold the 3D location on the far plane of the frustum. */
 vec3 location;
 /* This function converts a 2D point from the screen coordinates
to a 3D point in space. The return value is 1 or 0, depending on
whether or not the query is successful. It’s a GFX helper, but built
basically the same way as the standard gluUnproject
(http://www.opengl.org/sdk/docs/man/xhtml/gluUnProject.xml) function. */
 if(GFX_unproject(
 /* The X coordinate on screen. */
 view_location.x,
 /* The origin of the OpenGLES color buffer is down left, but its
location for iOS and Android is up left. To handle this situation, simply
use the viewport matrix height data (viewport_matrix[3]) to readjust the
Y location of the picking point onscreen. */
 viewport_matrix[3] - view_location.y,
 /* This parameter represents the depth that you want to query, with

c08.indd 156c08.indd 156 12/31/11 9:07:59 AM12/31/11 9:07:59 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1 representing the far clipping plane and 0 representing the near clipping
plane. In this case, you are only interested in the far clipping plane
value, which explains the value 1. */
 1.0f,
 /* The current model view matrix of the camera. */
 GFX_get_modelview_matrix(),
 /* The current projection matrix of the camera. */
 GFX_get_projection_matrix(),
 /* The current viewport matrix. */
 viewport_matrix,
 /* If the query is successful, the result will be stored in
location.xyz, which will represent the point on the far plane. */
 &location.x,
 &location.y,
 &location.z)) {
 /* Now that you have the XYZ location on the far plane, you can
create the collision ray. Begin by creating the starting point, which is
basically the current camera eye position. */
 btVector3 ray_from(eye.x,
 eye.y,
 eye.z),
 /* Translate the resulting location of GFX_unproject based
on the current eye location to make sure that the coordinate system will
fi t with what the player currently sees onscreen. */
 ray_to(location.x + eye.x,
 location.y + eye.y,
 location.z + eye.z);
 /* Create the collision ray. */
 btCollisionWorld::ClosestRayResultCallback
 collision_ray(ray_from,
 ray_to);
 /* Launch the ray in space. */
 dynamicsworld->rayTest(ray_from,
 ray_to,
 collision_ray);
 /* Check if the collision ray gets a hit, and check if the collision
object involved is the maze btRigidBody. */
 if(collision_ray.hasHit() &&
 collision_ray.m_collisionObject ==
 maze->btrigidbody) {
 /* Normalize the world normal. */
 collision_ray.m_hitNormalWorld.normalize();
 /* Check if the normal Z is pointing upward to make sure the hit
is on the fl oor of the maze. */
 if(collision_ray.m_hitNormalWorld.z() == 1.0f) {
 /* Since you got a valid hit, it is time to create the
pathfi nding query to send to Detour. First, assign the current player
location as the starting point of the query. */
 navigationpath_player.start_location.x =
 player->location.x;
 navigationpath_player.start_location.y =
 player->location.y;
 navigationpath_player.start_location.z =
 player->location.z;

3D Physics Picking ❘ 157

c08.indd 157c08.indd 157 12/31/11 9:08:00 AM12/31/11 9:08:00 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

158 ❘ CHAPTER 8 PATHFINDING

 /* Then simply use the collision ray hit position XYZ as the
end point of the path query. */
 navigationpath_player.end_location.x =
 collision_ray.m_hitPointWorld.x();
 navigationpath_player.end_location.y =
 collision_ray.m_hitPointWorld.y();
 navigationpath_player.end_location.z =
 collision_ray.m_hitPointWorld.z();
 /* The query is ready to be sent to Detour, so send it over.
If Detour was able to fi nd a path, the function will return 1 and will
store the way points information inside the navigationpathdata_player
variable; otherwise, the function will return 0. */
 if(NAVIGATION_get_path(
 navigation,
 &navigationpath_player,
 &navigationpathdata_player)) {
 /* Simple counter to loop through the way points. */
 unsigned int i = 0;
 /* Loop while you’ve got some way points. Please note that
by default, the function will assign the number of path_point_count to be
the way points returned by Detour. However, the function implementation
added another point which is the exact same end location that you specifi ed
in your query. The reason is that, most of the time, the ending point is
not exactly on the navigation mesh, so the library will return the closest
point. Depending on what you want to achieve, you may or may not want to
use this extra way point. But for this tutorial, you are going to take it
into consideration. */
 while(i !=
 navigationpathdata_player.path_point_count + 1) {
 /* Print the way points’ XYZ coordinates on the console. */
 console_print(
 “%d: %f %f %f\n”,
 i,
 navigationpathdata_player.path_point_array[i].x,
 navigationpathdata_player.path_point_array[i].y,
 navigationpathdata_player.path_point_array[i].z);
 /* Next way point please... */
 ++i;
 }
 console_print(“\n”);
 }
 }
 }
 }
 /* Disable the double-tap fl ag. */
 double_tap = 0;
}

 7. The fi nal step before testing your app is to increase the value of the far plane. Since
GFX_unproject requires you to pass a ratio from 0 to 1 for the far plane (the winz
parameter from the function defi nition), the higher the clip_end value that is passed to the
GFX_set_perspective function, the more precise the picking will be. For this step, all you
have to do is simply fi nd the GFX_set_perspective call inside the templateAppInit, and
modify the clip end parameter from 100.0f to 1000.0f.

c08.indd 158c08.indd 158 12/31/11 9:08:00 AM12/31/11 9:08:00 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now build and run the app. Once the app is loaded onto your device or simulator, double-tap
anywhere on the walkable area of the maze and monitor the console.

PLAYER’S AUTO DRIVE

What you have been doing so far is all great, but it doesn’t really have any visual impact. In this
section, you will be using the Bullet physics API to implement the necessary code to be able to make
the player follow the way points automatically (player’s auto drive).

Start by duplicating the chapter8-2 project directory and rename it chapter8-3. Then follow these steps:

 1. At the top of the templateApp.cpp source fi le, declare the following variable to be able to
track the way point that the player is moving towards (if any):

int player_next_point = -1;

 2. On the line before the templateAppDraw function declaration, insert the following function
code to be able to move an arbitrary entity in space based on the current data held in a
NAVIGATIONPATHDATA structure:

void move_entity(OBJMESH *objmesh,
 NAVIGATIONPATHDATA *navigationpathdata,
 int *next_point,
 fl oat speed) {
 /* Set the Z location of the mesh to be 0. (You are only interested in
the X and Y position to compute the forward direction vector.) */
 objmesh->location.z =
 navigationpathdata->path_point_array[*next_point].z = 0.0f;
 /* Calculate the distance between the mesh location and the way point. */
 fl oat distance =
 vec3_dist(&objmesh->location,
 &navigationpathdata->path_point_array[*next_point]);
 /* If the distance is less than 10cm, it means that the mesh is close
enough to its destination and the next index should be incremented to the
next way point. */
 if(distance < 0.1f) {
 ++*next_point;
 /* If the next_point is equal to the path point pointer +1
(the end location), it means that the mesh has reached its
destination. Set the next_point back to -1 to stop the movement. */
 if(*next_point ==
 (navigationpathdata->path_point_count + 1)) {
 *next_point = -1;
 }
 }
 /* If the next point is not -1, it means that the mesh is on the move. */
 if(*next_point != -1) {
 /* Variable to calculate the direction vector from the mesh to the
way point. */
 vec3 direction;
 /* Calculate the forward direction vector. */
 vec3_diff(&direction,

Player’s Auto Drive ❘ 159

c08.indd 159c08.indd 159 12/31/11 9:08:00 AM12/31/11 9:08:00 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

160 ❘ CHAPTER 8 PATHFINDING

 &navigationpathdata->path_point_array[*next_point],
 &objmesh->location);
 /* Normalize it. */
 vec3_normalize(&direction,
 &direction);
 /* Assign the direction vector to the linear velocity of the rigid
body pointer attached to the mesh multiplied by the speed passed in
parameter to this function. */
 objmesh->btrigidbody->setLinearVelocity(
 btVector3(direction.x * speed,
 direction.y * speed,
 0.0f));
 /* Activate the rigid body so the linear velocity will be affected. */
 objmesh->btrigidbody->setActivationState(ACTIVE_TAG);
 }
 /* The next_point value is -1, which means that the mesh should stop
moving. To do this, simply specify that the rigid body wants deactivation,
and to keep things clean, reset the number of way points. */
 else {
 objmesh->btrigidbody->setActivationState(WANTS_DEACTIVATION);
 navigationpathdata->path_point_count = 0;
 }
}

 3. Right after the start bracket of the if(NAVIGATION_get_path clause, add the following
line to specify that when a valid path is found, the player should move to the fi rst way
point (since point 0 is basically its current location):

player_next_point = 1;

 4. On the line before the PROGRAM_draw call, add the following code block to call the
move_entity function to make the player follow the way points (if any):

 if(navigationpathdata_player.path_point_count) {
 move_entity(
 /* The player OBJMESH pointer. */
 player,
 /* The player navigation path data structure. */
 &navigationpathdata_player,
 /* The way point the player is moving towards. */
 &player_next_point,
 /* The speed to use as factor to the linear velocity of the
btRigidBody. */
 3.0f);
 }

Now build and run the program. Once the
program is loaded, tap anywhere on the
screen over the “walkable” area of the maze
to specify a destination where you want the
player (the blue arrow) to move to. As soon as
a valid path is found, the player starts moving
towards it until the end location is reached, as
demonstrated in Figure 8-4. FIGURE 8-4: The player is on the move, following

the way points.

c08.indd 160c08.indd 160 12/31/11 9:08:01 AM12/31/11 9:08:01 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

VISUALIZING THE WAY POINTS

At the moment, the navigation is not very complex, and everything is pretty straightforward.
However, as soon as you start implementing more entities and want to add artifi cial intelligence to
them, it becomes very hard to see where the entities are going and on which path they are moving
along. In addition, if something goes wrong with your code, you will need to be able to visualize
what is happening for debugging purposes.

To visualize what’s going on, what I personally like to do is draw points and lines to show the
current path that the entity is following, and print them onscreen using a texture-based bitmap font.

In this section, I will cover the drawing of the lines and points, and in the next section, I’ll describe
how to use a True Type Font (.ttf) fi le that is loaded at run time. However, printing debug
information onscreen will be left to you as an extra exercise for this chapter.

In this exercise, you’ll implement the debug drawing of the way points. To begin, duplicate the
chapter8-3 project directory and rename it chapter8-4. Then follow these steps:

 1. Declare the following new shader program variable at the top of the fi le:

PROGRAM *path_point = NULL;

 2. Link to your project the point_frag.glsl and point_vert.glsl fi les located inside the
SDK/data/chapter8-4 directory. Drawing points and lines is basically the same as drawing
any other type of primitive. The only exception is that you will have to specify the size of
the point inside the vertex shader like this:

gl_PointSize = 5.0;

 3. Now back to templateApp.cpp. On the line before the move_entity function declaration,
add the following code to create a new function to handle drawing the way points for a
specifi c NAVIGATIONPATHDATA pointer:

void draw_navigation_points(NAVIGATIONPATHDATA *navigationpathdata,
 vec3 *color) {
 /* Adjust the Z location of all points to make it easier to see them on
the fl oor of the maze. */
 unsigned int i = 0;
 while(i != navigationpathdata->path_point_count + 1) {
 navigationpathdata->path_point_array[i].z = 1.0f;
 ++i;
 }
 /* Reset the VAO and VBO indexes since you are about to draw using
glDrawArrays. The data is always dynamic, so there’s no need to create a
VBO and VAO for this. */
 glBindVertexArrayOES(0);
 glBindBuffer(GL_ARRAY_BUFFER, 0);
 /* Enable alpha blending just to get fancy. */
 glEnable(GL_BLEND);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);
 /* If the path_point shader program does not exist, simply create it
when it’s the fi rst time the execution pointer reaches this location. */

Visualizing the Way Points ❘ 161

c08.indd 161c08.indd 161 12/31/11 9:08:01 AM12/31/11 9:08:01 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

162 ❘ CHAPTER 8 PATHFINDING

 if(!path_point) {
 path_point = PROGRAM_create(
 (char *)”path_point”,
 (char *)”point_vert.glsl”,
 (char *)”point_frag.glsl”,
 1,
 0,
 program_bind_attrib_location,
 NULL);
 }
 /* Set the shader program for drawing. */
 PROGRAM_draw(path_point);
 /* Send the current model view multiplied by the projection matrix to
the shader. */
 glUniformMatrix4fv(
 PROGRAM_get_uniform_location(
 path_point,
 (char *)”MODELVIEWPROJECTIONMATRIX”),
 1,
 GL_FALSE,
 (fl oat *)GFX_get_modelview_projection_matrix());
 /* Send the RGB colors that were sent to the function to the shader. */
 glUniform3fv(
 PROGRAM_get_uniform_location(
 path_point,
 (char *)”COLOR”),
 1,
 (fl oat *)color);
 /* Make sure that the fi rst vertex attribute is ON, because you are
going to use it to pass the way points data. */
 glEnableVertexAttribArray(0);

 glVertexAttribPointer(0,
 3,
 GL_FLOAT,
 GL_FALSE,
 0,
 navigationpathdata->path_point_array);
 /* Draw each point individually. */
 glDrawArrays(GL_POINTS,
 0,
 navigationpathdata->path_point_count + 1);
 /* Draw a line that connects the points. */
 glDrawArrays(GL_LINE_STRIP,
 0,
 navigationpathdata->path_point_count + 1);
 /* Disable blending. */
 glDisable(GL_BLEND);
}

 4. Inside the templateAppDraw function, just before you call move_entity, add the
following code to draw the path while the player is moving (in other words, when the
path_point_count is not 0):

 vec3 color = { 0.0f, 0.0f, 1.0f };
 draw_navigation_points(&navigationpathdata_player, &color);

c08.indd 162c08.indd 162 12/31/11 9:08:01 AM12/31/11 9:08:01 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 5. Add the following lines inside the templateAppExit function to clean up the
path_point shader:

 if(path_point) {
 SHADER_free(path_point->vertex_shader);
 SHADER_free(path_point->fragment_shader);
 PROGRAM_free(path_point);
 path_point = NULL;
 }

 6. Now compile and execute the
program. Once the program is
loaded, double-tap anywhere on
the screen to trigger the computation
of a navigation path.

You can now follow and visualize in real time
the path of the player and the way points that it’s
following, just like in Figure 8-5.

CATCH ME IF YOU CAN!

In this section, you’ll apply the navigation and pathfi nding knowledge that you’ve gathered so far to
implement a simple, yet quite addictive mini game. The goal of the game is to escape an NPC (a red
arrow) that is running faster than the player (the
blue arrow) inside the maze. The player needs to
fi nd the fastest way to escape and double-tap on
the screen to set a new course.

The NPC will be driven automatically along
a navigation path that will be regenerated at a
regular pace at run time, always aiming at the
player’s current location.

If the NPC catches the player, the game is over
(see Figure 8-6). To restart the game, the player
just needs to double-tap the screen.

In addition, while implementing the game, you
will learn how to load a True Type Font fi le (.ttf) using the FONT structure that is included in the
SDK. This structure will allow you to generate at run time a smooth bitmap character texture that
can then be used by the structure to print dynamic text onscreen.

Start by duplicating the template_chapter8-5 project from the SDK. This template is basically
the same as the chapter8-4 project fi le that you worked with in the last section, except the
foo.ttf font fi le from the SDK/data directory has been linked to it, and the assets have been
updated with the ones located inside the SDK/data/chapter8-5 directory. Now rename the
duplicated folder chapter8-5, and then load the project into your IDE.

FIGURE 8-5: Way points visualization

FIGURE 8-6: Catch Me If You Can mini game

Catch Me If You Can! ❘ 163

c08.indd 163c08.indd 163 12/31/11 9:08:02 AM12/31/11 9:08:02 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

164 ❘ CHAPTER 8 PATHFINDING

Have an initial run at the program. As you can see, there is now another arrow located on the red
square. This arrow will be the enemy that will be chasing the player inside the maze.

Now follow these steps to start implementing the game:

 1. Before starting with the main core code, you need to declare the following variables for
this exercise:

/* The font structure to load and use the TTF fi le inside your app. */
FONT *font = NULL;
/* Pointer to the OBJMESH structure for the “enemy” object. */
OBJMESH *enemy = NULL;
/* The navigation path query for the enemy. */
NAVIGATIONPATH navigationpath_enemy;
/* The navigation path data for the enemy, where the way points are going
to be stored after a successful navigation query to Detour. */
NAVIGATIONPATHDATA navigationpathdata_enemy;
/* Variable to handle the next navigation point of the enemy. */
int enemy_next_point = -1;
/* Flag to handle the game_over state. */
unsigned char game_over = 0;

 2. On the line before the templateAppInit function callback declaration, insert the following
near collision callback function:

void near_callback(btBroadphasePair &btbroadphasepair,
 btCollisionDispatcher &btdispatcher,
 const btDispatcherInfo &btdispatcherinfo) {
 /* Check if the near callback collision object involves the player and
the enemy. */
 if((player->btrigidbody ==
 btbroadphasepair.m_pProxy0->m_clientObject ||
 player->btrigidbody ==
 btbroadphasepair.m_pProxy1->m_clientObject)
 &&
 (enemy->btrigidbody ==
 btbroadphasepair.m_pProxy0->m_clientObject ||
 enemy->btrigidbody ==
 btbroadphasepair.m_pProxy1->m_clientObject)) {
 /* If the previous is true, simply toggle the game over fl ag ON. */
 game_over = 1;
 }
 btdispatcher.defaultNearCallback(btbroadphasepair,
 btdispatcher,
 btdispatcherinfo);
}

 3. On the line before the templateAppInit function callback declaration, create the
following new function:

/* Function to load/reload the game. */
void load_game(void)
{

}

c08.indd 164c08.indd 164 12/31/11 9:08:02 AM12/31/11 9:08:02 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 4. Select the code inside the templateAppInit function, starting from obj = OBJ_load all
the way down before the end bracket of the function. Then cut it into your clipboard and
paste it right after the start bracket of the load_game function that you just created.

 5. It’s time to do some tweaking inside the load_game function. On the line right after you call
load_physic_world, insert the following code block to set the near callback, retrieve the
enemy object pointer, set it as a dynamic object, and reset the paths and next point index of
both the player and the enemy. With this code, the function can be called over and over, and
it will always reset all of the game states.

 /* Set the near callback. */
 dispatcher->setNearCallback(near_callback);
 /* Retrieve the enemy OBJMESH pointer. */
 enemy = OBJ_get_mesh(obj, “enemy”, 0);
 /* Set the rigid body to not respond to rolling physics. */
 enemy->btrigidbody->setAngularFactor(0.0f);
 /* Set both the player and enemy path_point_count to 0. */
 navigationpathdata_player.path_point_count =
 navigationpathdata_enemy.path_point_count = 0;
 /* Reset the next point index back to -1. */
 player_next_point =
 enemy_next_point = -1;

 6. To make sure the game starts right away, add the following line before the end bracket of
the templateAppInit function:

load_game();

You now have the base structure of the game. In the following sections, you will adjust, tweak, and
add code to this current structure to turn it into a playable game.

KNOW YOUR ENEMY

It’s time to integrate some bits of intelligence inside the game. This section will teach you how to
integrate the necessary code to have the NPC chase the player inside the maze. To keep things simple,
you’ll just generate a new path where the end location is the current player’s location, so the NPC can
start chasing it.

The fi rst thing you have to do is trigger a new navigation path at a regular interval. Then, you use
the same mechanism that you learned in previous sections to control the player to follow the way
points, and use the structures associated with the enemy to execute the same routine to follow the
way points to chase the player. The following steps will show you how to implement these actions:

 1. Move to the templateAppDraw function, and on the line just before you call the PROGRAM_
draw function, insert the following code to generate a new path for the enemy every second:

 /* Declare a static variable to remember the time. */
 static unsigned int start_time = get_milli_time();

 /* If 1 second elapses, regenerate a new navigation path for the enemy.
Note that the function is dealing with milliseconds, so 1000 is equal to

Know Your Enemy ❘ 165

c08.indd 165c08.indd 165 12/31/11 9:08:03 AM12/31/11 9:08:03 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

166 ❘ CHAPTER 8 PATHFINDING

1 second. */
 if(get_milli_time() - start_time > 1000) {

 /* Use the current enemy location as the starting point. */
 navigationpath_enemy.start_location.x = enemy->location.x;
 navigationpath_enemy.start_location.y = enemy->location.y;
 navigationpath_enemy.start_location.z = enemy->location.z;

 /* Use the current player location as the end point. */
 navigationpath_enemy.end_location.x = player->location.x;
 navigationpath_enemy.end_location.y = player->location.y;
 navigationpath_enemy.end_location.z = player->location.z;

 /* Send the query to Detour. */
 NAVIGATION_get_path(navigation,
 &navigationpath_enemy,
 &navigationpathdata_enemy);

 /* Specify that the next way point the enemy should follow is the fi rst
one inside the way points array. */
 enemy_next_point = 1;

 /* Remember the current time so you can trigger a new navigation path a
second after. */
 start_time = get_milli_time();
 }

 2. Next comes the tricky part of the game: the enemy auto navigation. In order to be able to
trigger the game_over state, the enemy obviously needs to go faster than the player (but not
so much that the game won’t be fun). Right after the code block you implemented in the
previous step, add the following code to auto drive the enemy throughout the maze:

 /* Make sure that the enemy has some way points generated. */
 if(navigationpathdata_enemy.path_point_count) {
 /* Specify the color to use to draw the points and lines for the
enemy navigation path. */
 vec3 color = { 1.0f, 0.0f, 0.0f };
 /* Use the same function to drive the player, but this time, send over
the enemy data. */
 move_entity(enemy,
 &navigationpathdata_enemy,
 &enemy_next_point,
 /* Make the enemy go faster than the player. */
 4.0f);
 /* Draw the navigation points of the enemy. */
 draw_navigation_points(&navigationpathdata_enemy, &color);
 }

To test what you have created, you can build and run the game. You will notice right from the
start (or more specifi cally, one second after the game starts) that the enemy is going straight after
the player. You can double-tap on any walkable area at any time after the game starts to set a new
course to escape from the enemy. As you can see, the game play is accurate; however, if you get
caught by the enemy, you will fi nd that the game logic is incorrect. The way things stand now, when
the enemy catches up with the player, the enemy will keep pushing the player away to a new location

c08.indd 166c08.indd 166 12/31/11 9:08:03 AM12/31/11 9:08:03 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and regenerate a new path to continue the purchase, and this pattern will never end. In the next
section, you’ll learn how to integrate the “Game Over” logic, which will solve this problem.

GAME STATE LOGIC

To fi x the issue mentioned at the end of the previous section, you need to handle the necessary game
logic states in code to tell the player that the game is over, and then, based on the player’s input,
restart the game.

Follow these steps to fi x the game:

 1. In templateAppDraw, on the line after the glClear function call, insert the following code
block. This block will restart the game if the game_over state is equal to 2.

 if(game_over == 2) {
 /* Clean up the memory. */
 templateAppExit();
 /* Reload the game. */
 load_game();
 /* Reset the game_over state back to normal. */
 game_over = 0;
 }

 2. In the templateAppInit function, select and cut this block:

 GFX_set_matrix_mode(PROJECTION_MATRIX);
 GFX_load_identity();
 GFX_set_perspective(80.0f,
 (fl oat)width / (fl oat)height,
 1.0f,
 1000.0f,
 -90.0f);

and paste it inside the templateAppDraw function just after the glClear call.

 3. Since you are going to use the FONT structure to draw text onscreen, you need to have a
projection matrix that fi ts the screen pixel ratio. So before drawing the 3D part of the scene,
you need to make sure that the matrix is properly set to a 3D perspective view. To do this,
in the code you just pasted in step 2, change the width to viewport_matrix[2] and
height to viewport_matrix[3].

 4. Almost everything is in place to have the full game logic code implemented. This step will
show you how to handle the game_over state when the player and the enemy collide, as
well as how to use the FONT structure to print “Game Over!” on the screen. Still inside the
templateAppDraw, delete the line where you call dynamicsworld->stepSimulation and
replace it with the following code block:

 /* If the game is NOT over, update the physics simulation. */
 if(!game_over) dynamicsworld->stepSimulation(1.0f / 60.0f);

 else {
 /* Select the projection matrix to set a perspective that fi ts the

Game State Logic ❘ 167

c08.indd 167c08.indd 167 12/31/11 9:08:03 AM12/31/11 9:08:03 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

168 ❘ CHAPTER 8 PATHFINDING

screen pixel ratio (as you did in Chapter 2). You are about to draw text
onscreen, which requires you to draw in pixels. */
 GFX_set_matrix_mode(PROJECTION_MATRIX);
 GFX_load_identity();
 fl oat half_width =
 (fl oat)viewport_matrix[2] * 0.5f,
 half_height =
 (fl oat)viewport_matrix[3] * 0.5f;
 GFX_set_orthographic_2d(-half_width,
 half_width,
 -half_height,
 half_height);

 /* Adjust the projection to fi t the current device orientation. */
 GFX_rotate(-90.0f, 0.0f, 0.0f, 1.0f);
 GFX_translate(-half_height, -half_width, 0.0f);

 /* Select the model view matrix. */
 GFX_set_matrix_mode(MODELVIEW_MATRIX);
 GFX_load_identity();
 /* Start with a black color for the font. */
 vec4 color = { 0.0f, 0.0f, 0.0f, 1.0f };
 /* The message that you want to display on screen. */
 char msg[MAX_CHAR] = {“GAME OVER!”};

 /* If the font has not been initialized. */
 if(!font) {
 /* Initialize the FONT structure and give it the name foo.ttf, so
you can use the font name to load the font from disk on the next line. */
 font = FONT_init((char *)”foo.ttf”);
 /* Load the TTF fi le, re-using the font name as the fi le to load. */
 FONT_load(font,
 font->name,
 /* Specify that the path of the fi le is relative. */
 1,
 /* The font size in pixels. */
 64.0f,
 /* The width and height of the texture to use to
auto-generate the bitmap for the font. */
 512,
 512,
 /* The starting character ASCII. */
 32,
 /* Generate 96 characters from the starting ASCII.
By specifying 96, you have all the numbers as well as all lowercase and
uppercase characters. */
 96);
 }

 /* Pre-calculate the middle position of the screen on the X axis
based on the current viewport matrix. In addition, use the FONT_length
function to get the length in pixels of the text you are about to draw in
order to be able to center it onscreen. */
 fl oat posx = (viewport_matrix[3] * 0.5f) -

c08.indd 168c08.indd 168 12/31/11 9:08:04 AM12/31/11 9:08:04 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 (FONT_length(font, msg) * 0.5f),
 /* Offset the Y position down the top height of the screen. */
 posy = viewport_matrix[2] - font->font_size;

 /* The font is now ready to be used for printing text onscreen.
First draw the “Game Over” text in black, giving it a little offset of
4 pixels on the X and Y axis. */
 FONT_print(font,
 posx + 4.0f,
 posy - 4.0f,
 msg,
 &color);
 /* Change the color to green, and draw the ”Game Over” text again,
right on top of the black text, but this time without an offset. This will
make the text onscreen look like it has a shadow under it. */
 color.y = 1.0f;
 FONT_print(font,
 posx,
 posy,
 msg,
 &color);
 }

 5. To free the font memory when the game exits, add the following code inside the
templateAppExit:

 /* If the font pointer is initialized. */
 if(font) {
 FONT_free(font);
 font = NULL;
 }

 6. The fi nal step is to restart the game based on the player’s input. Inside the
templateAppToucheBegan function, replace this line:

 if(tap_count == 2) double_tap = 1;

with the following code block to restart the game if the game_over state is ON:

 /* If you got a double-tap. */
 if(tap_count == 2) {
 /* Is the game_over fl ag ON? If yes, set the game_over state to 2
so the render loop can trigger to reload the level. */
 if(game_over == 1) game_over = 2;
 /* Else, if the player wants to select a path on the maze,
proceed as usual. */
 else double_tap = 1;
 }

Your mini game is ready to be played! Build and execute it on your device or simulator to get a
feel for the player experience. In a few steps, you have successfully implemented a CPU-driven NPC
character that responds to some very basic intelligence, but good enough to have the game
up-and-running. This was the last tutorial for this chapter. I do have a lot more to say on the

Game State Logic ❘ 169

c08.indd 169c08.indd 169 12/31/11 9:08:04 AM12/31/11 9:08:04 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

170 ❘ CHAPTER 8 PATHFINDING

subject, but I’m unfortunately limited (page count–wise) to write more about it. You now have all
the basics in hand to start implementing some real artifi cial intelligence using Bullet physics, Recast,
and Detour.

SUMMARY

In this chapter, you learned quite a lot of useful stuff that will make your games a lot more fun.
You have received a quick overview of what Recast and Detour can do for you, and how to make
them interact with GLES2 and the Bullet physics library.

You have also gathered enough knowledge to start implementing your own navigation system for
your games. You also learned how to use a physical collision object for picking, so you can easily
integrate and implement this behavior inside your apps.

As a bonus in this chapter, you’ve also discovered that you can mix different projection matrices
to overlay 2D True Type Font–based text on top of your 3D scenes. This will allow you to print
dynamically at run time any type of text and font that you want.

Make sure that you review each and every exercise of this section to fully grasp all the pathfi nding
and navigation possibilities that you have now. Also, make sure that you visit the Recast/Detour
website and download the source code of the library demo so you can fully explore what these two
libraries can offer you.

Now move on to the next chapter, where you will learn how to playback audio in real time as
well as other miscellaneous rendering techniques.

c08.indd 170c08.indd 170 12/31/11 9:08:04 AM12/31/11 9:08:04 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Audio and Other Cool Game
Programming Stuff

WHAT’S IN THIS CHAPTER?

Learning how to use the low-level OpenAL APIs and the high-level

audio APIs of this book’s SDK

Learning how to use the OGG Vorbis fi le format

Handling ambient and positional sounds

Decompressing an audio stream into another thread for real-time

playback

Handling an OpenAL listener and linking it to your camera

Implementing and using color picking

Linking shaders and dynamically loading a GFX shader fi le directly

from an .mtl fi le

Creating an accelerometer camera and player controls

Animating textures and adding mist to hide the far clipping plane

This chapter mainly covers the audio aspect of your games. Since implementing audio is
relatively short and easy, this chapter will walk the extra mile and introduce you to other
useful techniques for your “daily game programming needs.”

You will fi rst discover how to initialize and use the low-level APIs of OpenAL. You will learn
about the different types of sound sources and sound buffers, and will implement two basic,
practical programs that will give you a good overview of the capabilities of OpenAL, using at
fi rst a raw sound fi le.

➤

➤

➤

➤

➤

➤

➤

➤

➤

9

c09.indd 171c09.indd 171 12/31/11 9:09:25 AM12/31/11 9:09:25 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

172 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

This chapter will also teach you how to create other thread(s) and use this separate process(es) to
decompress in real time, sync, and queue multiple sound buffer chunks attached to a single sound source.

Moving on through this chapter, you will then crank it up by implementing a simple sound-based
memory game using compressed audio sound buffers. This will give you the opportunity to learn how
to work with the OGG Vorbis fi le format, as well as the audio APIs available in this book’s SDK.

For this fi rst game, you will also discover how to implement a new and universal picking method
based directly on the color buffer. You can use this method in 2D, 2.5D, and 3D.

As you progress through the chapter, you will implement a second game, a rolling ball game. This
tutorial will allow you to master using the accelerometer of your device to create new types of
camera systems and player controls, and to gain full control over 3D positional sound sources.

This second game will also teach you how to link the OpenAL listener to your camera. This will
allow you to provide real-time 3D positional sound feedback in stereo, and will allow you to create
cooler and more realistic sound effects.

OPENAL

OpenAL is a cross-platform 3D audio API built to be used in games and 3D applications.

On iOS, OpenAL is supported by default, so no extra work is required (with the exception of
linking the framework to your project, of course).

For Android, you will have to compile OpenAL from source in order to be able to use the API
functionalities. The version used on Android is slightly different in terms of licensing than the one
on iOS. It is basically LGPL and has to be compiled as a shared object library if you plan to use it
for commercial purposes. Make sure you read the OpenAL end user license agreement (SDK/eula/
openal.txt) to make sure your app complies.

The way the OpenAL framework works is very simple and effective. It is built around a buffer and
source approach: The buffer represents the audio data, and the source is the emitter. To be able to
play a source, you’ll have to link it to a buffer. Using this effective approach, one buffer can then be
used by multiple sound sources.

Sound sources in games can be divided into two distinct groups: ambient and positional. The term
ambient can be applied for sound sources that are always relative to the listener (which is most
likely the camera in your scene), like background music.

The second type is called positional, and represents a source that has a 3D position in space and a
relative distance (how far the sound can be heard). In other words, this type of sound source will get
louder as the listener comes closer to it, and will progressively fade as the listener is moving away.

Once you’ve analyzed the fi rst category of your sound source, you’ll have to determine another
subcategory to which it belongs. This subcategory is directly affected by the size in bytes of the raw
(after decompression, if any) sound buffer, which will classify it as in-memory or streamed.

In-memory applies only if the raw sound buffer size is small enough. If it is only a few kilobytes
(KB), the whole raw sound fi le can be stored in audio memory at initialization time, and reused
throughout the application.

c09.indd 172c09.indd 172 12/31/11 9:09:27 AM12/31/11 9:09:27 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OGG Vorbis ❘ 173

If the raw sound buffer size is larger than a few KB (as it typically is for background music, for
example), the buffer will have to be streamed. In this case, you will have to decompress chunks of the
buffer at run time (either in the main thread or in another thread) and then queue them for playback.

Once the source has played a chunk, you will need to refi ll it with data and send it back to the
queue. This queuing process will have to continue until the end of the fi le is reached.

OGG VORBIS

Raw (uncompressed) sound fi les are huge! As a result, it is recommended that you use some form of
audio compression for your games and 3D apps.

Despite the popularity of the MP3 format, I personally don’t recommend it. What most people don’t
know about this format is that it is patented, and if you are using it, you might have some legal issues.

For this book, you will work with the OGG Vorbis format (http://www.vorbis.com), which is
very similar to MP3 in terms of compression ratio and quality. What is great about OGG is that it is
fully open, nonproprietary, and patent- and royalty-free!

To edit and convert your existing sound fi les to the OGG Vorbis audio format, I recommend
Audacity. Audacity is free, open source software for recording and editing sounds. Figure 9-1 shows
the interface of this software. You can grab a copy of the software for your specifi c platform at
http://audacity.sourceforge.net.

FIGURE 9-1: Audacity software interface

c09.indd 173c09.indd 173 12/31/11 9:09:28 AM12/31/11 9:09:28 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

174 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

In Audacity, you can load almost all types of popular sound fi les and export them to the OGG
Vorbis fi le format. You can then simply link your OGG fi les to your project as you normally do with
any other type of asset.

HELLO WORLD OPENAL STYLE

Now that you have a good overview of how OpenAL works, it’s time to get your hands dirty and
create a simple program using the low-level APIs of OpenAL.

INITIALIZING OPENAL

Duplicate the template project from the SDK root directory, rename it chapter9-1,
and then open the project in your IDE. Clean up all the source code comments and
unnecessary functions in order to have a clean project to start working with (but keep
templateAppInit, templateAppDraw, and templateAppExit). Then follow these steps:

 1. At the top of the templateApp.cpp, declare the following global variables:

/* The hardware device to use with OpenAL. */
ALCdevice *al_device;
/* The OpenAL context. This context contains the global OpenAL
states and variables. This is also where the IDs for the sound
buffers and sound sources are maintained. */
ALCcontext *al_context;

 2. At the end of the templateAppInit, right before the end bracket of the function, add the
following code to initialize OpenAL:

/* Open the fi rst valid device OpenAL fi nds and use it for playback. */
al_device = alcOpenDevice(NULL);
/* Create a vanilla OpenAL context (linking the device initialized above). */
al_context = alcCreateContext(al_device, NULL);
/* Activate the context you’ve just created and make it the current
context. */
alcMakeContextCurrent(al_context);

 3. Insert the following code inside the templateAppExit function to uninitialize OpenAL
properly:

/* Set a null context so the one you created in the previous step
can be destroyed. */
alcMakeContextCurrent(NULL);
/* Destroy the OpenAL context. */
alcDestroyContext(al_context);
/* Close the device. */
alcCloseDevice(al_device);

Build and run the application. If the application builds successfully, you have done the right thing.
At the moment, OpenAL is fully initialized and ready for implementation.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

c09.indd 174c09.indd 174 12/31/11 9:09:28 AM12/31/11 9:09:28 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Static In-Memory Sound Playback ❘ 175

STATIC IN-MEMORY SOUND PLAYBACK

Time to make some noise! You will fi rst load a raw uncompressed sound buffer, and then you’ll
attach it to a sound source for playback. This basic workfl ow has to be repeated for every sound
that you want to play back inside you apps.

To test this approach, follow these steps:

 1. Link to your project the test.raw fi le which is located inside the SDK/data/chapter9-1
directory. As the extension specifi es, this is a raw sound fi le that has been saved from an
uncompressed OGG. The fi le is a mono sound of 16 PCM (pulse-code modulation) that has
a playback rate of 22050 Hz.

 2. At the top of the templateApp.cpp, right after the #include, declare the following global
variables to hold the sound buffer and sound source IDs:

ALuint soundbuffer;
ALuint soundsource;

 3. At the end of the templateAppInit callback, on the line right before the end bracket of the
function, add the following code block to create and load the sound buffer from disk:

/* Ask OpenAL to give you a valid ID for a new sound buffer. */
alGenBuffers(1, &soundbuffer);
/* Load the raw sound fi le in memory. */
MEMORY *memory = mopen((char *)”test.raw”, 1);
/* Send over the content of the fi le to the audio memory. */
alBufferData(soundbuffer, /* The sound buffer ID. */
 /* Tell OpenAL that the sound fi le is mono and 16 PCM. */
 AL_FORMAT_MONO16,
 /* The complete sound fi le memory buffer. */
 memory->buffer,
 /* The total size of the sound buffer in bytes. */
 memory->size,
 /* The playback rate of the sound in Hz. */
 22050);
/* Close and free the memory. At this point, the sound buffer data is
maintained by OpenAL and is stored in audio memory, so there’s no need to
keep the buffer alive in local memory. */
memory = mclose(memory);

 4. Right after the code that you added in step 3, add the following to generate a new sound
source, link the buffer, and request OpenAL to start the playback:

/* Ask OpenAL to generate a new source ID. */
alGenSources(1, &soundsource);
/* Attach the sound buffer ID to the sound source. This operation will tell
OpenAL that when the source is played, the data associated with the sound
buffer ID will be used. */
alSourcei(soundsource,
 AL_BUFFER,
 soundbuffer);
/* Play the sound buffer for the current sound source. */
alSourcePlay(soundsource);

c09.indd 175c09.indd 175 12/31/11 9:09:29 AM12/31/11 9:09:29 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

176 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

 5. Move to the templateAppDraw function callback and insert the following code block on the
line before the end bracket to get visual feedback as long as the sound is playing:

/* Temp. variable to hold the state of the sound source. */
int state = 0;
/* Request OpenAL to give you the current state of the source. The result
will indicate if the source is currently playing, paused, or simply
stopped. */
alGetSourcei(soundsource, AL_SOURCE_STATE, &state);
/* If the sound is playing. */
if(state == AL_PLAYING) {
 /* Set the clear color of the screen to green. */
 glClearColor(0.0f, 1.0f, 0.0f, 1.0f);
 /* Declare a temporary variable to hold the current playback time. */
 fl oat playback_time = 0.0f;
 /* Request the current offset in seconds for the current sound source. */
 alGetSourcef(soundsource,
 AL_SEC_OFFSET,
 &playback_time);
 /* Print the current playback time on the console. */
 console_print(“%f\n”, playback_time); }
else
 /* The sound stops playing; set the clear color to red. */
 glClearColor(1.0f, 0.0f, 0.0f, 1.0);

 6. Right after the start bracket of the templateAppExit function, add the following two lines
to delete the sound buffer and the sound source ID that you created earlier:

/* Delete the sound buffer and invalidate the ID. */
alDeleteBuffers(1, &soundbuffer);
/* Delete the sound source and invalidate the ID. */
alDeleteSources(1, &soundsource);

 7. Before running the program on your device or simulator, make sure that the volume is at the
top. Then simply build and run the program.

When the program starts, you can see right away that the screen stays green as long as
the sound is playing. When the sound stops, the screen turns to red. You can also monitor
in real time the current offset of the sound buffer in seconds from the console (Xcode) or
LogCat (Eclipse).

Et voila! You’ve successfully initialized OpenAL, loaded a sound buffer and created a relative sound
source that is playing sound in real time.

POSITIONAL SOUND SOURCE

Duplicate the chapter9-1 project directory and rename it chapter9-2. Then modify the code so
that instead of creating a relative sound source, it creates a positional sound source in which the
sound intensity is affected by distance and the listener’s orientation. To do this, follow these steps:

c09.indd 176c09.indd 176 12/31/11 9:09:29 AM12/31/11 9:09:29 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Positional Sound Source ❘ 177

 1. To create a positional sound, you will fi rst have to set the relative property of the sound
source to false. To do this, simply add the following line just before the alSourcePlay
function call:

alSourcei(soundsource, AL_SOURCE_RELATIVE, AL_FALSE);

 2. Because the source is not relative, you also have to specify the location and orientation of
the listener. To do this, insert the following block of code inside your rendering loop, just
before the end bracket of the templateAppDraw function callback:

 fl oat orientation[6] =
 /* The direction vector the listener is looking at. */
 { 0.0f, 1.0f, 0.0f,
 /* The world up vector. */
 0.0f, 0.0f, 1.0f };
 /* Send the direction and up vector of the listener. In OpenAL terms,
this is called the “listener orientation”. */
 alListenerfv(AL_ORIENTATION, &orientation[0]);
 /* Specify the position of the listener in world space coordinates. */
 alListener3f(AL_POSITION,
 0.0f,
 0.0f,
 0.0f);

 3. By default, a sound source position is located at 0, 0, 0 in world coordinates. In order to
hear the difference compared to the previous program, add the following code (right after
the code you added in step 2) to dynamically move the sound source location in space:

 /* Static variable to make the sound source position go forward on the
Y axis, away from the listener. */
 static fl oat y = 0.0f;
 /* Assign the new position to the sound source. */
 alSource3f(soundsource, AL_POSITION, 0.0f, y, 0.0f);
 /* Increase the sound Y position. */
 y += 0.5f;

 4. Compile and run the program.

Once the program is loaded, you can clearly feel that the sound is moving away from you.
Because the source is directly in front of the listener, both of the speakers (or the two head-
phones) are playing the sound equally as it goes away.

 5. Because the sound is positional and OpenAL fully supports sound interpolation from
one direction to another, depending on the location of the source, you can also get a feel
of direction in stereo. To test this behavior, simply modify the alSource3f line as follows:

alSource3f(soundsource, AL_POSITION, 2.0f, y, 0.0f);

 6. Build and run the program again. As the sound starts playing, you can clearly hear that the
sound source is coming from the right.

 7. Now modify the 2.0f for -2.0f. Build and run the program again to feel the changes.

c09.indd 177c09.indd 177 12/31/11 9:09:30 AM12/31/11 9:09:30 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

178 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

PIANO GAME

In order to apply what you have learned so far about ambient sound to a real-game scenario, and to
discover how to use the audio APIs bundled within this book’s SDK, you will be building a simple
game that is purely driven by sounds.

The player’s goal in this mini-game is to
remember the sound sequence that is randomly
generated and then use a virtual piano to replay
that sequence. If the replay matches the original
sequence, the player jumps to the next level, and a
new note is added to the sequence. Otherwise, the
player has to restart from level 1.

By the end of this section, you will have a
fully working game that will look like the one
demonstrated in Figure 9-2.

For this game, you will also learn how to implement a new picking method based on color.
Contrary to the previous picking that you have worked with, which requires physics data, this new
method relies directly on the color buffer and can be used in conjunction with any type of projection
(2D, 2.5D, and 3D).

Start by duplicating the template_chapter9-3 project directory and rename it chapter9-3. Open
the templateApp.cpp source fi le and review the code structure so you are familiar with it before
you actually begin using it in the next exercise. Next, build and run the application to visualize the
scene. When you’re ready, move on to the next section and start coding.

Loading a Static and Streamed Sound

Working directly with the low-level APIs of OpenAL is not very practical on a large scale. This
book’s SDK gives you access to higher-level audio APIs that are wrapped around the pure OpenAL
calls. To learn how to use this high-level API and corresponding OpenAL calls, follow these steps:

 1. At the top of the templateApp.cpp source fi le, defi ne the following variable, which
represents the maximum number of keys on the piano:

#defi ne MAX_PIANO_KEY 13

 2. Declare the following variables to hold the piano keys’ in-memory ambient sound data as
well as the sound when the player fails to reproduce the sound sequence (which you will be
generating in a moment):

/* To handle the sounds for each piano key. */
SOUNDBUFFER *soundbuffer[MAX_PIANO_KEY];
SOUND *soundsource[MAX_PIANO_KEY];
/* The sound buffer and the sound source for playing the “wrong” sound when
the player misses a key in the sequence. */
SOUNDBUFFER *wrongbuffer;
SOUND *wrong;

FIGURE 9-2: Piano game

c09.indd 178c09.indd 178 12/31/11 9:09:30 AM12/31/11 9:09:30 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Piano Game ❘ 179

As you might have guessed, the SOUNDBUFFER and SOUND structures are part of this book’s
SDK. They wrap multiple low-level OpenAL calls into easy-to-use structures. For more
information about the APIs implemented by these structures and their related functions,
take a look at the sound.cpp and .h fi les inside the SDK/common directory.

 3. Now declare the following variables, which you will use to create and stream the
background music, as well as a THREAD structure to create another process to offl oad the
decompression from the main thread (since decompression is somewhat CPU-intensive):

SOUNDBUFFER *ambientbuffer;
SOUND *ambient;
THREAD *thread = NULL;

For more information on the threading implementation, review the thread.cpp/h source
fi le (also located inside the SDK/common directory).

 4. Right after the GFX_start call, add the following line to initialize OpenAL:

/* Helper function to initialize the device and context as you did at the
beginning of this chapter. */
AUDIO_start();

 5. It’s time to load the static sound buffers and link them to their respective sound sources.
Insert the following code block on the line right after the end bracket of the
while(i != obj->n_objmesh) loop (inside the templateAppInit function):

 /* Declare an empty memory pointer to store the sound buffers. */
 MEMORY *memory = NULL;
 /* Reset the counter. */
 i = 0;
 /* Loop until the maximum number of piano keys is reached. Basically,
all piano keys have an object name that corresponds to an OGG fi le. In this
example, the 00.ogg sound fi le will be associated to the mesh name 00 and
so on. */
 while(i != MAX_PIANO_KEY) {
 /* Generate a sound fi lename based on the current loop counter. */
 char soundfi le[MAX_CHAR] = {“”};
 sprintf(soundfi le, “%02d.ogg”, i);
 /* Load the sound fi le into memory. */
 memory = mopen(soundfi le, 1);
 /* Create a new sound buffer pointer and associate the content loaded
from disk to it. Note that the OGG decompression is automatically handled
inside the SOUNDBUFFER_load function. */
 soundbuffer[i] =
 SOUNDBUFFER_load(soundfi le, memory);
 /* Free the memory. At this stage, the sound buffer has been sent to the
audio memory, so there is no need to keep the sound fi le alive in local
memory. The buffer is ready to be used. */
 mclose(memory);
 /* Create a new sound source and link the sound buffer you just created
to it. */
 soundsource[i] =
 SOUND_add(obj->objmesh[i].name, soundbuffer[i]);

c09.indd 179c09.indd 179 12/31/11 9:09:30 AM12/31/11 9:09:30 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

180 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

 ++i;
 }
 /* Next, load the sound to play if the user makes a mistake. */
 memory = mopen((char *)”wrong.ogg”, 1);
 wrongbuffer =
 SOUNDBUFFER_load((char *)”wrong”, memory);
 mclose(memory);
 wrong =
 SOUND_add((char *)”wrong”, wrongbuffer);

 6. Now that all ambient in-memory sounds have been loaded and stored, you can deal with
the background music. Because the sounds have to be streamed, the initialization will
be slightly different than for static sounds. To perform this initialization, add the following
immediately after the preceding code block:

 memory = mopen((char *)”lounge.ogg”, 1);
 /* Create the sound buffer using the SOUNDBUFFER_load_stream API, this
function will initialize multiple sound buffer ID internally and will fi ll
them with uncompressed chunks of the OGG stream. The function will also
automatically queue them in sequence for real-time playback. */
 ambientbuffer =
 SOUNDBUFFER_load_stream((char *)”lounge”, memory);
 ambient = SOUND_add((char *)”lounge”, ambientbuffer);
 /* The sound buffer has to be continuously streamed from memory, so you
will have to decompress small pieces of the OGG fi le and queue these
chunks. To make sure that this operation will not affect the performance of
the main thread (the one that is drawing), create a new thread that will be
used strictly for decompression and queuing. */
 thread = THREAD_create(
 decompress_stream, /* The thread callback function (which you will
declare in the next step. */
 NULL, /* User data pointer used to pass whatever information you want to
make available inside the new process created by the thread. */
 THREAD_PRIORITY_NORMAL, /* The thread priority. */
 1); /* The thread timeout, or sleep time if you prefer, in
milliseconds. By setting this parameter, you can control the update
frequency of the thread on top of its priority. */
 /* Start the thread. */
 THREAD_play(thread);
 /* Set the volume. */
 SOUND_set_volume(ambient, 0.5f);
 /* Start playing the ambient sound in a loop (by specifying 1 as the
last function parameter). */
 SOUND_play(ambient, 1);
 /* Contrary to what you did previously, do not free the sound buffer
from the local memory. The buffer needs to be available for real-time
decompression. */

As you may have already noticed, the whole streaming structure from this book’s SDK is
dynamic. And if you want, you can tweak the maximum number of buffers (MAX_BUFFER,
which is 4 by default) to suit your needs, as well as the size of the chunks in bytes (MAX_
CHUNK_SIZE, which is 8 KB by default). These two parameters are defi ned inside the sound
.h header fi le — feel free to modify them as you see fi t.

c09.indd 180c09.indd 180 12/31/11 9:09:31 AM12/31/11 9:09:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Piano Game ❘ 181

 7. In order to have the new thread that you created in step 6 respond to its associated
callback, add the following new function on the line above the templateAppInit function
declaration:

/* The thread function callback. Note that the void *ptr parameter is the
userdata pointer that might have been set when you called the THREAD_create
function. It is up to you to cast it back to its original type before being
able to use the variable. */
void decompress_stream(void *ptr) {
 /* Update the sound source queue for the ambient sound. By calling
this function, the buffer chunks that have been processed will be
un-queued and fi lled with fresh new data decompressed directly from
the OGG sound buffer
in memory. */
 SOUND_update_queue(ambient); }

 8. To keep things neat and clean, insert the following code block at the beginning of the
templateAppExit function. This will get rid of all the memory that has been assigned by
the sound sources, sound buffers, thread, and the OpenAL context.

 /* Stop and free the decompression thread. */
 THREAD_free(thread);
 /* Loop while until the maximum number of piano key is reached. */
 unsigned int i = 0;
 while(i != MAX_PIANO_KEY) {
 /* Stop and free the sound sources for each piano key as well as
their associated buffer. */
 SOUND_free(soundsource[i]);
 SOUNDBUFFER_free(soundbuffer[i]);
 ++i;
 }
 /* Same as above but for the “wrong” sound. */
 SOUND_free(wrong);
 SOUNDBUFFER_free(wrongbuffer);
 /* Free the ambient source. */
 SOUND_free(ambient);
 /* Now it is time to free the ambient buffer memory. Since no more
streaming will take place, you can now freely dispose of it. As you can
see, the memory pointer has been stored within the SOUNDBUFFER structure,
so you can free it when the application exits. */
 mclose(ambientbuffer->memory);
 /* Free the sound buffer structure for the ambient music. */
 SOUNDBUFFER_free(ambientbuffer);
 /* Stop OpenAL, and free the device and its associated context. */
 AUDIO_stop();

 9. Build and run the project. Right from the start, the background music begins and continues
playing smoothly as the chunks are decompressed and queued in real time.

At this point, on top of having full control over static sound sources, you now have the ability to
stream very long sound fi les at a fraction of the memory that it would cost if you were to use a raw
sound buffer.

c09.indd 181c09.indd 181 12/31/11 9:09:31 AM12/31/11 9:09:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

182 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

Color Picking

Before jumping into the logic part of the game, you fi rst need to add the necessary code to enable
the piano to play music. Since no collision shape is associated with the geometry that you have
loaded, it is impossible to use the physics-based picking technique that you learned earlier. However,
there is a way to do this without Bullet.

The method that you’re about to learn is called color picking. The concept is quite simple. First, you
render each of your objects with a unique RGB color. Once that’s done, all you have to do in order to
determine which object has been picked is to retrieve the RGB color value under the touch onscreen.

To keep things simple and save you from having to convert and approximate 16-bit RGB values to
32-bit values and vice versa, you will work with pure 32-bit RGBA values. However, in order to do
this, you will have to change the default drawable properties of your color buffer to RGBA 32 bits
instead of the default RGB 16 bits (565).

To change this for iOS, open the EAGLview.mm Objective-C++ source fi le (under the Classes
folder in XCode) and replace the default drawable property kEAGLColorFormatRGB565 in the
initWithCoder function to kEAGLColorFormatRGBA8.

For Android, in Eclipse open the GL2view.java fi le (under the com.android.templateApp folder)
and inside the GL2view class defi nition, replace the ConfigChooser values from
ConfigChooser(5, 6, 5, 0, 1, 1) to ConfigChooser(8, 8, 8, 8, 1, 1).

You are now ready to add color picking to your app and enable your piano to play some sounds.
Open templateApp.cpp and follow these steps:

 1. Add the following variables to the current globals of your program that are already defi ned:

/* Flag to determine if the player tries to pick something onscreen. */
unsigned char pick = 0;
/* Temporary variable to store the color used for picking. */
vec4 color;
/* Index of the sound associated with the object that has been picked. */
unsigned int sound_index = 0;

 2. Inside the templateAppToucheBegan, at the beginning of the function code, add the
following line to raise the fl ag when the user touches the screen:

pick = 1;

 3. Open the fragment.glsl shader fi le attached to your app and add the following uniform
variable:

uniform lowp vec4 COLOR;

You will use this vec4 to pass to the shader the unique color for the current object you want
to draw.

 4. Modify the gl_FragColor affectation as follows, adding the color uniform to the current
texture color:

/* Add the COLOR uniform variable to the current texture color. */
gl_FragColor = texture2D(DIFFUSE, texcoord0) + COLOR;

c09.indd 182c09.indd 182 12/31/11 9:09:31 AM12/31/11 9:09:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Piano Game ❘ 183

 5. Go back inside the templateApp.cpp, locate the PROGRAM_draw function call inside the
templateAppDraw, and insert the following picking code on the line that precedes the call:

/* If you receive a signal that the user wants to pick something. */
if(pick) {
 /* Change the DIFFUSE texture channel to be a channel that you do not
use, so the texture color will be black. With the modifi cations you’ve made
to the fragment shader, you will be able to simply affect the fragment
color with a uniform color pass to the shader, and because black + color =
color, your object will be drawn using this unique color.*/
 glUniform1i(PROGRAM_get_uniform_location(program,
 (char *)”DIFFUSE”), 7);
 /* Loop for the maximum amount of piano key avoiding to draw the curtain
(which is the last object recorded in the OBJ fi le).*/
 unsigned int i = 0;
 while(i != MAX_PIANO_KEY) {
 /* Get the current OBJMESH structure pointer, and adjust the current
model view matrix to render the object onscreen. */
 OBJMESH *objmesh = &obj->objmesh[i];
 GFX_push_matrix();
 GFX_translate(objmesh->location.x,
 objmesh->location.y,
 objmesh->location.z);
 glUniformMatrix4fv(
 PROGRAM_get_uniform_location(program,
 (char *)”MODELVIEWPROJECTIONMATRIX”),
 1,
 GL_FALSE,
 (fl oat *)GFX_get_modelview_projection_matrix());

 /* Use the following helper function to generate a unique RGBA value for
the current loop index. */
 generate_color_from_index(i, &color);
 /* Send the color to the fragment shader. */
 glUniform4fv(
 PROGRAM_get_uniform_location(program,
 (char *)”COLOR”),
 1,
 (fl oat *)&color);
 /* Draw the object using the unique color that you have generated
above. */
 OBJ_draw_mesh(obj, i);
 GFX_pop_matrix();
 ++i;
 }

 /* Now that you’ve fully rendered the current scene so that each object
has its own unique color, it’s time to ask GLES to identify the color under
the user touche onscreen. The RGBA result that you will be requesting will
be returned in an unsigned byte form. You can then easily extract the
numbers in their pure form and associate them with a piano key number. */
 ucol4 ucolor;
 /* Be careful with this function, because it requires OpenGLES to fully
process all the commands sent down the pipeline and will cause the server

c09.indd 183c09.indd 183 12/31/11 9:09:32 AM12/31/11 9:09:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

184 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

(in other words, the driver) to stall until the fi nal color is calculated
for the pixels you will be requesting. */
 glReadPixels(
 /* The X coordinate of the touche. */
 touche.x,
 /* Invert the Y position of the touche, because the OpenGLES color
buffer origin is located at the bottom left of the screen. */
 viewport_matrix[3] - touche.y,
 /* Request 1 pixel width by 1 pixel height. */
 1,
 1,
 /* The requested pixel format. */
 GL_RGBA,
 /* The requested pixel type. */
 GL_UNSIGNED_BYTE,
 /* Store the result in the unsigned char RGBA structure. */
 &ucolor);

 /* By default, you have 13 objects that have been rendered onscreen
(each piano key). And because the colors generated have been incremented
depending on the current index of the loop counter, the result (if a piano
key is picked) shown never exceeds the maximum number of the key index (0
to 12). This means that the value of the blue (b) component contains the
corresponding index of the piano key. */
 if(ucolor.b < MAX_PIANO_KEY) {
 /* Convert the name of the OBJMESH indexed by the b color component
to an unsigned int value, which will correspond to the index of the piano
key sound source in the array. */
 sscanf(obj->objmesh[ucolor.b].name,
 “%d”,
 &sound_index);
 /* Set the volume for the key at the top. */
 SOUND_set_volume(soundsource[sound_index], 1.0f);
 /* Play the piano key sound. */
 SOUND_play(soundsource[sound_index], 0);
 }
 /* Clear the depth buffer and color buffer, because you are about to
draw the scene again. */
 glClear(GL_DEPTH_BUFFER_BIT | GL_COLOR_BUFFER_BIT);
 }
 pick = 0; /* Reset the picking state. */

 6. To provide visual feedback on which key of the piano is currently playing, add the following
code on the line right before the last OBJ_draw_mesh call inside the templateAppDraw
function:

/* Convert the current mesh name to an index that corresponds to the sound
source index of the piano key sound source array. */
sscanf(objmesh->name, “%d”, &sound_index);
/* Check if the sound source is currently playing. */
if(!strstr(objmesh->name, “curtain”) &&
 SOUND_get_state(soundsource[sound_index])
 == AL_PLAYING) {
 /* Set full brightness as the color to use for the piano key that is

c09.indd 184c09.indd 184 12/31/11 9:09:32 AM12/31/11 9:09:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Piano Game ❘ 185

about to be drawn onscreen (since your fragment shader now supports color
additions on the fi nal gl_FragColor value. */
 color.x = 1.0f;
 color.y = 1.0f;
 color.z = 1.0f;
 color.w = 1.0f;
 }
 else {
 /* Set the color to be fully black so the color won’t affect the texture
color of the piano key (because black + color = color). */
 color.x =
 color.y =
 color.z = 0.0f;
 color.w = 1.0f;
}
/* Send over the current color. */
glUniform4fv(
PROGRAM_get_uniform_location(program,
(char *)”COLOR”),
1,
(fl oat *)&color);

 7. You can now build and run the application and start jamming on the piano!

Mastering this new picking method will give you a great deal of fl exibility over the picking
functionalities of your apps. And because this method is strictly color-based, you can use it for 2D,
2.5D, or 3D!

However, keep in mind that glReadPixels is probably one of the slowest GLES commands (due to
the reasons explained earlier).

Piano Game Logic

Your scene interaction is now fully functional. Now it’s time to integrate the fi nal touch that will
allow the user to play the game.

Basically, all you have to do at this point is generate a sequence of numbers that is associated to a
sound attached to a piano key. If the player replays the right sequence, the level will increase and
more piano notes will be added. If the player plays a “wrong” sound in the sequence, the game is
over, and they will have to restart from level 1.

To implement the logical workfl ow for this game, follow these steps:

 1. Start by declaring the following global variables at the top of the templateApp.cpp fi le:

/* The maximum amount of levels. */
#defi ne MAX_LEVEL 50
/* Flag to control the game_over state. */
unsigned char game_over = 0;
/* The current level index. */
unsigned int cur_level = 0,
/* The current sound of the level that has to be played automatically when
a new sequence is generated. */

c09.indd 185c09.indd 185 12/31/11 9:09:32 AM12/31/11 9:09:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

186 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

 cur_level_sound,
/* Array to contain the auto-generated piano key index for the levels. */
 level[MAX_LEVEL],
/* The current sound played by the user. This value will increment as the
player tries to reproduce the current sequence used in the level. */
 cur_player_sound;

 2. Before the templateAppInit function declaration, create the following new function to
automatically fi ll the level array with a new piano key index for the next level:

void next_level(void) {
 unsigned int i = 0;
 /* Increase the current level number. */
 ++cur_level;
 /* Randomly generate a piano keys index based on the current
level number. */
 while(i != cur_level) {
 level[i] = rand() % MAX_PIANO_KEY;
 ++i;
 }
 /* Reset the current sound level so the player can see and hear the
sequence to reproduce for the current level. */
 cur_level_sound = 0;
}

 3. Before the end bracket of the templateAppInit function, add the following code to
generate the random seed and the key for the fi rst level:

 srandom(get_milli_time());
 next_level();

 4. On the line right before the if(pick) statement of the templateAppDraw function, insert
the following code block to automatically play the piano key for the current level (to provide
the player with a preview):

 /* If the current preview sound is different than the current level, it
means that the whole generated sequence has not been played back to the
user yet. */
 if(cur_level_sound != cur_level) {
 /* Static variable to remember the time. */
 static unsigned int start = get_milli_time();
 /* Wait 1 second between each sound preview, because playing all of the
sounds one after another without any pause between each sound would be too
hard for the player to remember.*/
 if(get_milli_time() - start >= 1000) {
 if(SOUND_get_state(
 soundsource[level[cur_level_sound]]) != AL_PLAYING) {
 SOUND_set_volume(
 soundsource[level[cur_level_sound]], 1.0f);
 SOUND_play(
 soundsource[level[cur_level_sound]], 0);
 /* Increase the current preview sound counter. */
 ++cur_level_sound;

c09.indd 186c09.indd 186 12/31/11 9:09:33 AM12/31/11 9:09:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Piano Game ❘ 187

 /* Remember the start time you last played the note. */
 start = get_milli_time();
 }
 /* Reset the current piano note index that the player inputs. */
 cur_player_sound = 0;
 }
}
/* Transform the previous if into an else-if so the player won’t be able to
play with the piano while the preview is running. */
else

 5. Delete the if(ucolor.b < MAX_PIANO_KEY) block completely and replace it with
the following code block. This code checks if the key that the player taps on the piano is the
right one (the key that corresponds to the one in the sequence). If not, the code simply plays
the “wrong” sound and raises the game_over fl ag. If the player input is right, this code
increases the cur_player_sound counter so the next piano key that the player taps will
correspond to the next entry in the level sound index array.

 if(ucolor.b < MAX_PIANO_KEY) {
 sscanf(obj->objmesh[ucolor.b].name, “%d”, &sound_index);
 if(level[cur_player_sound] != sound_index) {
 SOUND_set_volume(wrong, 1.0f);
 SOUND_play(wrong, 0);
 game_over = 1;
 }
 else {
 SOUND_set_volume(soundsource[sound_index], 1.0f);
 SOUND_play(soundsource[sound_index], 0);
 ++cur_player_sound;
 }
 }

 6. The following instructions will allow you to determine if the player should go to the next level.
At this point, all you have to do is a simple logic check to see if there is no sound currently
playing and if the cur_player_sound is equal to the cur_level. In the templateAppDraw,
on the line after you assign pick = 0, declare the following variable:

unsigned char source_playing = 0;

Then on the line after the start bracket of the if(SOUND_get_state(soundsource
[sound_index]) == AL_PLAYING) statement, add the following line to raise a fl ag to
indicate that there is still at least one sound playing:

source_playing = 1;

Then insert the following statement before the end bracket of the templateAppDraw
function:

/* If the current player sound index is equal to the current level number,
it means that the player has cleared the level and entered all the piano
keys in the right order. Time to move on to the next level! */
if(cur_player_sound == cur_level && !source_playing) next_level();

c09.indd 187c09.indd 187 12/31/11 9:09:33 AM12/31/11 9:09:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

188 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

 7. In order for the player to be able to restart the game if the game_over state is on, delete the
pick = 1; affectation inside the templateAppToucheBegan callback and replace it with
the following block to restart the game if the player double-taps the screen:

/* If the game is not over, allow the player pick a piano key. */
if(!game_over) pick = 1;
/* If the game is over and the player double-taps the screen. */
else if(game_over && tap_count >= 2) {
 /* Reset the game_over state and set the current level back to 0. */
 game_over =
 cur_level = 0;
 /* Restart the game at level 1. */
 next_level();
}

 8. Build and run the game.

The logic is now fully implemented, and you can play and replay the game as much as you want.
However, something is missing — the player is not given any real feedback as the game progresses
or when the game is over. In the next section, you’ll make some adjustments to provide this feedback
and fi nalize this mini-game.

Final Adjustments

Basically, all you have to do to make the game friendlier is print some text on the screen. In the
following steps, you’ll fi rst indicate the current level and provide the player with direct feedback on
the current progression of the game to the player. And second, you’ll display a message when the
game is over, so the player can then double-tap the screen to restart.

 1. At the top of the templateApp.cpp, where your other globals are declared, declare the
following two global FONT structure pointers (one for a small font and one for a big font):

FONT *font_small = NULL,
 *font_big = NULL;

 2. Just before the end bracket of the templateAppInit function, insert the following block of
code to initialize and generate the two font textures for the foo.ttf TrueType font fi le:

 font_small = FONT_init((char *)”foo.ttf”);
 FONT_load(font_small, /* Font structure pointer. */
 font_small->name, /* Font fi le. */
 1, /* Use a relative path to load the TTF. */
 32.0f, /* The font size. */
 512, /* Texture width. */
 512, /* Texture height. */
 32, /* First character offset in ASCII. */
 96); /* How many characters to generate. */

 font_big = FONT_init((char *)”foo.ttf”);
 FONT_load(font_big,
 font_big->name,
 1,

c09.indd 188c09.indd 188 12/31/11 9:09:33 AM12/31/11 9:09:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Piano Game ❘ 189

 64.0f,
 512,
 512,
 32,
 96);

 3. Before the end bracket of the templateAppDraw, insert the following block to show the
current level onscreen and display “Game Over” when the appropriate game state is on:

 GFX_set_matrix_mode(PROJECTION_MATRIX);
 GFX_load_identity();
 fl oat half_width = (fl oat)viewport_matrix[2] * 0.5f,
 half_height = (fl oat)viewport_matrix[3] * 0.5f;
 GFX_set_orthographic_2d(-half_width,
 half_width,
 -half_height,
 half_height);
 GFX_rotate(-90.0f, 0.0f, 0.0f, 1.0f);
 GFX_translate(-half_height, -half_width, 0.0f);
 GFX_set_matrix_mode(MODELVIEW_MATRIX);
 GFX_load_identity();
 char str[MAX_CHAR] = {“”};
 if(game_over) {
 strcpy(str, “GAME OVER”);
 /* Yellow. */
 color.x = 1.0f;
 color.y = 1.0f;
 color.z = 0.0f;
 color.w = 1.0f;
 FONT_print(font_big,
 viewport_matrix[3] * 0.5f -
 FONT_length(font_big, str) * 0.5f,
 viewport_matrix[2] -
 font_big->font_size * 1.5f,
 str,
 &color);
 }
 sprintf(str, “Level:%d”, cur_level);
 /* Green. */
 color.x = 0.0f;
 color.y = 1.0f;
 color.z = 0.0f;
 color.w = 1.0f;
 FONT_print(font_small,
 5.0f,
 viewport_matrix[2] - font_small->font_size,
 str,
 &color);

 4. Make sure to clean up the font structures before quitting the application. To do this, insert
the following lines right after the start bracket of the templateAppExit function:

 FONT_free(font_small);
 FONT_free(font_big);

c09.indd 189c09.indd 189 12/31/11 9:09:34 AM12/31/11 9:09:34 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

190 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

 5. Build and run this “slightly improved” version of the game. The player will now see the level
that they’re currently on, or a “Game Over” message if they miss a key.

This mini-game tutorial demonstrated how you can use the SOUND and SOUNDBUFFER structures,
and a lot more. You learned how to stream a large OGG fi le in another thread and how to use
color-picking. You also now have a good overview of how to use the AUDIO API and integrate it
inside your own apps.

In the next section, you’re going to implement a practical example that focuses on positional sound
sources.

ROLLING BALL GAME

In Chapter 7, you learned about different ways to handle cameras, and at the beginning of this
chapter, you learned the basic theory behind positional sound sources. In this section, you’ll apply
all this to a rolling ball game scenario. When
you’re done, you’ll know how to connect the
camera location and direction to the listener, as
well as how to get real 3D stereo sound feedback
for each positional source.

Before you begin coding the actual game,
duplicate the template_chapter9-4 project and
rename it chapter9-4. Open it in your IDE and
do an initial build of it. The template of your
upcoming rolling ball game is demonstrated in
Figure 9-3.

Right away, the goal of the game is quite clear: Pick up as many gems as possible in the shortest
period of time before reaching the end goal of the scene.

Now take a look at the template source code for this chapter. You are already very familiar with
most of the framework. However, notice that this time, the shaders are not loaded manually;
instead, they are directly linked within the 3D editor and are available through the scene’s .mtl fi le.

GFX Shaders

There are just a few more things that you need to do and understand before you begin the tutorial.
First, open the .blend fi le that is located in the SDK/data/chapter9-4 folder.

Then select an object and open the Texture panel within Blender. Browse the channel attached to
the material, and you should instantly notice that a .gfx fi le is associated to the translucency. The
reason I did this is because you are not using a translucency channel for this project; however, it can
be any other available channel that is supported by the OBJ Wavefront format.

A .gfx fi le is a shader program fi le that contains the code for both vertex and fragment shaders.
All you have to do to auto generate a shader program at loading time from within your application
is to link a GFX fi le to one of the texture channels supported (and of course, use the OBJ and
PROGRAM API from this book’s SDK).

FIGURE 9-3: Rolling ball game template

c09.indd 190c09.indd 190 12/31/11 9:09:34 AM12/31/11 9:09:34 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rolling Ball Game ❘ 191

To create your own .gfx, all you have to do is add markers inside the source code contained in the
fi le. The markers will tell the loader where the appropriate shader code starts; these tags are
GL_VERTEX_SHADER and GL_FRAGMENT_SHADER.

It is a very simple approach, but it enables you to use your favorite 3D editor to attach shader fi les
directly to your material(s) instead of loading each and every one of them manually. You can then
treat these shaders more like regular assets (similar to the way you treat textures), which can be very
convenient.

To see an example of how this approach works, simply open SDK/data/chapter9-4/diffuse.gfx
with your favorite text editor, to learn how a GFX fi le is built, and how to add basic fog to your
scene.

If you are using a GFX fi le with your material(s), you can use (most likely at loading time) the
following pseudo code to extract and load the shaders and automatically attach them to your
materials when the OBJ_build_material function is called (just like for textures):

/* Counter for the loop. */
unsigned i = 0;
/* Loop for the number of programs in the obj resource. */
while(i != obj->n_program) {
 /* Build the program. */
 OBJ_build_program(
 /* The OBJ structure. */
 obj,
 /* The program index. */
 i,
 /* The callback to bind the attribute location(s). */
 program_bind_attrib_location,
 /* Callback to use when the program is about to be use for drawing. */
 program_draw,
 /* Use a relative path for the .gfx file. */
 1,
 /* The path where the shader programs are located. */
 obj->program_path);
 ++i; /* Next shader program. */
}

As you can see, this method is very similar to the way you have been handling textures inside
an .mtl so far. This code has already been put in place for you in the templateApp.cpp for the
chapter9-4 exercise. You can fi nd it inside the load_level function.

This approach is widely used in game engine design, because it allows artists to link and test shaders
with their 3D models and textures without the need of a programmer.

Linking the Positional Sound Sources

In addition to the usual background music, there are quite a few positional sound sources to place
inside the scene. Each gem will require a different sound to be emitted when the player picks it up,

c09.indd 191c09.indd 191 12/31/11 9:09:34 AM12/31/11 9:09:34 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

192 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

and each “substance” under the bridges (the water, lava, and toxic material) will also need to emit a
sound. To link these sound sources, follow these steps:

 1. At the top of the templateApp.cpp, right after the #include statement, declare the
following global variables to handle the different sound sources and buffers used in the
scene:

/* The background music. */
SOUNDBUFFER *background_soundbuffer = NULL;
SOUND *background_sound = NULL;
/* To use with the four gem colors: red, green, blue, and yellow, in this
specifi c order. */
SOUNDBUFFER *gems_soundbuffer[4];
SOUND *gems_sound[4];
/* To handle the water sound under the fi rst bridge. */
SOUNDBUFFER *water_soundbuffer = NULL;
SOUND *water_sound = NULL;
/* To handle the lava sound under the second bridge. */
SOUNDBUFFER *lava_soundbuffer = NULL;
SOUND *lava_sound = NULL;
/* To handle the toxic sound under the last bridge. */
SOUNDBUFFER *toxic_soundbuffer = NULL;
SOUND *toxic_sound = NULL;

 2. In the load_level function, right before the end bracket, insert the following code to load
and generate the gem sounds:

 /* Declare a memory structure that you will use (and reuse) to load
each sound buffer. */
 MEMORY *memory = NULL;
 /* Reset the counter. */
 i = 0;
 /* Loop for each gem color. */
 while(i != 4) {
 switch(i) {
 case 0: { /* Load the red.ogg fi le. */
 memory = mopen((char *)”red.ogg”, 1);
 break;
 }
 case 1: { /* Load the green.ogg fi le. */
 memory = mopen((char *)”green.ogg”, 1);
 break;
 }
 case 2: { /* Load the blue.ogg fi le. */
 memory = mopen((char *)”blue.ogg”, 1);
 break;
 }
 case 3: { /* Load the yellow.ogg fi le. */
 memory = mopen((char *)”yellow.ogg”, 1);
 break;
 }
 }
 /* For the current gem buffer index, create a sound buffer using the

c09.indd 192c09.indd 192 12/31/11 9:09:35 AM12/31/11 9:09:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rolling Ball Game ❘ 193

content of the memory structure that you have loaded. */
 gems_soundbuffer[i] =
 SOUNDBUFFER_load((char *)”gem”, memory);
 mclose(memory);
 /* Create a new sound source for the current index and link the
current sound buffer. */
 gems_sound[i] =
 SOUND_add((char *)”gem”, gems_soundbuffer[i]);
 /* Set the volume for the source, but do not start playing it yet.
You will handle the playback code inside the contact_added_callback only
when the player collides with a gem. */
 SOUND_set_volume(gems_sound[i], 1.0f);
 ++i;
 }

At fi rst glance, you might think that theses gems will simply be handled like regular ambi-
ent sounds, but in fact, they won’t. Later, you will dynamically assign the sound source
position and “reference distance” at run time.

 3. In this step, you’ll use a different method to position the sound sources for the “substances”
under the bridges. Because there are only three substances and they have very large reference
distances and are static in memory, you can directly create and assign their locations and then
reference their distances at loading time. To create and assign these sound sources, insert the
following code block right below the code you added in step 2:

 /* Temporary variable to contain the mesh pointer of the object that
will be emitting the sound. */
 OBJMESH *objmesh = NULL;
 /* Load the water.ogg fi le in memory. */
 memory = mopen((char *)”water.ogg”, 1);
 /* Create the sound buffer for the OGG. */
 water_soundbuffer =
 SOUNDBUFFER_load((char *)”water”, memory);
 /* Free the memory, because the sound buffer is loaded as a
static sound and the raw audio buffer has been transferred to the
audio memory by the previous function call. */
 mclose(memory);
 /* Create the water sound source. */
 water_sound = SOUND_add((char *)”water”, water_soundbuffer);
 /* Here comes the part of code where you are going to associate the
sound source to the object. First, get the objmesh pointer for the water
object. */
 objmesh = OBJ_get_mesh(obj, “water”, 0);
 /* Assign to the sound source the location of the mesh in 3D space and
use the radius as the reference distance (how far the sound can be heard). */
 SOUND_set_location(water_sound,
 &objmesh->location,
 objmesh->radius);
 /* Set the volume of the water at 50%. */
 SOUND_set_volume(water_sound, 0.5f);
 /* Start playing the water sound. */
 SOUND_play(water_sound, 1);

 /* Same as above, but this time for the lava sound. */
 memory = mopen((char *)”lava.ogg”, 1);

c09.indd 193c09.indd 193 12/31/11 9:09:35 AM12/31/11 9:09:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

194 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

 lava_soundbuffer =
 SOUNDBUFFER_load((char *)”lava”, memory);
 mclose(memory);
 lava_sound =
 SOUND_add((char *)”lava”, lava_soundbuffer);
 objmesh = OBJ_get_mesh(obj, “lava”, 0);
 SOUND_set_location(lava_sound,
 &objmesh->location,
 objmesh->radius);
 SOUND_set_volume(lava_sound, 0.5f);
 SOUND_play(lava_sound, 1);

 /* And fi nally for the toxic waste sound under the last bridge. */
 memory = mopen((char *)”toxic.ogg”, 1);
 toxic_soundbuffer =
 SOUNDBUFFER_load((char *)”toxic”, memory);
 mclose(memory);
 toxic_sound =
 SOUND_add((char *)”toxic”, toxic_soundbuffer);
 objmesh = OBJ_get_mesh(obj, “toxic”, 0);
 SOUND_set_location(toxic_sound,
 &objmesh->location,
 objmesh->radius);
 SOUND_set_volume(toxic_sound, 0.5f);
 SOUND_play(toxic_sound, 1);

 4. Now load the background music as a streamed buffer the same way you did in the Piano
Game. Append the following block right below the code you added in step 3:

 /* Load the background sound as a streamed buffer. */
 memory = mopen((char *)”background.ogg”, 1);
 background_soundbuffer =
 SOUNDBUFFER_load_stream((char *)”background”, memory);
 background_sound =
 SOUND_add((char *)”background”, background_soundbuffer);
 SOUND_set_volume(background_sound, 0.5f);
 /* Play the background sound in a loop. */
 SOUND_play(background_sound, 1);
 /* Start the decompression thread. */
 THREAD_play(thread);
 /* Don’t free the memory, because you need to keep it alive in local
memory for streaming. */

 5. Add the following line of code in the decompress_stream thread callback function to handle
the chunks decompression and to update the queue for the background_sound source:

 SOUND_update_queue(background_sound);

 6. As usual, you now have to clean up whatever you have initialized when the app exits or
when the level is freed. To do this, add the following block at the top of the free_level
function, right after the function start bracket:

 unsigned int i = 0;
 /* Pause the thread, because you don’t want the process to

c09.indd 194c09.indd 194 12/31/11 9:09:35 AM12/31/11 9:09:35 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rolling Ball Game ❘ 195

continue to decompress while you are trying to free the background
music. That would make your app crash for sure. */
 THREAD_pause(thread);
 /* Free the background sound source. */
 background_sound = SOUND_free(background_sound);
 /* Because the background music was streamed, free the sound buffer from
the local memory structure. */
 background_soundbuffer->memory = mclose(background_soundbuffer->memory);
 /* It is now okay to free the sound buffer. */
 background_soundbuffer = SOUNDBUFFER_free(background_soundbuffer);

 /* Loop while you’ve got a gem colors. */
 while(i != 4) {
 /* Free the sound source and the associated buffer. */
 gems_sound[i] = SOUND_free(gems_sound[i]);
 gems_soundbuffer[i] = SOUNDBUFFER_free(gems_soundbuffer[i]);
 ++i;
 }

 /* Now deal with the water, lava, and toxic stuff sound sources
and buffers. */
 water_sound = SOUND_free(water_sound);
 water_soundbuffer = SOUNDBUFFER_free(water_soundbuffer);

 lava_sound = SOUND_free(lava_sound);
 lava_soundbuffer = SOUNDBUFFER_free(lava_soundbuffer);

 toxic_sound = SOUND_free(toxic_sound);
 toxic_soundbuffer = SOUNDBUFFER_free(toxic_soundbuffer);

 7. Build and run the application. As expected, the background music starts playing, and
in the background, you can hear the water sound (since it’s the closest positional source
near the starting point of the level).

In the next section, you are going to learn how to implement the player control based on the device
accelerometer and adjust the listener position and direction.

Accelerometer-Driven Camera

In Chapter 7, you learned about multiple types of camera implementations. However, for certain
types of games (such as the rolling ball game that you’re currently coding), the easiest and the most
user-friendly way to handle the player and camera controls is to use the accelerometer.

The accelerometer may sound scary at fi rst, but I can assure you that it is as easy as dealing with the
touch screen. Once again, you’ll be strictly dealing with a direction vector.

By default, the accelerometer is turned off in this book’s template, because it is not needed for
most of the exercises. To enable the accelerometer on iOS, open the templateAppDelegate.mm
(under the Classes folder of your Xcode project) and uncomment the following lines inside the
didFinishLaunchingWithOptions function:

 [[UIAccelerometer sharedAccelerometer]
 setUpdateInterval:(1.0f / 24.0f)];
 [[UIAccelerometer sharedAccelerometer] setDelegate:self];

c09.indd 195c09.indd 195 12/31/11 9:09:36 AM12/31/11 9:09:36 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

196 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

For Android, open the templateApp.java fi le and uncomment the following lines inside the
onCreate method of the templateApp class:

 mSensorManager =
 (SensorManager) getSystemService(SENSOR_SERVICE);
 mSensorManager.registerListener(
 this,
 mSensorManager.getDefaultSensor(
 SensorManager.SENSOR_ACCELEROMETER),
 41000);

With this code in place, every time the accelerometer is refreshed internally by your device, you will
receive a live feedback with the latest values recorded by the hardware (sent by default using the
template to the templateAppAccelerometer function).

Once these values are collected, all you have to do is to pass them back to your application.

However, please note that the accelerometer can only be used on a real device. If you are using the
iOS Simulator, for example, the accelerometer won’t work.

To learn how to handle the player (or in this case, the ball) and camera controls using the
accelerometer, follow these steps:

 1. At the top of the templateApp.cpp fi le, declare the following global variables to control the
player angular velocity and camera position:

/* The current accelerometer X and Y values. Because the application runs
in landscape mode, X is used to go forward and backward, and Y is used to
control the Z rotation of the camera. */
vec2 accelerometer = { 0.0f, 0.0f },
 /* The next accelerometer values to linearly interpolate to. Similar
to the touch screen on some devices, the accelerometer values can be quite
jumpy. In order to have a smooth motion, you will have to use linear
interpolation. */
 next_accelerometer = { 0.0f, 0.0f };
/* The maximum speed of the ball. */
fl oat ball_speed = 6.7f,
/* The sensitivity of the accelerometer. */
 sensitivity = 3.0f;
/* The current game state. 0 indicates that the game is running, 1 indicates
that the level is cleared, and 2 indicates that the level has to be
reloaded. You will be implementing the logic code later, but for now,
you’ll declare the game state to be able to determine if the player is able
to control the ball or not based on the current game state. */
unsigned char game_state = 0;

 2. Move to the templateAppAccelerometer callback and add the following code inside the
function brackets:

 /* Store and normalize the XYZ value of the accelerometer. These values
differ from iOS to Android, so working with a normalized vector will keep
things easier. */
 vec3 tmp = { x, y, z };

c09.indd 196c09.indd 196 12/31/11 9:09:36 AM12/31/11 9:09:36 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rolling Ball Game ❘ 197

 vec3_normalize(&tmp, &tmp);
 /* Add a little offset to the X axis of the accelerometer. The 0
position typically means that the device is fully fl at, but because this
game is in landscape mode and the player is holding the device in their
hands, the 0 position should be slightly inclined. */
 accelerometer.x = tmp.x + 0.35f;
 The 0 value on the Y axis differs from iOs to Android on some devices
(such as the iPod Touch 4G and Nexus S, which I use). To compensate for
this difference on the Y axis of the accelerometer, check which platform
you are dealing with and adjust it accordingly. */
 #ifndef __IPHONE_4_0 /* Valid for every iOS version greater or
equal to 4.0 */
 accelerometer.y = tmp.y + 0.35f;
 #else
 accelerometer.y = tmp.y;
 #endif

 3. Jump to the templateAppDraw function and insert the following block of code right
after the GFX_load_identity of the MODELVIEW matrix. This code will control the player
movement and camera rotation based on the accelerometer normalized data.

 /* Linearly interpolate the accelerometer values to get a smooth
transition. */
 next_accelerometer.x =
 accelerometer.x * 0.1f + next_accelerometer.x * 0.9f;
 next_accelerometer.y =
 accelerometer.y * 0.1f + next_accelerometer.y * 0.9f;

 /* Assign the current Y rotation of the accelerometer to the Z rotation
of the camera, multiplied by the accelerometer sensitivity factor. */
 rotz += next_accelerometer.y * sensitivity;

 /* The forward vector of the ball. */
 vec3 forward = { 0.0f, 1.0f, 0.0f },
 /* The current direction vector of the ball. Basically, this is the
forward vector rotated by the camera’s Z rotation. */
 direction;
 /* If the game is running, let the user move the ball. */
 if(!game_state) {
 /* Pre-calculate a few variables before rotating the forward vector
by the camera’s Z rotation. */
 fl oat r = rotz * DEG_TO_RAD,
 c = cosf(r),
 s = sinf(r);
 /* Rotate the forward vector and store the result into the
direction variable. Because both vectors are already normalized,
there’s no need to re-normalize them again. */
 direction.x = c * forward.y - s * forward.x;
 direction.y = s * forward.y + c * forward.x;
 /* Calculate the current angular velocity (the speed) that should be
applied on the ball based on the value of the accelerometer that you will
be using as the force factor. Then clamp the result to make sure that the
speed is between the maximum and minimum ball_speed thresholds. */
 fl oat speed =

c09.indd 197c09.indd 197 12/31/11 9:09:36 AM12/31/11 9:09:36 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

198 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

 CLAMP((-next_accelerometer.x * sensitivity) * ball_speed,
 -ball_speed,
 ball_speed);
 /* Assign the direction vector multiplied by the current speed to the
angular velocity of the ball. */
 player->btrigidbody->setAngularVelocity(
 btVector3(direction.x * speed,
 direction.y * speed,
 0.0f));
 /* Activate the rigid body to make sure that the angular velocity
will be applied. */
 player->btrigidbody->setActivationState(ACTIVE_TAG);
 }

 4. Now that your camera and player controls are all set up, you have to adjust the listener
position and orientation to fi t the current camera location and viewing direction relative to
the player. Insert the following code right before the GFX_look_at call:

 /* Calculate the direction vector from the player to the current eye
location. (If you did this the other way around, the listener orientation
would be inverted.) */
 vec3_diff(&direction, &player->location, &eye);
 /* Normalize the direction vector. */
 vec3_normalize(&direction, &direction);
 /* Use this book’s audio API to set the listener location, direction,
and up vector. (As you might have noticed, this function is very similar to
the GFX_look_at that you have already used quite a bit.) */
AUDIO_set_listener(&eye, &direction, &up);

 5. Build and run the program for your device (since the accelerometer does not work in the
simulator). You can now use the accelerometer to make the ball roll, allowing you to “roll”
your way into the 3D world. Notice as you move around that you get real-time feedback
about the location and intensity of the positional sound sources you created earlier.

As you navigate through the level and observe the environment, you’ll notice that there are a
few things that are not quite right. The textures of the substances below the bridges are just
plain-colored, and the gems basically block your way. In the next section, you will learn how to
implement some simple yet visually appealing effects to improve the quality of your game.

Cheap FX

There are several visual effects that you can easily implement to enhance how your apps appear
onscreen. Two of these effects, texture scroll and basic fog, are already implemented in the rolling ball
game code. In this section, you’ll learn how to adjust these two effects to make your game look better.

Texture Scroll

Animating or dynamically generating textures in real time can be quite expensive, both for the CPU
and GPU. Whether it is water fl owing or clouds moving in the sky, a cheap (in terms of computation)
alternative is to use the texture matrix to translate, rotate, and scale your UVs in real time.

c09.indd 198c09.indd 198 12/31/11 9:09:37 AM12/31/11 9:09:37 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rolling Ball Game ❘ 199

In the current scene, the code to do texture scrolling is already implemented in the scroll_texture
.gfx shader like this:

texcoord0 =
vec2(TEXTUREMATRIX *
 vec4(TEXCOORD0.x, TEXCOORD0.y, 1.0, 1.0));

Now all you have to do to animate the water, lava, and toxic liquid under the bridges is to translate
the TEXTURE matrix and send it over to the scroll_texture shader.

To send over the texture matrix, locate the program_draw function callback (inside
templateApp.cpp), and insert the following lines of code before the incrementation of the
i variable (++i):

/* Check if you are dealing with the TEXTUREMATRIX uniform. */
else if(!strcmp(program->uniform_array[i].name,
 “TEXTUREMATRIX”)) {
 /* Declare a static vec2 variable to keep track of the scroll value. */
 static vec2 scroll = { 0.0f, 0.0f };
 /* Set the focus on the texture matrix. */
 GFX_set_matrix_mode(TEXTURE_MATRIX);
 /* Push it down. */
 GFX_push_matrix();
 /* Increment the UV scroll value. */
 scroll.x += 0.0025f;
 scroll.y += 0.0025f;
 /* Translate the matrix as you would normally do with any other type
of matrix. */
 GFX_translate(scroll.x, scroll.y, 0.0f);
 /* Send the matrix over to the vertex shader. */
 glUniformMatrix4fv(program->uniform_array[i].location,
 1,
 GL_FALSE,
 /* Another GFX helper, this one is to retrieve the
current texture matrix on top of the stack. */
 (float *)GFX_get_texture_matrix());
 /* Pop back the matrix. */
 GFX_pop_matrix();
 /* Restore the current matrix mode back to the model view matrix. */
 GFX_set_matrix_mode(MODELVIEW_MATRIX);
}

Now build and run the program and head right to the fi rst bridge. You should see the water texture
scrolling based on the code you just added.

Basic Fog

You must have already noticed while running the scene that at the clip end, there is a light fog that
basically blends in with the glClearColor.

Fog is widely used in games, because it is a great way to make it look like a scene is actually larger
than it is. However, as the complexity of a scene increases, it is crucial that you keep the clip end
values as tight as possible in order to avoid having too many objects to be rendered for each frame.

c09.indd 199c09.indd 199 12/31/11 9:09:37 AM12/31/11 9:09:37 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

200 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

Fog calculations can be expensive. This is because they are typically done on a fragment basis to
provide the best visual results.

As a quick fi x, here’s a cheap one-line fog calculation method that you can add to your shaders to
integrate a misty effect at the end of the far plane of your scenes:

/* Use the mix instructions to blend the texture color with an arbitrary
fog color based on the distance of the fragment onscreen. */
gl_FragColor = mix(texture2D(DIFFUSE, texcoord0),
 /* The fog color. */
 vec4(1.0, 1.0, 1.0, 0.0),
 /* The distance of the fragment divided by the far
clipping plane distance, the clip end parameter. */
 (gl_FragCoord.z / gl_FragCoord.w) /
 50.0);

Note that this code has to be implemented in every shader program containing the objects that you
want to use the fog effect on. You can fi nd examples of this implementation in the diffuse.gfx and
scroll_texture.gfx fi les.

Game Logic and Tweaks

All that’s left for you to do is integrate the necessary logic code to pick up gems, calculate points,
and restart the level when the player reaches the end target. Follow these steps to turn your rolling
ball game into a fully playable, addictive game:

 1. Declare the following global variables at the top of the templateApp.cpp source fi le:

/* The current time spent inside the level. */
fl oat game_time = 0.0f,
/* Boost the reference distance of the positional sound sources of the gems
(since the gem radius is pretty small). */
 gem_factor = 20.0f;
/* Total points gathered in the level so far. */
unsigned int gem_points = 0;

 2. In the contact_added_callback function, before the return statement, add the following
code to allow the player to pick up the gems and trigger the “Level Clear” game state if the
ball touches the target object named level_clear:

/* If one of the mesh object names is like “level_clear” it means that the
ball has reached the end target. Set the game state to 1 to indicate that
the level has to be restarted. */
if((strstr(objmesh0->name, “level_clear”) ||
 strstr(objmesh1->name, “level_clear”)))
 game_state = 1;
/* If the two mesh objects that are involved in the collision are a gem and
the player. */
else if((strstr(objmesh0->name, “player”) ||
 strstr(objmesh1->name, “player”))
 &&
 (strstr(objmesh0->name, “gem”) ||

c09.indd 200c09.indd 200 12/31/11 9:09:37 AM12/31/11 9:09:37 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rolling Ball Game ❘ 201

 strstr(objmesh1->name, “gem”))) {
 /* To store the gem mesh pointer and its collision object. */
 OBJMESH *objmesh = NULL;
 btCollisionObject *btcollisionobject = NULL;

 /* Depending on which mesh (either 0 or 1) is the gem, store the
appropriate pointers. */
 if(strstr(objmesh0->name, “gem”)) {
 objmesh = objmesh0;
 btcollisionobject = (btCollisionObject *)btcollisionobject0;
 }
 else {
 objmesh = objmesh1;
 btcollisionobject = (btCollisionObject *)btcollisionobject1;
 }

 /* Temporary variable to store the gem index for the sound source based
on the name of the current gem that gets picked up by the player. */
 unsigned char index = 0;
 /* If it’s a red gem, add one gem point and store the index number 0. */
 if(strstr(objmesh->name, “red”)) {
 gem_points += 1;
 index = 0;
 }
 /* Same as above for the rest of the gem colors. */
 else if(strstr(objmesh->name, “green”)) {
 gem_points += 2;
 index = 1;
 }
 else if(strstr(objmesh->name, “blue”)) {
 gem_points += 3;
 index = 2;
 }
 else if(strstr(objmesh->name, “yellow”)) {
 gem_points += 4;
 index = 3;
 }

 /* Set the location of the sound source for the appropriate gem picked
up and use the current location and radius of the mesh to modify the sound
source location and reference distance. */
 SOUND_set_location(gems_sound[index],
 &objmesh->location,
 /* Gems have a small radius. Give it a boost so the
player will hear the sound more clearly. */
 objmesh->radius * gem_factor);
 /* Play the sound source. */
 SOUND_play(gems_sound[index], 0);
 /* Set the current gem mesh to be invisible. It has been picked up, so
you don’t want to draw it again. */
 objmesh->visible = 0;
 /* Remove the rigid body and associated data from the physical
world. When a gem is picked, it cannot be part of the physics

c09.indd 201c09.indd 201 12/31/11 9:09:38 AM12/31/11 9:09:38 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

202 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

simulation any more. */
 delete objmesh->btrigidbody->getCollisionShape();
 delete objmesh->btrigidbody->getMotionState();
 dynamicsworld->removeRigidBody(objmesh->btrigidbody);
 dynamicsworld->removeCollisionObject(btcollisionobject);
 delete objmesh->btrigidbody;
 objmesh->btrigidbody = NULL;
}

 3. The code that you added in the previous step will not have any effect until you
enable the material collision callback on the rigid body of the objects. Move to the
load_level function and append the following code block on the line after the
gContactAddedCallback affection code:

 /* Get the mesh object name level_clear, which is the cylinder located
in the middle of the level end target. */
 OBJMESH *level_clear = OBJ_get_mesh(obj, “level_clear”, 0);

 /* On top of the usual CF_CUSTOM_MATERIAL_CALLBACK collision fl ag,
add CF_NO_CONTACT_RESPONSE. This collision fl ag makes your rigid
body object
act like a ghost, meaning that it will not respond to collision. This can
be used to turn off the collision response of any rigid body, which is
great for this typical scenario, where you only want the object to trigger
the callback. */
 level_clear->btrigidbody->setCollisionFlags(
 level_clear->btrigidbody->getCollisionFlags() |
 btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK |
 btCollisionObject::CF_NO_CONTACT_RESPONSE);

 /* Make the level_clear mesh invisible for rendering. */
 level_clear->visible = 0;

 /* In the following block, you are going to loop through all the objects
and turn on the material collision callback for all of the gems. And while
you are there, you’ll give the gems a random rotation so you can animate
them inside the rendering loop later on. */
 i = 0;
 while(i != obj->n_objmesh) {
 /* Get the current mesh pointer. */
 OBJMESH *objmesh = &obj->objmesh[i];
 /* Check if the name is like “gem.” */
 if(strstr(objmesh->name, “gem”)) {
 /* Generate a random rotation angle on the Z axis. */
 objmesh->rotation.z = (fl oat)(random() % 360);
 /* Set the material collision callback for the current rigid body
attached to the mesh object. */
 objmesh->btrigidbody->setCollisionFlags(
 objmesh->btrigidbody->getCollisionFlags() |
 btCollisionObject::CF_CUSTOM_MATERIAL_CALLBACK);
 }
 ++i; /* Next object please. */
 }

c09.indd 202c09.indd 202 12/31/11 9:09:38 AM12/31/11 9:09:38 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rolling Ball Game ❘ 203

 4. At the top of the free_level function, right after the function start bracket, add the
following affectations to reset the game state and other level-related variables:

gem_points =
game_state = 0;
game_time = 0.0f;

 5. To load the next level (or in this case, simply reload the current one since there is no other
level) if the game state is currently set to “reset” (2), add the following code after the start
bracket of the templateAppDraw function:

 if(game_state == 2) {
 free_level();
 load_level();
 }

 6. Inside the templateAppDraw function, on the line right before the
if(objmesh->btrigidbody) call, add the following code to position and rotate the
gem objects:

/* Check if the current objmesh name contains “gem.” If yes, don’t ask
Bullet for the transformation matrix and handle the position and rotation
manually. */
if(strstr(objmesh->name, “gem”)) {
 GFX_translate(objmesh->location.x,
 objmesh->location.y,
 objmesh->location.z);
 objmesh->rotation.z += 1.0f;
 GFX_rotate(objmesh->rotation.z, 0.0f, 0.0f, 1.0f);
}
/* Turn the current if(objmesh->btrigidbody) into an else-if. */
else

 7. Before the end bracket of the templateAppDraw, integrate the following code block to print
onscreen the current gem points the player has collected, the game time, or if the level is
cleared:

 /* Color to use for the font, starting with black. */
 vec4 font_color = { 0.0f, 0.0f, 0.0f, 1.0f };
 /* Some temporary strings. */
 char gem_str [MAX_CHAR] = {“”},
 time_str [MAX_CHAR] = {“”},
 level_str[MAX_CHAR] = {“”};
 /* If the game state is different than 0. */
 if(game_state) {
 /* Build the string for level_clear. */
 sprintf(level_str, “Level Clear!”);
 /* Print on the screen (a bit up the center) that the level is
cleared, fi rst in black with an offset down right, and then in yellow
without an offset. */
 FONT_print(font_big,
 viewport_matrix[3] * 0.5f -
 FONT_length(font_big, level_str) * 0.5f + 4.0f,

c09.indd 203c09.indd 203 12/31/11 9:09:38 AM12/31/11 9:09:38 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

204 ❘ CHAPTER 9 AUDIO AND OTHER COOL GAME PROGRAMMING STUFF

 viewport_matrix[2] -
 font_big->font_size * 1.5f - 4.0f,
 level_str,
 &font_color);
 /* Yellow. */
 font_color.x = 1.0f;
 font_color.y = 1.0f;
 font_color.z = 0.0f;
 FONT_print(font_big,
 viewport_matrix[3] * 0.5f -
 FONT_length(font_big, level_str) * 0.5f,
 viewport_matrix[2] -
 font_big->font_size * 1.5f,
 level_str,
 &font_color);
 }

 /* Make sure the color is black (since you might have change it in the
condition above). */
 font_color.x = 0.0f;
 font_color.y = 0.0f;
 font_color.z = 0.0f;

 /* Create the strings and print the gem points and the game time. */
 sprintf(gem_str, “Gem Points:%02d”, gem_points);
 sprintf(time_str, “Game Time:%02.2f”, game_time * 0.1f);

 FONT_print(font_small,
 viewport_matrix[3] -
 FONT_length(font_small, gem_str) - 6.0f,
 (font_small->font_size * 0.5f),
 gem_str,
 &font_color);

 FONT_print(font_small,
 8.0f,
 (font_small->font_size * 0.5f),
 time_str,
 &font_color);

 /* Yellow. */
 font_color.x = 1.0f;
 font_color.y = 1.0f;
 font_color.z = 0.0f;

 FONT_print(font_small,
 viewport_matrix[3] -
 FONT_length(font_small, gem_str) - 8.0f,
 (font_small->font_size * 0.5f),
 gem_str,
 &font_color);

 FONT_print(font_small,
 6.0f,

c09.indd 204c09.indd 204 12/31/11 9:09:38 AM12/31/11 9:09:38 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary ❘ 205

 (font_small->font_size * 0.5f),
 time_str,
 &font_color);
 /* Use the background sound source time to increase the total game time
by requesting from OpenAL the current sound source playback time. */
 if(!game_state) game_time += SOUND_get_time(background_sound);

 8. Move to the templateAppToucheBegan callback and add the following code between the
function brackets to let the user restart the level if the level is clear:

if(game_state == 1 && tap_count >= 2) game_state = 2;

 9. Compile and execute the program.

At the end of the game, your screen should look
exactly like Figure 9-4.

A few more levels and lines of code, a bit of 3D
modeling and texturing here and there, and the
game is ready to hit the stores!

SUMMARY

This chapter covered a lot of ground. You can now make full use of OpenAL, either manually or
with this book’s audio API. You can create static and positional sound sources as well as stream a
large, compressed OGG audio fi le into another thread.

You learned how to select something onscreen using the color buffer, and you now have the
knowledge to apply this technique in 2D, 2.5D, and 3D.

With the information that you’ve gathered about the accelerometer, you can now create other types
of controls for your camera and characters. And you now have the ability to link an OpenAL listener
to your camera to increase the level-immersive experience of the player.

In addition, you can now easily prepare a framework to let external artist(s) build scenes and link
GFX shader fi les, as well as test their models directly inside your game engine.

Finally, with what you have learned about texture animation, you can simulate water, clouds, lava,
and a wide range of other effects. With fog added to your scene, you can now keep a shorter far-
clipping plane, which will allow you to render more objects.

Before jumping to the next chapter, make sure you review all of the tutorials and techniques that
were covered in this chapter. Then when you are ready, move on to the next chapter, which is about
advanced lighting.

FIGURE 9-4: Finished rolling ball game

c09.indd 205c09.indd 205 12/31/11 9:09:39 AM12/31/11 9:09:39 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c09.indd 206c09.indd 206 12/31/11 9:09:39 AM12/31/11 9:09:39 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Advanced Lighting

WHAT’S IN THIS CHAPTER?

Learning the diff erent lamp types

Implementing global per-pixel lighting using normal maps

Implementing a directional lamp

Implementing a point light

Learning how to handle light attenuation

Implementing a spherical point light

Implementing a spot light with soft edges

Learning the basics to implement a dynamic lighting system

In this chapter, I will strictly focus on teaching you how to create multiple types of per-pixel
lamps using normal mapping (since I personally don’t see the point of per-pixel lighting
without normal maps). You will revisit what you learned about lighting earlier in this book
and push the implementation to the next level.

You will fi rst start learning about the main categories of lamps that exist in the real world.
Then you will gradually implement different types of lamps in conjunction with other lighting-
related effects to fi nally end up creating a somewhat complex and dynamic lighting system
that you can then easily reuse inside your games and 3D apps.

➤

➤

➤

➤

➤

➤

➤

➤

10

c10.indd 207c10.indd 207 12/31/11 9:11:12 AM12/31/11 9:11:12 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

208 ❘ CHAPTER 10 ADVANCED LIGHTING

TYPES OF LAMPS

In the real world, there are basically three categories of lamps that you see in your everyday life. In
order to create realistic 3D worlds, you will have to be able to identify them and handle them in code.
That said, here are the three basic types of lamps that you will have to deal with:

Directional: This type is determined when a light source has constant direction parallel
light rays which do not diminish with distance. The best example of this type of light is the
sun. Wherever you go, the direction of the sun will determine the lighting condition of
the world around you based on the direction of its light ray. In 3D, directional lights can
also be used to fake a kind of overall ambient illumination using more than one sun to
reproduce lifelike lighting conditions.

Point: Point light can be defi ned when a lamp provides an omnidirectional lighting source.
This type of light illuminates the objects around it based on their current location relative to
the point light position in space.

Spot: This is basically a directional cone of light, like a street lamp or a projector. Spot
lights illuminate only the objects that are contained within the light cone that they project.

Lamps are expensive and quite a burden for the GPU, because they require a lot of calculations in
order to be realistic. However, there is a middle ground that provides you with good-looking lamps
at a relatively cheap computation cost. And this is the middle ground that you will touch base with
inside this chapter.

Before diving deeper into the different lamp implementations covered in this chapter, please note
that the number of calculations required has a direct impact on how many pixels have to be lighted
onscreen. The more lamps and the more pixels you have to dynamically handle onscreen, the slower
your application will get. Always try to minimize the number of objects and pixels that have to be
dynamically lighted in order to maintain good performance.

Only use dynamic lamps for objects that are dynamic or animated. For static objects, bake some
light maps! You can easily create light maps using any decent 3D modeling software.

Baking light maps will allow you to pre-calculate and write to a texture the current lighting and/or
shadowing conditions of your scene (but only for static objects). Then at run time, all you have to
do is load these textures as you normally do, and modulate (multiply or mix) them with the diffuse
channel to apply the pre-computed lighting and/or shadowing calculations to your objects.

LET THERE BE LIGHT

As you already know, for each lamp that you have in your scene, a specifi c entry for it will have to
be present in your vertex and fragment shaders. For large and dynamic scenes, hard-coding each
light one-by-one or having multiple shader programs that handle a specifi c amount or type of lamp
can be quite diffi cult to maintain.

In this section’s exercise (and throughout this chapter), you will learn how to implement different
dynamic lighting methods that you can then scale up for your specifi c needs.

➤

➤

➤

c10.indd 208c10.indd 208 12/31/11 9:11:15 AM12/31/11 9:11:15 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let There Be Light ❘ 209

For the sake of this exercise, you will fully illuminate each object of a scene. However, in a real
game scenario, you should only tag objects that require dynamic lighting to make sure that only
these objects are affected by the lamps.

On mobile devices, globally illuminating a scene in real time is almost impossible due to the limited
processing power. In your own applications I suggest that you mark the object(s) that should be
affected by dynamic lamps. For example, you can add a specifi c tag in the object names or use any
other method that is convenient for you.

To start off the exercise, duplicate the template_chapter10-1 project directory and
rename it chapter10-1. Load the project, and then build and run it to get a feel
for the environment that you are going to illuminate dynamically as illustrated in
Figure 10-1.

Most of the work in this chapter will focus
mainly on the lighting.gfx fi le (already
linked to the template project for this chapter).
In this fi le, you will implement multiple lighting
functions that will receive in parameter a lamp
structure. By creating this system, you will then
be able to handle multiple lights of different
types using the same shader program. You’ll
learn how to do that later in this chapter.

Before getting into complex lighting, you’re going to learn how to implement the lamp types
individually, beginning with a directional lamp. Open the templateApp.cpp and follow these steps:

 1. At the top of the fi le (right above the program_bind_attrib_location function), create the
following LAMP structure and a pointer variable of that same type to handle a directional
lamp:

typedef struct {
 char name[MAX_CHAR];
 vec4 color;
 vec3 direction;
 unsigned char type;
} LAMP;

LAMP *lamp = NULL;

 2. Add the following function to initialize the structure for a new directional lamp:

LAMP *LAMP_create_directional(char *name,
 vec4 *color,
 fl oat rotx,
 fl oat roty,
 fl oat rotz) {
 /* Declare the up axis vector to be static, because it won’t change. */
 static vec3 up_axis = { 0.0f, 0.0f, 1.0f };

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 10-1: Scene with only a diff use texture

c10.indd 209c10.indd 209 12/31/11 9:11:15 AM12/31/11 9:11:15 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

210 ❘ CHAPTER 10 ADVANCED LIGHTING

 /* Allocate memory for a new LAMP structure. */
 LAMP *lamp = (LAMP *) calloc(1, sizeof(LAMP));
 /* Assign the name received in parameter to the structure, because it is
always nice to have an internal name for each structure. */
 strcpy(lamp->name, name);
 /* Assign the color to the lamp. */
 memcpy(&lamp->color, color, sizeof(vec4));
 /* Use the following helper function (which can be found in utils.cpp)
to rotate the up axis by the XYZ rotation angle received as parameters.
I think it’s a lot easier to deal with angles when it comes to direction
vectors. */
 create_direction_vector(&lamp->direction,
 &up_axis,
 rotx,
 roty,
 rotz);
 /* Set the type of the lamp as 0 for directional. */
 lamp->type = 0;
 /* Return the new lamp pointer. */
 return lamp;
}

 3. Because you initialized the structure in memory, you need to add the following function to
free it:

LAMP *LAMP_free(LAMP *lamp) {
 free(lamp);
 return NULL;
}

 4. In the templateAppInit function (before the end bracket), create a new directional lamp
using the structure and function that you created previously:

vec4 color = { 1.0f, 1.0f, 1.0f, 1.0f };
lamp = LAMP_create_directional(/* The internal name of the lamp. */
 (char *)”sun”,
 /* The lamp color. */
 &color,
 /* The XYZ rotation angle in degree that
will be used to create the lamp direction vector. */
 -25.0f,
 0.0f,
 -45.0f);

You might be asking yourself, “How come there is no position?” For a directional lamp, the
position is irrelevant. As mentioned earlier, directional lamps cast a constant parallel ray
light source, which explains why an XYZ position is not required. Wherever your geometry
is located, the light will affect it the same way.

 5. Inside the templateAppExit function, add the following line to free the directional lamp
from the memory when the app exits:

lamp = LAMP_free(lamp);

c10.indd 210c10.indd 210 12/31/11 9:11:16 AM12/31/11 9:11:16 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let There Be Light ❘ 211

Before going deeper into the C/C++ implementation of this exercise (such as sending uniforms to
the shader), open the lighting.gfx fi le and follow the instructions in the next section in order
to implement the directional lamp function and start building the shaders to handle the different
types of lamps that you will be creating in this chapter.

Directional Lamp Shader

Since your goal is to create something that you can reuse inside you own apps, you will start by creating
structures inside the shader that are similar to the ones you are handling inside your C/C++ code.

GLSL fully supports structures in a way that is similar to how C handles them. Structures can make
your shader code a lot cleaner, and you can use them to create dynamic functions that can receive a
struct in parameter.

To start implementing the necessary code for your directional lamp, complete the following steps.
(You will only focus on per-pixel lighting with normal mapping, because per-vertex lighting is so
GLES v1 and uncool.)

 1. Create the following struct in GLSL on the line below the GL_VERTEX_SHADER tag
defi nition:

/* Create a lamp structure that has a direction property (because that is
the only one that you need right now for the vertex processing phase).*/
struct lamp {
 lowp vec3 direction;
};

 2. Replace the following line in the GL_VERTEX_SHADER section of the GFX fi le:

uniform highp mat4 MODELVIEWPROJECTIONMATRIX;

with the following code block to handle the different matrices required by the vertex
processing phase:

uniform highp mat4 MODELVIEWMATRIX;
uniform highp mat4 PROJECTIONMATRIX;
uniform lowp mat3 NORMALMATRIX;
/* Declare a uniform variable using the struct that you’ve created as the
type of the variable. */
uniform lamp LAMP_VS;

 3. Add the following two varying variables right after the ones that are already declared in
the vertex shader section:

/* The position of the vertex, is originally calculated in eye space and
then converted to tangent space (because you are going to use normal
mapping, and the normal map is in tangent space). */
varying highp vec3 position;
/* The light direction vector, sent over by the C/C++ application in
eye space and then converted to tangent space. */
varying highp vec3 lightdir;

c10.indd 211c10.indd 211 12/31/11 9:11:16 AM12/31/11 9:11:16 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

212 ❘ CHAPTER 10 ADVANCED LIGHTING

 4. Find the line starting with gl_Position and replace it with the following code block to
calculate the TBN (tangent, binormal, normal) matrix, the position, and the lamp direction:

 /* Declare a 3x3 matrix to handle the TBN matrix to be able to convert
the necessary lighting vectors to tangent space. */
 lowp mat3 tbn;
 /* Rotate the vertex normal by the current normal matrix. */
 tbn[2] = normalize(NORMALMATRIX * NORMAL);
 /* Rotate the tangent vector, which was created based on the direction
of the normal and the UV coordinate (see obj.cpp for more information). */
 tbn[0] = normalize(NORMALMATRIX * TANGENT0);
 /* Here the binormal is simply computed by using the cross product of
the normal and the tangent, but you could also calculate it on the CPU to
save some GPU calculations if the object is static. */
 tbn[1] = cross(tbn[2], tbn[0]);
 /* Calculate the position of the vertex in eye space. */
 position = vec3(MODELVIEWMATRIX * vec4(POSITION, 1.0));
 /* Multiply the eye space position of the vertex by the current
projection matrix to be able to place it onscreen. */
 gl_Position = PROJECTIONMATRIX * vec4(position, 1.0);
 /* Convert the lamp direction vector from eye space to tangent space. */
 lightdir = LAMP_VS.direction * tbn;
 /* Convert the eye position of the vertex to tangent space and invert it
(because the direction in eye space is simply the invert of the vertex
eye space position). */
 position = -normalize(position * tbn);

 5. Move to the GL_FRAGMENT_SHADER section of the GFX fi le and add the following struct
declaration on the line after the fragment shader tag defi nition:

/* Declare a material structure (similar to the way you created the lamp
structure in GLSL). As you can see, this material structure uses similar
properties as an OBJMATERIAL structure that you have been using since the
beginning of the book. By doing this, it will be really easy for you to
bridge the material data held in client memory to the video memory. */
struct material {
 lowp vec4 ambient;
 lowp vec4 diffuse;
 lowp vec4 specular;
 mediump fl oat shininess; /* Aka specular exponent. */
};
/* Declare another lamp structure, but this time for the fragment
processing phase. Even if the name is the same as the one in the vertex
shader GLSL, it will still be treated as a different entity, because vertex
and fragment shaders do not share variables (except for varyings). */
struct lamp {
 lowp vec4 color;
};

 6. On the line after the BUMP uniform defi nition, add the following uniforms and varyings:

/* To be able to receive the lamp data for the fragment processing phase. */
uniform lamp LAMP_FS;
/* The current material data used by the geometry you are drawing

c10.indd 212c10.indd 212 12/31/11 9:11:16 AM12/31/11 9:11:16 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let There Be Light ❘ 213

onscreen. */
uniform material MATERIAL;
/* The vertex position (in tangent space). */
varying highp vec3 position;
/* The light direction (in tangent space). */
varying highp vec3 lightdir;

 7. Now create a new function in GLSL on the line just before the main function to be able
to effectuate the necessary calculation for a directional lamp. This function will receive
variables in parameters and use other global variables that have been sent to the shader:

void directional_lamp(in lamp _lamp,
 in lowp vec3 _lightdir,
 inout lowp vec4 _fi nal_color) {
 /* Extract the current normal for the fragment from the normal map
(which is already in tangent space) and convert it to a valid range so you
can deal with it as a regular normal vector. */
 lowp vec3 normal =
 texture2D(BUMP, texcoord0).rgb * 2.0 - 1.0;
 /* Calculate the lambert term (light intensity) for the current
fragment. */
 lowp fl oat ndotl =
 max(dot(normal, _lightdir), 0.0);
 /* If the result is greater than 0, it means that the fragment
received light. */
 if(ndotl > 0.0) {
 /* Calculate the intensity of the specular color by calculating the
dot product of the normal with the half vector (light direction +
position). */
 lowp fl oat ndoth =
 max(dot(normal,
 normalize(_lightdir + position)), 0.0);
 /* Calculate the diffuse color for the current fragment based on the
material diffuse color, the lamp color, and the light intensity. */
 _fi nal_color += MATERIAL.diffuse *
 _lamp.color *
 ndotl;
 /* Do the same for the specular color, except this time calculate the
specular exponent based on the dot product of the specular intensity and
the material specular exponent (shininess or material hardness if you
prefer). */
 _fi nal_color += MATERIAL.specular *
 _lamp.color *
 pow(ndoth, MATERIAL.shininess);
 }
}

 8. Now replace the gl_FragColor line with the following block to call the directional_lamp
function with the current LAMP uniform and lightdir data that the fragment shader
receives:

 /* Declare a new variable to handle the fi nal color of the
fragment and initialize it with the current material ambient color. */

c10.indd 213c10.indd 213 12/31/11 9:11:17 AM12/31/11 9:11:17 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

214 ❘ CHAPTER 10 ADVANCED LIGHTING

 lowp vec4 fi nal_color = MATERIAL.ambient;
 /* Call the directional_lamp function to send in parameter the current
LAMP_FS variable,light direction and the fi nal color to use for the current
fragment. */
 directional_lamp(LAMP_FS, lightdir, fi nal_color);
 /* Execute a simple texture lookup on the diffuse texture channel
and multiply it by the fi nal color accumulated in the
directional_lamp function. */
 gl_FragColor = texture2D(DIFFUSE, texcoord0) * fi nal_color;

Lighting in GLSL can be quite tricky, because it can be done in different spaces, such as in world
space, eye space, or tangent space. Most beginners have issues with lighting due to the fact that their
data are calculated in different spaces.

As a general trick, always keep in mind that it does not really matter in which space you calculate
lighting as long as your data are all converted to that same space. Once your data is unifi ed into the
specifi c space of your choice, you can calculate lighting the same way.

At this point, your shader program is basically ready to run, but as you probably already know, one
last piece is missing inside your C/C++ implementation. You have to pass the uniform variables to
the shader. Read the following section to send over the necessary data to run your application.

Struct as Uniforms

The beauty of using struct in GLSL is that you can handle variables as a whole object (or container
if you prefer). They can also be used as they are in C — within arrays or as function parameters —
which makes them extremely fl exible. With this approach, you can maintain in C/C++ a struct
that is similar to the one in GLSL and assign variables for both the vertex and fragment processing
phase, as you see fi t, using a single reference (very practical!).

Follow these steps to fi nalize your app and integrate the necessary code to send over the uniforms
required by your shader:

 1. Go back to the templateApp.cpp, and inside the program_draw function callback, append
the following code block after the BUMP uniform else if to send over the necessary
matrices to the shader used by the current objmesh pointer:

 // Matrix Data
 else if(!strcmp(program->uniform_array[i].name,
 “MODELVIEWMATRIX”)) {
 glUniformMatrix4fv(
 program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_modelview_matrix());
 }

 else if(!strcmp(program->uniform_array[i].name,
 “PROJECTIONMATRIX”)) {
 glUniformMatrix4fv(
 program->uniform_array[i].location,
 1,

c10.indd 214c10.indd 214 12/31/11 9:11:17 AM12/31/11 9:11:17 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let There Be Light ❘ 215

 GL_FALSE,
 (fl oat *)GFX_get_projection_matrix());
 /* Set the projection matrix to be constant. (You won’t change it
in real time, so you simply need to make sure that the matrix is sent once
to the shader.) */
 program->uniform_array[i].constant = 1;
 }

 else if(!strcmp(program->uniform_array[i].name,
 “NORMALMATRIX”)) {
 glUniformMatrix3fv(
 program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)GFX_get_normal_matrix());
 }

 2. Now send over the material data. Append the following code block on the line right below
the code block of step 1 (and pay attention to the way the MATERIAL uniform property
names are accessed):

 // Material Data
 else if(!strcmp(program->uniform_array[i].name,
 “MATERIAL.ambient”)) {
 glUniform4fv(
 program->uniform_array[i].location,
 1,
 (fl oat *)&objmesh->current_material->ambient);
 /* In this scene, all the materials (in this case, there are only
two) have the exact same properties, so simply tag the uniforms for the
current material to be constant. This will also allow you to get better
performance at runtime, because the data will not be sent over and over for
nothing. */
 program->uniform_array[i].constant = 1;
 }

 else if(!strcmp(program->uniform_array[i].name,
 “MATERIAL.diffuse”)) {
 glUniform4fv(
 program->uniform_array[i].location,
 1,
 (fl oat *)&objmesh->current_material->diffuse);
 program->uniform_array[i].constant = 1;
 }

 else if(!strcmp(program->uniform_array[i].name,
 “MATERIAL.specular”)) {
 glUniform4fv(
 program->uniform_array[i].location,
 1,
 (fl oat *)&objmesh->current_material->specular);
 program->uniform_array[i].constant = 1;
 }

 else if(!strcmp(program->uniform_array[i].name,

c10.indd 215c10.indd 215 12/31/11 9:11:17 AM12/31/11 9:11:17 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

216 ❘ CHAPTER 10 ADVANCED LIGHTING

 “MATERIAL.shininess”)) {
 glUniform1f(
 program->uniform_array[i].location,
 objmesh->current_material->specular_exponent *
 0.128f);
 program->uniform_array[i].constant = 1;
 }

 3. Before dealing with the uniform variables for the LAMP, on the line right before the LAMP_
free function declaration, create the following new function to be able to get the current
light direction in eye space in order to send it over to the shader:

void LAMP_get_direction_in_eye_space(LAMP *lamp,
 mat4 *m,
 vec3 *direction) {
 /* Multiply the current lamp direction by the view matrix received in
parameter to be able to calculate the lamp direction in eye space. */
 vec3_multiply_mat4(direction,
 &lamp->direction,
 m);
 /* Invert the vector, because in eye space, the direction is simply the
inverted vector.*/
 vec3_invert(direction, direction);
}

 4. Go back to the program_draw callback, and on the line right before the end bracket of the
function, add the following code block to deal with the LAMP uniform data. (Note that you
are not including the code to send uniforms inside the while loop of the callback. You will
see why in a later exercise.)

 /* A temp string to dynamically create the LAMP property names. */
 char tmp[MAX_CHAR] = {“”};
 /* Create the uniform name for the color of the lamp. */
 sprintf(tmp, “LAMP_FS.color”);
 /* Get the uniform location and send over the current lamp color. */
 glUniform4fv(
 PROGRAM_get_uniform_location(program, tmp),
 1,
 (fl oat *)&lamp->color);
 /* Check if the lamp type is directional. If yes, you need to send over
the normalized light direction vector in eye space. */
 if(lamp->type == 0) {
 /* Temp variable to hold the direction in eye space. */
 vec3 direction;
 /* Create the lamp direction property name. */
 sprintf(tmp, “LAMP_VS.direction”);
 /* Call the function that you created in the previous step to convert
the current world space direction vector of the lamp to eye space. Note
that at this point, the current model view matrix stack is pushed because
you are currently drawing the object. In order to calculate the right
direction vector of the lamp, what you are interested in is gaining access
to the camera model view matrix. To do this, all you have to do is request
the previous model view matrix, because you push it once in the
templateAppDraw function. */

c10.indd 216c10.indd 216 12/31/11 9:11:17 AM12/31/11 9:11:17 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Point Light ❘ 217

 LAMP_get_direction_in_eye_space(
 lamp,
 &gfx.modelview_matrix[gfx.modelview_matrix_index - 1],
 &direction);
 /* Send over the direction in eye space. */
 glUniform3fv(
 PROGRAM_get_uniform_location(program, tmp),
 1,
 (fl oat *)&direction);
 }

 5. Build and run your app. Your screen
should look exactly the same as in
Figure 10-2.

It’s looking good already, don’t you think?
And this is all running at full speed! The trick
with per-fragment lighting is to run as many
operations as you can on CPU or inside the vertex
processing phase, and use as few instructions
(and branching) as possible inside the fragment
processing phase.

In the next section, you will learn how to implement a point light.

POINT LIGHT

Now that you have the main structure in place for this chapter’s exercises, it’s going to be a lot faster
and easier to implement the other types of lamps.

For adding point light functionalities to your app, start by duplicating the chapter10-1 project and
rename it chapter10-2.

Then, follow these instructions to learn how to modify your existing code to be able to support
point light:

 1. In templateApp.cpp, add the following property inside the LAMP structure defi nition
(typedef struct):

/* The position of the lamp in world coordinates. */
vec4 position;

Contrary to directional lamps, point lights are all about where in space they are located. Point
lamps will illuminate the fragment based on the direction of the vertex and the lamp position.

 2. Now create a new helper function to create a point light. Insert the following function on
the line after the end bracket of the LAMP_create_directional declaration (in order to
keep all the creation functions together):

LAMP *LAMP_create_point(char *name,
 vec4 *color,
 vec3 *position) {

FIGURE 10-2: Directional lamp with normal mapping

and specularity

c10.indd 217c10.indd 217 12/31/11 9:11:18 AM12/31/11 9:11:18 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

218 ❘ CHAPTER 10 ADVANCED LIGHTING

 LAMP *lamp = (LAMP *) calloc(1, sizeof(LAMP));
 strcpy(lamp->name, name);
 memcpy(&lamp->color, color, sizeof(vec4));
 /* Assign the position received in parameter to the current lamp
pointer. In addition, make sure that you specify 1 as the W component of
the position, because you are going to need to multiply it by the model
view matrix the same way as if you were dealing with a vertex position in
eye space. */
 memcpy(&lamp->position, position, sizeof(vec3));
 lamp->position.w = 1.0f;
 /* Specify that 1 represents a basic point light that emits a
constant omnidirectional light. */
 lamp->type = 1;
 return lamp;
}

 3. Locate the call where you created your sun earlier (lamp = LAMP_create_directional),
and comment it. Then on the next line, add the following code to create a point light that
calls the helper function you just created:

 /* The 3D position in world space of the point light. */
 vec3 position = { 3.5f, 3.0f, 6.0f };
 /* Create a new LAMP pointer and declare it as a simple point light. */
 lamp = LAMP_create_point((char *)”point”, &color, &position);

 4. You are now ready to add to your current existing shader program the necessary code to
handle this type of lamp. So open the lighting.gfx fi le and proceed to the next section.

Point Light Shader Code

Right now, not much has to be changed inside your existing shader code to be able to handle point
lights. Just follow these steps to make the necessary changes to handle the new type of lamp you just
created:

 1. Add the following position property to the lamp struct of the GL_VERTEX_SHADER section:

/* The XYZ position of the lamp that will be received in eye space (in
other words, already multiplied by the camera model view matrix). Note that
this operation will be handled in C/C++ at runtime. */
highp vec3 position;

 2. Inside the main function of the shader, comment the following line:

lightdir = LAMP_VS.direction * tbn;

And on the next line, add the following code to be able to handle the light direction:

lightdir = (LAMP_VS.position - position) * tbn;

As you can see, this time the light direction for point lights is calculated on a per-vertex basis
relative to the position of the vertex and the position of the lamp. These are both in eye space
at fi rst and are then converted to tangent space so that normal mapping will work correctly.

c10.indd 218c10.indd 218 12/31/11 9:11:18 AM12/31/11 9:11:18 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Point Light ❘ 219

 3. Move to the GL_FRAGMENT_SHADER section to implement the point lamp function. On the
line after the end bracket of the directional_lamp function, insert the following code
block for your point lamp:

/* As you can see, this is very similar to the function you created
for the directional lamp; however there are a few differences. */
void point_lamp(in lamp _lamp,
 in highp vec3 _lightdir,
 inout lowp vec4 _fi nal_color) {
 lowp vec3 normal = texture2D(BUMP, texcoord0).rgb * 2.0 - 1.0;
 /* Normalize the light direction vector in the fragment processing
phase. You will see why in a later exercise. */
 lowp vec3 nlightdir = normalize(_lightdir);
 /* Compare the normal with the normalized light direction based on the
position of the lamp and the vertex. */
 lowp fl oat ndotl = max(dot(normal, nlightdir), 0.0);
 if(ndotl > 0.0) {
 /* Use the normalized version of the light direction vector to
calculate the half vector. */
 lowp fl oat ndoth =
 max(dot(normal, normalize(nlightdir + position)), 0.0);
 _fi nal_color += MATERIAL.diffuse *
 _lamp.color *
 ndotl;
 _fi nal_color += MATERIAL.specular *
 _lamp.color *
 pow(ndoth, MATERIAL.shininess);
 }
}

 4. Finally, comment the following line:

directional_lamp(LAMP_FS, lightdir, fi nal_color);

And on the next line, add the following code to let the shader call your new function:

point_lamp(LAMP_FS, lightdir, fi nal_color);

You now have everything in place to be able to handle both directional and point lamps. All you
have to do is call the appropriate function for the type of lamp you are dealing with.

In order to keep things simple right now, you should only handle one lamp type at a time. However,
you could always use an if statement and send over the current lamp type as a uniform to redirect
the execution pointer to the appropriate lighting function.

The last piece that is missing before you can run the program consists of sending the lamp position
to the shader program. To do that, simply get back to the templateApp.cpp and follow these last
few steps.

 1. To keep things clear and consistent, add the following function on the line after the LAMP_
get_direction_in_eye_space function end bracket to convert an arbitrary lamp position

c10.indd 219c10.indd 219 12/31/11 9:11:18 AM12/31/11 9:11:18 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

220 ❘ CHAPTER 10 ADVANCED LIGHTING

in eye space based on a model view matrix (in this case, the model view matrix of the
current camera):

/* This function is basically very easy. In the same way that you convert
the position in your vertex shader, handle the conversion to eye space here
so you do not have to pass the model view matrix of the camera to the
shader, and offl oad a bit of work from the CPU. */
void LAMP_get_position_in_eye_space(LAMP *lamp,
 mat4 *m,
 vec4 *position) {
 /* Multiply the position by the matrix received in parameters and
assign the result to the position vector. */
 vec4_multiply_mat4(position,
 &lamp->position,
 m);
}

 2. Add the following condition to the current if(lamp->type statement in order to send the
position of the lamp in eye space to the program if the current lamp is a point light:

 else if(lamp->type == 1) {
 vec4 position;
 sprintf(tmp, “LAMP_VS.position”);
 LAMP_get_position_in_eye_space(
 lamp,
 &gfx.modelview_matrix[gfx.modelview_matrix_index - 1],
 &position);
 glUniform3fv(PROGRAM_get_uniform_location(program, tmp),
 1,
 (fl oat *)&position);
 }

 3. You are done with the point light
implementation. Now just compile and
execute the program to achieve the same
lighting effect as demonstrated in
Figure 10-3.

As you can see, the lighting effect achieved from a
point light is drastically different from the effect
of a directional lamp. (Compare Figure 10-3 with
Figure 10-2.)

At the moment, the light attenuation is constant;
thus the distance between the light source and your object will not cause the property of the light to
diminish in intensity.

In the next section, you are going to learn how to add attenuation based on the distance of the
fragment with the lamp, and learn how to set the falloff distance of the point light.

FIGURE 10-3: Constant point light with normal

mapping and specularity

c10.indd 220c10.indd 220 12/31/11 9:11:19 AM12/31/11 9:11:19 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Point Light ❘ 221

Light Attenuation

Point lights are great; however, you probably won’t want to illuminate a whole scene with one point
light. In the real world, point lights generally illuminate only a specifi c area based on the falloff
distance of the lamp, where the light rays simply fade and lose their intensity.

Implementing this behavior in GLSL couldn’t be easier, and you already have everything in place
to do so. To implement a new version of the point light that supports attenuation, duplicate the
chapter10-2 project and rename it chapter10-3.

Load the project into your IDE and follow these steps:

 1. Inside the templateApp.cpp, once again you will have to add more properties to the LAMP
structure. Here are the properties you need to add:

/* Affect the attenuation of the light based on its distance from
the fragment. */
fl oat linear_attenuation;
/* Affect the attenuation of the light based on the square of the distance
of the fragment with the light. */
fl oat quadratic_attenuation;
/* The falloff distance of the light. The light will be at half of its
original intensity at this distance. */
fl oat distance;

 2. Right after the end bracket of the LAMP_create_point function, add the following code
block to create a new helper function to generate a new point light with attenuation:

LAMP *LAMP_create_point_with_attenuation(
 char *name,
 vec4 *color,
 vec3 *position,
 fl oat distance,
 fl oat linear_attenuation,
 fl oat quadratic_attenuation) {
 LAMP *lamp = (LAMP *) calloc(1, sizeof(LAMP));
 strcpy(lamp->name, name);
 memcpy(&lamp->color, color, sizeof(vec4));
 memcpy(&lamp->position, position, sizeof(vec3));
 lamp->position.w = 1.0f;
 /* Store the linear attenuation. */
 lamp->linear_attenuation = linear_attenuation;
 /* Store the quadratic attenuation. */
 lamp->quadratic_attenuation = quadratic_attenuation;
 /* Store the double distance, because the falloff distance parameter
represents the half distance where the light starts to be attenuated. */
 lamp->distance = distance * 2.0f;
 /* Create a new lamp type. */
 lamp->type = 2;
 return lamp;
}

c10.indd 221c10.indd 221 12/31/11 9:11:19 AM12/31/11 9:11:19 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

222 ❘ CHAPTER 10 ADVANCED LIGHTING

 3. Comment the following lamp creation line:

lamp = LAMP_create_point((char *)”point”, &color, &position);

and on the next line, add this code:

/* The linear and quadratic attenuation are a values that range from 0 to
1, which will be directly affected by the falloff distance of the lamp. 1
means fully attenuated, and 0 represents constant (same as in the regular
point light calculations in the previous section). */
lamp = LAMP_create_point_with_attenuation((char *)”point1”,
 &color,
 &position,
 10.0f,
 0.5f,
 1.0f);

Point Light with Attenuation Code

Open the lighting.gfx fi le in order to create a new lamp function that supports attenuation
for your new point light. In order for the attenuation to look good, you will have to integrate the
necessary calculations in the fragment processing phase, because calculating it inside the vertex
processing phase will not have much impact, especially if your geometry is not highly detailed.
To integrate the per-fragment attenuation code, follow these steps:

 1. Add the following variables to the lamp structure inside the GL_FRAGMENT_SHADER section:

 mediump fl oat distance;
 lowp fl oat linear_attenuation;
 lowp fl oat quadratic_attenuation;

 2. Copy the whole point_lamp block, starting from the function defi nition line to the
end bracket of the function and paste it on the line below, in order to end up with
two point_lamp functions. Then rename the second function from point_lamp to
point_lamp_with_attenuation.

 3. Inside the point_lamp_with_attenuation function, insert the following code to calculate
the attenuation on the line after the if(ndotl start bracket so the calculation will be
effectuated only on lighted fragments:

 /* Get the distance of the fragment from the light position by
requesting the length of the light direction vector. */
 highp fl oat dist = length(_lightdir);
 /* Calculate the square falloff distance. */
 highp fl oat lampdistsqr = _lamp.distance * _lamp.distance;
 /* Use the linear value in conjunction with the distance to calculate
how much the linear attenuation will impact the fragment. */
 lowp fl oat att =
 _lamp.distance /
 (_lamp.distance + _lamp.linear_attenuation * dist);
 /* Take the current attenuation factor and process how much the
quadratic attenuation will affect the fragment. */
 att *= lampdistsqr /
 (lampdistsqr + _lamp.quadratic_attenuation * dist * dist);

c10.indd 222c10.indd 222 12/31/11 9:11:19 AM12/31/11 9:11:19 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Point Light ❘ 223

 4. Still inside the point_lamp_with_attenuation function, multiply the attenuation (the att
variable) calculated in step 3 as the fi nal factor of the diffuse and specular color, like this:

 _fi nal_color += MATERIAL.diffuse *
 _lamp.color *
 ndotl *
 att; /* Multiplied by the attenuation. */

 _fi nal_color += MATERIAL.specular *
 _lamp.color *
 pow(ndoth, MATERIAL.shininess) *
 att; /* Multiplied by the attenuation. */

 5. Comment the line where you call point_lamp(LAMP, lightdir, final_color); and
add the following line to be able to use the new function you create:

 point_lamp_with_attenuation(LAMP_FS, lightdir, fi nal_color);

The shader has been successfully modifi ed to use your new point lamp with an attenuation function.
In the next section, you’ll learn how to send the uniforms to fi nish setting up point light attenuation.

The Attenuation Uniforms

In order to visualize your newly created point light with attenuation, you need to send over the
necessary uniforms to your shader program.

To send the attenuation calculation uniforms variable, simply open your templateApp.cpp, copy
the following block, and paste it before the end bracket of the program_draw function:

 else if(lamp->type == 2) {
 vec4 position;
 sprintf(tmp, “LAMP_VS.position”);

 LAMP_get_position_in_eye_space(
 lamp,
 &gfx.modelview_matrix[gfx.modelview_matrix_index - 1],
 &position);

 glUniform3fv(
 PROGRAM_get_uniform_location(program, tmp),
 1,
 (float *)&position);

 sprintf(tmp, “LAMP_FS.distance”);
 glUniform1f(
 PROGRAM_get_uniform_location(program, tmp),
 lamp->distance);

 sprintf(tmp, “LAMP_FS.linear_attenuation”);
 glUniform1f(
 PROGRAM_get_uniform_location(program, tmp),

c10.indd 223c10.indd 223 12/31/11 9:11:20 AM12/31/11 9:11:20 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

224 ❘ CHAPTER 10 ADVANCED LIGHTING

 lamp->linear_attenuation);

 sprintf(tmp, “LAMP_FS.quadratic_attenuation”);
 glUniform1f(
 PROGRAM_get_uniform_location(program, tmp),
 lamp->quadratic_attenuation);
 }

Now build and run the program. Your screen
should look like Figure 10-4.

As you can see from the illustration, the light is
fading quite rapidly due to the values that you
have set for the quadratic and linear attenuation.

By manipulating the distance and the attenuation
parameters, you can really gain control over what
is illuminated by a point light and what is not.
Before moving on to the next section, I suggest
that you test different point light attenuation
values to see what impact they have on the
lighting conditions. For example, Figure 10-5
shows the result of reducing the distance and
quadratic attenuation to be half.

Spherical Point Light

Even after you apply attenuation to a point
light, it’s still hard to have full control on which
objects will be affected by this light source in
the scene. For example, an object can be so
far from a specifi c point light source that the effect is hardly detectable by human eyes, but its
lighting condition from this point light source is still calculated. And as you know, in OpenGL ES
v2, it’s all about minimizing the calculations to get the best effect at the minimal cost. Therefore,
modifi cations for optimizing the computing process have to be considered to deliver the best result.

The point light modifi cations that you’re going to make in this section consist of setting the light
intensity to 0 for every fragment that is outside the point light radius controlled by the distance
parameter (in the same way as you implemented the clipping in Chapter 7). This will allow you to
easily calculate on the CPU which objects are inside the radius of a specifi c point light (using the
vec3_dist function). Then, your implementation can determine which point light should be ON or
OFF when drawing specifi c objects. This will drastically decrease the number of calculations on the
GPU that would fi nally end up calculating a 0, giving you more GPU power to draw other effects.

To implement this new variant of the point light, duplicate the chapter10-3 project directory and
rename it chapter10-4. Then load the project and follow these steps:

 1. On the line after the LAMP_create_point_with_attenuation function end bracket, add
the following function:

FIGURE 10-4: Point light attenuation (distance 10,

linear attenuation 0.5, quadratic attenuation 1.0)

FIGURE 10-5: Point light attenuation (distance 5,

linear attenuation 0.5, quadratic attenuation 0.5)

c10.indd 224c10.indd 224 12/31/11 9:11:20 AM12/31/11 9:11:20 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Point Light ❘ 225

/* Basically create a point light, but with a distance parameter. */
LAMP *LAMP_create_point_sphere(char *name,
 vec4 *color,
 vec3 *position,
 fl oat distance) {
 /* Redirect the execution pointer to create a simple point light, and
then adjust and tweak the other parameters to fi t a new lamp type. */
 LAMP *lamp = LAMP_create_point(name, color, position);
 lamp->distance = distance;
 lamp->type = 3;
 return lamp;
}

 2. Move to the templateAppInit function, and comment the following code:

lamp =
LAMP_create_point_with_attenuation((char *)”point1”,
 &color,
 &position,
 10.0f,
 0.5f,
 1.0f);

and on the next line, add the following line to create a new “point sphere” lamp:

lamp =
LAMP_create_point_sphere((char *)”point2”,
 &color,
 &position,
 10.0f);

Tweaking the Point Light Code

Next, you need to modify the shader code to allow your new point sphere lamp to set the light
intensity to 0 if it’s beyond the lamp distance. To do this, open the lighting.gfx fi le and follow
these steps:

 1. Copy the whole point_lamp function in the GL_FRAGMENT_SHADER section onto your
clipboard and paste it after the end bracket of point_lamp_with_attenuation.
Because you now have two point_lamp functions, rename the second one to be
point_sphere_lamp.

 2. Inside the point_sphere_lamp function, on the line after the start bracket of the
if(ndotl statement, add the following line:

/* Calculate if the current fragment is inside the lamp sphere. */
lowp fl oat sphere =
max(_lamp.distance - length(_lightdir),
 0.0) / _lamp.distance;

c10.indd 225c10.indd 225 12/31/11 9:11:21 AM12/31/11 9:11:21 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

226 ❘ CHAPTER 10 ADVANCED LIGHTING

 3. Multiply the point lamp spherical intensity factor to the diffuse and the specular color
computation, as the fi nal factor of the diffuse and specular color (similar to what you did
with the attenuation).

_fi nal_color += MATERIAL.diffuse *
 _lamp.color *
 ndotl *
 sphere;

_fi nal_color += MATERIAL.specular *
 _lamp.color *
 pow(ndoth, MATERIAL.shininess) *
 sphere;

 4. Comment the line where you call point_lamp_with_attenuation in the main function,
and on the next line, insert the following call to trigger your new point_sphere_lamp
function instead:

point_sphere_lamp(LAMP_FS, lightdir, fi nal_color);

 5. Back to the templateApp.cpp, append a new else if by inserting the following code
before the end bracket of the program_draw callback:

 /* This is basically the same as for type #1 (basic point light), except
that the distance is sent over to the shader. */
 else if(lamp->type == 3) {
 vec4 position;
 sprintf(tmp, “LAMP_VS.position”);
 LAMP_get_position_in_eye_space(
 lamp,
 &gfx.modelview_matrix[gfx.modelview_matrix_index - 1],
 &position);
 glUniform3fv(PROGRAM_get_uniform_location(program, tmp),
 1,
 (fl oat *)&position);

 sprintf(tmp, “LAMP_FS.distance”);
 glUniform1f(PROGRAM_get_uniform_location(program, tmp),
 lamp->distance);
 }

 6. Run the program. You should now see
what’s shown in Figure 10-6 on your
screen. All the pixels whose distance
values are greater than the sphere radius
specifi ed will not be affected by the light
emitted by the point lamp and will simply
use the ambient color as the fi nal color for
the fragment.

FIGURE 10-6: Spherical point light

c10.indd 226c10.indd 226 12/31/11 9:11:21 AM12/31/11 9:11:21 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Point Light ❘ 227

The method demonstrated in this section is very useful on mobile devices. It is relatively fast, and it
can really minimize the number of calculations on a fragment basis when combined with a higher-
level lamp clipping system.

Before moving on to the next section, try different distance values as well as different lamp positions
to make sure you fully grasp the potential of this implementation.

Spot Light

This is probably the coolest of all lamps, and having a per-pixel spot projected on your scene is very
effective. To start building your own spot light implementation, duplicate the chapter10-4 project
and rename it chapter10-5.

Load the project into your IDE, open the templateApp.cpp source fi le, and then follow these steps:

 1. Add the following two properties to the LAMP structure:

/* The cosine of half the fi eld of view of the spot (in radiant). */
fl oat spot_cos_cutoff;
/* Factor ranging from 0 to 1 to smooth the edge of the spot circle. */
fl oat spot_blend;
/* The spot direction is calculated by multiplying the direction vector by
the invert of the model view matrix of the camera. */
vec3 spot_direction;

 2. On the line after the end bracket of the LAMP_create_point_sphere function, add the
following code to create a new function that is able to create a spot light:

LAMP *LAMP_create_spot(char *name,
 vec4 *color,
 vec3 *position,
/* The XYZ rotation angle of the spot direction vector in degrees. */
 fl oat rotx,
 fl oat roty,
 fl oat rotz,
/* The fi eld of view of the spot, also in degrees. */
 fl oat fov,
/* The spot blend to smooth the edge of the spot. This value is between the
range of 0 and 1, where 0 represents no smoothing. */
 fl oat spot_blend) {
 static vec3 up_axis = { 0.0f, 0.0f, 1.0f };
 LAMP *lamp = (LAMP *) calloc(1, sizeof(LAMP));
 strcpy(lamp->name, name);
 memcpy(&lamp->color, color, sizeof(vec4));
 /* Calculate the spot cost cut off. */
 lamp->spot_cos_cutoff = cosf((fov * 0.5f) * DEG_TO_RAD);
 /* Clamp the spot blend to make sure that there won’t be a division by 0
inside the shader program. */
 lamp->spot_blend = CLAMP(spot_blend, 0.001, 1.0);
 memcpy(&lamp->position, position, sizeof(vec3));
 lamp->position.w = 1.0f;
 /* The type ID for spot light. */
 lamp->type = 4;

c10.indd 227c10.indd 227 12/31/11 9:11:21 AM12/31/11 9:11:21 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

228 ❘ CHAPTER 10 ADVANCED LIGHTING

 /* Create the direction vector for the spot based on the XYZ
rotation angle that the function receives. */
 create_direction_vector(&lamp->spot_direction,
 &up_axis,
 rotx,
 roty,
 rotz);
 return lamp;
}

 3. On the line right after the end bracket of the function you created in the last step, add
the following block to create a function that is able to convert the spot direction vector to
homogeneous object coordinates:

void LAMP_get_direction_in_object_space(LAMP *lamp,
 mat4 *m,
 vec3 *direction) {
 mat4 invert;
 mat4_copy_mat4(&invert, m);
 mat4_invert(&invert);
 vec3_multiply_mat4(direction,
 &lamp->spot_direction,
 m);
 vec3_normalize(direction,
 direction);
 vec3_invert(direction,
 direction);
}

 4. Locate the following line in the templateAppInit function and comment it:

lamp = LAMP_create_point_sphere((char *)”point2”,
 &color,
 &position,
 10.0f);

and then on the next line, add the following code to create a new spot:

lamp = LAMP_create_spot((char *)”spot”,
 &color,
 &position,
 /* The spot XYZ rotation angle. */
 -25.0f,
 0.0f,
 -45.0f,
 /* The fi eld of view in degree. */
 75.0f,
 /* The spot blend. */
 0.05);

At this point, everything is almost ready in your application to be able to handle a spot. The last
step is to send over the necessary uniform variables. But fi rst move to the next section to learn how
to modify your existing lighting.gfx shader to be able to use a spot light.

c10.indd 228c10.indd 228 12/31/11 9:11:22 AM12/31/11 9:11:22 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Point Light ❘ 229

Spot Light Shader Code

Open the lighting.gfx fi le and follow these steps to be able to support spots:

 1. Add the following spot direction property to the lamp structure of the GL_VERTEX_SHADER
section:

lowp vec3 spot_direction;

 2. Declare the following varying variable on the line after the texcoord0 declaration to be
able to pass the spot direction in tangent space to the fragment shader:

varying lowp vec3 spotdir;

 3. Inside the main function, add the following line right after the line where you affect the
lightdir. For a spot, you will need to send both the lightdir and spotdirection to the
fragment shader.

 /* Convert current spot direction from homogeneous object space to
tangent space to make sure that all lighting data are in the same space
before proceeding with the appropriate lighting calculation. */
 spotdir = LAMP_VS.spot_direction * tbn;

 4. Move to the GL_FRAGMENT_SHADER section and add the following spot cutoff and spot blend
properties to the lamp structure:

lowp fl oat spot_cos_cutoff;
lowp fl oat spot_blend;

 5. At the end of the list of fragment shader varyings, on the line after the texcoord0 declaration,
append the following variable (which you declared in step 2):

varying lowp vec3 spotdir;

 6. On the line after the end bracket of the point_sphere_lamp function, add the following
code block to create a new function that is able to handle a spot:

void spot_lamp(in lamp _lamp,
 in highp vec3 _lightdir,
 in lowp vec3 _spotdir,
 inout lowp vec4 _fi nal_color) {
 lowp vec3 normal = texture2D(BUMP, texcoord0).rgb * 2.0 - 1.0;
 lowp vec3 nlightdir = normalize(_lightdir);
 lowp fl oat ndotl = max(dot(normal, nlightdir), 0.0);
 if(ndotl > 0.0) {
 /* Calculate the dot product between the normalized light direction
and the spot direction. */
 lowp fl oat ldots = max(dot(nlightdir, _spotdir), 0.0);
 /* If the result is greater than the spot cos cutoff, it means that
the fragment receives light and is inside the cone of light projected by
the spot. */

c10.indd 229c10.indd 229 12/31/11 9:11:22 AM12/31/11 9:11:22 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

230 ❘ CHAPTER 10 ADVANCED LIGHTING

 if(ldots > _lamp.spot_cos_cutoff) {
 lowp fl oat ndoth =
 max(dot(normal,
 normalize(nlightdir + position)), 0.0);
 /* Progressively smooth the edges of the light circle of
the spot based on the current dot product of the spot direction and
the light direction. */
 lowp fl oat spot =
 ldots * clamp(
 (ldots - _lamp.spot_cos_cutoff) / _lamp.spot_blend,
 0.0, 1.0);
 /* Multiply the result by the attenuation. */
 _fi nal_color += MATERIAL.diffuse *
 _lamp.color *
 ndotl * spot;
 _fi nal_color += MATERIAL.specular *
 _lamp.color *
 pow(ndoth, MATERIAL.shininess) *
 spot;
 }
 }
}

 7. Inside the main function, comment the line that calls the point_sphere_lamp function, and
on the next line, add the following call to let the execution pointer trigger the spot lighting
calculation:

 spot_lamp(LAMP_FS, lightdir, spotdir, fi nal_color);

 8. In order to fi nalize the spot light implementation, get back to the templateApp.cpp and
add the following block of code before the end bracket of the program_draw function:

 /* To handle spot lights. */
 else if(lamp->type == 4) {
 vec4 position;
 sprintf(tmp, “LAMP_VS.position”);
 LAMP_get_position_in_eye_space(
 lamp,
 &gfx.modelview_matrix[gfx.modelview_matrix_index - 1],
 &position);
 glUniform3fv(PROGRAM_get_uniform_location(program, tmp),
 1,
 (fl oat *)&position);
 /* Calculating the direction of a spot is slightly different than for
a directional lamp, because the cone has to be projected in the same space
as the object that might receive light. */
 vec3 direction;
 sprintf(tmp, “LAMP_VS.spot_direction”);
 LAMP_get_direction_in_object_space(lamp,
 &gfx.modelview_matrix[gfx.modelview_matrix_index - 1],
 &direction);
 glUniform3fv(PROGRAM_get_uniform_location(program, tmp),
 1,

c10.indd 230c10.indd 230 12/31/11 9:11:22 AM12/31/11 9:11:22 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Multiple Lights ❘ 231

 (fl oat *)&direction);
 /* Send the spot cos cutoff to let the shader determine if a
specifi c fragment is inside or outside the cone of light. */
 sprintf(tmp, “LAMP_FS.spot_cos_cutoff”);
 glUniform1f(PROGRAM_get_uniform_location(program, tmp),
 lamp->spot_cos_cutoff);
 /* Send the spot blend. */
 sprintf(tmp, “LAMP_FS.spot_blend”);
 glUniform1f(PROGRAM_get_uniform_location(program, tmp),
 lamp->spot_blend);
 }

 9. Build and run your project. You now have
a fully working spot light that can receive
an arbitrary position, direction, and fi eld
of view, just like in Figure 10-7.

Before wrapping up this exercise, make sure that
you test multiple values to be able to tweak and
adjust the spot to fi t your requirements.

MULTIPLE LIGHTS

I still have a lot to say about lighting, but unfortunately, it is time for me to wrap up this chapter.
In the last exercise of this chapter, you will modify your existing code to be able to handle multiple
lamps, and render them simultaneously in real time.

Switching your current implementation to be able
to handle multiple lights at this point is very
easy. All you have to do is create an array of
lamps. Then inside your C/C++ implementation,
as well as in the shader program, you only need to
loop for the number of lamps you want to place in
your scene.

Duplicate chapter10-5 and rename it
chapter10-6, then follow the instructions below
to be able to dynamically allocate a specifi c
amount of lamps rendered simultaneously (as
demonstrated in Figure 10-8).

Follow these steps to learn how to modify your
app to be able to render your scene using two point sphere lamps:

 1. Inside the templateApp.cpp at the top of the fi le, replace the lamp pointer variable defi nition
from this:

LAMP *lamp = NULL;

to this:

/* Defi ne the maximum amount of lamps your implementation can handle

FIGURE 10-7: Scene illuminated using a spot light

FIGURE 10-8: Scene illuminated using two point

sphere lights

c10.indd 231c10.indd 231 12/31/11 9:11:22 AM12/31/11 9:11:22 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

232 ❘ CHAPTER 10 ADVANCED LIGHTING

simultaneously. For this example, you’re defi ning 2. */
#defi ne MAX_LAMP 2
/* Declare an array of lamp pointers.*/
LAMP *lamp[MAX_LAMP];

 2. Inside the program_draw function callback, comment the block where you are handling
the lamp uniforms for the different lamp types, starting from the line after the char tmp
defi nition until the line right before the end of the function.

 3. For demonstration purposes, you are going to use two point sphere lamps. Insert the
following block of code before the end bracket of the function to send only point sphere
lamp uniforms:

 i = 0;
 /* Since your lamps are now in an array, simply loop and dynamically
create the uniform name for the lamp index in the shader program, and
gather the necessary data for a specifi c lamp index as long as the loop is
rolling. */
 while(i != MAX_LAMP) {
 sprintf(tmp, “LAMP_FS[%d].color”, i);
 glUniform4fv(
 PROGRAM_get_uniform_location(program, tmp),
 1,
 (fl oat *)&lamp[i]->color);

 vec4 position;
 sprintf(tmp, “LAMP_VS[%d].position”, i);
 LAMP_get_position_in_eye_space(
 lamp[i],
 &gfx.modelview_matrix[gfx.modelview_matrix_index - 1],
 &position);
 glUniform3fv(
 PROGRAM_get_uniform_location(program, tmp),
 1,
 (fl oat *)&position);

 sprintf(tmp, “LAMP_FS[%d].distance”, i);
 glUniform1f(
 PROGRAM_get_uniform_location(program, tmp),
 lamp[i]->distance);
 ++i;
 }

If you wanted to implement all lamp types, you could simply integrate all of the if statements
that you commented in step 2 and index the lamps’ data and uniforms as demonstrated in the
preceding code.

 4. Comment the following line (which is the last line before the templateAppInit function
end bracket):

lamp = LAMP_create_spot

and on the next line, add the following block to create two point sphere lamps, one white
and one red, that will be located on the top right and bottom left of the scene:

c10.indd 232c10.indd 232 12/31/11 9:11:23 AM12/31/11 9:11:23 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Making the Shader Program Dynamic ❘ 233

 /* Create the fi rst lamp, basically the same as you did before, except
you are initializing it at index 0 of the lamp pointer array. */
 lamp[0] =
 LAMP_create_point_sphere((char *)”point1”,
 &color,
 &position,
 10.0f);

 /* Invert the XY position. */
 position.x = -position.x;
 position.y = -position.y;
 /* Modify the color to be red. */
 color.y =
 color.z = 0.0f;
 /* Create the second lamp. */
 lamp[1] =
 LAMP_create_point_sphere((char *)”point2”,
 &color,
 &position,
 10.0f);

 5. In the templateAppExit function callback, remove the line that frees the lamp from local
memory and replace it with the following lines to free each lamp of the array:

 unsigned int i = 0;
 while(i != MAX_LAMP) {
 lamp[i] = LAMP_free(lamp[i]);
 ++i;
 }

You have everything ready on the client side. Now all you have to do is modify the shader program
to also support the same amount of lamps that you’ve initialized here, which you’ll learn how to do
in the next section.

MAKING THE SHADER PROGRAM DYNAMIC

Open the lighting.gfx fi le and follow these steps to be able to multiply lights using the same
structure that you have been building since the beginning of this chapter:

 1. At the top of the GL_VERTEX_SHADER section, declare the following defi nition:

#defi ne MAX_LAMP 2

 2. Modify the uniform lamp and varying lightdir to be arrays of the same size as the
maximum lamp value, like this:

uniform lamp LAMP_VS[MAX_LAMP];
...
...
varying highp vec3 lightdir[MAX_LAMP];

c10.indd 233c10.indd 233 12/31/11 9:11:23 AM12/31/11 9:11:23 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

234 ❘ CHAPTER 10 ADVANCED LIGHTING

 3. Inside the main function, comment the lighdir and spotdir affectation and add the
following block to dynamically loop and create the lightdir for an array of point sphere
lamps (before position = -normalize(position * tbn);):

/* Loop while you’ve got some lamps. */
 for(int i = 0; i < MAX_LAMP; ++i) {
 lightdir[i] = (LAMP_VS[i].position - position) * tbn;
 }

Please note that if you want to use lamps of different types, you should send the lamp->type
to the shader program and then create an if statement to determine which calculations
should be effectuated before sending the data to the fragment phase.

 4. At the top of the GL_FRAGMENT_SHADER section, add the following defi nition:

#defi ne MAX_LAMP 2

 5. Modify the same variables as in step 2, but this time for the GL_FRAGMENT_SHADER by
replacing the declaration with the following:

uniform lamp LAMP_FS[MAX_LAMP];

 6. Inside the main function of the fragment shader, comment the spot_lamp function call, and
on the next line, add the following block to be able to use two point sphere lamps:

 /* Loop while you’ve got some lamps. */
 for(int i = 0; i < MAX_LAMP; ++i) {
 point_sphere_lamp(LAMP_FS[i], lightdir[i], fi nal_color);
 }

 7. Your application is now ready to roll. Compile and run it, and you should now see on your
screen two point sphere lamps that affect the lighting condition of the scene.

To build a fully dynamic system that is able to handle any combination of lamp types automatically,
you just have to make some adjustments inside the program_draw function. All you have to do is
fi nalize the block of code that is handling the work of sending only the necessary uniforms for the
current lamp type (pointed by the index) and pass the type for each lamp that you want the shader
to handle. Then simply create an if to evaluate the right varyings to calculate inside the vertex
shader and dispatch them to the appropriate functions in the fragment shader.

In addition, please note that I skipped the full conversion of the lamp uniform data send block and
only focused on the point sphere uniforms (because that’s what you used in this exercise). Since the
whole converted block is over one hundred lines of code that have a lot of redundancy, I’ll leave it to
you to modify it.

SUMMARY

With the knowledge that you have gathered in this chapter, you are now able to integrate full-fl edged
per-pixel lighting with normal mapping into your games and 3D apps.

c10.indd 234c10.indd 234 12/31/11 9:11:23 AM12/31/11 9:11:23 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary ❘ 235

The complex lighting shader that you created throughout this chapter will allow you to handle a
single or multiple lights inside your scenes.

Please remember that per-pixel lighting is very GPU-hungry, and that a shader that contains loops
and branching can be quite heavy to handle on portable devices. However, with the basics and the
knowledge you’ve gathered in this chapter, you can tweak, adjust, modify, and profi le your code to
make it work optimally for your applications.

In your games and 3D apps, you can implement a system that is able to cull and clip lamps based
on their distance, radius, or some other factors used in your games to limit as much as possible the
work on GPU and offl oad it to CPU. That is the key for maintaining good performance on mobile
devices while using per-pixel lighting. As usual, before moving on to the next chapters, stay a few
more hours on this one, tweaking and testing different parameters and combinations.

Another key thing in game and graphics programming is to know your limitations. Before implementing
anything into your game or 3D apps, always do some standalone tests of the technique that you are
trying to integrate, to learn what you can and cannot do and profi le as much as you can, so you won’t
have any surprises or performance drops.

When you are ready, move on to the next chapter, which is about advanced graphics effects.

c10.indd 235c10.indd 235 12/31/11 9:11:24 AM12/31/11 9:11:24 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c10.indd 236c10.indd 236 12/31/11 9:11:24 AM12/31/11 9:11:24 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Advanced FX

WHAT’S IN THIS CHAPTER?

Learning how to render to texture

Learning about post-processing and implementing a bloom eff ect

Learning how to use multiple render passes and combining the

results to create a fi nal rendering image

Learning how to correctly project textures from a spot light

Discovering how to use a Frame Buff er Object (FBO) with a depth

attachment

Implementing real-time shadows using a depth texture

Learning the basics of a particle system

In this chapter, you will learn how to create a new range of advanced effects. You will fi rst discover
how to use the built-in OpenGL ES mechanism and be able to render your scene to a texture.

By implementing a multipass process, you will discover how to be able to reuse the offscreen
textures as well as how to use them to create fullscreen post-processing effects, such as bloom.

Going forward in this chapter, I will show you how to project a texture to your scene from
a projector point of view. Projecting textures is very useful and visually appealing, and will
allow you to gain the necessary basics in order to implement real-time shadows.

Next, you will learn about a shadowing technique called projected shadow map. In this
implementation process, you will learn how to create a Frame Buffer Object (FBO) and
attach it to a depth texture.

➤

➤

➤

➤

➤

➤

➤

11

c11.indd 237c11.indd 237 12/31/11 9:12:25 AM12/31/11 9:12:25 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

238 ❘ CHAPTER 11 ADVANCED FX

At the end of this chapter, you will discover how to implement particles by converting regular vertex
points into a textured particle that is always facing the camera. You will then learn how to control
the size and distance attenuation and how to texture the points (GL_POINTS). With the knowledge you
will gain in this chapter, you will be able to implement your very own particle system.

RENDER TO TEXTURE

The concept of rendering to texture is pretty simple. You fi rst render a frame using the same viewport
size or using a lower resolution (generally one-half or one-third of it) to draw the scene. Then you
save the render result into a texture, erase the color and depth buffer, and redraw the scene again.
During the second pass drawing, or at the end of the second pass, you reuse that texture to create
different effects by using the offscreen texture in the scene or using it fullscreen.

This technique can be used for multiple types of effects, such as post-processing effects like bloom,
night vision, heat vision, and underwater, and so on. You can also use it for real-time refl ection,
shadows, depth of fi elds, and many others.

On modern mobile devices, there are basically two ways to render to texture. The fi rst is to use the
default render to texture functionality of OpenGL ES, which requires less video memory, but it is
slower than the second method that I’m about to introduce.

The second method is to use the Frame Buffer Object (FBO) functionality provided by GLES2
(which was originally part of the GL_OES_framebuffer_object extension). The performance of
using an FBO to render to texture is better; however, it requires more memory.

In order to get familiar with the techniques, in the following exercise you will learn how to use the
fi rst method.

POST-PROCESSING EFFECTS

In order to create state-of-the-art, post-processing
effects, you will need to use a multipass approach.
Multipass consists of rendering the scene multiple
times and storing the previous pass results into
textures that you will then reuse to create the
fi nal image.

In this fi rst exercise, you will implement a bloom
effect. The idea behind this effect is to fi rst render
the scene from the viewer’s eyes at a lower screen
resolution, only drawing the specular highlights
of the scene, like in Figure 11-1; and save the
resulting color buffer into a texture.

FIGURE 11-1: Scene rendered using only specular

colors

c11.indd 238c11.indd 238 12/31/11 9:12:27 AM12/31/11 9:12:27 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Then you will need to render the scene again at full resolution, but this time only using the
diffuse color as shown in Figure 11-2.

Next, using the texture that you gather from the fi rst pass, you will apply it on a fullscreen quad with
additive blending using a blur fi lter to create a “blurred” version of the texture as shown in Figure 11-3.

Post-Processing Eff ects ❘ 239

FIGURE 11-3: Fullscreen quad with blur fi lterFIGURE 11-2: Scene rendered using only the diff use

color

The fi nal image that will be displayed onscreen is
the result of Figure 11-2 and Figure 11-3 blended
together, which will give you the effect shown in
Figure 11-4.

To get started, duplicate the
template_chapter11-1 project
directory and rename it chapter11-1.
Then open the project into your
integrated development environment
and get familiar with the structure that
you will be using for this exercise.

The structure is basically a continuation of the last chapter’s project, and contains a modifi ed
version of the point light shader code that you created earlier. This modifi ed version calculates the
diffuse and specular separately and combines the two colors to create the fi nal result for a fragment.

In addition, the scene now contains a 1 by 1 unit quad called “fullscreen”. You will be using this
object and scale it in 2D to fi t the current fullscreen dimension to be able to overlay the texture that
you render offscreen to create the desired post-processing effect.

At the moment, the fullscreen object is attached to a GFX fi le called “blur.gfx”, which is where
you will be adding the necessary code to blur the offscreen texture.

Build and run the initial template for this exercise to see the differences between the lighting
conditions that I set for this exercise and the ones that were used in the last chapter. Please note
that, for your convenience, I repackaged the LAMP implementation and bundled it into a new
struct named LIGHT, where all the same functionalities that you implemented in the previous
chapter remain.

Available for
download on
Wrox.com

Available for
download on
Wrox.com

FIGURE 11-4: Final rendering with bloom eff ect

c11.indd 239c11.indd 239 12/31/11 9:12:27 AM12/31/11 9:12:27 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

240 ❘ CHAPTER 11 ADVANCED FX

Now follow these steps to start implementing the render to texture functionalities to create a
bloom effect:

 1. At the top of the fi le (as usual right after the #include statement), create the following
global variables:

 /* The color buffer texture ID. */
unsigned int colorbuffer_texture = 0,
 /* The width and height of the texture. When it comes to
texture in OpenGLES, a width and height using a power of 2 will always give
better performance compared to a non-power of two texture (assuming that
the non-power of 2 texture extension is supported by your hardware). */
 colorbuffer_width = 128,
 colorbuffer_height = 256;

/* The number of pixels to use in order to blur the texture vertically and
horizontally. */
fl oat blur_radius = 2.0f;

/* Pointer to the fullscreen object. */
OBJMESH *fullscreen = NULL;

/* Flag to be able to track the current rendering pass, because you will
have to determine if the scene should be rendered with only diffuse or only
specular colors. */
unsigned char pass = 0;

 2. Move to the templateAppInit callback and add the following block on the line just before
the end bracket of the function:

 /* Generate a new texture ID.*/
 glGenTextures(1, &colorbuffer_texture);
 /* Bind the new texture ID. */
 glBindTexture(GL_TEXTURE_2D, colorbuffer_texture);
 /* Make sure that the texture coordinates will be clamped to the range
of 0 to 1. */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE);
 /* Specify that the texture pixels will be linearly interpolated when
magnifi ed or minifi ed. */
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);
 /* Create a new 2d image. */
 glTexImage2D(GL_TEXTURE_2D,
 0,
 /* Only RGB, no alpha is necessary. */
 GL_RGB,
 /* Specify that the width and the height of the texture
are based on the values that you set above. This is necessary to properly
render the color buffer to the texture, because you are going need to
resize the glViewport to fi t theses values. */
 colorbuffer_width,
 colorbuffer_height,

c11.indd 240c11.indd 240 12/31/11 9:12:28 AM12/31/11 9:12:28 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 0,
 GL_RGB,
 /* Specify that you want the image to be RGB 16 bits. */
 GL_UNSIGNED_SHORT_5_6_5,
 /* No pixel data is needed, because you are going to
dynamically fi ll the texture when requesting to render the current color
buffer to it. */
 NULL);

 3. For convenience, get the “fullscreen” object pointer and set the object to be invisible (still
inside templateAppInit, before the end bracket of the function).

fullscreen = OBJ_get_mesh(obj, “fullscreen”, 0);
fullscreen->visible = 0;

 4. Add the following line at the beginning of the templateAppExit function to delete the tex-
ture ID when the application quits:

glDeleteTextures(1, &colorbuffer_texture);

You are now ready to add the necessary code to create the different rendering passes. In the next section,
you’ll learn how to draw and copy the result of the color buffer to the texture you just initialized.

First Rendering Pass

In every game or 3D app that you are going to create, you will sooner or later need to use multiple
rendering passes (aka multipass). Multipasses can create a very huge array of nice effects and give
you the opportunity to combine multiple offscreen images to create a fi nal rendering that will be
drawn onscreen.

For the current exercise, only two rendering passes are necessary, but it is normal to have even more
rendering passes than that.

Follow these instructions to implement the specular color pass and save the resulting color buffer to
the texture you created earlier:

 1. Insert the following code between the brackets of the first_pass function:

/* Tag that the fi rst pass is about to be drawn onscreen. */
pass = 1;
/* This is really important! Resize the glViewport to fi t the texture width
and height, but do not recalculate the aspect ratio of the perspective
matrix. The image will be scaled to fi t the screen resolution, so you have
to make sure that the perspective ratio in which the scene is drawn fi ts
the original fullscreen viewport size.*/
glViewport(0, 0, colorbuffer_width, colorbuffer_height);
/* Call the draw_scene function and render the scene at a lower resolution
with the same width and height of the texture that you want to save the
color buffer result to. */
draw_scene();
/* Bind the color buffer texture ID to be able to save the image. */
glBindTexture(GL_TEXTURE_2D, colorbuffer_texture);

Post-Processing Eff ects ❘ 241

c11.indd 241c11.indd 241 12/31/11 9:12:29 AM12/31/11 9:12:29 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

242 ❘ CHAPTER 11 ADVANCED FX

/* The function to call in order to transfer the current result of the
color buffer to an arbitrary texture ID previously bound to the current
GL context. */
glCopyTexSubImage2D(GL_TEXTURE_2D,
 0, 0, 0, 0, 0,
 colorbuffer_width,
 colorbuffer_height);

 2. In templateAppDraw, replace the draw_scene(); line, and call first_pass(); instead.

 3. In the program_draw callback function, replace the code inside the MATERIAL.diffuse
else if statement to set the diffuse color to 0 (black) only if you are drawing the fi rst pass.
In other words, replace this:

glUniform4fv(
program->uniform_array[i].location,
1,
(fl oat *)&objmesh->current_material->diffuse);

with this:

if(pass == 1) {
 vec4 black = { 0.0f, 0.0f, 0.0f, 1.0f };
 glUniform4fv(program->uniform_array[i].location,
 1,
 (fl oat *)&black);
}
else {
 glUniform4fv(program->uniform_array[i].location,
 1,
 (fl oat *)&objmesh->current_material->diffuse);
}

 4. Build and run the program in order to visualize exactly what you are sending to the texture
(which should be the same as previously shown in Figure 11-1).

Second Pass

You now have the specular color pass saved into your color buffer texture. What you need to do next
is render the scene using only the diffuse color, which means that this time, the specular color will
have to be black or at least the brightness of the image should be turned down to avoid overexposure.

Follow these instructions to build the necessary code for the second render pass:

 1. Locate the second_pass function and add the following code between the function brackets:

/* Tag that you are about to draw the second pass. */
pass = 2;
/* Restore the viewport to its original “fullscreen” dimension. */
glViewport(0, 0, viewport_matrix[2], viewport_matrix[3]);
/* Draw the scene again. */
draw_scene();

 2. In the program_draw callback, locate the MATERIAL.specular else if statement (as you
did in step 3 for the fi rst rendering pass, but this time is for specular color). Replace this line:

c11.indd 242c11.indd 242 12/31/11 9:12:29 AM12/31/11 9:12:29 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

glUniform4fv(program->uniform_array[i].location,
 1,
 (fl oat *)&objmesh->current_material->specular);

with the following if statement:

if(pass == 2) {
 vec4 black = { 0.0f, 0.0f, 0.0f, 1.0f };
 glUniform4fv(program->uniform_array[i].location,
 1,
 (fl oat *)&black);
}
else {
 glUniform4fv(program->uniform_array[i].location,
 1,
 (fl oat *)&objmesh->current_material->specular);
}

 3. Inside the templateAppDraw function callback, before the end bracket of the function, call
the second pass as follows:

second_pass();

 4. Build and execute the program. As you can see, what you have now is the same as
previously shown in Figure 11-2. The specular render pass has been stored into the
texture and you are now drawing the scene with only the diffuse color ON.

Fullscreen Pass and Blur Shader

Before moving on to the fullscreen pass, you fi rst need to make sure that you have the blur shader
ready to roll. Follow these steps:

 1. Open the blur.gfx fi le and modify the fragment shader section (GL_FRAGMENT_SHADER) to
look like this:

/* The texture that you rendered in the fi rst pass. */
uniform sampler2D DIFFUSE;
/* The radius of the blur per pixel. (ex: 1.0/128.0, for 1px) */
uniform mediump vec2 BLUR_RADIUS;
/* The texture coordinates.*/
varying lowp vec2 texcoord0;

void main(void) {
 /* Get the RGBA color for the current UV and multiply it by a
weight factor. */
 lowp vec4 fi nal_color =
 texture2D(DIFFUSE, texcoord0) * 0.227;
 /* Offset the UV in the current blur radius direction and multiply the
resulting color of the texture fetch operation by a precalculated weight,
accumulating the fi nal color for the current fragment. */
 fi nal_color +=
 texture2D(DIFFUSE, texcoord0 +
 vec2(1.384 * BLUR_RADIUS.x, 1.384 * BLUR_RADIUS.y)) * 0.316;

 fi nal_color +=

Post-Processing Eff ects ❘ 243

c11.indd 243c11.indd 243 12/31/11 9:12:29 AM12/31/11 9:12:29 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

244 ❘ CHAPTER 11 ADVANCED FX

 texture2D(DIFFUSE, texcoord0 +
 vec2(3.230 * BLUR_RADIUS.x, 3.230 * BLUR_RADIUS.y)) * 0.070;

 /* Assign the fi nal color to the fragment. */
 gl_FragColor = vec4(fi nal_color.rgb, 1.0);
}

 2. Go back to the templateApp.cpp, and inside the fullscreen_pass function, add the following
code to draw a fullscreen quad and pass the necessary uniforms to the shader program:

 /* Activate the projection matrix, because you are about to switch it to
a 1:1 pixel ratio. */
 GFX_set_matrix_mode(PROJECTION_MATRIX);
 GFX_load_identity();
 /* Calculate the half-screen size to have the origin of the projection
located at the center of the screen. */
 fl oat half_width = (fl oat)viewport_matrix[2] * 0.5f,
 half_height = (fl oat)viewport_matrix[3] * 0.5f;
 /* Set the projection. */
 GFX_set_orthographic_2d(-half_width,
 half_width,
 -half_height,
 half_height);
 /* Re-activate the model view matrix. */
 GFX_set_matrix_mode(MODELVIEW_MATRIX);
 /* Reset it to its identity. */
 GFX_load_identity();
 /* Disable the depth test (there’s no need for this test, because you
are drawing in 2D), enable blending, and disable cull face. */
 glDisable(GL_DEPTH_TEST);
 glDepthMask(GL_FALSE);
 glDisable(GL_CULL_FACE);
 glEnable(GL_BLEND);
 /* Set the current blend equation and blend function to additive. */
 glBlendEquation(GL_FUNC_ADD);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
 /* Activate the texture channel 1 (because you will use this as the
diffuse channel. */
 glActiveTexture(GL_TEXTURE1);
 /* Bind the colorbuffer texture that contains the result of the
fi rst pass. */
 glBindTexture(GL_TEXTURE_2D, colorbuffer_texture);
 /* Make sure that the fullscreen object is visible. */
 fullscreen->visible = 1;
 /* Set the scale of the fullscreen object to be the same as the screen
dimensions. */
 GFX_scale((fl oat)viewport_matrix[2],
 (fl oat)viewport_matrix[3],
 1.0f);
 /* Rotate the fullscreen quad object, because the texture coordinates
inside the OBJ fi le are inverted. (You could avoid this call by manually
tweaking the UVs of the object instead.) */
 GFX_rotate(180.0f, 1.0f, 0.0f, 0.0f);
 /* Get the blur shader program. */

c11.indd 244c11.indd 244 12/31/11 9:12:30 AM12/31/11 9:12:30 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PROGRAM *program = OBJ_get_program(obj, “blur”, 0);
 /* Set the program for drawing, because you are about to send over the
necessary
 uniforms to blur the texture shader program. */
 PROGRAM_draw(program);
 /* As mentioned earlier, to do a “proper” blur, you have to execute two
passes, horizontally and vertically. Set the blur radius to draw the fi rst
blurring pass horizontally. */
 vec2 radius = { blur_radius / (fl oat)colorbuffer_width,
 0.0f };
 /* Send the uniform for the blur radius. */
 glUniform2fv(
 PROGRAM_get_uniform_location(program,
 (char *)”BLUR_RADIUS”),
 1,
 (fl oat *)&radius);
 /* Draw the fullscreen quad onscreen to blur and get it additively
blended with the current colors onscreen. */
 OBJ_draw_mesh(obj,
 OBJ_get_mesh_index(obj, “fullscreen”, 0));
 /* Same as above, but this time vertically. */
 radius.x = 0.0f;
 radius.y = blur_radius / (fl oat)colorbuffer_height;
 glUniform2fv(
 PROGRAM_get_uniform_location(program,
 (char *)”BLUR_RADIUS”),
 1,
 (fl oat *)&radius);
 OBJ_draw_mesh(obj,
 OBJ_get_mesh_index(obj, “fullscreen”, 0));
 fullscreen->visible = 0;
 /* Restore the GL states back to their original values.*/
 glDisable(GL_BLEND);
 glEnable(GL_CULL_FACE);
 glEnable(GL_DEPTH_TEST);
 glDepthMask(GL_TRUE);

 3. Before the end bracket of the templateAppDraw function callback, call the fullscreen_
pass function as follows:

fullscreen_pass();

 4. You now have a fully working bloom post-processing effect up-and-running. Build and run
your app. It should look exactly like what was shown previously in Figure 11-4.

This may look very simple, but remember that this process is very memory-intensive for the GPU.
Always use post-processing effects and multiple render passes with care!

Before moving on, feel free to tweak the texture size and blur radius, and use the optimization
techniques that you’ve learned so far, to optimize the workfl ow of this program.

In the next tutorial, you’ll learn how to implement a projected texture.

Post-Processing Eff ects ❘ 245

c11.indd 245c11.indd 245 12/31/11 9:12:30 AM12/31/11 9:12:30 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

246 ❘ CHAPTER 11 ADVANCED FX

PROJECTED TEXTURE

Texture projection has always been used in game programming. It is relatively fast and easy to
implement, and can create nice eye-candy effects.

In this exercise, you will fi rst learn how to project a texture from a spot. The technique demonstrated
here will also allow you to better understand the approach that will be used in the section of this
chapter that covers real-time shadows.

To get started, duplicate template_chapter11-2 and rename it chapter11-2. The template is
similar to the one in the previous exercise; however, this time the lighting shader is an isolated
version of the spot light you implemented in the previous chapter.

If you take a look at the associated Blender fi le, you will see that there is a “projector” quad
located in the middle of the scene. The purpose of this quad is to make the projector.png texture
load automatically. This is the texture that you are going to project from the spot light.

Now build and run the application, and familiarize yourself with the code structure that you will
be using.

Follow these steps to learn how to implement a projected texture into your games and 3D apps:

 1. At the top of the templateApp.cpp, declare the following global variables:

/* For convenience, declare a pointer to the projector texture. */
TEXTURE *texture = NULL;
/* The model view and projection matrix from the projector (the spot point
of view). */
mat4 projector_matrix;

 2. In the program_draw callback, add the following two else if statements to the current
if statement in order to send the projector texture channel ID and the projector matrix to
the lighting shader:

else if(!strcmp(program->uniform_array[i].name,
 “PROJECTOR”)) {
 /* Bind the projector texture to the texture channel 0. */
 glUniform1i(program->uniform_array[i].location,
 0);
 program->uniform_array[i].constant = 1;
}
else if(!strcmp(program->uniform_array[i].name,
 “PROJECTORMATRIX”)) {
 glUniformMatrix4fv(
 program->uniform_array[i].location,
 1,
 GL_FALSE,
 (fl oat *)&projector_matrix);
}

c11.indd 246c11.indd 246 12/31/11 9:12:30 AM12/31/11 9:12:30 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 3. Before the end bracket of the templateAppInit function, add the following block to make
the projector object invisible, and then to get the projector texture, and clamp the texture
UVs within a range of 0 to 1:

 OBJ_get_mesh(obj, (char *)”projector”, 0)->visible = 0;
 texture = OBJ_get_texture(obj, (char *)”projector”, 0);
 glBindTexture(GL_TEXTURE_2D, texture->tid);
 glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_EDGE);
 glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_EDGE);

 4. Add the following code block inside the draw_scene_from_projector function:

 /* Set up the projection matrix to use the same fi eld of view as the
spot. The idea behind this block is to pretend to render the scene from the
eye of the spot, and then, later on, reuse the projection and model view
matrix to transform the vertex position inside the shader program to be in
that same coordinate system. The result of this operation will allow you to
automatically generate the UV coordinates from the projector (the spot) and
project the texture on the objects of the scene. */
 GFX_set_matrix_mode(PROJECTION_MATRIX);
 GFX_load_identity();
 GFX_set_perspective(
 light->spot_fov,
 (fl oat)viewport_matrix[2] / (fl oat)viewport_matrix[3],
 1.0f,
 20.0f,
 -90.0f);

 GFX_set_matrix_mode(MODELVIEW_MATRIX);
 GFX_load_identity();
 /* Execute a look_at to be able to gather the model view matrix. Note
that the position of the light and the camera as well as the projection
matrix are the same. This will allow you to pretend that the scene is
rendered from the light point of view without really drawing anything, just
gather the necessary matrices to be able to project the texture from the
spot. */
 GFX_look_at((vec3 *)&light->position,
 ¢er,
 &up_axis);
 /* Create a bias matrix that will allow you to transform the coordinates
from object space to screen space. */
 projector_matrix.m[0].x = 0.5f;
 projector_matrix.m[0].y = 0.0f;
 projector_matrix.m[0].z = 0.0f;
 projector_matrix.m[0].w = 0.0f;

 projector_matrix.m[1].x = 0.0f;
 projector_matrix.m[1].y = 0.5f;

Projected Texture ❘ 247

c11.indd 247c11.indd 247 12/31/11 9:12:30 AM12/31/11 9:12:30 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

248 ❘ CHAPTER 11 ADVANCED FX

 projector_matrix.m[1].z = 0.0f;
 projector_matrix.m[1].w = 0.0f;
 projector_matrix.m[2].x = 0.0f;
 projector_matrix.m[2].y = 0.0f;
 projector_matrix.m[2].z = 0.5f;
 projector_matrix.m[2].w = 0.0f;

 projector_matrix.m[3].x = 0.5f;
 projector_matrix.m[3].y = 0.5f;
 projector_matrix.m[3].z = 0.5f;
 projector_matrix.m[3].w = 1.0f;

 /* Multiply the bias matrix with the current model view and projection
matrix and store the result as the projector_matrix. */
 mat4_multiply_mat4(
 &projector_matrix,
 &projector_matrix,
 GFX_get_modelview_projection_matrix());

 5. Inside the draw_scene function, right after the mat4_invert call, add the following block
to bind the projector texture ID to the texture channel 0 and to keep an original copy
of the projector matrix. (In order for this to work properly, you will have to re-apply the
projector_matrix.)

 /* Bind the projector texture ID to the texture channel 0. */
 glActiveTexture(GL_TEXTURE0);
 glBindTexture(GL_TEXTURE_2D, texture->tid);
 /* Create a local copy of the projector matrix, because it will have to
be updated independently for each object and sent over to the shader
program. */
 mat4 projector_matrix_copy;
 mat4_copy_mat4(&projector_matrix_copy, &projector_matrix);

 6. On the line before the OBJ_draw_mesh call, add the following two lines to transform the
original projector_matrix before sending it over to the shader:

 mat4_copy_mat4(&projector_matrix,
 &projector_matrix_copy);
 mat4_translate(&projector_matrix,
 &projector_matrix,
 &objmesh->location);

 7. Inside the templateAppDraw, insert the following line of code right after the start bracket
of the function to render the scene from the projector point of view. This call is executed
before the draw_scene call in order to get the latest matrix from the spot.

draw_scene_from_projector();

In a few steps, you have implemented all the necessary code to be able to project the texture onto
your scene. Now it’s time to tweak the shader program to handle the uniform you have sent over.

c11.indd 248c11.indd 248 12/31/11 9:12:31 AM12/31/11 9:12:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PROJECTOR SHADER

Open the lighting.gfx shader fi le and follow these steps to project the radioactive texture onto
your text scene:

 1. At the top of GL_VERTEX_SHADER section of the GFX fi le, insert the following variables:

/* The projector matrix for the current object. */
uniform highp mat4 PROJECTORMATRIX;
/* Varying to send over the projected coordinate to the fragment shader.
(Of course, the operation to apply the texture to the object will have to
be pixel-based.) */
varying highp vec4 projectorcoord;

 2. Before the end bracket of the main function, insert the following line to transform the cur-
rent vertex position as it would be if the scene was rendered from the spot:

projectorcoord = PROJECTORMATRIX * vec4(POSITION, 1.0);

 3. Move on to the GL_FRAGMENT_SHADER section and add the following two variables to the
existing list declared at the top of the fragment shader:

/* The projector texture channel ID (which is 0). */
uniform sampler2D PROJECTOR;
/* To bridge the projector coordinates calculated in the vertex shader. */
varying highp vec4 projectorcoord;

 4. On the line just before the gl_FragColor affectation, insert the following if statement:

/* Check if the w component is greater than 0, which will get rid of the
back projection of the texture. */
if(projectorcoord.w > 0.0)
 /* Add the projector color to the current diffuse color and reuse the
ndotl and spot attenuation factor to properly shade the fragment. Note
that this time, you use the texture2DProj because your coordinates are
projected texture coordinates. */
 diffuse_color += texture2DProj(
 PROJECTOR,
 projectorcoord) * ndotl * spot;

 5. Build and run the program. You should
see on your screen the radioactive texture
projected from your spot light, as shown
in Figure 11-5.

Many different effects can be easily produced
using the projected texture technique. You can
use this method to project a pre-calculated
shadow texture (as you are about to learn in the
next section), draw a cursor on a terrain (like
in most RTS games), or even replace the spot

FIGURE 11-5: Projected texture

Projector Shader ❘ 249

c11.indd 249c11.indd 249 12/31/11 9:12:31 AM12/31/11 9:12:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

250 ❘ CHAPTER 11 ADVANCED FX

calculations completely and use a projected texture to simulate a spot effect (which in some cases
can even result in better performance than the one you created in the last chapter).

Now that you understand projected texture as well as multiple rendering passes, move on to the
next section to learn how to combine these two techniques to produce real-time shadows on your
mobile device.

PROJECTED REAL-TIME SHADOWS

If you are searching online to fi nd out how to do real-time shadows on a mobile device, you are not
going to fi nd any demos that are usable in a real game scenario (or at least there weren’t at the time
this book was written).

Since the processing power of a mobile device is somewhat limited, the approach that I am about to
show you provides the best results at the minimum processing cost (on both CPU and GPU).

The technique that you are about to code combines what you have learned so far in this chapter. The
idea is to fi rst render the scene offscreen, writing only the depth value into a depth texture. To be
able to do that, you will have to create a frame buffer and attach a depth texture to it.

A frame buffer is an offscreen object that you can use directly to render to a texture. This will allow
you to render your scene from the projector (in this case, the spot light), as you did in the previous
exercise, and get the depth texture automatically written with the depth values.

Once this fi rst rendering pass is effectuated, you simply have to render the scene from the camera
point of view; and, at the fragment processing phase, compare the Z value of the fragment with the
value of the depth texture. If the depth value of the fragment is lower, the fragment is shadowed.

To get ready to do the exercise, duplicate template_chapter11-3 and rename it chapter11-3. This
version of the template is the same as you used in the previous exercise. However, there are a few
differences. The projected texture references in both the C/C++ implementation as well as in the
lighting shader have been removed. In addition, this time the “projector” object is using a simple
shader called “writedepth”, which does not do anything else except write the depth buffer.

Are you ready to implement real-time shadows? Just follow these steps to effectuate the necessary
modifi cations to the application and get dynamic shadows up-and-running in no time:

 1. Inside the templateApp.cpp, declare the following global variables that you will be using
for the frame buffer and the depth texture:

/* Variable to remember the original frame buffer ID. On iOS, by default,
the screen uses a frame buffer, but not on Android. This will allow you to
either set back the original frame buffer ID, or to simply detach the frame
buffer (by passing the value 0). */
int main_buffer;
/* The depth texture ID. */
unsigned int depth_texture,
/* The frame buffer ID used for creating the shadow map in real time. */
 shadowmap_buffer,
/* The width and height of the depth texture that will be attached to the

c11.indd 250c11.indd 250 12/31/11 9:12:31 AM12/31/11 9:12:31 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

frame buffer. The higher the width and height, the smoother the shadow
will be, at the cost of performance and more video memory usage. */
 shadowmap_width = 128,
 shadowmap_height = 256;

 2. Move to the templateAppInit, and insert the following block to create the frame buffer
and the depth texture before the end bracket of the function:

/* Get the current frame buffer ID that is bound to the current GL context.
If there is none, the value returned will be less than 0 (if you are using
Android); in this case, clamp the main_buffer variable to 0 to unbind the
framebuffer. If you are running the app on iOS, you will get the current
frame buffer ID and will reuse it to switch between the shadowmap_buffer ID
and the original ID created by the system. Very convenient! */
glGetIntegerv(GL_FRAMEBUFFER_BINDING, &main_buffer);
if(main_buffer < 0) main_buffer = 0;
/* Generate a new frame buffer ID. */
glGenFramebuffers(1, &shadowmap_buffer);
/* Bind the new frame buffer ID. */
glBindFramebuffer(GL_FRAMEBUFFER, shadowmap_buffer);
/* Create a new texture ID. */
glGenTextures(1, &depth_texture);
/* Bind the new texture ID. */
glBindTexture(GL_TEXTURE_2D, depth_texture);
/* Set the magnifi cation and magnifi cation fi lter to not use
interpolation. */
glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MIN_FILTER,
 GL_NEAREST);
glTexParameteri(GL_TEXTURE_2D,
 GL_TEXTURE_MAG_FILTER,
 GL_NEAREST);
/* Set the texture wrap to be clamped to the edge of the texture. Just like
in the projector tutorial, this will force the UV values to stay in the
range of 0 to 1. */
glTexParameterf(GL_TEXTURE_2D,
 GL_TEXTURE_WRAP_S,
 GL_CLAMP_TO_EDGE);
glTexParameterf(GL_TEXTURE_2D,
 GL_TEXTURE_WRAP_T,
 GL_CLAMP_TO_EDGE);
/* Create a blank depth texture using the size of the shadow map specifi ed
above. Note that your GL implementation needs to have the extension the
GL_OES_depth_texture available for this tutorial to work and be able to
create a texture using the GL_DEPTH_COMPONENT pixel format. */
glTexImage2D(GL_TEXTURE_2D,
 0,
 GL_DEPTH_COMPONENT,
 shadowmap_width,
 shadowmap_height,
 0,
 GL_DEPTH_COMPONENT,
 /* Request a 16-bit depth buffer. */
 GL_UNSIGNED_SHORT,
 NULL);

Projected Real-Time Shadows ❘ 251

c11.indd 251c11.indd 251 12/31/11 9:12:32 AM12/31/11 9:12:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

252 ❘ CHAPTER 11 ADVANCED FX

/* Unbind the texture. */
glBindTexture(GL_TEXTURE_2D, 0);
/* Attach the depth texture to the frame buffer. This will allow you to use
this texture as a depth buffer. */
glFramebufferTexture2D(GL_FRAMEBUFFER,
 /* The type of attachment. */
 GL_DEPTH_ATTACHMENT,
 /* Specify that the attachment is a 2D texture. */
 GL_TEXTURE_2D,
 /* Pass the texture ID in parameter. */
 depth_texture,
 0);

 3. Before the end bracket of the draw_scene_from_projector function, insert the following
code block to be able to use the “writedepth” shader and render the scene to fi ll the depth
buffer of the shadowmap_buffer Frame Buffer Object:

 /* Bind the shadowmap buffer to redirect the drawing to the shadowmap
frame buffer. */
 glBindFramebuffer(GL_FRAMEBUFFER, shadowmap_buffer);
 /* Resize the viewport to fi t the shadow map width and height. */
 glViewport(0, 0, shadowmap_width, shadowmap_height);
 /* Clear the depth buffer, which will basically clear the content of
the depth_texture. */
 glClear(GL_DEPTH_BUFFER_BIT);
 /* Cull the front face. Because you are trying to render real-time
shadows, you are only interested in the back face of the object, which
basically is the surface that casts the shadow. By culling the front face,
you will be able to cast shadows for the scene and allow objects to cast
shadows on themselves. */
 glCullFace(GL_FRONT);

 unsigned int i = 0;
 /* Get the writedepth shader program. */
 PROGRAM *program = OBJ_get_program(obj, “writedepth”, 0);
 /* Assign the shader program to all materials. */
 while(i != obj->n_objmaterial) {
 obj->objmaterial[i].program = program;
 ++i;
 }
 /* Draw the scene as you normally do. This will fi ll the
depth_texture values. */
 i = 0;
 while(i != obj->n_objmesh) {
 objmesh = &obj->objmesh[i];
 GFX_push_matrix();
 GFX_translate(objmesh->location.x,
 objmesh->location.y,
 objmesh->location.z);
 OBJ_draw_mesh(obj, i);
 GFX_pop_matrix();
 ++i;
 }
 /* Restore that the back face should be culled. */
 glCullFace(GL_BACK);

c11.indd 252c11.indd 252 12/31/11 9:12:32 AM12/31/11 9:12:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 4. Right after the start bracket of the draw_scene function, add the following line to bind the
previous frame buffer (iOS) or unbind the current frame buffer (Android):

glBindFramebuffer(GL_FRAMEBUFFER, main_buffer);

 5. Still inside the draw_scene function, on the line after the unsigned int i declaration,
add the following code to affect the “lighting” shader to all objects before drawing the
regular pass and bind the depth_texture to the texture channel 0:

/* Get the lighting shader program. */
PROGRAM *program = OBJ_get_program(obj, “lighting”, 0);
/* Affect the lighting program to all materials for the current OBJ
structure. */
while(i != obj->n_objmaterial) {
 obj->objmaterial[i].program = program;
 ++i;
}
/* Bind and make the depth_texture active on the texture channel 0. */
glActiveTexture(GL_TEXTURE0);
glBindTexture(GL_TEXTURE_2D, depth_texture);
/* Reset the counter to loop through the objects. */
i = 0;

 6. In the templateAppExit, insert the following lines to delete the depth texture and the
shadow map buffer:

glDeleteFramebuffers(1, &shadowmap_buffer);
glDeleteTextures(1, &depth_texture);

At this point, everything is ready for real-time shadows. In the next section, you’ll make some
minimal changes to the lighting shader in order to draw the shadow onto your scene.

CASTING SHADOWS USING THE DEPTH TEXTURE

Inside the lighting.gfx, all you have to do is transform the current vertex position to be the same
as viewed from the spot (as you did in the previous exercise), and compare the current fragment Z
value with the Z value of the depth texture. If the fragment Z value is smaller than the depth value
previously recorded, the fragment is shadowed, or else it should be drawn regularly. To implement
this approach in code, simply replace this line:

gl_FragColor = (diffuse_color + specular_color);

with this block of code:

/* Pre-calculate the depth for the current fragment and give it a little
offset for self-shadowing. The offset value can be tweaked to fit your
requirements (0.005 provides good results on my devices). */
lowp float shadow = (projectorcoord.z / projectorcoord.w) + 0.005;
/* If the projector W coordinate is greater than 0, it means that the

Casting Shadows Using the Depth Texture ❘ 253

c11.indd 253c11.indd 253 12/31/11 9:12:32 AM12/31/11 9:12:32 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

254 ❘ CHAPTER 11 ADVANCED FX

fragment is not part of the projector back projection. */
if(projectorcoord.w > 0.0)
/* Check if the projected coordinate Z value is lower than the depth
calculated above. If it is, that means the fragment is in shadow; if it
isn’t, the fragment is lighted. */
shadow = texture2DProj(PROJECTOR, projectorcoord).z <
shadow ? 0.2 : 1.0;
/* Multiply the final color by the shadow intensity. */
gl_FragColor = (diffuse_color + specular_color) * shadow;

Now build and run the app, and you’ll get real-
time shadows as shown in Figure 11-6.

Notice how easy it was to combine the approaches
of the two previous exercises to get a completely
different end result. In addition, if you wanted to
add soft shadows, all you have to do is integrate
the blur code that you created in the fi rst exercise
of the chapter and use it to affect the shadow
value.

A FEW MORE WORDS ABOUT THE

FRAME BUFFER OBJECT

At the beginning of this chapter, you learned how to use the default GLES method to render to
texture. Since you now have the capabilities to create an offscreen Frame Buffer Object (FBO), you
will be delighted to know that you can also attach a color texture to directly render to texture.

The render to texture performance of an FBO is greatly superior to the default render to texture
technique of OpenGL ES. Of course, this enhanced performance is at the cost of more memory,
because it requires you to create an FBO, a depth attachment, and a color attachment. The code
structure that is required to create and attach a color texture to an FBO is as follows (you can
integrate the corresponding code into the structure to make it work):

/* Insert here the same frame buffer creation code, depth texture creation
code, and depth attachment code as you did in the previous exercise. */

/* Create a new “colorbuffer_texture” as you did in the first exercise of
this chapter. */

/* Attach the “colorbuffer_texture” ID as the color attachment 0 of the
current frame buffer. */
glFramebufferTexture2D(GL_FRAMEBUFFER,
 GL_COLOR_ATTACHMENT0,
 GL_TEXTURE_2D,
 colorbuffer_texture,
 0);

Once the texture is attached as a color attachment, you simply have to bind the FBO ID
before drawing and render your scene as you would normally do. Once the drawing is done,

FIGURE 11-6: Real-time shadow map using a depth

texture

c11.indd 254c11.indd 254 12/31/11 9:12:33 AM12/31/11 9:12:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

you can reuse the texture ID of the texture attached to the frame buffer color attachment for
post-processing effects.

As an extra exercise, re-implement the fi rst exercise of this chapter using an FBO, in order to
compare the FPS between the two methods.

PARTICLES

Fire, smoke, water, explosions — all of these effects require you to use particles. Basically each
particle in these effects is nothing more than a textured point always facing the camera. The fastest
and easiest way to render particles on a mobile device is to use GL_POINTS. You’ve already dealt
with points earlier in this book, and it is now time to learn how to tweak them to be able to use
them as particles to create a wider range of special effects.

Before starting, please note that since a particles system in modern game engines can be quite
large and complex, the following tutorial focuses only on how to deal with points as if they were
particles. You will learn how to adjust the size of the points based on the distance with the viewer,
learn how to texture them, and gain the necessary knowledge to be able to implement your own
particle system that fi ts your specifi c needs and requirements.

Start by duplicating the template_chapter11-4 project and rename it chapter11-4.

In this tutorial, you will be working with only
one sphere. This sphere has been linked to
the “particles.gfx” shader program and to the
particle.png texture. At the moment, if you
run the template, you will see that the sphere is
using the vertex normal to colorize each vertex.
But by the end of this exercise, you will learn how
to convert each vertex position into a textured
particle that will be rendered onscreen using
additive blending and with proper alpha sorting, as
shown in Figure 11-7.

To implement particles into the app, follow
these steps:

 1. Load templateApp.cpp, and add the following line before the end bracket of the
templateAppInit to modify the drawing mode of the fi rst (and only) triangle list of the
sphere to use points instead of triangles or triangle strips:

OBJ_get_mesh(obj, “sphere”, 0)->
objtrianglelist[0].mode = GL_POINTS;

 2. On the line before the OBJ_draw_mesh call inside the templateAppDraw function, add the
following block:

/* If the current object name is the sphere. */

FIGURE 11-7: Drawing particles

Particles ❘ 255

c11.indd 255c11.indd 255 12/31/11 9:12:33 AM12/31/11 9:12:33 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

256 ❘ CHAPTER 11 ADVANCED FX

if(strstr(objmesh->name, “sphere”)) {
 /* Enable blending. */
 glEnable(GL_BLEND);
 /* Turn off the depth mask. This is very important when drawing
particles. This will allow the particle to pass the depth test but will not
write the depth buffer. Otherwise, you would have to manually sort every
point of the geometry and render them from back to front to insure proper
additive alpha sorting. */
 glDepthMask(GL_FALSE);
 /* Set additive blending. */
 glBlendEquation(GL_FUNC_ADD);
 glBlendFunc(GL_SRC_ALPHA, GL_ONE);
 /* Rotate all the points around the object origin. */
 objmesh->rotation.x += 0.5f;
 objmesh->rotation.y += 0.5f;
 objmesh->rotation.z += 0.5f;
 GFX_rotate(objmesh->rotation.z, 0.0f, 0.0f, 1.0f);
 GFX_rotate(objmesh->rotation.y, 0.0f, 1.0f, 0.0f);
 GFX_rotate(objmesh->rotation.x, 1.0f, 0.0f, 0.0f);
 /* Draw the mesh. From here, the particles.gfx shader will be called and
it will handle the point sizes, attenuations, and the points’ texture
coordinates. */
 OBJ_draw_mesh(obj, i);
 /* Disable blending and re-enable the depth mask writing. */
 glDisable(GL_BLEND);
 glDepthMask(GL_TRUE);
}
/* If the current object is not the sphere, draw it normally. */
else

 3. Open the particles.gfx fi le, and inside the GL_VERTEX_SHADER section, add the following
instructions on the line just before the gl_Position affectation:

/* Get the length (distance) of the vertex in eye position. This will allow
you to calculate the size attenuation of the point relative to the viewer. */
highp fl oat d = length(epos);
/* Set the point size to 24 pixels (but it could be any value between 1 and
the maximum point size your implementation supports), and use the
attenuation vector declared at the top of the main function to affect the
size based on the linear and quadratic attenuation values. This is very
similar to what you did previously for the lighting attenuation code. */
gl_PointSize = 24.0 / sqrt(attenuation.x +
 (attenuation.y * d) +
 (attenuation.z * d * d));

 4. Move on to the GL_FRAGMENT_SHADER section and replace the following fragment color
affectation:

gl_FragColor = vec4(normal, 1.0);

with this:

/* Use the GLSL built-in gl_PointCoord variable as the texture coordinates.
This will allow you to texture the point as you would normally do for a
triangle. Note that the values of gl_PointCoord will always be clamped in

c11.indd 256c11.indd 256 12/31/11 9:12:34 AM12/31/11 9:12:34 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the range of 0 to 1; no texture tiling is possible. */
gl_FragColor = vec4(normal, 1.0) *
 texture2D(DIFFUSE, gl_PointCoord);

 5. Build and run the program.

Congratulations! In a few easy steps, you now have a sphere entirely drawn using textured particles.
By taking this approach to the next level, you can easily create your own full-fl edged particle system.

SUMMARY

This chapter was defi nitely a lot of fun! You learned how to implement multiple render passes,
which will allow you to create more realistic real-time renderings by combining offscreen textures
with your rendering results.

You have also learned how to project a texture in real time from an arbitrary spot light source in
your scene.

Using the depth texture extension, and with the power of an FBO, you can now cast shadows onto
your scene. And using a color attachment, you can create faster fullscreen post-processing effects.

With what you’ve learned in this chapter, you are also ready to implement your own particle system
and render textured hardware-accelerated points onscreen to create multiple types of special effects.

Before leaving this chapter behind you, make sure that you test different values, and try hacking
around the exercises of this chapter. Use the optimization techniques that you learned earlier in this
book to try to get the most FPS while using the different effects demonstrated in this chapter.

In the next chapter, you are going to learn how to use bone animations.

Summary ❘ 257

c11.indd 257c11.indd 257 12/31/11 9:12:34 AM12/31/11 9:12:34 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c11.indd 258c11.indd 258 12/31/11 9:12:34 AM12/31/11 9:12:34 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Skeletal Animation

WHAT’S IN THIS CHAPTER?

Learning about the skeletal animation system

Learning about the MD5 fi le format

Loading an MD5 mesh

Animating an MD5 mesh

Learning how to use diff erent interpolation methods to get smoother

animations

Blending two actions together

Additively blending two actions together

In this chapter, you will learn about skeletal animation. I will fi rst introduce and compare
the traditional ways of handling character animation and describe the modern way to handle
them.

Moving forward in this chapter, you will learn about the MD5 fi le format, which is a format
especially built for skeletal animation. You will then learn how to use the book’s API to load
and animate an MD5 mesh.

Once the necessary code is in place to play back animations, you’ll learn how to use different
interpolation methods to dynamically generate frames between action frames. As a result,
your animation transitions will become smoother and a lot more realistic.

Finally, you will learn how to interpolate multiple actions together using either regular
blending (multiply) or additive blending to create an infi nite number of action combinations.

➤

➤

➤

➤

➤

➤

➤

12

c12.indd 259c12.indd 259 12/31/11 9:13:14 AM12/31/11 9:13:14 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

260 ❘ CHAPTER 12 SKELETAL ANIMATION

TRADITIONAL VS. MODERN ANIMATION SYSTEMS

Traditionally, animation in games was basically done the same way as in cartoons. Animation
sequences were built using multiple versions of the same mesh corresponding to each frame of an
action. Then at run time, a different version of the mesh is presented to the user as the current
animation frame increment. This technique is called keyframe animation.

This approach has many limitations and is simply not practical for modern games, because action
combinations have to be manually prerecorded.

Imagine for a second that you are using a keyframe animation system and that your player can
run, shoot, and jump. This would require you to manually create all the possible combinations of
actions, resulting in the following list:

Run

Shoot

Jump

Run + Shoot

Run + Jump

Run + Jump + Shoot

At run time, all these actions have to be linked manually by the programmer, and from an artist’s
point of view, it is a real nightmare to create them manually frame-by-frame.

In modern games, these problems and limitations have been successfully fi xed using a technique
called bone animation or skeletal animation (the term I’ll be using throughout this chapter).

The idea behind this method is very simple.
All you need is a base skeleton or armature
that is built from bones and joints, as shown
in Figure 12-1.

Then each vertex of the mesh has to be
associated to a bone and will then be
transformed at run time based on the location
and rotation of this bone at a specifi c frame.
In addition, skeletons can be reused by
more than one character as long as they are
sharing the same bones.

Since the vertex positions drawn onscreen
are affected by the fi nal pose of the skeleton,
you can then easily combine multiple actions
and create an infi nite number of variations
by blending or adding skeleton poses.

➤

➤

➤

➤

➤

➤

FIGURE 12-1: Bob’s skeleton

c12.indd 260c12.indd 260 12/31/11 9:13:16 AM12/31/11 9:13:16 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Loading an MD5 Mesh ❘ 261

So, returning to the example mentioned at the beginning of this section, if your character can run,
jump, and shoot, all you need is these three actions prerecorded. Then at run time, you simply have
to mix them together to create the fi nal skeleton pose based on the game logic or player input.

These days, every modern game engine uses a skeletal animation system in one way or another.
Due to its extreme fl exibility, more-complex frameworks can be created to support rag doll physics,
inverse kinematics, or dynamic locomotion, or even allow the player to control the skeleton bones in
real time.

THE MD5 FILE FORMAT

In order to start exploring the skeletal animation possibilities, you will be using the MD5 fi le format
for the exercises and tutorials in this chapter. MD5 is a text-based format (human readable, and
very easy to understand) that was originally developed by iD Software for the game Doom 3 and
then extended in Quake 4.

When using any skeletal animation system, the mesh fi le and the action fi les are saved separately,
and the MD5 format is no exception. The MD5 mesh fi le is generally saved using the .md5mesh
extension, and the action fi les are saved using the .md5anim extension.

This book’s SDK provides a simple yet very effective implementation that will allow you to load and
animate MD5-based characters.

Before going forward, if you need more information concerning the MD5 format specifi cations, visit
the website http://tfc.duke.free.fr/coding/md5-specs-en.html.

Since the book’s MD5 implementation is rather lengthy (over a thousand lines of code), feel free to
consult the source fi les md5.cpp and md5.h (located under the SDK/common/ directory of the book’s
SDK) for more information about the functionalities implemented.

Finally, in order to get you started and enable you to export MD5-animated characters from within
Blender, I included a Python script in the SDK/md5_exporter/ directory that will allow you to
export MD5 mesh and action fi les that are fully compatible with this book’s MD5 API.

LOADING AN MD5 MESH

It’s time to start implementing some real practical code! In the fi rst exercise for this chapter,
you will start by loading an MD5 mesh fi le and familiarize yourself with this book’s MD5 API.

Duplicate the template_chapter12-1 project directory and rename it chapter12-1. The
template includes the same viewer functionalities (swipe up, down, left, and right to rotate
the character) that you integrated in Chapter 3.Available for

download on
Wrox.com

Available for
download on
Wrox.com

c12.indd 261c12.indd 261 12/31/11 9:13:17 AM12/31/11 9:13:17 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

262 ❘ CHAPTER 12 SKELETAL ANIMATION

In addition, for this exercise, I’ve already re-implemented the directional lamp shader code that you
created in Chapter 10. You will reuse this code to illuminate your MD5 mesh (available inside the
lighting.gfx shader program fi le).

This exercise will strictly focus on loading and drawing an md5mesh using its default bind pose
contained in the mesh fi le. You will also learn how to manually load a Wavefront material fi le (.mtl)
and associate the necessary material data to the mesh, because the default material format used by
MD5 (.mtr) is unfortunately not supported by the exporter provided with this book’s SDK.

Follow these instructions to load and render an MD5 mesh onscreen:

 1. At the top of the templateApp.cpp, add the following defi nitions:

/* The material fi le. */
#defi ne MTL_FILE (char *)”bob.mtl”
/* The MD5 mesh fi le. */
#defi ne MD5_MESH (char *)”bob.md5mesh”

 2. Declare the following global variables (as usual after the #include) to be able to load the
.md5mesh and .mtl fi les from disk:

/* A fresh OBJ pointer, which you will strictly use to load the
materials associated to the MD5 mesh. */
OBJ *obj = NULL;
/* An empty MD5 structure pointer. For more information about this
structure, feel free to consult the fi le md5.cpp and its associated .h
located inside the common directory of the SDK. */
MD5 *md5 = NULL;

 3. Just before the end bracket of the templateAppInit function, add the following block to
initialize the OBJ structure and manually load the .mtl fi le linked to your project and build
the libraries:

 /* Manually initialize a blank OBJ structure. You do not need to use the
OBJ_load function this time, because there’s no geometry to load, only a
material fi le. */
 obj = (OBJ *) calloc(1, sizeof(OBJ));
 /* Manually load the material fi le using the fi lename you defi ned
at the beginning of the current source fi le. */
 OBJ_load_mtl(obj, MTL_FILE, 1);
 /* Build the textures. */
 unsigned int i = 0;
 while(i != obj->n_texture) {
 OBJ_build_texture(
 obj,
 i,
 obj->texture_path,
 TEXTURE_MIPMAP | TEXTURE_CLAMP | TEXTURE_16_BITS,
 TEXTURE_FILTER_3X,
 0.0f);
 ++i;

c12.indd 262c12.indd 262 12/31/11 9:13:17 AM12/31/11 9:13:17 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Loading an MD5 Mesh ❘ 263

 }
 /* Build the shader programs (in this case, there’s only one). */
 i = 0;
 while(i != obj->n_program) {
 OBJ_build_program(obj,
 i,
 program_bind_attrib_location,
 NULL,
 1,
 obj->program_path);
 ++i;
 }
 /* Build the materials and associate the material_draw callback function
to each of them to be able to set the uniform variables of the
shader program. */
 i = 0;
 while(i != obj->n_objmaterial) {
 OBJ_build_material(obj, i, NULL);
 /* Set a material callback so every time the material is about to be
used for drawing, the material_draw function will be triggered by the
execution pointer. */
 OBJ_set_draw_callback_material(obj, i, material_draw);
 ++i;
 }

 4. On the next line right after the code you added in step 3, append the following code block
to load the md5mesh fi le from disk, and query the OBJ material library in order to associate
the materials to each part of the mesh (please note that the materials have been renamed
according to the mesh parts’ names):

 /* Load the MD5 mesh fi le from the disk. */
 md5 = MD5_load_mesh(MD5_MESH, 1);
 /* Convert the triangles to triangle strips. */
 MD5_optimize(md5, 128);
 /* Build the VBO and VAO and construct the normals and tangents for each
face of the meshes. */
 MD5_build(md5);
 /* Loop while there are some mesh parts. */
 i = 0;
 while(i != md5->n_mesh) {
 /* The current mesh pointer. */
 MD5MESH *md5mesh = &md5->md5mesh[i];
 /* Query the OBJ material database to get the objmaterial pointer for
the current mesh part. Note that for the MD5 format, each part name is
considered as a shader that corresponds to the same material entry name in
the OBJ material fi le. */
 MD5_set_mesh_material(md5mesh,
 OBJ_get_material(
 obj,
 md5mesh->shader,
 0));
 /* Next mesh please... */

c12.indd 263c12.indd 263 12/31/11 9:13:18 AM12/31/11 9:13:18 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

264 ❘ CHAPTER 12 SKELETAL ANIMATION

 ++i;
 }
 /* Free the mesh data that was used to build the mesh, because this data
is no longer required for drawing. */
 MD5_free_mesh_data(md5);
 /* Disable the cull face to make sure that even backfaces will be drawn
onscreen. */
 glDisable(GL_CULL_FACE);

 5. Move to the templateAppDraw function, and on the line just before the end bracket of
the function, add the following code to actually draw the MD5 onscreen using the default
bind pose saved in the MD5 mesh fi le (since no action sequences have been assigned to the
mesh yet):

 GFX_push_matrix();
/* If auto rotate is ON, simply turn the geometry on the Z axis,
demo reel style. */
 if(auto_rotate) rot_angle.z += 1.0f;
 /* Rotate the X and Z axis based on the rotation specifi ed by the user. */
 GFX_rotate(rot_angle.x, 1.0f, 0.0f, 0.0f);
 GFX_rotate(rot_angle.z, 0.0f, 0.0f, 1.0f);
 /* Draw the MD5 model onscreen.*/
 MD5_draw(md5);
 GFX_pop_matrix();

 6. In the templateAppExit function, add the following lines to
free from the local memory the structures that you initialized at
the beginning of the app:

 obj = OBJ_free(obj);
 md5 = MD5_free(md5);

 7. Now build and run the application. With the code that you have
created, you are now able to load an MD5 mesh and draw it
using its default T position, just like in Figure 12-2.

You now have the necessary framework in place to be able to start
adding animation. Move on to the next section to learn how easy it is
to assign an animation sequence (aka action) to the current MD5 mesh
displayed on your mobile screen.

ANIMATING THE MESH

Your MD5 model is loaded and ready to be animated. The beauty of the skeletal animation system
is that actions are completely separated from the mesh and are stored as a separate fi le. In this
tutorial, you will learn how to load an action fi le from disk and play it back frame-by-frame in real
time.

FIGURE 12-2: Hi, my name

is Bob!

c12.indd 264c12.indd 264 12/31/11 9:13:18 AM12/31/11 9:13:18 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Animating the Mesh ❘ 265

Start by duplicating the chapter12-1 project directory and rename it chapter12-2. Then link the
bob_idle.md5anim action fi le to your project (the fi le can be found in the SDK/data/chapter12-2
directory).

Follow these steps to learn how to add an action strip to the MD5 structure, and as a result, animate
the model:

 1. Declare the following variable at the top of the templateApp.cpp:

/* To store the idle MD5ACTION pointer. */
MD5ACTION *idle = NULL;

 2. On the line before the MD5_free_mesh_data function call, add the following block to load
the animation from disk and start the playback:

 /* Load the action from the disk. */
 MD5_load_action(md5,
 /* The internal name for this action. */
 (char *)”idle”,
 /* The action fi le name. */
 (char *)”bob_idle.md5anim”,
 /* Use a relative path to load the action fi le. */
 1);
 /* Retrieve the pointer of the idle action. */
 idle = MD5_get_action(md5, (char *)”idle”, 0);
 /* Set the frame rate that you want to use to play back the animation. */
 MD5_set_action_fps(idle, 24.0f);
 /* Start playing the animation using looping. */
 MD5_action_play(idle,
 /* The method to use to interpolate between frames.
For this fi rst example, simply use the MD5_METHOD_FRAME method to represent
that each frame of the sequence will be played sequentially one after the
other (no interpolation between each animation frame). */
 MD5_METHOD_FRAME,
 /* Specify whether or not the animation should loop
when the end frame is reached (either 1 or 0). */
 1);

 3. Inside the templateAppDraw, on the line just before the MD5_draw call, add the following
statement to increase the animation time step:

 /* Increase the time step of the animation. Note that the
MD5_draw_action function will return 1 (in this case, when the
current frame number changes) if a new skeleton pose has been
generated, which indicates that you need to update the current pose
of the MD5 skeleton. Since you are using the MD5_METHOD_FRAME
method, a new version of the skeleton’s pose will be generated only
when the current animation frame increases. For each new “skeleton
pose,” all the skin of the mesh will have to be updated and the VBOs
have to be refreshed. */
 if(MD5_draw_action(md5, 1.0f / 60.0f))
 { MD5_set_pose(md5, idle->pose); }

c12.indd 265c12.indd 265 12/31/11 9:13:18 AM12/31/11 9:13:18 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

266 ❘ CHAPTER 12 SKELETAL ANIMATION

 4. Compile and execute the application. You should now have the
idle animation up-and-running (the guard standing still and
looking around while lifting his lamp), just like in Figure 12-3.

For each frame, a new version of the skeleton is created, and all the
vertices (the skin of the mesh) are transformed, depending on the
associated bone position and rotation.

As you can see, even at 24 FPS, it’s still a bit choppy. In the next section,
you’ll learn how to generate frames between frames and make the
animation smoother.

LERP

For a skeleton animation system, frames are basically just markers that
modify the bones’ positions and rotations at a specifi c frame or time in
the animation sequence.

Since these “frames” are basically just markers, you can easily generate
an infi nite number of middle frames between the current and the next.

While generating middle frames, bone positions will always have to be
linearly interpolated, but since the bone rotations are using quaternions, you can either interpolate
them linearly or spherically, making the transitions even smoother. (If you are not familiar with
quaternions, please visit http://en.wikipedia.org/wiki/Quaternion.)

To change the current frame interpolation method to create middle frames using LERP, comment
the following line inside the templateAppInit function:

MD5_action_play(idle,
 MD5_METHOD_FRAME,
 1);

Then, on the next line, add the following call:

MD5_action_play(idle,
 MD5_METHOD_LERP,
 1);

Now build and run the application and observe how smoothly the frames are interpolating between
each other by generating middle frames using linear interpolation.

Of course, the MD5_METHOD_FRAME is the fastest method (CPU-wise), because it requires only
one skeleton update for each frame. However, the animation looks a lot better with the MD5_
METHOD_LERP method than the (choppy) MD5_METHOD_FRAME, which basically has no interpolation
whatsoever.

From a CPU point of view (as well as GPU, because the VBO has to be updated), it is more
expensive to generate these middle frames. In your own games and 3D apps, you will have to make
a choice to either use middle frame generation or not.

FIGURE 12-3: Is there

anybody there?

c12.indd 266c12.indd 266 12/31/11 9:13:19 AM12/31/11 9:13:19 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Blending Animation ❘ 267

Now move on to the next section to learn how to modify your existing app to use spherical
interpolation (SLERP).

SLERP

Quaternions are great to handle bone rotation and give you a maximum amount of fl exibility.
(I personally can’t think of a better method.)

In the previous section, you changed the frame interpolation method to linear. But you can also
change it to spherical (commonly called SLERP) for an even more realistic transition between
bone rotations, at the cost of a bit more CPU processing compared to the linear interpolation.
(Unfortunately, everything that looks better in computer graphics requires more calculations.)

To use spherical interpolation on the bone rotations between each middle or subframe (as it is also
called), simply change the MD5_METHOD_LERP to MD5_METHOD_SLERP (inside the templateAppInit
function), and then build and run your application to see the changes.

Looking good, isn’t it? Well it’s not over yet — there’s obviously a lot more to talk about when it
comes to skeletal animation. In the next section, you’ll learn how to blend (or mix if you prefer)
multiple animation sequences together.

BLENDING ANIMATION

In the previous exercise, you witnessed how easy it is to interpolate between two skeleton frames.
But what about two different animation sequences?

The interpolation process also works between skeleton poses, so it is not a problem to blend
multiple skeletons posed together using the same concept.

Start by duplicating the chapter12-2 project directory and rename it chapter12-3. Load the
project into your IDE and link the bob_walk.md5anim fi le (which is located in the SDK/data/
chapter12-3 directory) to your project.

Then follow these instructions to learn how to progressively blend (mix) two action sequences
together based on an arbitrary blend factor:

 1. At the top of the templateApp.cpp, declare the following global variables:

/* The walk action pointer. */
MD5ACTION *walk = NULL;
/* The joints array that will be used to hold the fi nal pose of the
skeleton after the idle and walk actions are blended together. */
MD5JOINT *fi nal_pose = NULL;

 2. In the templateAppInit function, on the line right after the MD5_load_action call, add
the following line to load the walk animation:

 MD5_load_action(md5,
 (char *)”walk”,
 (char *)”bob_walk.md5anim”,
 1);

c12.indd 267c12.indd 267 12/31/11 9:13:19 AM12/31/11 9:13:19 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

268 ❘ CHAPTER 12 SKELETAL ANIMATION

 3. On the line before the MD5_free_mesh_data function call, add the following block to get
the walk action pointer and start the animation playback (as you did for the idle action):

 /* Get the walk animation pointer. */
 walk = MD5_get_action(md5, (char *)”walk”, 0);
 /* Set the rate of the animation playback. */
 MD5_set_action_fps(walk, 24.0f);
 /* Play the walk action using spherical interpolation between frames and
loop when the end frame is reached. */
 MD5_action_play(walk,
 MD5_METHOD_SLERP,
 1);

 4. On the next line right after the code block you added in step 3, insert the following code to
create an array of joints capable of holding the full skeleton defi ned in the MD5 mesh fi le:

/* Initialize a temporary skeleton to be able to store the fi nal
pose after blending the idle and walk animation. */
fi nal_pose = (MD5JOINT *)
 calloc(md5->n_joint, sizeof(MD5JOINT));

 5. Now move on to the templateAppDraw function and replace the following lines:

 if(MD5_draw_action(md5, 1.0f / 60.0f))
 { MD5_set_pose(md5, idle->pose); }

with this block of code to smoothly effectuate the transition between the idle and the walk
animation poses:

 /* Control the direction of the blending, from idle to walk and from
walk to idle (for demonstration purposes only, of course). */
 static unsigned char blend_direction = 0;
 /* The blend factor to use to mix the two animation sequence together.
This factor is basically a value from 0 to 1 that determines how much the
two actions will be blended together (from the fi rst to the second). */
 static fl oat blend_factor = 0.0f;
 /* If the blend_direction is 0, increase the blend factor to
progressively push lazy Bob to start walking. */
 if(!blend_direction) blend_factor += 0.001f;
 /* If the blend_direction is a value other than 0, progressively
decrease the blend factor (to let Bob have a rest) and interpolate the
walk animation back to the idle action. */
 else blend_factor -= 0.001f;
 /* If the blend_factor is less than 0 or greater than 1, invert
the blend_direction. */
 if(blend_factor < 0.0f || blend_factor > 1.0f)
 { blend_direction = !blend_direction; }
 /* Increase the time step for all the actions with statuses that are
set to PLAY. */
 MD5_draw_action(md5, 1.0f / 60.0f);

c12.indd 268c12.indd 268 12/31/11 9:13:19 AM12/31/11 9:13:19 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Additive Blending ❘ 269

 /* This is the interesting part. This function receives two skeleton
poses and blends them together based on a blend factor. The resulting
skeleton will then be stored in the fi nal_pose array of joints. */
 MD5_blend_pose(md5,
 /* The fi nal skeleton. */
 fi nal_pose,
 /* The fi rst action to use for blending. */
 idle->pose,
 /* The second action to use for blending. */
 walk->pose,
 /* The method to use to blend the two skeletons together
based on the blend factor passed to the function. Note that joint’s
position will always be linearly interpolated, and the rotation
interpolation will use the method specifi ed by this parameter. */
 MD5_METHOD_SLERP,
 /* Make sure that the blend_factor always stays between
the range of 0 to 1. */
 CLAMP(blend_factor, 0.0f, 1.0f));
 /* Use the fi nal_pose skeleton to calculate and update the vertex
positions of the skeleton’s skin and the VBO with the latest interpolated
skeleton. */
 MD5_set_pose(md5, fi nal_pose);

 6. In the templateAppExit function callback, add the following
line to free the final_pose joints that you initialized earlier:

free(fi nal_pose);

 7. Run the program and let the animation roll for a while. Observe
how the actions get blended and progressively fade as the
blend_factor between animations increases or decreases, as
shown in Figure 12-4.

The technique demonstrated in this tutorial is ideal for transitioning
from one action to another, such as from walking to running or vice
versa.

Of course, this method has its limitations, as you cannot really add
animation together because the mix is done based on a factor. In order
to create a combination of two (or more) actions, move on to the next
section to learn about additive blending.

ADDITIVE BLENDING

As mentioned in the previous section, blending (mixing) poses is used strictly for transitions. If you
want to combine actions, you will have to use additive blending. Additive blending is very easy to
understand, as demonstrated in Figure 12-5.

FIGURE 12-4: Idle and

walk actions blended at

50 percent

c12.indd 269c12.indd 269 12/31/11 9:13:20 AM12/31/11 9:13:20 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

270 ❘ CHAPTER 12 SKELETAL ANIMATION

Using the additive blending technique, you can combine multiple actions that take care of specifi c
parts of the skeleton.

In a more complex and elaborate skeletal animation system, you would probably have access to toggle
ON/OFF each bone of the body. But to keep things simple, the additive animation system included in
this book’s SDK controls the addition of actions automatically. This implementation simply analyzes
which bones are animated and which ones are not by comparing the current and the next frame
rotation and position value of each bone. As a result, the implementation will only “add” the active
bone(s) to the actions received in parameters (as you’ll see when you try out the code in this section).

In order to test additive animation blending, start by duplicating the chapter12-3 project directory
and rename it chapter12-4.

Then to be able to create a blended “Idle + Walk” animation sequence, all you have to do is to
replace the following line inside the templateAppDraw callback:

 MD5_blend_pose(md5,
 final_pose,
 idle->pose,
 walk->pose,
 MD5_METHOD_SLERP,
 CLAMP(blend_factor, 0.0f, 1.0f));

with the following:

 MD5_add_pose(md5,
 final_pose,
 /* The md5action pointer of the first action. */
 idle,
 /* The md5action pointer of the second action. */
 walk,
 /* The interpolation method to use to interpolate the first
and second action pose together. */

FIGURE 12-5: Blending animations additively

c12.indd 270c12.indd 270 12/31/11 9:13:20 AM12/31/11 9:13:20 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Summary ❘ 271

 MD5_METHOD_SLERP,
 /* The weight of the walk action (the second action pass in
parameter to the function), since you are using addition, the idle
animation will always have the priority. This factor will control how much
percentage of the walk animation will be added to the idle animation. */
 CLAMP(blend_factor, 0.0f, 1.0f));

Please note that the function MD5_add_pose takes in parameter the
two MD5ACTION pointers instead of the action pose. This function will
internally use the MD5ACTION->pose (which you can also set manually in
code if you want) to construct the final_pose of the skeleton based on
which bones are animated.

Build and run the program. You have now created a new action sequence
by additively blending the idle and the walk sequence, and your screen
should look similar to Figure 12-6.

Using this technique, you can now combine as many actions as you want
and create an infi nite number of variations. You can also mix the MD5_
add_pose with MD5_blend_pose calls and vice versa to pre-blend or pre-
combine animation poses before calling the MD5_set_pose function and
drawing the fi nal skeleton onscreen.

SUMMARY

This chapter was short and sweet, even though skeleton animation is a
very extensive subject. (There are just so many possibilities!) There are
many different frameworks available, and they all do things somewhat differently; however, they
are all built using the same concepts that you have learned in this chapter (actions, pose, skin, joint
control, blending, and adding).

With the knowledge that you have gathered in this chapter, you are now able to load and animate
arbitrary meshes and control their actions in real time.

In addition, you can now integrate realistic character animation into your own games and 3D apps.
You also now know how to create dynamic skeleton poses on-the-fl y based on your game logic
and/or player input(s).

As usual, make sure that you fully grasp all the notions demonstrated here. Test, test, test, and
tweak the tutorials that you have created in order to master and re-implement skeletal animation in
your own apps!

FIGURE 12-6: Additive

blending (Idle + Walk)

actions

c12.indd 271c12.indd 271 12/31/11 9:13:20 AM12/31/11 9:13:20 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

c12.indd 272c12.indd 272 12/31/11 9:13:21 AM12/31/11 9:13:21 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

273

A

accelerometer, camera, 195–198
additive blending, 269–271
add_rigid_body, 110–111, 113
ADT plug-in, 2, 5
alpha-tested objects, 64, 70, 73
alSourcePlay, 177
ambient color (Ka), 31
ambient sound, 172, 178
ambient texture. See map_Ka
Android

color picking, 182
importing projects, 5–7
OpenAL, 172
orthographic 2D projection, 15
software requirements, 2–4

Android NDK, 2, 5
Android SDK, 2, 5
animation, skeletal,

259–271
AppDraw GFX_scale, 25
array, 40
array buffer, 39–40
arrays. See also vertex array objects

element, 39–40
interleaved, 41
vertex data

texture, 52
VBO, 38–39

assets, 4, 14, 86
atexit, 8, 13
attenuation, 221–224
attribute, 15, 52
Audacity, 173

audio
OGG Vorbis, 173–174
OpenAL, 172–173
piano game, 178–190
positional sound, 172, 176–178
rolling ball game, 190–205
static in-memory sound playback, 175–176

Autodesk, 30

B

back face visibility, 71–73
background_sound, 194
bandwidth, 36
.blend, 5, 190
Blender, 5, 30

rolling ball game, 190
3D physics, 121–122

blur shader, 243–245
blur.gfx, 243–244
bound, 98
box, 99
box_in_frustum, 133
box_intersect_frustum, 133
btCollisionWorld::

ClosestRayResultCallback, 145–146
btdispatcher.defaultNearCallback, 125
btRigidBody, 145–146
btSoftRigidDynamicWorld, 123
btTransform, 111
BUFFER_OFFSET, 42
Build & Run, 5
build_frustum, 133
Bullet, 97–100, 159–160
.bullet, 100, 141

INDEX

bindex.indd 273bindex.indd 273 12/30/11 8:19:07 AM12/30/11 8:19:07 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

bump, 62
bump mapping, 87–93
BUMP uniform, 212–213

C

cache
VBO, 36
vertex, 83–84

camera, 129–149
accelerometer, 195–198
fi rst-person, 140–142
fl y mode, 136–140
frustrum, 132–136
touch-and-go, 130–132

camera tracking
3D, 143–145
2D physics, 114–115

capsule, 99
Catch Me If You Can, 163–165
C/C++, 2, 7, 15
center, 144
_chapter#-#, 4
char_ram_nor.png, 87
CHUNK_SIZE, 180
clipping panes, 24
collision, 145–149, 155

bounds, 98–99
callbacks, 105–109
detection, fi rst-person camera, 140–142

color
buffer, 14, 20
Ka, 31
Kd, 31, 223, 226, 239
picking, 182–185
specular, 238
vertex, 19

COLOR, 15, 16, 22
color, 15, 16, 17
common, 4, 42
complex geometry, 29–55

Momo, 42–44
per-vertex lighting, 46–49
shaders, 35–40
touche, 44–45

triangles, 39, 82
Wavefront OBJ, 29–35

cone, 99
console_print, 8
contact points, 108–109
contact-added callbacks,

105–107
contact_added_callback

physical objects, 113
rolling ball game, 200–202
2D physics, 117–118

contacts, real-time physics, 105–109
convex hull, 99
Cube.mtl, 31
cube.obj, 30–31
cur_player_sound, 187
cylinder, 99

D

data, 4–5
debugging, 35
decompress_stream, 194
#define, 66, 67–68
depth buffer, 10, 14, 24
depth mask, 24
depth texture, 253–254
Detour library, 151–152
didFinishLaunchingWithOptions, 195
DIFFUSE, 54
diffuse color (Kd), 31

point lamps, 223
scenes, 239
spherical point lamp, 226

diffuse texture. See map_Kd
DIFFUSE_COLOR, 92
diffuse_color, 75
diffuse.png, 50
directional lamps, 208

shaders, 211–214
templateApp.cpp, 209–211

directional_lamp, 213–214
disp, 62
DISSOLVE, 75
distance, 147

bump – distance

274

bindex.indd 274bindex.indd 274 12/30/11 8:19:08 AM12/30/11 8:19:08 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

double-sided rendering, 71–73
downloading book’s SDK, 4–5
drawing sequence, scenes, 64–65
draw_scene, 248, 253
draw_scene_from_projector, 247–248, 252
dynamic body, 98

E

EAGLview.mm, 182
Eclipse, 2, 5–7, 83

camera frustum, 135
color picking, 182
orthographic 2D projection, 22

element array, 39–40
else, 66, 142
else if, 55, 91, 226
material_draw_callback, 76, 87
per-pixel lighting, 76–78
per-vertex lighting, 48

EULA, 5
eye space, per-vertex lighting, 47

F

far clipping panes, 24
FBO. See frame buffer object
FILE, 12
final_pose, 271
first_pass, 241–242
fi rst-person camera, 140–142
float, 13
fl oating-point numbers, 16
fl y mode, camera, 136–140
FNORMAL, 63
fog, 199–200
FONT, 167
FPS. See frames per second
fragment shader, 36

linking shader program, 17–19
optimization, 88–90
orthographic 2D projection, 14–17
per-pixel lighting, 74–75
per-vertex lighting, 47–48

rolling ball game, 190–191
scenes, 63
texture, 53

fragment.glsl, 16–17, 36, 48, 63, 95
alpha-tested objects, 73
color picking, 182
DIFFUSE_COLOR, 92
fragment shader, 53
Uber Shader, 66

FRAGMENT_SHADER, 18–19
frames, orthographic 2D projection, 19–20
frame buffer object (FBO), 238, 254–255
frame rate, 16, 93
frames per second (FPS), 79
free_level, 194–195, 203
frustrum, camera, 132–136
“fullscreen”, 239
fullscreen pass, 243–245
fullscreen_pass, 244–245
function callbacks, 43, 44
fur, 50–54

G

game logic
pathfi nding, 167–170
piano game, 185–188
rolling ball game, 200–205
2D physics, 117–120

“gameover”, 114, 118
game_over, 166, 167, 187
gContactAdded, 105
gContactAddedCallback, 202
geometry. See also complex geometry

LODs, 92–93
get_next_momo, 118
GFX, 190–191

helper functions, 13
.gfx, 190
GFX_error, 22
GFX_load_identity, 131, 139, 146–147
GFX_load_identity(), 13, 197
GFX_look, 154, 156–158, 198
GFX_look_at, 25, 61, 116, 144, 145

double-sided rendering – GFX_look_at

275

bindex.indd 275bindex.indd 275 12/30/11 8:19:09 AM12/30/11 8:19:09 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

GFX_push_matrix, 142
GFX_rotate, 25, 142
GFX_scale, 25
GFX_set_matrix, 13
GFX_set_matrix_mode, 23
GFX_set_orthographic, 24, 26–27
GFX_set_orthographic_2d, 13
GFX_set_perspective, 27, 158
GFX_start, 13, 103, 179
GFX_translate, 14, 25, 27, 114
GFX_unproject, 158
GIT, 4
gl, 40, 44
glBindBuffer(GL_ELEMENT_ARRAY_

BUFFER), 52
glBindVertexArrayOES

(objmesh->vao), 43
glClear, 20, 42, 118–119
glClearColor, 199
GL_CULL_FACE, 71
glDrawArrays, 22, 39
glDrawElements, 39
glEnableVertexAttribArray, 21
GLES

FBO, 254
texture, 50
VAO, 40, 42
VBO, 38

GLES v2, 2
fragment shader, 53
orthographic 2D projection, 13
texture rendering, 238

gl_FragColor, 17, 48, 91, 182
directional lamp shader, 213–214
fragment shader, 53
projector shader, 249

gl_FragColor.a, 75
GL_FRAGMENT_SHADER, 191
blur.gfx, 243–244
directional lamp shader, 212
multiple lights shader, 234
particles, 256–257
point lamps, 219
point_lamp, 225
projector shader, 249

spot light shader, 229
struct, 212

glGet, 94
GL_IMG_texture_compression_pvrtc, 86
GL_IMG_texture_npot, 50
glIsEnabled, 94
global variables, 12, 240, 246, 262
GL_OES_framebuffer_object, 238
GL_OES_vertex_array_object, 40
GL_POINTS, 255
gl_Position, 15–16, 74, 212
glReadPixels, 185
GLSL, 5, 94

debugging, 35
directional lamp shader, 213
struct, 214–217

.glsl, 14
GLSL ES, 14, 16, 66, 94
glsloptimizerCL, 5
GL_Texture, 62
GL_TRIANGLE, 82
GL_TRIANGLE_STRIP, 82
glUseProgram, 33, 43
glUseProgram(program->pid), 21
glVertexAttribPointer, 21–22, 25–26, 41
GL_VERTEX_SHADER, 191

directional lamp shader, 211
lamp, 229
multiple lights shader, 233
particles, 256
point lamps, 218
projector shader, 249
spot light shader, 229
struct, 211

glViewport, 34
GPU. See graphical processing unit
graphic projections, 9–27
graphical processing unit (GPU)

array buffer, 39–40
camera frustum, 134
machine states, 94
orthographic 2D projection, 10, 21
per-pixel lighting, 79
video memory, 84

GUI, 93

GFX_push_matrix – GUI

276

bindex.indd 276bindex.indd 276 12/30/11 8:19:09 AM12/30/11 8:19:09 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

H

heads-up display (HUD), 10, 23
Hello Physics, real-time physics,

100–104
Hello World, 174
highp, 16
HUD. See heads-up display

I

++i, 51, 61, 199
id, 39
if

MODELVIEWMATRIX, 48
Uber Shader, 66
while, 48

if(objmesh->distance), 135
if(pick), 186–187
if(program->pid), 20
if else, 66
illum, 76
Imagination Technologies, 86
importing projects, 5–7
#include

global variables, 240, 262
MD5 animation, 262
pathfi nding, 153
templateApp.cpp, 50, 153, 155,

175, 192
Wavefront OBJ, 32

indexed texture coordinates (vt, UVs), 31, 51,
52–53

indexed vertex positions (v), 31
_init, 17
init_physic_world, 107
in-memory raw sound buffer, 172
integers, 16
interleaved array, 41
iOS

color picking, 182
importing projects, 5
orthographic 2D projection, vertex and

fragment shaders, 15
software requirements, 2

iOS Developer Certifi cation, 2
iOS Simulator, 196

K

Ka. See ambient color
Kd. See diffuse color
keyframe animation, 260

L

LAMP, 209, 217
lamp, 229
LAMP uniform, 213
LAMP_create_directional, 217–218
LAMP_create_point, 221
LAMP_create_point_sphere, 227–228
LAMP_create_point_with_attenuation,

224–225
LAMP_free, 216
LAMP_get_direction_in_eye_space,

219–220
LERP, 266–267
level, 186
level_clear, 200–202
levels of detail (LODs), 92–93, 133
lightcolor, 48
lightdir, 213, 229, 234
lighting. See also per-pixel lighting; per-vertex

lighting
advanced, 207–235
directional lamps, 208, 209–214
multiple lights, 231–234
point lamps, 208, 217–227
spot lamps, 208, 227–231

lighting.gfx, 211, 225
depth texture shadows, 253
point lamp, 217–218
projector shader, 249
spot lamps, 228

load_game

camera tracking, 115
Catch Me If You Can, 165
3D physics, 126
2D physics, 118

heads-up display (HUD) – load_game

277

bindex.indd 277bindex.indd 277 12/30/11 8:19:09 AM12/30/11 8:19:09 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

load_level, 191, 192–193, 202
load_physic_world, 122, 154

Catch Me If You Can, 165
fi rst-person camera, 141
3D camera tracking, 143–144

local variables, 37, 40
LODs. See levels of detail
LogChat, 8, 22, 83, 135
lowp, 16, 35, 89

M

machine states, 94
main

fragment shader, 36, 48
fragment.glsl, 17
multiple lights shader, 234
per-vertex lighting, 46
point lamps, 218
UVs, 53
vertex shader, 35
vertex.glsl, 15

map_Bump, 62
map_bump, 62
map_Disp, 62
map_disp, 62
map_Ka, 31, 62
map_Kd, 31, 50
map_Ks, 62
map_Tr, 62
MATERIAL, 215–216
MATERIAL.diffuse, 242
material_draw_callback, 61, 76,

87, 91
MATERIAL.specular, 242–243
mat4_invert, 248
MAX_BUFFER, 180
Maya, 30
m->buffer, 18
mclose(vertex_shader), 76
MD5, 5

skeletal animation, 259, 261–264
MD5ACTION, 271
MD5_add_pose, 271

MD5_drawcall, 265
MD5_free_mesh_data, 268
.md5mesh, 262
MD5_METHOD_FRAME, 266
MD5_METHOD_LERP, 266
MD5_METHOD_SLERP, 267
mediump, 16
memory

in-memory raw sound buffer, 172
static in-memory sound playback,

175–176
VBO, 36

vertex data array, 38–39
vertex data, 37
video memory, 84–85

MEMORY, 12, 18, 23
mipmaps, 84
model.mtl, 32, 50
model.obj, 32
MODELVIEW, 197
MODELVIEWJPROJECTIONMATRIX, 46
MODELVIEWMATRIX, 48
Momo

complex geometry, 42–44
fur, 50–54
per-vertex lighting, 48
texture, 50–54
2D physics, 116–120

mopen, 18
move_delta, 141, 143
move_entity, 160, 162
MP3, 173
.MTL, 30
.mtl, 59
map_Kd, 50
MD5 animation, 262–263
PVR texture compression, 86

mtllib, 31
multipasses, rendering, 241–243
multiple lights, 231–234

shaders, 233–234
multiple objects

scenes, 58–59
texture, 60–62

load_level – multiple objects

278

bindex.indd 278bindex.indd 278 12/30/11 8:19:10 AM12/30/11 8:19:10 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

N

navigation, pathfi nding, 152–153
navigation mesh, pathfi nding, 153–155
NAVIGATIONPATHDATA, 159–160,

161–162
near callbacks, 107–108
near clipping panes, 23
near_callback, 124–125, 126
newmtl, 31
next_eye, 148
NORMAL, 62
normal, 36, 46, 47
normal map lighting, 90–91
NORMALMATRIX, 47
NULL, 18
NVIDIA, 83
NvTriStrip library, 83

O

OBJ, 190, 262–263
obj, 33
.OBJ, 30
.obj, 59
obj = OBJ_load, 165
OBJ_build_material, 62
OBJ_build_mesh, 60, 83, 104, 113
OBJ_build_texture, 85
obj.cpp, 35, 37
OBJ_draw_mesh, 72, 184, 248, 255–256
objects. See also vertex array objects; vertex

buffer objects
alpha-tested, 64, 70, 73
categorization, render loop, 69–71
FBO, 238, 254–255
multiple, 58–62
physical objects

real-time physics, 98
2D physics, 113–114

scenes, 64
semitransparent objects, 71–73
solid, 64, 69–70
static physical, 98

texture atlas, 93
transparent, 64, 70–73

OBJ_FILE, 33
obj.h, 35, 37, 42
OBJ_load, 34, 37, 51, 59
OBJMATERIAL, 67
OBJMESH

fi rst-person camera, 141
Hello Physics, 101–103
third-person camera, 145
2D physics, 112

objmesh

id, 39
VAO, 42
vertex data, 37
Wavefront OBJ, 33

OGG Vorbis, 173–174
OGL, 14
onCreate, 196
OpenAL, 172–173

Hello World, 174
piano game, 178–181
positional sound, 177

OpenGL, 20
OpenGL ES, 4

depth buffer, 24
FBO, 254
GL_TRIANGLE_STRIP, 82
orthographic 2D projection, 13, 21
template project, 7
templateAppInit, 50
texture, 84–85

optimization, 81–96
bump mapping, 87–93
fragment shader, 88–90
GLSL, 94
GLSL ES, 94
LODs, 92–93
machine states, 94
precision qualifi ers, 88–90
shaders, 94–95
texture, 84–86
texture atlas, 93
triangles, 82–83

navigation, pathfi nding – optimization

279

bindex.indd 279bindex.indd 279 12/30/11 8:19:10 AM12/30/11 8:19:10 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

optimization (continued)
triangle strips, 82–84
vertex shader, 88–90
video memory, 84–85

orthographic (ortho) projection,
10, 23–26

orthographic 2D projection, 10, 11–23, 13
drawing code, 19–23
initialization, 12–14
vertex and fragment shaders, 14–17

“out_of_bounds”, 125

P

particle.png, 255
particles, 255–257
particles.gfx, 256
pathfi nding, 151–170

Bullet, 159–160
Catch Me If You Can, 163–165
Detour library, 151–152
game logic, 167–170
navigation, 152–153
navigation mesh, 153–155
player’s auto drive, 159–160
Recast library, 151–152
3D physics, 155–159
way points, 161–163

path_point, 163
per-pixel lighting

directional lamp shader, 211
fragment shader, 74–75
GPU, 79
LODs, 93
scenes, 73–79
vertex shader, 73–74

perspective projection, 10–11, 26–27
per-vertex lighting

complex geometry, 46–49
directional lamp shader, 211
fragment shader, 47–48
LODs, 93
uniform variables, 48–49
vertex shader, 46–47

physical objects
real-time physics, 98
2D physics, 113–114

PHYSIC_FILE, 122
physics. See also real-time physics; 3D physics;

2D physics
shapes, 98–99

piano game, 178–190
color picking, 182–185
game logic, 185–188
OpenAL, 178–181

pinball game, 122–127
pinball.bullet, load_physic_world, 122
pixel fetch, 53
Pixologic ZBrush, 29–30
player’s auto drive, 159–160
PNG, 29, 50, 86
point lamps, 208, 217–227

attenuation, 221–224
shaders, 218–220
spherical, 224

point_frag.glsl, 161
point_in_frustum, 133
point_lamp, 222, 225
point_lamp_with_attenuation, 222–223, 226
point_sphere_lamp, 225, 229–230
point_vert.glsl, 161
POSITION, 41, 62

orthographic (ortho) projection, 24
orthographic 2D projection, 19, 21
vertex.glsl, 15

position, 220
positional sound, 172, 176–178, 191–195
post-processing effects, 238–245
PowerVR Insider SDK, 86
precision qualifi ers, 16, 35, 88–90
print, 22
printf, 35
PROGRAM

orthographic 2D projection, 12, 23
rolling ball game, 190
vertex and fragment shader, 17–19
Wavefront OBJ, 33, 34

program_bind_attrib, 101

optimization – program_bind_attrib

280

bindex.indd 280bindex.indd 280 12/30/11 8:19:11 AM12/30/11 8:19:11 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

program_bind_attrib_location, 62, 106
directional lamp, 209
near callback, 107
per-pixel lighting, 76
templateApp.cpp, 87

PROGRAM_draw, 160, 165
color picking, 183–184
Momo, 43
texture, 55
touche, 45
Wavefront OBJ, 33

program_draw, 216–217
attenuation uniforms, 223–224
first_pass, 242
multiple lights, 232

shader, 234
second_pass, 242–243
templateApp.cpp, 230–231
texture projection, 246

program_draw_callback

else if, 55
Momo, 43
templateApp.cpp, 48
texture, 55

program.h, 12
PROGRAM_init, 76
PROGRAM_link, 19
program->pid, 20
Project Explorer, 7
Project Navigator, 7
projection, real-time shadows, 250–253
projection matrix

orthographic 2D projection, 14
per-vertex lighting, 48

PROJECTIONMATRIX, 88
projector_matrix, 248
PVR compression, 86

R

Ragdoll Launcher, 10
Ramy, 82

texture, 85
vertex cache, 84

raw sound buffer, 172–173
real-time physics, 97–127

collision callbacks, 105–109
contacts, 105–109
Hello Physics, 100–104
physical objects, 98
physics shapes, 98–99
3D physics, 120–127
triggers, 105–109
2D physics, 110–120

real-time shadows, 250–253
Recast library, 151–152
rendering

double-sided, 71–73
loop

camera fl y mode, 139
object categorization, 69–71

multipasses, 241–243
order, triangles, 71
speed, VBO, 36
texture, 238

Resources, 14, 86
RGB, 85
RGBA, 84, 85
rigid bodies, 98

Hello Physics, 103
rolling ball game, 203
third-person camera, 145–146
2D physics, 110–112

rolling ball game, 190–205
accelerometer-driven camera, 195–198
fog, 199–200
game logic, 200–205
positional sound, 191–195
texture scroll, 198–200

rotx, 147
rotz, 147

S

scenes, 57–79
Bullet, 100
drawing sequence, 64–65
fragment shader, 63

program_bind_attrib_location – scenes

281

bindex.indd 281bindex.indd 281 12/30/11 8:19:11 AM12/30/11 8:19:11 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

scenes (continued)
loading and drawing, 59–63
multiple objects, 58–59
object types, 64
per-pixel lighting, 73–79
specular color, 238
Uber Shader, 65–69
vertex shader, 63

Scene.obj, 100
scene.obj, 59
scroll_texture.gfx, 199
SDK/common, 34–35, 179
SDK/common/gfx.cpp, 13, 25
SDK/common/obj.cpp, 42
SDK/common/program.cpp, 12
SDK/common/texture.cpp, 50
SDK/md5_exporter, 261
second_pass, 242–243
semitransparent objects, 71–73
Sequoyah Android Native Code plug-in,

2–3, 5
SHADER, 17, 23
shaders. See also specifi c shader types

complex geometry, 35–40
directional lamp, 211–214
multiple lights, 233–234
optimization, 94–95
point lamps, 218–220
spot lamps, 229–231
texture projection, 249–250

SHADER_compile, 18, 19
shader.cpp, 12
shader.h, 12
SHADER_init, 18
shadowmap_buffer, 252
shadows

depth texture, 253–254
real-time, 250–253

16-bit conversion, texture,
85–86

skeletal animation, 259–271
additive blending, 269–271
blending, 267–269
LERP, 266–267

MD5, 259, 261–264
SLERP, 267

Sky Racer, 11
SLERP, 267
soft body, 98
software requirements, 2–4
solid objects, 64, 69–70
sound. See audio
SOUND, 179, 190
SOUNDBUFFER, 179, 190
sound.cpp, 179
specular color, 238
specular texture. See map_Ks
specularity, 91–92

point lamps, 220, 223
spherical point lamp, 226

sphere, 99
sphere_distance_in_frame, 135
sphere_distance_in_frustum, 133
sphere_intersect_frustum, 133
spherical point light, 224
spot lamps, 208, 227–231

shaders, 229–231
spotdir, 234
spotdirection, 229
spot_lamp, 234
static float, 25
static in-memory sound playback,

175–176
static physical object, 98
stitching, 83
streamed raw sound buffer, 173
struct, 211, 212, 214–217

T

tangent space, 87
TANGENT0, 63
templateAccelerometer, 196
templateApp, 196
TEMPLATEAPP templateApp,

7, 33
templateAppAccelerometer,

196–197

scenes – templateAppAccelerometer

282

bindex.indd 282bindex.indd 282 12/30/11 8:19:11 AM12/30/11 8:19:11 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

templateApp.cpp, 4, 5
attenuation uniforms, 223–224
camera fl y mode, 137
camera tracking, 115
color picking, 182, 183–184
directional lamp, 209–211

shader, 214–215
else if, 91, 226
fi rst-person camera, 141
frustum camera, 134
fullscreen_pass, 244–245
global variables, 246
Hello Physics, 100
#include, 50, 153, 155, 175, 192
LAMP, 217
light attenuation, 221
MD5 skeletal animation, 262
Momo, 42
multiple lights, 231–232
OBJ_build_mesh, 83
OpenAL, 174
orthographic 2D projection, 11, 12
particles, 255
pathfi nding, 152, 153, 159, 161
per-pixel lighting, 76
per-vertex lighting, 47
piano game, 178, 185–186, 188
point lamps, 217, 219
program_bind_attrib_location, 87
program_draw, 230–231
program_draw_callback, 48
projected real-time shadows, 250–251
rolling ball game, 192, 196, 200
skeletal animation, 267
spherical point lamp, 226
spot lamps, 227

shader, 230–231
static in-memory sound playback, 175
texture, 55
texture projection, 246
third-person camera, 145
3D camera tracking, 143
3D physics, 155
touch-and-go camera, 130
touche, 44
2D physics, 110

Uber Shader, 67
vertex and fragment shader, 17
Wavefront OBJ, 31–32, 32
while, 67

templateAppDraw, 7
camera fl y mode, 139
camera tracking, 116
color picking, 184
contact points, 108–109
fi rst-person camera, 141–142
FPS, 79
fullscreen_pass, 245
GFX_load_identity, 131, 139
GFX_look, 154
GFX_look_at, 61
gl, 44
glClear, 118–119
Hello Physics, 104
if(pick), 186–187
MD5 skeletal animation, 264
MD5_drawcall, 265
Momo, 42
orthographic (ortho) projection, 24, 25
orthographic 2D projection, 11, 19, 20
particles, 255–256
pathfi nding, 159, 162

game logic, 167–169
piano game, 186–187, 189
positional sound, 177
rolling ball game, 197, 203–205
second_pass, 243
skeletal animation, 268–269, 270–271
static in-memory sound playback, 176
texture projection, 248
third-person camera, 145–146
3D camera tracking, 144
3D physics, 126
touch-and-go camera, 131
touche, 45
2D physics, 118
while, 69

frustum camera, 134
templateAppExit, 8

directional lamp, 210
Hello Physics, 104
MD5 skeletal animation, 264

templateApp.cpp – templateAppExit

283

bindex.indd 283bindex.indd 283 12/30/11 8:19:12 AM12/30/11 8:19:12 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

284

templateAppExit (continued)
Momo, 43
multiple lights, 233
OpenAL, 174
orthographic 2D projection, 13, 22
pathfi nding, 154, 163

game logic, 169
piano game, 181, 189
post-processing effects, 241
projected real-time shadows, 253
skeletal animation, 269
static in-memory sound playback, 176
texture, 51
vertex and fragment shader, 18

templateApp.h, 4
templateAppInit, 7

camera fl y mode, 137
Catch Me If You Can, 164–165
contact-added callback, 107
directional lamp, 210
fi rst-person camera, 141
GFX_set_perspective, 158
GFX_start, 103
glBindBuffer(GL_ELEMENT_ARRAY_

BUFFER), 52
Hello Physics, 103
init_physic_world, 107
level, 186
load_physic_world, 154
MD5 animation, 262–263
multiple lights, 232–233
near callback, 107
OBJ_load, 51, 59
OpenAL, 174
OpenGL ES, 50
orthographic (ortho) projection, 23
orthographic 2D projection, 11, 12

vertex and fragment shaders, 14
particles, 255
pathfi nding, 153–154, 156

game logic, 167
perspective projection, 26–27
piano game, 179–181, 186, 188
post-processing effects, 240–241
projected real-time shadows, 251–252

skeletal animation, 267
spherical point lamp, 224–225
spot lamps, 228
static in-memory sound playback, 175
texture projection, 247
vertex and fragment shader, 17
vertex data, 37
Wavefront OBJ, 34
while, 153

templateApp.java, 196
templateAppToucheBegan, 8, 44, 45

camera fl y mode, 137
color picking, 182
pathfi nding, 156

game logic, 169
piano game, 188
rolling ball game, 205
3D physics, 124, 126
touch-and-go camera, 130
Wavefront OBJ, 32

templateAppToucheEnded, 8, 116, 119–120,
131, 139

templateAppToucheMoved, 8, 32, 44, 45
camera fl y mode, 137–139
touch-and-go camera, 130–131

template_chapter#-#, 5
template_test, 7
TEXCOORD0, 63, 88–89
texture, 84–86. See also specifi c texture types

binding, 53–54
Cube.mtl, 31
default unit attribution, 62
fragment shader, 53
Momo, 50–54
multiple objects, 60–62
OBJ_build_material, 62
OpenGL ES, 84–85
optimization, 84–86
PVR compression, 86
rendering, 238
RGB, 85
RGBA, 85
16-bit conversion, 85–86
vertex data, 51–52
vertex shader, 52–53

templateAppExit – texture

bindex.indd 284bindex.indd 284 12/30/11 8:19:12 AM12/30/11 8:19:12 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

285

TEXTURE – vertex buff er objects (VBO)

TEXTURE, 50, 199
texture atlas, 93
texture projection, 246–248

shaders, 249–250
texture scroll, 198–200
TEXTURE_convert_16_bits, 85
texture.cpp, 86
texture.h, 50
TEXTURE_load_pvr, 86
third-person camera, 145–149
THREAD, 179
3D

camera tracking, 143–145
OpenAL, 172–173

3D physics, 120–123
Blender, 121–122
.bullet, 120–122
pathfi nding, 155–159
pinball game, 122–127
.bullet, 122–123

real-time physics, 120–127
3ds Max, 30
touch-and-go camera, 130–132
touche, 7, 44–45
ToucheBegan, 7
ToucheEnded, 7
ToucheMoved, 7
transformation matrix, 100
translucent texture. See map_Tr
transparent objects, 64, 70–73
TRANSPARENT_OBJECT, 75
triangles

complex geometry, 39, 82
optimization, 82–83
render order, 71

triangle list, 64
triangle mesh, 99
triangle strips, 82–84
triggers, 105–109
True Type Font (.ttf), 161, 188
2D. See orthographic 2D projection
2D physics, 119

camera tracking, 114–115
game logic, 117–120

physical objects, 113–114
real-time physics, 110–120
user interactions, 116

type.h, 42

U

Uber Shader, 65–69, 93
uniform, 15
uniform lamp, 233
uniform locations, 20–21
uniform variables, 12, 48–49, 54
uniforms, attenuation, 223–224
unsigned short, 39
untitled.blend, 141
usemtl, 31
user interactions, 2D physics, 116
utils.cpp, 133
UVs. See indexed texture coordinates

V

v. See indexed vertex positions
VAO. See vertex array objects
varying, 17, 48, 52, 53

directional lamp shader, 211
multiple lights shader, 234
per-vertex lighting, 46
vertex shader, 35, 36
vertex.glsl, 15, 16

varying lightdir, 233
VBO. See vertex buffer objects
vertex array objects (VAO), 29,

40–42
machine states, 94
Momo, 43
OBJ_build_mesh, 60
texture, 52

vertex attributes, 12, 20–21, 35
vertex buffer objects (VBO), 29, 36

element array, 39–40
GLES, 38
glVertexAttribPointer, 41
machine states, 94

bindex.indd 285bindex.indd 285 12/30/11 8:19:13 AM12/30/11 8:19:13 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

286

vertex buffer objects (VBO) (continued)
OBJ_build_mesh, 60
texture, 52
vertex data, 37–39

vertex cache, 83–84
vertex color, 19
vertex data, 37

texture, 51–52
VAO, 40
VBO, 37–39

vertex normals (vn), 31, 35, 36, 39, 41–42
vertex position, 31, 35, 39, 47, 260
vertex shader, 35–36

linking shader program, 17–19
optimization, 88–90
orthographic 2D projection, 14–17
per-pixel lighting, 73–74
per-vertex lighting, 46–47
rolling ball game, 190–191
scenes, 63
texture, 52–53
UVs, 52–53
while, 69

vertex.glsl, 15–16, 35, 46, 63, 73, 95
fragment.glsl, 17
UVs, 52

vertices
orthographic (ortho) projection, 24
orthographic 2D projection, 19–20

video memory, 84–85
viewport matrix, 13, 156
vn. See vertex normals
vt. See indexed texture coordinates

W

Wavefront OBJ, 5, 190
complex geometry, 29–35
Cube.mtl, 31
cube.obj, 30–31
viewer code, 31–32

way points, 161–163
while

alpha-tested objects, 73
if, 48
material_draw_callback, 61
OBJ_draw_mesh, 72
templateApp.cpp, 67
templateAppDraw, 69

frustum camera, 134
templateAppInit, 153
vertex shader, 69

“writedepth”, 252

X

Xcode, 5
camera frustum, 135
optimization, 83
orthographic 2D projection, 22

vertex and fragment shaders, 14
.xcodeproj, 5

Z

Zirkle, Paul, 5

vertex buff er objects (VBO) – Zirkle, Paul

bindex.indd 286bindex.indd 286 12/30/11 8:19:13 AM12/30/11 8:19:13 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

bindex.indd 287bindex.indd 287 12/30/11 8:19:14 AM12/30/11 8:19:14 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

bindex.indd 288bindex.indd 288 12/30/11 8:19:14 AM12/30/11 8:19:14 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

bindex.indd 289bindex.indd 289 12/30/11 8:19:14 AM12/30/11 8:19:14 AM

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Try Safari Books Online FREE
for 15 days + 15% off
for up to 12 Months*

START YOUR FREE TRIAL TODAY!
Visit www.safaribooksonline.com/wrox30 to get started.

With Safari Books Online, you can experience

searchable, unlimited access to thousands of

technology, digital media and professional

development books and videos from dozens of

leading publishers. With one low monthly or yearly

subscription price, you get:

• Access to hundreds of expert-led instructional

videos on today’s hottest topics.

• Sample code to help accelerate a wide variety

of software projects

• Robust organizing features including favorites,

highlights, tags, notes, mash-ups and more

• Mobile access using any device with a browser

• Rough Cuts pre-published manuscripts

Read this book for free online—along with thousands of others—
with this 15-day trial offer.

*Available to new subscribers only. Discount applies to the

Safari Library and is valid for fi rst 12 consecutive monthly

billing cycles. Safari Library is not available in all countries.

badvert.indd 1badvert.indd 1 12/31/11 10:32:49 AM12/31/11 10:32:49 AM

Downloaded from: www.bookarchive.ws

http://www.safaribooksonline.com/wrox30
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Related Wrox Books
Professional iPhone and iPad Application Development
ISBN: 978-0-470-87819-4
Developers have demanded an advanced guide to using the very latest version of the iPhone and iPad SDK
to develop applications–and this book answers that call! Packed with over twenty complete standalone
applications that are designed to be recreated, rebuilt, and reused by the professional developer, this
resource delves into the increasingly popular world of application development and presents step-by-step
guidance for creating superior apps for the iPhone and iPad. You’ll explore the many developer tools and
learn how to use them, and you’ll also discover how to apply the techniques learned to real world situations.
With coverage of the latest version of the iPhone and iPad SDK and the quantity of standalone applications,
this book will serve as a tremendous go-to reference in the future.

Beginning Android Tablet Application Development
ISBN: 978-1-118-10673-0
The new release of Android 3 brings the full power of Android to tablet computing, and this hands-on
guide offers an introduction to developing tablet applications using this new Android release. Veteran
author Wei-Meng Lee explains how Android 3 is specifically optimized for tablet computing, and he details
Android’s tablet-specific functions. Beginning with the basics, this book moves at a steady pace to provide
everything you need to know to begin successfully developing your own Android tablet applications.

Beginning iOS Game Development
ISBN: 978-1-118-10732-4
Whether you only have a little experience with iOS programming or even none at all, this accessible guide
is ideal for getting started developing games for the iPhone and iPad. Experienced developer and author
Patrick Alessi presents the iOS system architecture, gives you the step-by-step of game development,
and introduces the languages used to develop games. From the basic building blocks including drawing,
responding to user interaction, animation, and sound, this book provides a one-stop-shop for getting your
game up and running.

Professional Android 4 Application Development
ISBN: 978-1-118-10227-5
The fast-growing popularity of Android smartphones and tablets creates a huge opportunity for developers.
If you’re an experienced developer, you can start creating robust mobile Android apps right away with this
professional guide to Android 4 application development. Written by one of Google’s lead Android developer
advocates, this practical book walks you through a series of hands-on projects that illustrate the features
of the Android SDK. That includes all the new APIs introduced in Android 3 and 4, including building for
tablets, using the Action Bar, Wi-Fi Direct, NFC Beam, and more.

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Related Wrox Books
Professional iPhone and iPad Application Development
ISBN: 978-0-470-87819-4
Developers have demanded an advanced guide to using the very latest version of the iPhone and iPad SDK
to develop applications–and this book answers that call! Packed with over twenty complete standalone
applications that are designed to be recreated, rebuilt, and reused by the professional developer, this
resource delves into the increasingly popular world of application development and presents step-by-step
guidance for creating superior apps for the iPhone and iPad. You’ll explore the many developer tools and
learn how to use them, and you’ll also discover how to apply the techniques learned to real world situations.
With coverage of the latest version of the iPhone and iPad SDK and the quantity of standalone applications,
this book will serve as a tremendous go-to reference in the future.

Beginning Android Tablet Application Development
ISBN: 978-1-118-10673-0
The new release of Android 3 brings the full power of Android to tablet computing, and this hands-on
guide offers an introduction to developing tablet applications using this new Android release. Veteran
author Wei-Meng Lee explains how Android 3 is specifically optimized for tablet computing, and he details
Android’s tablet-specific functions. Beginning with the basics, this book moves at a steady pace to provide
everything you need to know to begin successfully developing your own Android tablet applications.

Beginning iOS Game Development
ISBN: 978-1-118-10732-4
Whether you only have a little experience with iOS programming or even none at all, this accessible guide
is ideal for getting started developing games for the iPhone and iPad. Experienced developer and author
Patrick Alessi presents the iOS system architecture, gives you the step-by-step of game development,
and introduces the languages used to develop games. From the basic building blocks including drawing,
responding to user interaction, animation, and sound, this book provides a one-stop-shop for getting your
game up and running.

Professional Android 4 Application Development
ISBN: 978-1-118-10227-5
The fast-growing popularity of Android smartphones and tablets creates a huge opportunity for developers.
If you’re an experienced developer, you can start creating robust mobile Android apps right away with this
professional guide to Android 4 application development. Written by one of Google’s lead Android developer
advocates, this practical book walks you through a series of hands-on projects that illustrate the features
of the Android SDK. That includes all the new APIs introduced in Android 3 and 4, including building for
tablets, using the Action Bar, Wi-Fi Direct, NFC Beam, and more.

Downloaded from: www.bookarchive.ws

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Game and Graphics Programming for iOS and Android® with OpenGL® ES 2.0
	Contents
	Introduction
	Chapter 1: Getting Started
	Software Requirements
	For iOS Developers
	For Android Developers

	Downloading the Book's SDK
	Importing Projects
	For iOS Developers
	For Android Developers

	The Template
	Summary

	Chapter 2: Setting Up Your Graphic Projections
	The Three Basic Types of Projections
	Orthographic 2D Projection
	Program and Project Initialization
	Vertex and Fragment Shader
	Linking a Shader Program
	The Drawing Code

	Orthographic Projection
	Getting Orthographic

	Perspective Projection
	Summary

	Chapter 3: Dealing With Complex Geometry
	The Wavefront File Format
	Cube.obj
	Cube.mtl

	Preparing the OBJ Viewer Code
	Loading an OBJ
	Building the Shaders
	The Vertex Shader
	The Fragment Shader
	Vertex Buffer Object
	Storing the Vertex Data
	Building the Vertex Data Array VBO
	Building the Element Array VBO

	Building the VAO
	Rendering Momo
	Handling Touche
	Per-Vertex Lighting
	Vertex Shader Light Calculation
	Modifying the Fragment Shader
	More Uniforms

	Making Momo Furrier
	Loading the Texture
	Adjusting the Vertex Data
	Adding UV Support to the Vertex Shader
	Adding Texture Support to Your Fragment Shader
	Binding the Texture

	Summary

	Chapter 4: Building a Scene
	Handling Multiple Objects
	The Code Structure
	Loading and Drawing the Scene
	The Shaders Code
	The Different Object Types
	The Drawing Sequence
	Fixing the Scene
	Uber Shader
	Using Your Uber Shader
	Render Loop Objects Categorization
	Double-Sided

	Per-Pixel Lighting
	Making the Vertex Shader Even Fatter
	Getting the Fragment Shader More Uber
	Wrapping up the Implementation

	Summary

	Chapter 5: Optimization
	The Base App
	Triangles to Triangle Strips
	Building Triangle Strips
	Texture Optimization
	Adding 16-Bit Texture Conversion
	PVR Texture Compression
	Faking Details
	Bump Mapping Implementation
	Precision Qualifiers Optimization
	The Normal Map Lighting Calculation
	Adding Specularity

	Geometry and Shaders LOD
	Texture Atlas
	Managing States in Software
	Automatic Shader Optimization
	Summary

	Chapter 6: Real-Time Physics
	Types of Physical Objects
	Physics Shapes
	Using Bullet
	Hello Physics
	Collision Callbacks, Triggers, and Contacts
	Contact-Added Callback
	Near Callback
	Contact Points

	2D Physics
	More Shapes!
	Building the Physical Objects
	Camera Tracking
	User Interactions
	The Game Logic

	3D Physics
	The Bullet File Format
	3D Pinball Game

	Summary

	Chapter 7: Camera
	Touch and Go!
	The Camera Frustum
	How to Build the Frustum
	Frustum Clipping Implementation
	More Clipping Functions

	Camera Fly Mode
	First-Person Camera with Collision Detection
	3D Camera Tracking
	Third-Person Camera with Collision
	Summary

	Chapter 8: Pathfinding
	Recast and Detour
	Navigation
	Creating the Navigation Mesh
	3D Physics Picking
	Player's Auto Drive
	Visualizing the Way Points
	Catch Me If You Can!
	Know Your Enemy
	Game State Logic
	Summary

	Chapter 9: Audio and Other Cool Game Programming Stuff
	OpenAL
	OGG Vorbis
	Hello World OpenAL Style
	Initializing OpenAL
	Static in-Memory Sound Playback
	Positional Sound Source
	Piano Game
	Loading a Static and Streamed Sound
	Color Picking
	Piano Game Logic
	Final Adjustments

	Rolling Ball Game
	GFX Shaders
	Linking the Positional Sound Sources
	Accelerometer-Driven Camera
	Cheap FX
	Game Logic and Tweaks

	Summary

	Chapter 10: Advanced Lighting
	Types of Lamps
	Let There Be Light
	Directional Lamp Shader
	Struct as Uniforms

	Point Light
	Point Light Shader Code
	Light Attenuation
	Point Light with Attenuation Code
	The Attenuation Uniforms
	Spherical Point Light
	Tweaking the Point Light Code
	Spot Light
	Spot Light Shader Code

	Multiple Lights
	Making the Shader Program Dynamic
	Summary

	Chapter 11: Advanced Fx
	Render to Texture
	Post-Processing Effects
	First Rendering Pass
	Second Pass
	Fullscreen Pass and Blur Shader

	Projected Texture
	Projector Shader
	Projected Real-Time Shadows
	Casting Shadows Using the Depth Texture
	A Few More Words about the Frame Buffer Object
	Particles
	Summary

	Chapter 12: Skeletal Animation
	Traditional vs. Modern Animation Systems
	The MD5 File Format
	Loading an MD5 Mesh
	Animating the Mesh
	LERP
	SLERP

	Blending Animation
	Additive Blending
	Summary

	Index
	Advertisement

