
DWR Java AJAX Applications

A step-by-step example-packed guide to learning
professional application development with Direct
Web Remoting

Sami Salkosuo

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWR Java AJAX Applications
Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: October 2008

Production Reference: 1151008

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847192-93-6

www.packtpub.com

Cover Image by Parag Kadam (Paragvkadam@gmail.com)

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Credits

Author

Sami Salkosuo

Reviewers

Jason Crow

Matthew Henry

Sujit Pal

Acquisition Editor

Adil Ahmed

Development Editor

Usha Iyer

Technical Editor

Darshana D. Shinde

Copy Editor

Sumathi Sridhar

Editorial Team Leader

Mithil Kulkarni

Project Manager

Abhijeet Deobhakta

Project Coordinator

Rajashree Hamine

Indexer

Rekha Nair

Proofreader

Chris Smith

Production Coordinator

Rajni R. Thorat

Cover Work

Rajni R. Thorat

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Author

Sami Salkosuo is a Software IT Architect at IBM Software Group, Finland. He has
over ten years of experience in Java, Web, and integration technologies.

Sami has written several articles for IBM developerWorks, and is also the co-author
of an IBM Redbook: Portalizing Domino Applications.

I am thankful to the reviewers Sujit Pal, Matthew Henry, and Jason
Crow for their comments that helped me improve my writing. My
thanks to Rajashree Hamine, Usha Iyer, Darshana Shinde, and others
at Packt Publishing for making this book come true.

My sincere thanks also for my family for their patience and support.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 About the Reviewers

Jason Crow is the lead Java Developer for Office Depot, Inc. in Delray Beach,
Florida. He specializes in blending his expertise in Java, DWR, HTML, CSS,
and jQuery to enhance usability and to bring dynamic features to officedepot.com.
He actively contributes back to the community through his blog
http://greatwebguy.com.

Matthew Henry is the Programming Services Manager at LeTourneau University.
Matthew has worked in IT and computer related fields as a programmer for 30 years.
Matthew co-authored Upgrading to Lotus Notes 7 and has written various articles for
specific computer industry magazines.

Sujit Pal started programming some 20 years ago, and has never looked back since.
He currently works at Healthline Networks, Inc., a search vertical focused on health,
as part of its Research and Development team. Apart from his work, his favorite
pastime is to explore new software technologies, techniques, and languages, and he
writes about his experiments at sujitpal.blogspot.com.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Content
Preface	 1
Chapter 1: Introduction	 7

What is AJAX?	 7
DWR: AJAX for Java Developers	 9
The DWR Community	 11
Summary	 12

Chapter 2: DWR Features	 13
Ease of Use	 14
Reverse AJAX	 14

Piggyback	 14
Polling	 15
Comet	 16

DWR JavaScript Libraries	 18
engine.js	 19
util.js	 20
gi.js	 23

Converters	 23
Creators, Filters, and Signatures	 24
Integration with Other Projects	 25
Security	 26

Minimize Risks	 27
Summary	 28

Chapter 3: Getting Started	 29
Supported Browsers and Environments	 30
Configuration	 30

web.xml	 30
dwr.xml	 32

Using Creator and Its Attributes 	 33

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

[ii]

Using the Converter Element	 34
Working with Annotations	 35
Using Fluent Configuration with DWR	 36

Setting up a Development Environment	 37
Development Environment with DWR and Firefox	 37
Development Environment with Eclipse	 37

Apache Geronimo	 41
Testing and Debugging	 41
Error Handling	 42
Packaging and Deployment	 44

Deployment Using the Administration Console	 47
Deployment Using the Deployer Tool	 50
Deployment Using Hot Deployment	 51

Summary	 51
Chapter 4: User Interface: Basic Elements	 53

Creating a Dynamic User Interface	 53
Creating a New Web Project	 55
Configuring the Web Application	 57
Developing the Web Application	 59

Testing the Web Application	 60
Developing Web Pages	 64

Callback Functions	 69
Afterword	 70

Implementing Tables and Lists	 71
Server Code for Tables and Lists	 72
Client Code for Tables and Lists	 79
Testing Tables and Lists	 85
Afterword	 87

Implementing Field Completion	 87
Server Code for Field Completion	 88
Client Code for Field Completion	 89
Afterword	 95

Summary	 95
Chapter 5: User Interface: Advanced Elements	 97

Creating Forms	 97
Developing the User Interface	 98
Creating the FormHandler Class	 101
Testing the Form	 103
Afterword	 106

Building a Navigation Tree	 106
Developing the User Interface	 106

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

[iii]

Creating the NavigationTree Class	 108
Developing the User Interface, Part 2	 110
Testing the Navigation Tree	 113
Afterword	 115

Map Scrolling Using DWR	 115
Developing the User Interface	 117
Creating the MapScroller Java Class	 124
Testing the Map Scroller	 126
Afterword	 129

Summary	 129
Chapter 6: Backend Integration	 131

Integrating a Database with DWR	 131
Configuring the Database in Geronimo	 132
Creating a CountryDerbyDB Java Class	 138
Testing the Database Integration	 142
Afterword	 143

Integrating with Web Services	 143
Developing the Web Service Client	 144
Implementing the Web Service Call	 151
Testing Web Services Integration	 152
Afterword	 153

Integrating with a Messaging System	 153
Setting up Queues in Geronimo	 154
Developing the OrderSystem Java Class	 158
Setting up the Application for Messaging	 161
Testing with the Backend OrderSystem	 163
Afterword	 165

Summary	 165
Chapter 7: Sample Applications	 167

Collaborative Book Authoring	 167
Starting the Project	 168
Developing the User Interface	 168

index.jsp	 170
loginFailed.html 	 171
mainpage.jsp	 171

Configuring the Web Application	 182
Developing the Java Classes	 184

Login.java	 184
UserDatabase.java	 186
Util.java	 187
Book.java	 188
BookDatabase.java	 190

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table of Contents

[iv]

Testing Collaborative Book Authoring	 197
Afterword	 202

Chatroom	 202
Starting the Project and Configuration	 202
Developing the User Interface	 203
Developing the Java Code	 207
Testing the Chat	 209
Afterword	 211

Summary	 211
Index	 213

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface
AJAX enables a rich desktop-like user interface in the browser and enables interactive
interfaces that can even replace traditional user interfaces. Communication between
browser and server is done in the background and because only the data is
transferred between the browser and the server, AJAX applications seem to be, and
are actually, fast and responsive to the users.

DWR, Direct Web Remoting, is an Open Source Java framework, licensed under the
commercial-friendly Apache Software License v2 for building AJAX applications.
DWR's main idea is to hide AJAX implementation details, like XMLHttpRequest
and such, from developers. Developers can concentrate on developing the
application and business objects and leave the AJAX details behind the scenes
where they belong.

DWR allows server-side Java classes to be used in the browser (it's like an RPC
between JavaScript functions and the server-side Java) and also allows JavaScript
functions to be used in the server (Reverse AJAX). DWR dynamically generates
JavaScript functions from Java classes via XML-based configuration, which can be
called from browser via the DWR JavaScript library. A DWR servlet on the server
side receives requests and calls the actual Java implementation. DWR includes a
couple of JavaScript libraries that are required for DWR to work, and are also helpful
for developers.

The term Reverse AJAX is used when a server is used to query and/or control the
client browser behavior. DWR supports three different methods to do reverse AJAX
in applications: Piggyback, Polling (by the client), and Comet (server push).

You may have an on-going project where you may want to use a framework such as
JSF or Spring for building the whole solution. In these cases, AJAX and DWR are just
a part of the overall picture, and so DWR needs to integrate with other frameworks
nicely, and does that successfully!

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

[�]

The DWR project has thought about security very thoroughly. The DWR framework
has taken into account many security issues and there is a lot of discussion about
security at the DWR website.

This book is written for professional Java developers who are interested in learning
DWR and AJAX framework. It starts with a tutorial on DWR's main features and
functions. Then it covers setting up the development environment. It concludes with
some sample applications.

The later chapters are full of example code for sample applications, to
aid comprehension.

What This Book Covers
Chapter 1 is a brief introduction to AJAX technology and DWR. It also discusses the
DWR community and describes briefly what information can be found about DWR
on the Internet.

Chapter 2 describes DWR features that we use in the samples of this book—a high-
level view of how DWR makes a developer's life easier. It discusses reverse AJAX,
DWR JavaScript libraries, converters, creators, filters, and signatures. It also contains
a section on integrating DWR with other projects and another on security.

Chapter 3 sets the stage for development by describing how to set up the
development environment and how to test and debug our sample applications. It
covers DWR-supported browsers and environments, configuration, error handling,
packaging, and deployment.

Chapter 4 is the first chapter dedicated to sample code. The examples in this chapter
include typical user interface elements such as tables and lists, and how they can be
implemented using DWR. It also has an example for field completion.

Chapter 5 discusses how to use DWR in more advanced user interface elements such
as forms, navigation tree, and scrolling a map.

Chapter 6 shows how DWR applications are integrated to a database, a web service,
or a messaging system.

Chapter 7 includes two sample applications: Collaborative Book Authoring, which
shows how DWR is used to create a web based multi-user authoring environment,
and Chatroom—a typical multi-user chat room application using DWR.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface.

[�]

What You Need for This Book
This book is for professional Java developers and architects who want to learn about
DWR by examples. Several skills are needed or are beneficial to get the most out of
this book.

First of all, Java development skills are needed. Especially web development using
Java technologies like Java Enterprise Edition (JEE), Servlets, and JSPs. Experience
about other web technologies like JavaScript, HTML, and CSS is also useful.

Eclipse tooling should be familiar and other useful skills are knowledge about JEE
application servers and experience about common technologies like XML.

Knowledge about the basics of AJAX technology is helpful. However, the basics of
AJAX are introduced in this book.

Who is This Book For
This book is written for competent Java developers and assumes that you are a
professional rather than a hobbyist. You should be familiar with the concepts of
programming, Web 2.0, and AJAX.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the
use of the include directive."

A block of code will be set as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dwr PUBLIC
 "-//GetAhead Limited//DTD Direct Web Remoting 2.0//EN"
 "http://getahead.org/dwr/dwr20.dtd">
<dwr>
 <allow>
 <create creator="new" javascript="HorizontalMenu">
 <param name="class" value="samples.HorizontalMenu" />
 </create>
 </allow>
</dwr>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

[�]

When we wish to draw your attention to a particular part of a code block, the
relevant lines or items will be made bold:

public boolean submitOrder(String name, String address,
 String creditCardNumber, String expiryDate)
{
 CreditCardValidatorSoapProxy ccValidatorProxy =
 new CreditCardValidatorSoapProxy();
 int rv = -1;
 try {
 rv = ccValidatorProxy.validCard(creditCardNumber,
 expiryDate.replace("/", ""));
 if (rv != 0) {
 System.out.println("Credit card check failed: " + rv);
 }
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 if(rv==0)
 {
 //credit card valid, submit to order system
 new OrderSystem(name,address,creditCardNumber,expiryDate);
 }
 return rv == 0;
}

Any command-line input and output is written as follows:

deploy -user system -password manager deploy d:\temp\HelloWorldServlet.war

New terms and important words are introduced in a bold-type font. Words that you
see on the screen, in menus or dialog boxes for example, appear in our text like this:
"clicking the Next button moves you to the next screen".

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader Feedback
Feedback from our readers is always welcome. Let us know what you think about
this book, what you liked or may have disliked. Reader feedback is important for us
to develop titles that you really get the most out of.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface.

[�]

To send us general feedback, simply drop an email to feedback@packtpub.com,
making sure to mention the book title in the subject of your message.

If there is a book that you need and would like to see us publish, please send us
a note in the SUGGEST A TITLE form on www.packtpub.com or email
suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer Support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the Example Code for the Book
Visit http://www.packtpub.com/files/code/2936_Code.zip to directly
download the example code.

The downloadable files contain instructions on how to use them.

Errata
Although we have taken every care to ensure the accuracy of our contents, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in text or
code—we would be grateful if you would report this to us. By doing this you can
save other readers from frustration, and help to improve subsequent versions of
this book. If you find any errata, report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the let us know link, and entering
the details of your errata. Once your errata are verified, your submission will be
accepted and the errata added to the list of existing errata. The existing errata can be
viewed by selecting your title from http://www.packtpub.com/support.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Preface

[�]

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously.
If you come across any illegal copies of our works in any form on the Internet,
please provide the location address or website name immediately so we can
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with
some aspect of the book, and we will do our best to address it.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introduction
Learning by doing is a key if you want to benefit from this book. Since the target
audience is the developer community, much of this book consists of examples using
DWR in action. Chapters 1 to 3 introduce the main features of DWR, and discuss
how to get the development work started. Chapters 4 to 7 are full of sample code,
and focus on the source code samples and applications.

This chapter introduces AJAX technology and a widely used Java framework for
building AJAX applications: Direct Web Remoting, commonly known as DWR.
The introductory sections on both AJAX and DWR are brief since AJAX is already a
well-known technology and most of us have at least heard about it and know what
it stands for. The introduction to DWR is presented in a short "executive summary"
before we dive into more details and examples on DWR in the later chapters.

The following sections are discussed in this chapter:

What is AJAX?
DWR: AJAX for Java Developers
The DWR Community

What is AJAX?
AJAX is the abbreviation for Asynchronous JavaScript and XML. This gives an almost
comprehensive explanation of the technology, except that XML is not required. The
term AJAX surfaced around February 2005 and was first used by Jesse James Garrett
(http://www.adaptivepath.com/ideas/essays/archives/000385.php), long after
the building blocks of AJAX, JavaScript and XML, were available and in wide use.

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introduction

[�]

The principle idea of AJAX is in the word "Asynchronous". This feature enables rich
a desktop-like user interface in the browser and enables interactive interfaces that
can even replace traditional user interfaces. Communication between browser and
server is done in the background. Moreover, as only the data is transferred between
the browser and the server, AJAX applications are actually fast and responsive to
users. The following figures display how a typical request-response application
works (upper diagram), and how AJAX applications work compared to the
request-response application (lower diagram).

user activity

user activity

user activity user activity

TIME

TIME

SERVER

data transmission

data transm
ission

data transm
ission

data transm
ission

data transm
ission

data transmission

da
ta

 t
ra

ns
m

is
si

on

da
ta

 t
ra

ns
m

is
si

on

da
ta

 t
ra

ns
m

is
si

on

da
ta

 t
ra

ns
m

is
si

on

system processing system processing

browser UI

Ajax engine

client-side processing

input

input

input

input

di
sp

la
y

di
sp

la
y

di
sp

la
y

di
sp

la
y

CLIENT

CLIENT

SERVER server-side
processing

server-side
processing

server-side
processing

server-side
processing

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[�]

The main component of AJAX technology is XmlHttpRequest, which is a JavaScript
object, first supported by Mozilla in 2002. The concept was originally developed
by Microsoft in 1999 for Internet Explorer 5.0 and it was then called XMLHTTP.
The following link provides the details and history of XmlHttpRequest:
http://en.wikipedia.org/wiki/XMLHttpRequest.

XmlHttpRequest is used to transfer data between client and server asynchronously.
The following figure shows the AJAX sequence diagram and how XmlHttpRequest
is used:

Browser
Event

Processing

Client
JavaScript

Code
Server

Server

DOM Event

Time
XMLHTTP
Request

Finished Setup

Finished Setup

Server Response

Handle Request
2

1

3

Fire onreadysetchange Event

Parse Response

Update DHTML

Client

AJAX is dealt with in detail in many books such as Head Rush Ajax, a "brain friendly
guide" to AJAX and also on Internet sites. Further, the assumption is that most of
you already know AJAX and you are reading this book for reasons other than just
learning AJAX basics.

DWR: AJAX for Java Developers
Direct Web Remoting (http://www.directwebremoting.org), is an Open Source
Java framework, licensed under commercial-friendly Apache Software License
v2 (http://www.apache.org/licenses/LICENSE-2.0.html) for building AJAX
applications. DWR's main idea is to hide AJAX implementation details such as
XMLHttpRequest from developers. Developers can concentrate on developing the
application and business objects and leave AJAX details behind the scenes where
they belong.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introduction

[10]

DWR allows server-side Java classes to be used in a browser (it's like RPC between
JavaScript functions and server-side Java) and also allows JavaScript functions to
be used in a server (Reverse AJAX). Through an XML-based configuration, DWR
dynamically generates JavaScript functions of Java classes, which can be called from
the browser via a DWR JavaScript library. A DWR servlet on the server side receives
requests and calls the actual Java implementation.

The following figure displays the positioning of DWR in user applications and is taken
from the DWR website (http://directwebremoting.org/dwr/overview/dwr).

Browser side Server side

HTML / Javascript

function eventHandler()
{
AjaxServic.getOptions(populateList);

}

Java

1
1
2
3

DWR

public class AjaxService
{

public String[] getOptions()
{
return new String[] { "1", "2", "3" };

}

}

function populateList(data)
{
DWRUtil.addOptions("listid", data);

}

In the previous figure, the JavaScript function eventHandler() responds to some
browser event like clicking a button. Event handlers use the AjaxService object
and call the getOptions() method just as if AjaxService were a normal JavaScript
object. A developer can implement client-side and server-side code and leave the
communication between the client and the server to DWR.

Calling server-side Java from JavaScript causes a lot of things to happen and also
requires a lot to happen behind the scenes:

When a DWR-enabled web page is requested, DWR dynamically generates
JavaScript functions from Java classes based on configuration.
When the function eventHandler() gets called, say when clicking a but-
ton, the developer calls a dynamically generated function (AjaxService.
getOptions(populateList) as shown in the previous figure) and the DWR
JavaScript library takes the parameters, serializes them, and calls the DWR
servlet on the server.

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 1

[11]

The DWR servlet receives a request and, based on configuration, the servlet
instantiates a Java object such as AjaxService, and calls the required method,
for example, AjaxService.getOptions(populateList).
When the Java method is finished, the return value (a String array) is
returned to the DWR servlet, and servlet serializes the return value and sends
the response to the DWR JavaScript function on the browser.
The DWR JavaScript function receives the response on the browser and based
on the parameter, populateList (this is the name of the callback function
in the AjaxService.getOptions() function), DWR calls the populateList
function with the return value from the Java method as the parameter. The
AjaxService.getOptions() JavaScript function is generated dynamically by
DWR, and it communicates with the DWR servlet behind the scenes.
The callback function (written by the developer) does the desired thing with
the return value such as updating the browser page and adding new options
to the drop-down field.

DWR is well-suited for Java developers, because this kind of approach is very easy to
get into.

The DWR Community
DWR has very active mailing lists available for DWR users:

Java.net (https://dwr.dev.java.net/servlets/SummarizeList?listNam
e=users)
Nabble (http://www.nabble.com/DWR---Users-f13934.html)
Gmane (http://dir.gmane.org/gmane.comp.java.dwr.user)

These mailing lists have lots of information, which would be helpful to any DWR
user, and any one can participate in them.

There is a mailing list available for DWR security, where DWR security issues are
discussed. In order to participate, application to list must be made separately and it
must include corporate email addresses and titles or other means of identification.
Separate applications are made so that DWR security issues can be discussed without
public dessemination (it is not intended to keep security issues a secret). Application
to join security mailing list can be done from http://groups.google.com/group/
dwr-security

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Introduction

[12]

DWR development mailing list are as follows:

Java.net (https://dwr.dev.java.net/servlets/SummarizeList?
listName=dev)
Nabble (http://www.nabble.com/DWR---Dev-f13937.html)

he blog of DWR creator Joe Walker (http://directwebremoting.org/blog/joe)
includes news about DWR and thoughts about web development.

Commercial support is also available from SitePen (http://sitepen.com/
services/support.php). There are several support packages available, and there
are also possibilities to customize support packages to specific needs.

DWR is used by thousands of developers, and it has been used by companies such as
American Airlines, Walmart, Citigroup, Mastercard, and many others. DWR is used
both in public sites and Intranet sites.

DWR is also part of the Dojo Foundation, which is an independent legal entity that
provides infrastructure for development. The members include IBM and SitePen. In
addition to DWR, Dojo Foundation also sponsors Dojo Toolkit, OpenRecord, and
Cometd projects. The following website has more information about the
Dojo Foundation:

http://dojotoolkit.org/foundation

Summary
This chapter briefly introduced AJAX and DWR. AJAX is a fundamental technology
that uses browser-based JavaScript to build Internet applications with better user
experience than typical request-response web applications.

DWR is a Java framework for building AJAX applications, and it is targeted mainly
at Java developers who don't want to implement the low-level "stuff" that makes
AJAX work.

The rest of the book is about DWR features and sample code that can be used in your
own projects. The examples provided in the later chapters show some of the common
situations in which to use DWR and how to use it.

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWR Features
This chapter describes some main features of DWR: Reverse AJAX, security, DWR
JavaScript libraries, and DWR's integration with other projects.

Reverse AJAX is basically a method to call client-side JavaScript from server-side
Java classes. The security section discusses what has been done in DWR in order to
prevent unwanted access to the server by exploiting DWR features.

DWR includes a couple of useful JavaScript libraries that are explained here together
with how to use DWR with other projects, such as Struts or JSF.

This chapter covers the following sections:

Ease of Use—A high-level view of how DWR makes a developer's life easier
Reverse AJAX—Describes what Reverse AJAX means
DWR JavaScript Libraries—Describes the JavaScript libraries that come with
DWR: engine.js, util.js, and gi.js
Converters—Presents how DWR marshals/unmarshals objects
Creators, Filters, and Signatures—Introduces important DWR
configuration elements
Integration with Other Projects—Briefly describes how DWR integrates with
other projects
Security—Gives an overview of DWR security

In addition to the features described in this chapter, DWR features such as error
handling and configuration are presented in Chapter 3, Getting Started.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWR Features

[14]

Ease of Use
The main feature of DWR is its ease of use. DWR hides a lot of details from
developers. This means that we can use AJAX functionality and we don't need to
know about XmlHttpRequest for example, or how to send a Java object to a browser
and so on. DWR has its own framework for performing the required marshaling/
unmarshaling of Java objects to JavaScript and vice versa.

The setup for DWR consists of copying the dwr.jar file to the WEB-INF | lib
directory in the application WAR file, and installing the application in the server
before starting to use it. There are no special interfaces to implement in our own
Java classes and it is even possible to develop a Java object completely transparently,
so that the object doesn't know any DWR-specific classes. DWR provides
well-documented APIs for us to use, and we can take advantage of it when
developing, for example, Reverse AJAX applications.

And finally we can leverage the existing Java skills because DWR does not force
us to replace the existing code, but instead lives side by side with non-AJAX
applications and allows us to gradually change the required parts of an application
to AJAX functionality.

Reverse AJAX
The term Reverse AJAX is used when a server is used to query and/or control a
client-browser behavior. This may cause some questions because it sounds like our
browsers are now vulnerable to attack while we visit the web pages of the world.

Luckily that is not the case, because it is not possible for a server to open a
connection to a browser. A browser must always be the initiator of the connection.
So, the question about security is actually valid, but a problem would mean that the
website in question is designed and implemented for causing harm.

DWR supports three different methods to do Reverse AJAX in applications:
Piggyback, Polling (by the client), and Comet (server push).

Piggyback
The piggyback method works so that whenever a server has an update to be sent
to the client, it waits until the client opens a connection and requests some content
from the server. When that happens, the server includes a new update with the
response, and it is delivered to the client where DWR recognizes the update and acts
accordingly and makes the update on the user's web page.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[15]

The Piggyback method is the default method for Reverse AJAX in DWR and it is
called Passive Reverse AJAX (the other methods are called Active Reverse AJAX)
and requires no configuration. For busy developers like us it is often a good enough
solution (by the way, learning when to stop and when to develop "good-enough
software" is one step from journeyman to master; see The Pragmatic Programmer: From
Journeyman to Master, by Andrew Hunt and David Thomas)

A downside to Piggyback is that any update that happens on the server side may
take a long time before it is visible to users. Depending on the application, this may
not be a problem, but if it is, then the other two methods may be used, Polling and
Comet, which are Active Reverse AJAX methods.

Using Reverse AJAX requires the use of DWR classes in the application code on the
server side. DWR has a class called ScriptProxy that is used to execute JavaScript
functions on the client. As an example, the following code snippet, which could be in
a remote Java method, gets all the script sessions (in essence, HTTP sessions but for
scripts) for a given page, mainpage.jsp, and then adds a function call that gets called
in all the clients that are known to the server and have the mainpage.jsp open.

Collection<ScriptSession> sessions = serverContext.getScriptSessionsBy
Page(contextPath + "/mainpage.jsp");
ScriptProxy proxy = new ScriptProxy(sessions);
proxy.addFunctionCall("newMessage",newMessage);

On the mainpage.jsp, we would have the following function, newMessage, that
updates some field in the web page.

function newMessage(newMessageParam)
{

 elementToBeUpdated=document.getElementById("messageArea");
 elementToBeUpdated.innerHTML=newMessageParam;
}

No configuration is needed when using Reverse AJAX using the Piggyback method.
It is enabled by default in DWR. When using Piggyback, clients receive updates after
they make an AJAX (DWR) request to the server application. DWR then sends all
updates (from Reverse AJAX methods) together with the actual response to the client
where DWR updates the web page (as in the previous example).

Polling
Polling is a "no-brainer" way to do Reverse AJAX, although it really isn't reverse
since DWR periodically polls the server if there are any events on the server side of
the application that require updates to the web page.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWR Features

[16]

This method may be good in some cases, especially when there is no issue about
extra load on the network and the server that polling causes or when updates to a
client do not need to be (near) real-time as in Comet.

When we use the Polling method for Reverse AJAX the code is the same as in the
sample code in the Piggyback section. Only the configuration needs to be changed. In
order to use Polling we need to configure DWR to Active Reverse AJAX. This is done
by adding the following init parameter to the DWR servlet in the web.xml file.

<init-param>
 <param-name>activeReverseAjaxEnabled</param-name>
 <param-value>true</param-value>
</init-param>

We also need to enable web pages for Reverse AJAX. This is done by adding the
following line to a web page that we are using to receive Reverse AJAX requests
from the server.

dwr.engine.setActiveReverseAjax(true);

The above configuration is actually all that we need for using the Comet method,
which can be seen in the following section. For the Polling method, we need an
additional init parameter in the web.xml file:

<init-param>
 <param-name>org.directwebremoting.extend.ServerLoadMonitor
 </param- name>
 <param-value>org.directwebremoting.impl.PollingServerLoadMonitor
 </param-value>
</init-param>

There is also the optional init parameter for specifying the poll interval. The default
interval is 5 seconds, and it can be changed with the following init parameter.

<init-param>
 <param-name>disconnectedTime</param-name>
 <param-value>60000</param-value>

</init-param>

Comet
Comet, known to some as long-lived HTTP, is a very recent term (used first by Alex
Russell in March 2006 http://alex.dojotoolkit.org/?p=545) for a server push
method, where the browser opens the connection and it is kept open so that the
server can push updates to the browser when needed, and the latency for updates
is very low. The following figure shows how Comet compares to the normal
AJAX model:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[17]

user activity

TIME

server-side processing

ev
en

t

ev
en

t

ev
en

t event ev
en

t

ev
en

t

ev
en

tcomet event bus

SERVER

connection initialization

data transm
issionda

ta
 t

ra
ns

m
is

si
on

da
ta

 t
ra

ns
m

is
si

on

da
ta

 t
ra

ns
m

is
si

on

da
ta

 t
ra

ns
m

is
si

on

da
ta

 t
ra

ns
m

is
si

on

da
ta

 t
ra

ns
m

is
si

on

Comet web application model

browser UI

Comet client

client processing

event

di
sp

la
y

di
sp

la
y

di
sp

la
y

di
sp

la
y

di
sp

la
y

di
sp

la
y

user activity

TIME

SERVER
server-side
processing

server-side
processing

server-side
processing

server-side
processing

data transm
ission

data transm
ission

data transm
ission

data transm
issionda

ta
 t

ra
ns

m
is

si
on

da
ta

 t
ra

ns
m

is
si

on

da
ta

 t
ra

ns
m

is
si

on

da
ta

 t
ra

ns
m

is
si

on

Ajax web application model (asynchronous)

browser UI

Ajax engine

client-side processing

input

input

input

input

di
sp

la
y

di
sp

la
y

di
sp

la
y

di
sp

la
y

CLIENT

CLIENT

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWR Features

[18]

As we can see from the figure, Comet enables the server to send updates in response
to the events, almost in real–time, and there is no need to wait for the user to open a
connection or to use Polling.

As mentioned in the previous section, Comet requires only the enabling of Active
Reverse AJAX in the init parameter and the enabling of Reverse AJAX in the web
page. Active Reverse AJAX using Comet has two modes: Full Streaming Mode
(default in DWR 2.0.3 and earlier versions) and Early Closing Mode (default in DWR
2.0.4 and later versions).

The Full Streaming Mode has the fastest response time and it enables near real-time
responses to the client when an event occurs on the server. In this mode, every 60
seconds, DWR checks whether the browser is active or not by closing the connection
and reopening it. Early Closing Mode on the other hand causes DWR to close the
connection when browser receives the output and then to reopen it. For Early
Closing Mode, there is the init parameter called maxWaitAfterWrite and its value
is the time in milliseconds to wait before closing the connection (and reopening it)
after receiving input from the server.

There are a couple of issues that should be remembered while using Comet in DWR
applications, especially for applications that have a large number of users. As clients
keep the connections open to the server, it is possible that the server resources
are consumed for connections and their threads. This increases the infrastructure
requirements for the DWR application unnecessarily. The solution is to use the
maxWaitAfterWrite init parameter and tweak it to an appropriate value. Other
solutions are to use Polling or Passive Reverse AJAX.

In all the three methods, Piggyback, Polling, and Comet, DWR shows its strengths
because we don't really have to know the implementation details of Reverse AJAX.
DWR handles them behind the scenes and hides the details of Comet and the Polling
methods, and we can use any of the three methods by just configuring DWR in the
correct manner.

DWR JavaScript Libraries
DWR includes a few JavaScript libraries that are required for DWR to work and that
are also helpful for developers: engine.js, util.js, and gi.js.

The first JavaScript library, engine.js, is the core of DWR's browser-side
functionality, and is required for all the pages that use AJAX and DWR. The second
library, util.js, contains useful utility functions but is not required for DWR. And
the third library, gi.js, is used to integrate DWR with TIBCO General Interface
(GI) for AJAX Applications.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[19]

engine.js
The engine.js library is mandatory for DWR applications since it has functions to
marshal calls from the dynamically generated JavaScript functions to remote Java
classes in the server. The following fragment must be present in all HTML pages that
need DWR functionality:

<script type='text/javascript' src='/<web app name>/dwr/engine.js'>
</script>

There are a number of options and methods in the engine.js library. The functions
in the library are prefixed by dwr.engine, and the library also has methods to set
handler functions for errors and warnings.

DWR is designed to use the correct options (and methods) automatically, so in many
cases, we don't need to set any options. However, setting options may sometimes
be necessary. Especially when browsers do not behave as expected and we have to
work around browser quirks, we may need to set some options.

Some of the options are related to how DWR handles the actual call from the browser
to the server. One option is "async" and its value is either true or false. If we set
async to false, then DWR will contact the server synchronously as shown in the
following example.

NavigationTree.getChildren(value,{
 async:false,
 callback:function(childElements)
 {
 for (index in childElements)
 {

 }
 }
 });

The above example generates a navigation tree (see the sample in Chapter 5) when a
page is loaded. If loading is asynchronous, functionality would be affected because
an asynchronous operation would make the results unpredictable and the user
experience would deteriorate considerably. The engine.js library is also used to set
the pre-and post-hook functions that are executed before the remote call and after
the remote call is finished. This feature is useful for debugging and also if we need to
do modifications to the user interface, such as disabling components. Post hooks are
used for enabling components disabled in the pre-hook function. The following code
sets the PreHook and PostHook functions that alert the user whenever DWR makes
a request.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWR Features

[20]

dwr.engine.setPreHook(requestStart);
dwr.engine.setPostHook(requestEnd);

function requestStart()
{
 alert(‘Request start');
}

function requestEnd()
{
 alert(‘Request end');
}

Other features of engine.js include the possibility to call the server in a batch with
one or more remote functions that are called together. The following code calls three
remoted methods in a batch with a timeout of 5 seconds.

dwr.engine.beginBatch();
WorldMap.getEvents(callback:function(results){…});
WorldMap.getArea(coordinates, showPreview);
WorldMap.sendEvents(events, result);
dwr.engine.endBatch({
 timeout:5000
});

DWR also has a feature called 'call ordering'. When it is enabled, responses to remote
calls are received in the order they were sent. By default, call ordering is not enabled
and if it is enabled, it may slow down the application. If call ordering is needed, it is
enabled by adding dwr.engine.setOrdered(true) to the web page and it affects to
all DWR calls within that web page.

util.js
The util.js library contains many useful JavaScript functions that can be used
in our applications. This library is designed to be used even without the rest
of DWR since it does not need full DWR functionality (with one exception: the
useLoadingMessage() function).

The library has functions to manipulate HTML elements including tables, lists,
and images. The following is a table of functions found in util.js with short
descriptions of each.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[21]

Function Syntax Description
addOptions dwr.util.addOptions(id,

["one", "two", "three"
])

Allows addition of
elements without page
refresh to lists and select
elements (ol, ul, and select)
specified by ID.

addRows dwr.util.addRows
(id, array, cellfuncs,
[options])

Adds rows to a specified
table element. array
parameter is used to
populate data so that
there is one row per array
element. Pseudo-code for
creating a table looks
like this:
for each member in
array

 for each function
in cellfuncs

 create cell from
cellfunc(array[i])

byId dwr.util.byId() This function finds the
element in the current
HTML document with the
given ID. This may be used
instead of the document.
getElementById
JavaScript function.

getValue() dwr.util.getValue(id) Gets value from HTML
elements such as div and
input elements.

getText() dwr.util.getText(id) Designed for select lists
and returns the displayed
text instead of the value of
the current option.

getValues() dwr.util.getValues
({ div:null, textarea:
null})

This function gets the
values of specified elements.
The function parameter is
a map where the key is an
HTML element ID and the
value holds the element
value after this function is
executed.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWR Features

[22]

Function Syntax Description
onReturn() dwr.util.onReturn(event,

submitFunction)
Useful function to catch
an event when return is
pressed on a text element.
This works on text elements
where the onkeypress or
onkeydown event is tied to
the onReturn function:
<input type="text"

 onkeypress="dwr.
util.onReturn(event,
submitFunction)"/>

<input type="button"
onclick="submitFunct
ion()"/>

removeAllOptions() dwr.util.
removeAllOptions(id);

Removes all options from
ul, ol, or select elements
specified by an ID.

removeAllRows() dwr.util.
removeAllRows(id)

Removes all rows from a
table specified by an ID.

selectRange() dwr.util.selectRange
(id,start,end)

Selects a range of text in an
input box between the start
and end positions.

setValue() dwr.util.setValue
(id,value)

Sets the value of specified
HTML element. Works
with most of the HTML
elements, most importantly
input elements and divs.

setValues() dwr.util.setValues
({name:value})

Is similar to setValue(), but
the function parameter is
an object with name/value
pairs. The name is the ID of
the HTML element and the
value is the new value of
the element.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[23]

Function Syntax Description
toDescriptiveString() dwr.util.

toDescriptiveString
(id,detailLevel,options)

A useful pretty-print
function that prints a
JavaScript object in
human-readable form, with
the possibility to choose the
level detail.

useLoadingMessage() dwr.util.
useLoadingMessage()

DWR-specific loading
message that shows
"loading" on the top right
corner of the web page.

The descriptions in the table are just for reference. The DWR samples in the
following chapters show how to use these utility functions and the DWR homepage
explains these functions in more detail. And, of course, JavaScript source code is
available for those who are interested in looking into details.

One parameter option that is worth mentioning for functions is escapeHTML:false.
By default, escapeHTML is true and means that all HTML elements are escaped
(especially <, >, &, double quote, and single quote; this is to prevent cross-site
scripting attacks).

gi.js
The gi.js library helps to integrate DWR with TIBCO General Interface (GI) for
AJAX Applications, an Open Source library that includes dozens of ready-made
AJAX components as well as tools to help the development of AJAX applications
using TIBCO General Interface.

DWR's gi.js provides useful functions to integrate with TIBCO GI such as dwr.
gi.toCdfDocument(), which generates CDF (Common Data Format) documents
from JavaScript objects. CDF is TIBCO GI's common format that allows sharing
data among TIBCO GI components, performing data mapping and transfering data
between client controls.

More information about TIBCO GI is found on the TIBCO Developer Network,
http://www.tibco.com/devnet/gi/default.jsp.

Converters
Converters are DWR's means of marshaling data back and forth from the client to
the server. There are many basic converters that are enabled by default, and it is also
possible to create new converters.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWR Features

[24]

Basic converters include converters for all primitive types, strings, and the
following objects:

From java.lang package: Boolean, Byte, Short, Integer, Long, Float,
Double, Character
From java.math package: BigInteger and BigDecimal
DateConverter for java.util.Date, and classes from java.sql package:
Date, Times, and Timestamp

DWR also has converters for arrays (of all aforementioned objects), Java Beans and
Objects, collections (Map and Collection), DOM objects, Enums, and others such as
the Servlet objects and Hibernate beans.

The DWR API has a Converter interface that can be implemented for custom
converters. This is not used very often because BeanConverter works for many
custom objects if they are coded according to the JavaBean specification.

Creators, Filters, and Signatures
Creators are used by DWR to instantiate our remote objects on the server side.
Chapter 3 has a section about Creators, and how to use them.

Filters are used to intercept calls to remote objects. Interception can occur before or
after the call, and filters can be used for various purposes such as logging, security,
parameter checking, or even adding extra latency to the DWR calls. The following
samples shows simple filter code, and how it is configured in dwr.xml for a
single class:

public class NotifyRestrictedAccessFilter {
public Object doFilter(Object obj, Method method, Object[] params,
AjaxFilterChain chain) throws Exception {
 //if params include monitored sentence
 //then send mail to security officials
 … code here …
 return chain.doFilter(obj, method, params);
 }
}

<allow>
<create creator="new"javascript="GetAreaDetails">
 <param name="class" value="org.area.NumberedArea"/>
 <filter class="org.filters.NotifyRestrictedAccessFilter"/>
</create>
 ...
</allow>

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[25]

Signatures are specified in dwr.xml, and they are used to instruct DWR to correctly
operate on types that are included in collections such as java.util.List. For
example, if we have a remote method with the signature void setAdressses(List
addresses), DWR has no way of finding out that the type contained in a list is
String. That is why we need the following signature in dwr.xml to instruct DWR to
behave correctly.

<signatures>
 <![CDATA[
 import java.util.List;
 import myclasses.AllAddresses;
 AllAddresses.setAddresses(List<String> allAddresses);
]]>
</signatures>

Integration with Other Projects
Often, DWR is not used just by itself. Perhaps, you have an on-going project where
decision has been made to use a framework such as JSF or Spring for building the
whole solution. In these cases, AJAX and DWR are just a part of the overall picture,
and so DWR needs to integrate with other projects nicely. And that it does.

DWR integrates with the following:

JSF (http://java.sun.com/javaee/javaserverfaces/), Java Server Faces
for building user interfaces
Spring (http://www.springframework.org/), a complete Java/JEE
application framework
WebWork (http://www.opensymphony.com/webwork/), a web application
development framework
Hibernate (http://www.hibernate.org/), an object/relational persistence
and query service
Integration to a portal such as Apache Jetspeed using JSR 168 portlets
is also doable; for example, see the article on IBM developerWorks
(http://www.ibm.com/developerworks/java/library/j-ajaxportlet/)
And many others, whose integrations are provided by DWR or the other
projects itself

Explaining all the integrations here is out of scope but, as an example, JSF integration
is pretty straightforward.

DWR includes two extension points for JSF integration; one is JsfCreator, which is
used to access ManagedBeans of the JSF from the DWR application and the other is
DWR/Faces servlet filter, which allows us to access Java beans from FacesContext.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWR Features

[26]

The filter needs to be configured in the web.xml file in order to use JsfCreator:

<filter>
 <filter-name>DwrFacesFilter</filter-name>
 <filter-class>uk.ltd.getahead.dwr.servlet.FacesExtensionFilter
 </filter-class>
</filter>

<filter-mapping>
 <filter-name>DwrFacesFilter</filter-name>
 <url-pattern>/dwr/*</url-pattern>
</filter-mapping>

In the dwr.xml, file we insert the JSF ManagedBeans configuration:

<allow>
 ...
 <create creator="jsf" javascript="ScriptName">
 <param name="managedBeanName" value="beanName"/>
 <param name="class" value="your.class"/>
 </create>
 ...
</allow>

After the configuration, we are able to use JSF ManagedBeans from the DWR
application.

Security
Security is always important, and the DWR project has thought about security very
thoroughly. The DWR framework has taken into account many security issues, and
there is lots of discussion about security on the DWR website, enough to fill several
books about the subject.

Among the people for whom security is important are developers like you and me.
Software does only what we instruct it to do, so we must be conscious about security
during development and do our best to limit the possibilities to exploit our work.

While using DWR, we manually specify in the dwr.xml configuration (unless we
have created some automatic code-generation software that does it for us) which
Java classes and methods we want to remote to JavaScript. This way we can be sure
that no attacker can exploit any other objects than our explicitly remoted Java objects
(and we can concentrate to make those objects as secure as possible).

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2

[27]

The configuration in dwr.xml also includes a create entry for each remoted
Java class. We can use singleton, or new, or some other mechanism. We can also
limit which methods are allowed using the include and exclude elements in dwr.
xml. There are also security parameters in the web.xml configuration file such
as allowScriptTagRemoting and crossDomainSessionSecurity, which when
enabled, may be a huge security risk. So make sure you understand what you are
doing if you are enabling the parameters.

There is one configuration parameter that is very useful while developing a DWR
application, but that is a security risk in the production (especially public) site. The
following init-param, debug, and test mode can be added in the web.xml.

<init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
</init-param>

When debug/test mode is enabled, DWR generates test pages (there is a sample
screen in Chapter 4) that are useful tools to get to know the DWR functionality.

It is also possible to use JEE access control mechanisms and limit access to DWR itself
for specific JEE roles. These are specified in the web.xml file. Within DWR, there is
also a role-based access control to the methods of remoted Java objects. DWR can
also be integrated with Spring Security (also known as Acegi Security), http://
www.acegisecurity.org/, the official security projects of the Spring Portfolio. The
description of Acegi and DWR integration is found on http://java-x.blogspot.
com/2007/08/handling-security-with-ajax-dwr-and.html.

DWR is also designed so that there is no possibility of an attacker accessing and
manipulating DWR core files and changing the security parameters for example.

Minimize Risks
Security is not a trivial issue, and we could spend years in the security field and still
leave a lot unfinished. As developers, our job is to make sure that security risks are
minimized, and at least realize what might happen if we remote a certain
Java method.

A very good example from the DWR website is that if we make a remote call
to a method called appendStringToFile(), which appends a given string to a
predefined file, then a possible attacker can send a large number of requests and fill
the file system with nonsense and thus cause an unexpected server downtime. The
cost of downtime may be anything from little inconvenience to millions of dollars.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DWR Features

[28]

In order to prevent giving accidental access that may cause harm, we have to think of
what we want to do and also check the input parameters. Checking input parameters
is the most important thing that we as developers can do to make sure accidents do
not happen.

In the previous example, if we have remoted the appendStringToFile() method,
we can do lots of checks on whether the file system is filling, whether it is a string
valid for the purpose for which it was meant (such as log entry to a log file), who the
requester is, and so on.

Also make sure that escapeHTML is used in order to prevent cross-site scripting
(XSS) attacks. XSS is something worth knowing about. So please refer to
Wikipedia (http://en.wikipedia.org/wiki/Cross-site_scripting) for a
detailed description.

Summary
This chapter presented an overview of DWR features including JavaScript libraries
(util.js, engine.js, and gi.js), security, and Reverse AJAX and on basic
operational elements of how DWR works.

In addition to the topics discussed in this chapter, DWR has lots of other useful
features that may or may not be relevant to developers. It depends on the
application. Topics in this chapter are intended to be high-level overviews, but they
will give you a good starting point to learn more from the DWR website
(http://directwebremoting.org/dwr/documentation) and even from the
DWR source code.

Very often, most developers do not need all the features of a technology when
they start working on a project. After the project has been going on for some time,
we may find out that the solution has matured to include most if not all features
of the technology. But that is typically not the initial case and, besides, we have to
start somewhere and it is practical to start taking small steps at a time, like toddlers
learning to walk.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started
In this chapter, we are going to set up the development environment for the coding
work we will do in the following chapters. We will also have a look at supported
environments, configuration, testing, and debugging.

As the development environment for the sample code in this book, we have the
following components: Eclipse as IDE, Apache Geronimo 2.x.x as the application
server, Java 1.5.x as Java runtime, Firefox 2.0.0.x as the client, and Windows as the
operating system (Linux would work just as well).

This chapter includes the following sections:

Supported Browsers and Environments—describes which software
components are supported by DWR
Configuration—presents DWR configuration, including dwr.xml
and web.xml files
Setting up a development environment—has steps to set up components
for development
Testing and Debugging—describes how to test and debug while developing
applications using DWR
Error Handling—describes how DWR handles error handling, and how it is
configured to do it
Packaging and deployment—shows how to package and deploy DWR
applications using Eclipse and Geronimo

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[30]

Supported Browsers and Environments
As DWR applications are based on Java, the server that runs a DWR application must
be a Java server. JDK 1.3 and servlet specification 2.2 are minimum requirements.
Almost all Java application servers support DWR applications. Apache Tomcat,
Apache Geronimo, WebSphere, Weblogic, and many other servers are supported. In
this book, we have used Apache Geronimo.

DWR supports most of the latest browsers:

Firefox 1.x and later versions are supported.
Internet Explorer 6.0 and the later versions of Windows are supported (IE
Mac is not supported). IE 5.5 may also work, but IE 5.0.2 is not supported.
Mozilla-based browsers are supported from version 1.7.
Opera version 7.5.4 and later are supported (only one minor issue reported
with strings containing nulls).
Safari browsers from version 1.2 on OSX are supported.
Konqueror browser and its latest versions may work, but they are not tested
by the DWR team.

In general, most current browsers are supported by DWR, and it is unlikely that
browser support is an issue in any current or future development project. Especially,
when the project is for SMB (Small and Medium Businesses) or an enterprise
customer, they probably have a company policy for a preferred browser, and that
browser is very likely one of the two major browsers.

Configuration
DWR is configured using XML files, annotations, or Fluent Interface style. Using
XML files is the most typical method for DWR configuration, and there are two
files: web.xml and dwr.xml. The first one, web.xml, is a must for other configuration
methods also. Annotations and fluent-style configurations may be used in place of
dwr.xml. This section describes the configuration methods and how to use them.

web.xml
Configuration starts by defining the DWR servlet in the web application's web.xml
configuration file. This is, of course, mandatory since DWR would not work
without it. A minimum configuration does not have any init parameters, and is
shown as follows:

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[31]

<servlet>
 <servlet-name>dwrservlet</servlet-name>
 <servlet-class>org.directwebremoting.servlet.DwrServlet</servlet-
 class>
</servlet>
<servlet-mapping>
 <servlet-name>dwrservlet</servlet-name>
 <url-pattern>/dwrservlet/*</url-pattern>
</servlet-mapping>

There are many init parameters that are used to configure DWR behavior and
the most common parameter is the debug parameter. When set to true, the debug
parameter generates test pages for remoted classes. Test pages could be used to test
the DWR functionality and, well, to debug application before moving to production.
Never leave the debug parameter set to true in a live production environment.

Several init parameters are related to security. The following table describes which
security parameters are available:

Parameter Description
allowGetForSafariButMakeForgeryEasier When this parameter is set to true, it

enables DWR to work with Safari 1.x
browsers. The downside is that security
is reduced because GET requests can be
forged more easily. The default value
is false.

crossDomainSessionSecurity This parameter enables DWR's
CSRF (Cross-Site Request Forgery)
protection, to stop other sites
from forging requests using your
application's session cookie.

allowScriptTagRemoting Enables script tag remoting. The default
value is false, and setting this to true
may be a significant security risk. Do
not set it to true unless you know what
you are doing.

debug Setting this to true enables test and
debug pages. The default value is false.

scriptSessionTimeout Refers to the timeout for a script
session. The default value is 30 minutes.

maxCallCount Refers to the maximum number of calls
in a single batch. The default value is
20. If this number is large, denial-of-
service attacks can be done more easily.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[32]

Initialization parameters for a DWR servlet also include several parameters for
server load protection. The init parameters for load protection are listed in the
following table:

Parameter Description
activeReverseAjaxEnabled When set to true, this enables reverse AJAX support,

polling, and Comet. The default value is false.
maxWaitingThreads The maximum number of threads that wait for

requests. The default value is 100.
maxHitsPerSecond The number of poll requests that we should get per

second. The default value is 40.

Other init parameters also exist such as sessionCookieName and overridePath.
The DWR web page lists all parameters, including a few undocumented parameters.

dwr.xml
The other XML configuration file for DWR is dwr.xml. This file is used to configure
remoted Java classes to JavaScript functions, and is the basis of DWR functionality.

The dwr.xml file has the following structure:

<!DOCTYPE dwr PUBLIC "-//GetAhead Limited//DTD Direct Web Remoting
2.0//EN" "http://getahead.org/dwr/dwr20.dtd">

<dwr>
 <init>

 <creator id="cr1" class="org.mysource.CreatorClass1"/>
 <converter id="co1" class="org.mysource.ConverterClass1"/>
 </init>
 <allow>

 <create creator="new" javascript="ServerClass"/>
 <convert converter="co1" match="org.mysource.MyDataClass"/>
 </allow>
</dwr>

The most important entries are within the allow element. Without the allow
element, DWR is of no use since nothing is allowed. Entries within the init element
are rarely used except when extending DWR. In addition to init and allow
elements there can be a signatures element that holds method signatures and is
used when our remoted objects have Collection parameters (such as List). When
a method has a List parameter, DWR has no way of knowing what types List
holds. That is why signatures are used to tell DWR that the List holds, for example,
String objects.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[33]

Using Creator and Its Attributes
Within the allow element there are creators and converters. Creators are used to
create JavaScript objects that are used in the browser. The following is the structure
of the create element:

<create creator="..." javascript="..." scope="...">
 <param name="..." value="..."/>
 <auth method="..." role="..."/>
 <exclude method="..."/>
 <include method="..."/>
</create>

Only creator and javascript attributes are mandatory, while others are optional.

The creator attribute specifies how DWR creates a Java object. It can be:

new—This uses the Java objects new operator. This is very commonly used.
none—It does not create any object. This assumes that the object has already
been created by someone else or the method to be called is static.
scripted—It uses a scripting language to create objects. It is useful for
example when a remoted Java object is singleton. This requires BSF
(Bean Scripting Framework from Apache http://jakarta.apache.org/
bsf/) and any scripting language package, such as BeanShell, in the web
application classpath.
spring—It uses Spring Framework to give access to a Java object.
jsf—It enables JSF managed beans to be remoted.
struts—It enables Struts FormBeans as remoted objects.
pageflow—It gives access to Weblogic/Beehive PageFlow objects.

The javascript attribute gives the Java object a name that is used in the browser side.

The scope element is used to specify where a bean is available. For example, scope
can have values: application, request, session, page, and script. The first four
are the same as in servlet development and script allows a bean to be tied to an ID
in a page rather than an HTTP session cookie. The default scope is page.

The param element is used to configure the chosen creator. For example, new creator
has a parameter called class, and its value is a fully qualified class name of the Java
class we want to remote. The default constructor is used to create Java objects with
the new creator.

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[34]

The auth element is used to specify the J2EE role level that is used for access
control checking.

Two elements include and exclude are used to limit access to class methods. One
of the elements may be used to limit access. When the include element is used DWR
assumes that all other methods are restricted except those specified in the include
element. The exclude element on the other hand has the opposite effect and gives
access to all methods except to those specified in the exclude element. By default,
all methods are accessible in the remoted object. For example, the following code
snippet has two remoted objects, JavaObjectOne and JavaObjectTwo, where the
first object allows access to only one method, and the second allows access to all
methods except the one specified in the exclude element.

<create creator="new" javascript="accessorOne">
 <param name="class" value="my.JavaObjectOne"/>
 <include method="getOptionElementsForUser"/>
</create>

<create creator="new" javascript="accessorTwo" scope="session">
 <param name="class" value="my.JavaObjectTwo"/>
 <exclude method="setInternalVariable"/>
</create>

Using the Converter Element
The converter element is used to specify how method parameters are
converted from JavaScript to Java. Converters are not needed if parameters are
based on Java primitive types, strings, java.util.Date or arrays/collections of
mentioned objects.

Converters are needed for custom JavaBean and other parameters. For example, for
a JavaBean such as the following, we would have to specify a Bean converter.

package my.package;
public class StockInfo
{
 public void setClosingPrice(double price) { ... }
 public void setVolume(long volume) { ... }
}

The Bean converter is provided by DWR, and it converts JavaBean objects to
JavaScript associative arrays and vice-versa. Entry in dwr.xml would be:

<convert converter="bean" match="my.package.StockInfo"/>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[35]

Converters need to be specified manually because it is necessary for DWR to know
that it is allowed to touch our code. This feature is good for security since it leaves
us the responsibility of giving permissions to certain actions rather than DWR doing
something by default that we don't want.

In addition to the Bean converter, there are a few other converters. There is an
Object converter, which works directly on object members instead of getters and
setters like the Bean converter. Then there are converters for arrays, Java Collections,
DOM objects, and enums. Custom converters may also be developed, but it is a rare
situation when a custom converter is needed.

Working with Annotations
Annotations were introduced in Java 5, and DWR supports configuration by
annotations instead of (or in conjunction with) XML configuration. In order to use
annotations, the DWR servlet entry in the web.xml file must have all the annotated
classes specified in the classes init parameter as in the following example.

<init-param>
 <param-name>classes</param-name>
 <param-value>
 my.class.StockInfo,
 my.class.OtherInfo
 </param-value>
</init-param>

The following is a sample of an annotated class for DWR.

@RemoteProxy(name="market")
public class StockMarket
{
 @RemoteMethod
 public double getLatestPrice(String symbol) { ... }
}

The annotation @RemoteProxy makes a class available for remoting, and the name
of its attribute specifies the JavaScript name for the object. All methods that we need
for remote access must have the @RemoteMethod annotation. Conversions to make
custom bean classes are available through @DataTransferObject and
@RemoteProperty annotations.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[36]

In comparison, the above StockInfo class would have the following entry in the
dwr.xml configuration.

<create creator="new" javascript="market">
 <param name="class" value="my.class.StockMarket"/>
 <include method="getLatestPrice"/>
</create>

Using Fluent Configuration with DWR
Fluent configuration style was described by Martin Fowler (http://www.
martinfowler.com/bliki/FluentInterface.html) a few years ago. The word
"Fluent" comes from the ability to "fluently" describe the configuration. Refer to the
following example (from the DWR website):

public void configure() {
 withConverterType("dog", "com.yourcompany.beans.Dog");
 withCreatorType("ejb", "com.yourcompany.dwr.creator.EJBCreator");
 withCreator("new", "ApartmentDAO")
 .addParam("scope", "session")
 .addParam("class", "com.yourcompany.dao.ApartmentDAO")
 .exclude("saveApartment")
 .withAuth("method", "role");
 withCreator("struts", "DogDAO")
 .addParam("class", "com.yourcompany.dao.DogDAO")
 .include("getDog")
 .include("getColor");
 withConverter("dog", "*.Dog")
 .addParam("name", "value");
 withSignature()
 .addLine("import java.util.List;")
 .addLine("import com.example.Check;")
 .addLine("Check.setLotteryResults(List nos);");

Fluent configuration is enabled by programmatic configuration, and in order to
use it with DWR, a customConfigurator init parameter in the web.xml file must
point to a class that subclasses the abstract org.directwebremoting.fluent.
FluentConfigurator class and its configure method.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[37]

Setting up a Development Environment
development environment that we use in this book is:

1.	 Java SE 1.5.x
2.	 DWR 2.0.2
3.	 Eclipse IDE
4.	 Apache Geronimo 2.x J2EE application server
5.	 Firefox browser 2.0.0.x

Development Environment with DWR and
Firefox
A development environment for a DWR book is nothing without DWR itself. DWR
comes as a JAR file that we add to our web application later. The dwr.jar
JAR file is less than 500KB in size and it is available at the DWR website,
http://directwebremoting.org/dwr/download.

The Firefox download site is http://www.mozilla.com.

Development Environment with Eclipse
The Eclipse IDE that we use is the recent Eclipse Ganymede release. Eclipse IDE
comes in many packages and the one that we use here is Eclipse IDE for Java EE
Developers. This package includes tools for developing JEE and web applications,
and it has all the prerequisites of the Geronimo Eclipse Plugin that we install here.

The easiest way to install the Geronimo Eclipse Plugin is to let Eclipse WTP (Web
Tools Platform) to do the download and installation.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[38]

After starting Eclipse, we specify a new server runtime for Geronimo. Go to
New | Other and the Select a wizard dialog opens.

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[39]

On clicking Next, the Define a New Server screen opens. •

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[40]

We set up Geronimo server for Eclipse by clicking on Download additional
server adapters. Then, the Install New Adapter dialog box opens. We select
Geronimo Core Feature and click on Next to continue to accept the license
screen. After we accept the license, Eclipse downloads and installs the plugin.

We repeat the previous step for Geronimo v2.x Server Adapter.

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[41]

Now, the development environment is ready for coding. We have an IDE and a test
server, and that's about all we really need.

Apache Geronimo
The Apache Geronimo website is http://geronimo.apache.org, and there are
downloads for standalone application servers. Even though we have just installed a
development environment that includes the Geronimo server runtime, we also need
to install standalone Geronimo.

The installation of Geronimo couldn't be simpler! Just download the Geronimo
distribution ZIP file (we use the one with Tomcat) and unzip it to some directory.
Geronimo is started using the startup script in the bin directory and stopped using
the shutdown script.

Testing and Debugging
DWR applications are normal web applications, and so they can be tested and
debugged using normal debug tools available in the Eclipse IDE. The Web has
information about debugging in Eclipse, for example, the article on the IBM
developerWorks site (http://www.ibm.com/developerworks/opensource/
library/os-ecbug/). Several books about Eclipse and its features are also available.

Another method for debugging is logging. It may sound "old-fashioned", but here is
a quote from the book The Practice of Programming by Brian W. Kernighan and Rob
Pike (this quote is found also from Apache's Log4J website):

As personal choice, we tend not to use debuggers beyond getting a stack trace or
the value of a variable or two. One reason is that it is easy to get lost in details
of complicated data structures and control flow; we find stepping through a
program less productive than thinking harder and adding output statements and
self-checking code at critical places. Clicking over statements takes longer than
scanning the output of judiciously-placed displays. It takes less time to decide
where to put print statements than to single-step to the critical section of code, even
assuming we know where that is. More important, debugging statements stay with
the program; debugging sessions are transient.

And that basically explains it all.

Testing is done using the Geronimo Server Adapter that we installed in the previous
section. We will deploy and test our first DWR sample using the server adapter in
the next chapter.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[42]

We can also debug in Firefox. Especially if and when we develop our
JavaScript functions, it would be good to know that we can also debug
JavaScript on the browser. There is a free and open-source tool called Firebug
(http://www.getfirebug.com/) that provides several extremely useful features
such as inspection of HTML (refer to the following screenshot where the page logo is
highlighted), editing JavaScript on a live page, editing CSS, and so on.

It is also possible to debug without Firebug by using JavaScript alert boxes and
modification of the browser status line. But Firebug and Firefox make our web
development so much easier that it would be cumbersome to work otherwise.

Error Handling
DWR has a concept called handlers for error handling and exception handling on the
browser side. Four different handlers have been specified by DWR:

errorHandler is used when DWR knows for certain that something is broken,
for example, when the application server has been stopped.
warningHandler is used by DWR when something is wrong, but DWR
cannot automatically define the severity of that "something". This is useful
during development while debugging an application.

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[43]

exceptionHandler is used to catch exceptions that are thrown by the
server side code. Since we are likely to want to know about exceptions,
errorHandler is used if no exceptionHandler is defined.
textHtmlHandler handles non-JavaScript responses. Usually, this happens
when the server session has expired, and the server presents a login screen or
info screen about the expired session.

Handlers are set in JavaScript code on the client using a function in the
engine.js package:

dwr.engine.setErrorHandler(handlerFunction);

Exceptions are handled by exceptionHandler or errorHandler. By default, when
an exception happens, DWR does not include any information about the exception in
the error message. For example, an exception object may look like this:

{
 javaClassName:'java.lang.Throwable',
 message:'Error'
}

"Error" says nothing about what might be wrong, except that something is clearly
wrong. More detailed exceptions are enabled by adding the following line to dwr.xml.

<convert match="java.lang.Exception" converter="exception"/>

The Exception converter enables understandable error messages:

{
 javaClassName:'org.xml.sax.SAXParseException',
 lineNumber:42,
 publicId:'somePublicId',
 message:'Missing >'
}

Further, enabling stacktraces using the line <convert match="java.lang.
StackTraceElement" converter="bean"/> in dwr.xml allows easier development
work where we can see errors as they occur and go directly to the debugging mode.

Session expiry is handled by textHtmlHandler, and it is used like this:

dwr.engine.setTextHtmlHandler(function() {
 window.alert("Your session has expired, please login again.");
 document.location = ‘/mycontext/login';
});

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[44]

When DWR receives a response from the server that includes unexpected HTML, the
cause for which is very likely because the session has expired, and the application
server returns information page about the session expiry or the actual login page, the
Handler function receives an object that contains HTTP status code, response text,
and content MIME type from DWR.

Packaging and Deployment
In this section, we package and deploy a simple web application to the standalone
Geronimo application server. The Geronimo console and command-line tools are
used here to deploy the application, but in the further chapters, we use the Geronimo
test environment within the Eclipse IDE.

This simple HelloWorldServlet has been created as a sample for packaging
 and deployment.

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[45]

Packaging is easy because of built-in Eclipse tools.
We select the project name and right-click to get the context menu; under the
Export menu item, we find the WAR option.

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[46]

After we click the WAR option, a WAR Export dialog opens where
we choose the Destination and a name for the WAR file: d:\temp\
HelloWorldServlet.war.

For the deployment, we have installed a standalone Geronimo application
server. Run Geronimo using the startup script file (and remember to set the
JAVA_HOME environment variable). The following screenshot displays typical
output when starting the Geronimo server using the startup script.

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[47]

Deployment Using the Administration Console
Deployment can be done using the Geronimo Administration Console.

1.	 After starting the Geronimo server, open Geronimo web console. The default
location is http://127.0.0.1:8080/console. The default administrator
user name is system, and the password is manager. After login to the system,
we will see the Geronimo Administration Console. On the left side, there
is a menu for administrative tasks, and on the right side there are links to
common tasks, documentation, and other resources.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[48]

2.	 Installation is a straightforward task. We select Deploy Applications present
in the Common Console Actions box or Deploy New Application present
on the left in Console Navigation. The following screen opens where we
specify the HelloWorldServlet.war file.

3.	 After pressing Install, Geronimo displays the status of the operation.

Now that the application has been installed, we can test it. There are two things we
need to know: context path and servlet mapping. We specified the servlet mapping
during development, and we get it from the web.xml file; it is HelloWorld. We get
the context path from Geronimo.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[49]

4.	 The Web App WAR's link in the Console Navigation opens an Installed
Web Applications screen, and there we see a list of applications and in the
URL column there is the context path.

5.	 Now that we have context path and servlet mapping, we open our servlet in
a browser: http://127.0.0.1:8080/HelloWorldServlet/HelloWorld and
we are able to see the world famous message.

Uninstalling, stopping, and restarting of applications are done via the Installed Web
Applications screen.

The Administration console is very useful especially when we start to perform
development work or while occasionally testing some applications in Geronimo.
However, during development, it is better to use a command-line-based deployer tool.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Started

[50]

Deployment Using the Deployer Tool
The Deployer tool is a command-line tool that is used primarily to install and
uninstall applications in Geronimo. Tool is located in the bin directory and it is either
deploy.bat or deploy.sh depending on the operating system.

The tool syntax is:

deploy.[bat|sh] [general options] command [command options]

To install a new WAR file, we use the deploy command:

deploy -user system -password manager deploy d:\temp\
HelloWorldServlet.war

We get the following confirmation screen about successful installation:

Note that we get more information when we install using the command-line tool
than when installing it by using the administration console. We see the module name
and also the context root from the prompt. The module name is important because
that is used to uninstall the application. The uninstall command is:

deploy -user system -password manager undeploy sample/
HelloWorldServlet/1.0/car

Another important command is list modules, which shows all the installed
modules currently running in the application server. All other commands for the
deploy command are found in the Geronimo documentation.

The deployer tool is probably the most useful way to do deployment. It allows
automation of the deployment process, and we can minimize manual errors. Not
to mention, it is much, much faster to let the script do the deployment rather than
manually installing using the administration console.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 3

[51]

Deployment Using Hot Deployment
Hot deployment is the easiest method of installation. Here, we just copy our sample
WAR file to Geronimo's deploy directory, and Geronimo does the rest. We can verify
the installation using the list modules command of the deployer tool.

Uninstallation is also straightforward. We delete the WAR file from the deploy
directory and Geronimo will uninstall the application.

Hot deployment is useful for quick and possibly dirty installations of applications. In
real life, it may probably be better to use the deployer command-line tool because of
scripting, and the automation that results from scripting the deployment process.

Summary
Now, we have set up our development environment and also taken a look at
supported environments, testing, debugging, packaging, and deployment. We have
also covered configuration of DWR. So everything is in good shape to start working
with DWR.

The rest of the book will concentrate on the real code, and we will see DWR features
that were introduced in this and the earlier chapters.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic
Elements

In this chapter, we will get to the actual hands-on work. We will develop samples
based on DWR, which show how to dynamically change the common user interface
elements such as tables and lists as well as field completion. We also make a dynamic
user interface skeleton for our samples that will hold all the samples in this book.

The section on dynamic user interfaces shows how to get started with a DWR
application, and it presents a user interface skeleton that will be used to hold the
tables and lists sample, and the field completion (aka. autosuggest/autocomplete)
sample. Samples in the following chapter will use the same user interface skeleton,
with the exception of the sample applications in Chapter 7.

The following are the sections in this chapter:

Creating a Dynamic User Interface—starts with creating a web project and a
basis for samples mentioned in this chapter
Implementing Tables and Lists—shows us how to use DWR with them
Implementing Field Completion—has a sample for typical field completion

Creating a Dynamic User Interface
The idea behind a dynamic user interface is to have a common "framework" for
all samples. We will create a new web application and then add new features to
the application as we go on. The user interface will look something like the
following figure:

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[54]

DWR samples, dynamic user interface

Tables
and lists

Field
completion Forms

Navigation
tree

and other
samples...

Content area changes dynamically
based on selected tab.
When "Tables and lists" tab is selected
this content area shows "tables and lists"
sample, "field completion" shows it's sample
and so on.

The user interface has three main areas: the title/logo that is static, the tabs that are
dynamic, and the content area that shows the actual content.

The idea behind this implementation is to use DWR functionality to generate tabs
and to get content for the tab pages. The tabbed user interface is created using a
CSS template from the Dynamic Drive CSS Library (http://dynamicdrive.com/
style/csslibrary/item/css-tabs-menu). Tabs are read from a properties file, so
it is possible to dynamically add new tabs to the web page. The following screenshot
shows the user interface.

The following sequence diagram shows the application flow from the logical
perspective. Because of the built-in DWR features we don't need to worry very much
about how asynchronous AJAX "stuff" works. This is, of course, a Good Thing.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[55]

HTML
onLoad()

loadMenuItems()

HorizontalMenu Java class
getMenuItems()

setMenuItems()

Now we will develop the application using the Eclipse IDE and the Geronimo test
environment that we set up in the previous chapter.

Creating a New Web Project
1.	 First, we will create a new web project. Using the Eclipse IDE we do the

following: select the menu File | New | Dynamic Web Project.
2.	 This opens the New Dynamic Web Project dialog; enter the project name

DWREasyAjax and click Next, and accept the defaults on all the pages till
the last page, where Geronimo Deployment Plan is created as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[56]

3.	 Enter easyajax as Group Id and DWREasyAjax as Artifact Id. On clicking
Finish, Eclipse creates a new web project. The following screen shot shows
the generated project and the directory hierarchy.

4.	 Before starting to do anything else, we need to copy DWR to our web
application. All DWR functionality is present in the dwr.jar file, and we just
copy that to the WEB-INF | lib directory.

A couple of files are noteworthy: web.xml and geronimo-web.xml. The latter is
generated for the Geronimo application server, and we can leave it as it is. Eclipse
has an editor to show the contents of geronimo-web.xml when we double-click
the file.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[57]

Configuring the Web Application
The context root is worth noting (visible in the screenshot above). We will need it
when we test the application.

The other XML file, web.xml, is very important as we all know. This XML will
hold the DWR servlet definition and other possible initialization parameters. The
following code shows the full contents of the web.xml file that we will use:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:web="http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.
sun.com/xml/ns/javaee/web-app_2_5.xsd"
 id="WebApp_ID" version="2.5">
 <display-name>DWREasyAjax</display-name>
 <servlet>
 <display-name>DWR Servlet</display-name>
 <servlet-name>dwr-invoker</servlet-name>
 <servlet-class>
 org.directwebremoting.servlet.DwrServlet

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[58]

 </servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>dwr-invoker</servlet-name>
 <url-pattern>/dwr/*</url-pattern>
 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>default.html</welcome-file>
 <welcome-file>default.htm</welcome-file>
 <welcome-file>default.jsp</welcome-file>
 </welcome-file-list>
</web-app>

We have already seen the servlet definition in Chapter 3, in the section on
configuration. We use the same debug-init parameter here. Servlet mapping is the
commonly used /dwr/*.

We remember that DWR cannot function without the dwr.xml configuration file. So
we need to create the configuration file. We use Eclipse to create a new XML file in
the WEB-INF directory. The following is required for the user interface skeleton. It
already includes the allow-element for our DWR based menu.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dwr PUBLIC
 "-//GetAhead Limited//DTD Direct Web Remoting 2.0//EN"
 "http://getahead.org/dwr/dwr20.dtd">
<dwr>
 <allow>
 <create creator="new" javascript="HorizontalMenu">
 <param name="class" value="samples.HorizontalMenu" />
 </create>
 </allow>
</dwr>

In the allow element, there is a creator for the horizontal menu Java class that we
are going to implement here. The creator that we use here is the new creator, which
means that DWR will use an empty constructor to create Java objects for clients. The
parameter named class holds the fully qualified class name.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[59]

Developing the Web Application
Since we have already defined the name of the Java class that will be used for
creating the menu, the next thing we do is implement it. The idea behind the
HorizontalMenu class is that it is used to read a properties file that holds the menus
that are going to be on the web page.

We add properties to a file named dwrapplication.properties, and we create it in
the same samples-package as the HorizontalMenu-class. The properties file for the
menu items is as follows:

menu.1=Tables and lists,TablesAndLists
menu.2=Field completion,FieldCompletion

The syntax for the menu property is that it contains two elements separated by a comma.
The first element is the name of the menu item. This is visible to user. The second is the
name of HTML template file that will hold the page content of the menu item.

The class contains just one method, which is used from JavaScript and via DWR to
retrieve the menu items. The full class implementation is shown here:

package samples;

import java.io.IOException;
import java.io.InputStream;
import java.util.List;
import java.util.Properties;
import java.util.Vector;

public class HorizontalMenu {
 public HorizontalMenu() {
 }

 public List<String> getMenuItems() throws IOException {
 List<String> menuItems = new Vector<String>();
 InputStream is = this.getClass().getClassLoader().
getResourceAsStream(
 "samples/dwrapplication.properties");
 Properties appProps = new Properties();
 appProps.load(is);
 is.close();
 for (int menuCount = 1; true; menuCount++) {
 String menuItem = appProps.getProperty("menu." + menuCount);
 if (menuItem == null) {
 break;
 }
 menuItems.add(menuItem);
 }
 return menuItems;
 }
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[60]

The implementation is straightforward. The getMenuItems() method loads properties
using the ClassLoader.getResourceAsStream() method, which searches the class
path for the specified resource. Then, after loading properties, a for loop is used
to loop through menu items and then a List of String-objects is returned to
the client. The client is the JavaScript callback function that we will see later. DWR
automatically converts the List of String objects to JavaScript arrays, so we don't
have to worry about that.

Testing the Web Application
We haven't completed any client-side code now, but let's test the code anyway.
Testing uses the Geronimo test environment.

1.	 The Project context menu has the Run As menu that we use to test the
application as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[61]

2.	 Run on Server opens a wizard to define a new server runtime. The following
screenshot shows that the Geronimo test environment has already been set
up, and we just click Finish to run the application. If the test environment is
not set up, we can manually define a new one in this dialog:

3.	 After we click Finish, Eclipse starts the Geronimo test environment and our
application with it. When the server starts, the Console tab in Eclipse informs
us that it's been started.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[62]

The Servers tab shows that the server is started and all the code has been
synchronized, that is, the code is the most recent (Synchronization happens
whenever we save changes on some deployed file.) The Servers tab also has a list of
deployed applications under the server. Just the one application that we are testing
here is visible in the Servers tab.

Now comes the interesting part—what are we going to test if we haven't really
implemented anything? If we take a look at the web.xml file, we will find that we
have defined one initialization parameter. The Debug parameter is true, which
means that DWR generates test pages for our remoted Java classes. We just point the
browser (Firefox in our case) to the URL http://127.0.0.1:8080/DWREasyAjax/
dwr and the following page opens up:

This page will show a list of all the classes that we allow to be remoted. When we
click the class name, a test page opens as in the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[63]

This is an interesting page. We see all the allowed methods, in this case, all public
class methods since we didn't specifically include or exclude anything. The most
important ones are the script elements, which we need to include in our HTML
pages. DWR does not automatically know what we want in our web pages,
so we must add the script includes in each page where we are using DWR and a
remoted functionality.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[64]

Then there is the possibility of testing remoted methods. When we test our own
method, getMenuItems(), we see a response in an alert box:

The array in the alert box in the screenshot is the JavaScript array that DWR returns
from our method.

Developing Web Pages
The next step is to add the web pages. Note that we can leave the test environment
running. Whenever we change the application code, it is automatically published
to test the environment, so we don't need to stop and start the server each time we
make some changes and want to test the application.

The CSS style sheet is from the Dynamic Drive CSS Library. The file is named
styles.css, and it is in the WebContent directory in Eclipse IDE. The CSS code
is as shown:

/*URL: http://www.dynamicdrive.com/style/ */

.basictab{
padding: 3px 0;
margin-left: 0;
font: bold 12px Verdana;
border-bottom: 1px solid gray;
list-style-type: none;
text-align: left; /*set to left, center, or right to align the menu as
desired*/
}

.basictab li{
display: inline;
margin: 0;
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[65]

.basictab li a{
text-decoration: none;
padding: 3px 7px;
margin-right: 3px;
border: 1px solid gray;
border-bottom: none;
background-color: #f6ffd5;
color: #2d2b2b;
}

.basictab li a:visited{
color: #2d2b2b;
}

.basictab li a:hover{
background-color: #DBFF6C;
color: black;
}

.basictab li a:active{
color: black;
}

.basictab li.selected a{ /*selected tab effect*/
position: relative;
top: 1px;
padding-top: 4px;
background-color: #DBFF6C;
color: black;

}

This CSS is shown for the sake of completion, and we will not go into details of CSS
style sheets. It is sufficient to say that CSS provides an excellent method to create
websites with good presentation.

The next step is the actual web page. We create an index.jsp page, in the
WebContent directory, which will have the menu and also the JavaScript functions
for our samples. It should be noted that although all JavaScript code is added to
a single JSP page here in this sample, in "real" projects it would probably be more
useful to create a separate file for JavaScript functions and include the JavaScript
file in the HTML/JSP page using a code snippet such as this:
<script type="text/javascript" src="myjavascriptcode/
HorizontalMenu.js"/>.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[66]

We will add JavaScript functions later for each sample. The following is the JSP code
that shows the menu using the remoted HorizontalMenu class.

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-
 1">
<link href="styles.css" rel="stylesheet" type="text/css"/>
<script type='text/javascript' src='/DWREasyAjax/dwr/engine.js'></
script>
<script type='text/javascript' src='/DWREasyAjax/dwr/util.js'></
script>
<script type='text/javascript' src='/DWREasyAjax/dwr/interface/
HorizontalMenu.js'></script>
<title>DWR samples</title>
<script type="text/javascript">

function loadMenuItems()
{
 HorizontalMenu.getMenuItems(setMenuItems);
}

function getContent(contentId)
{
 AppContent.getContent(contentId,setContent);
}

function menuItemFormatter(item)
{
 elements=item.split(',');
 return '<a href="#" onclick="getContent(\''+elements[1]+'\
');return false;">'+elements[0]+'';
}

function setMenuItems(menuItems)
{
 menu=dwr.util.byId("dwrMenu");
 menuItemsHtml='';
 for(var i=0;i<menuItems.length;i++)
 {
 menuItemsHtml=menuItemsHtml+menuItemFormatter(menuItems[i]);
 }
 menu.innerHTML=menuItemsHtml;
}

function setContent(htmlArray)
{

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[67]

 var contentFunctions='';
 var scriptToBeEvaled='';
 var contentHtml='';
 for(var i=0;i<htmlArray.length;i++)
 {
 var html=htmlArray[i];
 if(html.toLowerCase().indexOf('<script')>-1)
 {
 if(html.indexOf('TO BE EVALED')>-1)
 {
 scriptToBeEvaled=html.substring(html.indexOf('>')+1,
 html.indexOf('</'));
 }
 else
 {
 eval(html.substring(html.indexOf('>')+1,html.indexOf('</')));
 contentFunctions+=html;
 }
 }
 else
 {
 contentHtml+=html;
 }
 }

 contentScriptArea=dwr.util.byId("contentAreaFunctions");
 contentScriptArea.innerHTML=contentFunctions;
 contentArea=dwr.util.byId("contentArea");
 contentArea.innerHTML=contentHtml;
 if(scriptToBeEvaled!='')
 {
 eval(scriptToBeEvaled);
 }
}
</script>
</head>
<body onload="loadMenuItems()">
<h1>DWR Easy Java Ajax Applications</h1>
<ul class="basictab" id="dwrMenu">

<div id="contentAreaFunctions">
</div>
<div id="contentArea">
</div>
</body>
</html>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[68]

This JSP is our user interface. The HTML is just normal HTML with a head element
and a body element. The head includes reference to a style sheet and to DWR
JavaScript files, engine.js, util.js, and our own HorizontalMenu.js. The util.
js file is optional, but as it contains very useful functions, it could be included in all
the web pages where we use the functions in util.js.

The body element has a contentArea place holder for the content pages just
below the menu. It also contains the content area for JavaScript functions for a
particular content.The body element onload-event executes the loadMenuItems()
function when the page is loaded. The loadMenuItems()function calls the remoted
method of the HorizontalMenu Java class. The parameter of the HorizontalMenu.
getMenuItems()JavaScript function is the callback function that is called by DWR
when the Java method has been executed and it returns menu items.

The setMenuItems()function is a callback function for the loadMenuItems()
function mentioned in the previous paragraph. While loading menu items, the
Horizontal.getMenuItems()remoted method returns menu items as a List of
Strings as a parameter to the setMenuItems() function. The menu items are
formatted using the menuItemFormatter() helper function.

The menuItemFormatter()function creates li elements of menu texts. Menus are
formatted as links, (a href) and they have an onclick event that has a function call to
the getContent-function, which in turn calls the AppContent.getContent() function.

The AppContent is a remoted Java class, which we haven't implemented yet, and
its purpose is to read the HTML from a file based on the menu item that the user
clicked. Implementation of AppContent and the content pages are described in the
next section.

The setContent() function sets the HTML content to the content area and also
evaluates JavaScript options that are within the content to be inserted in the content
area (this is not used very much, but it is there for those who need it).

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[69]

Our dynamic user interface looks like this:

Note the Firebug window at the bottom of the browser screen. The Firebug console
in the screenshot shows one POST request to our HorizontalMenu.getMenuItems()
method. Other Firebug features are extremely useful during development work, and
we find it useful that Firebug has been enabled throughout the development work.

Callback Functions
We saw our first callback function as a parameter in the HorizontalMenu.getMen
uItems(setMenuItems) function, and since callbacks are an important concept in
DWR, it would be good to discuss a little more about them now that we have seen
their first usage.

Callbacks are used to operate on the data that was returned from a remoted method.
As DWR and AJAX are asynchronous, typical return values in RPCs (Remote
Procedure Calls), as in Java calls, do not work. DWR hides the details of calling the
callback functions and handles everything internally from the moment we return a
value from the remoted Java method to receiving the returned value to the
callback function.

Two methods are recommended while using callback functions.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[70]

We have already seen the first method in the HorizontalMenu.getMenuItems
(setMenuItems) function call. Remember that there are no parameters in the
getMenuItems()Java method, but in the JavaScript call, we added the callback
function name at the end of the parameter list. If the Java method has parameters,
then the JavaScript call is similar to CountryDB.getCountries(selectedLett
ers,setCountryRows), where selectedLetters is the input parameter for the
Java method and setCountryRows is the name of the callback function (we see the
implementation later on).

The second method to use callbacks is a meta-data object in the remote JavaScript
call. An example (a full implementation is shown later in this chapter) is shown here:

CountryDB.saveCountryNotes(ccode,newNotes, {
 callback:function(newNotes)
 {
 //function body here
 }
});

Here, the function is anonymous and its implementation is included in the JavaScript
call to the remoted Java method. One advantage here is that it is easy to read the
code, and the the code is executed immediately after we get the return value from the
Java method. The other advantage is that we can add extra options to the call.

Extra options include timeout and error handler as shown in the following example:

CountryDB.saveCountryNotes(ccode,newNotes, {
 callback:function(newNotes)
 {
 //function body here
},
timeout:10000,
errorHandler:function(errorMsg) { alert(errorMsg);}
});

It is also possible to add a callback function to those Java methods that do not return
a value. Adding a callback to methods with no return values would be useful in
getting a notification when a remote call has been completed.

Afterword
Our first sample is ready, and it is also the basis for the following samples. We also
looked at how applications are tested in the Eclipse environment.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[71]

Using DWR, we can look at JavaScript code on the browser and Java code on the
server as one. It may take a while to get used to it, but it will change the way we
develop web applications. Logically, there is no longer a client and a server but just
a single run time platform that happens to be physically separate. But in practice, of
course, applications using DWR, JavaScript on the client and Java in the server, are
using the typical client-server interaction. This should be remembered when writing
applications in the logically single run-time platform.

Implementing Tables and Lists
The first actual sample is very common in applications: tables and lists. In this
sample, the table is populated using the DWR utility functions, and a remoted Java
class. The sample code also shows how DWR is used to do inline table editing. When
a table cell is double-clicked, an edit box opens, and it is used to save new cell data.

The sample will have country data in a CSV file: country Name, Long Name,
two-letter Code, Capital, and user-defined Notes. The user interface for the table
sample appears as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[72]

Server Code for Tables and Lists
The first thing to do is to get the country data. Country data is in a CSV file (named
countries.csv and located in the samples Java package). The following is an
excerpt of the content of the CSV file (data is from http://www.state.gov).

Short-form name,Long-form name,FIPS Code,Capital

Afghanistan,Islamic Republic of Afghanistan,AF,Kabul

Albania,Republic of Albania,AL,Tirana

Algeria,People's Democratic Republic of Algeria,AG,Algiers

Andorra,Principality of Andorra,AN,Andorra la Vella

Angola,Republic of Angola,AO,Luanda

Antigua and Barbuda,(no long-form name),AC,Saint John's

Argentina,Argentine Republic,AR,Buenos Aires

Armenia,Republic of Armenia,AM,Yerevan

…

The CSV file is read each time a client requests country data. Although this is not
very efficient, it is good enough here. Other alternatives include an in-memory
cache or a real database such as Apache Derby or IBM DB2. As an example, we have
created a CountryDB class that is used to read and write the country CSV. We also
have another class, DBUtils, which has some helper methods. The DBUtils code is
as follows:

package samples;

import java.io.BufferedReader;
import java.io.File;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.io.InputStream;

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[73]

import java.io.InputStreamReader;
import java.io.PrintWriter;
import java.util.List;
import java.util.Vector;

public class DBUtils {

 private String fileName=null;
 public void initFileDB(String fileName)
 {
 this.fileName=fileName;
 // copy csv file to bin-directory, for easy
 // file access
 File countriesFile = new File(fileName);
 if (!countriesFile.exists()) {
 try {
 List<String> countries = getCSVStrings(null);
 PrintWriter pw;
 pw = new PrintWriter(new FileWriter(countriesFile));
 for (String country : countries) {
 pw.println(country);
 }
 pw.close();
 } catch (IOException e) {
 e.printStackTrace();
 }
 }

 }

 protected List<String> getCSVStrings(String letter) {
 List<String> csvData = new Vector<String>();
 try {
 File csvFile = new File(fileName);
 BufferedReader br = null;
 if(csvFile.exists())
 {
 br=new BufferedReader(new FileReader(csvFile));
 }
 else
 {
 InputStream is = this.getClass().getClassLoader()
 .getResourceAsStream("samples/"+fileName);
 br=new BufferedReader(new InputStreamReader(is));
 br.readLine();
 }

 for (String line = br.readLine(); line != null; line =
br.readLine()) {
 if (letter == null

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[74]

 || (letter != null && line.startsWith(letter))) {
 csvData.add(line);
 }
 }
 br.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 return csvData;
 }
}

The DBUtils class is a straightforward utility class that returns CSV content as a
List of Strings. It also copies the original CSV file to the runtime directory of any
application server we might be running. This may not be the best practice, but it
makes it easier to manipulate the CSV file, and we always have the original CSV file
untouched if and when we need to go back to the original version.

The code for CountryDB is given here:

package samples;

import java.io.FileWriter;
import java.io.IOException;
import java.io.PrintWriter;
import java.util.Arrays;
import java.util.List;
import java.util.Vector;

public class CountryDB {

 private DBUtils dbUtils = new DBUtils();
 private String fileName = "countries.csv";

 public CountryDB() {
 	dbUtils.initFileDB(fileName);
 }

 public String[] getCountryData(String ccode) {
 List<String> countries = dbUtils.getCSVStrings(null);
 for (String country : countries) {
 if (country.indexOf("," + ccode + ",") > -1) {
 return country.split(",");
 }
 }
 return new String[0];
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[75]

 public List<List<String>> getCountries(String startLetter) {

 List<List<String>> allCountryData = new Vector<List<String>>();
 List<String> countryData = dbUtils.getCSVStrings(startLetter);
 for (String country : countryData) {
 String[] data = country.split(",");
 allCountryData.add(Arrays.asList(data));
 }
 return allCountryData;
 }

 public String[] saveCountryNotes(String ccode, String notes) {
 List<String> countries = dbUtils.getCSVStrings(null);
 try {
 PrintWriter pw = new PrintWriter(new FileWriter(fileName));
 for (String country : countries) {
 if (country.indexOf("," + ccode + ",") > -1) {
 if (country.split(",").length == 4) {
 // no existing notes
 country = country + "," + notes;
 } else {
 if (notes.length() == 0) {
 country = country.substring(0, country
 .lastIndexOf(","));
 } else {
 country = country.substring(0, country
 .lastIndexOf(","))
 + "," + notes;
 }

 }
 }
 pw.println(country);
 }
 pw.close();
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 String[] rv = new String[2];
 rv[0] = ccode;
 rv[1] = notes;
 return rv;
 }
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[76]

The CountryDB class is a remoted class. The getCountryData() method
returns country data as an array of strings based on the country code. The
getCountries()method returns all the countries that start with the specified
parameter, and saveCountryNotes() saves user added notes to the country
specified by the country code.

In order to use CountryDB, the following script element must be added to the
index.jsp file together with other JavaScript elements.

<script type='text/javascript' src='/DWREasyAjax/dwr/interface/
CountryDB.js'></script>

There is one other Java class that we need to create and remote. That is the
AppContent class that was already present in the JavaScript functions of the home
page. The AppContent class is responsible for reading the content of the HTML file
and parses the possible JavaScript function out of it, so it can become usable by the
existing JavaScript functions in index.jsp file.

package samples;

import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.util.List;
import java.util.Vector;
public class AppContent {

 public AppContent()
 {

 }

 public List<String> getContent(String contentId)
 {
 InputStream is = this.getClass().getClassLoader().
getResourceAsStream(
 "samples/"+contentId+".html");
 String content=streamToString(is);
 List<String> contentList=new Vector<String>();
 //Javascript within script tag will be extracted and sent
separately to client
 for(String script=getScript(content);!script.equals("");script=g
etScript(content))
 {
 contentList.add(script);
 content=removeScript(content);

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[77]

 }
 //content list will have all the javascript
 //functions, last element is executed last
 //and all other before html content
 if(contentList.size()>1)
 {
 contentList.add(contentList.size()-1, content);
 }
 else
 {
 contentList.add(content);
 }
 return contentList;
 }

 public List<String> getLetters()
 {
 List<String> letters=new Vector<String>();
 char[] l=new char[1];
 for(int i=65;i<91;i++)
 {
 l[0]=(char)i;
 letters.add(new String(l));
 }
 return letters;
 }

 public String removeScript(String html)
 {
 //removes first script element
 int sIndex=html.toLowerCase().indexOf("<script ");
 if(sIndex==-1)
 {
 return html;
 }
 int eIndex=html.toLowerCase().indexOf("</script>")+9;
 return html.substring(0, sIndex)+html.substring(eIndex);
 }

 public String getScript(String html)
 {
 //returns first script element
 int sIndex=html.toLowerCase().indexOf("<script ");
 if(sIndex==-1)
 {
 return "";
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[78]

 int eIndex=html.toLowerCase().indexOf("</script>")+9;
 return html.substring(sIndex, eIndex);
 }

 public String streamToString(InputStream is)
 {
 String content="";
 try
 {
 ByteArrayOutputStream baos=new ByteArrayOutputStream();
 for(int b=is.read();b!=-1;b=is.read())
 {
 baos.write(b);
 }
 content=baos.toString();
 }
 catch(IOException ioe)
 {
 content=ioe.toString();
 }
 return content;
 }
}

The getContent() method reads the HTML code from a file based on the
contentId. ContentId was specified in the dwrapplication.properties file, and
the HTML is just contentId plus the extension .html in the package directory.
There is also a getLetters() method that simply lists letters from A to Z and
returns a list of letters to the browser.

If we test the application now, we will get an error as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[79]

We know why the AppContent is not defined error occurs, so lets fix it by adding
AppContent to the allow element in the dwr.xml file. We also add CountryDB to the
allow element. The first thing we do is to add required elements to the dwr.xml file.
We add the following creators within the allow element in the dwr.xml file.

 <create creator="new" javascript="AppContent">
 <param name="class" value="samples.AppContent" />
 <include method="getContent" />
 <include method="getLetters" />
 </create>
 <create creator="new" javascript="CountryDB">
 <param name="class" value="samples.CountryDB" />
 <include method="getCountries" />
 <include method="saveCountryNotes" />
 <include method="getCountryData" />
 </create>

We explicitly define the methods we are remoting using the include elements. This
is a good practice, as we don't accidentally allow access to any methods that are not
meant to be remoted.

Client Code for Tables and Lists
We also need to add a JavaScript interface to the index.jsp page. Add the following
with the rest of the scripts in the index.jsp file.

<script type='text/javascript' src='/DWREasyAjax/dwr/interface/
AppContent.js'></script>

Before testing, we need the sample HTML for the content area. The following HTML
is in the TablesAndLists.html file under the samples directory:

<h3>Countries</h3>
<p>Show countries starting with
<select id="letters" onchange="selectLetter(this);return false;"> </
select>

Doubleclick "Notes"-cell to add notes to country.
</p>
<table border="1">
 <thead>
 <tr>
 <th>Name</th>
 <th>Long name</th>
 <th>Code</th>
 <th>Capital</th>
 <th>Notes</th>
 </tr>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[80]

 </thead>
 <tbody id="countryData">
 </tbody>
</table>

<script type='text/javascript'>
//TO BE EVALED
AppContent.getLetters(addLetters);
</script>

The script element at the end is extracted by our Java class, and it is then evaluated
by the browser when the client-side JavaScript receives the HTML. There is the
select element, and its onchange event calls the selectLetter()JavaScript
function. We will implement the selectLetter() function shortly.

JavaScript functions are added in the index.jsp file, and within the head element.
Functions could be in separate JavaScript files, but the embedded script is just
fine here.

function selectLetter(selectElement)
{
 var selectedIndex = selectElement.selectedIndex;
 var selectedLetter= selectElement.options[selectedIndex].value;
 CountryDB.getCountries(selectedLetter,setCountryRows);
}
function addLetters(letters)
{
dwr.util.addOptions('letters',['letter...']);
dwr.util.addOptions('letters',letters);
}

function setCountryRows(countryData)
{
var cellFuncs = [
 function(data) { return data[0]; },
 function(data) { return data[1]; },
 function(data) { return data[2]; },
 function(data) { return data[3]; },
 function(data) { return data[4]; }
];
dwr.util.removeAllRows('countryData');
dwr.util.addRows('countryData',countryData,cellFuncs, {

 cellCreator:function(options) {
 var td = document.createElement("td");
 if(options.cellNum==4)
 {
 var notes=options.rowData[4];
 if(notes==undefined)

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[81]

 {
 notes=' ';// + options.rowData[2]+'notes';
 }
 var ccode=options.rowData[2];
 var divId=ccode+'_Notes';
 var tdId=divId+'Cell';
 td.setAttribute('id',tdId);
 var html=getNotesHtml(ccode,notes);
 td.innerHTML=html;
 options.data=html;
 }
 return td;
 },
 escapeHtml:false
 });
}

function getNotesHtml(ccode,notes)
{
 var divId=ccode+'_Notes';
 return "<div onDblClick=
 \"editCountryNotes('"+divId+"','"+ccode+"');\" id=
 \""+divId+"\">"+notes+"</div>";
}

function editCountryNotes(id,ccode)
{
 var notesElement=dwr.util.byId(id);
 var tdId=id+'Cell';
 var notes=notesElement.innerHTML;
 if(notes==' ')
 {
 notes='';
 }
 var editBox='<input id="'+ccode+'NotesEditBox" type=
 "text" value="'+notes+'"/>
';
 editBox+="<input type='button' id='"+ccode+"SaveNotesButton'
 value='Save' onclick='saveCountryNotes(\""+ccode+"\");'/>";
 editBox+="<input type='button' id='"+ccode+"CancelNotesButton'
 value='Cancel' onclick='cancelEditNotes
 (\""+ccode+"\");'/>";
 tdElement=dwr.util.byId(tdId);
 tdElement.innerHTML=editBox;
 dwr.util.byId(ccode+'NotesEditBox').focus();
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[82]

function cancelEditNotes(ccode)
{
 var countryData=CountryDB.getCountryData(ccode, {
 callback:function(data)
 {
 var notes=data[4];
 if(notes==undefined)
 {
 notes=' ';
 }
 var html=getNotesHtml(ccode,notes);
 var tdId=ccode+'_NotesCell';
 var td=dwr.util.byId(tdId);
 td.innerHTML=html;
 }
 });

}
function saveCountryNotes(ccode)
{
 var editBox=dwr.util.byId(ccode+'NotesEditBox');
 var newNotes=editBox.value;
 CountryDB.saveCountryNotes(ccode,newNotes, {
 callback:function(newNotes)
 {
 var ccode=newNotes[0];
 var notes=newNotes[1];
 var notesHtml=getNotesHtml(ccode,notes);
 var td=dwr.util.byId(ccode+"_NotesCell");
 td.innerHTML=notesHtml;
 }
 });
}

There are lots of functions for table samples, and we go through each one of them.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[83]

The first is the selectLetter()function. This function gets the selected letter
from the select element and calls the CountryDB.getCountries() remoted Java
method. The callback function is setCountryRows. This function receives the return
value from the Java getCountries() method, that is List<List<String>>, a List
of Lists of Strings.

The second function is addLetters(letters), and it is a callback function for
theAppContent.getLetters() method, which simply returns letters from A to Z.
The addLetters() function uses the DWR utility functions to populate the letter list.

Then there is a callback function for the CountryDB.getCountries() method. The
parameter for the function is an array of countries that begin with a specified letter.
Each array element has a format: Name, Long name, (country code) Code, Capital,
Notes. The purpose of this function is to populate the table with country data; and
let's see how it is done. The variable, cellFuncs, holds functions for retrieving data
for each cell in a column. The parameter named data is an array of country data that
was returned from the Java class.

The table is populated using the DWR utility function, addRows(). The cellFuncs
variable is used to get the correct data for the table cell. The cellCreator function is
used to create custom HTML for the table cell. Default implementation generates just
a td element, but our custom implementation generates the td-element with the div
placeholder for user notes.

The getNotesHtml() function is used to generate the div element with the event
listener for double-click.

The editCountryNotes() function is called when the table cell is double-clicked.
The function creates input fields for editing notes with the Save and Cancel buttons.

The cancelEditNotes() and saveCountryNotes()functions cancel the editing of
new notes, or saves them by calling the CountryDB.saveCountryNotes()
Java method.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[84]

The following screenshot shows what the sample looks like with the populated table:

Now that we have added necessary functions to the web page we can test
the application.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[85]

Testing Tables and Lists
The application should be ready for testing if we have had the test environment
running during development. Eclipse automatically deploys our new code to the
server whenever something changes. So we can go right away to the test page
http://127.0.0.1:8080/DWREasyAjax. On clicking Tables and lists we can see the
page we have developed. By selecting some letter, for example "I" we get a list of all
the countries that start with letter "I" (as shown in the previous screenshot).

Now we can add notes to countries. We can double-click any table cell under Notes.
For example, if we want to enter notes to Iceland, we double-click the Notes cell
in Iceland's table row, and we get the edit box for the notes as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[86]

The edit box is a simple text input field. We didn't use any forms. Saving and
canceling editing is done using JavaScript and DWR. If we press Cancel, we get the
original notes from the CountryDB Java class using DWR and saving also uses DWR
to save data. CountryDB.saveCountryNotes() takes the country code and the notes
that the user entered in the edit box and saves them to the CSV file. When notes are
available, the application will show them in the country table together with other
country information as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[87]

Afterword
The sample in this section uses DWR features to get data for the table and list from
the server. We developed the application so that most of the application logic is
written in JavaScript and Java beans that are remoted. In principle, the application
logic can be thought of as being fully browser based, with some extensions in
the server.

Implementing Field Completion
Nowadays, field completion is typical of many web pages. A typical use case is
getting a stock quote, and field completion shows matching symbols as users type
letters. Many Internet sites use this feature.

Our sample here is a simple license text finder. We enter the license name in the
input text field, and we use DWR to show the license names that start with the typed
text. A list of possible completions is shown below the input field. The following is a
screenshot of the field completion in action:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[88]

Selected license content is shown in an iframe element from
http://www.opensource.org.

Server Code for Field Completion
We will re-use some of the classes we developed in the last section. AppContent is
used to load the sample page, and the DBUtils class is used in the LicenseDB class.
The LicenseDB class is shown here:

package samples;

import java.util.List;
import java.util.Vector;

public class LicenseDB{

 private DBUtils dbUtils=new DBUtils();

 public LicenseDB()
 {
 dbUtils.initFileDB("licenses.csv");
 }

 public List<String> getLicensesStartingWith(String startLetters)
 {
 List<String> list=new Vector<String>();
 List<String> licenses=dbUtils.getCSVStrings(startLetters);
 for(String license : licenses)
 {
 list.add(license.split(",")[0]);
 }
 return list;
 }

 public String getLicenseContentUrl(String licenseName)
 {
 List<String> licenses=dbUtils.getCSVStrings(licenseName);
 if(licenses.size()>0)
 {
 return licenses.get(0).split(",")[1];
 }
 return "";
 }
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[89]

The getLicenseStartingWith()method goes through the license names and
returns valid license names and their URLs. Similar to the data in the previous
section, license data is in a CSV file named licenses.csv in the package directory.
The following is an excerpt of the file content:

Academic Free License, http://opensource.org/licenses/afl-3.0.php
Adaptive Public License, http://opensource.org/licenses/apl1.0.php
Apache Software License, http://opensource.org/licenses/apachepl-1.1.php
Apache License, http://opensource.org/licenses/apache2.0.php
Apple Public Source License, http://opensource.org/licenses/apsl-2.0.php

Artistic license, http://opensource.org/licenses/artistic-
license-1.0.php
…

There are quite a few open-source licenses. Some are more popular than others
(like the Apache Software License) and some cannot be re-used (like the IBM
Public License).

We want to remote the LicenseDB class, so we add the following to the dwr.xml file.

<create creator="new" javascript="LicenseDB">
 <param name="class" value="samples.LicenseDB"/>
 <include method="getLicensesStartingWith"/>
 <include method="getLicenseContentUrl"/>
</create>

Client Code for Field Completion
The following script element will go in the index.jsp page.

<script type='text/javascript' src='/DWREasyAjax/dwr/interface/
LicenseDB.js'></script>

The HTML for the field completion is as follows:

<h3>Field completion</h3>
<p>Enter Open Source license name to see it's contents.
</p>
<input type="text" id="licenseNameEditBox" value="" onkeyup="showPopup
Menu()" size="40"/>
<input type="button" id="showLicenseTextButton" value="Show license
text" onclick="showLicenseText()"/>
<div id="completionMenuPopup"></div>
<div id="licenseContent"></div>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[90]

The input element, where we enter the license name, listens to the onkeyup event
which calls the showPopupMenu() JavaScript function. Clicking the Input button calls
the showLicenseText() function (the JavaScript functions are explained shortly).
Finally, the two div elements are place holders for the pop-up menu and the iframe
element that shows license content.

For the pop-up box functionality, we use existing code and modify it for our purpose
(many thanks to http://www.jtricks.com). The following is the popup.js file,
which is located under the WebContent | js directory.

//<script type="text/javascript"><!--
/* Original script by: www.jtricks.com
 * Version: 20070301
 * Latest version:
 * www.jtricks.com/javascript/window/box.html
 *
 * Modified by Sami Salkosuo.
 */
// Moves the box object to be directly beneath an object.
function move_box(an, box)
{
 var cleft = 0;
 var ctop = 0;
 var obj = an;

 while (obj.offsetParent)
 {
 cleft += obj.offsetLeft;
 ctop += obj.offsetTop;
 obj = obj.offsetParent;
 }

 box.style.left = cleft + 'px';

 ctop += an.offsetHeight + 8;

 // Handle Internet Explorer body margins,
 // which affect normal document, but not
 // absolute-positioned stuff.
 if (document.body.currentStyle &&
 document.body.currentStyle['marginTop'])
 {
 ctop += parseInt(
 document.body.currentStyle['marginTop']);
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[91]

 box.style.top = ctop + 'px';
}

var popupMenuInitialised=false;
// Shows a box if it wasn't shown yet or is hidden
// or hides it if it is currently shown
function show_box(html, width, height, borderStyle,id)
{
 // Create box object through DOM
 var boxdiv = document.getElementById(id);
 boxdiv.style.display='block';
 if(popupMenuInitialised==false)
 {
 //boxdiv = document.createElement('div');
 boxdiv.setAttribute('id', id);
 boxdiv.style.display = 'block';
 boxdiv.style.position = 'absolute';
 boxdiv.style.width = width + 'px';
 boxdiv.style.height = height + 'px';
 boxdiv.style.border = borderStyle;
 boxdiv.style.textAlign = 'right';
 boxdiv.style.padding = '4px';
 boxdiv.style.background = '#FFFFFF';
 boxdiv.style.zIndex='99';
 popupMenuInitialised=true;
 //document.body.appendChild(boxdiv);
 }

 var contentId=id+'Content';
 var contents = document.getElementById(contentId);
 if(contents==null)
 {
 contents = document.createElement('div');
 contents.setAttribute('id', id+'Content');
 contents.style.textAlign= 'left';
 boxdiv.contents = contents;
 boxdiv.appendChild(contents);

 }
 move_box(html, boxdiv);

 contents.innerHTML= html;

 return false;
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[92]

function hide_box(id)
{
 document.getElementById(id).style.display='none';
 var boxdiv = document.getElementById(id+'Content');
 if(boxdiv!=null)
 {
 boxdiv.parentNode.removeChild(boxdiv);

 }
 return false;
}

//--></script>

Functions in the popup.js file are used as menu options directly below the edit box.

The show_box()function takes the following arguments: HTML code for the
pop-up, position of the pop-up window, and the "parent" element (to which the
pop-up box is related). The function then creates a pop-up window using DOM. The
move_box()function is used to move the pop-up window to its correct place under
the edit box and the hide_box()function hides the pop-up window by removing the
pop-up window from the DOM tree.

In order to use functions in popup.js, we need to add the following script-element
to the index.jsp file:

<script type='text/javascript' src='js/popup.js'></script>

Our own JavaScript code for the field completion is in the index.jsp file. The
following are the JavaScript functions, and an explanation follows the code:

function showPopupMenu()
{
 var licenseNameEditBox=dwr.util.byId('licenseNameEditBox');
 var startLetters=licenseNameEditBox.value;
 LicenseDB.getLicensesStartingWith(startLetters, {
 callback:function(licenses)
 {
 var html="";
 if(licenses.length==0)
 {
 return;
 }
 if(licenses.length==1)
 {
 hidePopupMenu();

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[93]

 licenseNameEditBox.value=licenses[0];
 }
 else
 {
 for (index in licenses)
 {
 var licenseName=licenses[index];//.split(",")[0];
 licenseName=licenseName.replace(/\"/g,""");
 html+="<div style=\"border:1px solid #777777;
 margin-bottom:5;\" onclick=
 \"completeEditBox('"+licenseName+"');
 \">"+licenseName+"</div>";
 }
 show_box(html, 200, 270, '1px solid','completionMenuPopup');
 }
 }
 });
}

function hidePopupMenu()
{
 hide_box('completionMenuPopup');
}

function completeEditBox(licenseName)
{
 var licenseNameEditBox=dwr.util.byId('licenseNameEditBox');
 licenseNameEditBox.value=licenseName;
 hidePopupMenu();
 dwr.util.byId('showLicenseTextButton').focus();
}

function showLicenseText()
{
 var licenseNameEditBox=dwr.util.byId('licenseNameEditBox');
 licenseName=licenseNameEditBox.value;
 LicenseDB.getLicenseContentUrl(licenseName,{
 callback:function(licenseUrl)
 {
 var html='<iframe src="'+licenseUrl+'" width="100%"
 height="600"></iframe>';
 var content=dwr.util.byId('licenseContent');
 content.style.zIndex="1";
 content.innerHTML=html;
 }
 });
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Basic Elements

[94]

The showPopupMenu() function is called each time a user enters a letter in the
input box. The function gets the value of the input field and calls the LicenseDB.
getLicensesStartingWith() method. The callback function is specified in the
function parameters. The callback function gets all the licenses that match the
parameter, and based on the length of the parameter (which is an array), it either
shows a pop-up box with all the matching license names, or, if the array length is
one, hides the pop-up box and inserts the full license name in the text field. In the
pop up box, the license names are wrapped within the div element that has an
onclick event listener that calls the completeEditBox() function.

The hidePopupMenu()function just closes the pop-up menu and the
competeEditBox() function inserts the clicked license text in the input box
and moves the focus to the button. The showLicenseText() function is called
when we click the Show license text button. The function calls the LicenseDB.
getLicenseContentUrl() method and the callback function creates an iframe
element to show the license content directly from http://www.opensource.org, as
shown in the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 4

[95]

Afterword
Field completion improves user experience in web pages and the sample code in this
section showed one way of doing it using DWR.

It should be noted that the sample for field completion presented here is only for
demonstration purposes.

Summary
This chapter provided samples for a couple of common tasks that are used in web
development: tables and lists, field completion, and even a generic frame, called a
dynamic user interface, for our sample code. Both the tables and lists sample and the
field completion sample had a very simple CSV-based "database" that holds the data
for our purposes, and both had a remoted method that DWR uses to get the data
from the server and show it in the client.

We also saw some good examples of HTML, CSS, and JavaScript. In fact, without
knowledge of JavaScript it would be difficult to write web applications.

Many years ago, as some of you may remember, JavaScript was a dirty word in web
development and no self-respecting developer would touch JavaScript. But change
is a part of life, and in this case, change has been for the better. JavaScript and Java
work very well together with the DWR in between.

The next chapter continues with the user interface part, and shows a couple more
samples, including a map scrolling functionality, similar to what is found in the
popular Google Maps website.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced
Elements

This chapter has three samples: forms, navigation tree, and map scrolling. Forms
are found in almost all the web applications, and the sample shows how to do
form validation and processing using DWR. The navigation tree includes a simple
navigation tree that has a Java bean for holding menu elements that are accessed via
DWR. The last sample in this chapter is a map scrolling sample that shows how to
achieve zooming and scrolling of a map using Java, JavaScript, and DWR.

The following are the sections discussed in this chapter:

Creating Forms—includes examples of form processing
Building a Navigation Tree—shows one way of using DWR in the navigation
tree implementation
Map Scrolling Using DWR—shows the DWR functionality in a web page
map (from the planet Mars in this sample)

Creating Forms
This sample is about forms, form validation, and submission of a form. For this
sample, the form we will handle is very simple, just a few fields, and the point of this
sample is to show form validation using DWR and form submission using DWR. The
form will appear as shown in the following screenshot:

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[98]

The Name and Address fields are nothing special, except maybe that the address
field in real-life is virtually never a simple text field. The Credit card number is
validated when it is entered in the input field. The Credit card expiry field is also
validated when it is entered.

Developing the User Interface
The first thing to do is to add new menu items to the Dynamic User Interface that we
had designed in the previous chapter. This is done by adding properties for menu
items to the dwrapplication.properties file. We have already added menu items
for the navigation tree and the map scrolling samples that we will develop later in
this chapter:

menu.3=Form handling,FormHandling
menu.4=Navigation tree,NavigationTree
menu.5=Map scrolling,MapScrolling

The HTML code for our FormHandling.html file looks like this:

<h3>Form handling</h3>
<p>Simple order form.</p>
<div id="formFeedback"></div>
<table border="1" cellspacing="5" cellpadding="5">
 <tr>
 <td>Name</td>
 <td><input type="text" id="nameEditBox" value=""
 size="40" /></td>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[99]

 </tr>
 <tr>
 <td>Address</td>
 <td><input type="text" id="addressEditBox" value=""
 size="40" /></td>
 </tr>
 <tr>
 <td>Credit card #
<a href="#" onclick="useTestCreditCardNumber
();return false;">use test number</td>
 <td><input type="text" id="creditCardEditBox" value=""
 onkeyup="isValidCreditCard()" size="40" /></td>
 </tr>
 <tr>
 <td>Credit card expiry (mm/yy)</td>
 <td><input type="text" id="expiryEditBox" value=""
 onkeyup="checkExpiryDate()" size="40" /></td>
 </tr>
 <tr>
 <td> </td>
 <td><input type="button" id="submitOrderButton"
 value="Submit order" onclick="submitOrder()" /></td>
 </tr>
</table>

JavaScript functions are specified in the credit card number and expiry date input
field onkeyup events and the onclick events of the use test number link and the
submit-button. The following JavaScript functions are in the index.jsp file:

function useTestCreditCardNumber()
{
 var creditCardEditBox=dwr.util.byId('creditCardEditBox');
 creditCardEditBox.value='5555555555554444';
}

function isValidCreditCard()
{
 var creditCardEditBox=dwr.util.byId('creditCardEditBox');
 creditCardNumber=creditCardEditBox.value;
 FormHandler.isValidCreditCard(creditCardNumber,{
 callback:function(valid)
 {
 var feedback=dwr.util.byId('formFeedback');
 var html="";
 if(!valid)
 {
 html='<p>Credit card number is not valid.</
font></p>';
 }
 feedback.innerHTML=html;
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[100]

 });
}

function checkExpiryDate()
{
 var expiryEditBox=dwr.util.byId('expiryEditBox');
 expiryDate=expiryEditBox.value;
 FormHandler.checkExpiryFormat(expiryDate,{
 callback:function(valid)
 {
 var feedback=dwr.util.byId('formFeedback');
 var html="";
 if(!valid)
 {
 html='<p>Expiry date is not in correct
 format.</p>';
 }
 feedback.innerHTML=html;
 }
 });
}

function submitOrder()
{
 var creditCardEditBox=dwr.util.byId('creditCardEditBox');
 creditCardNumber=creditCardEditBox.value;
 var expiryEditBox=dwr.util.byId('expiryEditBox');
 expiryDate=expiryEditBox.value;
 var nameEditBox=dwr.util.byId('nameEditBox');
 name=nameEditBox.value;
 var addressEditBox=dwr.util.byId('addressEditBox');
 address=addressEditBox.value;

 FormHandler.submitOrder(name,address,creditCardNumber,expiryDate,{
 callback:function(orderSubmitted)
 {
 var feedback=dwr.util.byId('formFeedback');
 var html="";
 if(orderSubmitted)
 {
 html='<p>Order submitted.</p>';
 }
 else
 {
 html='<p>Order submit failed.</p>';

 }
 feedback.innerHTML=html;
 }
 });
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[101]

The first function, useTestCreditCardNumber, inserts a test number into the credit
card field, so we don't have to use our own card number.

The isValidCreditCard()function is called when something is entered in the credit
card input field. The function calls a server-side Java method (to be implemented
shortly) and receives either true or false. If the credit card number fails the
validation, the user is informed by changing the content of the div element with the
formFeedback ID.

The checkExpiryDate()function is similar to the previous function except that it
checks the expiry date syntax.

The last function is the submitOrder() function that reads form field values and
calls the submitOrder() method in a remoted Java class. The Java method returns
true or false, and the status of order submission is shown to the user.

Creating the FormHandler Class
The next thing to do is the FormHandler Java class. The implementation of the class
is as follows:

package samples;

public class FormHandler {

 public boolean submitOrder(String name,String address,String
creditCardNumber,String expiryDate)
 {
 boolean validExpiryDate=checkExpiryFormat(expiryDate);
 boolean validCreditCardNumber=
 isValidCreditCard(creditCardNumber);
 //submit order to orderprocessing system
 boolean orderSubmitted=true;

 return validCreditCardNumber && validExpiryDate &&
 orderSubmitted;
 }

 public boolean checkExpiryFormat(String expiryDate) {
 if (expiryDate.length() != 5) {
 return false;
 }
 if (expiryDate.indexOf("/") == -1) {
 return false;
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[102]

 String[] expDate = expiryDate.split("/");
 try {
 int month = Integer.parseInt(expDate[0]);
 int year = Integer.parseInt(expDate[1]);
 if ((month >= 1 && month <= 12) && (year >= 8 && year
 <= 99)) {
 return true;
 }
 return false;
 } catch (Exception e) {
 e.printStackTrace();
 return false;
 }
 }
 /*
 * The next two methods perform credit card validation.
 * Only the format is checked, it is not checked
 * against a card holder.
 *
 * Methods provided by Michael Gilleland in his essay
 * "Anatomy of Credit Card Numbers"
 * http://www.merriampark.com/anatomycc.htm
 */
 private String getDigitsOnly(String s) {
 StringBuffer digitsOnly = new StringBuffer();
 char c;
 for (int i = 0; i < s.length(); i++) {
 c = s.charAt(i);
 if (Character.isDigit(c)) {
 digitsOnly.append(c);
 }
 }
 return digitsOnly.toString();
 }

 public boolean isValidCreditCard(String cardNumber) {
 String digitsOnly = getDigitsOnly(cardNumber);
 int sum = 0;
 int digit = 0;
 int addend = 0;
 boolean timesTwo = false;

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[103]

 for (int i = digitsOnly.length() - 1; i >= 0; i--) {
 digit = Integer.parseInt(digitsOnly.substring(i, i +
 1));
 if (timesTwo) {
 addend = digit * 2;
 if (addend > 9) {
 addend -= 9;
 }
 } else {
 addend = digit;
 }
 sum += addend;
 timesTwo = !timesTwo;
 }
 int modulus = sum % 10;
 return modulus == 0;
 }
}

The first method, submitOrder(), takes the name, address, and credit card info as
parameters and validates the input before sending the order to the order-processing
system (not implemented in this sample) and returns either true or false value
based on whether the order was successful or not.

The second method, checkExpiryFormat(), takes the credit card expiry date as the
parameter and validates that it is in the correct format, MM/YY where MM and YY
are integers in the range of 1-12 and 8-99 (years 2008-2099) respectively.

The last two methods validate that the credit card number is in the correct format.
The code is written by Michael Gilleland, and it was published in his essay Anatomy
of Credit Card Numbers (http://www.merriampark.com/anatomycc.htm). The essay
explains what all those numbers in a credit card are, and how to verify that a given
number is really a credit card number using the Luhn algorithm (refer to the essay
for more information).

Testing the Form
The next thing to do is to add FormHandler to the HTML page and the remoted class
to dwr.xml. We add the following to the index.jsp file:

<script type='text/javascript' src=
 '/DWREasyAjax/dwr/interface/FormHandler.js'></script>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[104]

And we add the following to the dwr.xml file:

 <create creator="new" javascript="FormHandler">
 <param name="class" value="samples.FormHandler"/>
 <include method="checkExpiryFormat"/>
 <include method="isValidCreditCard"/>
 <include method="submitOrder"/>
 </create>

Now the order form is ready. It is a very simple order form, but the idea is clear.
Form fields can be validated while the user is inputting the text. So when the user
submits the form, it is most likely that all the fields are correct. The following
screenshot shows the form filling procedure in progress:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[105]

Note how the credit card expiry field is left incomplete. The Firebug window
shows the DWR requests, and each time a character is entered in the field, the
checkExpiryFormat() method is called. Note that, in this case, calling the server
each time a character is entered introduces a lot of network traffic and overhead to
the server code. However, in this sample, an illustrative example is worth the extra
overhead on the server. Perhaps also in other cases, overhead may be considered
secondary to good user experience and immediate feedback to the user.

When the fields are correct and the order is submitted, order is sent to the order
processing system. After the order is completed, the user gets the confirmation for a
successful order as shown in the following screenshot:

Of course, in real life, the user would get a receipt for the order instead of the green
Order submitted text.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[106]

Afterword
The sample form in this section shows how DWR is used in form handling. DWR
uses on forms include real-time validation of form fields. We also saw the algorithm
to check the validity of the credit card number.

Building a Navigation Tree
This is a sample for building a navigation menu, where the menu contents are
fetched from the server using DWR. The following is a screenshot of the menu we
are developing in this section:

Developing the User Interface
We have already added the navigation tree menu item to dwrapplication.
properties in the previous section, so we can start the development with the
HTML file. The following HTML file is in the samples directory, and its name is
NavigationTree.html.

<h3>Navigation Tree</h3>
<p>Simple navigation tree example.</p>
<table border="1" cellspacing="5" cellpadding="5">

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[107]

 <tr>
 <td><div class="wireframemenu" id="treeMenu"></div></td>
 <td><div id="treeMenuContent"></div></td>
 </tr>
</table>

<script type='text/javascript'>
//TO BE EVALED
NavigationTree.getRootElements(createTreeMenu);
</script>

Note that the tree menu is in the div element with the treeMenu ID. It also has a
style class, wireframemenu. This style is from the Dynamic Drive CSS library. The
following styles are added to the styles.css file.

/*Credits: Dynamic Drive CSS Library */
/*URL: http://www.dynamicdrive.com/style/ */

.wireframemenu{
border: 1px solid #C0C0C0;
background-color: white;
border-bottom-width: 0;
width: 170px;
}

* html .wireframemenu{ /*IE only rule. Original menu width minus all
left/right paddings */
width: 164px;
}

.wireframemenu ul{
padding: 0;
margin: 0;
list-style-type: none;
}

.wireframemenu a{
font: bold 13px Verdana;
padding: 4px 3px;
display: block;
width: 100%; /*Define width for IE6's sake*/
color: #595959;
text-decoration: none;
border-bottom: 1px solid #C0C0C0;
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[108]

.wireframemenu a:visited{
color: #595959;
}

html>body .wireframemenu a{ /*Non IE rule*/
width: auto;
}

.wireframemenu a:hover{
background-color: #F8FBBD;
color: black;
}

Creating the NavigationTree Class
In the NavigationTree.html file, there was a JavaScript call to NavigationTree.
getRootElements(). This is a remoted Java class, so let's implement the Java class.
The source code is as shown:

package samples;

import java.util.Hashtable;
import java.util.List;
import java.util.Map;
import java.util.Random;
import java.util.Vector;

public class NavigationTree {
 private String[] rootLevel={"Northern Hemisphere","Southern
Hemisphere"};

 private Map<String,List<String>> level_1=new Hashtable<String,List
<String>>();
 private Map<String,List<String>> level_2=new Hashtable<String,List
<String>>();

 private String[] ncap={"Helsinki","Stockholm","Oslo"};
 private String[] scap={"Wellington","Canberra","Port Louis"};

 public NavigationTree()
 {
 List<String> countries=new Vector<String>();
 //set northern hemisphere
 countries.add("Finland");
 countries.add("Sweden");
 countries.add("Norway");

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[109]

 level_1.put(rootLevel[0], countries);
 for(int i=0;i<countries.size();i++)
 {
 Vector<String> capitals=new Vector<String>();
 capitals.add(ncap[i]);
 level_2.put(countries.get(i), capitals);
 }

 countries=new Vector<String>();
 countries.add("New Zealand");
 countries.add("Australia");
 countries.add("Mauritius");
 level_1.put(rootLevel[1], countries);
 for(int i=0;i<countries.size();i++)
 {
 Vector<String> capitals=new Vector<String>();
 capitals.add(scap[i]);
 level_2.put(countries.get(i), capitals);
 }
 }

 public String[] getRootElements()
 {
 return rootLevel;
 }

 public boolean hasChildren(String element)
 {
 return (level_1.containsKey(element) || level_2.containsKey
 (element));
 }

 public List<String> getChildren(String element)
 {
 List<String> children=new Vector<String>();
 if(level_1.containsKey(element))
 {
 return level_1.get(element);
 }
 if(level_2.containsKey(element))
 {
 return level_2.get(element);
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[110]

 return children;
 }

 public String getContent(String element)
 {
 String[] desc={"A great place to be.","Nice place to
 visit.","Good nightlife.","Excellent
 restaurants.","Unforgettable"};
 Random rnd=new Random();
 return "The capital is "+element+". "
 +desc[rnd.nextInt(desc.length)];
 }
}

Our navigation tree here is hard-coded. Class variables include the root elements and
the constructor populates the first-and second-level menus.

The getRootElements()method returns root elements. The hashChildren()
method checks whether or not the given menu element has child elements, and the
getChildren() method returns the child elements of the given element.

The last method, getContent(), just returns random content to the user interface.

Developing the User Interface, Part 2
Since we want to remote this Java class, we must update dwr.xml and index.jsp.
Add the following to dwr.xml.

 <create creator="new" javascript="NavigationTree">
 <param name="class" value="samples.NavigationTree" />
 </create>

And then we add the following to index.jsp.

<script type='text/javascript' src='/DWREasyAjax/dwr/interface/
 NavigationTree.js'></script>

Now there is only one thing left. We have our Java, HTML, and configuration and
we still need JavaScript functions so that everything works. In the NavigationTree.
html file, there was already one named function, createTreeMenu(), which is a
callback for the Java method call. The following are the functions for the
navigation tree:

function createTreeMenu(rootElements)
{
 var treeMenu=dwr.util.byId('treeMenu');

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[111]

 var html="";

 for (index in rootElements)
 {
 var element=rootElements[index];
 NavigationTree.hasChildren(element,{
 async:false,
 callback:function(hasChildren)
 {
 if(hasChildren)
 {
 html+='<a href="#" onclick="expandElement(this);
 return false;"> + '+element+'';
 }
 else
 {
 html+='<a href="#" onclick="expandElement(this);
 return false;">'+element+'';
 }
 }
 });
 }

 html+="";
 treeMenu.innerHTML=html;

}

function expandElement(element)
{
 var value=element.text.replace(' + ','');
 var html="";
 NavigationTree.getChildren(value,{
 async:false,
 callback:function(childElements)
 {
 for (index in childElements)
 {
 var element=childElements[index];
 NavigationTree.hasChildren(element,{
 async:false,
 callback:function(hasChildren)
 {
 if(hasChildren)

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[112]

 {
 html+='<a href="#" onclick="expandElement(this);return
false;"> + '+element+'';
 }
 else
 {
 html+='<li style="background-color:#dddddd"><a href="#" oncl
ick="showContent(this);return false;">'+element+'';
 }
 }
 });
 }
 }
 });
 var parentNode=element.parentNode;
 var childNodes=parentNode.childNodes;
 if(childNodes.length>1)
 {
 for(var i=1;i<childNodes.length;i++)
 {
 parentNode.removeChild(childNodes[i]);
 }
 var treeMenuContent=dwr.util.byId('treeMenuContent');
 treeMenuContent.innerHTML="";
 }
 else
 {
 var ul = document.createElement("ul");
 ul.innerHTML=html;
 ul.style.backgroundColor="#eeeeee";
 parentNode.appendChild(ul);
 }
}

function showContent(element)
{
 var value=element.text.replace(' ','');
 NavigationTree.getContent(value,{
 callback:function(content)
 {
 var treeMenuContent=dwr.util.byId('treeMenuContent');
 treeMenuContent.innerHTML=content;
 }
 });
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[113]

The first function is the callback for the getRootElements() Java call. The
functionality of the function is to get root elements and, for each element, it
checks the existence of child elements and, based on that, it writes the HTML
code for the menu element. Note that the menus are li elements, and our styles
for wireframemenu specify how the li elements have to be handled within our
menu. We see a menu instead of a bulleted list. Make note of one parameter in
the NavigationTree.hasChildren() remote call: that is async:false. This is
interesting because it forces the call to the server to be synchronous, just like
normal method calls in any given programming language. Care must be taken
while using synchronous calls in A(synchronous)JAX–it may slow down the
application considerably.

The next function is expandElement(). This also checks the child elements and
writes new links to the menu or to the content.

The third function is showContent(). This calls the remoted Java method and
retrieves the content of the given element.

And so this sample menu tree is ready. Although the menu is hard-coded, it will give
a good starting point for developing a dynamic tree menu backed by a database or
some other mechanism.

Testing the Navigation Tree
When we start the Navigation Tree sample, we get a top-level tree as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[114]

We can expand the menu elements as shown in the following two screenshots, where
we first expand Northern Hemisphere and then we expand Finland. The capital of
Finland is shown, and when we click it, we get its description.

And when we expand Finland and click on Helsinki, we get the content as shown in
the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[115]

Afterword
This sample presented a navigation tree and how DWR is used to provide menu
elements dynamically.

Map Scrolling Using DWR
The last sample in this chapter is a map scrolling sample using DWR. Browser-based,
mouse-controlled scrolling maps have become popular since Google Maps
was launched.

The principle idea, in the implementation of this sample, is to take a sufficiently
large map and divide it to small squares of equal size. Then, based on the location, a
certain number of the small squares are inserted into the visible map window, and
when the user scrolls the map, by pressing the left mouse button, and dragging the
mouse in the map window, new map squares are retrieved from the server (other
implementations may also download map squares around the visible map window).

In this sample, we use a geological map of the Tempe-Mareotis region of Mars,
provided by the U.S. Geological Survey Astrogeology Research Program
(http://astrogeology.usgs.gov/). For a direct link to the map and additional
information, refer to http://astrogeology.usgs.gov/Projects/MapBook/
fulllisting.jsp?mapNumber=1170.

The following screenshot shows the full map of the Tempe-Mareotis region we are
using in this sample.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[116]

We use two zoom levels. The original image size for zoom level 0 is 1000x825 pixels
and for zoom level 1 the image size is 2000x1632. Both original images are divided
into squares of 100x100 pixels each, except the bottom part of the map since its height
is not divisible by 100.

The following are a few random examples of map squares:

As the original pictures are quite large, there are a total of 90 map squares for zoom
level 0 and 340 squares for zoom level 1.

The sample code shows how to use DWR and JavaScript to implement a scrolling
map application. We develop an application as shown in the following screenshot.
The image squares have borders in order to visualize how the map is constructed.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[117]

Developing the User Interface
We start development with the HTML file. The HTML code for the map scroller
is as shown:

<h3>Map Scrolling</h3>
<p>Simple map scroller using geologic map of the Tempe-Mareotis Region
of Mars.
 Full description from <a href="http://astrogeology.usgs.
gov/Projects/MapBook/fulllisting.jsp?mapNumber=1170">here.</p>
<div id="mapArea">
Zoom level: <form id="zoomLevelForm"><select id="zoomLevel" onchange="
setZoomLevel(this);return false;"><option>0</option><option>1</option>
</select></form>

<iframe width="430" height="440" scrolling="no" frameborder="0"
src="MapArea.html">
</iframe>
</div>

The control element for zooming is a select box, and it uses the JavaScript function to
set a new zoom level for the map. The setZoomLevel() function is in the index.jsp
file. The function code is as follows:

function setZoomLevel(element)
{
 var selectedIndex = element.selectedIndex;
 var value= element.options[selectedIndex].value;
 var frames=window.frames;
 frames[0].setZoomLevel(value);
}

This function takes the select element, extracts a value from it, and calls the other
setZoomLevel() function that is in the MapArea.html file.

The map area is an iframe element, and its source code is in a MapArea.html file,
which is shown below. The source of the file is located in the WebContent directory.

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<script type='text/javascript'
 src='/DWREasyAjax/dwr/interface/MapScroller.js'></script>
<script type='text/javascript' src='/DWREasyAjax/dwr/engine.js'></
script>
<script type='text/javascript' src='/DWREasyAjax/dwr/util.js'></
script>
<script type="text/javascript">

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[118]

var zoomLevel = 0;
var mapPositionIndex= 0;

var refGridX=0;
var refGridY=0;

function getRowIndex()
{
 var tempIndex=0;
 if(zoomLevel==0)
 {
 if(mapPositionIndex>=10)
 {
 tempIndex=parseInt(mapPositionIndex.toString().substring(1));
 }
 else
 {
 tempIndex=mapPositionIndex;
 }
 }
 else
 {
 if(mapPositionIndex>=100)
 {
 tempIndex=parseInt(mapPositionIndex.toString().substring(1));
 }
 else
 {
 tempIndex=mapPositionIndex;
 }
 while(tempIndex>16)
 {
 tempIndex-=20;
 }
 if(tempIndex<0)
 {
 tempIndex=16;
 }

 }
 return tempIndex;
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[119]

function setZoomLevel(newZoomLevel)
{
 if(newZoomLevel==0)
 {
 oldMapPositionIndex=mapPositionIndex;
 newRow=Math.round(Math.round(mapPositionIndex/17.0)/2.0)-1;
 if(newRow>5)
 {
 newRow=5;
 }
 else
 {
 if(newRow>=1 && newRow<=5)
 {
 newRow--;
 }
 }
 newColumn=Math.floor(getRowIndex()/2.0)-1;
 if(newColumn>6)
 {
 newColumn=6;
 }
 mapPositionIndex=(newRow*10)+newColumn;
 if(oldMapPositionIndex==208)
 {
 mapPositionIndex=43;
 }
 if(oldMapPositionIndex==214)
 {
 mapPositionIndex=46;
 }
 if(mapPositionIndex<0)
 {
 mapPositionIndex=0;
 }
 }
 else
 {
 mapPositionIndex=(Math.floor(mapPositionIndex
 /10.0)*40)+40+(2*(getRowIndex()+1));
 }
 zoomLevel=newZoomLevel;
 getMapImages(zoomLevel,mapPositionIndex);
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[120]

function getMapImages(zoomLevel,mapPositionIndex)
{
 MapScroller.getMapImages(zoomLevel,mapPositionIndex, {
 callback:function(images) {
 setImages(images, zoomLevel);
 }
 });
}

function setRefGrid(event)
{
 refGridX=Math.floor(event.clientX/100.0);
 refGridY=Math.floor(event.clientY/100.0);
}

function startScroll(event)
{
 setRefGrid(event);
 document.addEventListener("mousemove", mouseMove, true);
 document.addEventListener("mouseup", stopScroll, true);
 document.addEventListener("mouseout", stopScrollOnOut, true);
 document.addEventListener("mouseover", stopScrollOnOut, true);
 event.preventDefault();
}

function stopScroll(event)
{
 document.removeEventListener("mousemove", mouseMove, true);
 document.removeEventListener("mouseup", stopScroll, true);
 document.removeEventListener("mouseout", stopScrollOnOut, true);
 document.removeEventListener("mouseover", stopScrollOnOut, true);
}

function stopScrollOnOut(event)
{
 var src=event.target;
 if(src.id=="scrollingMapArea")
 {
 stopScroll(event);
 }
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[121]

function mouseMove(event)
{
 x=event.clientX;
 y=event.clientY;
 newGridX=Math.floor(x/100.0);
 newGridY=Math.floor(y/100.0);
 deltaX=newGridX-refGridX;
 deltaY=newGridY-refGridY;
 if(deltaX==0 && deltaY==0)
 {
 return;
 }
 var update=false;
 var tilesInRow=10;
 if(zoomLevel==1)
 {
 tilesInRow=20;
 }
 tempIndex=getRowIndex();

 if(deltaX>0)
 {
 if((tempIndex<6 && zoomLevel==0) || (tempIndex<16 &&
 zoomLevel==1))
 {
 mapPositionIndex++;
 update=true;
 }
 }
 else
 {
 if(deltaX<0)
 {
 if(tempIndex>0)
 {
 if(mapPositionIndex-1>=0)
 {
 mapPositionIndex--;
 update=true;
 }
 }

 }
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[122]

 if(deltaY>0)
 {
 var tempYIndex=50;
 if(zoomLevel==1)
 {
 tempYIndex=260;
 }
 if(mapPositionIndex<tempYIndex)
 {
 mapPositionIndex+=tilesInRow;
 update=true;
 }
 }
 else
 {
 if(deltaY<0)
 {
 if(mapPositionIndex>0 && mapPositionIndex>=tilesInRow)
 {
 mapPositionIndex-=tilesInRow;
 if(mapPositionIndex<0)
 {
 mapPositionIndex=0;
 }
 update=true;
 }
 }
 }

 if(update)
 {
 setRefGrid(event);
 getMapImages(zoomLevel,mapPositionIndex);
 }
}

function setImages(images,zoomLevel)
{
 var mapArea=dwr.util.byId('scrollingMapArea');
 mapArea.innerHTML="";
 for(index in images)
 {
 var imageName=images[index];
 var mapPart = document.createElement("img");
 mapPart.setAttribute('border','1');
 mapPart.setAttribute('src','mapimages/'+imageName);
 mapArea.appendChild(mapPart);
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[123]

}
</script>
</head>
<body onMouseDown="startScroll(event)">
<div id="scrollingMapArea"></div>
</body>

<script type="text/javascript">
getMapImages(zoomLevel,mapPositionIndex);
</script>
</html>.

This HTML file holds everything related to map scrolling. In the body element there
is a single div element that holds map squares. We remember that the iframe width
and height are 430x430, and as map squares are 100x100, the map view port will
have a total of 16 map images.

In the JavaScript code, the mapPositionIndex variable is an array index of the
upper left corner of the view port. For example, when a map shows the upper left
corner mapPositionIndex as 0, and it is scrolled row by row to the bottom, the
mapPositionIndex changes to 10 (for zoom level 0) or 20 (for zoom level 1).

First, the getRowIndex() JavaScript function calculates which row is at the top of a
visible view port.

The second function, setZoomLevel(), is important. It calculates the
mapPositionIndex for the new zoom level. When zooming in, four squares in the
center will be zoomed visible, and when zooming out, the visible squares are in the
center. The screenshot above is an example of how zooming is visible to the user. The
left image is zoom level 0, and the image on the right is zoom level 1.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[124]

Using the zoomLevel and the mapPositionIndex, images are retrieved using the
getImages() function. It just calls the remoted Java method, where the callback
function for the Java method is setImages().

The setImages()function receives an array of image names from the Java method,
and it uses a for loop to create img elements, which are appended to the map area
div element.

The setRefGrid(), startScroll(), stopScroll(), stopScrollOnOut(), and
mouseMove()functions are used to handle map scrolling. The way scrolling works is
that the startScroll() function is called when the user presses the mouse button
down. The function then adds the event listeners for the mousemove, mouseup,
mouseout, and mouseover events. While the mouse button is pressed down and the
mouse is moved, then the mouseMove() function is called.

The mouseMove()function calculates the grid position the mouse is in (remember
that the map view port was 4 by 4 squares). The reference position is set using the
setRefGrid() function (this is also called when the button is pressed). If the mouse
cursor has moved to a new grid position, then the getImages() function is called
with the new mapPositionIndex, and the map squares are updated in the page.

When the mouse button is released, the stopScroll()function is called, and all
event listeners are removed. This also happens when the user moves the mouse
cursor outside the map area div element.

The actual map images are in the WebContent | mapimages directory. Map
square images from zoom level 0 are tempe-mareotis-zlevel-0-0.jpg to
tempe-mareotis-zlevel-0-89.jpg, and for zoom level 1, tempe-mareotis-
zlevel-1-0.jpg to tempe-mareotis-zlevel-1-339.jpg, thereby taking it to well
over 400 images for just two zoom levels.

Creating the MapScroller Java Class
Finally, we need the Java class that returns the image names. The Java code is
as follows:

package samples;

import java.util.List;
import java.util.Vector;

public class MapScroller {

 private int[] imagesInRowInZLevel = { 10, 20 };
 private String imageName = "tempe-mareotis-zlevel-";

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[125]

 public List<String> getMapImages(int zoomLevel,
 int mapPositionIndex) {
 List<String> images = new Vector<String>();
 String imageName = this.imageName + zoomLevel + "-";
 for (int rowIndex = 0; rowIndex < 4; rowIndex++) {
 for (int i = 0; i < 4; i++) {
 int index = mapPositionIndex + i;
 images.add(imageName + index + ".jpg");
 }
 mapPositionIndex = mapPositionIndex
 + imagesInRowInZLevel[zoomLevel];
 }
 return images;
 }
}

There is only one method in the MapScroller class, getMapImages(). The method
returns 16 image names for the current view in the HTML page. The parameter,
mapPositionIndex, is the upper left corner of the image, and it is used to calculate
the indexes of the other images.

Let's not forget to add the remoted class to the dwr.xml file:

 <create creator="new" javascript="NavigationTree">
 <param name="class" value="samples.NavigationTree" />
 </create>

This completes the map scrolling sample. Most of the functionality is in the browser-
side JavaScript functions. But this kind of functionality would not be possible
without AJAX. This appears to be a very simple implementation, and this is because
DWR hides low-level details of asynchronous communication between the browser
and the server, and allows us to develop the map scrolling functionality with just a
few lines of server-side code in one Java class, and a bunch of map square images.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[126]

Testing the Map Scroller
The following three screenshots shows the map scroller in action. Note the mouse
cursor and the hand-drawn arrow that shows the movement of the cursor.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[127]

In this case, the mouse button is pressed down, and we move the cursor to the right.
When the cursor crosses the black border, we know it because of the JavaScript
code we have written, and it signals the map to scroll and update the images. After
moving the mouse to the right in the screenshot and crossing the border, the map is
scrolled to the right as is shown in the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

User Interface: Advanced Elements

[128]

The previous screenshot also has a hand-drawn black arrow, and when we move the
cursor down (with the button pressed down), when we cross the border again, the
map scrolls down as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5

[129]

Afterword
This map scroller sample features a very user friendly method for scrolling maps
or images. We also saw that the implementation is very client-centric because our
server-side Java code (which was remoted) has only one class and one method.

Summary
This chapter presented user interface components that are available in many
applications. Forms are present in all the applications that accept input from
users. The navigation tree is user-friendly, and map scrolling is seen as a must
in specific applications.

Using these user interface components is easy with DWR. DWR makes it possible to
add very dynamic behavior to applications easily. Although the samples are more or
less hard-coded, the principal ideas are presented, and sample code is a good starting
point for not-so-hard-coded applications.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration
This chapter is on integrating web applications with various backend services.
Almost all applications involve a database, so the first example in this chapter shows
one way of accessing database from the DWR application. The second example
integrates with a standard web service while the third example uses JMS messaging
to access a backend service. The JMS example also shows how to do Reverse AJAX
(Comet) using DWR.

This chapter includes the following sections:

Integrating a Database with DWR—shows how DWR is used to access
a database
Integrating with web services—uses Eclipse tooling to generate a web service
client for our DWR application
Integrating with a Messaging System—integrates our DWR application with
the Python-based "order system" using Active MQ and JMS

Integrating a Database with DWR
Here, we integrate a database with DWR by exposing a database table via a remoted
Java class. Our Java class connects directly to the database using JDBC, and related
SQL statements are included in the class. Other ways to access databases include
EJBs, Hibernate, and numerous others.

The example here replaces the first example in Chapter 4, Tables and Lists, so that
country data comes from a database instead of a CSV file. From the application point
of view there is only one change required in the dwr.xml file and that is changing the
entry to point to the Java class that handles database access. Before we implement the
Java class we have to set up and populate the database. Here we use Apache Derby
database, which comes bundled with the Geronimo application server.

•

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[132]

Configuring the Database in Geronimo
The first thing to do is to set up a database and table for our country data.
This is easy when using Geronimo because it gives us the necessary tools for
database management.

1.	 After logging into the Geronimo console, we go to Embedded DB
| DB Manager.

2.	 In the Run SQL section (refer to the following screenshot) we create a new
database by giving it a name and pressing the Create button. This creates a
new database and then we can use the SQL Command/s text area to enter
SQL commands that creates tables for our country data.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[133]

3.	 The following SQL command creates a country data table.
CREATE TABLE country_data (
 id INTEGER generated always as identity,
 short_name VARCHAR(64) NOT NULL,
 long_name VARCHAR(256) NOT NULL,
 code CHAR(2) NOT NULL,
 capital VARCHAR(64) NOT NULL,
 notes VARCHAR(256) DEFAULT ''
);
ALTER TABLE country_data ADD CONSTRAINT pkey PRIMARY KEY (id);

4.	 Insert the SQL in the command area and hit the Run SQL button.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[134]

We can view tables in the database using the Geronimo Console. There
is a Database List shown in the following screenshot that has a link to view
application tables and contents of the tables:

The application table that has a link to view the contents of the tables present
in the Database List is shown in the following screenshot:

The contents of the table are as follows:

The table is empty and here is an excerpt of the SQL statements that
populate the table with country data:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[135]

insert into country_data (short_name,long_name,code,capital) values
('El Salvador','Republic of El Salvador','ES','San Salvador');
insert into country_data (short_name,long_name,code,capital) values
('Ethiopia','Federal DemocraticRepublic of Ethiopia','ET','Addis
Ababa');
insert into country_data (short_name,long_name,code,capital) values
('Fiji','Republic of theFiji Islands','FJ','Suva');
insert into country_data (short_name,long_name,code,capital) values
('Finland','Republic of Finland','FI','Helsinki');
…

After executing these commands in the DB manager, we see the contents of the table
in the Geronimo DB Viewer.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[136]

5.	 Now that we have the table and contents, we need the data source to access the
content. We specify the data source in Geronimo and our Java class will use
the server-provided data source to access the database. This way, Geronimo
handles the nuts and bolts of the connectivity and also provides a pool of
connections, which is good in case we have lots of concurrent users. The data
source is specified in Geronimo Console in Services | Database Pools.

6.	 The new database pool is created using a wizard, which is found behind the
Using the Geronimo database pool wizard link.

7.	 We use the name EasyAjaxDBPool as the database pool name, and the
database type is Derby network.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[137]

8.	 After clicking the Next button, there is a screen with a bunch of
configuration entries.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[138]

9.	 The JDBC driver that we use here is a client JAR for Derby, and is already
available in the list of JDBC drivers. Database Name is what we defined
earlier, EasyAjaxDatabase. We use APP as the username and password as
the password. All other values can be default, so we can deploy the pool to
Geronimo by pressing the Deploy button at the bottom of the screen.

Creating a CountryDerbyDB Java Class
Now, we have the data source for the database, and we can use it in our application.
The next thing we do is create a new Java class for accessing the database, and
after that we need to set up the application for accessing the data source in the
Geronimo environment.

The Java class is CountryDerbyDB, and the source code for the class is as follows:

package samples;

import java.sql.Connection;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
import java.util.List;
import java.util.Vector;

import javax.naming.InitialContext;
import javax.sql.DataSource;

public class CountryDerbyDB {

 public CountryDerbyDB() {
 }

 private Connection getConnection() {
 try {
 InitialContext ctx = new InitialContext();
 DataSource ds = (DataSource) ctx.lookup("java:comp/env/jdbc/
 CountryDataSource");
 Connection con = ds.getConnection();
 return con;
 } catch (Exception e) {
 e.printStackTrace();
 return null;
 }
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[139]

 private void closeConnection(Connection con) {
 try {
 con.close();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 }

 public List<List<String>> getCountries(String startLetter) {
 List<List<String>> allCountryData = new Vector<List<String>>();
 try {
 Connection con = getConnection();
 PreparedStatement pstmt = con
 .prepareStatement("select short_name,long_
 name,code,capital,notes from
 country_data where short_name like
 ?");
 pstmt.setString(1, startLetter + "%");
 ResultSet rs = pstmt.executeQuery();
 while (rs.next()) {
 List<String> countryData = new Vector<String>();
 for (int i = 1; i <= 5; i++) {
 if (i == 5) {
 String notes = rs.getString(i);
 if (notes.length() == 0) {
 notes = " ";
 }
 countryData.add(notes);
 } else {
 countryData.add(rs.getString(i));
 }
 }
 allCountryData.add(countryData);
 }
 rs.close();
 pstmt.close();
 } catch (Exception e) {
 e.printStackTrace();
 }
 finally {
 closeConnection(con);
 }
 return allCountryData;
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[140]

 public String[] getCountryData(String ccode) {
 List<String> countryData = new Vector<String>();
 Connection con = getConnection();
 try {
 PreparedStatement pstmt = con
 .prepareStatement("select short_name,long_
 name,code,capital,notes from
 country_data where code=?");
 pstmt.setString(1, ccode);
 ResultSet rs = pstmt.executeQuery();
 if (rs.next()) {
 for (int i = 1; i <= 5; i++) {
 if (i == 5) {
 String notes = rs.getString(i);
 if (notes.length() == 0) {
 notes = " ";
 }
 countryData.add(notes);
 } else {
 countryData.add(rs.getString(i));
 }
 }

 }
 } catch (SQLException e) {
 e.printStackTrace();
 }
 closeConnection(con);
 String[] cdata = new String[5];
 return countryData.toArray(cdata);
 }

 public String[] saveCountryNotes(String ccode, String notes) {

 Connection con = getConnection();
 try {
 PreparedStatement pstmt = con
 .prepareStatement("update country_data set notes=?
 where code=?");
 pstmt.setString(1, notes);
 pstmt.setString(2, ccode);
 pstmt.executeUpdate();
 } catch (SQLException e) {
 e.printStackTrace();
 }
 closeConnection(con);

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[141]

 String[] rv = new String[2];
 rv[0] = ccode;
 rv[1] = notes;
 return rv;
 }
}

This class has the same methods as the class that used a CSV file as the data source.
Note that it would be good to define an interface for similar classes and then use, for
example, a factory class to select the correct implementation during run time.

The getConnection()method retrieves a connection from the Geronimo runtime
using the specified data source name, and the closeConnection() method closes
the connection (or returns it to the Geronimo pool).

The other methods in the class that retrieve or update countries in the database are
the ones using plain and simple JDBC calls and SQL scripts.

In order to use this class in our application, we need to configure it to access the
Geronimo Database Pools. For this, we add data source entries to web.xml and
geronimo-web.xml. In the geronimo-web.xml file, we map the database pool that
we created earlier to a data source we have specified in the web.xml file.

The following entry in the geronimo-web.xml file configures our database pool as a
dependency for our application:

<sys:dependencies>
 .
 .
 <sys:dependency>
 <sys:groupId>console.dbpool</sys:groupId>
 <sys:artifactId>EasyAjaxDBPool</sys:artifactId>
 <sys:version>1.0</sys:version>
 <sys:type>rar</sys:type>
 </sys:dependency>
 .
 .
</sys:dependencies>

Moreover, in geronimo-web.xml, there is an entry for mapping a data source name
to the database pool. The following entry is just after the context-root element in
the XML file.

 <resource-ref>
 <ref-name>jdbc/CountryDataSource</ref-name>
 <resource-link>EasyAjaxDBPool</resource-link>
 </resource-ref>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[142]

The next configuration for this example is in the web.xml file, where we set up a
resource reference so that our classes can use it. The following entry is at the end of
the web.xml file.

<resource-ref>
 <res-ref-name>jdbc/CountryDataSource</res-ref-name>
 <res-type>javax.sql.DataSource</res-type>
 <res-auth>Container</res-auth>
 <res-sharing-scope>Shareable</res-sharing-scope>
</resource-ref>

And finally, the last configuration we do here is to change the remoted class in the
dwr.xml file to the new CountryDerbyDB class. In the DWR configuration, we change
the class parameter for CountryDB.

<create creator="new" javascript="CountryDB">
 <param name="class" value="samples.CountryDerbyDB" />
 <include method="getCountries" />
 <include method="saveCountryNotes" />
 <include method="getCountryData" />
</create>

Testing the Database Integration
We verify whether this works by changing the notes of some country and then
checking that these notes were saved to the database. In this example, we change
the note for The Bahamas and then, using the Geronimo Console, we check that
the notes for The Bahamas were indeed stored to the database as shown in the
following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[143]

Afterword
Database integration is very easy to achieve and, in fact does not affect the DWR
functionality in any way. Accessing the database uses just another Java class, and if
we remote it, we can use DWR to access it from the browser.

Integrating with Web Services
In this chapter, we use a third-party web service to do the credit card validation.
This credit card validation service was found (after a quick search) on the Internet,
and it is suitable for our example. The web service is hosted by a company called
Hypercom (http://www.hypercom.com).

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[144]

Developing the Web Service Client
The service is a standard web service with a WSDL description, which makes it
easy for us to integrate it into our application. The WSDL is located at http://www.
tpisoft.com/smartpayments/validate.asmx?WSDL. As is apparent from the URL,
the service is not Java based. In the web services world, the implementation does not
matter as long as the interfaces are standard.

We use built-in tools of Eclipse to generate client-side code for the credit card
validator web service.

1.	 Web services are created using wizards in the Eclipse IDE. Select project
DWREasyAjax, and in the File | New | Other menu, there is a wizard to
create the Web Service Client.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[145]

2.	 Clicking the Next button opens up the next screen of the wizard where we
select the WSDL file for the client and decide whether we want to assemble,
test, or just develop the client. We choose to develop the client since testing
will be done by our application.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[146]

3.	 The service definition has the WSDL URL. We can leave the other
settings at their defaults; pressing Finish will generate classes for the
Web Service Client.
After a brief moment, client classes for the CreditCardValidator web service
are created by Eclipse. The default location is our project's source directory.
The following screenshot shows the generated classes:

There are just a couple of classes that we need: CreditCardValidatorSoap, which
is actually an interface and used indirectly, and CreditCardValidatorSoapProxy,
which is responsible for instantiating the implementation class of the
CreditCardValidatorSoap interface and acting as proxy to the implementation
class. The following is the source code for the CreditCardValidatorSoap interface.
This interface is automatically generated from WSDL, and because the WSDL file
included the documentation for web service operations, Eclipse tooling also provides
the documentation for the generated methods as shown here:

/**
 * CreditCardValidatorSoap.java
 *
 * This file was auto-generated from WSDL
 * by the Apache Axis 1.4 Apr 22, 2006 (06:55:48 PDT) WSDL2Java
emitter.
 */

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[147]

package localhost.SmartPayments;

public interface CreditCardValidatorSoap extends java.rmi.Remote {

 /**
 * Returns the card issuer Visa, MasterCard, AMEX, etc., based
 * on the card number.
 */
 public java.lang.String getCardType(java.lang.String cardNumber)
 throws java.rmi.RemoteException;

 /**
 * Returns (T/F) if the card is a known commercial card
(commercial
 * cards require customer code and sales tax amount to receive
 preferred
 * discount rate pricing.)
 */
 public boolean isCommercialCard(java.lang.String cardNumber)
 throws java.rmi.RemoteException;

 /**
 * Validates the credit card by checking the card length based
 * on the card type, performs a mod 10 checksum and validates the
expiration
 * date. Returns 0 if good, 1001 - no card number, 1002 - no exp
 date,
 * 1003 - invalid card type, 1004 - invalid card length,
 1005 - bad mod
 * 10 check, 1006 - bad expiration date.
 */
 public int validCard(java.lang.String cardNumber, java.lang.String
 expDate) throws java.rmi.RemoteException;

 /**
 * Validates the credit card length by checking the card length
 * based on the card type, Returns (T/F).
 */
 public boolean validCardLength(java.lang.String cardNumber)
 throws java.rmi.RemoteException;

 /**
 * Validates the expiration date by making sure it is a valid
 * date and the card has not expired, Returns (T/F).
 */
 public boolean validExpDate(java.lang.String expDate)
 throws java.rmi.RemoteException;

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[148]

 /**
 * Validates the credit card by performing a mod 10 checksum on
 * the card number, Returns (T/F).
 */
 public boolean validMod10(java.lang.String cardNumber)
 throws java.rmi.RemoteException;

 /**
 * Lookup the Debit Network ID using a Card Number. Network ID
 * is a 3 characters string. If there is a match, the card can
likely
 * be used as a Debit Card and processed through the Debit
network. Possible
 * Network ID: ACL â€" Accel, AFN - AFFN, AKO â€" Alaska Option,
C24 â€" CU24,
 * ILK â€" Interlink, JEN - Jeanie, MAC â€" Star Northeast (MAC),
MAE â€" Maestro,
 * NET - NETS, NYC â€" NYCE, PUL â€" Pulse, SES â€" Star
Southeast, SHZ â€" Shazam,
 * STX â€" Star West, TYM - TYME
 */
 public localhost.SmartPayments.Response getNetworkID(java.
lang.String userName, java.lang.String password, java.lang.String
cardNumber) throws java.rmi.RemoteException;
}

There are several methods defined in the class, but we use only the validCard()
method, which returns 0 if the credit card is valid.

The source code for the CreditCardValidatorSoapProxy class is explained
in the following snippet. This class implements the the CreditCardValidatorSoap
interface.

The source code of CreditCardValidatorSoapProxy is shown here for example
purposes, so we can really appreciate the tooling that is provided by Eclipse.
Developing web services clients manually would mean quite a lot of coding and
understanding of SOAP and other related web service standards, but since Eclipse
has the tools to generate the necessary implementation classes from the WSDL, we
don't really have to worry about SOAP details or other web services "stuff" (other
than how to use the client, of course).

package localhost.SmartPayments;

public class CreditCardValidatorSoapProxy implements localhost.
SmartPayments.CreditCardValidatorSoap {
 private String _endpoint = null;

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[149]

 private localhost.SmartPayments.CreditCardValidatorSoap
 creditCardValidatorSoap = null;

 public CreditCardValidatorSoapProxy() {
 _initCreditCardValidatorSoapProxy();
 }

 public CreditCardValidatorSoapProxy(String endpoint) {
 _endpoint = endpoint;
 _initCreditCardValidatorSoapProxy();
 }

 private void _initCreditCardValidatorSoapProxy() {
 try {
 creditCardValidatorSoap = (new localhost.SmartPayments.
 CreditCardValidatorLocator()).
 getCreditCardValidatorSoap();
 if (creditCardValidatorSoap != null) {
 if (_endpoint != null)
 ((javax.xml.rpc.Stub)creditCardValidatorSoap)._
 setProperty("javax.xml.rpc.service.endpoint.address",
 _endpoint);
 else
 _endpoint = (String)((javax.xml.rpc.Stub)
 creditCardValidatorSoap).
 _getProperty("javax.xml.rpc.service.
 endpoint.address");
 }

 }
 catch (javax.xml.rpc.ServiceException serviceException) {}
 }

 public String getEndpoint() {
 return _endpoint;
 }

 public void setEndpoint(String endpoint) {
 _endpoint = endpoint;
 if (creditCardValidatorSoap != null)
 ((javax.xml.rpc.Stub)creditCardValidatorSoap)._
 setProperty("javax.xml.rpc.service.endpoint.address",
 _endpoint);

 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[150]

 public localhost.SmartPayments.CreditCardValidatorSoap
getCreditCardValidatorSoap() {
 if (creditCardValidatorSoap == null)
 _initCreditCardValidatorSoapProxy();
 return creditCardValidatorSoap;
 }

 public java.lang.String getCardType(java.lang.String cardNumber)
throws java.rmi.RemoteException{
 if (creditCardValidatorSoap == null)
 _initCreditCardValidatorSoapProxy();
 return creditCardValidatorSoap.getCardType(cardNumber);
 }

 public boolean isCommercialCard(java.lang.String cardNumber) throws
 java.rmi.RemoteException{
 if (creditCardValidatorSoap == null)
 _initCreditCardValidatorSoapProxy();
 return creditCardValidatorSoap.isCommercialCard(cardNumber);
 }

 public int validCard(java.lang.String cardNumber, java.lang.String
 expDate) throws java.rmi.RemoteException{
 if (creditCardValidatorSoap == null)
 _initCreditCardValidatorSoapProxy();
 return creditCardValidatorSoap.validCard(cardNumber, expDate);
 }

 public boolean validCardLength(java.lang.String cardNumber) throws
 java.rmi.RemoteException{
 if (creditCardValidatorSoap == null)
 _initCreditCardValidatorSoapProxy();
 return creditCardValidatorSoap.validCardLength(cardNumber);
 }

 public boolean validExpDate(java.lang.String expDate) throws java.
 rmi.RemoteException{
 if (creditCardValidatorSoap == null)
 _initCreditCardValidatorSoapProxy();
 return creditCardValidatorSoap.validExpDate(expDate);
 }

 public boolean validMod10(java.lang.String cardNumber) throws java.
 rmi.RemoteException{

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[151]

 if (creditCardValidatorSoap == null)
 _initCreditCardValidatorSoapProxy();
 return creditCardValidatorSoap.validMod10(cardNumber);
 }

 public localhost.SmartPayments.Response getNetworkID
 (java.lang.String userName, java.lang.String password,
 java.lang.String cardNumber) throws java.rmi.RemoteException{
 if (creditCardValidatorSoap == null)
 _initCreditCardValidatorSoapProxy();
 return creditCardValidatorSoap.getNetworkID(userName, password,
 cardNumber);
 }
}

The above proxy class is automatically generated by Eclipse tooling, and in
most cases, knowledge of the details of the generated classes is not needed. The
proxy class basically initializes yet another automatically generated class for the
CreditCardValidatorSoap interface that has the code to actually call a remote
web service.

Implementing the Web Service Call
The CreditCardValidatorSoapProxy class will be used in our example. We modify
the FormHandler class and replace the implementation of the submitOrder()
method with the following code:

public boolean submitOrder(String name, String address,
 String creditCardNumber, String expiryDate) {
 CreditCardValidatorSoapProxy ccValidatorProxy = new
CreditCardValidatorSoapProxy();
 int rv = -1;
 try {
 rv = ccValidatorProxy.validCard(creditCardNumber,
 expiryDate.replace("/",
 ""));
 if (rv != 0) {
 System.out.println("Credit card check failed: " + rv);
 }
 } catch (RemoteException e) {

 e.printStackTrace();
 }
 return rv == 0;
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[152]

In the above method, we first instantiate the CreditCardValidatorSoapProxy
object and then call its validCard() method to do the credit card validation. The
validCard() method calls the remote web service via Internet. If the credit card
is not valid, a notification is written to the System.out, and the submitOrder()
method returns false. If the credit card is valid, then the submitOrder() method
returns true.

Using the existing tools in Eclipse and just a couple of lines of code, we can integrate
standard web services into our example.

Testing Web Services Integration
We test the web services integration using the form example. Since we have just
updated the form example to use a web service for credit card validation we can
verify whether a web service is called using, for example, the Wireshark network
protocol analyzer (http://www.wireshark.org), or the TCP/IP monitor that comes
with Eclipse tooling. The following is a screenshot of a web service request from
Geronimo to a web service provider:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[153]

The response from the web service is also captured by Wireshark. The following is a
screenshot of the response:

Afterword
Web service integration is just as easy as the database integration shown in
the previous section. Again, DWR and the user interface do not know the
implementation of the remoted Java classes, so the web service integration is very
transparent to users.

Integrating with a Messaging System
The idea behind the messaging example is that our application will send an order
form to the backend system using JMS. The backend system here is a Python script
that accesses the JMS messaging server, ActiveMQ.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[154]

Setting up Queues in Geronimo
In this messaging example, we use an open-source JMS messaging server, ActiveMQ,
that is a part of the Geronimo application server. ActiveMQ is very good for
testing our application since it supports a protocol called STOMP (Streaming Text
Oriented Messaging Protocol, a text based protocol). STOMP enables many kinds
of programming languages to participate in JMS messaging (even Telnet is possible;
useful for quick testing) so we can use the existing tool as our "order system" in our
example. When the "order system" (a Python program) receives the order it verifies
it. Then, we manually send an order confirmation message back to the ActiveMQ
messaging system and to our application. Then our application updates the web
page using the Comet mechanism.

1.	 The first thing to do is to create queues in the ActiveMQ for sending orders
and receiving order confirmations. We use wizards in the Geronimo Server
Console to create queues. JMS resources are found in the console Services |
JMS Resources.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[155]

2.	 In order to create a new queue, we set up a new resource by clicking (Create
a new JMS Resource Group) For ActiveMQ link. The link opens a wizard to
create a new resource group as shown in the following screenshot:

3.	 We only need to set a name for the resource group. We use the name
DWROrderQueue as the queue name for submitting orders. All other
configuration entries can be left to default values. Clicking the Next button
opens a screen as shown next:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[156]

4.	 We want to set up a new destination, so clicking the Add Destination button
opens the screen to Select Destination Type.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[157]

5.	 We use Queue as destination, and in the next screen, we configure the
Destination Name and PhysicalName for the queue. Both are named
DWROrderQueue.

6.	 Clicking on the Next button opens a summary screen showing what we have
created so far.

7.	 Here, we can Add Destination or Add Connection Factory. The button
Deploy Now deploys a queue to Geronimo.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[158]

8.	 We also create DWROrderConfirmationQueue (similar to steps 1-7), and
then we have our queues set up for the example.

Developing the OrderSystem Java Class
The next step is to create a class to call our "order system". Because asynchronous
messaging is used, the class will be started in a thread during order submission. The
OrderSystem in our example is a manual process, and the thread will wait for the
confirmation message and will then use reverse AJAX to update the web page.

The following is the source code for the OrderSystem class:

package samples;

import java.util.Collection;
import java.util.Iterator;
import java.util.Properties;

import javax.jms.Connection;
import javax.jms.ConnectionFactory;
import javax.jms.DeliveryMode;
import javax.jms.Destination;
import javax.jms.MessageConsumer;
import javax.jms.MessageProducer;
import javax.jms.Session;
import javax.jms.TextMessage;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.servlet.ServletContext;

import org.directwebremoting.ScriptBuffer;
import org.directwebremoting.ScriptSession;
import org.directwebremoting.ServerContext;

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[159]

import org.directwebremoting.ServerContextFactory;
import org.directwebremoting.WebContext;
import org.directwebremoting.WebContextFactory;

public class OrderSystem implements Runnable {
 protected Thread worker;
 private ServerContext serverContext;
 private String scriptId = null;
 private String name;
 private String address;
 private String creditCardNumber;
 private String expiryDate;

 public OrderSystem(String name, String address,
 String creditCardNumber,
 String expiryDate) {
 this.name = name;
 this.address = address;
 this.creditCardNumber = creditCardNumber;
 this.expiryDate = expiryDate;
 WebContext webContext = WebContextFactory.get();
 ServletContext servletContext = webContext.getServletContext();

 serverContext = ServerContextFactory.get(servletContext);

 // A bit nasty: the call to serverContext.
 getScriptSessionsByPage()
 // below could fail because the system might need to read
 web.xml which
 // means it needs a ServletContext, which is only available
 using
 // WebContext, which in turn requires a DWR thread. We can cache
 the
 // results simply by calling this in a DWR thread, as we are
 now.
 webContext.getScriptSessionsByPage("");

 scriptId = webContext.getScriptSession().getId();
 worker = new Thread(this, "OrderSystem");
 worker.start();
 }

 public void run() {
 String returnFromOrderSystem = "";
 try {
 Properties props = new Properties();
 props.setProperty(Context.INITIAL_CONTEXT_FACTORY,

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[160]

 "org.apache.activemq.jndi.ActiveMQInitialContextFactory");
 props.setProperty(Context.PROVIDER_URL,
 "tcp://localhost:61616");
 props.setProperty("queue.DWROrderQueue", "DWROrderQueue");
 props.setProperty("queue.DWROrderConfirmationQueue",
 "DWROrderConfirmationQueue");
 javax.naming.Context ctx = new InitialContext(props);
 ConnectionFactory connectionFactory = (ConnectionFactory) ctx
 .lookup("ConnectionFactory");
 Connection connection = connectionFactory.createConnection();
 connection.start();

 Session session = connection.createSession(false,
 Session.AUTO_ACKNOWLEDGE);
 Destination destination = (Destination)
 ctx.lookup("DWROrderQueue");
 MessageProducer producer =
 session.createProducer(destination);
 producer.setDeliveryMode(DeliveryMode.NON_PERSISTENT);

 String orderMessage = "Order from: " + name + ",
 " + address + ","
 + creditCardNumber + "," + expiryDate
 + ". Please return order ID.";
 String receiverQName = "DWROrderConfirmationQueue";
 orderMessage = "ReceiverQueue: " + receiverQName + "|| "
 + orderMessage;
 TextMessage message = session.createTextMessage(orderMessage
);
 producer.send(message);
 Destination receiveDestination = (Destination) ctx
 .lookup(receiverQName);
 MessageConsumer consumer = session
 .createConsumer(receiveDestination);
 TextMessage returnMessage = (TextMessage)
 consumer.receive(60000);
 if (returnMessage == null) {
 returnFromOrderSystem = "<p>Order
confirmation not received. Please contact administrator.</p>";
 } else {
 returnFromOrderSystem = "<p>Order
 confirmation received. Order ID: "
 + returnMessage.getText() + ".</p>";
 }
 session.close();
 connection.close();

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[161]

 } catch (Exception e) {
 e.printStackTrace();
 }
 Collection<ScriptSession> sessions = serverContext
 .getAllScriptSessions();
 for (Iterator<ScriptSession> iterator = sessions.iterator();
 iterator
 .hasNext();) {
 ScriptSession scriptSession = iterator.next();
 if (scriptSession.getId().equals(scriptId)) {
 ScriptBuffer script = new ScriptBuffer("orderProcessed('"
 + returnFromOrderSystem + "')");
 scriptSession.addScript(script);
 }
 }
 }
}

This class uses DWR reverse AJAX functionality. What is interesting about reverse
AJAX here is that it is used from a non-web thread. In this case, when submitting
the order, a new thread is started that sends a message via JMS to OrderSystem and
waits for the response. When the response comes, or a timeout occurs, DWR methods
are used to send a message to the web page.

The constructor of the OrderSystem class uses the DWR functionality to get web
context for the calling web page. The code is provided by DWR and, as the comment
in the source code indicates, it is little "hacky". At the end of the constructor, we
get the script session ID of a calling page so we may send a response back to the
correct web page and the orderProcessed()function can process the response in
the index.jsp file. And finally, the constructor starts the worker thread and returns
control to the calling method.

The run() method first initializes the JNDI initial context and then starts the JMS
connection to the local ActiveMQ. Standard JMS methods are used to send order
messages and then wait for responses to arrive in DWROrderConfirmationQueue.

Setting up the Application for Messaging
In this section, we set up our example application for messaging by developing
JavaScript functions and a Java class for submitting orders. We also set up reverse
AJAX in this section.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[162]

The JavaScript function to receive order confirmation in the web page is as follows
and we add it to index.jsp together with most of the other JavaScript functions.

function orderProcessed(orderConfirmationMessage)
{
 var feedback=dwr.util.byId('formFeedback');
 var html="";
 html=orderConfirmationMessage;
 feedback.innerHTML=html;
}

In order to integrate the order system with the submission process, we change the
code for the submitOrder() method in the FormHandler class. The new code for this
method is as follows:

public boolean submitOrder(String name, String address,
 String creditCardNumber, String expiryDate) {
 CreditCardValidatorSoapProxy ccValidatorProxy = new
CreditCardValidatorSoapProxy();
 int rv = -1;
 try {
 rv = ccValidatorProxy.validCard(creditCardNumber,
 expiryDate.replace("/", ""));
 if (rv != 0) {
 System.out.println("Credit card check failed: " + rv);
 }
 } catch (RemoteException e) {
 e.printStackTrace();
 }
 if(rv==0)

 {
 //credit card valid, submit to order system
 new OrderSystem(name,address,creditCardNumber,expiryDate);
 }
 return rv == 0;
}

The new addition here is after the web service call to the CreditCardValidator
(shown in bold in the previous code). If the credit card is valid, then the
OrderSystem class is instantiated. Because it has a constructor that starts a new
thread for processing, there is no need for any variables. When the thread completes,
there will be no references to the OrderSystem class, and Java's garbage collector will
clean up leftover objects.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[163]

The next step is to enable reverse AJAX for DWR, which is very simple. We just add
the following init parameter to the web.xml file.

<init-param>
 <param-name>activeReverseAjaxEnabled</param-name>
 <param-value>true</param-value>
</init-param>

We also enable reverse AJAX for our application in the index.jsp page. Add the
following line to the loadMenuItems() function in the index.jsp file.

dwr.engine.setActiveReverseAjax(true);

Testing with the Backend OrderSystem
Our "order system" is a Python-based STOMP client for Active MQ. The
Python client is called stomp.py, and it is a open-source library by Jason Briggs
(http://www.briggs.net.nz/log/projects/stomppy/). Python itself can be
downloaded and installed from http://www.python.org. The Python version
2.5.1 is used in this example:

1.	 Testing messaging is done by starting the "order system" using the command
python stomp.py localhost 61613 in the directory, where stomp.py is
located. The command connects to ActiveMQ and opens a session.

2.	 We subscribe to DWROrderQueue using the subscribe /queue/
DWROrderQueue. command.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Backend Integration

[164]

3.	 Now the "order system" waits for orders, and we can use a web application
to submit the order. After the order has been submitted, the ActiveMQ JMS
provider sends a message to the order queue, and because we subscribed
the stomp client to receive the order messages, we get the message in our
"order system".

4.	 We have one minute before a timeout occurs in the web client, so we quickly
send the order confirmation to DWROrderConfirmationQueue using the send
/queue/DWROrderConfirmationQueue 1234567890ABCDEF command.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 6

[165]

5.	 We get the order confirmation back to the web application as is shown in the
following screenshot:

Afterword
Using messaging in a DWR application is easy, just like using a database or web
services. In this case, messaging gives a good channel for a platform to communicate
directly with the user when using reverse AJAX.

Summary
We had three examples for backend integration in this chapter: database, web
services, and messaging. One or more of these are found in almost all applications,
and as the examples presented, DWR is agnostic to backend integration. It is possible
to use the most familiar technology to access databases and other backend services
and let DWR handle only the frontend user interface.

We also saw how Comet technology is used in the DWR messaging example, where
Comet is a natural fit, by providing event-style messaging between the browser and
the server.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications
This chapter includes two sample applications that use some of the functionalities
that were presented in the samples in the previous chapters. The first sample
application is Collaborative Book Authoring, which enables multiple users to
author the same book. The second sample application is a straightforward chat
room application.

These samples concentrate on the DWR functionality, which means that much of
the features of real production-grade applications are missing from the sample
applications. However, the samples show how DWR is used, and it should be easy
to enhance applications to production grade using the samples as a starting point for
development and as a source of ideas.

Two sample applications in this chapter are as follows:

Collaborative Book Authoring—shows how DWR is used to create a
web-based, multi-user authoring environment
Chatroom—a typical multi-user chat room application using DWR

Collaborative Book Authoring
The Collaborative Book Authoring sample application enables multiple users to
work on the same or different books simultaneously. The idea is that an author
logs into a system and he/she sees all the books that are in process, and have been
published. Anyone can start a new book and anyone can contribute to a book (so this
is quite an open process). Also within a book, anyone can start a new chapter and
again anyone can edit the chapter content. The system is built so that only one author
can edit a chapter. If someone is editing a chapter content, and another user tries to
edit it, he/she will see the most recent save of the chapter content.

•

•

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[168]

When the book is finished, authors will vote for publishing. Authors can vote
only once, and a vote cannot be taken back. When all the authors have voted for
publishing, the book is moved to a published status, and it is formatted for reading.

Starting the Project
We start the project by creating a new web project in Eclipse using the name
DWRBookAuthoring. In this case, development starts with the HTML pages. We
need a login page, login failed page, and main page that will hold all the JavaScript
functions. We will also use the CSS from the Dynamic Drive as we did in the
previous chapters.

The following screenshot shows what kind of user interface we are developing:

Developing the User Interface
We start the application development with the user interface. First, we get the
style sheet. The source code of the style sheet is given next. Just like the style sheets
in the previous chapters, this CSS is also from the Dynamic Drive CSS library,
http://www.dynamicdrive.com/style/.

body{
margin:0;
padding:0;
line-height: 1.5em;
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[169]

b{font-size: 110%;}
em{color: red;}

#topsection{
background: #EAEAEA;
height: 90px; /*Height of top section*/
}

#topsection h1{
margin: 0;
padding-top: 15px;
}

#contentwrapper{
float: left;
width: 100%;
}

#contentcolumn{
margin-left: 200px; /*Set left margin to LeftColumnWidth*/
}

#leftcolumn{
float: left;
width: 200px; /*Width of left column*/
margin-left: -100%;
background: #C8FC98;
}

#footer{
clear: left;
width: 100%;
background: black;
color: #FFF;
text-align: center;
padding: 4px 0;
}

#footer a{
color: #FFFF80;
}

.innertube{
margin: 10px; /*Margins for inner DIV inside each column (to provide
padding)*/
margin-top: 0;
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[170]

index.jsp
Our first page is the login page. It is located in the WebContent directory and it is
named index.jsp. The source code for the page is given here (incidentally, the login
page does not use the style sheet).

<%@ page language="java" contentType="text/html; charset=ISO-8859-1"
 pageEncoding="ISO-8859-1"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=ISO-8859-
1">
<title>Book Authoring</title>

<script type='text/javascript' src='/DWRBookAuthoring/dwr/interface/
Login.js'></script>
<script type='text/javascript' src='/DWRBookAuthoring/dwr/engine.
js'></script>
<script type='text/javascript' src='/DWRBookAuthoring/dwr/util.js'>
 </script>

<script type="text/javascript">

function login()
{
 var userNameInput=dwr.util.byId('userName');
 var userName=userNameInput.value;
 Login.doLogin(userName,loginResult);
}

function loginResult(newPage)
{
 window.location.href=newPage;
}

</script>
</head>
<body>
<h1>Book Authoring Sample</h1>
<table cellpadding="0" cellspacing="0">
<tr>
<td>User name:</td>
<td><input id="userName" type="text" size="30"></td>
</tr>
<tr>
<td> </td>
<td><input type="button" value="Login" onclick="login();return
false;"></td>
</tr></table>
</body>
</html>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[171]

The login screen uses the DWR functionality to process the user login (the Java
classes are presented after the web pages). The loginResults function opens either
the failure page or the main page based on the result of the login operation.

loginFailed.html
If the login was unsuccessful, a very simple loginFailed.html page is shown to the
user, the source code for which is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
 "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;
 charset=ISO-8859-1">
<title>Login failed</title>
</head>
<body>
<h2>Login failed.</h2>
</body>
</html>

mainpage.jsp
If the login was successful, we get the main page, mainpage.jsp:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html;
 charset=iso-8859-1" />
<title>Book Authoring</title>
<link href="styles.css" rel="stylesheet" type="text/css" />
<%
 if (session.getAttribute("username") == null
 || session.getAttribute("username").equals("")) {
 //if not logged in and trying to access this page
 //do nothing, browser shows empty page
 return;
 }
%>
<script type='text/javascript'
 src='/DWRBookAuthoring/dwr/interface/Login.js'></script>
<script type='text/javascript'

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[172]

 src='/DWRBookAuthoring/dwr/interface/BookDatabase.js'></script>
<script type='text/javascript'
 src='/DWRBookAuthoring/dwr/engine.js'></script>
<script type='text/javascript' src='/DWRBookAuthoring/dwr/util.js'>
 </script>
<script type="text/javascript">
dwr.engine.setActiveReverseAjax(true);

function logout()
{
 Login.doLogout(showLoginScreen);
}

function showLoginScreen()
{
 window.location.href='index.jsp';
}

function showUsersOnline()
{
 var cellFuncs = [
 function(author) {

 return '<i>'+author+'</i>';
 }
];
 Login.getUsersOnline({
 callback:function(authors)
 {
 dwr.util.removeAllRows('authorsOnline');
 dwr.util.addRows("authorsOnline",authors, cellFuncs,
 { escapeHtml:false });
 }
 });
}

function getBookLists()
{
 var cellFuncs = [
 function(title) {

 return ''+title+
 '';
 }
];

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[173]

 BookDatabase.getBooksInProgressTitles({
 callback:function(titles)
 {
 dwr.util.removeAllRows('booksInProgress');
 dwr.util.addRows("booksInProgress",titles , cellFuncs,
 { escapeHtml:false });
 }
 });

 var cellFuncs2 = [
 function(title) {

 return ''+title+'
 ';
 }
];
 BookDatabase.getPublishedBookTitles({
 callback:function(titles)
 {
 dwr.util.removeAllRows('publishedBooks');
 dwr.util.addRows("publishedBooks",titles , cellFuncs2,
 { escapeHtml:false });
 }
 });
}

function getChapters(element)
{
 var bookTitle=element.firstChild.nodeValue;
 getChaptersForTitle(bookTitle);
}

function showBook(element)
{
 var bookTitle=element.firstChild.nodeValue;
 BookDatabase.getRenderedBook(bookTitle,{
 callback:function(bookContent)
 {
 clearContentAreas();
 //title area is used to show published book
 var contentArea=dwr.util.byId('bookTitleContentArea');
 contentArea.innerHTML=bookContent;
 }
 });
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[174]

function getChaptersForTitle(bookTitle)
{
 clearContentAreas();
 BookDatabase.getChapters(bookTitle,{
 callback:function(titles)
 {
 var titleArea=dwr.util.byId('bookTitleContentArea');
 var html='<h3>Chapters for <div id="chaptersForTitle"><i>'
 +bookTitle+'</i></div></h3>';

 BookDatabase.getAuthors(bookTitle,{
 async:false,
 callback:function(authors)
 {
 html+='Authors: '+authors;
 }
 });
 titleArea.innerHTML=html;
 var cellFuncs = [function(title) {

 return '<a href="#" onclick="getChapterContent
 (\''+bookTitle+'\', \''+title+'\');">'+title+'';
 }
];
 dwr.util.removeAllRows('bookChapters');
 dwr.util.addRows("bookChapters",titles , cellFuncs,
 { escapeHtml:false });
 var insertChapterArea=dwr.util.byId('insertChapterArea');

 var numberOfVotes=0;
 BookDatabase.getNumberOfVotes(bookTitle,{
 async:false,
 callback:function(n)
 {
 numberOfVotes=n;
 }
 });

 var totalNumberOfAuthors=0;
 BookDatabase.getNumberOfAuthors(bookTitle,{
 async:false,
 callback:function(n)
 {
 totalNumberOfAuthors=n;
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[175]

 });
 var voteDisabled='';
 BookDatabase.haveIVoted(bookTitle,{
 async:false,
 callback:function(haveIVoted)
 {
 if(haveIVoted==true)
 {
 voteDisabled='DISABLED';
 }
 }
 });

 insertChapterArea.innerHTML='<a href="#" onclick="addChapter
 (\''+bookTitle+'\');">Add new chapter';
 BookDatabase.amIAuthor(bookTitle,{
 async:false,
 callback:function(amIAuthor)
 {
 if(amIAuthor==true)
 {
 var voteArea=dwr.util.byId('voteArea');
 var voteAreaHtml='<input type="button" value="Vote
for publish" '+voteDisabled+' onclick="voteForPublish(\
''+bookTitle+'\');">';;
 voteAreaHtml+='
Total votes: '+numberOfVotes+'
 /'+totalNumberOfAuthors+'.';
 voteArea.innerHTML=voteAreaHtml;
 }

 }
 });
 }
 });
}

function voteForPublish(bookTitle)
{
 var confirmation=confirm('You can not take back your vote. Are you
 sure that you want to vote?');
 if(confirmation)
 { BookDatabase.voteForPublish(bookTitle,{
 callback:function()
 {
 getChaptersForTitle(bookTitle);

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[176]

 }
 });
 }
}

function refreshChapterIfVisible(bookTitle)
{
 var chaptersForTitle=dwr.util.byId('chaptersForTitle');
 if(chaptersForTitle!=null || chaptersForTitle!=undefined)
 {
 if(chaptersForTitle.innerHTML.indexOf(bookTitle)>-1)
 {
 getChaptersForTitle(bookTitle);
 }
 }
}

function clearChapterViewIfVisible(bookTitle)
{
 var chaptersForTitle=dwr.util.byId('chaptersForTitle');
 if(chaptersForTitle!=null || chaptersForTitle!=undefined)
 {
 if(chaptersForTitle.innerHTML.indexOf(bookTitle)>-1)
 {
 clearContentAreas();
 }
 }
}

function notifyBookPublished(bookTitle)
{
 alert('Book '+bookTitle+' is published. Authors have voted.');
 clearChapterViewIfVisible(bookTitle);
}

function getChapterContent(bookTitle,chapterTitle)
{
 var readonly="";
 var editor="";
 BookDatabase.isChapterEdited(bookTitle,chapterTitle,{
 async:false,
 callback:function(isEdited)
 {
 if(isEdited!=null)
 {
 readonly="readonly";

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[177]

 editor=isEdited;
 }
 }
 });
 BookDatabase.getChapterContent(bookTitle,chapterTitle,{
 callback:function(chapterContent)
 {
 var editChapterArea=dwr.util.byId('editChapterArea');
 var html='<h3>'+chapterTitle+'</h3>';
 if(editor!="")
 {
 html+='Edited by '+editor+'
';
 }
 html+='<textarea '+readonly+' id="chapterContentTextArea"
 rows="10" cols="60">'+chapterContent+'</textarea>
';
 if(readonly=="")
 {
 html+='<input type="button" value="Save"
 onclick="saveChapterContent(\''+bookTitle+'\',
 \''+chapterTitle+'\');">';
 html+='<input type="button" value="Cancel"
 onclick="cancelChapterContentEdit(\''+bookTitle+'\',
 \''+chapterTitle+'\');">';
 }
 else
 {
 html+='<input type="button" value="Cancel" onclick=
 "closeChapterContentEdit();">';

 }
 editChapterArea.innerHTML=html;
 }
 });
 return false;
}

function cancelChapterContentEdit(bookTitle,chapterTitle)
{
 BookDatabase.cancelChapterEdit(bookTitle,chapterTitle);
 var editChapterArea=dwr.util.byId('editChapterArea');
 editChapterArea.innerHTML='';
 return false;
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[178]

function closeChapterContentEdit()
{
 var editChapterArea=dwr.util.byId('editChapterArea');
 editChapterArea.innerHTML='';
 return false;
}

function saveChapterContent(bookTitle,chapterTitle)
{
 var editChapterArea=dwr.util.byId('chapterContentTextArea');
 var content=editChapterArea.value;
 BookDatabase.saveChapterContent(bookTitle,chapterTitle,content,{
 callback:function()
 {
 setFeedback('Content saved.');
 }
 });
 return false;
}

function setFeedback(feedback)
{
 var feedbackArea=dwr.util.byId('feedbackArea');
 feedbackArea.innerHTML=(new Date())+":
"+feedback;
}

function startNewBook()
{
 var bookTitle=prompt("Book title:");
 if(bookTitle!=null)
 {
 BookDatabase.addNewBook(bookTitle,refreshBookLists);
 }
 return false;
}

function addChapter(bookTitle)
{
 //dialog to ask book title
 var chapterTitle=prompt("Chapter name:");
 if(chapterTitle!=null)
 {
 BookDatabase.insertChapter(bookTitle,chapterTitle,{
 callback:function()
 {
 getChaptersForTitle(bookTitle);

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[179]

 }
 });
 }
 return false;
}

function refreshBookLists()
{
 getBookLists();
}

function clearContentAreas()
{
 var area=dwr.util.byId('feedbackArea');
 area.innerHTML='';

 area=dwr.util.byId('bookTitleContentArea');
 area.innerHTML='';

 dwr.util.removeAllRows('bookChapters');

 area=dwr.util.byId('insertChapterArea');
 area.innerHTML='';

 area=dwr.util.byId('voteArea');
 area.innerHTML='';

 area=dwr.util.byId('editChapterArea');
 area.innerHTML='';
}

</script>

</head>
<body onload="showUsersOnline();">
<div id="maincontainer">

<div id="topsection">
<div class="innertube">
<h1>Book Authoring</h1>
<h4>Welcome <i><%=(String) session.getAttribute("username")%></i></h4>
</div>
</div>

<div id="contentwrapper">
<div id="contentcolumn">
<div id="bookContent" class="innertube">
<div id="feedbackArea"></div>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[180]

<div id="bookTitleContentArea"></div>
<table cellpadding="0" cellspacing="0">
 <tbody id="bookChapters">
 </tbody>
</table>

<div id="insertChapterArea"></div>
<div id="voteArea"></div>

<div id="editChapterArea"></div>

</div>
</div>
</div>

<div id="leftcolumn">
<div class="innertube">
<table cellpadding="0" cellspacing="0">
 <thead>
 <tr>
 <td>Books in process</td>
 </tr>
 </thead>
 <tbody id="booksInProgress">
 </tbody>
 <tfoot>
 <tr>
 <td>Start new book
 </td>
 </tr>
 </tfoot>
</table>

<table cellpadding="0" cellspacing="0">
 <thead>
 <tr>
 <td>Published books</td>
 </tr>
 </thead>
 <tbody id="publishedBooks">
 </tbody>
</table>

<table cellpadding="0" cellspacing="0">
 <thead>
 <tr>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[181]

 <td>Authors online</td>
 </tr>
 </thead>
 <tbody id="authorsOnline">
 </tbody>
</table>

<input id="logoutButton" type="button" value="Logout"
 onclick="logout();return false;"></div>

</div>

<div id="footer">Stylesheet by Dynamic Drive CSS
 Library</div>

</div>
<script type="text/javascript">
getBookLists();
</script>
</body>
</html>

This is quite a large page since all the client-side logic is included in the JavaScript
functions within this HTML page. Let's go through the page source.

At the start of the page, before declaring the DWR functions, there is a piece of Java
code whose purpose is to check whether the page request is valid or not. It is done by
checking the user session, and if the username is found from the session, the request
is valid and if the username is not found from the session, then an empty screen is
shown to the user. This is because we don't want users to go directly to the main
page (when doing further development, the login page could be shown here, instead
of an empty page).

After checking the user session we load the DWR scripts. We have only two Java
classes in this sample application, Login and BookDatabase.

At the start of the script element, we enable reverse AJAX (Comet) for our use. The
first two functions do the logout, and redirect the user to the login screen while
the third function, showUsersOnline(), displays logged-in users on the left side
of the screen. As we will see later, reverse AJAX is used to call this on each user's
page when a new user logs into the system. The function also uses the DWR utility
functions to populate tables with usernames.

The getBookLists()function calls the BookDatabase Java class and retrieves a list
of books that are in progress and books that are published. It shows the lists in the
HTML page's left navigation. For a book that is in progress, a link to open a chapter
page is created, and for published books, a link to open the book page
is created.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[182]

The getChapters() function calls the getChaptersForTitle() function, which
calls the BookDatabase class and gets the chapter titles for the clicked book. The
function also inserts the voting button for authors, and shows the current situation of
votes, and shows the number of authors who have voted among the total.

The showBook() function retrieves a rendered book from the BookDatabase and
shows it in the HTML page.

The function voteforPublish() takes the user's vote and updates the voting
status of the specified book. The refreshChapterIfVisible() function
updates the user's screen if changes happen in the book content, and the
clearChapterViewIfVisible() function clears the contents of the book if a user is
viewing it and the book is voted to be published.

The notifyBookPublished() function notifies the user that a book has been
published and clears the book content if it is visible.

The getChapterContent() function shows the chapter content in the editable
text area where the user can edit a chapter. If someone else is currently editing the
chapter, the read-only text area is shown to the user, and the content of the area is the
latest content that has been saved by the author.

The cancelChapterContentEdit(), closeChapterContentEdit(), and the
saveChapterContent() functions correspond to the buttons with the same name in
the chapter edit page. The save function also calls the setFeedback() function to
show the user the time of the save event.

The startNewBook() and addChapter() functions are used to add a book or a
chapter in a book. The refreshBookLists() function just calls the getBookLists()
function to get the current books in the user interface. The last function,
clearContentAreas(), clears the book content.

The rest of the page is HTML code, and the content includes the headlines and the
place holders, and div elements, that are used by JavaScript functions.

Configuring the Web Application
Before getting to the Java code, we need to set up DWR for our web application.
We copy the dwr.jar file to the WEB-INF | lib directory and set up the web.xml
file as shown:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.sun.
com/xml/ns/javaee/web-app_2_5.xsd" xsi:schemaLocation="http://java.
sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[183]

5.xsd" id="WebApp_ID" version="2.5">
 <display-name>DWRBookAuthoring</display-name>
 <servlet>
 <display-name>DWR Servlet</display-name>
 <servlet-name>dwr-invoker</servlet-name>
 <servlet-class>
 org.directwebremoting.servlet.DwrServlet
 </servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>activeReverseAjaxEnabled</param-name>
 <param-value>true</param-value>
 </init-param>

 </servlet>

 <servlet-mapping>
 <servlet-name>dwr-invoker</servlet-name>
 <url-pattern>/dwr/*</url-pattern>
 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>default.html</welcome-file>
 <welcome-file>default.htm</welcome-file>
 <welcome-file>default.jsp</welcome-file>
 </welcome-file-list>
</web-app>

Configuration for DWR is in the dwr.xml file and is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dwr PUBLIC
 "-//GetAhead Limited//DTD Direct Web Remoting 2.0//EN"
 "http://getahead.org/dwr/dwr20.dtd">

<dwr>
 <allow>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[184]

 <create creator="new" javascript="Login">
 <param name="class" value="bookauthoring.Login" />
 </create>

 <create creator="new" javascript="BookDatabase">
 <param name="class" value="bookauthoring.BookDatabase" />
 </create>

</allow>
</dwr>

In the DWR configuration, there are the two Java classes that we use in this project,
Login and BookDatabase.

Developing the Java Classes
There are several Java classes in the application, and we start by developing the
Login class.

Login.java
The Login class handles the user login and logout and also keeps track of the
logged-in users. The source code of the Login class is as follows:

package bookauthoring;

import java.util.Collection;
import java.util.List;

import javax.servlet.ServletContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import org.directwebremoting.ScriptSession;
import org.directwebremoting.ServerContext;
import org.directwebremoting.ServerContextFactory;
import org.directwebremoting.WebContext;
import org.directwebremoting.WebContextFactory;
import org.directwebremoting.proxy.ScriptProxy;

public class Login {

 public Login() {
 }

 public String doLogin(String userName) {
 UserDatabase userDb=UserDatabase.getInstance();

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[185]

 if(!userDb.isUserLogged(userName)) {
 userDb.login(userName);
 WebContext webContext= WebContextFactory.get();
 HttpServletRequest request = webContext.
 getHttpServletRequest();
 HttpSession session=request.getSession();
 session.setAttribute(«username», userName);
 String scriptId = webContext.getScriptSession().getId();
 session.setAttribute(«scriptSessionId», scriptId);
 updateUsersOnline();
 return «mainpage.jsp»;
 }
 else {
 return «loginFailed.html»;
 }
 }

 public void doLogout() {
 try {
 WebContext ctx = WebContextFactory.get();
 HttpServletRequest request = ctx.getHttpServletRequest();
 HttpSession session = request.getSession();
 Util util = new Util();
 String userName = util.getCurrentUserName(session);
 UserDatabase.getInstance().logout(userName);
 session.removeAttribute("username");
 session.removeAttribute("scriptSessionId");
 session.invalidate();
 } catch (Exception e) {
 System.out.println(e.toString());
 }
 updateUsersOnline();
 }

 private void updateUsersOnline() {
 WebContext webContext= WebContextFactory.get();
 ServletContext servletContext = webContext.getServletContext();
 ServerContext serverContext = ServerContextFactory.
 get(servletContext);
 webContext.getScriptSessionsByPage("");
 String contextPath = servletContext.getContextPath();
 if (contextPath != null) {
 Collection<ScriptSession> sessions =
 serverContext.getScriptSessionsByPage
 (contextPath + "/mainpage.jsp");

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[186]

 ScriptProxy proxy = new ScriptProxy(sessions);
 proxy.addFunctionCall(«showUsersOnline»);
 }
 }

 public List<String> getUsersOnline() {
 UserDatabase userDb=UserDatabase.getInstance();
 return userDb.getLoggedInUsers();
 }
}

The doLogin() method handles the user login. Note that there is no password
checking in this sample application. If the user is not already logged in, the username
is added to the UserDatabase class (its source code is presented shortly) and the
user name is added to the HTTP session. The doLogin() method returns
the name of the page that is shown to the user, be it the main page or the login
failure page.

The doLogout() method does the reverse, removes the username from the
UserDatabase and from the HTTP session.

The updateUsersOnline() method uses reverse AJAX to update the logged-in users
list in the web pages of users who are logged in. The getUsersOnline()method
returns the list of logged-in users from the UserDatabase class.

UserDatabase.java
The following is the source code of the UserDatabase class:

package bookauthoring;

import java.util.List;
import java.util.Vector;

//this class holds currently logged in users
//there is no persistence
public class UserDatabase {

 private static UserDatabase userDatabase=new UserDatabase();

 private List<String> loggedInUsers=new Vector<String>();

 private UserDatabase() {
}

 public static UserDatabase getInstance() {
 return userDatabase;
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[187]

 public List<String> getLoggedInUsers() {
 return loggedInUsers;
 }

 public boolean isUserLogged(String userName) {
 return loggedInUsers.contains(userName);
 }

 public void login(String userName) {
 loggedInUsers.add(userName);
 }

 public void logout(String userName) {
 loggedInUsers.remove(userName);
 }
}

The UserDatabase class is a very simple singleton that keeps track of only the
logged-in users in a List object. There is no persistence, but it could be added easily
in this class.

Util.java
The Util class is used by the Login class, and it provides helper methods for the
sample application.

package bookauthoring;

import java.util.Hashtable;
import java.util.Map;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import org.directwebremoting.WebContext;
import org.directwebremoting.WebContextFactory;

public class Util {

 public Util() {

 }

 public String getCurrentUserName() {
 //get user name from session

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[188]

 WebContext ctx = WebContextFactory.get();
 HttpServletRequest request = ctx.getHttpServletRequest();
 HttpSession session=request.getSession();
 return getCurrentUserName(session);
 }

 public String getCurrentUserName(HttpSession session) {
 String userName=(String)session.getAttribute("username");
 return userName;
 }
}

The two methods, getCurrentUserName() and getCurrentUserName(HttpSession
), are used for getting the usernames from an HTTP session, and they are used
in various places in the application. So it makes sense to introduce a utility class
for them.

Book.java
The Book class is the actual book object that gets populated when we write the book.
This class holds the book title, authors, and so on.

The source code for the Book class is as follows:

package bookauthoring;

import java.util.Collection;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;
import java.util.Vector;

public class Book {

 private String title="";
 private List<String> authors=new Vector<String>();
 private Map<String,String> chapters=new LinkedHashMap
 <String,String>();

 private List<String> votesForPublish=new Vector<String>();

 private boolean isPublished=false;

 public Book() {

 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[189]

 public void insertChapter(String chapterTitle,
 String chapterContent) {
 chapters.put(chapterTitle, chapterContent);
 }

 public Collection<String> getChapterTitles() {
 return chapters.keySet();
 }

 public String getChapter(String chapterTitle) {
 return chapters.get(chapterTitle);
 }

 public void addAuthor(String author) {
 if(!authors.contains(author)){
 authors.add(author);
 }
 }

 public List<String> getAuthors() {
 return authors;
 }

 public int getNumberOfAuthors() {
 return authors.size();
 }

 public int getNumberOfVotes() {
 return votesForPublish.size();
 }

 public void voteForPublish(String author) {
 if(authors.contains(author)) {
 if(!votesForPublish.contains(author)) {
 votesForPublish.add(author);
 if(votesForPublish.size()==authors.size()) {
 isPublished=true;
 }
 }
 }
 }

 public boolean isPublished() {
 return isPublished;
 }

 public boolean haveIVoted(String author) {
 return votesForPublish.contains(author);
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[190]

 public String getTitle() {		
 return title;
 }

 public void setTitle(String title) {
 this.title = title;
 }

 public String toString() {
 StringBuffer sb=new StringBuffer();
 sb.append("<h1>");
 sb.append(getTitle());
 sb.append("</h1>");
 sb.append("<p>Authors: <i>");
 for(String author : getAuthors()) {
 sb.append(author);
 sb.append(';');
 }
 sb.append("</i></p>");
 for (String title : getChapterTitles()) {
 sb.append("<h3>");
 sb.append(title);
 sb.append("</h3>");
 sb.append(getChapter(title));		
 }
 return sb.toString();
 }
}

The Book class has fields for authors (a List), a Map that holds all the chapters
(implementation of the Map is ordered LinkedHashMap) and also fields for votes and
a boolean to indicate whether or not the book is published. The toString()method
returns the rendered book content ready for viewing in the web page.

BookDatabase.java
The actual book database is the BookDatabase class. It has methods that are remoted
and used by the JavaScript function in the mainpage.jsp file. All the logic is in the
class, and its source code is as follows:

package bookauthoring;

import java.util.Collection;
import java.util.Hashtable;
import java.util.LinkedHashMap;
import java.util.List;
import java.util.Map;

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[191]

import java.util.Vector;

import javax.servlet.ServletContext;

import org.directwebremoting.ScriptSession;
import org.directwebremoting.ServerContext;
import org.directwebremoting.ServerContextFactory;
import org.directwebremoting.WebContext;
import org.directwebremoting.WebContextFactory;
import org.directwebremoting.proxy.ScriptProxy;

public class BookDatabase {

 private static Map<String, Book> booksInProgress = new
LinkedHashMap<String, Book>();
 private static Map<String, Book> publishedBooks = new
LinkedHashMap<String, Book>();
 private static Map<String, String> editedChapters = new
Hashtable<String, String>();

 public BookDatabase() {
 }

 public List<String> getBooksInProgressTitles() {
 return getTitles(booksInProgress.values());
 }

 public List<String> getPublishedBookTitles() {
 return getTitles(publishedBooks.values());
 }

 public Collection<String> getChapters(String bookTitle) {
 Book book = getBook(bookTitle);
 if (book != null) {
 return book.getChapterTitles();
 }
 return null;
 }

 public String isChapterEdited(String bookTitle,
 String chapterTitle)
 {
 String isEdited = editedChapters.get(bookTitle + chapterTitle);
 return isEdited;
 }

 public void cancelChapterEdit(String bookTitle,String chapterTitle)
 {
 editedChapters.remove(bookTitle + chapterTitle);
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[192]

 public List<String> getAuthors(String bookTitle) {
 Book book = getBook(bookTitle);
 if (book != null) {
 return book.getAuthors();
 }

 return null;
 }

 private List<String> getTitles(Collection<Book> books) {
 List<String> titles = new Vector<String>();
 for (Book book : books) {
 titles.add(book.getTitle());
 }
 return titles;
 }

 private Book getBook(String bookTitle) {
 return getBook(bookTitle, false);
 }

 private Book getBook(String bookTitle, boolean
 getGromPublishedBook)
 {
 if (getGromPublishedBook) {
 if (publishedBooks.containsKey(bookTitle)) {
 return publishedBooks.get(bookTitle);
 }

 } else {
 if (booksInProgress.containsKey(bookTitle)) {
 return booksInProgress.get(bookTitle);
 }
 }
 return null;
 }

 public void addNewBook(String title) {
 if (!booksInProgress.containsKey(title)) {
 Book newBook = new Book();
 newBook.setTitle(title);
 String userName = (new Util()).getCurrentUserName();
 newBook.addAuthor(userName);
 booksInProgress.put(title, newBook);
 refreshBookList();
 }
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[193]

 public void insertChapter(String bookTitle, String chapterTitle) {
 Book book = getBook(bookTitle);
 if (book != null) {
 String userName = (new Util()).getCurrentUserName();
 if (!book.getAuthors().contains(userName)) {
 book.addAuthor(userName);
 }
 book.insertChapter(chapterTitle, "");
 refreshChapterIfVisible(bookTitle);
 }
 }

 public String getChapterContent(String bookTitle, String
 chapterTitle)
 {
 Book book = getBook(bookTitle);
 String content = "";
 if (book != null) {
 content = book.getChapter(chapterTitle);
 if (content == null) {
 content = "";
 }
 }
 String key = bookTitle + chapterTitle;
 if (!editedChapters.containsKey(key)) {
 editedChapters.put(key, (new Util()).getCurrentUserName());
 }

 return content;
 }

 public void saveChapterContent(String bookTitle,
 String chapterTitle, String content)
 {
 Book book = getBook(bookTitle);
 if (book != null) {
 String userName = (new Util()).getCurrentUserName();
 if (!book.getAuthors().contains(userName)) {
 book.addAuthor(userName);
 }
 book.insertChapter(chapterTitle, content);
 }
 }

 public boolean amIAuthor(String bookTitle) {
 Book book = getBook(bookTitle);
 if (book != null) {

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[194]

 String userName = (new Util()).getCurrentUserName();
 return book.getAuthors().contains(userName);
 }
 return false;
 }

 public boolean haveIVoted(String bookTitle) {
 Book book = getBook(bookTitle);
 if (book != null) {
 String userName = (new Util()).getCurrentUserName();
 return book.haveIVoted(userName);
 }
 return false;
 }

 public int getNumberOfAuthors(String bookTitle) {
 Book book = getBook(bookTitle);
 if (book != null) {
 return book.getAuthors().size();
 }
 return 0;
 }

 public int getNumberOfVotes(String bookTitle) {
 Book book = getBook(bookTitle);
 if (book != null) {
 return book.getNumberOfVotes();
 }
 return 0;
 }

 public void voteForPublish(String bookTitle) {
 Book book = getBook(bookTitle);
 if (book != null) {
 String userName = (new Util()).getCurrentUserName();
 book.voteForPublish(userName);
 if (book.isPublished()) {
 informBookPublished(bookTitle);
 booksInProgress.remove(bookTitle);
 publishedBooks.put(bookTitle, book);
 refreshBookList();
 }
 refreshChapterIfVisible(bookTitle);
 }
 }

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[195]

 public String getRenderedBook(String bookTitle) {
 Book book = getBook(bookTitle, true);
 if (book != null) {
 return book.toString();
 }
 return "";
 }

 private ScriptProxy getScriptProxyForSessions() {
 WebContext webContext = WebContextFactory.get();
 ServletContext servletContext = webContext.getServletContext();
 ServerContext serverContext = ServerContextFactory.
 get(servletContext);
 webContext.getScriptSessionsByPage("");
 String contextPath = servletContext.getContextPath();
 if (contextPath != null) {
 Collection<ScriptSession> sessions = serverContext
 .getScriptSessionsByPage(contextPath +
 "/mainpage.jsp");
 ScriptProxy proxy = new ScriptProxy(sessions);
 return proxy;
 }
 return null;
 }

 public void refreshBookList() {
 ScriptProxy proxy =getScriptProxyForSessions();
 if(proxy!=null) {
 proxy.addFunctionCall(«getBookLists»);
 }
 }

 public void refreshChapterIfVisible(String bookTitle) {
 ScriptProxy proxy =getScriptProxyForSessions();
 if(proxy!=null) {
 proxy.addFunctionCall("refreshChapterIfVisible", bookTitle);
 }
 }

 public void informBookPublished(String bookTitle) {
 ScriptProxy proxy =getScriptProxyForSessions();
 if(proxy!=null) {
 proxy.addFunctionCall("notifyBookPublished", bookTitle);
 }
 }
}

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[196]

The BookDatabase class has three static Map variables: booksInProgress,
publishedBooks, and editedChapters. These hold the current state of the Book
Authoring system about which books are in progress, and which have been
published. Note that the books are not persistent.

The getBooksInProgressTitles() and getPublishedBookTitles() methods use
the getTitles() method that takes a Collection of books and extracts title names
from the Book objects and returns a List of titles to the browser.

The getChapters() method returns the Collection of chapter titles in a specified
Book object.

The isChapterEdited() method checks whether a specified chapter in a specified
book is currently being edited by a user or not. If the chapter is not being edited, the
method returns null.

The cancelChapterEdit()method removes a chapter from the edited chapters list.

The getAuthors()method returns a List of authors of a specified book.

The getBook() method returns a Book object either from booksInProgress List or
publishedBooks List.

The addNewBook() and insertChapter() methods start a new book or insert a new
chapter to an existing book, and also update the necessary variables and use reverse
AJAX to notify all the browsers about the changes.

The getChapterContent() method returns the chapter contents and marks the
chapter as being edited if no one is editing it currently. The saveChapterContent()
method saves the chapter and updates the author list if necessary.

The amIAuthor() method checks whether or not the current user is one of the
book authors.

The haveIVoted(), getNumberOfAuthors(), and voteForPublish() methods are
used to check if the user has already voted and to vote for publishing, in which case
the user interface is updated using reverse AJAX about the new voting status.

The getRenderedBook() method returns the rendered book content. Rendering of
the book happens in the Book object's toString() method.

The getScriptProxyForSessions() method is used in reverse AJAX, and it returns
the DWR object ScriptProxy for all the users in the main page of the application.
The ScriptProxy object is used to call a named JavaScript function in the main page.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[197]

The refreshBookList(), refreshChapterIfVisible(), and
informBookPublished() methods call the JavaScript functions in the main page and
notify relevant changes to the users who have logged in to the application.

Testing Collaborative Book Authoring
Now our Book Authoring sample application is ready for testing. The test scenario
we use here is a use case where two authors log into the system and work on the
same book. The following screenshots show how Collaborative Book Authoring
works in practice.

Two users, Smith and Brown, are authoring the same book. The login screen
is where the user enters his or her name and enters the main page of the
sample application.

Smith logs in first and sees the following page:

The Authors online table shows only Smith at first, and when Brown logs in, then
Smith's screen is updated with a new username in the Authors online table as is
shown in the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[198]

Now that Brown has logged in, he starts a new book. He clicks the Start new book
link and a dialog box pops up asking for the name of the book.

After Brown enters the name, the Books in progress list is updated in both the
browsers. Smith can now see the new book in progress in the following screenshot:

Smith clicks the Our First Book link, and a screen with the list of chapters opens, and
he can see that Brown is currently the only author of this book.

Smith decides to start a new chapter. He clicks the Add new chapter link and enters
the name of the chapter.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[199]

Now both the users can see that there is only one chapter in the book, and because
Smith has added a chapter, he is also listed as the author. Both users now have now
the voting button. The following screenshot illustrates the current situation:

Brown decides to edit Chapter One and he clicks the link to open the chapter and
edit the chapter as shown in the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[200]

While Brown is editing, Smith also wants to edit the same chapter. He also clicks the
chapter link but he cannot edit because he sees that Brown is editing the chapter at
the same time. The chapter content is still empty because Brown has not saved the
chapter yet.

Smith cancels the edit and at the same time, Brown saves the chapter. A little later,
Smith decides to edit the same chapter. Now he can edit the chapter and sees the
content that Brown wrote and he adds some new content.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[201]

This way, two users can author the same book and when it is ready, authors can vote
to publish it.

Two chapters have been added, and Brown has already voted for publishing. Smith
clicks the Vote for publish button and is informed that he cannot take back his vote.
Because Brown already voted, and there are only two authors in this book, the book
will be published and moved to the Published books table on the left navigation.

All logged-in users get the notification that a book has been published as shown in
the following screenshot:

When the user clicks OK in the dialog box, the user interface is updated to reflect the
published book. When viewing a published book, it is rendered to HTML for better
viewing similar to the following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[202]

Afterword
This sample application—Collaborative Book Authoring—showed how to use DWR
to create interactive multi-user applications.

Although the application shows only the basic features of collaborative possibilities,
it is quite clear that without DWR and its reverse AJAX features, this kind of
application would be difficult to write.

Chatroom
The Chatroom sample application is a very typical multi-user chatroom. The
functionalities of this sample include a list of online users, automatic refresh of chat
text, and the ability to send messages to the chat room.

Some of the code here is taken directly from the previous Book Authoring sample.
Only the package names have been changed while the rest of the code is basically
just copy-pasted to a new class

Re-use by copy-paste is not a recommended practice, but it is done here in order to
keep these samples self-contained without dependencies to other samples.

Starting the Project and Configuration
We start by creating a new project for our chat room, with the project name
DWRChatRoom. We also need to add the dwr.jar file to the lib directory and enable
DWR in the web.xml file. The following is the source code of the dwr.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE dwr PUBLIC
 "-//GetAhead Limited//DTD Direct Web Remoting 2.0//EN"
 "http://getahead.org/dwr/dwr20.dtd">

<dwr>
 <allow>
 <create creator="new" javascript="Login">
 <param name="class" value="chatroom.Login" />
 </create>
 <create creator="new" javascript="ChatRoomDatabase">
 <param name="class" value="chatroom.ChatRoomDatabase" />
 </create>

</allow>
</dwr>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[203]

The source code for web.xml is as follows:

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns="http://java.sun.com/xml/ns/javaee" xmlns:web="http://java.sun.
com/xml/ns/javaee/web-app_2_5.xsd" xsi:schemaLocation="http://java.
sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_
5.xsd" id="WebApp_ID" version="2.5">
 <display-name>DWRChatRoom</display-name>
<servlet>
 <display-name>DWR Servlet</display-name>
 <servlet-name>dwr-invoker</servlet-name>
 <servlet-class>
 org.directwebremoting.servlet.DwrServlet
 </servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>activeReverseAjaxEnabled</param-name>
 <param-value>true</param-value>
 </init-param>
 </servlet>
 <servlet-mapping>
 <servlet-name>dwr-invoker</servlet-name>
 <url-pattern>/dwr/*</url-pattern>
 </servlet-mapping>

 <welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>default.html</welcome-file>
 <welcome-file>default.htm</welcome-file>
 <welcome-file>default.jsp</welcome-file>
 </welcome-file-list>
</web-app>

Developing the User Interface
The next step we do is to create files for presentation: style sheet and HTML/JSP
files. Here, we re-use files from the previous DWRBookAuthoring sample. The
syle sheet is the same, loginFailed.html is the same and index.jsp has only one
change, and that is the title of the page. These pages are not presented here, and their
functionality is described in the previous section.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[204]

The main page, mainpage.jsp, includes all the client-side logic of our ChatRoom
application. The source code for the page is as follows:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-
1" />
<title>Chatroom</title>
<link href="styles.css" rel="stylesheet" type="text/css" />
<%
 if (session.getAttribute("username") == null
 || session.getAttribute("username").equals("")) {
 //if not logged in and trying to access this page
 //do nothing, browser shows empty page
 return;
 }
%>
<script type='text/javascript' src='/DWRChatRoom/dwr/interface/Login.
js'></script>
<script type='text/javascript' src='/DWRChatRoom/dwr/interface/
ChatRoomDatabase.js'></script>
<script type='text/javascript' src='/DWRChatRoom/dwr/engine.js'></
script>
<script type='text/javascript' src='/DWRChatRoom/dwr/util.js'></
script>

<script type="text/javascript">
dwr.engine.setActiveReverseAjax(true);

function logout()
{
 Login.doLogout(showLoginScreen);
}

function showLoginScreen()
{
 window.location.href='index.jsp';
}

function showUsersOnline()
{
 var cellFuncs = [
 function(user) {

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[205]

 return '<i>'+user+'</i>';
 }
];
 Login.getUsersOnline({
 callback:function(users)
 {
 dwr.util.removeAllRows('usersOnline');
 dwr.util.addRows("usersOnline",users, cellFuncs,
 { escapeHtml:false });
 }
 });
}

function getPreviousMessages()
{
 ChatRoomDatabase.getChatContent({
 callback:function(messages)
 {
 var chatArea=dwr.util.byId('chatArea');
 var html="";
 for(index in messages)
 {
 var msg=messages[index];
 html+=msg;
 }
 chatArea.innerHTML=html;
 var chatAreaHeight = chatArea.scrollHeight;
 chatArea.scrollTop = chatAreaHeight;
 }
 });

}

function newMessage(message)
{
 var chatArea=dwr.util.byId('chatArea');
 var oldMessages=chatArea.innerHTML;
 chatArea.innerHTML=oldMessages+message;
 var chatAreaHeight = chatArea.scrollHeight;
 chatArea.scrollTop = chatAreaHeight;
}

function sendMessageIfEnter(event)
{
 if(event.keyCode == 13)

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[206]

 {
 sendMessage();
 }
}

function sendMessage()
{
 var message=dwr.util.byId('messageText');
 var messageText=message.value;
 ChatRoomDatabase.postMessage(messageText);
 message.value='';
}
</script>
</head>
<body onload="showUsersOnline();">
<div id="maincontainer">

<div id="topsection">
<div class="innertube">
<h1>Chatroom</h1>
<h4>Welcome <i><%=(String) session.getAttribute("username")%></i></h4>
</div>
</div>

<div id="contentwrapper">
<div id="contentcolumn">
<div id="chatArea" style="width: 600px; height: 300px; overflow:
auto">
</div>
<div id="inputArea">
<h4>Send message</h4>
<input id="messageText" type="text" size="50"
 onkeyup="sendMessageIfEnter(event);">
<input type="button" value="Send msg" onclick="sendMessage();">
</div>
</div>
</div>

<div id="leftcolumn">
<div class="innertube">

<table cellpadding="0" cellspacing="0">
 <thead>
 <tr>
 <td>Users online</td>

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[207]

 </tr>
 </thead>
 <tbody id="usersOnline">
 </tbody>
</table>

<input id="logoutButton" type="button" value="Logout"
 onclick="logout();return false;"></div>

</div>

<div id="footer">Stylesheet by

 Dynamic Drive CSS Library</div>
</div>
<script type="text/javascript">
getPreviousMessages();
</script>

</body>
</html>

The functionality at the beginning of the page is the same as in the mainpage.jsp
page in the previous DWRBookAuthoring sample.

The first chat-room-specific JavaScript function is getPreviousMessages().
This function is called at the end of mainpage.jsp, and it retrieves previous chat
messages for this chat room.

The newMessage() function is called by the server-side Java code when a new
message is posted to the chat room. The function also scrolls the chat area
automatically to show the latest message.

The sendMessageIfEnter() and sendMessage() functions are used to send user
messages to the server. There is the input field for the message text in the HTML
code, and the sendMessageIfEnter() function listens to onkeyup events in the
input field. If the user presses enter, the sendMessage() function is called to send the
message to the server.

The HTML code includes the chat area of specified size and with automatic scrolling.

Developing the Java Code
The Java code for the chat room sample uses the same classes as the
DWRBookAuthoring sample. The Login, UserDatabase and Util classes are the
same except that the package name is different. The logic for the server-side chat
room functionality is in the ChatRoomDatabase class. The source code for the
ChatRoomDatabase is as follows:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[208]

package chatroom;

import java.util.Collection;
import java.util.Date;
import java.util.List;
import java.util.Vector;

import javax.servlet.ServletContext;

import org.directwebremoting.ScriptSession;
import org.directwebremoting.ServerContext;
import org.directwebremoting.ServerContextFactory;
import org.directwebremoting.WebContext;
import org.directwebremoting.WebContextFactory;
import org.directwebremoting.proxy.ScriptProxy;

public class ChatRoomDatabase {

 private static List<String> chatContent = new Vector<String>();

 public ChatRoomDatabase() {

 }

 public void postMessage(String message) {
 String user = (new Util()).getCurrentUserName();
 if (user != null) {
 Date time = new Date();
 StringBuffer sb = new StringBuffer();
 sb.append(time.toString());
 sb.append(" <i>");
 sb.append(user);
 sb.append("</i>: ");
 sb.append(message);
 sb.append("
");
 String newMessage=sb.toString();
 chatContent.add(newMessage);
 postNewMessage(newMessage);
 }
 }

 public List<String> getChatContent() {
 return chatContent;
 }

 private ScriptProxy getScriptProxyForSessions() {
 WebContext webContext = WebContextFactory.get();
 ServletContext servletContext = webContext.getServletContext();
 ServerContext serverContext = ServerContextFactory.
get(servletContext);
 webContext.getScriptSessionsByPage("");
 String contextPath = servletContext.getContextPath();
 if (contextPath != null) {

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[209]

 Collection<ScriptSession> sessions =
 serverContext.getScriptSessionsByPage
 (contextPath + "/mainpage.jsp");
 ScriptProxy proxy = new ScriptProxy(sessions);
 return proxy;
 }
 return null;
 }

 public void postNewMessage(String newMessage) {
 ScriptProxy proxy = getScriptProxyForSessions();
 if (proxy != null) {
 proxy.addFunctionCall(«newMessage»,newMessage);
 }
 }
}

The Chatroom code is surprisingly simple. The chat content is stored in a Vector of
Strings. The getChatContent()method just returns the chat content Vector to the
browser.

The postMessage()method is called when the user sends a new chat message.
The method verifies whether the user is logged in, and adds the current time and
username to the chat message and then appends the message to the chat content.

The method also calls the postNewMessage() method that is used to show new chat
content to all logged-in users. Note that the postMessage() method does not return
any value. We let DWR and reverse AJAX functionality show the chat message to all
users, including the user who sent the message.

The getScriptProxyForSessions() and postNewMessage() methods use reverse
AJAX to update the chat areas of all logged-in users with the new message.

And that is it! The chat room sample is very straightforward and basic functionality
is already in place, and the application is ready for further development.

Testing the Chat
We test the chat room application with three users: Smith, Brown, and Jones. We
have given some screenshots of a typical scenario in a chat room here.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sample Applications

[210]

Both Smith and Brown log into the system and exchange some messages. Both users
see empty chat rooms when they log in and start chatting.

The empty area that is above the send message input field is reserved for
chat content. Smith and Brown exchange some messages as is seen in the
following screenshot:

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 7

[211]

The third user, Jones, joins the chat and sees all the previous messages in the chat
room. Jones then exchanges some messages with Smith and Brown. Smith and
Brown log out from the system leaving Jones alone in the chat room (until she also
logs out). This is visible in the following screenshot:

Afterword
This sample application showed how to use DWR in a chat room application. The
functionality is similar to the previous Book Authoring application.

Summary
The two sample applications, Collaborative Book Authoring and Chatroom,
presented in this chapter make it clear that DWR makes development of these kind
of collaborative applications very easy.

DWR itself does not even play a big part in the applications. DWR is just a
transparent feature of the application. So developers concentrate on the actual project
and aspects such as persistence of data and a neat user interface, instead of the low-
level details of AJAX.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Index
A
AJAX

about 7
components 9
history 7
principle 8
uses 8

Asynchronous JavaScript XML. See AJAX

B
backend OrderSystem, messaging system

testing with 163-165

C
callback function, dynamic user interface

advantages 70
methods 70
using 69

Chatroom
about 202
chat, testing 209-211
Java code, developing 207-209
project, starting with 202
user interface, developing 203-207

client code, field completion
JavaScript functions 92-94

client code, for tables and list
HTML samples, using 79, 80
JavaScript function 80-83

Collaborative Book Authoring
about 167, 168
Java class, developing 184
project starting with 168
testing 197-201

user interface, developing 168, 169
web application, configuring 182, 184

creator attrributes, dwr.xml
jsf 33
new 33
none 33
pageflow 33
scripted 33
spring 33
struts 33

D
database, DWR

configuring, in Geronimo 132-138
CountryDerbyDB java class,

creating 138-142
integrating with 131
integration, testing 142, 143

deployment
deployer tool, using 50
Geronimo Administration Console, using

47-49
hot deployment, using 51
steps 46

development environment, setting up
DWR, using 37
Eclipse IDE, using 37-41
Firefox, using 37

Direct Web Remoting. See DWR
DWR

about 7-12
AJAX, for Java developers 9-11
 applications, debugging 42
 applications, testing 41-42
database, integrating with 131

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[214]

error, handling 42, 43
mailing lists 11
messaging system, integrating with 153
supported browsers 30
user application positioning 10
web services, integrating with 143

dwr.xml, DWR configuration
annotations, working with 35, 36
auth element, using 34
convertor element, using 34, 35
creator attrributes 33
creators 33
exclude element, using 34
fluent configuration, using 36
include element, using 34
javascript attributes 33
param element, using 33
scope element, using 33
structure 32
using 32

dynamic user interface
callback function 69
callback function, using 69
creating 53

dynamic user interface, creating
sequence diagram 54
structure 54
web application, configuring 57-59
web application, developing 59, 60
web project, creating 55, 56

E
Eclipse IDE, using

Apache Geronimo 41
error, handling

errorHandler used 42
exceptionHandler used 43
textHtmlHandler used 43
warningHandler used 42

F
field completion

feature 95
implementing 87

field completion, implementing
client code 89-92

files, DWR configuration
dwr.xml 30
web.xml 30
server code 88, 89

forms
about 97
viewing 98

forms, creating
FormHandler class, implementing 101-103
testing 103
user interface, developing 98-101

forms, testing
form filling procedure 104-106

G
Geronimo Administration

Console, deployment 47-49

H
hot deployment, deployment 51

J
Java class, Collaborative Book Authoring

Book.java class 188-190
BookDatabase.java class 190-196
BookDatabase.java class, static map

variables 196
developing 184
Login.java class 184-186
UserDatabase class 186, 187
util.java class 187, 188

M
map scrolling

DWR, using 115, 116
Java class, creating 124, 125
map scroller, testing 126-128
map square, examples 116
user interface, developing 117

messaging application, messaging system
JavaScript function, developing 162
reverse Ajax, enabling 163

messaging system, DWR
backend OrderSystem , testing with 163-65

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

[215]

Comet mechanism used 154-158
integrating with 153
messaging application, setting up 161
OrderSystem Java class,

developing 158-161
queues, setting up in Geronimo 154-158
STOMP(Streaming Text Oriented

Messaging Protocol) 154
using 165

N
navigation tree

about 106
building 106

navigation tree, building
functions 110-113
NavigationTree class, creating 108-110
part 2 user interface, developing 110-113
testing 113, 114
user interface, developing 106, 107

O
OrderSystem Java class, messaging system

developing 158-161
reverse Ajax functionality used 161

P
packaging

about 44
steps 45, 46

project, Chatroom
dwr.xml file’sourcecode 202
starting with 202
web.xml’ source code 203

R
reverse AJAX, messaging application

enabling 163

S
sample applications

about 167
Chatroom 167, 202
Collaborative Book Authoring 167

supported environments 30

T
tables and list

implementing 71
testing 85, 86

tables and list, implementing
client code 79
server code 72-79

U
user interface, Collaborative

Book Authoring
developing 168, 169
index.jsp page 170, 171
loginFailed.html page 171
mainpage.jsp page 171-181
mainpage.jsp page, DWR scripts 181, 182

user interface, forms
developing 98, 99
JavaScript functions used 99-101

user interface, map scrolling
developing 117-124
HTML file , using 117-124
JavaScript functions, using 123

W
web.xml, DWR configuration

about 30
load protection parameters 32
security parameters 31

web application, dynamic user interface
developing 59, 60
testing 60-64
web pages, developing 64-69

web project, dynamic user interface
creating 55, 56

web services, DWR
client-side code, developing 144-151
integrating with 143
integration, testing 152, 153
web service call, implementing 152

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Thank you for buying
DWR Java AJAX Applications

Packt Open Source Project Royalties
When we sell a book written on an Open Source project, we pay a royalty directly to that
project. Therefore by purchasing Learning DWR Java AJAX Applications, Packt will have
given some of the money received to the The Dojo Foundation project.
In the long term, we see ourselves and you—customers and readers of our books—as part of
the Open Source ecosystem, providing sustainable revenue for the projects we publish on.
Our aim at Packt is to establish publishing royalties as an essential part of the service and
support a business model that sustains Open Source.
If you're working with an Open Source project that you would like us to publish on, and
subsequently pay royalties to, please get in touch with us.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.
We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.
Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.
Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.PacktPub.com.

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

AJAX and PHP
ISBN: 190-4-811-82-5 Paperback: 275 pages

Enhance the user experience of your PHP website
using AJAX with this practical tutorial featuring
detailed case studies

1.	 Build a solid foundation for your next
generation of web applications

2.	 Use better JavaScript code to enable powerful
web features

3.	 Leverage the power of PHP and MySQL to
create powerful back-end functionality and
make it work in harmony with the smart
AJAX client

Google Web Toolkit
ISBN: 978-1-847191-00-7 Paperback: 240 pages

A practical guide to Google Web Toolkit for creating
AJAX applications with Java, fast.

1.	 Create rich Ajax applications in the style of
Gmail, Google Maps, and Google Calendar

2.	 Interface with Web APIs create GWT
applications that consume web services

3.	 Completely practical with hands-on examples
and complete tutorials right from the first
chapter

Please check www.PacktPub.com for information on our titles

This material is copyright and is licensed for the sole use by Henry Vanyan on 26th July 2009

7406 Valaho Dr, , Tujunga, , 91042

Download at Boykma.Com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Table of Content
	Preface
	Chpater 1: Introduction
	What is AJAX?
	DWR: AJAX for Java Developers
	The DWR Community
	Summary

	Chpater 2: DWR Features
	Ease of Use
	Reverse AJAX
	Piggyback
	Polling
	Comet

	DWR JavaScript Libraries
	engine.js
	util.js
	gi.js

	Converters
	Creators, Filters, and Signatures
	Integration with Other Projects
	Security
	Minimize Risks

	Summary

	Chpater 3: Getting Started
	Supported Browsers and Environments
	Configuration
	web.xml
	dwr.xml
	Using Creator and Its Attributes
	Using the Converter Element
	Working with Annotations
	Using Fluent Configuration with DWR

	Setting up a Development Environment
	Development Environment with DWR and Firefox
	Development Environment with Eclipse
	Apache Geronimo

	Testing and Debugging
	Error Handling
	Packaging and Deployment
	Deployment Using the Administration Console
	Deployment Using the Deployer Tool
	Deployment Using Hot Deployment

	Summary

	Chpater 4: User Interface: Basic Elements
	Creating a Dynamic User Interface
	Creating a New Web Project
	Configuring the Web Application
	Developing the Web Application
	Testing the Web Application
	Developing Web Pages

	Callback Functions
	Afterword

	Implementing Tables and Lists
	Server Code for Tables and Lists
	Client Code for Tables and Lists
	Testing Tables and Lists
	Afterword

	Implementing Field Completion
	Server Code for Field Completion
	Client Code for Field Completion
	Afterword

	Summary

	Chpater 5: User Interface: Advanced Elements
	Creating Forms
	Developing the User Interface
	Creating the FormHandler Class
	Testing the Form
	Afterword

	Building a Navigation Tree
	Developing the User Interface
	Creating the NavigationTree Class
	Developing the User Interface, Part 2
	Testing the Navigation Tree
	Afterword

	Map Scrolling Using DWR
	Developing the User Interface
	Creating the MapScroller Java Class
	Testing the Map Scroller
	Afterword

	Summary

	Chpater 6: Backend Integration
	Integrating a Database with DWR
	Configuring the Database in Geronimo
	Creating a CountryDerbyDB Java Class
	Testing the Database Integration
	Afterword

	Integrating with Web Services
	Developing the Web Service Client
	Implementing the Web Service Call
	Testing Web Services Integration
	Afterword

	Integrating with a Messaging System
	Setting up Queues in Geronimo
	Developing the OrderSystem Java Class
	Setting up the Application for Messaging
	Testing with the Backend OrderSystem
	Afterword

	Summary

	Chpater 7: Sample Applications
	Collaborative Book Authoring
	Starting the Project
	Developing the User Interface
	index.jsp
	loginFailed.html
	mainpage.jsp

	Configuring the Web Application
	Developing the Java Classes
	Login.java
	UserDatabase.java
	Util.java
	Book.java
	BookDatabase.java

	Testing Collaborative Book Authoring
	Afterword

	Chatroom
	Starting the Project and Configuration
	Developing the User Interface
	Developing the Java Code
	Testing the Chat
	Afterword

	Summary

	Index

