

•
Table of

Contents

• Index

• Reviews

•
Reader

Reviews

• Errata

• Academic

AspectJ Cookbook

By Russell Miles

Publisher: O'Reilly

Pub Date: December 2004

ISBN: 0-596-00654-3

Pages: 354

This hands-on book shows readers why and how common Java
development problems can be solved by using new Aspect-oriented
programming (AOP) techniques. With a wide variety of code recipes for
solving day-to-day design and coding problems using AOP's unique
approach, AspectJ Cookbook demonstrates that AOP is more than just a
concept; it's a development process that will benefit users in an immediate
and visible manner.

•
Table of

Contents

• Index

• Reviews

•
Reader

Reviews

• Errata

• Academic

AspectJ Cookbook

By Russell Miles

Publisher: O'Reilly

Pub Date: December 2004

ISBN: 0-596-00654-3

Pages: 354

 Copyright

 Preface

 Audience

 About This Book

 Assumptions This Book Makes

 Conventions Used in This Book

 Using the Code Examples

 We'd Like to Hear from You

 Safari Enabled

 Acknowledgments

 Chapter 1. Aspect Orientation Overview

 Section 1.1. A Brief History of Aspect Orientation

 Section 1.2. AspectJ

 Section 1.3. A Definition of Aspect Orientation

 Section 1.4. Where to Go for More Information

 Chapter 2. Getting Started with AspectJ

 Introduction

 Recipe 2.1. Installing AspectJ

 Recipe 2.2. Developing a Simple Aspect

 Recipe 2.3. Compiling an Aspect and Multiple Java Files

 Recipe 2.4. Weaving Aspects into Jars

 Recipe 2.5. Weaving Aspects at Load Time

 Recipe 2.6. Generating Javadoc Documentation

 Recipe 2.7. Compiling an AspectJ Project Using Eclipse

 Recipe 2.8. Selecting the Aspects That Are Woven in a Build Within Eclipse

 Recipe 2.9. Building an AspectJ Project Using Ant

 Chapter 3. Deploying AspectJ Applications

 Introduction

 Recipe 3.1. Deploying a Command-Line AspectJ Application

 Recipe 3.2. Deploying an AspectJ Application as a Fully Contained Executable JAR File

 Recipe 3.3. Deploying a Java Servlet That Uses AspectJ

 Recipe 3.4. Deploying a JSP That Uses AspectJ

 Recipe 3.5. Deploying an Axis Web Service That Uses AspectJ

 Chapter 4. Capturing Joing Points on Methods

 Introduction

 Recipe 4.1. Capturing a Method Call

 Recipe 4.2. Capturing the Parameter Values Passed on a Method Call

 Recipe 4.3. Capturing the Target of a Method Call

 Recipe 4.4. Capturing a Method When It Is Executing

 Recipe 4.5. Capturing the Value of the this Reference When a Method Is Executing

 Chapter 5. Capturing Join Points on Exception Handling

 Introduction

 Recipe 5.1. Capturing When an Exception Is Caught

 Recipe 5.2. Capturing the Thrown Exception

 Recipe 5.3. Capturing the Object Handling the Exception

 Chapter 6. Capturing Join Points on Advice

 Introduction

 Recipe 6.1. Capturing When Advice Is Executing

 Recipe 6.2. Excluding Join Points That Are a Result of Advice Execution

 Recipe 6.3. Exposing the Original Join Point When Advice Is Being Advised

 Chapter 7. Capturing Join Points on Class Object Construction

 Introduction

 Recipe 7.1. Capturing a Call to a Constructor

 Recipe 7.2. Capturing a Constructor When It Is Executing

 Recipe 7.3. Capturing When an Object Is Initialized

 Recipe 7.4. Capturing When an Object Is About to Be Initialized

 Recipe 7.5. Capturing When a Class Is Initialized

 Chapter 8. Capturing Join Points on Attributes

 Introduction

 Recipe 8.1. Capturing When an Object's Attribute Is Accessed

 Recipe 8.2. Capturing the Value of the Field Being Accessed

 Recipe 8.3. Capturing When an Object's Field Is Modified

 Recipe 8.4. Capturing the Value of a Field When It Is Modified

 Chapter 9. Capturing Join Points Within Programmatic Scope

 Introduction

 Recipe 9.1. Capturing All Join Points Within a Particular Class

 Recipe 9.2. Capturing All Join Points Within a Particular Package

 Recipe 9.3. Capturing All Join Points Within a Particular Method

 Chapter 10. Capturing Join Points Based on Control Flow

 Introduction

 Recipe 10.1. Capturing All Join Points Within a Program's Control Flow Initiated by an Initial Join Point

 Recipe 10.2. Capturing All Join Points Within a Program's Control Flow, Excluding the Initial Join Point

 Chapter 11. Capturing Join Points Based on Object Type

 Introduction

 Recipe 11.1. Capturing When the this Reference Is a Specific Type

 Recipe 11.2. Capturing When a Join Point's Target Object Is a Specific Type

 Recipe 11.3. Capturing When the Arguments to a Join Point Are a Certain Number, Type, and Ordering

 Chapter 12. Capturing Join Points Based on a Boolean or Combined Expression

 Introduction

 Recipe 12.1. Capturing When a Runtime Condition Evaluates to True on a Join Point

 Recipe 12.2. Combining Pointcuts Using a Logical AND (&&)

 Recipe 12.3. Combining Pointcuts Using a Logical OR (||)

 Recipe 12.4. Capturing All Join Points NOT Specified by a Pointcut Declaration

 Recipe 12.5. Declaring Anonymous Pointcuts

 Recipe 12.6. Reusing Pointcuts

 Chapter 13. Defining Advice

 Introduction

 Recipe 13.1. Accessing Class Members

 Recipe 13.2. Accessing the Join Point Context

 Recipe 13.3. Executing Advice Before a Join Point

 Recipe 13.4. Executing Advice Around a Join Point

 Recipe 13.5. Executing Advice Unconditionally After a Join Point

 Recipe 13.6. Executing Advice Only After a Normal Return from a Join Point

 Recipe 13.7. Executing Advice Only After an Exception Has Been Raised in a Join Point

 Recipe 13.8. Controlling Advice Precedence

 Recipe 13.9. Advising Aspects

 Chapter 14. Defining Aspect Instantiation

 Introduction

 Recipe 14.1. Defining Singleton Aspects

 Recipe 14.2. Defining an Aspect per Instance

 Recipe 14.3. Defining an Aspect per Control Flow

 Chapter 15. Defining Aspect Relationships

 Introduction

 Recipe 15.1. Inheriting Pointcut Definitions

 Recipe 15.2. Implementing Abstract Pointcuts

 Recipe 15.3. Inheriting Classes into Aspects

 Recipe 15.4. Declaring Aspects Inside Classes

 Chapter 16. Enhancing Classes and the Compiler

 Introduction

 Recipe 16.1. Extending an Existing Class

 Recipe 16.2. Declaring Inheritance Between Classes

 Recipe 16.3. Implementing Interfaces Using Aspects

 Recipe 16.4. Declaring a Default Interface Implementation

 Recipe 16.5. Softening Exceptions

 Recipe 16.6. Extending Compilation

 Chapter 17. Implementing Creational Object-Oriented Design Patterns

 Introduction

 Recipe 17.1. Implementing the Singleton Pattern

 Recipe 17.2. Implementing the Prototype Pattern

 Recipe 17.3. Implementing the Abstract Factory Pattern

 Recipe 17.4. Implementing the Factory Method Pattern

 Recipe 17.5. Implementing the Builder Pattern

 Chapter 18. Implementing Structural Object-Oriented Design Patterns

 Introduction

 Recipe 18.1. Implementing the Composite Pattern

 Recipe 18.2. Implementing the Flyweight Pattern

 Recipe 18.3. Implementing the Adapter Pattern

 Recipe 18.4. Implementing the Bridge Pattern

 Recipe 18.5. Implementing the Decorator Pattern

 Recipe 18.6. Implementing the Proxy Pattern

 Chapter 19. Implementing Behavioral Object-Oriented Design Patterns

 Introduction

 Recipe 19.1. Implementing the Observer Pattern

 Recipe 19.2. Implementing the Command Pattern

 Recipe 19.3. Implementing the Iterator Pattern

 Recipe 19.4. Implementing the Mediator Pattern

 Recipe 19.5. Implementing the Chain of Responsibility Pattern

 Recipe 19.6. Implementing the Memento Pattern

 Recipe 19.7. Implementing the Strategy Pattern

 Recipe 19.8. Implementing the Visitor Pattern

 Recipe 19.9. Implementing the Template Method Pattern

 Recipe 19.10. Implementing the State Pattern

 Recipe 19.11. Implementing the Interpreter Pattern

 Chapter 20. Applying Class and Component Scale Aspects

 Introduction

 Recipe 20.1. Validating Parameters Passed to a Method

 Recipe 20.2. Overriding the Class Instantiated on a Call to a Constructor

 Recipe 20.3. Adding Persistence to a Class

 Recipe 20.4. Applying Mock Components to Support Unit Testing

 Chapter 21. Applying Application Scale Aspects

 Introduction

 Recipe 21.1. Applying Aspect-Oriented Tracing

 Recipe 21.2. Applying Aspect-Oriented Logging

 Recipe 21.3. Applying Lazy Loading

 Recipe 21.4. Managing Application Properties

 Chapter 22. Applying Enterprise Scale Aspects

 Introduction

 Recipe 22.1. Applying Development Guidelines and Rules

 Recipe 22.2. Applying Transactions

 Recipe 22.3. Applying Resource Pooling

 Recipe 22.4. Remoting a Class Transparently Using RMI

 Recipe 22.5. Applying a Security Policy

 Chapter 23. Applying Aspect-Oriented Design Patterns

 Introduction

 Recipe 23.1. Applying the Cuckoo's Egg Design Pattern

 Recipe 23.2. Applying the Director Design Pattern

 Recipe 23.3. Applying the Border Control Design Pattern

 Recipe 23.4. Applying the Policy Design Pattern

 Appendix A. The AspectJ Runtime API

 Section A.1. org.aspectj.lang

 Section A.2. Signature

 Section A.3. org.aspectj.lang.reflect

 Section A.4. The SoftException Class

 Section A.5. The NoAspectBoundException Class

 Colophon

 Index

Copyright © 2005 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Cookbook series designations, AspectJ Cookbook, the image of a marmoset,
and related trade dress are trademarks of O'Reilly Media, Inc.

Java and all Java-based trademarks and logos are trademarks or registered trademarks of Sun
Microsystems, Inc., in the United States and other countries. O'Reilly Media, Inc. is independent of
Sun Microsystems, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

http://safari.oreilly.com

Preface
This book focuses on getting things done with AspectJ. Aspect-Oriented Software Development
(AOSD) is a new branding for some old ideas incorporating an object-oriented twist. This rather
complex definition really sums up what is a neat approach to solving some traditional object
orientation's problems.

While this book does not get into too much detail on the theory behind aspect orientation, a brief
overview is provided to give you a useful foundation to support the code recipes that form the rest of
the book. The code recipes will walk you through how to get your system set up for aspect oriented
development, building your first small programs, and eventually applying aspect orientation to
complex real-world problems.

This book aims to be one of those useful books that sit on your desk and regularly get called upon to
"just show me how to do that." You should be able to jump directly to the recipes you need as and
when you need them in keeping with the "no fluff, just stuff" approach that is synonymous with the
O'Reilly Cookbook series. With this in mind, the topics covered in this book include:

A brief overview of aspect orientation and AspectJ

Setting up, getting to grips with, and running AspectJ programs in a range of build and target
environments

A practical examination of each of the AspectJ extensions to the Java© language

Applying AspectJ to real-world software development problems that benefit from an aspect-
oriented approach

Audience

While it will probably suffice to say that this book is for any person interested in learning about
AspectJ and aspect orientation, this book will most benefit people who are fairly experienced with
object-oriented design, particularly when implemented in Java. Anyone that is open to a fresh
approach to solving some of the problems that traditional object orientation suffers from should find
something in this book that encourages them to try AspectJ in their own applications.

About This Book

This book covers the following subjects:

An overview of the elements of aspect orientation using AspectJ, pointcuts, join points, and
advice

Setting up your environment and getting started with AspectJ development

Running AspectJ based software in various environments

Deploying your AspectJ applications to varying target environments

How to use the various forms of pointcut supported by AspectJ

How to use the various forms of advice available in AspectJ

Controlling how aspects are created and destroyed

Changing the static structure of your software and support tools using AspectJ

Enhancing existing object-oriented design pattern implementations using AspectJ

Applying aspects to real-world problems within component, system, and enterprise domains

Rarely is a cookbook read from cover to cover, but an overview of each section's focus is useful in
order to understand each chapter's place and what it is building towards. This cookbook is organized
into four broad sections, as shown in Figure P-1.

Figure P-1. What each set of chapters within this book intends to show

Chapter 1 through Chapter 3 provide a set of recipes to get you started with the tools and
environments that support development using AspectJ. These chapters cover how to use command-
line tools, Eclipse, even ANT to develop your aspect-oriented applications, and finish up by showing
you how to deploy to diverse target environments such as Java Servlets, Java Server Pages, and web
services.

Chapter 4 through Chapter 16 provide in-depth syntactical examinations of the AspectJ language.
These chapters aim to give you a useful and exhaustive reference for how to use the different
constructs that the AspectJ language adds to Java.

Chapter 17 through Chapter 23 are where AspectJ really gets to showcase its advantages over
traditional object-oriented software implementations. In these chapters, Aspects are used to enhance
and improve the design of software solutions ranging from design pattern implementations to
enterprise applications. Chapter 23 brings this book to a close by introducing some of the aspect-
oriented design patterns that are gradually being discovered as tools, such as AspectJ, bringing
aspect orientation into the mainstream of software development.

Now that you know what this book is about, it should be explained what this book is not about. As
mentioned before, this book is not a theoretical examination of AspectJ. The code is kept at the fore
throughout to make sure that every area has a practical focus. There are many great articles online
and gradually appearing in the press that examine the more theoretical concerns of AO, so this book
does not attempt to deal with these.

This book is also not claiming to be AspectJ in a nutshell. AspectJ is in a very stable state for such a
young implementation, but even now extensions to the language and the technologies are being
considered, so it is possible that some areas of this book may age faster than others. In an attempt
to ensure that this book has the longest life possible, only the most stable areas that were
incorporated at the time of writing were included.

Assumptions This Book Makes

The following assumptions are made about your knowledge and experience with the supporting tool,
languages, and concepts that accompany aspect-oriented development:

That you have a reasonably advanced knowledge of the Java language

That you have an existing Java Source Development Kit (SDK) on your system, at a minimum
JSDK 1.2 and preferably 1.4+

That you have some understanding and experience of Java Server Pages, Java Servlet, and
Web Services (specifically Apache Axis) programming

That you have some knowledge of UML (useful but not essential to understanding the diagrams)

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using the Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "AspectJ Cookbook by Russ Miles. Copyright 2005 O'Reilly Media,
Inc., 0-596-00654-3."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

We'd Like to Hear from You

We at O'Reilly have done everything to insure that the recipes within this book are tested and verified
to the best of the author's ability. However, AspectJ is a fast moving technology and it may be that
some features of the supporting toolsets or of the language itself have changed, or that we have
simply made mistakes. If so, please address comments and questions concerning this book to the
publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/aspectjckbk

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/aspectjckbk
http://www.oreilly.com

Safari Enabled

When you see a Safari® enabled icon on the cover of your favorite technology book,
that means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-Books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it free at http://safari.oreilly.com.

http://safari.oreilly.com

Acknowledgments

Never has so much been owed to so few...or something like that anyway. This book was written by
one person but supported by more than I can possibly remember to mention here, so I'll apologize up
front if anyone's missed out; I've not forgotten you. It's just that I was trying (but failed) to avoid an
Oscar speech.

Here is where I get an opportunity to thank the people that kept me focused and supported me
through the writing of my first book. First and foremost in all things has to be my family. Thanks to
Mum and Dad, who have seen me through the hardest of times with limitless smiles, warmth, and
understanding. Thanks to Bobs, Rich, Ad, and even Aimee, who have always been there to keep me
on the straight and narrow. You all helped me get this project complete and keep my feet on the
ground when I needed it most, and for that I cannot ever thank you enough, but I'll have fun trying.

Thanks to my editor Brett McLaughlin and all at O'Reilly who saw me through my complete naïveté
over the proposal and writing process and for working so hard to get this book out. A heartfelt thanks
to Rob Romano for putting up with my "there will only be a small number of figures" optimism at the
beginning of the project. Honestly, Rob, I really did think there would only be a few!

Thanks to the true heroes of AspectJ, the AspectJ community. In particular thanks go to Adrian
Colyer, George Harley, Matthew Webster, Mik Kersten, and Wes Isberg for making AspectJ such a
great implementation. To all involved on the aTrack project headed up by Ron Bodkin for providing so
many interesting and useful presentations and such an impressive test bed for many of the concepts
expressed in the recipes in this cookbook, and to Ramnivas Laddad for his expert and friendly advice.

Thanks to my team of dedicated, and patient, proofreaders. To Laura Paterson for being so
supportive in the very early days when this book was just something I really wanted to do. Without
your help and expertise I doubt this project would have gotten past the propsal stage. Also, thanks to
Andy (Tiger) Winter, Rob Wilson, and Grant Tarrant-Fisher for being on the receiving end of my
enthusiasm on aspect orientation and not going completely nuts. Together, you all make up the best
bunch of people I've ever had the pleasure to work with.

Thanks to all in the Oxford University software engineering programme that gave each and every
recipe the thorough critique it needed; especially Ganesh Sitamplan for the language input, Peet for
the beginners touch, and Jeremy Gibbons for getting the whole process rolling.

Thanks go to my friends who all knew when to be there and when to leave me alone during the long
days and nights as I worked and re-worked this book, and that takes real skill from some of the best
people I've been fortunate enough to meet. A huge thank you goes to Jo Westcott, Sam and Martin,
Jason, and Kerry. Special thanks to Jason for asking, when first told of my aim to write a book, if the
book would be made into a film (I truly hope not!).

Finally, I'd like to thank Kim. You have meant so much to me in the past year and you have
contributed more than anyone else to this book. Despite my best efforts to completely ruin your
grammar skills, you have stuck with me and been the best of friends as well as so much more than
that. Thanks alone will never be enough for all the happiness you bring me, and it's a debt I look
forward to repaying for many years to come.

Last but not least, a quick catch-all to thank everyone who has helped me out while writing this book.
I haven't forgotten your help and I know I owe you all a beer or two!

Chapter 1. Aspect Orientation Overview
This chapter gives a brief overview of aspect orientation. What is discussed here is by no means a
definitive description of aspect-oriented concepts, but it should present a flavor of these concepts and
the related terminology. This provides a reference that will prove useful as you implement the
practical recipes throughout the rest of the book.

1.1. A Brief History of Aspect Orientation

Aspect orientation is not a completely new approach to writing software. In much the same way as
virtual machine systems were not an entirely new concept when Java became recognized and
adopted by the software community, there have been tools and development environments for some
time that support some of the capabilities that are now being placed under the banner of aspect
orientation. Like Java, aspect orientation is becoming a commonly adopted and de facto approach to
practicing older ideas that can be traced to almost the beginning of software development.

Development environments and tools that weave code, pragma instructions, and even debuggers all

contain some of the behavior that underlies the aspect-oriented approach. But the significant
difference is in the philosophy behind the approach and how that philosophy drives the technology
and tools. Aspect orientation is not about any one of these technologies on its own, though it is a new
and more modular implementation of the advantages that these technologies have brought to their
own domains in the past.

All that said, the philosophical and conceptual underpinnings of aspect orientation are not a subject
for this type of book. If you are interested in finding out more about this side of the technology, it's
best to search Google for "Aspect-Oriented Software Development." This book focuses on practical
approaches to understanding the technology; it is about getting the job done by harnessing the
impressive power of aspect-oriented software development.

1.2. AspectJ

It is fair to say that the most significant work to date that is actually labeled under the banner of
aspect orientation was completed at that historical wellspring of computing innovation, the Xerox Palo
Alto Research Center (PARC). Xerox initially invested in producing special-purpose aspect-oriented
languages prior to moving to a general-purpose model in Java. AspectJ was the outcome of this effort
and is the core development tool for the recipes found throughout this book.

At the time of this writing, AspectJ is a rapidly maturing aspect-oriented development tool with a
wealth of examples available. In 2002, Xerox PARC made the important decision of transferring the
development of AspectJ to a more open forum on the eclipse.org web site. Current download figures
for AspectJ show that interest in the approach is increasing at an exponential rate, and that the
software development community is recognizing that aspect orientation is an extremely important
evolution in software development. Now is the time to use this book's real-world, aspect-oriented
recipes to add this new and powerful tool to your software development repertoire.

1.3. A Definition of Aspect Orientation

Before getting into the actual recipes, it is worth briefly introducing some of the concepts and terms
that are used throughout this book.

Cross-Cutting Concerns

The basic premise of aspect-oriented programming is to enable developers to express modular cross-
cutting concerns in their software. So what does this mean? A cross-cutting concern is behavior, and
often data, that is used across the scope of a piece of software. It may be a constraint that is a
characteristic of your software or simply behavior that every class must perform.

The most common example of a cross-cutting concern, almost the "Hello World" of the aspect-
oriented approach, is that of logging (covered in Chapter 21). Logging is a cross-cutting concern
because it affects many areas across the software system and it intrudes on the business logic.
Logging is potentially applied across many classes, and it is this form of horizontal application of the
logging aspect that gives cross-cutting its name.

Aspects

An aspect is another term for a cross-cutting concern. In aspect orientation, the aspects provide a
mechanism by which a cross-cutting concern can be specified in a modular way. To fully harness the
power of aspects, we need to have some basic concepts in place to allow us to specify and apply
aspects in a generic manner. We must be able to:

Define the aspects in a modular fashion

Apply aspects dynamically

Apply aspects according to a set of rules

Provide a mechanism and a context for specifying the code that will be executed for that
particular aspect

The aspect-oriented approach provides a set of semantics and syntactical constructs to meet these
demands so that aspects can be applied generically regardless of the type of software being written.
These constructs are advice, join points, and pointcuts.

Advice

The code that is executed when an aspect is invoked is called advice. Advice contains its own set of

rules as to when it is to be invoked in relation to the join point that has been triggered.

Chapter 13 deals directly with recipes for different forms of advice and shows
some of the more advanced features of advice that are available within AspectJ,
such as precedence between multiple advices.

Join Points

Join points are simply specific points within the application that may or may not invoke some advice.
The specific set of available join points is dependent on the tools being used and the programming
language of the application under development. The following join points are supported in AspectJ:

Join when a method is called

Join during a method's execution

Join when a constructor is invoked

Join during a constructor's execution

Join during aspect advice execution

Join before an object is initialized

Join during object initialization

Join during static initializer execution

Join when a class's field is referenced

Join when a class's field is assigned

Join when a handler is executed

Pointcuts

Pointcuts are the AspectJ mechanism for declaring an interest in a join point to initiate a piece of
advice. They encapsulate the decision-making logic that is evaluated to decide if a particular piece of
advice should be invoked when a join point is encountered.

The concept of a pointcut is crucial to the aspect-oriented approach because it provides an abstract
mechanism by which to specify an interest in a selection of join points without having to tie to the
specifics of what join points are in a particular application.

How to define and use pointcuts is shown in the recipes found in Chapter 4
though Chapter 12.

Putting It All Together

Figure 1-1 shows the relationships between join points, aspects, pointcuts, advice, and your
application classes.

Figure 1-1. The relationships between apects, pointcuts, and advice

1.4. Where to Go for More Information

For more detailed information on the concepts and philosophy behind aspect orientation, check out
the following web sites:

http://www.parc.xerox.com/research/csl/projects/aspectj/default.html

The official information on the AspectJ project at Xerox PARC.

http://www.eclipse.org/aspectj

The official AspectJ development technologies download site with links to support tools.

http://www.eclipse.org/ajdt

Eclipse has a set of AspectJ Development Tools collected as a downloadable feature using the
built-in update site mechanism from the listed web site.

http://sourceforge.net/projects/aspectj4jbuildr/

A plug-in for Borland JBuilder that allows integration with AspectJ is available at this site.

http://sourceforge.net/projects/aspectj4netbean/

A plug-in for NetBeans to support AspectJ development is available from this web site.

http://www.parc.xerox.com/research/csl/projects/aspectj/default.html
http://www.eclipse.org/aspectj
http://www.eclipse.org/ajdt
http://sourceforge.net/projects/aspectj4jbuildr/
http://sourceforge.net/projects/aspectj4netbean/

Chapter 2. Getting Started with AspectJ
Introduction

Recipe 2.1. Installing AspectJ

Recipe 2.2. Developing a Simple Aspect

Recipe 2.3. Compiling an Aspect and Multiple Java Files

Recipe 2.4. Weaving Aspects into Jars

Recipe 2.5. Weaving Aspects at Load Time

Recipe 2.6. Generating Javadoc Documentation

Recipe 2.7. Compiling an AspectJ Project Using Eclipse

Recipe 2.8. Selecting the Aspects That Are Woven in a Build Within Eclipse

Recipe 2.9. Building an AspectJ Project Using Ant

Introduction

This chapter contains recipes for getting started in developing your own aspect-oriented code using
AspectJ. Beginning with the task of getting a build environment set up and moving through the
different types of builds and targets, this chapter provides a tutorial in the basics of AspectJ
development.

With an understanding of the fundamental concepts in aspect orientation, this chapter first covers
getting your fingers dirty using AspectJ's development environment. At the core of AspectJ is its build
support for weaving aspects into your Java code. This is currently done using a compiler, ajc, that
interacts with the existing Java compiler, javac. Working within the constraints of the Java

compilation process ensures that your aspect-oriented programs produce standard Java classes that
can be run by any Java Virtual Machine (JVM). ajc simply automates the mapping of your aspects

onto your Java classes.

The ajc tool is used for compile-time weaving of aspects either from the command line or within an

IDE or other build tool, but there is also an alternative weaving method supported in AspectJ, load-
time weaving. As its title suggests, load-time weaving supports the weaving of aspects into your
application at the time when the Java class loader is loading the application into the JVM. This is a
fairly new feature of AspectJ and is briefly described in this chapter with the caveat that the current
methods by which load-time weaving is achieved using AspectJ may change in the future as this
facility matures.

Once you have got the hang of using the ajc command-line compiler then it's time to move on to

installing and using some of the capabilities available to the AspectJ developer within the Eclipse
development environment. These include how to set up an Eclipse project with an AspectJ Nature
using the new project creation wizards and using Eclipse to vary the aspects that are actually built
into a single project using AspectJ build configuration files.

Finally, AspectJ project housekeeping tasks such as documentation generation from AspectJ code and
building using Ant are covered in this chapter demonstrating just how rich, powerful, and supported
the AspectJ development tools are.

Recipe 2.1. Installing AspectJ

Problem

You want to set up an AspectJ build environment.

Solution

At its simplest, AspectJ installation is a four-step process:

Download the AspectJ tools from http://www.aspectj.org.1.

Install the downloaded JAR files by double-clicking on them. This will create an aspectj1.2
directory on your machine.

2.

Test your environment with the following command:

> ajc
AspectJ Compiler

 Usage: <options> <source file | @argfile>..

AspectJ-specific options:
 ... Listed compiler options

1 fail|abort

3.

Don't worry about the 1 fail | abort message here; if you get the output shown above, then

the AspectJ tools have been successfully installed and located and are available for use.

4.

Copy aspectj1.2/lib/aspectjrt.jar to a library directory of your JRE. Typical locations for this
directory are %JAVA_HOME%\jre\lib\ext for Windows and /Library/Java/Extensions for Mac OS
X.

5.

Discussion

The first step in preparing to develop using aspects is to download the appropriate support tools for
your environment. In the case of AspectJ, this involves downloading the AspectJ libraries and tools.

http://www.aspectj.org

These tools can be obtained by accessing http://www.aspectj.org and following the links to
Downloads.

Once the appropriate AspectJ development kits have been downloaded, they can be installed by
double-clicking on the downloaded .jar file. After installation, you will find a directory named
aspectj1.2 (if the default installation options were accepted).

The AspectJ installer specifies some important instructions at the end of the
installation process. These instructions include setting up your search path so
that the AspectJ tools are available from the command line and adding the
AspectJ Java libraries to your Java classpath. It's worth taking care to follow
those instructions to make things as easy as possible when setting up your
AspectJ development environment.

In the %MY_HOME_DIRECTORY%/aspectj1.2/bin directory, you will see that AspectJ comes with
three tools:

ajc (ajc.bat on Windows)

The AspectJ compiler.

ajbrowser (ajbrowser.bat on Windows)

The AspectJ tools test environment that can be used to develop AspectJ projects.

ajdoc (ajdoc.bat on Windows)

The AspectJ documentation tool.

ajc and ajdoc are the AspectJ equivalents of javac and javadoc from

the standard Java Development Kit. In fact, both of the AspectJ tools use
the standard Java tools to do their job, providing enhancements to cater
to the additional AspectJ syntax and structure.

It is worth taking a look around the AspectJ installation, particularly within the
%MY_HOME_DIRECTORY/aspectj1.2/doc/index.html directory as a wealth of support documentation
is provided, including:

%MY_HOME_DIRECTORY%/aspectj1.2/doc/progguide/

http://www.aspectj.org

The AspectJ Programming Guide for all users of AspectJ.

%MY_HOME_DIRECTORY%/aspectj1.2/doc/devguide/

The AspectJ Developers Guide for anyone who wants to build and contribute to AspectJ.

%MY_HOME_DIRECTORY%/aspectj1.2/doc/api/

The AspectJ runtime API, also summarized in the Appendix A.

%MY_HOME_DIRECTORY%/aspectj1.2/examples/

A collection of useful and interesting AspectJ coding examples to get you started.

You have now set up the environment on your machine for development of aspect-oriented software
using AspectJ.

It's a good idea to check the AspectJ web site regularly at http://www.eclipse.org/aspectj for
information on the newest updates to the toolset. You can also register yourself on the AspectJ users
mailing list to get notifications of changes to the tools and news on how the AspectJ tools are being
employed throughout the software industry.

A set of easy installers to get you up and running as quickly and simply as
possible using AspectJ are available at http://www.aspectjcookbook.com. These
installers install and configure an entire AspectJ build environment including
AspectJ, the Eclipse IDE, and the AspectJ plug-in for Eclipse. While the versions
contained in these installers are not guaranteed to be the latest that are
available from the individual sources at www.eclipse.org,
www.eclipse.org/aspectj, and www.eclipse.org/ajdt, they do provide everything
you need in an easy to install package.

See Also

The next stage in getting familiar with AspectJ is to start coding your first aspect as shown in Recipe
2.2; the ajdoc tool is examined in some detail in Recipe 2.6; the AspectJ Development Environment

Guide available at http://www.eclipse.org/aspectj provides more details on the runtime options and
flags that the AspectJ tools support; the other recipes in this chapter show how to take things further
by compiling more complex AspectJ projects within Eclipse and using the Ant[1] build tool.

[1] Ant, which stands for Another Neato Tool, is a pure Java build tool that is controlled using XML build configuration files, and

offers a nice alternative to the more traditional and cryptic Make files.

http://www.eclipse.org/aspectj
http://www.aspectjcookbook.com
http://www.eclipse.org/aspectj

Recipe 2.2. Developing a Simple Aspect

Problem

You want to write a simple aspect.

Solution

First, write your business logic classes, as shown in Example 2-1.

Example 2-1. A simple business logic Java class

package com.oreilly.aspectjcookbook;

public class MyClass
{
 public void foo(int number, String name)
 {
 System.out.println("Inside foo (int, String)");
 }

 public static void main(String[] args)
 {
 // Create an instance of MyClass
 MyClass myObject = new MyClass();
 // Make the call to foo
 myObject.foo(1, "Russ Miles");
 }
}

Define an aspect that will be applied to this class. The aspect in Example 2-2 parodies the traditional
"Hello World" for AspectJ by providing an aspect that captures all calls to the void foo(int,
String) method in the MyClass class.

Example 2-2. A simple HelloWorld aspect in AspectJ

package com.oreilly.aspectjcookbook;

public aspect HelloWorld

{
 pointcut callPointcut() :
 call(void com.oreilly.aspectjcookbook.MyClass.foo(int, String));

 before() : callPointcut()
 {
 System.out.println(
 "Hello World");
 System.out.println(
 "In the advice attached to the call pointcut");
 }
}

Save this file in the same directory as your business logic class as HelloWorld.aj or HelloWorld.java.
Run the ajc command to compile this simple application and produce the byte code .class files for

both the aspect and the class:

> ajc -classpath %MY_CLASSPATH% -d %MY_DESTINATION_DIRECTORY% com/oreilly/
aspectjcookbook/MyClass.java com/oreilly/aspectjcookbook/HelloWorld.java

If you get the following message then you will need to add the aspectjrt.jar to your classpath:

warning couldn't find aspectjrt.jar on classpath, checked:

error can't find type org.aspectj.lang.JoinPoint

1 error, 1 warning

To add the aspectjrt.jar to your classpath just for this compilation, type the following command to
invoke the ajc compiler (Use ; instead of : to separate the components of the classpath on

Windows):

> ajc -classpath %MY_CLASSPATH%:%ASPECTJ_INSTALLATION_DIRRECTORY%/
lib/aspectjrt.jar -d %MY_DESTINATION_DIRECTORY% com/oreilly/
aspectjcookbook/MyClass.java com/oreilly/aspectjcookbook/HelloWorld.
java

The ajc compiler will produce two .class files; MyClass.class and HelloWorld.class. AspectJ 1.2

produces regular Java byte code that can be run on any 1.2 JVM and above, so you can now use the
normal java command to run this application:

> java -classpath %MY_CLASSPATH% com.oreilly.aspectjcookbook.MyClass
Hello World
In the advice attached to the call point cut
Inside foo (int, String)

Congratulations! You have now compiled and run your first aspect-oriented application using AspectJ.

Discussion

This recipe has shown you your first example of an aspect and how AspectJ extends the Java
language. At first, the new syntax can appear a little strange and a good portion of this book is
dedicated to examining the ways the new language constructs can be used to create your aspects. To
demystify some of this syntax up front, Example 2-3 briefly examines what each line of the aspect
from this recipe specifies.

Example 2-3. A simple example of the new AspectJ syntax

1 package com.oreilly.aspectjcookbook;
2
3 public aspect HelloWorld
4 {
5 pointcut callPointcut() :
6 call(void com.oreilly.aspectjcookbook.MyClass.foo(int, String));
7
8 before() : callPointcut()
9 {
10 System.out.println(
11 "Hello World");
12 System.out.println(
13 "In the advice attached to the call pointcut");
14 }
15 }

Line 3 declares that this is an aspect.

Lines 5 and 6 declare the logic for a single named pointcut. The pointcut logic specifies that any join
points in your application where a call is made to the void MyClass.foo(int, String) method will
be caught. The pointcut is named callPointcut() so that it can be referred to elsewhere within the

aspect's scope.

Lines 7 through 13 declare a single advice block. The before() advice simply states that it will
execute before any join points that are matched by the callPointcut() pointcut. When a join point

is matched the advice simply outputs a couple of messages to the system to inform you that the
advice has been executed.

This recipe provides a good mechanism for testing a development environment to ensure that things
are working as they should before performing any customization to the development tools.

AspectJ aspects can be saved with the .aj or .java extension. The ajc tool

compiles the file supplied, regardless of the extension. The different extensions,
.aj and .java, are largely a matter of personal preference.

The compilation of the aspect and the Java class produces only .class files. This is a very important
feature of AspectJ; aspects are treated as objects in their own right. Because of this treatment, they
can be encoded as class files; this ensures that when the application is run, the Java Runtime
Environment (JRE) does not need to understand any additional aspect-specific file formats. With the
inclusion of the aspectjrt.jar support library in your JRE class path, an aspect-oriented software
application can be deployed to any JRE on any platform in keeping with the "Write Once, Run
Anywhere" philosophy of Java.

See Also

Prior to using this recipe, it is necessary to get the AspectJ tools and prepare a simple command-line
build environment as covered in Recipe 2.1; pointcuts are described in Chapter 4 through Chapter 12
and specifically the call(Signature) pointcut is examined in Recipe 4.1; the within(TypePattern)
pointcut is described in Recipe 9.1; the NOT (!) operator used in relation to pointcuts is described in
Recipe 12.4; the before() form of advice can be found in Recipe 13.3.

Recipe 2.3. Compiling an Aspect and Multiple Java Files

Problem

You want to conveniently compile a selection of aspects that are to be applied to multiple Java
classes.

Solution

Create an AspectJ build configuration file titled <appname>.lst containing the names of all of the class

files and aspects to be included in the compilation, similar to the example .lst file in Example 2-4.

Example 2-4. The contents of an example AspectJ build configuration .lst
file

// File files.lst
com/oreilly/aspectjcookbook/MyClass.java
com/oreilly/aspectjcookbook/MyAspect.java
com/oreilly/aspectjcookbook/AnotherClass.java
com/oreilly/aspectjcookbook/AnotherAspect.java

Use the following command to instruct the ajc compiler to apply the aspects to the classes:

> ajc -argfile files.lst -classpath %MY_CLASSPATH% -d %MY_DESTINATION_DIRECTORY%

Discussion

The process by which the ajc tool completes the compilation of aspects and classes is largely

transparent to the developer and can be treated as a black box. You shouldn't really worry about the
interim steps that may be taking place inside the AspectJ compiler, short of a desire to get into
development work on ajc itself.

It is important to consider the inputs to the build process; this is handled through the creation of the
.lst build configuration file. The ajc compiler does not search the source or class path for files to

compile; it must be told which files are to be involved in the compilation. This means that all of your
source that is to be compiled with aspects must be fed directly to the ajc compiler. There are three
ways to supply the files to be compiled to the ajc compiler (two of which are semantically

equivalent):

The -argfile option

You can supply all the files within a .lst file by specifying the filename on the ajc command line

with this option.

The @ option

This option is equivalent to the -argfiles option.

Directly list the files

You can simply specify the files on the command line when the ajc compiler is invoked.

See Also

Recipe 2.1 shows how to prepare a simple command-line build area for development using AspectJ;
the AspectJ Development Environment Guide is available at http://www.eclipse.org/aspectj and
provides more details on the runtime options and flags that the ajdoc tool supports; a full description

of the AspectJ compiler process is available at http://hugunin.net/papers/aosd-2004-
cameraReady.pdf; Recipe 2.8 shows how the .lst file can be used to vary the aspects that are woven
for a particular build configuration.

http://www.eclipse.org/aspectj
http://hugunin.net/papers/aosd-2004-

Recipe 2.4. Weaving Aspects into Jars

Problem

Your want to weave your aspects into code that has already been compiled and collected into a .jar
file.

Solution

Use the -inpath command-line option when running the ajc command.

Discussion

The ajc command weaves aspects into Java byte code which can reside in .class files, within a Java

.jar library file or a mixture of the two. The following instructions show you how to take the code from
Recipe 2.2 and package the MyClass class in a .jar file before weaving the HelloWorld aspect into the

library:

Compile the MyClass class using the traditional javac command:

> javac -classpath %MY_CLASSPATH% -d %MY_DESTINATION_DIRECTORY% com/oreilly/
aspectjcookbook/MyClass.java

1.

Package the generated MyClass.class file into a .jar file titled MyApp.jar :

> jar -cvf MyApp.jar com/oreilly/aspectjcookbook/MyClass.class

2.

Compile the HelloWorld.java aspect using the ajc command, specifying the new MyApp.jar on
the command line using the -inpath option:

> ajc -classpath %MY_CLASSPATH% -d %MY_DESTINATION_DIRECTORY% -inpath MyApp.jar
com/oreilly/aspectjcookbook/HelloWorld.java

The -inpath option forces the ajc compiler to extract the Java byte code from the supplied .jar
files into the destination directory as specified by the -d option. The ajc compiler then includes

that extracted byte code in the aspect weaving process.

3.

If no errors occur during compilation with ajc then you will have successfully woven the classes
contained within the MyApp.jar file with the HelloWorld aspect. Because the ajc command
extracts the classes from the .jar files supplied to the -inpath option, they are no longer needed

to run the application. However, you can optionally re-package your new application in a .jar file

4.

of its own using the -outjar option when running the ajc command:

> ajc -classpath %MY_CLASSPATH% -d %MY_DESTINATION_DIRECTORY% -inpath MyApp.jar -
outjar MyAspectOrientedApp.jar com/oreilly/aspectjcookbook/HelloWorld.java

This produces a MyAspectOrientedApp.jar that contains your application's aspects and classes
that can then be run using the traditional java command:

> java -classpath MyAspectOrientedApp.jar com.oreilly.aspectjcookbook.MyClass

Before weaving your aspects into a .jar library provided by a third party,
make sure that the license covering the library allows you to change the
contents. If you don't check that it is ok to change the contents of the .jar
file then you could be infringing on the third party's license agreement. For
example, the license covering the Java Standard Libraries usually does not
support the weaving of aspects into code that resides in the java or javax

packages or their subpackages.

See Also

Setting up your environment in order to compile your AspectJ projects from the command line is
covered in Recipe 2.1 .

Recipe 2.5. Weaving Aspects at Load Time

Problem

You want to postpone the decision as to whether an aspect should be applied to a particular application
until the application is being loaded into the Java Virtual Machine.

Solution

Use the new load-time weaving features of AspectJ 1.2.

Discussion

Using the code shown in Recipe 2.2 , the following instructions show you how to apply the HelloWorld
aspect to the MyClass class at load time:

Compile the MyClass class using the traditional javac command:

> javac -classpath %MY_CLASSPATH% -d %MY_DESTINATION_DIRECTORY% com/oreilly/
aspectjcookbook/MyClass.java

By using the javac command, you are completely avoiding weaving any aspects into your application

at compile time. If you have some aspects that you want to include at compile time, you can use the
ajc command and list the aspects to be included at that point in the AspectJ build configuration file,

not specifying any aspects you intend to only weave at load time.

1.

You can now check to ensure that the MyClass class has been compiled without any aspects by
running the application using the java command:

> java com.oreilly.aspectjcookbook.MyClass
Inside foo (int, String)

2.

Compile the HelloWorld aspect into an aspect library .jar file using the ajc command:

> ajc -outjar helloworldlibrary.jar -d %MY_DESTINATION_DIRECTORY% com/oreilly/
aspectjcookbook/HelloWorld.java

You may find that you get the following warning stating that there is no match to the pointcut logic
declared in your HelloWorld aspect:

warning no match for this type name: com$oreilly$aspectjcookbook$MyClass [Xlint:

3.

invalidAbsoluteTypeName]
call(void com.oreilly.aspectjcookbook.MyClass.foo(int, String));
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

You are not weaving your aspect into the MyClass class at this point, so the warning is expected and

can be ignored in this case.

You are now all set to run your separately compiled class and aspect, weaving them together at load
time. A script is provided in AspectJ 1.2 to help you run the load-time weaver. This script is currently
located in the %MY_HOME_DIRECTORY%/aspectj1.2/doc/examples/ltw directory and is called aj or
aj.bat . Just as the ajc command is the AspectJ equivalent of the java command, so the aj script can
be seen as the foundation for an AspectJ equivalent of the java command.

In AspectJ 1.2, the aj script is located in an example directory as part of the

AspectJ documentation. In future versions of AspectJ, as the load-time weaving
facilities mature, it is likely that the aj script will join the more mainstream

scripts in the %ASPECTJ_INSTALL_DIRECTORY%/bin directory .

4.

The aj command relies on three environment variables being set so that it can pick up the relevant

aspect libraries and Java classes for your application. You need to set the following variables to the
appropriate project and AspectJ installation locations:

CLASSPATH

The location of your project's classes and the aspectjrt.jar is usually installed to
%MY_HOME_DIRECTORY%/aspectj1.2/lib .

ASPECTPATH

Points to any .jar files that contain aspects to be woven at load time. In this example, this
variable should point to the helloworldlibrary.jar file.

ASPECTJ_HOME

Contains the location of your AspectJ installation.

5.

You can now run your application using the aj command. The aspects contained in the
helloworldlibrary.jar are woven at load time into the MyClass class:

> %ASPECTJ_INSTALL_DIRECTORY%/doc/examples/ltw/aj com.oreilly.aspectjcookbook.MyClass
Hello World
In the advice attached to the call point cut
Inside foo (int, String)

6.

In addition to the default implementation of load-time weaving supplied with AspectJ 1.2, you can create
your own implementation by extending and using the classes provided in the org.aspectj.weaver.tools

package. This is an advanced topic for developers who are working with the AspectJ tools and is not
covered here.

This recipe shows you how to work with load-time weaving with the current
implementation in AspectJ 1.2. Although load-time weaving of aspects is an
important addition to the toolset, it is a fairly new feature in AspectJ and the current
implementation is likely to change as it matures.

See Also

Setting up your environment in order to compile your AspectJ projects from the command line is covered in
Recipe 2.1 ; the AspectJ Build Configuration file is shown in more detail in Recipe 2.3 ; another example of
load-time weaving is provided by Adrian Colyer at
http://www.jroller.com/comments/colyer/Weblog/load_time_weaving_with_aspectj ; a full explanation of
the load-time weaving facilities in AspectJ 1.2 is available as part of the documentation for AspectJ and is
installed to %ASPECTJ_INSTALL_DIRECTORY%/doc/README-12.html .

http://www.jroller.com/comments/colyer/Weblog/load_time_weaving_with_aspectj

Recipe 2.6. Generating Javadoc Documentation

Problem

You want to generate javadoc format documentation for your AspectJ application.

Solution

Use the ajdoc tool from the command line or from within Eclipse.

Discussion

Java developers have used the javadoc tool for generating comprehensive documentation for their
Java applications since Java 1.1. The javadoc tool was never designed to handle the new language

constructs that AspectJ introduces and is not able to generate documentation for an AspectJ
application. To meet this problem, the developers of AspectJ created ajdoc, a tool that extends
javadoc so that it can correctly and usefully document the aspect-oriented structures in your

application.

Providing your environment has been set up correctly, as shown in Recipe 2.1, the ajdoc tool can be

accessed from the command line by typing the following command:

> ajdoc -sourcepath <The root location of you code> -d <The
directory in which you want your documentation to be placed> <The
file locations of each of the classes aspects and classes to include in
the generated documentation>

The ajdoc tool provides the -argfile parameter so that you can provide an explicit AspectJ build

configuration .lst file, as mentioned in Recipe 2.3. A .lst file contains the build configuration for a set
of classes and aspects in your application for which documentation should be produced.

Using ajdoc means that you can now document your pointcuts, advice, and aspects as shown in

Example 2-5.

Example 2-5. Applying javadoc tags to the aspects, pointcuts, and advice

package com.oreilly.aspectjcookbook;

/**
 * A simple aspect to weave in a HelloWorld message when foo(int,name)
 * is called on objects of the MyClass class.
 * @author russellmiles
 * @version 1.0
 *
 */
public aspect HelloWorld
{
 /**
 * Selects join points on calls to the MyClass.foo(int,String) method.
 */
 pointcut callPointCut() :
 call(void com.oreilly.aspectjcookbook.MyClass.foo(int, String));

 /**
 * Simple before advice that prints HelloWorld to the standard output.
 */
 before() : callPointCut()
 {
 System.out.println(
 "Hello World");
 System.out.println(
 "In the advice attached to the call point cut");
 }
}

Example 2-5 is the same aspect that was shown in Recipe 2.2 but highlights the documentation that
is provided for the ajdoc tool. To produce documentation from the command line for this simple
example, you would type the following from the same directory as your source code, making sure
that your AspectJ build environment has been set up correctly (also shown in Recipe 2.2) and that
the docs directory has been created ready to accept your generated documentation:

> ajdoc -sourcepath . -d docs com/oreilly/aspectjcookbook/MyClass.java com/
 oreilly/
aspectjcookbook/HelloWorld.java

If the ajdoc tool runs correctly, you should see something like the following lengthy but successful

output from the previous command:

> Calling ajc...
> Building signature files...
> Calling javadoc...
Loading source file /source/Chapter 2/2.5/ajdocworkingdir/com/oreilly/
aspectjcookbook/MyClass.java...
Loading source file /source/Chapter 2/2.5/ajdocworkingdir/com/oreilly/
aspectjcookbook/HelloWorld.java...
Constructing Javadoc information...
Standard Doclet version 1.4.2_03
Generating constant-values.html...

Building tree for all the packages and classes...
Building index for all the packages and classes...
Generating overview-tree.html...
Generating index-all.html...
Generating deprecated-list.html...
Building index for all classes...
Generating allclasses-frame.html...
Generating allclasses-noframe.html...
Generating index.html...
Generating packages.html...
Generating com/oreilly/aspectjcookbook/package-frame.html...
Generating com/oreilly/aspectjcookbook/package-summary.html...
Generating com/oreilly/aspectjcookbook/package-tree.html...
Generating com/oreilly/aspectjcookbook/HelloWorld.html...
Generating com/oreilly/aspectjcookbook/MyClass.html...
Generating package-list...
Generating help-doc.html...
Generating stylesheet.css...
> Decorating html files...
> Decorating /source/Chapter 2/2.5/com/oreilly/aspectjcookbook/
 MyClass.html...
> Decorating /source/Chapter 2/2.5/com/oreilly/aspectjcookbook/
 HelloWorld.html...
> Removing generated tags (this may take a while)...
> Finished.

The ajdoc tool is also available from within the Eclipse IDE when using the AspectJ Development
Tools (AJDT) plug-in. To use the ajdoc tool, select your AspectJ project in the Package Explorer panel

and click Project Generate Javadoc....

When Eclipse shows the Generate Javadoc dialog, you will need to change the Javadoc Command to
ajdoc. To do this, click on the Configure button and then navigate to the place where the ajdoc tool
has been installed; normally, this is %HOME DIRECTORY%/aspectj1.2/bin. Select the ajdoc tool and
click on OK. The Javadoc Command should then change to point to the ajdoc tool to indicate that it

has been configured as the tool to use when generating your projects documentation. Because the
ajdoc tool works in almost the same way as the javadoc tool, Eclipse needs to know nothing more
to use the new configuration and you can set up the options for your javadoc generation as normal.

As of Eclipse 3 and AJDT 1.1.11, the process for generating documentation
using ajdoc has been simplified. Before, you had to manually set the javadoc
generation to the ajdoc tool; with the release of these versions, the ajdoc

documentation has its own menu item that can be accessed by clicking on
Project Generate ajdoc....

See Also

Java in a Nutshell by David Flanagan (O'Reilly); Eclipse and Eclipse Cookbook by Steve Holzner
(O'Reilly); the AspectJ Development Environment Guide available at http://www.eclipse.org/aspectj

http://www.eclipse.org/aspectj

provides more details on the runtime options and flags that the ajdoc tool supports; the AspectJ

build configuration file is discussed in Recipe 2.3.

Recipe 2.7. Compiling an AspectJ Project Using Eclipse

Problem

You want to compile your AspectJ project using Eclipse.

Not Using Eclipse or Ant?

If you are not going to use Eclipse or the Ant tool when writing your aspect-oriented
software with AspectJ, then it is worth skipping forward to the next chapter to start
looking at the common approaches to deploying your AspectJ applications.

Solution

Download and install the AspectJ Development Tools (AJDT) plug-in into Eclipse.

Discussion

AspectJ is run under the same open source collective as the Eclipse project and provides the most
advanced AspectJ plug-in for an IDE. The AspectJ Eclipse plug-in can be downloaded by following the
instructions available at http://www.eclipse.org/ajdt.

It's a good rule of thumb to download the latest version of AspectJ, the
corresponding latest version of the AJDT, and then download the supported
version of Eclipse just in case the Eclipse tool is a step or so ahead of the
AspectJ development. If you are ever confused by the options available, there
is a compatibility table available on the AJDT downloads page to point you in
the right direction.

To check that the plug-in has been correctly installed, click on File New Project... on the
Eclipse menu bar. When the New Project dialog appears, the AspectJ project option should be
available, as shown in Figure 2-1.

http://www.eclipse.org/ajdt

Figure 2-1. Creating a new AspectJ project

By default, early milestone builds of Eclipse 3 hid all additional wizards. To see
the New AspectJ Project option, you may have to select the Show All Wizards
checkbox.

Highlighting the AspectJ Project option, click on Next in the New Project dialog and complete the next
few steps to set up the new AspectJ project.

Once the project wizard has completed, you may be asked to switch to the Java perspective. You
may also be asked for some AJDT preferences if this is the very first time that you have used the
wizard. It's a good idea to switch to the Java Perspective and accept the default values for the project
preferences. Once Eclipse has switched to the Java perspective, your project should look like Figure
2-2.

Figure 2-2. AspectJ project sources and jars within the Eclipse Java
perspective

By default from AJDT 1.1.7 onwards, an AspectJ project will incrementally
compile all changes to your aspects and Java classes. This option can be turned
off in the Eclipse AspectJ project configuration if the build performance becomes
too intrusive.

Your new AspectJ application should automatically compile with the creation of the new project. If
you are at all worried that this hasn't happened, click on the Build AspectJ Project button shown in
Figure 2-3. This will force a rebuild of the project just to be sure.

Figure 2-3. Use the Build AspectJ Project button to check that your project
has compiled correctly

Your application is now compiled and ready for running, but before you run it, it is interesting to note
the enhancements that the AJDT brings to the Java perspective. Perhaps the most obvious
enhancement is in the contents of the Outline view which will contain, when an aspect or advised
class is selected, new sections indicating where advice has been applied. An example of the additional
information available in the Outline view is shown in Figures Figure 2-4 and Figure 2-5.

Figure 2-4. Using the Outline View to see on which classes or aspects a
specific advice is applied

Figure 2-5. Using the Outline View to see what advice is applied to a
specific class

The AJDT also provides another view of your project that graphically displays an overview of how
your aspects are applied to your application, The Aspect Visualization perspective can be opened by
selecting Window Open Perspective Other... and then enabling the Aspect Visualization
perspective. The new perspective on your project will then show a graphical depiction of how the
aspects have been applied to the classes as shown in Figure 2-6.

Figure 2-6. The AJDT Aspect Visualization perspective with an example
project selected

Switching back to the Java perspective, it's time to run your application. In Eclipse, it is as easy to
run an AspectJ application as it is to run a traditional Java application. In the Java perspective, click

on the class that contains the public static void main(String[]) method and select Run Run

As Java Application from the main menu. Eclipse will then search and run the public static
void main(String[]) method in the selected class producing the applications command line output

to the Console view as shown in Figure 2-7.

Figure 2-7. The output on the Console view when Recipe 5.1 is run

There are enough features and enhancements supported by the AJDT to fill a chapter in its own right.
Take some time to tour the different preferences and features that are available, perhaps while you
work with some of the other recipes in this book, to help you get used to what features are most
useful to you.

See Also

Recipe 2.9 shows how to automate the build process using the Ant tool; a complete user guide for
the AJDT plug-in can be accessed by visiting http://www.eclipse.org/ajdt and following the User
Resources:Documentation link; an AspectJ plug-in for Borland JBuilder is available at
http://sourceforge.net/projects/aspectj4jbuildr/; an AspectJ plug-in for Sun's NetBeans is available
at http://sourceforge.net/projects/aspectj4netbeans/; Eclipse and Eclipse Cookbook by Steve
Holzner (O'Reilly).

http://www.eclipse.org/ajdt
http://sourceforge.net/projects/aspectj4jbuildr/
http://sourceforge.net/projects/aspectj4netbeans/

Recipe 2.8. Selecting the Aspects That Are Woven in a
Build Within Eclipse

Problem

You want to vary the aspects that are woven into your application when developing in Eclipse.

Solution

Create a separate AspectJ build configuration for each different selection of aspects that you want to
weave into your application. Eclipse then allows you to select the current build configuration it will use
to build your AspectJ project so you can easily select the set of aspects you want to apply for a
particular build.

Discussion

Recipe 2.3 showed that the AspectJ compiler can use a build confiuguration .lst file to select the
classes and aspects it will include in its aspect weaving. By default, an AspectJ project in Eclipse has a
single .lst file, naturally called default.lst, that lists all the of the files in your project. Using this
default, the AspectJ compile will apply all the aspects to all of classes where indicated by the pointcut
logic in those aspects.

For many applications, this default behavior is fine but there are times when you may want to vary
the aspects that are applied to a particular application depending on such things as deployment
target or feature selection. AspectJ provides a neat way of varying the selection of aspects to be
applied using a custom build configuration .lst file that excludes or includes the aspects you wish to
apply.

Eclipse provides the means by which a custom AspectJ build configuration can be created and used
for a particular project.

When the project created in Recipe 2.7 is run, the output produced on the Console in Eclipse is:

MyAspect before() advice
In the advice attached to the call point cut
Inside foo (int, String)

The following steps create a new build configuration that will exclude the single MyAspect aspect in

the project from the build and therefore change the behavior of the application as shown by the
amended output on the Console.

As of Eclipse 3.0, with the AJDT Version 1.1.11 or later installed, the following steps have changed
when creating a new AspectJ build configuration file. There is also now a new format for build
configuration files used by the Eclipse AJDT plug-in, the .ajproperties file.

You can create a new build configuration in Eclipse 3.0 by clicking on Project Active Build
Configuration Save as... , entering a new name for your build configuration, and then by following
step 8 onwards. This will create a new .ajproperties file as opposed to the more traditional .lst file.

You can also convert an existing .lst file to the newer .ajproperties format by right-clicking on the .lst
file and selecting Save as .ajproperties file. If you need to go back to the .lst format, you can right-
click on a .ajproperties file and select Save as .lst file.

Ensure that your AspectJ project is selected in the Package Explorer view.1.

Click on File New Other....2.

In the New dialog, select the AspectJ Build Configuration File and click on Next, as shown in
Figure 2-8.

Figure 2-8. Selecting the new AspectJ build configuration file wizard

3.

4.

The New AspectJ Build Configuration File dialog will appear, as shown in Figure 2-9.

Figure 2-9. Entering the details for the new AspectJ build configuration
file

4.

Check that the correct project is selected and enter a name for the new build configuration file,
for this example use the name excludeAspects.lst.

5.

Deselect the Include all source files from project checkbox and click on Finish.6.

The new excludeAspects.lst file will be added to your project and opened in the file editor.7.

Select the files you want to include in this build configuration, as shown in Figure 2-10. In this
example, you want to build only the classes and exclude all of the aspects so only the
MyClass.java file is selected.

8.

Figure 2-10. Editing the AspectJ build configuration file in Eclipse

Save your changes to the build configuration file.9.

You need to tell the AspectJ compiler to switch to your configuration for this project. Find the
Build AspectJ Project/Select Configuration button on the Eclipse toolbar, as shown in Figure 2-
11.

Figure 2-11. The Build AspectJ Project/Select Configuration button in
Eclipse

10.

Click on the small down triangle to the right of the button to pop up a list of the available build
configurations for this project, as shown in Figure 2-12.

Figure 2-12. Selecting the new excludeAspects.lst AspectJ build
configuration

11.

Select the new build configuration and the AspectJ compiler will automatically rebuild your
project according to the new settings.

In Eclipse 3.0 with AJDT 1.1.11 or later, you can quickly exclude or include
a single source file from the current active configuration; then, you can
right-click on the source file and click on Exclude from
"%CURRENT_CONFIGURATION%" or Include from
"%CURRENT_CONFIGURATION%" if the file is already excluded.

12.

After building under the new excludeAspects.lst configuration, the Console output will show the

following when the application is run again:

Inside foo (int, String)

The aspects have been removed from your application when building with this configuration. To
switch back to the full default build configuration, click on the Selecting down triangle and select the
<all project files> option.

See Also

Eclipse and Eclipse Cookbook by Steve Holzner (O'Reilly); Recipe 2.9 shows how to use the Ant
AspectJ tasks to vary the aspects applied to a specific build of your application.

Recipe 2.9. Building an AspectJ Project Using Ant

Problem

You want to compile an AspectJ project using Ant.

Solution

Use the tasks included in the AspectJ toolkit to build your project using Ant.

Discussion

The Ant build.xml configuration file in Example 2-6 shows an example for how to call upon the
additional AspectJ Ant tasks.

Example 2-6. An Ant configuration file that uses the AspectJ tasks

<?xml version="1.0" encoding="UTF-8"?>
<project basedir="." default="compile" name="test">
 <property name="src" value="src"/>
 <property name="build" value="build"/>
 <taskdef resource="org/aspectj/tools/ant/taskdefs/aspectjTaskdefs.
 properties">
 <classpath>
 <pathelement location="%ASPECTJ_INSTALLATION%/lib/
 aspectjtools.jar"/>
 </classpath>
 </taskdef>
 <target name="compile">
 <mkdir dir="${build}"/>
 <iajc destdir="${build}" sourceroots="${src}">
 <classpath>
 <pathelement location="%ASPECTJ_INSTALLATION%/
 lib/aspectjrt.jar"/>
 </classpath>
 </iajc>
 </target>
</project>

Here is what Example 2-6 does:

Defines a new task using the AspectJ task properties1.

Specifies the location of the aspectjtools.jar2.

Declares a build target that compiles the project using the iajc task that in turn relies upon the

aspectjrt.jar to execute

3.

See Also

Ant: The Definitive Guide by Jesse Tilly and Eric M. Burke (O'Reilly); the Jakarta Ant online manual at
http://jakarta.apache.org/ant/manual/index.html.

http://jakarta.apache.org/ant/manual/index.html

Chapter 3. Deploying AspectJ Applications
Introduction

Recipe 3.1. Deploying a Command-Line AspectJ Application

Recipe 3.2. Deploying an AspectJ Application as a Fully Contained Executable JAR File

Recipe 3.3. Deploying a Java Servlet That Uses AspectJ

Recipe 3.4. Deploying a JSP That Uses AspectJ

Recipe 3.5. Deploying an Axis Web Service That Uses AspectJ

Introduction

Whatever the applications are that you develop with AspectJ, you will usually want to deploy your
application to a target environment so it can be made available to your users. Java application
deployment can range from being as complex as providing context-specific runtime wrappers and
scripts to run your application, or as simple as providing a double-clickable .jar or executable. So,
deployment can often be a real headache for developers.

To add to this mix, AspectJ adds some additional requirements to your application deployment. The
recipes in this chapter describe in detail those additional requirements that an AspectJ application
imposes on a traditional Java application and some of the tools support that you have at your
disposal to help you in the deployment process.

AspectJ is definitely not limited to just regular Java applications. You can deploy AspectJ applications
into many different target runtime environments including Java Servlets and Java Server Pages inside
Tomcat and Axis Web Services. These more complicated deployment environments often offer
several different ways of deploying the same application. Some of these options are better suited to
AspectJ than others and so this chapter focuses on describing the easiest routes to application
deployment to these target environments.

As you work through the recipes in this chapter, it's worth remembering that many of the manual
steps could be automated using Apache Ant or even command-line scripts and batch files. However,
the recipes here deliberately walk you through all of the manual steps required to deploy into the
various target environments to keep you in touch with what is going on at all times.

Recipe 3.1. Deploying a Command-Line AspectJ
Application

Problem

You want to deploy a simple AspectJ application to be deployed and then run from the command line.

Solution

A straightforward Java application usually requires nothing more than a Java Runtime Environment
on the target machine and the classes of your application added to the Java classpath before you can
run your application.

AspectJ requires that the Java Runtime Environment be at Version 1.1 or later, and it needs the
additional aspectjrt.jar library added to the classpath to support the aspect-oriented features of your
AspectJ application.

Discussion

Using the simple application developed in Recipe 2.2, the following steps create a directory containing
all of the necessary deployment files needed to run your AspectJ application:

Create a new directory to contain your runtime deployment that is separate from your source
directories. For this example, name the directory deployment.

1.

Create a subdirectory of the top-level deployment directory and name it classes.2.

Place all of your application's compiled .class files in the classes directory, taking care to
maintain your package directory structure. For this example, the code from Recipe 2.2 is being
used, so the directory structure should look like Figure 3-1.

Figure 3-1. The directory structure after you have placed the .class
files within your deployment area

3.

You can perform this by either manually copying each of the packages of .class files or by
building your application with the ajc tool with the destination flag, -d, set to the classes

directory:

> ajc -classpath %MY_CLASSPATH% -d %PROJECT_ROOT_DIRECTORY%/deployment/classes
com/oreilly/aspectjcookbook/MyClass.java com/oreilly/aspectjcookbook/HelloWorld.
java

If you get an error that states that aspectjrt.jar cannot be found, then check out Recipe 2.2
where the instructions on how to use the ajc command explain how to overcome this problem.

Create a subdirectory beneath the top level deployment directory called lib.4.

Copy the %ASPECTJ_INSTALLATION_DIRECTORY%/lib/aspectjrt.jar file to the new lib
directory.

5.

Your final deployment setup should look something like that shown in Figure 3-2.

Figure 3-2. The directory structure after the runtime AspectJ library
has been added

6.

You can copy the deployment directory to any target machine with a compatible Java Runtime
Environment correctly installed and you should be able to run your application using the java

command:

java -classpath %MY_CLASSPATH% com.oreilly.aspectjcookbook.MyClass

The classpath on your target machines must contain aspectjrt.jar within the deployment/lib
directory and point to the classes directory. For example if you are running the java command

from within the deployment directory then your classpath content would be something like
classes/.:lib/aspectjrt.jar remembering to replace : with ; on Windows.

7.

See Also

Recipe 2.2 covers the basics of how to use the ajc command to compile your AspectJ applications;

Java in a Nutshell by David Flanagan (O'Reilly) provides detailed information on the entire set of Java
command-line tools including java.

Recipe 3.2. Deploying an AspectJ Application as a Fully
Contained Executable JAR File

Problem

You want to deploy an AspectJ application to be run as an executable JAR file.

Solution

Unpack the contents of the aspectjrt.jar file and then repack the AspectJ classes with your own
application's classes into a single JAR file. To make the single JAR file executable, an appropriate
manifest file should be included that lists the class that contains the standard public static void
main(String[]) method entry point for running Java applications.

Discussion

Creating an executable JAR file is a popular way of deploying conventional Java applications. The JAR
file format, by default, contains all of the necessary classes for a software component, and it has the
potential to be configured as a packaged Java application that can be run simply by double-clicking
on the file within most popular operating systems.

The following steps manually create an executable JAR file for the application shown in Recipe 2.2:

Take a copy of the deployment directory as it was created in Recipe 2.1.1.

Unjar the contents of the aspectjrt.jar that is stored in the deployment/lib directory using the
jar tool from the command line:

jar -xvf aspectjrt.jar

2.

After the jar extraction has completed, you will find that two folders have been extracted within
the deployment/lib directory, META-INF and org. The META-INF directory contains a
MANIFEST.MF file containing the manifest information for the aspectjrt.jar. The org directory
contains the .class files needed by the aspect-oriented mechanisms within your application to
run when it is deployed.

3.

Copy the deployment/lib/org directory and all of its contents into the deployment/classes
directory

4.

5.

4.

Create a manifest file called manifest in the new deployment directory, using a text editor, that
contains similar information as that presented in Example 3-1.

Example 3-1. An example of the contents of an executable .jar files
manifest

Manifest-Version: 1.0

Name: com/oreilly/aspectjcookbook/
Specification-Title: My simple AspectJ Application
Specification-Version: 1.0
Specification-Vendor: Russ Miles
Implementation-Title: com.oreilly.aspectjcookbook
Implementation-Version: 1.0
Implementation-Vendor: Russ Miles
Main-Class: com.oreilly.aspectjcookbook.MyClass

It is important that the Main-Class information in the manifest file correctly points to the class
that contains the public void main(String[]) method that starts up your application.

5.

Once you have created and saved the manifest file to the deployment directory the directory
structure of deployment and deployment/classes directories should look like that shown in
Figure 3-3.

Figure 3-3. The content of the deployment and classes directories once
you have copied over the org directory, which contains the AspectJ

classes and creates a new manifest file

6.

Create a subdirectory of the deployment directory called build.7.

8.

7.

Run the following jar command from within the deployment directory to create the executable

myapplication.jar file in the deployment/build directory:

jar -cfm build/myapplication.jar manifest -C classes/

8.

To run the executable .jar file, remembering that this example application is a console
application and so has no GUI, you can either run the java command from the build directory
using the -jar option as shown below or double-click on the myapplication.jar file.

java -jar myapplication.jar

9.

If you are using Mac OS X and decide you are going to double-click the myapplication.jar, then
you could run the Console application first, located in the /Applications/utilities directory, to see
the output of your application running as shown in Figure 3-4.

Figure 3-4. The Console application in Mac OS X showing the output of
double-clicking the executable myapplication.jar

10.

See Also

Java in a Nutshell by David Flanagan (O'Reilly) provides detailed information on the entire set of Java
command-line tools, including java and jar.

Recipe 3.3. Deploying a Java Servlet That Uses AspectJ

Problem

You want to deploy a servlet that has been developed using AspectJ into Apache Tomcat.

Solution

Compile your Java Servlet from the command line using the ajc command or inside an Eclipse AspectJ

project. Under the webapps directory inside Apache Tomcat, set up a new web application directory and
WEB-INF subdirectory. Make the appropriate amendments to the server.xml file in the Tomcat
configuration to enable your web application.

Copy the compiled Java Servlet .class files and corresponding aspect .class files into the
webapps/%YOUR_APPLICATION_DIRECTORY%/WEB-INF/classes . Copy the aspectjrt.jar file into the
webapps/%YOUR_APPLICATION_DIRECTORY%/WEB-INF/lib so the aspect-oriented features of your
software can find the support components they need.

Amend your web application's webapps/%YOUR_APPLICATION_DIRECTORY/WEB-INF/web.xml file to
support access to the new Java Servlet. Finally, restart Tomcat to activate your web application.

Discussion

The following steps show how to create, compile, and deploy a simple Java Servlet that uses AspectJ:

Create a Java Servlet and corresponding aspect similar to the ones shown in Examples Example 3-
2 and Example 3-3 .

Example 3-2. A simple HelloWorld Java Servlet

package com.oreilly.aspectjcookbook;

import java.io.IOException;

import javax.servlet.ServletException;
import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class AOHelloWorldServlet extends HttpServlet
{

1.

 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 ServletOutputStream out = response.getOutputStream();
 out.println("<h1>Hello World from an aspect-oriented Servlet!</h1>");
 }

 public String getServletInfo()
 {
 return "Create a page that says <i>Hello World</i> and send it back";
 }
}

Example 3-3. An aspect that advises the doGet(..) method on the
AOHelloWorldServlet class

package com.oreilly.aspectjcookbook;

import java.io.IOException;

import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public aspect AddHTMLHeaderAndFooter
{
 public pointcut captureHttpRequest(HttpServletRequest request,
 HttpServletResponse response) :
 execution(public void AOHelloWorldServlet.doGet(HttpServletRequest,
 HttpServletResponse)) &&
 args(request, response);

 before(HttpServletRequest request, HttpServletResponse response)
 throws IOException :
 captureHttpRequest(request, response)
 {
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();
 out.println("<html>");
 out.println("<head><title>Adding a title using AspectJ!</title></head>");
 out.println("<body>");
 }

 after(HttpServletRequest request, HttpServletResponse response)
 throws IOException :
 captureHttpRequest(request, response)
 {
 ServletOutputStream out = response.getOutputStream();
 out.println("</body>");
 out.println("</html>");

 }
}

Compile your Java Servlet and aspect as normal using either the ajc command-line tool or as part

of an AspectJ project in Eclipse.

2.

Create a new web application directory in Tomcat by creating a subdirectory of
%TOMCAT_INSTALL_DIRECTORY%/webapps called mywebapplication .

3.

Create a subdirectory of mywebapplication called WEB-INF that contains a classes and lib
directory.

4.

Create a new file inside mywebapplication/WEB-INF called web.xml that has the following
contents:

<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

 <display-name>MyApplication</display-name>
 <description>
 A simple web application that demonstrates the deployment of Java Servlets
 that have been built using AspectJ.
 </description>

 <servlet>
 <servlet-name>AOHelloWorld</servlet-name>
 <servlet-class>com.oreilly.aspectjcookbook.AOHelloWorldServlet</servlet-class>
 </servlet>

 <servlet-mapping>
 <servlet-name>AOHelloWorld</servlet-name>
 <url-pattern>/AOHelloWorld</url-pattern>
 </servlet-mapping>

</web-app>

5.

Copy the .class files generated from your compilation of the Java Servlet and aspect to the
mywebapplication/WEB-INF/classes directory remembering to preserve the package directory
structure.

6.

Copy the aspectjrt.jar from %ASPECTJ_INSTALL_DIRECTORY%/lib to myweb-application/WEB-
INF/lib .

7.

For convenience, create a new file inside mywebapplication called index.html that has the
following contents:

8.

<html>
<title>Homepage for MyApplication</title>
<body>
<h1>
Testing hompage for aspect-oriented Java Servlets</h1>
<p>
The purpose of this page is to simply provide a set of links with which
to conveniently access your aspect-oriented Java Servlets.
</p>
<p>

 The simple HelloWorld aspect-oriented Java Servlet

</p>
</body>
</html>

This is an optional step that provides an HTML page that can be used to access your Java Servlet
conveniently from the browser without having to manually enter its specific URL.

8.

The directory structure for your deployed web application should look like that shown in Figure 3-5
.

Figure 3-5. The deployed web application directory and file structure

9.

Edit the %TOMCAT_INSTALL_DIRECTORY%/conf/server.xml and add the following lines to enable
your web application inside Tomcat:

<Context path="/mywebapplication" docBase="mywebapplication" debug="0"
 reloadable="true" crossContext="true">
</Context>

10.

Finally, restart Tomcat, and you should be able to access your web application and its Java
Servlets using your browser by entering a URL similar to
http://<HOSTNAME>:<TOMCAT_PORT>/mywebapplication/index.html , entering the hostname
and Tomcat port number for your installation of Tomcat. Figure 3-6 shows the homepage for your
web application.

Figure 3-6. Your web applications homepage

11.

http://<HOSTNAME>:<TOMCAT_PORT>/mywebapplication/index.html

By clicking on the "The simple HelloWorld aspect-oriented Java Servlet" link on your web
applications homepage, your browser should show the output of your Java Servlet, as shown in
Figure 3-7 .

Figure 3-7. The output from your aspect-oriented Java Servlet

12.

See Also

Compiling using the ajc command-line tool is explained in Recipe 2.2 ; creating and compiling an
AspectJ project in Eclipse is described in Recipe 2.7 ; the execution(Signature) pointcut is explained
in Recipe 4.4 ; the args([TypePatterns | Identifiers]) pointcut is explained in Recipe 11.3 ; the
before () form of advice is discussed in Recipe 13.3 ; the after() form of advice is shown in Recipe

13.5 ; Java Servlet & JSP Cookbook by Bruce W. Perry (O'Reilly) contains examples of how to configure
and deploy your Java Servlets in Tomcat and other containers; Tomcat: The Definitive Guide by Jason
Brittain and Ian Darwin (O'Reilly).

Recipe 3.4. Deploying a JSP That Uses AspectJ

Problem

You want to build and deploy a JSP that uses AspectJ into Apache Tomcat.

Solution

Create a Java Servlet from your JSP using the tools supplied with Tomcat. Compile your Java Servlet
from the command line using the ajc command or inside an Eclipse AspectJ project.

Set up a directory structure from which to deploy your complete JSP application, including the
aspectjrt.jar support library and the .class files that were compiled by the ajc command-line tool.

Copy the deployment directory entirely to the %TOMCAT_INSTALL_DIRECTORY%/webapps directory.
Make the appropriate amendments to the server.xml file in the Tomcat configuration to enable your
web application. Finally, restart Tomcat to activate your web application.

Discussion

Java Server Pages are trickier than Java Servlets when it comes to using a custom compiler such as
AspectJ because a JSP is traditionally compiled into a Java Servlet transparently by the Servlet
containers like Apache Tomcat.

The following steps describe how to build and deploy a simple JSP that uses AspectJ into Apache
Tomcat:

Create a directory in your project area called jsp .1.

Create a file in the jsp directory called simple.jsp that has the following contents:

<html>
<body bgcolor="white">
<h1> Request Information </h1>

JSP Request Method: <%= request.getMethod() %>

Request URI: <%= request.getRequestURI() %>

Request Protocol: <%= request.getProtocol() %>

Servlet path: <%= request.getServletPath() %>

2.

</body>
</html>

Create a directory in your project area called source to hold your aspect and preprocessed JSP
source code.

3.

Create a directory in your project area called myjspapplication and a subdirectory called WEB-
INF to hold your finished web application when it is ready for deployment to Tomcat. Also, add
classes and lib subdirectories to the WEB-INF directory. Once you've completed these changes
your directory structure should look something like what is shown in Figure 3-8 .

Figure 3-8. The directory structure after you have created the
myjspapplication deployment directory, the source directory, and one

.jsp file in the jsp directory

4.

Run the jspc command-line tool that comes with Tomcat from your project area. This will

generate the source code Java Servlet that is the first step when precompiling JSPs:

jspc -d source/ -webxml myjspapplication/WEB-INF/web.xml -webapp jsp/

5.

After you have run the jspc command-line tool, you will find a web.xml file in the

myjspapplication/WEB-INF directory and a simple_jsp.java file in the source directory.

6.

Create a file called AddCopyrightTomcatJSP.java in the source directory with the code shown in
Example 3-4 .

Example 3-4. Using an aspect to affect the output of a JSP

import javax.servlet.jsp.JspWriter;

7.

public aspect AddCopyrightTomcatJSP
{
 public pointcut captureOutput(String message, JspWriter writer) :
 call(public void JspWriter.write(String)) &&
 within(simple_jsp) &&
 args(message) &&
 target(writer) &&
 if (message.equals("</body>\r\n"));

 before(String message, JspWriter writer) : captureOutput(message, writer)
 {
 try
 {
 writer.write("<p>Copyleft Russ Miles 2004</p>\n");
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

Compile the two files, simple_jsp.java and AddCopyrightTomcatJSP.java , in your source
directory using the ajc command-line tool from the project root directory:

ajc -classpath %TOMCAT_INSTALL_DIRECTORY%/common/lib/servlet.jar:%TOMCAT_INSTALL_
DIRECTORY%/common/lib/jasper-runtime.jar -d myjspapplication/WEB-INF/classes
source/simple_jsp.java source/AddCopyrightTomcatJSP.java

8.

The result of running this ajc command will be that two .class files will be generated in the

myjspapplication/META-INF/classes directory.

9.

Copy the aspectjrt.jar from %ASPECTJ_INSTALL_DIRECTORY%/lib to myweb-application/WEB-
INF/lib .

10.

For convenience, create a new file inside mywebapplication called index.html that has the
following contents:

<html>
<title>Homepage for MyJSPApplication</title>
<body>
<h1>
Testing hompage for aspect-oriented Java Server Pages</h1>
<p>
The purpose of this page is to simply provide a set of links with which
to conveniently access your aspect-oriented Java Server Pages.
</p>
<p>

11.

 The simple aspect-oriented Java Server Page example

</p>
</body>
</html>

This is an optional step that provides an HTML page that can be used to access your JSP
conveniently from the browser without having to enter its specific URL manually.

The final contents of your deployable myjspapplication directory are shown in Figure 3-9 .

Figure 3-9. The contents of the myjspapplication directory when it is all
set for deployment into Tomcat

12.

Copy the entire myjspapplication directory and all its contents to
%TOMCAT_INSTALL_DIRECTORY%/webapps .

13.

Edit the %TOMCAT_INSTALL_DIRECTORY%/conf/server.xml and add the following lines to
enable your web application inside Tomcat:

<Context path="/myjspapplication" docBase="myjspapplication" debug="0"
 reloadable="true" crossContext="true">
</Context>

14.

Finally, restart Tomcat and you should be able to access your web application and its Java
Servlets using your browser by entering a URL similar to
http://<HOSTNAME>:<TOMCAT_PORT>/myjspapplication/index.html and entering the hostname

15.

http://<HOSTNAME>:<TOMCAT_PORT>/myjspapplication/index.html

and Tomcat port number for your installation of Tomcat. Figure 3-10 shows the homepage of
your new JSP web application.

Figure 3-10. Your JSP web applications homepage

15.

By clicking on the "The simple aspect-oriented Java Server Page example" link on your web
applications homepage, your browser should show the output of your JSP, as shown in Figure 3-
11 .

Figure 3-11. The output from your aspect-oriented Java Server Page

The "Copyleft Russ Miles 2004" message was woven into the output of the JSP using the
AddCopyrightJSPTomcat aspect.

16.

See Also

Compiling using the ajc command-line tool is explained in Recipe 2.2 ; creating and compiling an
AspectJ project in Eclipse is described in Recipe 2.7 ; the call(Signature) pointcut is explained in
Recipe 4.1 ; the within(TypePattern) pointcut is discussed in Recipe 9.1 ; the target(TypePattern
| Identifier) pointcut is explained in Recipe 11.2 ; the args([TypePatterns | Identifiers])
pointcut is explained in Recipe 11.3 ; the if(Expression) statement is described in Recipe 12.1 ; the
around() form of advice is discussed in Recipe Recipe 13.4 ; Java Servlet & JSP Cookbook by Bruce

W. Perry (O'Reilly) contains examples of how to configure and deploy your Java Servlets in Tomcat
and other containers; Tomcat: The Definitive Guide by Jason Brittain and Ian Darwin (O'Reilly).

Recipe 3.5. Deploying an Axis Web Service That Uses
AspectJ

Problem

You want to deploy an aspect-oriented Apache Axis web service that has been created using AspectJ.

Solution

Create and compile your web service Java class with your aspects using the ajc command line tool or

in AspectJ project in Eclipse. Copy your application's .class files to the
%AXIS_INSTALLATION_IN_TOMCAT%/WEB-INF/classes directory and the aspectjrt.jar to
%AXIS_INSTALLATION_IN_TOMCAT%/WEB-INF/lib.

Create an Apache Axis deployment configuration file and use the
org.apache.axis.client.AdminClient command-line tool to register your new web service with

Apache Axis.

Discussion

Apache Axis is rapidly becoming one of the most popular web service implementations for Java
developers. Not only is it open source but, thanks to its very active supporting developer base, it also
has a high degree of success in interoperability with web services developed using other web service
frameworks such as .NET.

Once you have Apache Axis running within Tomcat on your machine, you can use the following steps
to compile a simple aspect-oriented web service and deploy it within Apache Axis:

Create a directory within your project area called source, and within that new directory, create
a file called MyWebService.java that contains:

package com.oreilly.aspectjcookbook;

public class MyWebService
{
 public String echo(String message)
 {
 return message;
 }

1.

2.

}

Create another file in the source directory called AddMessageHeaderAspect.java that contains:

package com.oreilly.aspectjcookbook;

public aspect AddMessageHeaderAspect
{
 public pointcut captureEcho(String message) :
 execution(public void MyWebService.echo(String)) &&
 args(message);

 Object around(String message) : captureEcho(message)
 {
 return "Your original message was: " + message;
 }
}

2.

Create a classes directory within your project area.3.

Compile the two files, MyWebService.java and AddMessageHeaderAspect.java, in your source
directory using the ajc command-line tool from the project root directory:

ajc -classpath %AXIS_INSTALL_DIRECTORY%/lib/axis.jar:%AXIS_
INSTALL_DIRECTORY%/lib/axis.jar -d classes/ source/*.java

4.

Once you have successfully run the ajc command, the compiled .class files and package

structure will be generated under the classes directory.

5.

Create a file called deploy.wsdd within the classes directory that is going to be used to
automatically deploy your web application to Axis. The deploy.wsdd should contain the following
information:

<deployment xmlns="http://xml.apache.org/axis/wsdd/"
 xmlns:java="http://xml.apache.org/axis/wsdd/providers/java">

 <service name="MyWebService" provider="java:RPC">
 <parameter name="className" value="com.oreilly.aspectjcookbook.MyWebService"/>
 <parameter name="allowedMethods" value="*"/>
 </service>

</deployment>

6.

It is a good practice to create an undeploy.wsdd file in the same classes directory as the
deploy.wsdd to be able to remove your web application from Axis. The undeploy.wsdd should
contain the following information:

<undeployment xmlns="http://xml.apache.org/axis/wsdd/">
 <service name="MyWebService"/>

7.

8.

</undeployment>

Copy the %ASPECTJ_INSTALL_DIRECTORY%/lib/aspectjrt.jar to
%AXIS_INSTALLATION_IN_TOMCAT%/WEB-INF/lib.

8.

Copy your .class files located in the classes directory, preserving the package directory
structure, to %AXIS_INSTALLATION_IN_TOMCAT%/WEB-INF/classes.

9.

Ensuring that Tomcat is running if you are deploying to Apache Axis running within Tomcat, run
the following java command from the classes directory to run the Apache Axis deployment

program that registers your new web service with Axis:

java -classpath %AXIS_INSTALL_DIRECTORY%/lib/axis.jar: %AXIS_INSTALL_
DIRECTORY%/lib/jaxrpc.jar:%AXIS_INSTALL_DIRECTORY%/lib/log4j-1.2.4.jar:
%AXIS_INSTALL_DIRECTORY%/lib/commons-logging.jar:%AXIS_INSTALL_DIRECTORY%
/lib/commons-discovery.jar:%AXIS_INSTALL_DIRECTORY%/lib/saaj.jar org.
apache.axis.client.AdminClient -h%HOST% -p%PORT% deploy.wsdd

10.

Restart Tomcat to ensure it has refreshed all of the libraries and applications it manages,
including Axis.

11.

To test that your web service has been deployed correctly, you can go to
http://<hostname>:<post>/axis/services/MyWebService in your browser, and you should see
the output shown in Figure 3-12.

Figure 3-12. The aspect-oriented MyWebService service, initialized
and ready for use inside Apache Axis

12.

Web service clients can now use your new aspect-oriented web service. For example, the output
of a simple AppleScript that uses the MyWebService is shown in Figure 3-13.

13.

http://<hostname>:<post>/axis/services/MyWebService

Figure 3-13. An AppleScript web service client using the echo method
on the aspect-oriented MyWebService service

See Also

Compiling using the ajc command-line tool is explained in Recipe Recipe 2.2; creating and compiling
an AspectJ project in Eclipse is described in Recipe 2.7; execution(Signature) pointcut is explained
in Recipe 4.4; the args([TypePatterns | Identifiers]) pointcut is explained in Recipe 11.3;

Programming Apache Axis by Christopher Haddad, Kevin Bedell, and Paul Brown (O'Reilly);
AppleScript in a Nutshell by Bruce W. Perry (O'Reilly).

Chapter 4. Capturing Joing Points on
Methods

Introduction

Recipe 4.1. Capturing a Method Call

Recipe 4.2. Capturing the Parameter Values Passed on a Method Call

Recipe 4.3. Capturing the Target of a Method Call

Recipe 4.4. Capturing a Method When It Is Executing

Recipe 4.5. Capturing the Value of the this Reference When a Method Is Executing

Introduction

A join point is a specific point at which advice can be woven into the code of an application. Pointcuts
provide logical definitions for picking the join points that will invoke a piece of advice.

The next nine chapters correspond to the types of Java language constructs that contain join points
that can be captured using pointcut declarations in AspectJ. This chapter focuses on pointcuts that
can capture the selection of join points that are available on Java methods.

The before() form of advice is used for most of these pointcut-based recipes that make up the

next eight chapters to avoid confusing things by using different types of advice. Where it's
unavoidable, other forms of advice may have to be used, so it might be helpful to refer to Chapter 9
to understand the implications that the different forms of advice bring to the solutions provided.

Once you have grasped the different types of pointcut that AspectJ provides in
Chapter 4 through Chapter 12, check out Mik Kersten's standard pointcut
idioms by going to http://www.eclipse.org/aspectj and then by clicking on
Documentation standard pointcut idioms. These reusable pointcut
definitions provide some great tools with which to construct your own pointcut
logic.

http://www.eclipse.org/aspectj

Recipe 4.1. Capturing a Method Call

Problem

You want to capture when calls are made to methods that match a specific signature.

Solution

Use the call(Signature) pointcut. The syntax of the call(Signature) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 call(<optional modifier> <return type> <class>.<method>(<paramater types>));

In contrast to Java method parameters, whitespace in the Signature

parameter is important as it is used to separate out the different components.

Discussion

The call(Signature) pointcut has two key characteristics:

Advice is triggered on a method call; the context is that of the calling class.1.

The Signature can include wildcard characters to select a range of join points on different

classes and methods.

2.

Table 4-1 shows some examples of the wildcard options available when using supplying a method
Signature to a pointcut declaration.

Table 4-1. Examples of using wildcards within a method Signature

Signature with wildcards Description

* void MyClass.foo(int,
float)void MyClass.foo(int,
float)

Captures join points on a method regardless of the modifier.
Can also be achieved by leaving out the visibility entirely.

Signature with wildcards Description

* * MyClass.foo(int, float)*
MyClass.foo(int, float)

Captures join points on a method regardless of the modifier or
return type.

* * *.foo(int,float)* *
foo(int,float)

Captures join points on a method regardless of the modifier,
return type, or class.

* * *.*(int,float)
Captures join points on a method regardless of the modifier,
return type, class, or method.

* * *.*(*,float)
Captures join points on a method regardless of the modifier,
return type, class, or method where the parameters include
anything followed by a float.

* * *.*(*,..)
Captures join points on a method regardless of the modifier,
return type, class, or method where the parameters include at
least a single value followed by any number of parameters.

* * *.*(..)* *(..)
Captures join points on a method regardless of the modifier,
return type, class, or method where there are any number of
parameters.

* mypackage..*.*(..)
Captures join points on any method within the mypackage

package and subpackages.

* MyClass+.*(..)
Captures join points on any method on the MyClass class and

any subclasses.

Example 4-1 shows the call(Signature) pointcut being used to declare an interest in all methods
that match the signature MyClass.foo(int,String).

Example 4-1. Using the call(Signature) pointcut to catch calls to a specific
method signature

public aspect CallRecipe

{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointCut()
 {

* * MyClass.foo(int, float)*
MyClass.foo(int, float)

Captures join points on a method regardless of the modifier or
return type.

* * *.foo(int,float)* *
foo(int,float)

Captures join points on a method regardless of the modifier,
return type, or class.

* * *.*(int,float)
Captures join points on a method regardless of the modifier,
return type, class, or method.

* * *.*(*,float)
Captures join points on a method regardless of the modifier,
return type, class, or method where the parameters include
anything followed by a float.

* * *.*(*,..)
Captures join points on a method regardless of the modifier,
return type, class, or method where the parameters include at
least a single value followed by any number of parameters.

* * *.*(..)* *(..)
Captures join points on a method regardless of the modifier,
return type, class, or method where there are any number of
parameters.

* mypackage..*.*(..)
Captures join points on any method within the mypackage

package and subpackages.

* MyClass+.*(..)
Captures join points on any method on the MyClass class and

any subclasses.

Example 4-1 shows the call(Signature) pointcut being used to declare an interest in all methods
that match the signature MyClass.foo(int,String).

Example 4-1. Using the call(Signature) pointcut to catch calls to a specific
method signature

public aspect CallRecipe

{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointCut()
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the call point cut");
 System.out.println(
 "Actually executing before the point cut call ...");
 System.out.println("But that's a recipe for Chapter 6!);
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");

 }
}

Figure 4-1 shows how the call(Signature) pointcut is applied to a simple class.

Figure 4-1. How the call(Signature) pointcut is applied

Be aware that the call(Signature) and execution(Signature) pointcut

definitions can result in strange behavior in certain situations when capturing
join points on an object's inherited and/or overridden methods, depending on
the dynamic and static types of the object.

In AspectJ, the call(Signature) pointcuts and execution(Pointcuts) (see Recipe 4.4) can have

strange behavior depending on the static and dynamic type of the target of the method. Consider the
following:

A someObject = new E();
someObject.foo();

In this simple example, E is a subclass of A; according to the dynamic typing rules in Java, the static
type of someObject is A, whereas the dynamic type is E. You can then declare a call(Signature)
pointcut to capture the call to someObject.foo():

call(public void A.foo())

If the foo() method is declared in A and inherited by E, then the pointcut will capture the call to the
method. However, if the foo() method is overridden in E, then the call(Signature) pointcut will

still capture the method call join point. This may seem strange at first, but it makes sense if you think
of the call(Signature) pointcut as examining the static type of someObject, which is still A.

Now things get a little strange. What if you change the static type of someObject to E, leaving the
foo() method being overridden in E, and change the code that uses the method to:

E someObject = new E();
someObject.foo();

The static type of the object is the same as its dynamic type, both are E, which is still a subclass of A.
foo() is overridden in E, then no code in A is invoked nor is the static type A referenced. Using the
same pointcut definition as before you would not expect the call to someObject.foo() to be caught,
but in fact it is. In this case you might have expected to be forced to use the + inheritance specifier to
capture calls to foo(), for example:

call(public void A+.foo()) // Captures calls to foo() on A and all subclasses

Because of the way that the call(Signature) pointcut is implemented in AspectJ, you do not need
the + specifier to capture calls to methods that are overridden in a subclass. It appears that even
though the static and dynamic type of someObject is declared as E, because foo() is a method that
exists on A, which is a still a super class of E, then the original call(Signature) pointcut definition

still captures the method call. This appears even stranger when you consider the original pointcut
definition does not even mention E nor does it use the + inheritance specification to indicate an
interest in subclasses of A.

This is just one example of the subtle and sometimes confusing ways the call(Signature) pointcut

works with inherited and/or overridden methods depending on the static and dynamic types of an
object and the type declared within the Signature. The execution(Signature) pointcut definition

has similar but not identical problems because it puts more emphasis on the dynamic type of the
object, which is what you'd perhaps expect when capturing join points that are within a method as
opposed to on the call to a method.

A complete investigation into these subtleties would require a full report, and one is available at
www.cs.iastate.edu/~leavens/FOAL/papers-2004/barzilay-etal.pdf. Normal day-to-day use of the
call(Signature) and execution(Signature) probably won't result in you encountering these

issues; however it is helpful to at least keep them in mind and know of their existence just in case.

See Also

The subtle characteristics of call(Signature) and execution(Signature) pointcuts when capturing

join points in inherited or overridden methods are explained in more detail in the report available at
www.cs.iastate.edu/~leavens/FOAL/papers-2004/barzilay-etal.pdf; how to capture parameters on a
join point, in particular on a method call, is shown in Recipe 4.2; Chapter 13 describes the different
types of advice available in AspectJ.

Recipe 4.2. Capturing the Parameter Values Passed on a
Method Call

Problem

You want to capture and use the parameters passed on a method call.

Solution

Create a pointcut that specifies the parameters that you want to capture as identifiers in its
signature. Use the call(Signature) and args([TypePatterns | Identifiers]) pointcuts to

capture the call to the method and then to bind the required identifiers to the values of the method's
parameters.

Discussion

Example 4-2 shows the call(Signature) pointcut being used to declare an interest in all methods
that match the signature MyClass.foo(int,String). The captureCallParameters(int,String)
pointcut requires an int and a String as specified by the value and name identifiers. Those
identifiers are then bound to the methods parameters by the args([Types | Identifiers])

pointcut.

Example 4-2. Capturing the int and String values that are passed on a call
to the MyClass.foo(..) method

public aspect CaptureCallParametersRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut captureCallParameters(int value, String name) :
 call(void MyClass.foo(int, String)) &&
 args(value, name);

 // Advice declaration
 before(int value, String name) : captureCallParameters(value, name)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the call point cut");
 System.out.println("Captured int parameter on method: " + value);
 System.out.println("Captured String parameter on method: " + name);
 System.out.println(
 "--");
 }
}

The before() advice can access the identifiers declared on the captureCallParame-
ters(int,String) pointcut by including the value and name identifiers in its signature and then
binding those identifiers to the captureCallParameters(int,String) pointcut.

See Also

The call(Signature) pointcut is described in Recipe 4.1; Recipe also Recipe 4.1 shows some of the
wildcard variations that can be used in a Signature; Recipe 11.3 discusses the args([Types |
Identifiers]) pointcut; combining pointcut logic using a logical AND (&&) is shown in Recipe 12.2;
the before() form of advice is shown in Recipe 13.3; the calling context that is available to advice is

covered in Chapter 13.

Recipe 4.3. Capturing the Target of a Method Call

Problem

You want to capture the object being called as a method is invoked.

Solution

Create a pointcut that specifies a single parameter of the same type as the target of the method call
that you want to capture. Use the call(Signature) and target(Type | Identifier) pointcuts to

capture the invocation of a method and then to bind the single identifier to the object that the
method is being called upon.

Discussion

Example 4-3 shows the call(Signature) pointcut being used to declare an interest in all methods
that match the signature MyClass.foo(int,String). The captureCallTarget(MyClass) pointcut
requires a MyClass object as specified by the myObject identifier. The myObject identifier is then
bound to the object that is being called by the MyClass.foo(int,String) method by the
target(Type | Identifier) pointcut.

Example 4-3. Capturing the object upon which the MyClass.foo(..) method
is invoked

public aspect CaptureCallTargetRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut captureCallTarget(MyClass myObject) :
 call(void MyClass.foo(int, String)) &&
 target(myObject);

 // Advice declaration

 before(MyClass myObject) : captureCallTarget(myObject)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the call point cut");
 System.out.println("Captured target object for the method call: "
 + myObject);
 System.out.println(
 "--");
 }
}

The before() advice can access the single identifier declared on the captureCallTar-
get(MyClass) pointcut by including the myObject identifier in its signature and then binding that
identifier to the captureCallTarget(MyClass) pointcut.

See Also

The call(Signature) pointcut is described in Recipe 4.1; Recipe 4.1 also shows some of the
wildcard variations that can be used in a Signature; Recipe 11.2 discusses the target(Type |
Identifier) pointcut; combining pointcut logic using a logical AND (&&) is shown in Recipe 12.2; the
before() form of advice is shown in Recipe 13.3; the calling context that is available to advice is

covered in Chapter 13.

Recipe 4.4. Capturing a Method When It Is Executing

Problem

You want to capture when methods that match a specific signature are executing.

Solution

Use the execution(Signature) pointcut. The syntax of the execution(Signature) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 execution((<optional modifier> <return type> <class>.
 <method>(<paramater types>);

Discussion

The execution(Signature) pointcut has two key characteristics:

The context of a triggering join point is within the target class method.1.

The Signature can include wildcard characters to select a range of join points on different

classes and methods.

2.

Example 4-4 shows the execution(Signature) pointcut being used to declare an interest in method
execution join points on any method that matches the signature MyClass.foo(int,String).

Example 4-4. Using the execution(Signature) pointcut to catch join points
within the execution of a method

public aspect ExecutionRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules enters execution:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: int

 Method Parameters: an int followed by a String
 */
 pointcut executionPointcut() : execution(void MyClass.foo(int, String));

 // Advice declaration
 before() : executionPointcut() && !within(ExecutionRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println("In the advice picked by ExecutionRecipe");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 4-2 shows how the execution(Signature) pointcut is applied to a simple class.

Figure 4-2. How the execution(Signature) pointcut is applied

At first, the execution(Signature) pointcut appears to offer nothing more than the
call(Signature) pointcut described in the previous recipe. The important thing to remember with

this recipe is where the advice is invoked and what is its context.

In the case of the call(Signature) pointcut, the advice is invoked where the method is invoked.
The context of the advice invocation is the calling class. The execution(Signature) pointcut is

invoked once the method has been entered and therefore the calling context is the method being
executed.

Finally, if you haven't already read Recipe 4.1, then it is worth going back a couple of pages to read

about the strange behavior that the call(Signature) and execution(Signature) pointcuts can

have when capturing join points on an object's methods that are inherited and/or overridden
depending on the object's static and dynamic type.

See Also

The subtle characteristics of call(Signature) and execution(Signature) pointcuts when capturing

join points in inherited or overridden methods are explained in more detail in the report available at
www.xs.iastate.edu/~leavens/FOAL/papers-2004/barzilay-etal.pdf; Recipe 4.1 shows some of the
wildcard variations that can be used in a Signature; how to capture parameters on a join point, in

particular on a method call, is shown in Recipe 4.2; the calling context that is available to advice is
covered in Chapter 13.

Recipe 4.5. Capturing the Value of the this Reference
When a Method Is Executing

Problem

When capturing a method during execution, you want to expose the object pointed to by the Java
this reference so it can be used by your advice.

Solution

Create a pointcut that specifies a single parameter of the same type as the this reference you want
to capture. Use the execution(Signature) and this(Type | Identifier) pointcuts to capture the
execution of a method and then to bind the single identifier to the object that the this reference

points to during the method's execution.

Discussion

Example 4-5 shows the execution(Signature) pointcut being used to declare an interest in all
methods that match the signature MyClass.foo(int,String). The
captureThisDuringExecution(MyClass) pointcut requires a MyClass object as specified by the
myObject identifier. The myObject identifier is then bound to the methods this reference by the
this(Type | Identifier) pointcut.

Example 4-5. Capturing the this reference during the execution of the
MyClass.foo(..) method

public aspect CaptureThisReferenceRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets executed:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut captureThisDuringExecution(MyClass myObject) :
 execution(void MyClass.foo(int, String)) &&

 this(myObject);

 // Advice declaration
 before(MyClass myObject) : captureThisDuringExecution(myObject)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the execution point cut");
 System.out.println("Captured this reference: " + myObject);
 System.out.println(
 "--");
 }
}

The before() advice can access the identifier that references the object originally pointed to by
this during the method's execution by including the myObject identifier in its signature and then
binding that to the captureThisDuringExecution(MyClass) pointcut.

See Also

Recipe 4.1 shows some of the wildcard variations that can be used in a Signature; the
execution(Signature) pointcut is shown in Recipe Recipe 4.4; how to capture parameters on a join
point, in particular on a method call, is shown in Recipe 4.2; Recipe 11.1 discusses the this(Type |
Identifier) pointcut; combining pointcut logic using a logical AND (&&) is shown in Recipe 12.2; the
before() form of advice is shown in Recipe 13.3.

Chapter 5. Capturing Join Points on
Exception Handling

Introduction

Recipe 5.1. Capturing When an Exception Is Caught

Recipe 5.2. Capturing the Thrown Exception

Recipe 5.3. Capturing the Object Handling the Exception

Introduction

This chapter shows how to include exception handling as part of the cross-cutting concerns you are
applying to your application using aspects.

When an exception is thrown in Java, it is passed up the call chain until it is either handled by a
catch statement as part of a try/catch block or it reaches the Java run-time and causes a messy

message on your console. If a Java exception is caught then the exception is passed as an object to
the corresponding catch block where the appropriate action can take place to handle the problem.

The aspects you are applying to your applications may find it useful to know when an exception has
been handled. It is quite possible that part of the cross-cutting behavior you are implementing, using
aspects, requires something to be done in addition to, or instead of, the normal behavior of a catch

block.

AspectJ provides the handler(TypePattern) pointcut for use when you want to capture when a

catch block has been invoked with a particular type of exception. This chapter shows you some of the
ways to use the handler(TypePattern) in your aspects so that they can capture and interact with

the exceptions that can be raised by your target application.

Recipe 5.1. Capturing When an Exception Is Caught

Problem

You want to capture when a particular type of exception is caught.

Solution

Use the handler(TypePattern) pointcut. The syntax of the handler(TypePattern) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) : handler(<class>);

Discussion

The handler(TypePattern) pointcut has five key characteristics:

The handler(TypePattern) pointcut picks up join points within the scope of where a exception

is caught.

1.

The handler(TypePattern) pointcut's advice will only be applied where the type pattern
specifies Throwable or a subclass of Throwable.

2.

The TypePattern declares that whenever the matching type of exception, or a subclass of that

exception, is caught, then the corresponding advice is to be applied.

3.

Only the before() form of advice is supported on handler(TypePattern) pointcuts. This

means that you cannot override the normal behavior of a catch block using something like
around() advice.

4.

The TypePattern can include wildcard characters to select a range of join points on different

classes.

5.

Table 5-1 shows some examples of the wildcard options available when using a TypePattern to a

pointcut declaration.

Table 5-1. Examples of using wildcards within a TypePattern

TypePattern with
wildcards

Description

mypackage..* Captures join points class within the mypackage package and

subpackages.

MyClass+
Captures join points within the MyClass class and any subclasses.

Example 5-1 shows the handler(TypePattern) pointcut to capture a MyException exception being

caught.

Example 5-1. Using the handler(TypePattern) pointcut to capture join
points when a specific type of exception is caught

public aspect HandlerRecipe
{
 /*
 Specifies calling advice when any exception object is caught
 that matches the following rules for its type pattern:

 Type: MyException
 */
 pointcut myExceptionHandlerPointcut() : handler(MyException);

 // Advice declaration
 before() : myExceptionHandlerPointcut()
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by " + "myExceptionHandlerPointcut()");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

The handler(TypePattern) pointcut captures join points where an exception is

caught, not where it is raised.

Figure 5-1 shows how the handler(TypePattern) pointcut is applied to a simple class hierarchy.

Figure 5-1. How the handler(TypePattern) pointcut is applied

See Also

Chapter 13 describes the different types of advice available in AspectJ.

Recipe 5.2. Capturing the Thrown Exception

Problem

Within the advice triggered by a join point captured using the handler(TypePattern) pointcut, you

want to access the exception that was being caught by the catch block within the corresponding
advice.

Solution

Combine the args([Types | Identifiers]) pointcut with the handler(TypePattern) pointcut to

expose the caught exception as an identifier on your pointcut that can be passed to the
corresponding advice.

Discussion

Example 5-2 shows how the MyException exception is passed to the before() advice as the
exception identifier on the myExceptionHandlerPointcut pointcut.

Example 5-2. Accessing the caught MyException exception

public aspect AccessThrownException
{
 pointcut myExceptionHandlerPointcut(MyException exception) :
 handler(MyException) &&
 args(exception);

 // Advice declaration
 before(MyException exception) : myExceptionHandlerPointcut(exception)
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by " + "myExceptionHandlerPointcut()");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());

 System.out.println("Exception caught:");
 exception.printStackTrace();

 System.out.println(
 "--");
 }
}

See Also

The handler(TypePattern) poincut's syntax is shown in Recipe 5.1; Recipe 5.1 also shows some of
the wildcard variations that can be used in a TypePattern; the args([Types | Identifiers])

pointcut declaration is explained in Recipe 11.3; Chapter 13 describes the different types of advice
available in AspectJ.

Recipe 5.3. Capturing the Object Handling the Exception

Problem

Within the advice triggered by a join point captured using the handler(TypePattern) pointcut, you

want to access the object that caught the exception and use it within the corresponding advice.

Solution

Combine the this([Type | Identifier]) pointcut with the handler(TypePattern) pointcut to

expose the exception handling object as an identifier on your pointcut that can then be passed to the
corresponding advice.

Discussion

Example 5-3 shows how the exception handling MyClass object is passed to the before() advice as
the myObject identifier on the myExceptionHandlerPointcut pointcut.

Example 5-3. Accessing the object that contained the catch block that
handled the MyException exception

public aspect AccessHandlingObject
{
 pointcut myExceptionHandlerPointcut(MyClass myObject) :
 handler(MyException) &&
 this(myObject);

 // Advice declaration
 before(MyClass myObject) : myExceptionHandlerPointcut(myObject)
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by " + "myExceptionHandlerPointcut()");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());

 System.out.println("Exception caught by:" + myObject);

 System.out.println(
 "--");
 }
}

See Also

The handler(TypePattern) pointcut's syntax is shown in Recipe 5.1; Recipe 5.1 also shows some of
the wildcard variations that can be used in a TypePattern; the this([Type | Identifier]) pointcut
declaration is explained in Recipe 11.1 combining pointcut logic using a logical AND (&&) is shown in

Recipe 12.2; Chapter 13 describes the different types of advice available in AspectJ.

Chapter 6. Capturing Join Points on
Advice

Introduction

Recipe 6.1. Capturing When Advice Is Executing

Recipe 6.2. Excluding Join Points That Are a Result of Advice Execution

Recipe 6.3. Exposing the Original Join Point When Advice Is Being Advised

Introduction

In AspectJ, aspects are first-class language constructs just like classes. Classes and their business
logic can be advised by aspects and so can aspects themselves. Although aspects can contain
methods and other candidate join points, there is one construct that is specific to aspects that is in
need of its own mechanism for capturing its join points. That construct is advice.

This chapter deals with using pointcut definitions that are purely concerned with capturing join points
that occur within advice. AspectJ provides the solitary adviceexecution() pointcut for this purpose.

Introducing the adviceexecution() pointcut's syntax and a simple example of its use, this chapter
then shows how the adviceexecution() pointcut can provide an especially effective means of

working with situations where advice and the behavior it invokes need to be excluded from being
advised by the other aspects in your application.

This chapter ends by showing how to use some interesting characteristics of how AspectJ implements
advice to access the original join point that triggered the advice that is in turn being advised using
the adviceexecution() pointcut.

The adviceexecution() pointcut is a reasonably new addition to the AspectJ developers toolbox,

and this chapter shows how useful this pointcut can be when working with aspects that apply to
aspects.

Recipe 6.1. Capturing When Advice Is Executing

Problem

You want to capture when any piece of advice is executing.

Solution

Use the adviceexecution() pointcut. The syntax of the adviceexecution() pointcut is:

pointcut <pointcut name>() : adviceexecution();

Discussion

The adviceexecution() pointcut captures the join points where any advice is executed within an
application. Example 6-1 uses the adviceexecution() pointcut to apply advice when other advice

begins execution.

Example 6-1. Using the adviceexecution() pointcut to apply advice

public aspect AdviceExecutionRecipe
{
 /*
 Specifies calling advice whenever advice is executed
 */
 pointcut adviceExecutionPointcut() : adviceexecution();

 // Advice declaration
 before() : adviceExecutionPointcut()
 && !within(AdviceExecutionRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println("In the advice picked by ExecutionRecipe");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());

 System.out.println(
 "--");
 }
}

Figure 6-1 shows how the adviceexecution() pointcut is applied to a simple class.

Figure 6-1. How the adviceexecution() pointcut is applied

See Also

Recipe 6.3 protects against code in the aspect being called by using the adviceexecution() pointcut
combined with the NOT (!) operator; Chapter 9 discusses scope based pointcuts; combining pointcut
logic using a logical AND (&&) is shown in Recipe 12.2; the unary NOT (!) operator is shown in Recipe

12.4; Chapter 13 describes the different types of advice available in AspectJ.

Recipe 6.2. Excluding Join Points That Are a Result of
Advice Execution

Problem

You want to ignore all join points that are directly triggered within an advice block or as a result of
advice execution. This is useful when you want to ignore anything an advice block triggered and just
concentrate on join points that are within the control flow of your regular application's code business
class's logic.

Solution

Supply the adviceexecution() pointcut declaration as the parameter to the cflow(Pointcut)
pointcut. Use the unary NOT (!) operator to exclude the join points captured by the
cflow(Pointcut) pointcut.

Discussion

It is sometimes useful to ignore the join points that occur directly within advice execution and those
that may be triggered indirectly. If you use the within() pointcut with the unary NOT (!) operator

alone, you can exclude all join points that occur directly within a particular aspect or aspects.
However, any join points triggered indirectly by the advice within those aspects will still be caught.

An example of this problem can be demonstrated by amending the CallRecipe aspect from Recipe
4.1 as shown in Example 6-2. The before() advice has been enhanced to invoke the foo()
method on the AnotherClass object.

Example 6-2. Making a call to the foo() method on the AnotherClass class
from within some advice

public aspect CallRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: * (any return type)

 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointCut()
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println("In the advice attached to the call point cut");

 System.out.println(
 "Signature: " + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());

 AnotherClass anotherClass = new AnotherClass();
 anotherClass.foo();

 System.out.println(
 "--");

 }
}

The foo() method on the AnotherClass object in turn makes a call to the bar() method on the

same class:

public class AnotherClass
{
 public void foo()
 {
 System.out.println("Inside method AnotherClass.foo()");
 this.bar();
 }

 public void bar()
 {
 System.out.println("Inside method AnotherClass.bar()");
 }
}

Using the !within(CallRecipe+) pointcut as shown in Example 6-3, the call to foo() would be
correctly excluded but the indirect call to bar() would still be captured by the tracedCalls()

pointcut.

Example 6-3. Incorrectly protects an aspect from tracing using the

within(TypePattern) pointcut and the Boolean NOT (!) operator

public aspect TraceCalls
{
 /*
 Specifies calling advice when not within the TraceCalls and CallRecipe
 aspects or any of their subaspects.
 */
 pointcut tracedCalls() : call(* *.*(..)) &&
 !within(TraceCalls+) &&
 !within(CallRecipe+);

 // Advice declaration
 before() : tracedCalls()
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println("In the advice picked by TraceCalls");

 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

The call on the bar() method in the AnotherClass class is still caught by the before() advice
because it does not occur directly in the CallRecipe aspect. However, it does occur within the
control flow of the before() advice block in that the foo() method is called by the advice which, in
turn, calls the bar() method.

The TRaceCalls() pointcut can be changed by adding a cflow(Pointcut) pointcut, combined with
the adviceexecution() pointcut, so you can exclude even those join points that occur indirectly

within the control flow of an advice block.

 pointcut tracedCalls() : call(* *.*(..)) &&
 !within(TraceCalls+) &&
 !within(CallRecipe+) &&
 !cflow(adviceexecution());

See Also

The call(Signature) pointcut is covered in Recipe Recipe 4.1; the cflow(Pointcut) pointcut is
explained in Recipe Recipe 10.1; combining pointcut logic using a logical AND (&&) is shown in Recipe
Recipe 12.2; the unary NOT (!) operator is shown in Recipe 12.4; Chapter 13 describes the different

types of advice available in AspectJ.

Recipe 6.3. Exposing the Original Join Point When
Advice Is Being Advised

Problem

Where you are advising a piece of advice using the adviceexecution() pointcut, you want to

access the original join point that triggered the advice block you are, in turn, advising.

Solution

Add the JoinPoint identifier to your pointcut definition. Bind your JoinPoint identifier as the single
parameter to an args([Types | Identifiers]) pointcut declaration. Add the JoinPoint identifier to

the corresponding advice you wish to expose the original join point to.

Discussion

In Example 6-4, the original join point that triggered the advice being advised is accessed from the
AdviceExecution aspect's before() advice using the origi-nalJoinPoint identifier.

Example 6-4. Accessing the original triggering join point when advising
advice

import org.aspectj.lang.JoinPoint;

public aspect AdviceExecutionRecipe
{
 /*
 Specifies calling advice whenever advice is executed
 */
 pointcut adviceExecutionPointcut(JoinPoint originalJoinPoint) :
 adviceexecution() &&
 args(originalJoinPoint) &&
 !within(AdviceExecutionRecipe);

 // Advice declaration
 before(JoinPoint originalJoinPoint) : adviceExecutionPointcut
 (originalJoinPoint)
 {
 System.out.println(

 "------------------- Aspect Advice Logic --------------------");
 System.out.println("In the advice picked by AdviceExecutionRecipe");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());

 System.out.println(
 "Advised Advice's Join Point Signature: "
 + originalJoinPoint.getSignature());

 System.out.println(
 "--");
 }
}

In AspectJ, there is an implicit JoinPoint object passed to every advice block
as it is invoked. The single JoinPoint parameter is normally passed
transparently to the advice and becomes the value of the thisJoinPoint
reference. To populate the thisJoinPoint reference, every advice block, as it
is implemented by AspectJ, must include the single JoinPoint argument as

part of its signature.

See Also

The syntax of the adviceexecution() pointcut is shown in Recipe 6.1; the within(TypePattern)
pointcut is described in Recipe 9.1; the args([Types | Identifiers]) pointcut declaration is
explained in Recipe 11.3; combining pointcut logic using a logical AND (&&) is shown in Recipe 12.2;
the unary NOT (!) operator is shown in Recipe 12.4; Chapter 13 describes the different types of

advice available in AspectJ.

Chapter 7. Capturing Join Points on Class
Object Construction

Introduction

Recipe 7.1. Capturing a Call to a Constructor

Recipe 7.2. Capturing a Constructor When It Is Executing

Recipe 7.3. Capturing When an Object Is Initialized

Recipe 7.4. Capturing When an Object Is About to Be Initialized

Recipe 7.5. Capturing When a Class Is Initialized

Introduction

There are four initialization and construction stages that Java classes and objects go through before
they can be used within your application, ignoring the actual loading of the class into your Java
Virtual Machine (JVM) by its class loader.

The first step in the process is the invocation of a constructor using the new keyword. This invocation,

if the class has not been previously used by the application, triggers static class initialization for the
class of the object being constructed. Static class initialization is when the class itself is initialized so
that all of its static variables and methods are properly constructed.

Once the class has been statically initialized, and before the constructor method can be executed, the
object itself must be initialized. Object initialization first constructs the inheritance hierarchy for the
object by executing all of the object's superclass constructors. Finally, once the superclass
constructors have returned successfully, the initialized object is all set to complete the execution of
its constructor method.

AspectJ provides a specific pointcut for each of the stages involved in a class and object's
construction and initialization, and this chapter will walk you through the syntax and key
characteristics of each.

Recipe 7.1. Capturing a Call to a Constructor

Problem

You want to capture when a call to a constructor that matches a specific signature is invoked.

Solution

Use the call(Signature) pointcut with the additional new keyword as part of the signature. The
syntax for using the call(Signature) pointcut in relation to constructors is:

pointcut <pointcut name>(<any values to be picked up>) :
 call(<optional modifier> <class>.new(<parameter types>));

Discussion

The call(Signature) pointcut has three key characteristics when used to capture calls to

constructors:

The call(Signature) pointcut with the new keyword captures join points when a class is

instantiated into an object.

1.

By using the around() form of advice, the call(Signature) pointcut can override the type of

returned object, within the bounds of the normal inheritance rules of Java.

2.

The specified Signature is not checked by the compiler to correspond to an actual constructor.3.

Example 7-1 shows how to use the call(Signature) pointcut to capture calls to the constructor on
the MyClass class that takes an int and String as parameters.

Example 7-1. Using the call(Signature) pointcut to capture join points
when a constructor is called

public aspect CallNewRecipe
{
 /*
 Specifies calling advice when any constructor is called
 that meets the following signature rules:

 Class Name: MyClass
 Method Name: new (This is a keyword indicating the constructor call)
 Method Parameters: int, String
 */
 pointcut myClassConstructorWithIntAndStringPointcut() :
 call(MyClass.new (int, String));

 // Advice declaration
 before() : myClassConstructorWithIntAndStringPointcut()
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by "
 + "myClassConstructorWithIntAndOthersPointcut()");
 System.out.println(
 "The current type of object under construction is: ");
 System.out.println(thisJoinPoint.getThis());
 System.out.println(
 "Signature: "
 + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 7-1 shows how the call(Signature) pointcut is applied.

Figure 7-1. How the call(Signature) pointcut is applied to constructors

See Also

The execution(Signature) and call(Signature) pointcuts in Recipes Recipe 4.1 and Recipe 4.4

respectively deal with attaching advice to methods other than constructors; Recipe 4.1 shows some
of the wildcard variations that can be used in a Signature; Chapter 13 deals with the environments

available to the advice when picked by the different pointcuts; Recipe 20.2 describes in more detail
the use of the around() advice, specifically in dealing with overriding constructors to return a

different type of object.

Recipe 7.2. Capturing a Constructor When It Is Executing

Problem

You want to capture a constructor that matches a specific signature when it is executing.

Solution

Use the execution(Signature) pointcut with the additional new keyword as part of the signature.
The syntax of the execution(Signature) pointcut when using in relation to constructors is:

pointcut <pointcut name>(<any values to be picked up>) :
 execution(<optional modifier> <class>.new(<parameter types>));

Discussion

The execution(Signature) pointcut has three key characteristics when it is used to capture the

execution of a constructor:

The execution(Signature) pointcut with the new keyword triggers join points when a class

constructor is executing.

1.

The exact point at which the join point is triggered cannot be prior to the class's constructor
being invoked. This prevents overriding of the returned object.

2.

The implementation, but not the type of object being constructed, of the constructor method
can be overridden using around() advice.

3.

Example 7-2 shows the execution(Signature) capturing the execution of the MyClass constructor
that takes an int and a String as parameters.

Example 7-2. Using the execution(Signature) pointcut to capture join
points within a specific constructor

public aspect ExecutionNewRecipe
{
 /*
 Specifies calling advice when any constructor executes

 that meets the following signature rules:

 Class Name: MyClass
 Method Name: new (This is a keyword indicating the constructor call)
 Method Parameters: int, String
 */
 pointcut myClassConstructorWithIntAndStringPointcut() :
 execution(MyClass.new (int, String));

 // Advice declaration
 before() : myClassConstructorWithIntAndStringPointcut()
 {
 System.out.println(
 "---------------- Aspect Advice Logic -----------------");
 System.out.println(
 "In the advice picked by "
 + "myClassConstructorWithIntAndOthersPointcut()");
 System.out.println(
 "The current type of object under construction is: ");
 System.out.println(thisJoinPoint.getThis().getClass());
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 7-2 shows how the execution(Signature) pointcut is applied to constructors.

Figure 7-2. How the execution(Signature) pointcut is applied to
constructors

See Also

Recipe 4.1 shows some of the wildcard variations that can be used in a Signature; describes how
the call(Signature) pointcut is applied to constructors and is similar to this recipe's pointcut, with
the exception that the call(Signature) pointcut has the power to override the object that is being

constructed; Recipes Recipe 4.1 and Recipe 4.4 respectively show how to define the
call(Signature) and execution(Signature) pointcuts to capture join points from regular

methods; Chapter 13 describes the different types of advice available in AspectJ.

Recipe 7.3. Capturing When an Object Is Initialized

Problem

You want to capture when an object is initialized, invoked by a call to a constructor that matches a
specific signature.

Solution

Use the initialization(Signature) pointcut. The syntax of the initialization(Sig-nature)

pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 initialization(<optional modifier> <class>.new(<parameter types>));

Discussion

The initialization(Signature) pointcut has five key characteristics:

The initialization(Signature) pointcut must contain the new keyword.1.

Join points caught by the initialization(Signature) pointcut occur after the initialization of

any super classes and before the return from the constructor method.

2.

The Signature must resolve to a constructor, not a simple method, of a particular class.3.

The initialization(Signature) pointcut provides compile-time checking that a constructor is

being referenced.

4.

Due to a compiler limitation in the AspectJ compiler, the initialization(Signature) pointcut
cannot be used when associated with around() advice.

5.

Example 7-3 shows the initialization(Signature) capturing the initialization of objects of
MyClass when the constructor has the signature MyClass.new(int,*).

Example 7-3. Using the initialization(Signature) pointcut to capture join
points when a constructor is executing

public aspect InitializationRecipe

{
 /*
 Specifies calling advice when any object
 initializes using a constructor
 that meets the following signature rules:

 Class Name: MyClass
 Method Name: new (This is a keyword indicating the
 constructor call)
 Method Parameters: int and any others
 */
 pointcut myClassObjectInitializationWithIntAndOthersPointcut() :
 initialization(MyClass.new (int, *));

 // Advice declaration
 before() : myClassObjectInitializationWithIntAndOthersPointcut()
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by "
 + "myClassObjectInitializationWithIntAndOthersPointcut()");
 System.out.println(
 "The current type of object under construction is: ");
 System.out.println(thisJoinPoint.getThis().getClass());
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 7-3 shows how the initialization(Signature) pointcut is applied to pick join points on

constructors.

Figure 7-3. How the initialization(Signature) pointcut is applied

The biggest advantage to using the initialization(Signature) pointcut over the
execution(Signature) pointcut is in the compile-time checking that occurs to ensure that the

signature is actually specifying a constructor.

See Also

Recipe 4.1 shows some of the wildcard variations that can be used in a Signature; Recipe 7.2 shows
the execution(Signature) pointcut for a comparison of its similarities to this recipe; Chapter 13

describes the different types of advice available in AspectJ.

Recipe 7.4. Capturing When an Object Is About to Be
Initialized

Problem

You want to capture when an object is about to be initialized using a constructor that matches a
specific signature.

Solution

Use the preinitialization(Signature) pointcut. The syntax of the preinitializa-
tion(Signature) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 preinitialization(<optional modifier> <class>.
 new(<parameter types>));

Discussion

The preinitialization(Signature) pointcut has five key characteristics:

The preinitialization(Signature) pointcut must contain the new keyword.1.

Join points caught by the preinitialization(Signature) pointcut occur after the caught

constructor is entered and before any super class constructors are called.

2.

The Signature must resolve to a constructor.3.

The preinitialization(Signature) pointcut provides compile-time checking that a

constructor is being referenced.

4.

Due to a compiler limitation in the AspectJ compiler, the preinitializa-tion(Signature)
pointcut cannot be used when associated with around() advice.

5.

Example 7-4 shows the preinitialization(Signature) pointcut capturing join points before the
initialization of an object using the MyClass constructor with an int and a String as parameters.

Example 7-4. Using the preinitialization(Signature) pointcut to capture

join points before the execution of a specific constructor

public aspect PreInitializationRecipe
{
 /*
 Specifies calling advice just before an object initializes
 using a constructor that meets the following signature rules:

 Class Name: MyClass
 Method Name: new (This is a keyword indicating the constructor call)
 Method Parameters: an int followed by a String
 */
 pointcut myClassIntStringObjectPreInitializationPointcut() :
 preinitialization(MyClass.new (int, String));

 // Advice declaration
 before(
 int number,
 String name) : myClassIntStringObjectPreInitializationPointcut()
 && args(number, name)
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by "
 + "anyMyClassObjectInitializationPointcut()");
 System.out.println(
 "The current type of object under construction is: ");
 System.out.println(thisJoinPoint.getThis());
 System.out.println(
 "The values passed in were: " + number + ", " + name);
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 7-4 shows how the preinitialization(Signature) pointcut is applied to pick join points

before an object is initialized.

Figure 7-4. How the preinitialization(Signature) pointcut is applied

See Also

Recipe 4.1 shows some of the wildcard variations that can be used in a Signature; The
adviceexecution() pointcut is covered in Recipe 6.1; Chapter 13 describes the different types of

advice available in AspectJ.

Recipe 7.5. Capturing When a Class Is Initialized

Problem

You want to capture when a class is initialized.

Solution

Use the staticinitialization(TypePattern) pointcut. The syntax of the staticinit-
ialization(TypePattern) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 staticinitialization(<class>);

Discussion

The staticinitialization(TypePattern) pointcut has two key characteristics:

There are limitations on the environment available to advice picked by the
staticinitialization(TypePattern) pointcut. There is no parent object triggering the static
initialization; therefore, there is no this reference. There is also no instance object involved,

and, therefore, there is no target reference.

1.

The TypePattern can include wildcard characters to select a range of different classes.2.

Example 7-5 shows the staticinitialization(TypePattern) pointcut capturing join points in the
static initialization of the MyClass class.

Example 7-5. Using the staticinitialization(TypePattern) pointcut to
capture join points on the static initialization of a specific class

public aspect StaticInitializationRecipe
{
 /*
 Specifies calling advice when a class is initialized
 that meets the following type pattern rules:

 Class Name: MyClass

 */
 pointcut myClassStaticInitializationPointcut() :
 staticinitialization(MyClass);

 // Advice declaration
 before() : myClassStaticInitializationPointcut()
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by "
 + "myClassStaticInitializationPointcut()");
 System.out.println(
 "Join Point Kind: "
 + thisJoinPoint.getStaticPart().getKind());
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 7-5 shows how the staticinitialization(TypePattern) pointcut is applied.

Figure 7-5. How the staticinitialization(TypePattern) pointcut is applied

See Also

Recipe 5.1 shows some of the wildcard variations that can be used in a TypePattern; Chapter 13

describes the different types of advice available in AspectJ including the associated different forms of
environment that they expose.

Chapter 8. Capturing Join Points on
Attributes

Introduction

Recipe 8.1. Capturing When an Object's Attribute Is Accessed

Recipe 8.2. Capturing the Value of the Field Being Accessed

Recipe 8.3. Capturing When an Object's Field Is Modified

Recipe 8.4. Capturing the Value of a Field When It Is Modified

Introduction

One slightly controversial feature of the AspectJ developer's toolkit is the ability to monitor any
accesses or modifications that may occur on a class's attribute. AspectJ provides this capability in the
form of the get(Signature) and set(Signature) pointcuts that are the focus of this chapter.

Anyone who has practiced traditional object-oriented techniques will be a little worried when they
hear this as it effectively breaks encapsulation, especially if the attributes being monitored are
declared protected or private. It is good advice to think carefully before you decide your aspect

needs to have direct access to a class's internals to avoid unnecessary tight coupling between your
aspects and your classes.

However, sometimes a cross-cutting concern requires this level of intimacy with a class's to apply the
aspect effectively. Used judiciously the get(Signature) and set(Signature) pointcuts showcased in

this chapter can provide a powerful means of advising your classes, but they must be used carefully
to ensure that you are not making your classes and your aspects needlessly brittle.

Recipe 8.1. Capturing When an Object's Attribute Is
Accessed

Problem

You want to capture when an object's attribute is accessed.

Solution

Use the get(Signature) pointcut. The syntax of the get(Signature) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 get(<optional modifier> <type> <class>.<field>);

Discussion

The get(Signature) has four key characteristics:

The get(Signature) pointcut triggers advice where the attribute is directly accessed, not just

on a call to an accessor method.

1.

The get(Signature) pointcut cannot capture access to static attributes although it is perfectly

legal within the syntax of AspectJ to define a pointcut in this way.

2.

The Signature must resolve to an attribute of a particular class.3.

The Signature can include wildcard characters to select a range of join points on different

attributes.

4.

Example 8-1 shows the get(Signature) pointcut being used to capture join points that are
encountered whenever the String MyClass.name attribute is accessed.

Example 8-1. Using the get(Signature) pointcut to capture access to
attributes

public aspect GetRecipe
{

 /*
 Specifies calling advice whenever an attribute
 matching the following rules is accessed:

 Type: String
 Class Name: MyClass
 Attribute Name: name
 */
 pointcut getNamePointcut() : get(String MyClass.name);

 // Advice declaration
 before() : getNamePointcut()
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by " + "getNamePointcut()");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 8-1 shows how the get(Signature) pointcut is applied to a simple class.

Figure 8-1. How the get(Signature) pointcut is applied

You might expect that where a class has a constant attribute defined, using the static and final
keywords, you could capture when that constant is accessed using the get(Signature) pointcut. The

getConstrantPointcut() pointcut in Example 8-2 attempts to capture when the MyClass.CONSTANT

attribute is accessed for just this purpose.

Example 8-2. Using the get(Signature) pointcut to capture when a
constant is accessed

public aspect GetConstant
{
 /*
 Specifies calling advice whenever an attribute
 matching the following rules is accessed.

 Type: String
 Class Name: MyClass
 Attribute Name: CONSTANT
 */
 pointcut getConstantPointcut() : get(public static final
 String MyClass.CONSTANT);

 // Advice declaration
 before() : getConstantPointcut()
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by " + "getConstantPointcut()");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

In fact, this form of constant access is not caught by the getConstantPointcut() pointcut even
though this is acceptable AspectJ syntax. Though this is a valid get(Signature) pointcut declaration,
unlike regular variable attributes, the Java compiler "inlines" static final attributes; therefore,

they do not exist in a form suitable for access with a pointcut.

Take care when using the get(Signature) pointcut as it breaks the
encapsulation of attributes that may be declared private. This breaking of

encapsulation could lead to brittle software. Because you are specifying
pointcuts based on variable names, you must remember that this can add
detrimental tighter coupling to your design.

See Also

Recipe 4.1 shows some of the wildcard variations that can be used in a Signature; Chapter 13
describes the different types of advice available in AspectJ; the within(TypePattern) pointcut is
described in Recipe 9.1; the NOT(!) operator is described in Recipe 12.4.

Recipe 8.2. Capturing the Value of the Field Being
Accessed

Problem

You want to capture the value of the field being accessed so that it can be used in your corresponding
advice.

Solution

Use the after() returning(<ReturnValue>) form of advice with an identifier in the returning(
) part of the declaration to contain the value that has been accessed.

Discussion

Example 8-3 shows how the value of the MyClass.name attribute can be passed to the after()
returning(<ReturnValue>) advice as triggered when the MyClass.name is accessed.

Example 8-3. Accessing the value of a field as it is returned when it is
accessed

public aspect CaptureAccessedFieldValue
{
 pointcut getNamePointcut() : get(String MyClass.name);

 // Advice declaration
 after() returning(String value) : getNamePointcut()
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by " + "getNamePointcut()");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());

 System.out.println("Value being accessed is " + value);

 System.out.println(
 "--");
 }
}

See Also

Recipe 4.1 shows some of the wildcard variations that can be used in a Signature; The
get(Signature) pointcut's syntax is examined in Recipe 8.1; the after() returning form of

advice is shown in Recipe 13.6.

Recipe 8.3. Capturing When an Object's Field Is Modified

Problem

You want to capture when an object's field is modified.

Solution

Use the set(Signature) pointcut. The syntax of the set(Signature) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 set(<optional modifier> <type> <class>.<field>);

Discussion

The set(Signature) pointcut has four key characteristics:

The set(Signature) pointcut triggers when a field is modified.1.

The set(Signature) pointcut cannot capture modification of static fields although it is perfectly

legal within the syntax of AspectJ to define a pointcut in this way.

2.

The Signature must resolve to an attribute of a particular class.3.

The Signature can include wildcard characters to select a range of join points on different

attributes.

4.

Example 8-4 shows the set(Signature) pointcut capturing join points encountered whenever the
String MyClass.name attribute is modified.

Example 8-4. Using the set(Signature) pointcut to capture join points
when an attribute is modified

public aspect SetRecipe
{
 /*
 Specifies calling advice whenever an attribute
 matching the following rules is modified:

 Type: String
 Class Name: MyClass
 Attribute Name: name
 */
 pointcut setNamePointcut() : set(String MyClass.name);

 // Advice declaration
 before() : setNamePointcut() && !within(SetRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by " + "setNamePointcut()");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 8-2 shows how the set(Signature) pointcut is applied to a simple class.

Figure 8-2. How the set(Signature) pointcut is applied

See Also

Recipe 4.1 shows some of the wildcard variations that can be used in a Signature; Chapter 13
describes the different types of advice available in AspectJ; the within(TypePattern) pointcut is
described in Recipe 9.1; the NOT(!) operator is described in Recipe 12.4.

Recipe 8.4. Capturing the Value of a Field When It Is
Modified

Problem

You want to capture the value of the field after it has been modified so it can be used in your
corresponding advice.

Solution

Combine the args([Types | Identifiers]) pointcut with the set(Signature) pointcut to expose

the new value of the field being set as an identifier on your pointcut that can be passed to the
corresponding advice.

Discussion

Example 8-5 shows how the new value, that the MyClass.name attribute is being set to, can be
passed to the before() advice.

Example 8-5. Accessing the new value of the field being set

public aspect CaptureModifiedFieldValue
{
 pointcut setNamePointcut(String newValue) : set(String MyClass.name)
 && args(newValue);

 // Advice declaration
 before(String newValue) : setNamePointcut(newValue)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by " + "setNamePointcut()");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());

 System.out.println("Field Value set to: " + newValue);

 System.out.println(
 "--");
 }
}

See Also

Recipe 4.1 shows some of the wildcard variations that can be used in a Signature; The
set(Signature) pointcut's syntax is examined in Recipe 8.4; the args([Types | Identifiers])
pointcut declaration is explained in Recipe 11.3; combining pointcut logic using a logical AND (&&) is

shown in Recipe 12.2; Chapter 13 describes the different types of advice available in AspectJ.

Chapter 9. Capturing Join Points Within
Programmatic Scope

Introduction

Recipe 9.1. Capturing All Join Points Within a Particular Class

Recipe 9.2. Capturing All Join Points Within a Particular Package

Recipe 9.3. Capturing All Join Points Within a Particular Method

Introduction

A common approach in the design of pointcut definitions is to limit the range of join points captured
based on the programmatic scope of interest. This gives you some immediate control over what join
points are going to be involved in further pointcut definitions.

This chapter describes the set of pointcuts that allow to you explicitly limit the join points captured
based upon their programmatic scope. These pointcuts enable you to specify a method right through
to package scope.

The pointcuts in this chapter are fairly simple to master, and they are some of the most commonly
used elements of AspectJ. For example, a popular use of the within(TypePattern) pointcut
(discussed in Recipe 5.1) is to use it in the !within(%THIS_ASPECT%) form. This AspectJ idiom limits

the scope to every join point outside of the current aspect, providing protection against the advice
triggering a recursive call to the same advice block and resulting in an infinite loop. The concepts in
this chapter are basic to AspectJ programming and form the backbone of many of the operations
detailed later in the book.

Recipe 9.1. Capturing All Join Points Within a Particular
Class

Problem

You want to capture all the join points within a particular class.

Solution

Use the within(TypePattern) pointcut, using the TypePattern to specify the particular class type
pattern. The syntax of the within(TypePattern) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) : within(<class>);

Discussion

The within(TypePattern) pointcut has three key characteristics:

The within(TypePattern) pointcut captures all join points within the scope of the specified

class.

1.

The within(TypePattern) pointcut is rarely used in isolation. Rather, it is usually combined

with other pointcuts to narrow the join points that will trigger the attached advice.

2.

The TypePattern can include wildcard characters to select a range of join points on different

classes.

3.

Example 9-1 shows the within(TypePattern) pointcut being used to capture all the join points
within the MyClass class.

Example 9-1. Using the within(TypePattern) pointcut to capture join
points within a specific class

public aspect WithinClassRecipe
{

 /*
 Specifies calling advice on any join point encountered within

 the defined scope:

 Scope: MyClass
 */
 pointcut withinMyClass() : within(MyClass);

 // Advice declaration
 before() : withinMyClass() && !within(WithinClassRecipe +)
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by " + "withinMyClass()");
 System.out.println(
 "Join Point Kind: " + thisJoinPoint.getKind());
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 9-1 shows how the within(TypePattern) pointcut is applied to a single class.

Figure 9-1. How the within(TypePattern) pointcut is applied

See Also

Recipe 5.1 shows some of the wildcard variations that can be used in a TypePattern; see the recipes

in Chapter 12 for examples of the mechanisms by which pointcuts can be combined; the

within(TypePattern) pointcut is often negated to remove an aspect from the scope of the weaving
using the unary NOT (!) operator as described in Recipe 12.4; Chapter 13 contains recipes that

describe the different types of advice available in AspectJ.

Recipe 9.2. Capturing All Join Points Within a Particular
Package

Problem

You want to capture all the join points within classes that are, in turn, within a particular package
scope.

Solution

Use the within(TypePattern) pointcut using the TypePattern to specify a package.

Discussion

The within(TypePattern) pointcut provides a useful means of specifying an interest in the join

points that occur in every class within a package by using wildcards. Entire packages of join points
can be included or excluded from the rest of the pointcut logic using the appropriate wildcards in the
TypePattern.

Example 9-2 shows the within(TypePattern) pointcut being used to capture all the join points
within the packageA package.

Example 9-2. Using the within(TypePattern) pointcut to capture join
points within a specific package

public aspect WithinPackageRecipe
{
 /*
 Specifies calling advice on any join point is encountered within
 the defined scope:

 Scope: packageA
 */
 pointcut withinPackageA() : within(packageA.*);

 // Advice declaration
 before() : withinPackageA() && !within(WithinPackageRecipe +)
 {
 System.out.println("-------------- Aspect Advice Logic ---------------");

 System.out.println("In the advice picked by " + "withinPackageA()");
 System.out.println("Join Point Kind: " + thisJoinPoint.getKind());
 System.out.println("Signature: " +
 thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println("--");
 }
}

The within(TypePattern) pointcut's key characteristics are listed in Recipe Recipe 6.1.

See Also

Recipe 5.1 shows some of the wildcard variations that can be used in a TypePattern; Recipe 9.1
shows the more traditional use of the within(TypePattern) pointcut definition for capturing the join

points within a specific class; the mechanisms by which pointcuts can be combined are described in
the recipes in Chapter 12; the within(TypePattern) pointcut is often negated to remove an aspect
from the scope of the weaving using the unary NOT (!) operator as described in Recipe 12.4.

Recipe 9.3. Capturing All Join Points Within a Particular
Method

Problem

You want to capture all the join points within the scope of a particular method or methods.

Solution

Use the withincode(Signature) pointcut. The syntax of the withincode(Signature) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 withincode(<modifier> <class>.<method>(<parameter types>));

Discussion

There are three key characteristics of the withincode(Signature) pointcut:

The withincode(Signature) pointcut specifies all join points within the local scope of a

particular method.

1.

The withincode(Signature) pointcut is rarely used in isolation. Rather, it is usually combined

with other pointcuts to narrow the join points that will trigger the attached advice.

2.

The Signature can include wildcard characters to select a range of join points on different

methods across different classes.

3.

Example 9-3 shows the withincode(Signature) pointcut capturing all join points within the scope of
the * MyClass.foo(int,String) method.

Example 9-3. Using the withincode(Signature) pointcut to capture all join
points within a method's scope

public aspect WithinMethodRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: * (any return type)
 Method Parameters: an int followed by a String
 */
 pointcut withinFooIntStringAnyReturnPointcut() :
 withincode(* MyClass.foo(int, String));

 // Advice declaration
 before() : withinFooIntStringAnyReturnPointcut()
 && !within(WithinMethodRecipe +)
 {
 System.out.println(
 "-------------- Aspect Advice Logic ---------------");
 System.out.println(
 "In the advice picked by withinFooIntStringAnyReturnPointcut");
 System.out.println(
 "Join Point Kind: "
 + thisJoinPoint.getStaticPart().getKind());
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 9-2 shows how the withincode(Signature) pointcut is applied.

Figure 9-2. How the withincode(Signature) pointcut is applied

See Also

Recipe 4.1 shows some of the wildcard variations that can be used in a Signature; the
withincode(Signature) pointcut can be negated to remove a specific method from the scope of the
weaving using the NOT (!) operator as described in Recipe 12.4; Chapter 13 describes the different

types of advice available in AspectJ.

Chapter 10. Capturing Join Points Based
on Control Flow

Introduction

Recipe 10.1. Capturing All Join Points Within a Program's Control Flow Initiated by an Initial Join
Point

Recipe 10.2. Capturing All Join Points Within a Program's Control Flow, Excluding the Initial Join
Point

Introduction

The pointcuts described in this chapter support capturing all join points within the scope or context of
another initial join point. Every join point has a discrete location in the control flow of a program, and
this provides the context for join points that are captured by the pointcut declarations described here.

This may seem confusing at first. If you imagine that a join point is a specific point in your code
providing a marker at which a scope can be defined, then these pointcut definitions pick that scope.
To understand these pointcuts, you must delve into this chapter's recipes and try things out. It is
particularly worth examining the figures that accompany the recipes as these serve to illustrate what
is actually going on when the pointcut's logic is applied.

These pointcuts can be the hardest to grasp for newcomers to AspectJ, but it is worth persevering
because they provide some unique and powerful mechanisms for capturing join points that are often
useful once you have added them to your repertoire.

Recipe 10.1. Capturing All Join Points Within a Program's
Control Flow Initiated by an Initial Join Point

Problem

You want to capture all join points encountered within the program control flow after and including an
initiating join point selected by a separate pointcut.

Solution

Use the cflow(Pointcut) pointcut. The syntax of the cflow(Pointcut) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) : cflow(<pointcut>)

Discussion

The cflow(Pointcut) pointcut has three key characteristics:

The cflow(Pointcut) pointcut picks all join points encountered within the context of an initial

specific join point and picked by another pointcut.

1.

The join points caught include the initial join point.2.

Scope is the important discriminator in the cflow(pointcut) pointcut. This pointcut will capture

all join points within the control flow of the join point captured by the pointcut parameter.

3.

Example 10-1 shows how the cflow(Pointcut) is used to capture all join points in the program
control flow after and including an initial join point as captured by the callInitialPointcut()

pointcut.

Example 10-1. Using the cflow(Pointcut) pointcut to capture all join points
after and including a specific pointcut

public aspect CFlowRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callInitialPointcut() : call(
 void MyClass.foo(int, String));

 /*
 Specifies calling advice whenever a join point is encountered
 including and after the initial join point that triggers the pointcut
 that is specified in the parameter:

 Pointcut Name: callInitialPointcut
 */
 pointcut cflowPointcut() : cflow(callInitialPointcut());

 // Advice declaration
 before() : cflowPointcut() && !within(CFlowRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the cflowPointcut point cut");
 System.out.println(
 "Join Point Kind: "
 + thisJoinPoint.getStaticPart().getKind());
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 10-1 gives a more practical example of how the cflow(Pointcut) pointcut can be applied.

Figure 10-1. How the cflow(Pointcut) pointcut can be applied

It is worth going into a little more detail about what the cflow(Pointcut) does. This particular

pointcut introduces the concept of a join point context. This is to say that every join point has a
scope within which it is considered to be part of the control flow of the executing program.

It is within this control flow that any encountered join point will trigger the cflow(Pointcut) pointcut
and invoke any associated advice. The cflow(Pointcut) pointcut comes into effect and triggers its

associated advice when the specified pointcut parameter is triggered by an initial join point. The
advice associated with the cflow(Pointcut) will then be invoked for every join point encountered in

the control flow within the context of the initial join point. Finally, the set of join points caught include
the initial join point itself, which is the major difference between this pointcut and the
cflowbelow(Pointcut).

In the current implementation of the cflow(Pointcut) is implemented in such a way as to incur

significant overhead when it is used. Where possible, and when pointcut reuse is not impacted,
consider using the withincode(Signature) pointcut in preference over the cflow(Pointcut).

See Also

The paper "Measuring the Dynamic Behaviour of AspectJ Programs" by Ganesh Sittampalam et al,
available at http://www.sable.mcgill.ca/publications/papers/#oopsla2004, discusses some of the
problems with performance that an AspectJ implementation may have over a handcoded solution;
the withincode(Signature) pointcut is described in Recipe 9.3; the cflowbelow(Pointcut)

pointcut is examined in Recipe 10.2; more information on a join point's context and environment is
available in Chapter 13; the recipes in Chapter 12 describe techniques for combining pointcut
definitions.

http://www.sable.mcgill.ca/publications/papers/#oopsla2004

Recipe 10.2. Capturing All Join Points Within a Program's
Control Flow, Excluding the Initial Join Point

Problem

You want to capture all join points encountered within the program control flow after the initiating
join point selected by a separate pointcut.

Solution

Use the cflowbelow(Pointcut) pointcut. The syntax of the cflowbelow(Pointcut) pointcut is:

pointcut <pointcut name>(<any values to be picked up>) : cflowbelow(<pointcut>);

Discussion

Example 10-2 shows the cflowbelow(Pointcut) pointcut being used to capture all of the join points
that occur after an initial join point captured by the callInitialPointcut() pointcut.

Example 10-2. Using the cflowbelow(Pointcut) pointcut to capture join
points after an initially captured join point

public aspect CFlowBelowRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callInitialPointcut() : call(
 void MyClass.foo(int, String));

 /*
 Specifies calling advice whenever a join point is encountered
 after but excluding the initial join point that triggers the pointcut

 that is specified in the parameter:

 Pointcut Name: callInitialPointcut
 */
 pointcut cflowPointcut() : cflowbelow(callInitialPointcut());

 // Advice declaration
 before() : cflowPointcut() && !within(CFlowBelowRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the cflowbelowPointcut point cut");
 System.out.println(
 "Join Point Kind: " + thisJoinPoint.getKind());
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 10-2 shows how the cflowbelow(Pointcut) pointcut can be applied.

Figure 10-2. How the cflowbelow(Pointcut) pointcut can be applied

This recipe differs only slightly from Recipe 10.1; the difference is in the number of join points that
are actually captured. Whereas the cflow(Pointcut) pointcut triggers advice on all join points

encountered within an initial join point's context including the initial join point, the
cflowbelow(Pointcut) pointcut excludes that initial join point.

See Also

Recipe 10.1 describes the cflow(Pointcut) pointcut; Chapter 12 describes techniques for combining

pointcut definitions; more information on a join point's context and environment is available in
Chapter 13.

Chapter 11. Capturing Join Points Based
on Object Type

Introduction

Recipe 11.1. Capturing When the this Reference Is a Specific Type

Recipe 11.2. Capturing When a Join Point's Target Object Is a Specific Type

Recipe 11.3. Capturing When the Arguments to a Join Point Are a Certain Number, Type, and
Ordering

Introduction

The pointcuts covered in this chapter enable you to examine the type of the this reference, the

optional target reference or arguments at a particular join point.

The this([Type | Identifier]) examines the type of the object that is referenced by this at the
captured join point. The target of a join point, specified by the target([Type | Identifier])

pointcut, differs depending on the join point type but is commonly the object upon which a method is
being called, or an attribute that is being accessed in some way where the join point is encountered.
The args of a join point, specified by the args([Types | Identifiers]) pointcut, are the arguments,

if any, available at the captured join point.

The types of the this, target, and args references can be examined in one of two ways: using
static Type specifications, or by using an Identifier that references an actual runtime object.

A Type specification provides a static compile-time evaluation of the object type at the join point and
takes the form of a fully qualified class name (for example, com.oreilly.Foo is acceptable, but Foo

or Foo.class is not).

An Identifier provides a means by which the actual types of runtime objects at the captured join
point can be evaluated rather than just static types. An Identifier is dynamically assigned to the

appropriate object at runtime.

Recipe 11.1. Capturing When the this Reference Is a
Specific Type

Problem

You want to capture all join points where the this reference at a join point is of a specific type.

Solution

Use the this([Type | Identifier]) pointcut. The syntax of the this([Type | Identifier])

pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 this(<type> or <identifier> or *);

Discussion

The this([Type | Identifier]) pointcut examines the this reference at the captured join point to

decide whether to invoke the associated advice and has five key characteristics:

The this([Type | Identifier]) pointcut captures all join points when the executing object is

of the specified type.

1.

A Type definition parameter must resolve to a valid class. This is not the same as a
TypePattern, where wildcards may be employed.

2.

An Identifier is used to examine the type of the runtime object referenced to by this and to

expose that object to the advice if required.

3.

Using a * wildcard allows you to state a valid object must be pointed to by the this reference at

the join point, but you are not interested in what type it is.

4.

Join points that occur on exception handling do not have a value for using the
handler(TypePattern) pointcut, when they use the handler(TypePattern) within any static

block of code including static class initialization specified using the
staticinitialization(TypePattern) pointcut, and interestingly the object pre-initialization
using the preinitialization(Signature) pointcut, do not have a value for the this reference
to expose using the this([Type | Identifier]) pointcut.

5.

Example 11-1 shows two examples of the this([Type | Identifier]) pointcut being used to:

Capture join points where the this reference is pointing to an object of type MyClass using an
Identifier

Capture when the this reference's type is AnotherClass using a Type specification

Example 11-1. Using the this(Type | Identifier) pointcut to capture join
points based on the type of the this reference

public aspect ThisRecipe
{
 /*
 Specifies calling advice whenever the executing
 object is of a type that matches the following rules:

 Identifier/s: MyClass object
 */
 pointcut thisIdentifierMyClassPointcut(MyClass object) : this(object);

 /*
 Specifies calling advice whenever the executing
 object is of a type that matches the following rules:

 Type Pattern: AnotherClass
 */
 pointcut thisTypePatternAnotherClassPointcut() : this(AnotherClass);

 // Advice declaration
 before(MyClass object) : thisIdentifierMyClassPointcut(object)
 && !within(ThisRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by thisIdentifierMyClassPointcut");
 System.out.println("Join Point Kind: " + thisJoinPoint.getKind());
 System.out.println(
 "this reference as passed by Identifier " + object);
 System.out.println(
 "Object referenced by this: " + thisJoinPoint.getThis());
 System.out.println(
 "Signature: " + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }

 // Advice declaration

 before() : thisTypePatternAnotherClassPointcut() && !within(ThisRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by thisTypePatternAnotherClassPointcut");
 System.out.println("Join Point Kind: " + thisJoinPoint.getKind());
 System.out.println(
 "Type of executing object: "
 + thisJoinPoint.getThis().getClass().getName());
 System.out.println(
 "Object referenced by this: " + thisJoinPoint.getThis());
 System.out.println(
 "Signature: " + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 11-1 shows how the this([Type | Identifier]) pointcut is applied.

Figure 11-1. How the this([Type | Identifier]) pointcut is applied

See Also

The calling context that is available to advice is covered in Chapter 13; the handler(TypePattern)
pointcut is described in Recipe 5.1; the preinitializa-tion(Signature) pointcut is described in
Recipe 7.4; the staticinitializa-tion(TypePattern) pointcut is described in Recipe 7.5; the
within(TypePattern) pointcut is described in Recipe 9.1; the NOT(!) operator is described in Recipe

12.4.

Recipe 11.2. Capturing When a Join Point's Target Object
Is a Specific Type

Problem

You want to capture all join points encountered when a join point's target object, if any, is of a
specific type.

Solution

Use the target([Type | Identifier]) pointcut. The syntax of the target([Type or Identifier])

pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 target(<type> or <identifier> or *);

Discussion

The target([Type | Identifier]) pointcut has five key characteristics:

The target([Type | Identifier]) pointcut picks all join points when the target object is of the

specified type.

1.

A Type definition parameter must resolve to a valid class to pick up on the relevant join points.
This is different from a TypePattern where wildcards may be employed.

2.

An Identifier is used to examine the type of the runtime object referenced as the target at

the captured join point and to expose that object to the advice if required.

3.

Using a * wildcard allows you to state there must be a target for the join point, but you are not

interested in what type it is.

4.

Join points that occur on exception handling using the handler(TypePattern) pointcut, static
class initialization using the staticinitialization(TypePattern) and interestingly the object
preinitialization using the preinitialization(Signature) pointcut do not have any target
context to expose using the target([Type | Identifier]) pointcut.

5.

Example 11-2 shows two examples of the target([Type | Identifier]) pointcut being used to:

Capture join points when the target is a MyClass object indicated by Identifier

Capture join points where the type of the target of a method call is AnotherClass specified by
Type

Example 11-2. Using the target([Type | Identifier]) pointcut to capture
join points based on the type of a methods target

public aspect TargetRecipe
{
 /*
 Specifies calling advice whenever the target of a methods
 is of a type that matches the following rules:

 Identifier/s: MyClass object
 */
 pointcut targetIdentifierMyClassPointcut(MyClass object) : target(object);

 /*
 Specifies calling advice whenever the target of a methods
 is of a type that matches the following rules:

 Type Pattern: AnotherClass
 */
 pointcut targetTypePatternAnotherClassPointcut() : target(AnotherClass);

 // Advice declaration
 before(MyClass object) : targetIdentifierMyClassPointcut(object)
 && !within(TargetRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by targetIdentifierMyClassPointcut");
 System.out.println("Join Point Kind: " + thisJoinPoint.getKind());
 System.out.println("Object referenced by Target passed by Identifier: "
 + object);
 System.out.println(
 "Signature: " + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getStaticPart()
 .getSourceLocation());
 System.out.println(
 "--");
 }

 // Advice declaration
 before() : targetTypePatternAnotherClassPointcut()
 && !within(TargetRecipe +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by targetTypePatternAnotherClassPointcut");
 System.out.println("Join Point Kind: " + thisJoinPoint.getKind());
 System.out.println(
 "Object referenced by Target: " + thisJoinPoint.getTarget());
 System.out.println(
 "Signature: " + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getStaticPart()
 .getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 11-2 shows how the target([Type | Identifier]) pointcut is applied.

Figure 11-2. How the target(Type | Identifier) pointcut is applied

See Also

The calling context that is available to advice is covered in Chapter 13; the handler(TypePattern)
pointcut is described in Recipe 5.1; the preinitializa-tion(Signature) pointcut is described in
Recipe 7.4; the staticinitializa-tion(TypePattern) pointcut is described in Recipe 7.5; the
within(TypePattern) pointcut is described in Recipe 9.1; the NOT(!) operator is described in Recipe

12.4.

Recipe 11.3. Capturing When the Arguments to a Join
Point Are a Certain Number, Type, and Ordering

Problem

You want to capture all join points encountered when a join point's arguments, if any, are of a
specific type, number, and ordering.

Solution

Use the args([Types | Identifiers]) pointcut. The syntax for this pointcut is:

pointcut <pointcut name>(<any values to be picked up>) :
 args(<types> or <identifiers> | .. | *, <repeat>);

Discussion

The args([Types | Identifiers]) pointcut has seven key characteristics:

Any combination of Types and Identifiers can be used to narrow to the right join points and

expose the right context to the advice.

1.

An Identifier is used to examine the type of the runtime objects that are the arguments at

the captured join point and to expose those objects to the advice if required.

2.

Using .. allows you some flexibility in the number of arguments that a particular join point must
have to match against your args([Types | Identifiers]) declaration.

3.

Without the .., the args([Types | Identifiers]) pointcut picks all join points that exactly

match the types of the arguments specified. This is to say that the pointcut will only match join
points on methods that have the same order, number, and types of parameters at runtime.

With the .., a "best fit" policy is used by the pointcut. This means the statement
args(MyClass,..,float) would result in any join points being matched that have two
arguments, starting with a MyClass object and followed by any number of arguments that

include a float amongst them.

4.

Only one .. can be used in a single args([Types | Identifiers]) declaration.5.

6.

5.

Using a * wildcard allows you to express some flexibility in the type of an argument, but the

number of arguments to a join point must match up.

For example, if a single * is specified within an args([Types | Identifiers]) pointcut
declaratione.g., args(*)then this pointcut would match any join point that had one argument of
any type and ignore any join points that had no arguments. Similarly, the statement args(*,*)

would match any join point that contained two arguments of any type.

6.

Join points that occur on a field access, caught by either the get(TypePattern) and
set(TypePattern) pointcuts, or static class initialization, caught by the
staticinitialization(TypePattern) pointcut, do not have any arguments to expose using
the args([Types | Identifiers]) pointcut.

7.

If Object is used as the type for an identifier to be picked up by the args([Types |
Identifiers]) pointcut, then this will successfully match against primitive types as well as
specific instances of Object. The primitive type is automatically "boxed" into its corresponding
object type, Float in the case of a float primitive for example, before being passed to the

advice. This behavior provides a means by which you can get primitive argument values into
your advice.

8.

Example 11-3 shows two examples of the args([Types | Identifiers]) pointcut being used to:

Capture all join points where the arguments to the methods are an object of the MyClass class
as indicated by Identifier

Capture join points where the type of the argument is that of the AnotherClass class as
specified by Type

Example 11-3. Using the args([Types | Identifiers]) pointcut to capture
join points based on the types of a methods arguments

public aspect ArgsRecipe
{
 /*
 Specifies calling advice whenever the type of a methods argument
 is of a type that matches the following rules:

 Identifier/s: MyClass object
 */
 pointcut argIdentifierMyClassPointcut(MyClass object) : args(object);

 /*
 Specifies calling advice whenever the type of a methods argument
 is of a type that matches the following rules:

 Type Pattern: AnotherClass
 */
 pointcut argTypePatternAnotherClassPointcut() : args(AnotherClass);

 // Advice declaration

 before(MyClass object) : argIdentifierMyClassPointcut(object)
 && !within(ArgsRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by argIdentifierMyClassPointcut");
 System.out.println("Join Point Kind: " + thisJoinPoint.getKind());
 System.out.println(
 "Signature: " + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getStaticPart().
 getSourceLocation());
 System.out.println(
 "Arguments picked up using Identifiers: " + object);
 System.out.println(
 "--");
 }

 // Advice declaration
 before() : argTypePatternAnotherClassPointcut() && !within(ArgsRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by argTypePatternAnotherClassPointcut");
 System.out.println("Join Point Kind: " + thisJoinPoint.getKind());
 System.out.println(
 "Signature: " + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getStaticPart().
 getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 11-3 shows how the args([Types | Identifiers]) pointcut is applied.

Figure 11-3. How the args(Types | Identifiers) pointcut is applied

Problems can occur with method overloading if you overload by creating a new
method with fewer parameters than the original method. The args([Types |
Identifiers]) pointcut examines the number, types, and order of the

arguments at a join point, and so an overloaded method that provides fewer
parameters may not trigger advice that was triggered by the original method.

See Also

Recipes Recipe 11.1 and Recipe 11.2 describe the this([Type | Identifier]) and target([Type |
Identifier]) pointcuts respectively; the get(TypePattern) and set(TypePattern) pointcuts are

described in Recipes Recipe 8.1 and Recipe 8.3 respectively; the calling context that is available to
advice is covered in Chapter 13; the within(TypePattern) pointcut is described in Recipe 9.1; the
NOT(!) operator is described in Recipe 12.4.

Chapter 12. Capturing Join Points Based
on a Boolean or Combined Expression

Introduction

Recipe 12.1. Capturing When a Runtime Condition Evaluates to True on a Join Point

Recipe 12.2. Combining Pointcuts Using a Logical AND (&&)

Recipe 12.3. Combining Pointcuts Using a Logical OR (||)

Recipe 12.4. Capturing All Join Points NOT Specified by a Pointcut Declaration

Recipe 12.5. Declaring Anonymous Pointcuts

Recipe 12.6. Reusing Pointcuts

Introduction

This chapter examines how pointcuts can be combined and evaluated as Boolean expressions.
Pointcut logic is evaluated to determine whether a particular join point is caught. The Boolean nature
of pointcut logic allows for pointcut declarations to be combined using traditional Boolean expressions
such as logical AND, logical OR, and logical NOT.

Conditional logic can also be expressed in pointcut declarations using an if statement. An if
statement is used to compare expressions that contain values other than Booleans. The if statement
evaluates the values passed to it at runtime to come to a true or false result.

Anonymous pointcuts are the building blocks of more complexly named pointcut declarations.
Anonymous pointcuts can be declared as part of compound-named pointcuts or as part of an advice
declaration. Named pointcuts are then, in turn, the building blocks of pointcut logic reuse. Pointcut
reuse allows efficient management of the complex logic that can be defined using the available
pointcut within AspectJ. This chapter closes by examining how to declare anonymous pointcuts and
combine those pointcuts into reusable named pointcuts.

Recipe 12.1. Capturing When a Runtime Condition
Evaluates to True on a Join Point

Problem

You want to trigger advice based on a true result when comparing some runtime values that can be
evaluated at a captured join point.

Solution

Use the if(Expression) statement to assess a Boolean expression that contains the runtime
variables to be compared. The syntax of the if(Expression) statement is:

pointcut <pointcut name>(<any values to be picked up>) :
 if(<Boolean expression>);

Discussion

The if(Expression) statement has two key characteristics:

The if(Expression) pointcut evaluates variables provided at runtime to come to a true or false

result as to whether a join point should trigger the corresponding advice.

1.

The Expression can be made up of various logical elements, including exposed join point

context, static variables, and other pointcut declarations.

2.

Example 12-1 shows the if(Expression) statement in use. The after advice will only be executed if
the runtime values of the variables that make up the expression result in TRue.

Example 12-1. The if(Expression) statement being used to assess target
application variables

public aspect IfRecipe
{
 // Define some variables for comparison
 private static final long realisticSalary = 30000l;

 /*
 * Specifies calling advice if this is referencing an object of
 * class MyClass and the object has a realistic salary:
 */
 pointcut ifJoinPointThisHasRealisticSalaryPointcut() : if (
 thisJoinPoint.getThis() instanceof MyClass
 && ((MyClass) thisJoinPoint.getThis()).getSalary()
 < realisticSalary
 && ((MyClass) thisJoinPoint.getThis()).getSalary() > 0)
 && !withincode(* MyClass.get*());

 // Advice declaration
 //This advice will be executed before the pointcut that picks it
 after() : ifJoinPointThisHasRealisticSalaryPointcut()
 && !within(IfRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by ifJoinPointThisHasRealisticSalaryPointcut");
 System.out.println(
 "Join Point Kind: " + thisJoinPoint.getKind());
 System.out.println(
 "Executing object: " + thisJoinPoint.getThis());
 System.out.println(
 "MyClass instance: "
 + ((MyClass) thisJoinPoint.getThis()).getName()
 + " : "
 + ((MyClass) thisJoinPoint.getThis()).getSalary());
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }
}

The if(Expression) statement allows you to define conditional logic as to whether a piece of advice

should be applied to a particular join point. This conditional logic is executed at runtime and must
work on valid types at the point when the join points are reached.

The conditional logic contained in the ifJoinPointThisHasRealisticSalaryPointcut() pointcut in
Example 12-1 specifies that the corresponding after advice should be triggered when the following

occur:

The executing object is of type MyClass.

The salary attribute of the object is less than the realisticSalary constant.

The salary attribute of the object is greater than 0.

The current join point is not within the getSalary() method. By using the wildcard, the join
point must not be within any method in the MyClass class that begins with get.

Each of the conditions is logically combined using the AND (&&) operator. The first three conditions

are fairly easily understood as part of the pointcut's Boolean logic, but the final one is a little more
interesting. The !withincode(* MyClass.get*()) condition has to be included to prevent the call to
getSalary() from within the advice in turn triggering a recursive call to the advice and resulting in

an infinite loop.

See Also

The AND (&&) operator and the OR (||) operator are described in Recipes 12.2 and 12.3,
respectively; the NOT(!) operator is described in Recipe 12.4; Chapter 13 describes the different

forms of advice that AspectJ supports.

Recipe 12.2. Combining Pointcuts Using a Logical AND
(&&)

Problem

You want to combine some pointcut declarations, so advice is executed on a join point as long as all
conditions within the pointcut declarations evaluate to true.

Solution

Use the && operator. The syntax of the && operator is:

pointcut <pointcut name>(<any values to be picked up>) :
 <pointcut declaration> && <pointcut declaration>

Discussion

Example 12-2 shows an example of the && operator combining the logic of two pointcuts into a single

pointcut declaration.

Example 12-2. Using the && operator to combine two pointcuts

public aspect LogicalAndRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: Any Method
 Method Return Type: Any Return Type
 Method Parameters: Any Parameters
 */
 pointcut callAnyMethodOnMyClass() : call(* MyClass.* (..));

 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: bar
 Method Return Type: void
 Method Parameters: None
 */
 pointcut callBarPointcut() : call(void MyClass.bar());

 /*
 Specifies calling advice whenever a join points is
 encountered that would be picked by both pointcuts
 specified:

 Pointcut name: callAnyMethodOnMyClass
 Pointcut name: callBarPointcut
 Method Return Type: void
 Method Parameters: None
 */
 pointcut callIntersectionAnyAndBar() : callAnyMethodOnMyClass()
 && callBarPointcut();

 // Advice declaration
 before() : callAnyMethodOnMyClass() && !within(LogicalAndRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by callAnyMethodOnMyClass");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }

 // Advice declaration
 before() : callBarPointcut() && !within(LogicalAndRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println("In the advice picked by callBarPointcut");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }

 // Advice declaration
 before() : callIntersectionAnyAndBar()
 && !within(LogicalAndRecipe +)

 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by callIntersectionAnyAndBar");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }
}

Most developers are familiar with the behavior of the && operator. However, for the newcomers, a

mathematical explanation is that when two sets of things are combined using a logical AND, they
combine to give the intersection of the two sets. Putting these mathematical terms into an AspectJ
context, when two or more simple pointcuts are combined with the && operator into a compound

pointcut, the join points that would be picked by both the individual pointcuts will trigger the
compound pointcut's associated advice. More simply, if any one join point has been picked by either
of the simple pointcuts, then it will not be picked by the overall compound pointcut.

The order of the pointcuts being combined using the && operator also has an effect on how the
compound pointcut is interpreted. The runtime analysis of the && operators is executed from left to

right. This means that as a candidate join point is examined, the first pointcut that indicates it would
not include the join point is where the comparison stops. This is true for the && operator in Java and

is especially useful when one of the comparisons in the combination must be protected by a previous
condition, as shown in Example 12-3 (replicated from Recipe 9.1).

Example 12-3. Using the && operator ordering protecting later
comparisons

pointcut ifJoinPointThisHasUnRealisticSalaryPointcut() : if (
 thisJoinPoint.getThis() instanceof MyClass
 && ((MyClass) thisJoinPoint.getThis()).getSalary() >= realisticSalary)
 && !withincode(long MyClass.getSalary());

In this example, the first condition states that the this reference must be an instance of MyClass to

continue with the evaluation of the rest of the statement. This protects the call in the next part of the
statement, which casts the this reference to MyClass. If the first condition fails, then the second will
never be reached; because of this behavior, the && operator is sometimes called a short-circuit

operator.

See Also

Recipe 12.1 describes the if(Expression) pointcut; the within(TypePattern) pointcut is described

in Recipe 9.1; the NOT(!) operator is described in Recipe 12.4; Chapter 13 describes the different

types of advice available in AspectJ.

Recipe 12.3. Combining Pointcuts Using a Logical OR (||)

Problem

You want to combine some pointcut declarations, so advice is executed on a join point as long as one
of the conditions within the pointcut declarations evaluates to true.

Solution

Use the || operator. The syntax of the || operator is:

pointcut <pointcut name>(<any values to be picked up>) :
 <pointcut declaration> || <pointcut declaration>

Discussion

Example 12-4 shows the || operator combining callFooIntStringPointcut() and
callBarPointcut() into a single compound pointcut called callIntersectionFooOrBar().

Example 12-4. Using the || operator to combine two pointcut declarations

public aspect LogicalOrRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: int and a String
 */
 pointcut callFooIntStringPointcut() : call(
 void MyClass.foo(int, String));

 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass

 Method Name: bar
 Method Return Type: void
 Method Parameters: None
 */
 pointcut callBarPointcut() : call(void MyClass.bar());

 /*
 Specifies calling advice whenever a join points is
 encountered that would be picked by both pointcuts
 specified:

 Pointcut name: callFooIntStringPointcut
 Pointcut name: callBarPointcut
 Method Return Type: void
 Method Parameters: None
 */
 pointcut callIntersectionFooOrBar() : callFooIntStringPointcut()
 || callBarPointcut();

 // Advice declaration
 before() : callFooIntStringPointcut()
 && !within(LogicalOrRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by callFooIntStringPointcut");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }

 // Advice declaration
 before() : callBarPointcut() && !within(LogicalOrRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println("In the advice picked by callBarPointcut");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }

 // Advice declaration
 before() : callIntersectionFooOrBar()
 && !within(LogicalOrRecipe +)

 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by callIntersectionFooOrBar");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }
}

In addition to combining pointcuts using a logical AND, as shown in Recipe 12.2, pointcuts and other
logical expressions can be combined using a logical OR. Those familiar with the nature of logical
operations will know that the result of a logical OR comparison is seen as positive if any of the
constituent parts meet the comparison condition. In the language of AspectJ, if a join point initiates
the advice on any of the constituent pointcuts combined using a logical OR into a compound pointcut,
then the join point will trigger that advice.

The || operator in AspectJ also exhibits short-circuiting behavior, similar to the && operator.
However, the short-circuiting rule is the opposite of the && operator. With the || operator, the

moment a condition is evaluated as positive, the compound statement can be evaluated as positive
and completed.

See Also

Recipe 12.2 covers the AND (&&) operator and its short-circuiting evaluations features; the
within(TypePattern) pointcut is described in Recipe 9.1; the NOT(!) operator is described in Recipe

12.4; Chapter 13 describes the different types of advice available in AspectJ.

Recipe 12.4. Capturing All Join Points NOT Specified by a
Pointcut Declaration

Problem

You want to capture all the join points not caught by a particular pointcut.

Solution

Use the unary ! operator to specify that the join points normally captured by a specific pointcut
declaration are to be ignored. The syntax of the ! operator is:

pointcut <pointcut name>(<any values to be picked up>) :
 !<pointcut declaration>

Discussion

Example 12-5 shows an example of the ! operator being used to capture all join points not captured
by the call(void MyClass.foo(int,String) pointcut.

Example 12-5. Using the ! operator to capture join points not caught by a
call(Signature) pointcut

public aspect LogicalNotRecipe
{
 /*
 Specifies calling advice whenever a method
 does NOT match the following rules
 gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut notCallPointCutFooIntString() : !call(void MyClass.
 foo(int, String));

 // Advice declaration

 before() : notCallPointCutFooIntString()
 && !within(LogicalNotRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by notCallPointCutFooIntStringAnyReturn()");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }
}

See Also

Techniques for combining pointcut declarations are covered in Recipes 12.2 and 12.3; the
within(TypePattern) pointcut is described in Recipe 9.1; Chapter 13 describes the different types of

advice available in AspectJ.

Recipe 12.5. Declaring Anonymous Pointcuts

Problem

You want to declare a simple pointcut anonymously within a named pointcut declaration, or attached
directly to an advice.

Solution

Anonymous pointcuts are the building blocks of pointcut declarations. They have been used
throughout all the pointcut-based chapters, but this recipe gives anonymous pointcuts more detailed
attention.

Example 12-6 shows an example of anonymous pointcuts being used as the foundation for more
complexly named pointcuts, as well as directly on an advice declaration.

Example 12-6. Using anonymous pointcuts

public aspect AnonymousPointcutRecipe
{
 /*
 A pointcut declaration that is built up from one
 anonymous pointcut:

 Anonymous Pointcuts: call(void MyClass.foo(int,String)
 */
 pointcut singleAnonymousPointcut() : call(void MyClass.foo(int, String));

 /*
 A pointcut declaration that is built up from two
 anonymous pointcuts:

 Anonymous Pointcuts: call(void MyClass.foo(int,String)
 call(void MyClass.foo(int,String)
 !within(AnonymousPointcutRecipe +)

 */
 pointcut multipleAnonymousPointcut() : (
 call(void MyClass.bar())
 || call(void MyClass.foo(int, String))
 && !within(AnonymosPointcutRecipe +));

 /*
 A pointcut declaration attached to the advice it will invoke,
 built up from anonymous pointcuts:

 Anonymous Pointcuts: within(LogicalOrRecipe +)
 */
 before() : singleAnonymousPointcut()
 && !within(AnonymousPointcutRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by singleAnonymousPointcut and");
 System.out.println("!within(AnonymousPointcutRecipe +");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }

 /*
 A pointcut declaration attached to the advice it will invoke,
 built up from anonymous pointcuts:

 Anonymous Pointcuts: None
 */
 before() : multipleAnonymousPointcut()
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by multipleAnonymousPointcut()");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }
}

Discussion

This recipe differs from the other pointcut-based recipes in this book because it deals with one of two
particular mechanisms for declaring pointcuts rather than examining a specific pointcut type.
Pointcuts can be declared anonymously within named pointcut declarations or by being directly
attached to the advice they will invoke.

See Also

Recipes 12.2 and 12.3 cover techniques for combining pointcut declarations; the
within(TypePattern) pointcut is described in Recipe 9.1; the NOT(!) operator is described in Recipe

12.4; Chapter 13 describes the different types of advice available in AspectJ.

Recipe 12.6. Reusing Pointcuts

Problem

You want to reuse a pointcut expression.

Solution

Declare a pointcut that can be referenced by name in the places where it is to be reused.

Discussion

Example 12-7 shows an example where the foundationNamedPointcut() named pointcut is reused
when declaring the reuseNamedPointcut().

Example 12-7. Reuse of named pointcuts

public aspect PointcutReuseRecipe
{
 /*
 A pointcut declaration that is to be used and reused:

 Anonymous Pointcuts: call(void MyClass.foo(int,String)

 */
 pointcut foundationNamedPointcut() : call(
 void MyClass.foo(int, String));

 /*
 A pointcut declaration that is built up from two
 pointcuts:

 Anonymous Pointcuts: !within(AnonymousPointcutRecipe +)
 Named Pointcuts: foundationNamedPointcut()

 */
 pointcut reuseNamedPointcut() : foundationNamedPointcut()
 && !within(PointcutReuseRecipe +);

 /*

 A pointcut declaration attached to the advice it will invoke,
 built up from simple named and anonymous pointcuts:

 Anonymous Pointcuts: !within(LogicalOrRecipe +)
 Named Pointcuts: foundationNamedPointcut();
 */
 before() : foundationNamedPointcut()
 && !within(PointcutReuseRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by foundationNamedPointcut() and");
 System.out.println("!within(AnonymousPointcutRecipe() +");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }

 /*
 A pointcut declaration attached to the advice it will invoke,
 built up from complex pointcuts built reusing other pointcut
 declarations:

 Named Pointcuts: reuseNamedPointcut
 */
 before() : reuseNamedPointcut()
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice picked by reuseNamedPointcut()");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }
}

A named pointcut is similar to a method. It has a signature and can be referenced throughout the
rest of the pointcut declarations within a particular aspect or even in other aspects according to the
named pointcut's access modifier. This becomes increasingly important when we consider inheritance
between aspects where pointcuts can be declared abstract and the actual pointcut logic can be
implemented by the inheriting aspects.

When declaring pointcuts for reuse it is important that you consider where your pointcut delcarations

are going to be reused. You use access modifiers in relation to your pointcut declarations in order to
control where your pointcut declarations are visible within your application.

In AspectJ, pointcut declarations have the same access modifiers as regular Java methods: public,
the pointcut delcaration is visible throughout your entire applications aspects; default (no modifier
specified), the pointcut declaration is visible to all other aspects in the same package; protected, the
pointcut delcaration is visible only to subaspects; private, the pointcut delcaration is only visible in
the aspect within it is declared.

See Also

Inheritance between aspects and the implications on pointcut declarations is discussed in Chapter 15;
techniques for combining pointcut declarations are covered in Recipes 12.2 and 12.3; the
within(TypePattern) pointcut is described in Recipe 9.1; the NOT(!) operator is described in Recipe

12.6; Chapter 13 describes the different types of advice available in AspectJ.

Chapter 13. Defining Advice

Introduction

Recipe 13.1. Accessing Class Members

Recipe 13.2. Accessing the Join Point Context

Recipe 13.3. Executing Advice Before a Join Point

Recipe 13.4. Executing Advice Around a Join Point

Recipe 13.5. Executing Advice Unconditionally After a Join Point

Recipe 13.6. Executing Advice Only After a Normal Return from a Join Point

Recipe 13.7. Executing Advice Only After an Exception Has Been Raised in a Join Point

Recipe 13.8. Controlling Advice Precedence

Recipe 13.9. Advising Aspects

Introduction

This chapter examines the different ways that advice can be specified in AspectJ. Pointcuts define
which join points you are interested in and advice defines what to do when those join points are
encountered.

An advice block contains straightforward Java code. Advice looks much like a Java method, except
that it cannot be called directly from your application. It is the AspectJ runtime system that executes
the advice according to the pointcut logic associated with that advice.

This chapter begins by examining how advice can interact with your application's classes, including
the mechanisms by which to access the triggering join point context. The different types of advice are
then discussed before finally covering advice precedence and how the order in which advice is
invoked can be controlled where more than one piece of advice is applied to the same join point.

Recipe 13.1. Accessing Class Members

Problem

You want to access attributes and methods of a particular object from within your advice.

Solution

Pass the appropriate object to the advice as a parameter on your pointcut declaration.

Discussion

Example 13-1 shows how to access public and private members of a class whose object is available
as the call join point is encountered.

Example 13-1. Passing an object to advice for access to its methods and
attributes

public privileged aspect MemberAccessRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets executed:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut executionOfFooPointCut() : execution(
 void MyClass.foo(int, String));

 // Advice declaration
 after(MyClass myClass) : executionOfFooPointCut() && this(myClass)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "Accessing the set(float) member of the MyClass object");
 System.out.println(

 "Privileged access not required for this method call as it is
 public");
 myClass.setF(2.0f) ;
 System.out.println(
 "Using the privileged aspect access to the private f member
 variable");
 System.out.print("The current value of f is: ");
 System.out.println(myClass.f);
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Line: " + thisJoinPoint.getSourceLocation());
 System.out.println(
 "--");
 }
}

An object of the MyClass class is made available to the advice by using the this(Identifier)
pointcut definition. The this(Identifier) pointcut definition effectively exposes the advice to the
object that is pointed at by the this reference at the triggering join point. The setF(float) method
is called from within the advice and shows access to the MyClass object's public methods. To gain
access to the private MyClass.f attribute, the aspect has to have some additional changes made to

its structure. The aspect is attempting to break encapsulation by accessing the private member
directly, and, therefore, the aspect must be declared as privileged because it is committing a

potentially intrusive act.

AspectJ provides the privileged keyword to be used where an aspect requires full and unrestricted

access to the classes it is applied to, including those member variables and methods that are not
declared on the class's public interface. The privileged status of an aspect should serve as a

warning that care must be taken in any changes to that aspect, or the classes to which it is applied,
as these changes can potentially cause other problems throughout the application.

See Also

The call(Signature) pointcut is described in Recipe 4.1; the within(TypePattern) pointcut is
described in Recipe 9.1; the this(TypePattern or Identifier) pointcut is described in Recipe 11.1;
the Appendix contains a quick reference for the JoinPoint class and its subclasses.

Recipe 13.2. Accessing the Join Point Context

Problem

You want to access the join point context from within your advice.

Solution

Use the thisJoinPoint and thisJoinPointStaticPart variable.

Discussion

Classes in Java have a this variable to allow their objects to reference and work with themselves. Aspects
are converted by the AspectJ compiler into classes; therefore, the aspects have a this reference.

However, an additional join point context can be exposed to advice from the join points that trigger it.
AspectJ provides the thisJoinPoint variable to expose this join point context. In addition to
thisJoinPoint , the thisJoinPointStaticPart variable is useful if the context that is being accessed

can be assessed statically.

Example 13-2 shows some of the information that is available from the generic thisJoinPoint variable.

Example 13-2. Using the thisJoinPoint variable

public aspect ThisJoinPointRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointCut() && !within(ThisJoinPointRecipe +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(

 "Exercising the static parts of AspectJ 1.1.1
 thisJoinPoint");
 System.out.println(
 "Source Line: "
 + thisJoinPointStaticPart.getSourceLocation());
 System.out.println(
 "Join Point Kind: "
 + thisJoinPointStaticPart.getKind());
 System.out.println(
 "Simple toString: "
 + thisJoinPointStaticPart.toString());
 System.out.println(
 "Simple toShortString: "
 + thisJoinPointStaticPart.toShortString());
 System.out.println(
 "Simple toLongString: "
 + thisJoinPointStaticPart.toLongString());
 System.out.println(
 "Exercising the join point generic signature of AspectJ 1.1.1 thisJoinPoint");
 System.out.println(
 "Signature: "
 + thisJoinPointStaticPart.getSignature());
 System.out.println(
 "Signature name: "
 + thisJoinPointStaticPart.getSignature().getName());
 System.out.println(
 "Signature declaring type: "
 + thisJoinPointStaticPart.getSignature().getDeclaringType());
 System.out.println(
 "--");
 }

 // Advice declaration
 before() : callPointCut() && !within(ThisJoinPointRecipe +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "Exercising the dynamic parts of AspectJ 1.1.1 thisJoinPoint");
 System.out.println(
 "Get the this reference: " + thisJoinPoint.getThis());
 System.out.println(
 "Getting the Target: " + thisJoinPoint.getTarget());
 System.out.println("Join Point Arguments: ");
 Object[] args = thisJoinPoint.getArgs();
 for (int count = 0; count < args.length; count++)
 {
 System.out.println(args[count]);
 }
 System.out.println(
 "--");

 }
}

The code in Example 13-2 produces the following output:

------------------- Aspect Advice Logic --------------------
Exercising the static parts of AspectJ 1.1.1 thisJoinPoint
Source Line: MyClass.java:14
Join Point Kind: method-call
Simple toString: call(void MyClass.foo(int, String))
Simple toShortString: call(MyClass.foo(..))
Simple toLongString: call(public void MyClass.foo(int, java.lang.String))
Exercising the join point generic signature of AspectJ 1.1.1 thisJoinPoint
Signature: void MyClass.foo(int, String)
Signature name: foo
Signature declaring type: class MyClass
--
------------------- Aspect Advice Logic --------------------
Exercising the dynamic parts of AspectJ 1.1.1 thisJoinPoint
Get the this reference: null
Getting the Target: MyClass@d19bc8
Join Point Arguments:
1
Russ Miles
--

The thisJoinPoint variable contains static and dynamic context information about the triggering join

point. Static join point context information contains anything that can be decided at compile and weave
time, as explained in Chapter 1 . Dynamic join point context information can only be populated at runtime
because it is dependent on the actual runtime state of the join point context.

To keep things as efficient as possible, the static join point information can be accessed by using the
thisJoinPoint.getStaticPart() method or, as shown in Example 13-2 , by accessing the
thisJoinPointStaticPart variable. If a particular advice only uses the getStaticPart() method or
thisJoinPointStaticPart , then the AspectJ compiler can perform compilation optimizations to reduce

the overhead associated with accessing the join point context.

The thisJoinPoint variable is an object of the JoinPoint class declared within the
AspectJ runtime libraries. Different subclasses of the generic JoinPoint class can
be instantiated as thisJoinPoint variables depending on the type of the triggering
join point. A quick reference for the JoinPoint class and its subclasses is provided

in the Appendix A .

See Also

The call(Signature) pointcut is described in Recipe 4.1 ; the within(TypePattern) pointcut is described
in Recipe 9.1 ; the Appendix contains a quick reference for the JoinPoint class and its subclasses.

Recipe 13.3. Executing Advice Before a Join Point

Problem

You want advice to execute before the join points that trigger it.

Solution

Use the before() type of advice.

Discussion

Example 13-3 shows how to execute advice before a call to the void MyClass.foo(int,String)

method.

Example 13-3. Executing advice before a method call

public aspect BeforeAdviceRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointCut() && !within(BeforeAdviceRecipe +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "Source Location: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(

 "--");
 }
}

See Also

The call(Signature) pointcut is described in Recipe 4.1; the within(TypePattern) pointcut is
described in Recipe 9.1; the thisJoinPoint variable is examined in Recipe 13.2.

Recipe 13.4. Executing Advice Around a Join Point

Problem

You want advice to execute around the join points that trigger it.

Solution

Use the around() type of advice.

Discussion

Example 13-4 shows how to execute advice around the void MyClass.foo(int, String) method.

Example 13-4. Executing advice around a method call

public aspect AroundAdviceRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: bar
 Method Return Type: int
 Method Parameters:
 */
 pointcut callFooPointCut() : call(int MyClass.foo());

 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: bar2
 Method Return Type: int
 Method Parameters: int
 */
 pointcut callBarPointCut(int value) : call(int MyClass.bar(int))
 && args(value);

 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: baz
 Method Return Type: int
 Method Parameters:
 */
 pointcut callBazPointCut() : call(int MyClass.baz());

 // Advice declaration
 // This advice will be executed before the pointcut that picks it
 int around() : callFooPointCut() && !within(AroundAdviceRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Location: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 return proceed();
 }

 // Advice declaration
 // This advice will be executed before the pointcut that picks it
 int around(int value) : callBarPointCut(value)
 && !within(AroundAdviceRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Location: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 return proceed(value);
 }

 // Advice declaration
 // This advice will be executed before the pointcut that picks it
 int around() : callBazPointCut() && !within(AroundAdviceRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(

 "Signature: " + thisJoinPoint.getSignature());
 System.out.println(
 "Source Location: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 return 200;
 }
}

The around() advice is a powerful construct that indicates to AspectJ the advice should be run

instead of the join point that has triggered it. This allows overriding the original logic present in the
application. This recipe shows the around() advice being applied passively and actively according to
whether the proceed() call is made from within the around() advice block. according to whether
the proceed() call is made from within the around() advice block. Figure 13-1 shows the behavior
from Example 13-4 where passive and active around() advice are being applied.

Figure 13-1. Using around() advice passively and actively on a
call(TypePattern) pointcut

The proceed() call indicates the around() advice should continue with executing the original join

point logic, passing any values that were originally available. In the first piece of advice in Example
13-4, there were no parameters to pass; in the second, there was an int available on the call join
point, and for this reason the parameter must be passed on to the proceed() call. The parameter

could have a completely different value than the original but not a different type or class; otherwise,
this will cause a compilation error.

Contrasting with the more passive form of the around() advice type shown in the first two pieces of
advice in Example 13-4, around() advice can be used to override the join point that has triggered
it. The MyClass.baz() method is overridden by the third around() advice because of the

proceed() call. To complete the overriding of the original join point, the around() advice returns a

value different from what was originally intended.

The same overriding approach can be used to override constructors. This mechanism is useful when
the actual object being instantiated needs to be controlled by the aspect. The return object from a
constructor is the newly instantiated object and as such can be decided by the advice. The advice
could return a different class of object than the one expected by the target application as long as it is
an appropriate class.

The around() advice must have a return value specified, but this can be void if no value is needed.
A return value can be obtained from the original logic in terms of the return from the proceed() call

or a totally new object of a class appropriate for the join points captured.

If the advice is applied to join points with different return types, then the advice may declare that its
return value will be of the Object class. In the case where one of those return types is a primitive
type, such as a float or an int, the AspectJ will automatically "unbox" the primitive return value at

runtime.

For example, when an around() advice block that returns an Object advises a method call join
point on a method that returns a float primitive type, the advice must "box" the return value as an
instance of the Float class so it can be returned as an Object according to the advice declaration.

Where the join point returns, the return value is automatically and transparently unboxed back to the
primitive float according to the method's original signature.

Performance is a consideration when using around() advice. There is a performance penalty when
using around() advice in AspectJ, which means that a combination of the before() and after()
returning form of advice wherever possible.

See Also

The paper "Measuring the Dynamic Behaviour of AspectJ Programs" by Ganesh Sittampalam et al,
available at http://www.sable.mcgill.ca/publications/papers/#oopsla2004, discusses some of the
problems with performance that an AspectJ implementation may have over a hand-coded solution;
The after() returning form of advice is discussed in Recipe 13.6; the call(Signature) pointcut
is described in Recipe Recipe 4.1; the within(TypePattern) pointcut is described in Recipe 9.1; the
thisJoinPoint variable and the context it encapsulates is examined in Recipe 13.2; discusses some

common pointcut idioms, one of which being the ability to ignore exception handling and object
initialization join points, as these do not support around() advice.

http://www.sable.mcgill.ca/publications/papers/#oopsla2004

Recipe 13.5. Executing Advice Unconditionally After a
Join Point

Problem

You want advice to execute after a specific join point regardless of how the join point returned.

Solution

Use the after() type of advice.

Discussion

Example 13-5 shows how to execute advice after the void MyClass.foo(int,String) method

regardless of how the method returns.

Example 13-5. Executing advice after a method call

public aspect AfterAdviceRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(void MyClass.foo(int, String));

 // Advice declaration
 after() : callPointCut() && !within(AfterAdviceRecipe +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "Source Location: "

 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

See Also

The call(Signature) pointcut is described in Recipe 4.1; the within(TypePattern) pointcut is
described in Recipe 9.1; the thisJoinPoint variable and the context it encapsulates is examined in

Recipe 13.2; discusses some common pointcut idioms, one of which being the ability to ignore
exception handling join points as these do not support after() advice.

Recipe 13.6. Executing Advice Only After a Normal Return
from a Join Point

Problem

You want advice to execute after a specific join point only if that join point returned normally.

Solution

Use the after() returning or after() returning(<ReturnType> <Identifier>) types of advice.

Discussion

Example 13-6 shows how to specify that the advice should only be executed after the call to void
MyClass.foo(int) if the call to the method returns normally.

Example 13-6. Executing advice after a method call if that call returns
normally

public aspect AfterReturningAdviceRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(void MyClass.foo(int));

 // Advice declaration
 after() returning : callPointCut() &&
 !within(AfterReturningAdviceRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(

 "Source Location: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

The after() returning advice in Example 13-6 does not access a returning value from the join
point because the void MyClass.foo(int) method does not return any value. If the join point did
return a value, then AspectJ provides the after() returning(ReturnType Identifier) variation

that lets you assign the returning value to an identifier() and access the value in the corresponding
advice block, as shown in Example 13-7.

Example 13-7. Accessing a method's return value if the method returned
normally

public aspect AfterReturningValueAdviceRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: int
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(int MyClass.foo(int));

 // Advice declaration
 after() returning(Object value) : callPointCut()
 && !within(AfterReturningAdviceRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "Source Location: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "Value being returned: "
 + value);
 System.out.println(
 "--");
 }

An interesting side effect of using the after() returning(<Type> <Identifier>) advice to access
a primitive type, as shown in Example 13-7, is that the primitive int value must be boxed in an
instance of the Integer class to be passed to the advice. When the return type expected by the

advice is of type Object, and if the return value is a primitive type, AspectJ will automatically and

transparently box the primitive value into its corresponding Java class. This automatic and
transparent boxing behavior, where a value of type Object is expected and primitives are to be
passed to or from the advice, is also used by the around() form of advice.

The after() returning forms of advice provide a finer filter of the join points that trigger the
advice than the normal after() type of advice (covered in Recipe Recipe 13.5). The code within the
after() returning advice block will be executed if the encountered join point returns without

raising an exception offering a mechanism by which to avoid capturing join points on methods that
have experienced problems.

See Also

The call(Signature) pointcut is described in Recipe 4.1; the within(TypePattern) pointcut is
described in Recipe 9.1; the thisJoinPoint variable and the context it encapsulates is examined in
Recipe 13.2; the around() advice is described in Recipe 13.4; the after() advice is shown in

Recipe 13.5.

Recipe 13.7. Executing Advice Only After an Exception
Has Been Raised in a Join Point

Problem

You want advice to execute after a specific join point only if that join point raised an exception.

Solution

Use the after() tHRowing or after() throwing(<ExceptionType> <Identifier>) types of advice

Discussion

Example 13-8 shows how to specify that advice should be executed if the call to the void
MyClass.foo(int) method returns with an exception.

Example 13-8. Executing advice after a method call if that call raises an
exception

public aspect AfterThrowingAdviceRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(void MyClass.foo(int));

 // Advice declaration
 after() throwing : callPointCut()
 && !within(AfterThrowingAdviceRecipe +)
 {
 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(

 "Source Location: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

The after() throwing advice type completes the picture for applying advice to be executed after a

join point returns. In this case, the advice should be executed when an exception has occurred. This
gives the developer the capability to handle exceptional circumstances after a join point has been
executed.

See Also

The call(Signature) pointcut is described in Recipe 4.1; the handler(TypePattern) pointcut is
shown in more detail in Recipe 5.1; the within(TypePattern) pointcut is described in Recipe 9.1;
the thisJoinPoint variable and the context it encapsulates is examined in Recipe 13.2; the after(
) and after() returning advice types are described in Recipes Recipe 13.5 and Recipe 13.6

respectively.

Recipe 13.8. Controlling Advice Precedence

Problem

You want to control the precedence of multiple advice blocks as they are applied to the same join
point.

Solution

If the same types of advice located in different aspects are applied to the same join point, you can
use the declare precedence statement. The syntax of the declare precedence statement is:

declare precedence : TypePattern, TypePattern, ..;

If the same types of advice are located in the same aspect, then the location of the advice declaration
is used to denote its precedence as it is applied to the shared join point.

Discussion

Example 13-9 shows using the declare precedence statement to specify that AspectA is of a higher
precedence than AspectB.

Example 13-9. Using the declare precedence statement to control aspect
precedence

public aspect AspectA
{
 // Declare precedence rules
 declare precedence : AspectA, AspectB;

 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: * (any return type)
 Method Parameters: an int followed by a String
 */

 pointcut callPointCut() : call(void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointCut() && !within(AspectA +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println("In the advice of AspectA");
 System.out.println("Target: " + thisJoinPoint.getTarget());
 System.out.println("This: " + thisJoinPoint.getThis());
 System.out.println("Aspect Instance: " + AspectA.aspectOf());
 System.out.println(
 "--");
 }
}

Aspects can work in relative isolation in some applications, but as your aspect-oriented architecture
becomes more complex, having two aspects advising the same join point is reasonable. In these
cases, you must control the precedence of the aspects when applying their advice to any shared join
points.

TypePatterns are used in the declare precedence statements to specify the different aspects and
their explicit orderings. The TypePatterns can be specified using wildcards to indicate the

precedence for sets of particular aspects or to entire packages of aspects if required.

The same problem occurs when two blocks of the same type of advice in the same aspect are applied
to the same join point. In this case, it does not make sense to use the declare precedence statement
because the advice is all in the same aspect. To handle this, AspectJ applies an implicit order of
precedence based upon the type and location of the advice within the aspect declaration.

In the case where the same types of advice within the same aspect are advising the same join point
the implicit rules of precedence are:

The implicit precedence rules for the before() and around() types of advice are applied in

the order they are declared in the aspect. If two blocks of before() advice in the same aspect
are applied to the same join point, then the first block that is declared will have the highest
precedence and the last will have the lowest.

The implicit precedence for the after(), after() returning, and around() tHRowing
types of advice are applied in the reverse order to the before and around() types of advice.
This means that if two or more blocks of the after() types of advice in the same aspect are

applied to the same join point, then the block that is declared last will have the highest
precedence and the first will have the lowest.

Whether advice is declared in the same or separate aspects, advice precedence means different
things depending on the advice type. Figure 13-2 shows the different precedence orderings in relation
to a join point and their implications for the different forms of advice.

Figure 13-2. Advice order of precedence in relation to a join point

See Also

The call(Signature) pointcut is covered in Recipe Recipe 4.1; the within(TypePattern) pointcut
is described in Recipe 9.1; the NOT(!) operator is described in Recipe 12.4; the before() type of
advice is described in Recipe 13.3; the around() type of advice is covered in Recipe Recipe 13.4;
the after() type of advice and its variations are described in Recipes Recipe 13.5, Recipe 13.6, and

Recipe 13.7, respectively.

Recipe 13.9. Advising Aspects

Problem

You want to apply advice to other aspects.

Solution

Use the pointcuts available within AspectJ to specify the aspects to be advised.

Discussion

AspectJ includes aspects within the scope of advisable things, so the various pointcuts available in
AspectJ can be used to specify advising other aspects in addition to the classes within the application.
Example 13-10 shows how to declare advice to be applied to advice within another aspect.

Example 13-10. Applying advice to other advice

public aspect AdviseAspectRecipe
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointCut() && within(AdvisedAspect +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the call point cut");
 System.out.println(

 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");

 }
}

See Also

The call(Signature) pointcut is described in Recipe 4.1; the within(TypePattern) pointcut is
described in Recipe 9.1; the thisJoinPoint variable and the context it encapsulates is examined in

Recipe 13.2.

Chapter 14. Defining Aspect Instantiation
Introduction

Recipe 14.1. Defining Singleton Aspects

Recipe 14.2. Defining an Aspect per Instance

Recipe 14.3. Defining an Aspect per Control Flow

Introduction

In Chapter 9, the recipes on advice hinted at an interesting characteristic of how AspectJ implements
aspects. When AspectJ was being designed, the decision was made to reuse as much as possible from
the existing Java language. This decision meant that even though the nature and intent of aspect
orientation was at the forefront of the work on AspectJ, this goal was tempered by an attempt to
keep within the constraints of Java so specialized runtime environments would not be needed.

To achieve this goal the designers decided to implement aspects as classes within the post-processed
aspect-oriented application. This clever approach meant that 100% of the world's virtual machines
could run AspectJ programs unaltered. This approach is interesting for another reason: since aspects
are transformed into regular classes during the weaving process (see Chapter 1 for details), then
they must have their own regular object lifecycle. Further, since aspects have their own lifecycle,
they must have an associated instantiation policy by which the compiler can decide when a new
aspect object is to be created. In this chapter, you see how to declare and control the specific
instantiation policies that govern when an aspect object is created within the flow of your application.

Recipe 14.1. Defining Singleton Aspects

Problem

You want to declare that an aspect is to be instantiated as a singleton.

Solution

Use the issingleton() explicit aspect instantiation policy declaration or rely on the default implicit

aspect instantiation policy.

Discussion

AspectJ assigns a singleton behavior to aspects by default. Every aspect you have seen so far has
been a singleton because the instantiation policy has not been explicitly declared.

The singleton aspect instantiation policy can be made explicit by adding the issingleton()

statement to the aspect declaration, as shown in Example 14-1.

Example 14-1. Declaring a singleton aspect explicitly

public aspect Singleton issingleton()
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() : call(void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointCut() && !within(Singleton +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");

 System.out.println(
 "In the advice attached to the call point cut");
 System.out.println(
 "Target: " + thisJoinPoint.getTarget());
 System.out.println(
 "This: " + thisJoinPoint.getThis());
 System.out.println("Aspect Instance: " + Singleton.aspectOf());
 System.out.println(
 "--");

 }
}

At the core of the singleton pattern is the goal of declaring a class that constrains itself to one object
instance for the lifetime of an application. Figure 14-1 shows how each different object is advised by
the same aspect instance in an application.

Figure 14-1. Calls from all objects are received by the same singleton
aspect

Singletons are a great way for applying a common component throughout an application. Declaring
your aspects as singletons allows you to share the instantiated aspect across all the areas that the
aspect is applied in your application. The memory space taken by that aspect instantiation is shared
across all objects and threads and can provide a useful means of sharing data when used carefully.

The primary disadvantage of using traditional object-oriented singletons is that every class that uses
the singleton is closely coupled to the singleton's public interface. If the singleton's public interface
changes, then all of the classes that use the singleton must change. This produces a complicated

ripple effect of changes throughout your application.

The aspect-oriented singleton aspect does not suffer from this disadvantage. By modularizing the
rules for how the singleton is applied with the behavior that the singleton provides in one place, then
only the aspect needs to be amended if its behavior changes.

See Also

The singleton pattern is discussed in more detail in Recipe 17.1; the call(Signature) pointcut is
covered in Recipe Recipe 4.1; the within(TypePattern) pointcut is described in Recipe 9.1; the
NOT(!) operator is described in Recipe 12.4; inheritance between aspects is described in more detail

in Chapter 15.

Recipe 14.2. Defining an Aspect per Instance

Problem

You want to declare that an aspect is to be instantiated on a per-object-instance basis.

Solution

Use the perthis(Pointcut) or pertarget(Pointcut) aspect instantiation policy declarations.

Discussion

AspectJ provides the perthis(Pointcut) and pertarget(Pointcut) aspect instantiation policies to

declare an aspect should be instantiated for every new object instance according to the classes
selected with the Pointcut definition.

The difference between the perthis(Pointcut) and the pertarget(Pointcut) declarations has to
do with what object is examined when an advised join point is reached. The perthis(Pointcut)
declaration specifies that a new aspect will be instantiated for every new object referenced by this at
the advice triggering join point. The pertarget(Pointcut) instantiation policy specifies that a new

aspect will be instantiated for every new object that is the target of an advice triggering join point.
Despite these subtle differences, both declarations explicitly associate a single aspect instance to a
single object instance.

Example 14-2 shows how a perthis(Pointcut) declaration can be assigned to a particular aspect,

and Figure 14-2 shows how the aspect instantiation policy is realized within the flow of an application.

Example 14-2. Using the perthis(Pointcut) declaration to instantiate an
aspect for every executing object

public aspect PerThis perthis(callPointCut())
{
 /*
 Specifies calling advice whenever a method
 matching the following rules is executed:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String

 */
 pointcut callPointCut() : call(
 void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointCut() && !within(PerThis +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the call point cut");
 System.out.println("Target: " + thisJoinPoint.getTarget());
 System.out.println("This: " + thisJoinPoint.getThis());
 System.out.println(
 "Aspect Instance: "
 + PerThis.aspectOf(thisJoinPoint.getThis()));
 System.out.println(
 "--");

 }
}

Figure 14-2. Creating one aspect instance per object advised

The Pointcut parameter on the perthis(Pointcut) and pertarget(Pointcut) aspect instantiation

policy declarations raises some interesting questions when you consider that multiple classes can be
advised by a single aspect. Example 14-3 shows how an aspect can be declared to advise multiple
classes where the perthis(Pointcut) aspect instantiation policy is only relevant on objects of the
MyClass class as specified by the executeMyClassFoo() pointcut.

Example 14-3. Attempting to advise multiple classes but specifying an
aspect instantiation policy that is only interested in one class

public aspect AdviseMultipleClasses perthis(executeMyClassFoo())
{
 public pointcut executeMyClassFoo() : execution(void MyClass.foo());

 public pointcut executeAnotherClassFoo() : execution(
 void AnotherClass.foo());

 before() : executeMyClassFoo()
 {
 System.out.println("Advising foo");
 System.out.println("Aspect is: " + this);
 }

 before() : executeAnotherClassFoo()
 {
 System.out.println("Advising foo");
 System.out.println("Aspect is: " + this);
 }
}

Declaring that the AdviseMultipleClasses aspect is only to be instantiated for every new object as
specified by the executeMyClassFoo() pointcut implicitly excludes other classes of object. Even
though the executeAnotherClassFoo() pointcut is declared and has corresponding advice, it will

not result in any aspects being applied to classes other than those that it shares with
executeMyClassFoo().

In Example 14-3, no common classes are shared between the two pointcuts, so the
executeMyClassFoo() pointcut and associated advice is ignored because this pointcut is taking part
in the definition of the perthis(Pointcut) instantiation policy, as shown in Figure 14-3.

Figure 14-3. Implicitly excluding AnotherClass objects from the
AdviseMultipleAspects aspect according to the aspect instantiation policy

An aspect cannot have two instantiation policies for two different types of object. To ensure that an
aspect's instantiation policy is relevant for all objects of the classes that it advises, a useful idiom is to
declare a pointcut that combines all other pointcut declarations in the aspect purely for the use of the
aspect's instantiation policy, as shown in Example 14-4.

Example 14-4. Capturing all classes that are advised by an aspect for
inclusion into the aspect instantiation policy definition

public aspect AdviseMultipleClasses perthis(applyLifecyclePolicy())
{
 public pointcut executeMyClassFoo() : execution(void MyClass.foo());

 public pointcut executeAnotherClassFoo() : execution(
 void AnotherClass.foo());

 public pointcut applyLifecyclePolicy() : executeMyClassFoo() ||
 executeAnotherClassFoo();

 before() : executeMyClassFoo()
 {
 System.out.println("Advising foo");
 System.out.println("Aspect is: " + this);
 }

 before() : executeAnotherClassFoo()
 {

 System.out.println("Advising foo");
 System.out.println("Aspect is: " + this);
 }
}

See Also

The execution(Signature) pointcut is covered in Recipe 4.4; the within(TypePattern) pointcut is
described in Recipe 7.1; the OR(||) operator is described in Recipe 12.3; the NOT(!) operator is

described in Recipe 12.4; the Singleton aspect instantiation policy is described in Recipe 14.1.

Recipe 14.3. Defining an Aspect per Control Flow

Problem

You want to declare that an aspect is to be instantiated on a per-control-flow basis.

Solution

Use the percflow(Pointcut) aspect instantiation declaration.

Discussion

The percflow(Pointcut) statement indicates to the AspectJ compiler that it should create a new

instance of the aspect for every new control flow that is entered within the set of join points indicated
by the Pointcut parameter.

Example 14-5 shows the percflow(Pointcut) instantiation declaration being used to specify a new
instance of the PerControlFlow aspect for every new program control flow where the join points
specified by the callPointCut() are encountered.

Example 14-5. Using the percflow(Pointcut) to create a new instance of
an aspect for every new program control flow entered

public aspect PerControlFlow percflow(callPointCut())
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: * (any return type)
 Method Parameters: an int followed by a String
 */
 pointcut callPointCut() :
 call(void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointCut() && !within(PerControlFlow +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the call point cut");
 System.out.println("Target: " + thisJoinPoint.getTarget());
 System.out.println("This: " + thisJoinPoint.getThis());
 System.out.println(
 "Aspect Instance: " + PerControlFlow.aspectOf());
 System.out.println(
 "--");
 }
}

Figure 14-4 shows how this relationship works in the case of the percflow(Pointcut) declaration.

Figure 14-4. Creating a new aspect instance per program control flow

The percflow(Pointcut) statement represents the finest granularity of aspect instantiation policy

and creates the largest number of distinct aspect instances for a particular piece of code. With this
type of aspect instantiation declaration, the memory requirements of your aspects becomes more
important.

See Also

The call(Signature) pointcut is covered in Recipe Recipe 4.1; the within(TypePattern) pointcut
is described in Recipe 7.1; the NOT(!) operator is described in Recipe 12.4.

Chapter 15. Defining Aspect Relationships
Introduction

Recipe 15.1. Inheriting Pointcut Definitions

Recipe 15.2. Implementing Abstract Pointcuts

Recipe 15.3. Inheriting Classes into Aspects

Recipe 15.4. Declaring Aspects Inside Classes

Introduction

Aspects in AspectJ are objects in their own right and they benefit from the traditional object-oriented
(OO) mechanisms that make object orientation such a great approach for software development.

When using the OO concepts of association and composition, then the rules for aspects are fairly
simple: an aspect can contain or use other classes without using any unique syntax. If you ignore
some irregular method signatures, a class can use an aspect as if it were just another class.

This chapter deals with the details of inheritance between aspects and classes and some of the
special things to consider when defining these relationships.

Recipe 15.1. Inheriting Pointcut Definitions

Problem

You want to create pointcut declarations in an aspect that can then be reused using inheritance.

Solution

Create an abstract aspect. Define within the abstract aspect the reusable pointcut logic using the
appropriate public, protected, or default access modifiers. Finally, inherit that abstract aspect

into your subaspects to reuse the declared pointcuts.

Discussion

Pointcuts are subject to a similar set of rules as normal methods when using inheritance. If a pointcut
is declared public, protected, or default, then its logic can be inherited and reused within other

aspects.

Example 15-1 shows an abstract aspect that provides a base for inheriting its defined pointcuts.

Example 15-1. Using an abstract aspect to define reusable pointcut logic

public abstract aspect BasePointcutDefinitionsAspect
{
 public pointcut callPointcut() : call(void MyClass.foo(int, String));
}

In Example 15-1, no obvious need exists for the BasePointcutDefini-
tionsAspect to be abstract. The aspect is declared as abstract because the

AspectJ language states that only abstract aspects can be extended by
subaspects.

Example 15-2 shows the ReusePointcutsRecipe aspect inheriting the callPointcut() declaration

from the aspect in Example 15-1.

Example 15-2. Reusing pointcut logic from the abstract base aspect

public aspect ReusePointcutsRecipe extends BasePointcutDefinitionsAspect
{

 // Advice declaration
 before() : callPointcut() && !within(ReusePointcutsRecipe +)
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the call point cut");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());

 System.out.println(
 "--");
 }
}

Figure 15-1 shows the static structure of the inheritance relationship defined in Examples Example
15-1 and Example 15-2.

Figure 15-1. Inheritance between aspects

The ability to define abstract aspects that encapsulate just pointcut logic opens up the possibilities for
pointcut libraries. This powerful concept is useful in large-scale enterprise environments. Specific
pointcuts for patterns of weaving throughout the application can be defined and reused without
having to repeat the generic pointcut logic over and over again.

See Also

Recipe 4.1 shows the definition of the call(Signature) pointcut; the within(TypePattern)

pointcut is described in Recipe 9.1; the NOT(!) operator is described in Recipe 12.4.

Recipe 15.2. Implementing Abstract Pointcuts

Problem

You want to declare and reference a pointcut but leave the definition of the pointcut logic to be
implemented by specialized subaspects.

Solution

Use the abstract keyword when declaring the pointcut and the surrounding aspect, and do not

supply any pointcut logic.

Discussion

Example 15-3 shows an abstract pointcut being declared and used throughout an aspect.

Example 15-3. Declaring abstract pointcuts for implementation by derived
aspects

public abstract aspect BaseAbstractAspect
{
 /*
 Specifies an abstract pointcut placeholder
 for derived aspects to specify
 */
 public abstract pointcut abstractBasePointcut();

 /*
 Specifies calling advice whenever a jhin point
 picked by the abstractBasePointcut (specified
 by specialized aspects) is encountered, and not within
 this aspect or any inheriting aspects.
 */
 pointcut runAdvicePointcut() : abstractBasePointcut()
 && !within(BaseAbstractAspect +);
}

Example 15-4 shows how the abstract pointcut declared in Example 15-3 can be fully defined in the
subaspect.

Example 15-4. Implementing the full pointcut logic of the inherited
abstract base pointcut

public aspect AbstractImplementationAspect extends BaseAbstractAspect
{
 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 public pointcut abstractBasePointcut() : call(void MyClass.foo(int,
 String));

 // Advice declaration
 before() : runAdvicePointcut()
 {

 System.out.println(
 "------------------- Aspect Advice Logic --------------------");
 System.out.println(
 "In the advice attached to the call point cut");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
}

Figure 15-2 shows the inheritance relationship between the aspects in Examples Example 15-3 and
Example 15-4.

Figure 15-2. Implementing abstract pointcuts

An abstract pointcut declaration is useful when you want to postpone the definition of specific
pointcut logic while still declaring more generic and potentially reusable pointcuts. Using this
approach, generic abstract aspects can be created that can be extended specifically for a particular
application. This can lead to libraries of reusable aspects.

See Also

Recipe 4.1 shows the definition of the call(Signature) pointcut; the within(TypePattern)
pointcut is described in Recipe 9.1; the NOT(!) operator is described in Recipe 12.4; Chapter 17

through Chapter 19 use the techniques shown in this example to define reusable aspects when
implementing object-oriented design patterns.

Recipe 15.3. Inheriting Classes into Aspects

Problem

You want to refactor an existing class as an aspect by inheriting the existing class's behavior.

Solution

Use the extends keyword to declare that the aspect extends the class.

Discussion

Example 15-5 shows a pseudo-logging class that represents an existing logging mechanism. The aim
is to refactor all existing calls to the logging class from the application and modularize the logging into
an aspect that can more flexibly be woven into the application.

Example 15-5. A pseudo-traditional logging class representing an existing
logging class within the application prior to being refactored for aspects

public class OOLogging
{
 public void logEntry(String entry)
 {
 System.out.println("Entry logged: " + entry);
 }
}

Once the existing calls to the class have been refactored out of the application, an aspect can be
created to reapply logging to the application, reusing the original logging class through inheritance,
as shown in Example 15-6.

Example 15-6. Using inheritance of a traditional class to reuse behavior
being refactored into an aspect

public aspect AOLogging extends OOLogging
{
 /*

 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: foo
 Method Return Type: void
 Method Parameters: an int followed by a String
 */
 pointcut callPointcut() : call(void MyClass.foo(int, String));

 // Advice declaration
 before() : callPointcut()
 && !within(AOLogging +)
 && !within(OOLogging)
 {
 this.logEntry(thisJoinPoint.toShortString());
 }
}

Refactoring is the term used for making changes to an existing design to
improve it in some way. Refactoring doesn't necessarily incorporate any new
features into the solution; rather, it re-engineers the software to provide a
design that can be more easily maintained and more elegant, or it incorporates
other design improvements. Refactoring: Improving the Design of Existing
Code by Martin Fowler (Addison-Wesley) is the definitive work to date on
refactoring.

Figure 15-3 shows the static structure after declaring the aspect shown in Example 15-6.

Figure 15-3. Applying reuse using inheritance between aspects and classes

Although aspects can reuse class behavior using inheritance, this can sometimes be a brittle
approach. A more elegant solution would be to perform reuse by aggregation incorporating the
logging class as an attribute of the logging aspect. The logging aspect could then be woven against
the target application and effectively delegate the logging behavior to the internal instance of the
logging class.

See Also

Recipe 4.1 shows the definition of the call(Signature) pointcut; the within(TypePattern)
pointcut is described in Recipe 9.1; the NOT(!) operator is described in Recipe 12.4; refactoring can

often be achieved using inner aspects, which are discussed in Recipe 15.4.

Recipe 15.4. Declaring Aspects Inside Classes

Problem

You want to declare an internal class-wide cross-cutting concern.

Solution

Use an inner aspect declaration.

Discussion

Example 15-7 shows how to define an inner aspect that is applied to its containing class. The
call(TypePattern) pointcut is used to capture join points on all calls to the MyClass class.

Example 15-7. Declaring an inner aspect

public class MyClass
{

 /*
 Specifies calling advice whenever a method
 matching the following rules gets called:

 Class Name: MyClass
 Method Name: *
 Method Return Type: * (any return type)
 Method Parameters: .. (any parameters0
 */
 private static aspect CallMethods
 {
 pointcut callPointCut() : call(* MyClass.* (..));

 // Advice declaration
 before() : callPointCut() && !within(CallMethods +)
 {

 System.out.println(
 "--------------- Aspect Advice Logic ----------------");
 System.out.println(

 "In the advice attached to the call point cut");
 System.out.println(
 "Signature: "
 + thisJoinPoint.getStaticPart().getSignature());
 System.out.println(
 "Source Line: "
 + thisJoinPoint.getStaticPart().getSourceLocation());
 System.out.println(
 "--");
 }
 }

 public void foo(int number, String name)
 {
 System.out.println("Inside foo (int, String)");
 }

 public void bar(String name)
 {
 System.out.println("Inside bar (String)");
 this.privateMethod();
 }

 private void privateMethod()
 {
 System.out.println("In privateMethod ()");
 }

 public static void main(String[] args)
 {
 // Create an instance of MyClass
 MyClass myObject = new MyClass();
 // Make the call to foo
 myObject.foo(1, "Russ");
 // Make the call to bar
 myObject.bar("Kim");
 }
}

Cross-cutting behavior is often thought of as system-wide in scope, but the classes may exhibit
cross-cutting concerns internally. Any behavior, common across a group of methods in a class, is a
candidate for being a cross-cutting concern especially if it is not core to the classes purpose within
the business logic.

Inner aspects have three key characteristics:

Inner aspects must be explicitly declared static as their instantiation is controlled by an aspect
instantiation policy and not by the construction of the surrounding class.

1.

2.

3.

1.

Inner aspects may have all of the regular access modifiers applied to them to allow
encapsulation protection and static inheritance reuse where appropriate.

2.

An inner aspect is not restricted to being woven against the surrounding class. By declaring an
inner aspect, you are implying that the aspect is strongly related to the surrounding class but
the aspect is not constrained in that way.

3.

Inner aspects are useful when refactoring your existing code. The first step is to identify behavior
that is cross-cutting in nature, i.e., that it affects more than one area of your class and may not
naturally sit with the fundamental business purpose of the class.

One or more inner aspects can then be declared that modularize this cross-cutting behavior. Some
commonality may exist between the inner aspects in your application, so the next stage could be to
refactor the inner aspects into more traditional system scoped aspects.

See Also

Recipe 4.1 shows the definition of the call(Signature) pointcut; the within(TypePat-tern)
pointcut is described in Recipe 9.1; the NOT(!) operator is described in Recipe 12.4; the before()

form of advice is explained in Recipe 13.3; aspect instantiation policies are covered in Chapter 14;
more refactoring concerns and approaches are shown in Recipe 15.3; a series of articles from
Ramnivas Laddad, at http://www.theserverside.com/articles/article.tss?
l=AspectOrientedRefactoringPart1/1 provides more information on aspect-oriented refactoring.

http://www.theserverside.com/articles/article.tss?

Chapter 16. Enhancing Classes and the
Compiler

Introduction

Recipe 16.1. Extending an Existing Class

Recipe 16.2. Declaring Inheritance Between Classes

Recipe 16.3. Implementing Interfaces Using Aspects

Recipe 16.4. Declaring a Default Interface Implementation

Recipe 16.5. Softening Exceptions

Recipe 16.6. Extending Compilation

Introduction

This chapter shows how aspects in AspectJ can be used statically to introduce behavior and interfaces
to existing classes using static cross-cutting techniques. Using these techniques, classes can be
extended to implement interfaces, extend from new parent classes, introduce new methods and
attributes, soften exceptions that are raised, and inherit from multiple base classes.

Static cross-cutting is powerful and must be used with care. Problems that were deliberately avoided
by language constraints, such as multiple inheritance complications, are possible and must be
considered before they are used. There are two schools of thought on this. Some people argue the
developer should decide if they want to use the more complex techniques and, therefore, accept the
potential problems. Others, such as the designers of Java, attempt to constrain these decisions as
much as possible using the language.

Ultimately, the individual's opinions or the organization's style determines whether static cross-
cutting techniques are acceptable. However, it is useful to know that these techniques exist within
the aspect developers toolbox.

Recipe 16.1. Extending an Existing Class

Problem

You want to extend an existing class.

Solution

Declare the new methods and attributes to be added to the existing class within the aspect.

Discussion

Example 16-1 shows how an attribute and a method can be introduced to the MyClass class.

Example 16-1. Adding an attribute and a method to an existing class

public aspect ExtendClassRecipe
{

 private int MyClass.newVariable = 20 ;

 public int MyClass.bar(String name)
 {
 System.out.println("In bar(String name), name:" + name);
 return this.newVariable;
 }
}

Figure 16-1 shows the class structure of the MyClass class before and after the aspect in Example

16-1 is applied.

Figure 16-1. The MyClass class before and after the aspect introduces a
new attribute and method

See Also

Recipe 16.2 shows how to specify a new inheritance relationship between classes; Recipe 16.3 shows
how to apply new interfaces to an existing class using aspects.

Recipe 16.2. Declaring Inheritance Between Classes

Problem

You want to introduce a new inheritance relationship between two classes.

Solution

Use the declare parents statement to specify a particular class that extends from another class.

Discussion

Example 16-2 shows how a new inheritance relationship can be specified for the MyClass class.

Example 16-2. Adding a new inheritance relationship between classes

public aspect IntroduceInheritanceRecipe
{

 declare parents : MyClass extends AnotherClass;
}

Figure 16-2 shows the class structure of the MyClass class before and after the aspect in Example

16-2 is applied.

Figure 16-2. The MyClass class before and after the aspect introduces a
new inheritance relationship

See Also

Recipe 16.3 shows how to apply new interfaces to an existing class using aspects.

Recipe 16.3. Implementing Interfaces Using Aspects

Problem

You want to add an interface to a class.

Solution

Use the declare parents statement to specify a particular class that implements a specific interface

or interfaces.

Discussion

Example 16-3 shows how the declare parents statement in AspectJ can apply an interface to a class

that may have had no knowledge of the interface prior to the aspect being applied.

Example 16-3. Using aspects to declare a new interface on an existing
class

public aspect ImplementInterfaceRecipe
{
 declare parents : MyClass implements MyInterface;
}

Figure 16-3 shows how the static class architecture is affected by the application of the aspect in
Example 16-3.

Figure 16-3. The static class structure before and after the aspect
introduces a new interface

Having the capability to apply an interface to an existing class allows objects of that class to be
referenced by the interface type, as shown in Example 16-4.

Example 16-4. Referring to an object according to an aspect declared
interface

// Create an instance of MyClass
MyInterface myObject = new MyClass();

// ...

// Work with the interface reference
myObject.foo(1, "Russ");

By applying a new interface to a class, the class can be used in ways in which it was not originally
designed. This is particularly useful when a new role is assigned to a class.

The class must implement any methods the interface declares. In traditional object orientation, the
Adapter design pattern would be a good solution. However, AspectJ does offer an alternative
implementation of the Adapter pattern. Using the mechanisms shown in Recipe 12.1, an aspect can
add implementations of the interfaces methods to the class without the need for a separate Adapter.

See Also

Recipe 16.1 shows how to extend an existing class with a new method; Chapter 17 through Chapter
19 give various examples of how roles can be assigned to classes using aspects when implementing
OO design patterns; Recipe 18.3 discusses an aspect-oriented approach to implementing the Adapter
design pattern; Recipe 23.2 shows how a generic design pattern for aspect-oriented role declaration.

Recipe 16.4. Declaring a Default Interface Implementation

Problem

You want to provide a default implementation for an interface.

Solution

Declare the default implementations for the interface's methods within the aspect.

Discussion

Example 16-5 shows how a default implementation is provided for the MyInterface interface by
implementing the void bar(String) method.

Example 16-5. Using aspects to provide a default implementation of an
interface method

public aspect DefaultInterfaceImplementationRecipe
{
 declare parents : MyClass implements MyInterface;

 // Declare the default implementation of the bar method
 public void MyInterface.bar(String name)
 {
 System.out.println("bar(String) called on " + this);
 }
}

Figure 16-4 shows how the static class structure is affected by the application of the aspect in
Example 16-5.

Figure 16-4. The static class structure before and after the aspect is
applied to introduce the default interface implementation

Figure 16-4 gives a misleading picture of the outcome of applying Example 16-5. You won't see a
DefaultImplementation class when the aspects are woven and compiled. However, for the sake of
visualizing the architecture, the result is similar to how this figure presents it except that the void
bar(int,String) is transparently added to the MyClass class.

What you end up with is something like multiple inheritance. Interfaces in Java provide a means by
which a class can have an explicitly declared public interface, or role, to which it can be used. This
allows multiple interfaces to be implemented by a single class because no method implementations to
worry exist. Traditionally, a Java class can explicitly inherit from only one other class, which prohibits
multiple inheritance. This is not the case with aspects in AspectJ.

A Java interface can have an implementation of its methods declared by an aspect and still be
declared an interface allowing a form of multiple inheritance. A good candidate situation where it is
useful to provide default implementations of an interface is when traditional OO design patterns are
applied. A design pattern can be an invasive element of an applications design. This result may not
always be a good thing when the business logic of the classes becomes blurred with the pattern logic
being applied. You should probably apply the patterns wherever possible as aspects, incorporating
default implementations of the appropriate roles where needed, and keep the business logic within
the classes clear and manageable.

Many of the traditional design patterns use abstract classes as their base for the different roles they
use. In Java, only one base class is allowed and this means that the architecture can be complicated
by the conflicting desire for having a clear expression of the business relationships between classes
and the desire to apply good practice design patterns. AspectJ, by providing the means of specifying
a default implementation for an interface, has removed the need to have an abstract class as the
base for many design patterns.

See Also

Recipe 16.1 explains how classes can be extended by aspects introducing new methods and
attributes; OO design patterns and the benefits that those patterns can gain by using an aspect-
oriented approach are examined in Chapter 17 through Chapter 19.

Recipe 16.5. Softening Exceptions

Problem

You want to specify a set of exceptions that should be softenedi.e., converted to uncaught
exceptionswhen raised on the join points selected by a specific pointcut.

Solution

Use the declare soft statement.

Discussion

Example 16-6 shows softening the ExceptionA exception that is raised on the void foo() method

so the users of that method do not have to worry about handling that exception.

Example 16-6. Softening exceptions on a method call

public aspect SoftenExceptionRecipe
{
 pointcut callPointCut() : call(void MyClass.foo());

 declare soft : ExceptionA : callPointCut();
}

Java supports two types of exception; checked and unchecked (runtime) exceptions. Checked
exceptions extend from java.lang.Exception and get their name because of the following reason: if

they are declared as being raised by a particular method, then calling methods must handle those
exceptions explicitly otherwise the compiler will complain. Runtime exceptions extended from
java.lang.RuntimeException or java.lang.Error, can be raised at any point during an

applications lifetime, but do not need to be explicitly caught.

Softening exceptions involves wrapping a checked exception raised on a particular join point in an
instance of the org.aspectj.lang.SoftException runtime exception class. Prior to applying
softening of the ExceptionA exception, it would have to be caught or re-thrown, as shown in

Example 16-7.

Example 16-7. The exception handling required if the exception is not

softened

...

try
{
 myObject.foo();
}
catch (ExceptionA ea)
{
 ea.printStackTrace();
}

...

By converting the checked exception to a runtime exception, the class can be used without the need
for exception handling, as shown in Example 16-8.

Example 16-8. When the exception is softened, then no exception
handling is necessary

...

myObject.foo();

...

Declaring exceptions should be softened in this manner so the surrounding methods do not have to
worry about catching those exceptions. Though the exception has been softened, it can still be raised
and is more likely not to be caught until it reaches the surrounding system producing an output
similar to that shown in Example 16-9.

Example 16-9. Output from a softened exception being thrown and not
caught in this recipe's example application

Exception in thread "main" org.aspectj.lang.SoftException
 at MyClass.main(MyClass.java:14)
Caused by: ExceptionA
 at MyClass.foo(MyClass.java:7)
 ... 1 more

See Also

The AspectJ language API, including the SoftException class, is covered in more detail in the

Appendix; using the handler(TypePattern) pointcut to capture join points when types of exceptions

are caught is covered in Recipe 5.1.

Recipe 16.6. Extending Compilation

Problem

You want to extend the capabilities of the compiler to enforce application specific rules.

Solution

Use the declare error or declare warning statement to specify conditions that should raise a

compiler error or warning respectively.

Discussion

AspectJ supports advising most of the Java system but perhaps the most interesting and odd
construct is the Java compiler. Example 16-10 shows how to declare a new error and warning that
will be raised by the compiler if the specified condition is found within the application being compiled.

Example 16-10. Using aspects to declare new warnings and errors that
can be raised by the compiler

public aspect CompilationAdviceRecipe
{
 declare error : call(void ProtectedAccessClass.setValue(int))
 && !this(MyClass)
 : "Must only set the ProtectedAccessClass.value from a MyClass object";

 declare warning : call(int ProtectedAccessClass.getValue())
 && !this(MyClass)
 : "Should only be reading ProtectedAccessClass.value from a MyClass
 object";
}

The capability to enforce new rules regarding what Java constructs are allowed and how they should
be used is useful when you are potentially creating an application that may have changing needs
depending on its target environment and as to what functionality it is allowed to expose. This allows
you to define system policy warnings and to guide developers in their implementations.

The error and warning messages must be simple, declared string literals. You
cannot reference any other part of the software architecture, even static pieces
of the structure, from within these messages.

See Also

Recipe 17.5 shows how this form of warning is used to indicate to developers that they are breaking
the rules of Builder design pattern; for real-world examples of using declare error and declare
warning to enforce design constraints and general developer guidance, take a look at the aTrack bug-
tracking project available at https://atrack.java.net.

https://atrack.java.net

Chapter 17. Implementing Creational
Object-Oriented Design Patterns

Introduction

Recipe 17.1. Implementing the Singleton Pattern

Recipe 17.2. Implementing the Prototype Pattern

Recipe 17.3. Implementing the Abstract Factory Pattern

Recipe 17.4. Implementing the Factory Method Pattern

Recipe 17.5. Implementing the Builder Pattern

Introduction

With the release of the seminal book Design Patterns: Elements of Reusable Object-Oriented
Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides (Addison-Wesley), the
now infamous Gang of Four (GoF) design patterns became formally recognized as a useful practice in
object-oriented (OO) software development.

The GoF book was split into three categories of design pattern: Creational, Structural, and
Behavioral. The original GoF design patterns were designed to be implemented using the mechanisms
available in most OO languages. Aspect orientation, when implemented using AspectJ, adds new
mechanisms with which these patterns can be applied:

The code that deals with the mechanics of a design pattern can be modularized out of the rest
of the business logic so as to be less intrusive.

In Java, inheritance relationships between classes must be used with care since Java allows only
one inheritance relationship between two classes. Aspects can provide mechanisms by which the
more generic pattern-oriented relationships can be applied seperately from any core business
relationships between classes. Therefore, aspects can remove the need for an abstract base
class leaving the classes with as much freedom as possible to define the right relationships for
their business logic without the design pattern getting in the way.

A by-product of the above two advantages is that code is clearer and easier to understand
because of the removal of pattern-focused relationships and logic from the business logic
classes thanks to the modularization of the patterns into aspects.

All three categories of design pattern from the GoF book can benefit from an aspect-oriented
implementation and this chapter focuses on the Creational patterns.

The pattern implementations described in the next three chapters are based on
Jan Hannemann and Gregor Kiczales's work for the 17th Annual ACM conference
on Object-Oriented ProProgramming, Systems, Languages, and Applications
(OOPSLE). Go to http://www.cs.ubc.ca/~jan/AODPs/ to check out the original
research.

http://www.cs.ubc.ca/~jan/AODPs/

Recipe 17.1. Implementing the Singleton Pattern

Problem

You want to apply the singleton pattern using AspectJ.

Solution

The Singleton pattern allows the definition of a class as having one runtime instance within an
application. A singleton is normally met by providing no default constructor for a particular class,
often overridden as a protected constructor, so an object of the class cannot be directly instantiated
by the application. Access to the singleton object is usually implemented by creating a static method
that returns the single instance of the class.

Example 17-1 shows an abstract aspect that uses the Director aspect-oriented design pattern (see
Chapter 23) to provide a generic foundation for applying the singleton pattern.

Example 17-1. Using an aspect to define the Singleton Pattern

public abstract aspect SingletonPattern issingleton()
{
 private Hashtable singletons = new Hashtable();

 public interface Singleton
 {
 }

 public interface NonSingleton
 {
 }

 // Pointcut to define specify an interest in all creations
 // of all Classes that extend Singleton
 pointcut selectSingletons() : call((Singleton +).new (..));

 // Pointcut to ensure that any classes in the Singleton inheritance tree
 // that are marked as Non Singletons are not included in the Singleton
 // logic.
 pointcut excludeNonSingletons() : !call((NonSingleton +).new (..));

 Object around() : selectSingletons() && excludeNonSingletons()
 {

 Class singleton = thisJoinPoint.getSignature().getDeclaringType();

 synchronized(singletons)
 {
 if (singletons.get(singleton) == null)
 {
 singletons.put(singleton, proceed());
 }
 }

 return (Object) singletons.get(singleton);
 }
}

Discussion

The SingletonPattern abstract aspect defines two roles: Singleton and NonSingleton. The roles

are implemented as interfaces so that the abstract aspect can work with the singletons without
worrying about implementation details.

Figure 17-1 shows the structure of the SingletonPattern abstract aspect with the interfaces and

behavior that it defines to support the singleton design pattern.

Figure 17-1. The structure of the SingletonPattern abstract aspect

The Singleton interface is applied by subaspects of the abstract SingletonPattern aspect to any
classes within the target application that are to be treated as singletons. Similarly, the NonSingleton

interface is applied to classes that may pick up singleton behavior from their parent class by
inheritance. If you decide the child class is not to be a singleton, then the NonSingleton interface can

be employed so that the singleton characteristic of the parent is overridden.

Two pointcuts are declared to capture when classes that have the Singleton interface are
instantiated. The selectSingletons() pointcut definition picks the calls to the constructors on
classes that extend the Singleton interface. To support the need to turn off the singleton behavior
for subclasses of singletons, the excludeNonSingletons() pointcut is declared. This pointcut can be

overridden by the specific aspects when you need to stop a subclass from being affected by a

superclass's singleton behavior.

The around() advice captures calls to constructors on classes that have had the Singleton interface
applied. The around() advice overrides the constructor to check that the type of the object being

instantiated has not been created.

A lookup of the object's class being created is performed on the singletons hash table using the
class information supplied by the thisJoinPoint variable. If the type of class is not present within
the hash table, then its class is added and an object of that class is constructed by calling proceed(
), which executes the original constructors logic. The proceed() call returns the constructed object

and this is added with the class object to the hash table.

If the type of the class is present within the hash table, then no new objects need to be created. The
singleton object is retrieved from the hash map according to its class and returned from the around(
) of advice as the result of the constructor call.

By default, an aspect in AspectJ is a singleton. The SingletonPattern aspect uses the explicit
issingleton() instantiation policy to highlight this aspect's important behavioral characteric.

The implementation of the singleton pattern in this recipe is threadsafe because
the hash table is locked during the execution of the around() advice using a

synchronize block for simplicity. This incurs a performance penalty when the
singleton is accessed for the first time and created, but it means that the
pattern can then be applied within a multithreaded application. A more efficient
mechanism could be to use an instance of the ThreadLocal class as a variable

inside the aspect to ensure that the locked check is only performed once for a
single thread, as discussed in the article by Brian Goetz, available at
http://www.javaworld.com/javaworld/jw-11-2001/jw-1116-dcl.html.

Example 17-2 shows how the abstract SingletonPattern aspect can be applied for a specific

application.

Example 17-2. Applying the abstract SingletonPattern aspect to target
application classes

public aspect PrinterSingleton extends SingletonPattern
{
 declare parents: Printer implements Singleton;

 declare parents: SpecializedPrinter implements NonSingleton;
}

Figure 17-2 shows how the PrinterSingleton aspect affects an applications classes.

Figure 17-2. How the static application structure is affected by the
PrinterSingleton aspect

http://www.javaworld.com/javaworld/jw-11-2001/jw-1116-dcl.html

Figure 17-3 shows how the new singleton behavior of the Printer class behaves in an example

application.

Figure 17-3. Using the new singleton behavior of the Printer class

See Also

Recipe 13.4 provides more detail on the proceed() call and its usage within around() advice;
Recipe 7.1 describes the call(Signature) pointcut when capturing calls to a classes constructor;

more information on aspect instantiation policies is available in Chapter 14; the Director aspect-
oriented design pattern is explained in Recipe 23.3.

Recipe 17.2. Implementing the Prototype Pattern

Problem

You want to apply the prototype pattern using AspectJ.

Solution

The prototype pattern supports the creation of duplicate objects based on an original object, the
prototype.

Example 17-3 uses the Director aspect-oriented design pattern (see Chapter 23) to define the generic
behavior needed to apply this pattern.

Example 17-3. Using an aspect to define the prototype pattern

public abstract aspect PrototypePattern
{
 protected interface Prototype
 {
 }

 public Object Prototype.clone() throws CloneNotSupportedException
 {
 return super.clone();
 }

 public Object cloneObject(Prototype object)
 {
 try
 {
 return object.clone();
 }
 catch (CloneNotSupportedException ex)
 {
 return createCloneFor(object);
 }
 }

 protected Object createCloneFor(Prototype object)
 {
 return null;

 }
}

Discussion

The abstract PrototypePattern aspect defines the Prototype interface that can be applied to any

class within the target application that is to be a prototype. Those classes are extended with a
clone() method to support prototype duplication.

Figure 17-4 shows the structure of the PrototypePattern abstract aspect with the interfaces and

behavior that it defines to support the prototype design pattern.

Figure 17-4. The structure of the PrototypePattern abstract aspect

A clone() method is the Java mechanism for implementing a deep copy of the object. Some base
classes may not support being cloned; the PrototypePattern aspect provides the
createCloneFor(Prototype) method, so it can be overridden by subaspects to perform specific

cloning operations that the generic aspect will not know.

Example 17-4 shows how the abstract PrototypePattern aspect can be applied for a specific

application.

Example 17-4. Applying the abstract PrototypePattern aspect to a target
application

public aspect GraphicPrototypes extends PrototypePattern
{
 declare parents : Graphic implements Prototype;

 declare parents : MusicalNote implements Prototype;

 declare parents : Staff implements Prototype;

 protected Object createCloneFor(Prototype object)
 {
 if (object instanceof MusicalNote)
 {
 return new MusicalNote(
 ((MusicalNote) object).getX(),
 ((MusicalNote) object).getY());

 }
 else if (object instanceof Staff)
 {
 return new Staff(((Staff) object).getX(), ((Staff) object).getY());
 }
 else
 {
 return null;
 }
 }
}

Figure 17-5 shows an example of the effects that the GraphicsPrototype aspect has on an

application's class.

Figure 17-5. How the static application structure is affected by the
GraphicsPrototype aspect

Figure 17-6 shows how the new prototype pattern behavior interacts in an example application.

Figure 17-6. Using the new prototype behavior of the Staff class

See Also

Using the declare keyword to affect a class hierarchies static structure is explained in more detail in

Recipe Recipe 16.2; the Director aspect-oriented design pattern is explained in Recipe 23.3.

Recipe 17.3. Implementing the Abstract Factory Pattern

Problem

You want to apply the abstract factory pattern using AspectJ.

Solution

The abstract factory pattern supports groups of related classes being instantiated while shielding the
clients of the factory from the exact implementations.

To implement the abstract factory pattern using AspectJ, create an aspect that can remove the
abstract factory pattern's reliance on an abstract base class using static cross-cutting techniques to
provide default implementations of the factory methods.

Discussion

Creating a generic factory using abstract aspects makes no sense because the factory contains
methods specific to the objects that can be created. The only advantage an AspectJ implementation
offers to this design pattern is the ability to remove the reliance on an abstract base class for the
abstract factory and replace it with a simple interface. This means that the specialized factories can
inherit from other more appropriate classes rather than having use their one allowed inheritance
relationship to support the design pattern.

Example 17-5 shows how the abstract factory pattern could be applied to the factory needs of a
simple application by providing default implementations of the methods declared in a Java interface.

Example 17-5. Applying the abstract factory pattern using aspects

public interface ComputerFactory
{
 public Computer createPentiumProcessorComputer();

 public Computer createComputerWithHardDisk(HardDisk hardDisk);
}

public aspect DefaultComputerFactoryImplementation
{

 public Computer ComputerFactory.createPentiumProcessorComputer()

 {
 Processor processor = new Processor("Pentium 4 : 9089085043");
 Motherboard motherboard = new Motherboard("019283", processor);
 HardDisk hardDisk = new HardDisk("738947");
 FloppyDisk floppyDisk = new FloppyDisk("93746");
 Computer computer = new Computer("12345", motherboard, hardDisk,
 floppyDisk);
 return computer;
 }

 public Computer ComputerFactory.createComputerWithHardDisk(HardDisk
 hardDisk)
 {
 Processor processor = new Processor("Pentium Standard : 123478");
 Motherboard motherboard = new Motherboard("434244", processor);
 FloppyDisk floppyDisk = new FloppyDisk("432434");
 Computer computer = new Computer("56789", motherboard, hardDisk,
 floppyDisk);
 return computer;
 }
}

See Also

Chapter 16 contains recipes that show how static cross-cutting techniques can be used to extend
classes and provide default implementations of interface elements.

Recipe 17.4. Implementing the Factory Method Pattern

Problem

You want to apply the factory method pattern using AspectJ.

Solution

The factory method pattern is similar to the abstract factory pattern in that it provides mechanisms
by which the exact implementation of an object is decoupled from the clients of the factory. However,
the factory method provides a single method for instantiating different implementations of a single
interface.

The abstract class that contains the abstract factory method is implemented by specialized classes
that explicitly override the factory method to provide mechanisms for instantiating different
implementations of the desired object.

To implement the factory method pattern using AspectJ, use the same mechanisms as the abstract
factory pattern to create an aspect that can remove the factory method pattern's reliance on an
abstract base class using static cross-cutting techniques, providing a default implementation of the
factory method or methods.

Discussion

A specialized aspect is shown in Example 17-6 that provides a default implementation for the factory
method.

Example 17-6. Applying the factory method pattern using aspects

public interface ComputerCreator
{
 public Computer createComputer(String serial);
}

public aspect DefaultComputerCreatorImplementation
{
 public void ComputerCreator.createComputerAndPrintInventory(String serial)
 {
 System.out.println("Inventory of computerparts:");
 System.out.println(this.createComputer(serial).toString());

 }
}

Traditionally, the ComputerCreator interface in this solution would be an abstract class. However,

static cross-cutting techniques can provide more freedom when applying the factory method design
pattern by removing the need for the abstract base class.

See Also

Chapter 16 contains recipes that show static cross-cutting techniques for extending classes and
providing default implementations of interface elements; Recipe 20.3 shows how to decouple the
decision as to which implementation classes of an interface are instantiated solely using aspects.

Recipe 17.5. Implementing the Builder Pattern

Problem

You want to apply the builder pattern using AspectJ.

Solution

The builder pattern captures the complex steps that may be needed in the creation of a particular
object. The steps are implemented as methods on the builder class; after each of the required steps
has been completed, then the builder can be called to create the resulting built object.

To implement the builder pattern using AspectJ, create an aspect that adds to the top-level builder
class a field to store the build result and a method to access that result using static cross-cutting
techniques. This enables the builder to be an interface and not an abstract class.

Discussion

The builder pattern can be implemented using aspects, as shown in Example 17-7.

Example 17-7. Applying the builder pattern using aspects

public interface TextPhraseBuilder
{
 public void buildHeader(String title);

 public void buildBody(String content);

 public void buildFooter(String closingContent);

 public String getResult();
}

public aspect TextPhraseBuilderDefaultImplementation
{
 public StringBuffer TextPhraseBuilder.result = new StringBuffer();

 public String TextPhraseBuilder.getResult()
 {
 return result.toString();

 }

 /**
 * Declares a compiler error that gets reported if other classes
 * (except Builders or this aspect) try to access the result variable.
 */
 declare error : (
 set(public StringBuffer TextPhraseBuilder +.result)
 || get(public StringBuffer TextPhraseBuilder +.result))
 && !(within(TextPhraseBuilder +)
 || within(TextPhraseBuilderDefaultImplementation)) :
 "variable result is aspect protected. use getResult() to access it";
}

The TextPhraseDefaultImplementationBuilder aspect provides a default implementation of the
getresult() method. This frees the specialized builders from exhausting their single inheritance
relationship with an abstract base class. The getresult() method provides access to the result

field that is also added to the interface and its implementing classes to provide a place to store the
result of the builder.

Ideally, the result field would be declared protected since it is only used internally by the
TextPhraseBuilder and its subclasses. The AspectJ compiler will not allow protected fields to be
introduced on an interface, public is the only option.

This leads to a second problem. How can the pattern's use be constrained so direct access of the
public result field is flagged to the developers as the wrong mechanism by which to obtain the fields

value? The solution is provided by another powerful feature of AspectJ, the ability to define new
compile time checking and error notifications.

Until aspect orientation, the compiler had been a fairly rigid piece of software, not to be tampered
with by the developers. However, a few circumstances occur when interaction with the compiler can
influence its validation of the code could be useful and this feature is available with AspectJ.

The TextPhraseBuilderDefaultImplementation aspect defines an error to be triggered by the

compiler should your code attempt to access the newly added result attribute directly. This will
provide a final check that the rules of the pattern are being followed. Although the problem being
protected against is a disadvantage of the aspect-oriented implementation of the design pattern, the
problem is reduced by incorporating this compile time check.

See Also

Chapter 16 provides specific recipes showing static cross-cutting techniques for extending classes,
providing default implementations, and extending the compilers capabilities.

Chapter 18. Implementing Structural
Object-Oriented Design Patterns

Introduction

Recipe 18.1. Implementing the Composite Pattern

Recipe 18.2. Implementing the Flyweight Pattern

Recipe 18.3. Implementing the Adapter Pattern

Recipe 18.4. Implementing the Bridge Pattern

Recipe 18.5. Implementing the Decorator Pattern

Recipe 18.6. Implementing the Proxy Pattern

Introduction

Continuing on from the creational design patterns in the previous chapter, you are going to harness
the advantages in implementing structural design patterns using AspectJ.

Although the benefits of applying aspects vary depending on the specific pattern, structural object-
oriented (OO) design patterns gain more from aspects than their creational cousins. This is mostly
due to the cross-cutting and generic nature of structural design patterns which tends to lend itself
nicely to aspect-oriented implementations.

Unfortunately, aspect orientation does not provide any real benefits when designing or implementing
the façade pattern. The goal of the façade is to provide a simpler interface to a larger collection of
objects of complex components. This goal can be achieved in a system where the source code is
known using standard classes and method calls, requiring none of the additional mechanisms of
AspectJ.

Recipe 18.1. Implementing the Composite Pattern

Problem

You want to apply the composite pattern using AspectJ.

Solution

The composite pattern provides the capability to group objects together in a collection and interact
with the group as a whole in a similar manner as you would interact with an individual member of the
group.

Example 18-1 uses the Director aspect-oriented design pattern (see Chapter 23) to provide a generic
implementation of the composite pattern using AspectJ.

Example 18-1. Using an aspect to define the composite pattern

public abstract aspect CompositePattern
{
 public interface Component
 {
 }

 protected interface Composite extends Component
 {
 }

 protected interface Leaf extends Component
 {
 }

 private WeakHashMap perComponentChildren = new WeakHashMap();

 private Vector getChildren(Component s)
 {
 Vector children = (Vector) perComponentChildren.get(s);
 if (children == null)
 {
 children = new Vector();
 perComponentChildren.put(s, children);
 }
 return children;

 }

 public void addChild(Composite composite, Component component)
 {
 getChildren(composite).add(component);
 }

 public void removeChild(Composite composite, Component component)
 {
 getChildren(composite).remove(component);
 }

 public Enumeration getAllChildren(Component c) {
 return getChildren(c).elements();
 }

 public interface Visitor {
 public void doOperation(Component c);
 }

 public void recurseOperation(Component c, Visitor v) {
 for (Enumeration enum = getAllChildren(c); enum.hasMoreElements();) {
 Component child = (Component) enum.nextElement();
 v.doOperation(child);
 }
 }

 public interface FunctionVisitor
 {
 public Object doFunction(Component c);
 }

 public Enumeration recurseFunction(Component c, FunctionVisitor fv)
 {
 Vector results = new Vector();
 for (Enumeration enum = getAllChildren(c); enum.hasMoreElements();) {
 Component child = (Component) enum.nextElement();
 results.add(fv.doFunction(child));
 }
 return results.elements();
 }
}

Discussion

The CompositePattern aspect defines the Composite and Leaf interfaces to be applied to classes

within your application playing those roles. The aspect uses the visitor pattern to recursively visit and
work with each of the components of a composite.

Figure 18-1 shows the structure of the CompositePattern abstract aspect and the interfaces and

behavior that it defines to support the composite design pattern.

Figure 18-1. The CompositePattern aspect and the interfaces it defines for
the design pattern's roles

This CompositePattern abstract aspect is extended into specialized subaspects that specify the
classes that play the Composite and Leaf roles. Example 18-2 shows how the abstract
CompositePattern aspect can be applied for a specific application.

Example 18-2. Applying the CompositePattern aspect to a target
application

public aspect GraphicsComposite extends CompositePattern
{
 declare parents : Window implements Composite;
 declare parents : Line implements Leaf;
 declare parents : Rectangle implements Leaf;

 public void Component.draw(PrintStream s)
 {
 s.println("Drawing: " + this);
 }

 public void Composite.draw(final PrintStream s)
 {
 s.println("Composite: " + this);
 GraphicsComposite.aspectOf().recurseOperation(this, new Visitor()
 {
 public void doOperation(Component c)
 {
 c.draw(s);
 }
 });
 }

 public void Leaf.draw(PrintStream s)
 {
 s.println("Drawing Leaf: " + this);
 }
}

Figure 18-2 shows an example set of application classes before the GraphicsComposite aspect is

applied.

Figure 18-2. The Window, Line, and Rectangle business logic classes

Figure 18-3 shows the effects of applying the GraphicsComposite aspect shown in Example 18-2 to

a set of application classes.

Figure 18-3. The static structure after the composite pattern has been
applied to the Window, Line, and Rectangle classes

Figure 18-4 shows how the new composite behavior of the Window class is interacted with in an

example application.

Figure 18-4. Using the new composite behavior of the Window class

See Also

More information on the extension of existing classes using aspects can be found in Chapter 16; the
Director aspect-oriented design pattern is explained in Recipe 23.3.

Recipe 18.2. Implementing the Flyweight Pattern

Problem

You want to apply the flyweight pattern using AspectJ.

Solution

The flyweight pattern provides mechanisms by which fine-grained objects can be incorporated into an
OO design without incurring a resource and performance penalty by sharing the objects where
appropriate. A heavyweight object encapsulates the actual data to be referred to by potentially many
flyweight objects.

The abstract aspect in Example 18-3 uses the Director aspect-oriented design pattern (see Chapter
23) to provide a template by which application specific aspects can apply the flyweight pattern.

Example 18-3. Using an abstract aspect to define the flyweight pattern

public abstract aspect FlyweightPattern
{
 private Hashtable flyweightPool = new Hashtable();

 public interface Flyweight
 {
 };

 protected abstract pointcut flyweightCreation(Object key);

 Object around(Object key) : flyweightCreation(key) &&
 !within(com.oreilly.aspectjcookbook.oopatterns.FlyweightPattern+)
 {
 return this.checkFlyweight(key);
 }

 public synchronized Flyweight checkFlyweight(Object key)
 {
 if (flyweightPool.containsKey(key))
 {
 return (Flyweight) flyweightPool.get(key);
 }
 else
 {

 Flyweight flyweight = createNewFlyweight(key);
 flyweightPool.put(key, flyweight);
 return flyweight;
 }
 }

 protected abstract Flyweight createNewFlyweight(Object key);
}

Discussion

Figure 18-5 shows the structure of the FlyweightPattern abstract aspect and the interfaces and

behavior that it defines to support the flyweight design pattern.

Figure 18-5. The FlyweightPattern aspect and the interfaces it defines for
the design pattern's roles

The abstract FlyweightPattern aspect in Example 18-3 contains a flyweight pool collection. This

collection, implemented as a hash table, remembers the heavyweight objects that have already been
created so flyweights can be set to the existing heavyweight objects where available.

Because the abstract aspect does not know how to create the different concrete flyweight objects, it
defines an abstract method createNewFlyweight(...). This abstract method allows subaspects to

implement how they will create the specific flyweight objects.

The FlyweightPattern aspect also contains the flyweightCreation(Object) abstract pointcut used

to capture when objects, designated as flyweights, are being created. This pointcut enables the
FlyweightPattern to override the creation of the flyweight objects using the associated around()

advice to apply the design pattern's rules by checking whether an existing heavyweight object can be
employed using the checkFlyweight(..) method, creating a new heavyweight object if necessary.

The aspect in Example 18-4 shows how the abstract FlyweightPattern aspect can be applied for a

specific application.

Example 18-4. Applying the FlyweightPattern aspect to an application's
classes

public aspect PrintableCharacterFlyweight extends FlyweightPattern

{
 declare parents : PrintableCharacter implements Flyweight;

 protected pointcut flyweightCreation(Object key) :
 call(public com.oreilly.aspectjcookbook.PrintableCharacter.
 new(Character)) && args(key);

 protected Flyweight createNewFlyweight(Object key)
 {
 return new PrintableCharacter((Character) key);
 }
}

The PrintableCharacterFlyweight specifies that the PrintableCharacter class is to be managed
as a flyweight. The flyweightCreation(..) pointcut is implemented to capture when the
PrintableCharacter objects are created. The createNewFlyweight(Object) method is
implemented to create new PrintableCharacter objects where necessary.

Figure 18-6 shows the effects before and after the PrintableCharacterFlyweight aspect is applied

to an application.

Figure 18-6. The effects of applying the flyweight pattern to the
PrintableCharacter class

Figure 18-7 shows how the new flyweight behavior of the PrintableCharacter class behaves in an

example application.

Figure 18-7. Using the new flyweight behavior of the PrintableCharacter
class

See Also

For more information on defining abstract aspects and specializing them, please refer to the recipes
in Chapter 15; the Director aspect-oriented design pattern is explained in Recipe Recipe 23.3.

Recipe 18.3. Implementing the Adapter Pattern

Problem

You want to apply the adapter pattern using AspectJ.

Solution

The adapter pattern provides a means of changing the message sent from one class to the message
expected by the real destination class, adapting the messages to glue two classes together.

Example 18-5 shows how to define an application specific adapter pattern aspect.

Example 18-5. Adapting an existing class using aspects

public aspect PrinterScreenAdapter
{

 declare parents : Screen implements Printer;

 public void Screen.print(String s)
 {
 outputToScreen(s);
 }
}

Discussion

The specific PrinterScreenAdapter aspect extends the behavior of the class that is to adapt to the

new capabilities required of it by using AspectJ's capabilities to extend an existing class with new
methods and potentially new parent classes, being careful at all times to respect the original
capabilities of the class.

Figure 18-8 shows the effects before and after the PrinterScreenAdapter aspect is applied to a
Screen class that is adapted to support printing behavior.

Figure 18-8. The effects of applying the adapter pattern to the Screen
class

See Also

The recipes in Chapter 16 provide more information on how to extend existing classes and
incorporate interfaces when defining aspects.

Recipe 18.4. Implementing the Bridge Pattern

Problem

You want to apply the bridge pattern using AspectJ.

Solution

The bridge pattern decouples a class from the underlying characteristics of one particular
implementation so different implementations can be applied without affecting the class's clients.

Example 18-6 shows how to define an application specific bridge pattern aspect.

Example 18-6. Bridging between an implementation independent window
and the means by which it is implemented using a specific windowing
system

public class Window
{
 public void drawText(String text)
 {

 }

 public void drawRect()
 {

 }
}

public aspect XWindowBridge perthis(captureAllBridgedCalls())
{
 private XWindow imp = new XWindow();

 public pointcut captureDrawText(String text) :
 execution(public void Window.drawText(String))
 && args(text);

 public pointcut captureDrawRect() : execution(public void Window.
 drawRect());

 public pointcut captureAllBridgedCalls() :

 captureDrawText(String)
 || captureDrawRect();

 void around(String text) : captureDrawText(text)
 {
 imp.drawText(text);
 }

 void around() : captureDrawRect()
 {
 imp.drawLine();
 imp.drawLine();
 imp.drawLine();
 imp.drawLine();
 }
}

Discussion

Figure 18-9 shows the structure of the XWindowBridge aspect and the behavior that it defines to

support the bridge design pattern.

Figure 18-9. The XWindowBridge aspect's structure

The XWindowBridge aspect captures all of the methods on the Window class that need to be
channeled to specific calls on the XWindow class. For example, the drawRect() method on the
Window class results in four calls on the XWindow class, but by using the bridge pattern the Window
class does not need to have those calls hard coded into its behavior. In Example 18-6, the Window

class does not know exactly how it is going to be implemented on different systems, but that is all
taken care of by the XWindowBridge aspect.

By using the perthis(..) aspect instantiation policy, a new aspect is created for every new bridged
Window object as specified by the captureAllBridgedCalls() pointcut. This means that every
Window object has its own copy of the XWindow implementation object. If you wanted to share the
XWindow object across multiple Window objects, then all you need is to delete the perthis(..) policy
and remove the redundant captureAllBridgedCalls() pointcut definition.

If another means were used for drawing windows, then a separate aspect that bridges the calls on
the Window class differently could be created and woven into the application instead of the

XWindowBridge aspect.

Figure 18-10 shows how the new bridged behavior of the Window class behaves in an example

application.

Figure 18-10. Using the bridged behavior of the Window class

See Also

The execution(Signature) pointcut is explained in Recipe 4.4; the args([Types | Identifiers])
is explained in Recipe 11.3; the around() form of advice is shown in Recipe 13.4; Recipe 14.2
explains perthis(Pointcut) aspect instantiation policy; specifying the aspects that are built into an

application at compile time is covered in Recipe 2.6.

Recipe 18.5. Implementing the Decorator Pattern

Problem

You want to apply the decorator pattern using AspectJ.

Solution

The decorator pattern extends the behavior of a classes methods while maintaining its existing public
interface without the class knowing or caring about the extension.

Example 18-7 shows an abstract aspect that lays the foundation of the decorator pattern that can
then be applied using more specific subaspects in a target application.

Example 18-7. Using aspects to define the decorator pattern

public abstract aspect DecoratorPattern
{
 public interface DecoratedComponent
 {
 };

 private boolean DecoratedComponent.decorated = false;

 public void DecoratedComponent.setDecorated(boolean decorated)
 {
 this.decorated = decorated;
 }

 public void DecoratedComponent.isDecorated(boolean decorated)
 {
 return this.decorated ;
 }
}

Discussion

Figure 18-11 shows the structure of the DecoratorPattern abstract aspect and the interfaces and

behavior that it defines to support the decorator design pattern.

Figure 18-11. The DecoratorPattern aspect and the interfaces and
behavior it defines for the design pattern's roles

The DecoratorPattern abstract aspect defines the DecoratedComponent interface to provide a
common base interface for all classes that are to be decorated implement. The decorated field is

introduced into those classes along with a pair of accessor and modifier methods.

Example 18-8 shows how the abstract DecoratorPattern aspect could be applied for a specific
application. The TexTDisplayDecorator specifies that the Textdisplay class can be decorated, and
that the display(..) method is decorated before and after the method is called if the particular

object is decorated.

Example 18-8. Applying the DecoratorPattern to an application's classes

public aspect TextDisplayDecorator extends DecoratorPattern
{
 declare parents : TextDisplay implements DecoratedComponent;

 public pointcut selectDecorators(Object object) :
 call(public void TextDisplay.display(String))
 && target(object);

 before(Object object) : selectDecorators(object) &&
 if(((DecoratedComponent)object).getDecorated)
 {
 System.out.print("<Decoration>");
 }

 after(Object object) : selectDecorators(object) &&
 if(((DecoratedComponent)object).getDecorated)
 {
 System.out.print("</Decoration>");
 }
}

Figure 18-12 shows the effects when the TextdisplayDecorator aspect, shown in Example 18-8, is
applied to the Textdisplay class.

Figure 18-12. The effects of applying the decorator pattern to the

TextDisplay class

Figure 18-13 shows how the new decorated behavior of the Textdisplay class behaves in an

example application.

Figure 18-13. Using the decorated behavior of the TextDisplay class

See Also

The recipes in Chapter 16 contain more details on the mechanisms by which existing classes can be
extended using aspects and the declare keyword; the call(Signature) pointcut is covered in
Recipe Recipe 4.1; exposing join point context is examined in Recipe 13.2; the args(Type or
Identifier) pointcut is described in Recipe 11.3.

Recipe 18.6. Implementing the Proxy Pattern

Problem

You want to apply the proxy pattern using AspectJ.

Solution

The proxy pattern allows the developer to provide a surrogate object in place of the actual object in
case access to the real object needs to be delegated or controlled.

Example 18-9 uses the Director aspect-oriented design pattern (see Chapter 23) to provide an
abstract implementation of the proxy pattern.

Example 18-9. Using an abstract aspect to define the proxy pattern

public abstract aspect ProxyPattern
{
 protected interface Subject
 {
 }

 protected abstract pointcut requestTriggered();

 private pointcut accessByCaller(Object caller) : requestTriggered()
 && this(caller);

 private pointcut accessByUnknown() : requestTriggered()
 && !accessByCaller(Object);

 Object around(Object caller, Subject subject) : accessByCaller(caller)
 && target(subject)
 {
 if (reject(caller, subject, thisJoinPoint))
 {
 return rejectRequest(caller, subject, thisJoinPoint);
 }
 else if (delegate(caller, subject, thisJoinPoint))
 {
 return delegateRequest(caller, subject, thisJoinPoint);
 }
 return proceed(caller, subject);

 }

 Object around(Subject subject) : accessByUnknown()
 && target(subject)
 {
 // Without a caller then reject does not really make sense
 // as there is no way of deciding to reject or not
 if (delegate(null, subject, thisJoinPoint))
 {
 return delegateRequest(null, subject, thisJoinPoint);
 }
 return proceed(subject);
 }

 protected abstract boolean reject(
 Object caller,
 Subject subject,
 JoinPoint joinPoint);

 protected abstract boolean delegate(
 Object caller,
 Subject subject,
 JoinPoint joinPoint);

 protected abstract Object rejectRequest(
 Object caller,
 Subject subject,
 JoinPoint joinPoint);

 protected abstract Object delegateRequest(
 Object caller,
 Subject subject,
 JoinPoint joinPoint);
}

Discussion

Figure 18-14 shows the structure of the ProxyPattern abstract aspect and the interfaces and

behavior that it defines to support the proxy design pattern.

Figure 18-14. The ProxyPattern aspect and the interfaces and behavior it
defines for the design pattern's roles

The abstract aspect definition of the proxy pattern in Example 18-9 encapsulates the role of the
Subject applied to objects that need proxy logic defined. For each of the two possible situations that

a proxy is applied, delegation and protection, there is a defined route by which calls to the subject
are examined and delegated or denied depending on the logic contained in the inheriting subaspects.

The most important advantage of this aspect implementation of the proxy pattern is that the original
classes of the target application do not have to know they are going to be involved in a proxy
situation. This is absolutely key since collections of objects in an application can be subjected to
security and other proxy sensitive concerns without affecting the design goals of the original classes.

Example 18-10 shows how the abstract ProxyPattern aspect could be applied for a specific
application. The DelegationProxy aspect defines a proxy that intercepts and delegates calls to the

subject objects.

Example 18-10. Applying delegation using the ProxyPattern aspect

public aspect DelegationProxy extends ProxyPattern
{
 declare parents : RealSubject implements Subject;

 protected pointcut requestTriggered() : call(* RealSubject.write(..));

 protected boolean reject(
 Object caller,
 Subject subject,
 JoinPoint joinPoint)
 {
 return false;
 }

 protected boolean delegate(
 Object caller,
 Subject subject,
 JoinPoint joinPoint)
 {
 return true;
 }

 protected Object rejectRequest(
 Object caller,

 Subject subject,
 JoinPoint joinPoint)
 {
 return null;
 }

 protected Object delegateRequest(
 Object caller,
 Subject subject,
 JoinPoint joinPoint)
 {
 Object[] args = joinPoint.getArgs();
 if (args != null)
 {
 AnotherRealSubject.write((String) args[0]);
 }
 else
 {
 AnotherRealSubject.write("");
 }
 return null;
 }
}

Figure 18-15 shows the effects when the DelegationProxy aspect is applied to the RealSubject

class.

Figure 18-15. The effects of applying the proxy pattern to the RealSubject
class

Figure 18-16 shows an example interaction with the aspect-oriented proxy pattern features.

Figure 18-16. Delegating the call to the write(String) method on the
RealSubject class

See Also

For more information on defining abstract aspects and specializing them, see the recipes in Chapter
16; the call(Signature) pointcut is covered in Recipe Recipe 4.1; exposing join point context is
examined in Recipe 13.2; the args(Type or Identifier) pointcut is described in Recipe 11.3;
Recipe 11.1 describes the this(Type or Identifier) pointcut in more detail; the target(Type or
Identifier) pointcut is examined in Recipe 11.2; Recipe 13.4 provides more detail on the proceed(
) call and its usage within around() advice; the Director aspect-oriented design pattern is explained

in Recipe 23.3.

Chapter 19. Implementing Behavioral
Object-Oriented Design Patterns

Introduction

Recipe 19.1. Implementing the Observer Pattern

Recipe 19.2. Implementing the Command Pattern

Recipe 19.3. Implementing the Iterator Pattern

Recipe 19.4. Implementing the Mediator Pattern

Recipe 19.5. Implementing the Chain of Responsibility Pattern

Recipe 19.6. Implementing the Memento Pattern

Recipe 19.7. Implementing the Strategy Pattern

Recipe 19.8. Implementing the Visitor Pattern

Recipe 19.9. Implementing the Template Method Pattern

Recipe 19.10. Implementing the State Pattern

Recipe 19.11. Implementing the Interpreter Pattern

Introduction

The final category in this trio of design pattern chapters investigates how behavioral patterns can
benefit from an aspect-oriented implementation.

Behavioral patterns are generic guidelines for structuring interactions and locating behavior
throughout the participating classes. The recipes in this chapter show that these design patterns can
gain considerable architectural advantages from using aspect orientation.

As with the structural patterns from the previous chapter, some GoF patterns simply don't seem to
benefit significantly from aspects. In the case of behavioral aspects, this means that the Interpreter
design pattern is not included in this chapter although the research, being completed by Jan
Hanneman at http://www.cs.ubc.ca/~jan/AODPs/, may uncover approaches that further refine the
mechanisms presented in this chapter and perhaps lead to improvements that can be made to the
interpreter patterns implementation using aspect orientation.

http://www.cs.ubc.ca/~jan/AODPs/

Recipe 19.1. Implementing the Observer Pattern

Problem

You want to apply the observer pattern using AspectJ.

Solution

The observer pattern allows the designer to create dependencies between objects such that if one
object's state changes the other objects will be notified and may act accordingly.

Example 19-1 uses the Director aspect-oriented design pattern (see Chapter 23) to provide a generic
aspect implementation of the observer pattern.

Example 19-1. Defining the observer pattern using an abstract aspect

public abstract aspect ObserverPattern
{
 protected interface Subject
 {
 public void addObserver(Observer observer);
 public void removeObserver(Observer observer);
 }

 protected interface Observer
 {
 public void notifyOfChange(Subject subject);
 }

 private List Subject.observers = new LinkedList();

 public void Subject.addObserver(Observer observer)
 {
 this.observers.add(observer);
 }

 public void Subject.removeObserver(Observer observer)
 {
 this.observers.remove(observer);
 }

 private synchronized void Subject.notifyObservers()

 {
 Iterator iter = this.observers.iterator();
 while (iter.hasNext())
 {
 ((Observer)iter.next()).notifyOfChange(this);
 }
 }

 protected abstract pointcut subjectChange(Subject s);

 after(Subject subject) : subjectChange(subject)
 {
 subject.notifyObservers();
 }
}

Discussion

The ObserverPattern aspect defines the Subject and Observer roles as interfaces that can be

applied to specific classes by inheriting subaspects. With these roles defined, the remainder of the
ObserverPattern aspect implements the mechanism by which to notify the observers when a

subject changes.

Figure 19-1 shows the structure of the ObserverPattern abstract aspect and the interfaces and

behavior that it defines to support the observer design pattern.

Figure 19-1. The ObserverPattern aspect and the interfaces it defines for
the design pattern's roles

Example 19-2 shows how the abstract ObserverPattern aspect could be applied for a specific

application.

Example 19-2. Applying the ObserverPattern to an application's classes

public aspect ConcreteClassAObserver extends ObserverPattern

{
 declare parents : ConcreteClassB implements Subject;

 declare parents : ConcreteClassA implements Observer;

 protected pointcut subjectChange(Subject s) :
 call(* ConcreteClassB.set*(..))
 && target(s);

 public void ConcreteClassA.notifyOfChange(Subject subject)
 {
 this.doSomething(
 "ConcreteClassA was notified of a change on " + subject);
 }
}

The ConcreteClassAObserver applies the Observer interface to the ConcreteClassA class and the
Subject interface to the ConcreteClassB class. This means ConcreteClassA objects that are
registered as observers are notified when a modifier is called on a ConcreteClassB object. The

specifics of what methods are called when a notification is to be made are declared in the
notifyOfChange(Subject) method added to the ConcreteClassA class.

Figure 19-2 shows an example set of application classes before the ConcreteClassAOb-server

aspect is applied.

Figure 19-2. The ConcreteClassA and ConcreteClassB classes

Figure 19-3 shows the effects after applying the ConcreteClassAObserver aspect to the
ConcreteClassA and ConcreteClassB classes.

Figure 19-3. The static structure after the observer pattern has been
applied to the ConcreteClassA and ConcreteClassB classes

See Also

The recipes in Chapter 16 contain more details on the mechanisms by which existing classes can be
extended using aspects and the declare keyword; the call(Signature) pointcut is covered in
Recipe Recipe 4.1; the execution(Signature) pointcut is described in Recipe 4.4; exposing join
point context is examined in Recipe 13.2; the target(Type or Identifier) pointcut is examined in

Recipe 11.2; the Director aspect-oriented design pattern is explained in Recipe 23.3.

Figure 19-4 shows how the new observer behavior of the ConcreteClassA class and the subject
behavior of the ConcreteClassB class is interacted within an example application.

Figure 19-4. Using the observer and subject behavior of the
ConcreteClassA and ConcreteClassB classes

Recipe 19.2. Implementing the Command Pattern

Problem

You want to apply the command pattern using AspectJ.

Solution

The command design pattern supports the encapsulation of requests as objects within their own
right. Single or multiple operations can be combined into a request or transaction depending on their
purpose. Once the request object has been constructed, it can be managed as a separate entity from
the originating object.

Example 19-3 uses the Director aspect-oriented design pattern (see Chapter 23) to provide an
abstract aspect that can be used to apply the command pattern.

Example 19-3. Defining the command pattern using aspects

public abstract aspect CommandPattern
{
 public interface Command
 {
 public void executeCommand(CommandReceiver receiver);

 public boolean isExecutable();
 }

 public interface CommandInvoker
 {
 }

 public interface CommandReceiver
 {
 }

 private WeakHashMap mappingInvokerToCommand = new WeakHashMap();

 public Object setCommand(CommandInvoker invoker, Command command)
 {
 return mappingInvokerToCommand.put(invoker, command);
 }

 public Object removeCommand(CommandInvoker invoker)
 {
 return setCommand(invoker, null);
 }

 public Command getCommand(CommandInvoker invoker)
 {
 return (Command) mappingInvokerToCommand.get(invoker);
 }

 private WeakHashMap mappingCommandToReceiver = new WeakHashMap();

 public Object setReceiver(Command command, CommandReceiver receiver)
 {
 return mappingCommandToReceiver.put(command, receiver);
 }

 public CommandReceiver getReceiver(Command command)
 {
 return (CommandReceiver) mappingCommandToReceiver.get(command);
 }

 protected abstract pointcut commandTrigger(CommandInvoker invoker);

 after(CommandInvoker invoker) : commandTrigger(invoker)
 {
 Command command = getCommand(invoker);
 if (command != null)
 {
 CommandReceiver receiver = getReceiver(command);
 command.executeCommand(receiver);
 } else
 {
 // Do nothing: This Invoker has no associated command
 }
 }

 protected pointcut setCommandTrigger(CommandInvoker invoker,
 Command command);

 after(CommandInvoker invoker, Command command) : setCommandTrigger(
 invoker, command)
 {
 if (invoker != null)
 setCommand(invoker, command);
 }

 protected pointcut removeCommandTrigger(CommandInvoker invoker);

 after(CommandInvoker invoker) : removeCommandTrigger(invoker)
 {
 if (invoker != null)

 removeCommand(invoker);
 }

 public boolean Command.isExecutable()
 {
 return true;
 }
}

Discussion

The CommandPattern abstract aspect defines the mechanisms by which the roles of a
CommandInvoker , a Command, and a CommandReceiver can be set up and interact with each other.

These abstract roles are assigned to application specific classes by specialized subaspects.

Figure 19-5 shows the structure of the CommandPattern abstract aspect and the interfaces and

behavior that it defines to support the command design pattern.

Figure 19-5. The CommandPattern aspect and the interfaces it defines for
the design pattern's roles

Example 19-4 shows how the abstract CommandPattern aspect could be applied for a specific

application.

Example 19-4. Applying the CommandPattern aspect to an application's
classes

public aspect ConcreteCommand extends CommandPattern

{
 declare parents : TimedEvent implements CommandInvoker;
 declare parents : Printer implements CommandReceiver;
 declare parents : VCardPrinter implements CommandReceiver;
 declare parents : BusinessCard implements Command;

 public void BusinessCard.executeCommand(CommandReceiver receiver)
 {
 if (receiver instanceof Printer)
 {
 ((Printer) receiver).println(this.toString());
 } else
 {
 ((VCardPrinter) receiver).printVCard(this);
 }
 }

 public void executeCommand(CommandReceiver receiver)
 {
 ((Printer) receiver).println("Command triggered on printer receiver");
 }

 protected pointcut commandTrigger(CommandInvoker invoker) :
 call(void TimedEvent.timedOut())
 && target(invoker);
}

Figure 19-6 shows an example set of application classes before the ConcreteCommand aspect is
applied. The TimerTask class is used from the Java standard libraries and supports the TimedEvent

class in executing at timed intervals.

Figure 19-6. The Printer, VCardPrinter, TimedEvent, and BusinessCard
classes

Figure 19-7 shows the effects of applying the ConcreteCommand aspect to the TimedEvent, Printer,
VCardPrinter, and BusinessCard classes.

Figure 19-7. The static structure after the command pattern has been
applied to the TimedEvent, Printer, VCardPrinter, and BusinessCard

classes

Figure 19-8 shows how the new command pattern behavior of the application's classes interact with
in an example application.

Figure 19-8. Using the command pattern characteristics of the
TimedEvent, BusinessCard, and VCardPrinter classes

See Also

The recipes in Chapter 16 contain more details on the mechanisms by which existing classes can be
extended using aspects and the declare keyword; aspects and inheritance are covered in Recipe
15.1; the after() form of advice is examined in Recipe Recipe 13.5; the Director aspect-oriented

design pattern is explained in Recipe 23.3.

Recipe 19.3. Implementing the Iterator Pattern

Problem

You want to apply the iterator pattern using AspectJ.

Solution

The iterator pattern provides a mechanism by which to separate the implementation of a collection of
objects or an aggregate, as it is sometimes called, from the mechanisms by which the collection is
sequentially accessed. The iterator, or cursor, is moved along the aggregate of the objects providing
each while hiding the ordering and access implementation details from the users of the aggregate.

Example 19-5 uses the Director aspect-oriented design pattern (see Chapter 23) to provide an
abstract aspect that can be used to apply the iterator pattern.

Example 19-5. Using aspects to define the iterator pattern

public abstract aspect IteratorPattern
{
 public interface Aggregate
 {
 public Iterator createIterator();

 public Iterator createReverseIterator();
 }
}

Discussion

The abstract IteratorPattern aspect declares the Aggregate role by defining the interface that an

aggregate, meaning any collection of objects that can be iterated over, must fulfill. This interface
includes two operations to create a normal or reverse iterator. The Java standard libraries make
things less complicated here as the generic aspect can use the Iterator interface from the
java.util package to meet the iterator role of the pattern.

Figure 19-9 shows the structure of the IteratorPattern abstract aspect and the interfaces and

behavior that it defines to support the iterator design pattern.

Figure 19-9. The IteratorPattern aspect and the interfaces it defines for
the design pattern's roles

Example 19-6 shows how the abstract IteratorPattern aspect could be applied for a specific

application.

Example 19-6. Specializing the abstract IteratorPattern aspect for a
particular set of classes

public aspect EmployeeIteration extends IteratorPattern
{
 declare parents : EmployeeCollection implements Aggregate;

 public Iterator EmployeeCollection.createIterator()
 {
 return new EmployeeIterator(this, true);
 }

 public Iterator EmployeeCollection.createReverseIterator()
 {
 return new EmployeeIterator(this, false);
 }
}

The EmployeeIteration aspect, along with the supporting EmployeeIterator, declares that the
EmployeeCollection is an aggregate and then implements the iterator creation methods for the

collection.

Figure 19-10 shows the EmployeeCollection class before and after the EmployeeIteration aspect

is applied.

Figure 19-10. The static structure after the iterator pattern has been
applied to the EmployeeCollection class

Figure 19-11 shows how the new iterator pattern behavior of the EmployeeCollection class is

interacted within an example application.

Figure 19-11. Using the new iterator pattern characteristics of the
EmployeeCollection class

See Also

For more information on defining abstract aspects and specializing them, see Chapter 15; Chapter 16
contains more details on the mechanisms by which existing classes can be extended using aspects
and the declare keyword; the Director aspect-oriented design pattern is explained in Recipe 23.3.

Recipe 19.4. Implementing the Mediator Pattern

Problem

You want to apply the mediator pattern using AspectJ.

Solution

The mediator pattern allows the separation of potentially a large number of classes, that fit the
colleague role, from each other by providing a single point of dependency in the mediator role. The
class playing the mediator role minimizes dependencies between the colleague classes by providing a
common point to control the different events that are initiated by the colleagues. The mediator
accepts the events itself, and then encapsulates the logic that notifies the appropriate colleagues of
the original event.

The abstract aspect in Example 19-7 uses the Director aspect-oriented design pattern (see Chapter
23) to provide the mechanisms by which the mediator pattern can be applied to an application.

Example 19-7. Defining the mediator pattern using aspects

public abstract aspect MediatorPattern
{
 protected interface Colleague
 {
 }

 protected interface Mediator
 {
 }

 private WeakHashMap mappingColleagueToMediator = new WeakHashMap();

 private Mediator getMediator(Colleague colleague)
 {
 Mediator mediator =
 (Mediator) mappingColleagueToMediator.get(colleague);
 return mediator;
 }

 public void setMediator(Colleague c, Mediator m)
 {
 mappingColleagueToMediator.put(c, m);

 }

 protected abstract pointcut change(Colleague c);

 after(Colleague c) : change(c)
 {
 notifyMediator(c, getMediator(c));
 }

 protected abstract void notifyMediator(Colleague c, Mediator m);
}

Discussion

The MediatorPattern abstract aspect defines the Colleague and Mediator roles as interfaces that

can be applied to application specific classes by inheriting subaspects. The aspect defines the
mappingColleagueToMediator lookup which can be manipulated to assign colleague objects to
mediator objects using the setMediator(Colleague,Mediator) method.

The MediatorPattern aspect provides the change(..) abstract pointcut that can be implemented by

subaspects to trigger notifications on mediators when changes occur to colleagues by calling the
notifyMediator(Colleague,Mediator) method that is also implemented by subaspects.

Figure 19-12 shows the structure of the MediatorPattern abstract aspect and the interfaces and

behavior that it defines to support the mediator design pattern.

Figure 19-12. The MediatorPattern aspect and the interfaces it defines for
the design pattern's roles

Example 19-8 shows how the abstract MediatorPattern aspect could be applied for a specific

application.

Example 19-8. Applying the MediatorPattern aspect to an application's

classes

public aspect DialogMediator extends MediatorPattern
{
 declare parents : ListBox implements Colleague;
 declare parents : EntryField implements Mediator;

 protected pointcut change(Colleague c) : (
 execution(void ListBox.setSelection(..)) && this(c));

 protected void notifyMediator(Colleague c, Mediator m)
 {
 ListBox listBox = (ListBox) c;
 EntryField entryField = (EntryField) m;
 entryField.setText(listBox.getSelection());
 }
}

Figure 19-13 shows the ListBox and EnTRyField classes before and after the DialogMediator

aspect is applied.

Figure 19-13. The static structure after the mediator pattern has been
applied to the ListBox and EntryField classes

Figure 19-14 shows how the mediator pattern characteristics of the ListBox and EntryField classes

interact together within an example application.

Figure 19-14. Using the new mediator pattern behavior of the ListBox and
EntryField classes

See Also

The Observer Pattern works in a more hierarchical manner than the Mediator pattern, but its
implementation can be useful when comparing the two in terms of their appropriateness to a
particular design problem. The Observer pattern as implemented using aspects is shown in Recipe
Recipe 17.1; more information on the extension of existing classes using aspects can be found in
Recipe Recipe 16.1; the Director aspect-oriented design pattern is explained in Recipe 23.3.

Recipe 19.5. Implementing the Chain of Responsibility
Pattern

Problem

You want to apply the chain of responsibility pattern using AspectJ.

Solution

The chain of responsibility pattern allows the separation of the source of a request from deciding
which of the potentially large number of handlers for the request should action it. The class
representing the chain role channels the requests from the source along the list of handlers until a
handler accepts the request and actions it.

The abstract aspect in Example 19-9 uses the Director aspect-oriented design pattern (see Chapter
23) to provide the generic mechanisms by which the chain of responsibility pattern can be applied to
an application. The decision as to what occurs if none of the available handlers in the chain accept the
request is an application-specific decision; although a default behavior is implemented in the abstract
aspect, this can be overridden by extending implementations.

Example 19-9. Defining the chain of responsibility pattern using aspects

public abstract aspect ChainOfResponsibilityPattern
{
 protected interface Handler
 {
 }

 public WeakHashMap successors = new WeakHashMap();

 protected void receiveRequest(Handler handler, Object request)
 {
 if (handler.acceptRequest(request))
 {
 handler.handleRequest(request);
 }
 else
 {
 // The handler will not accept the request
 Handler successor = getSuccessor(handler);
 if (successor == null)

 {
 // Last handler in the chain so must deal with the request
 // This is a rudimentary implementation and more complex
 // logic could be applied here or perhaps in the concrete
 // aspects that extend this abstract one
 handler.handleRequest(request);
 }
 else
 {

 // Hand the request on to the next successor in the chain
 receiveRequest(successor, request);
 }
 }
 }

 public boolean Handler.acceptRequest(Object request)
 {
 // The default as defined here is to reject the request
 // This is implemented by the application specific
 // concrete aspects
 return false;
 }

 public void Handler.handleRequest(Object request)
 {
 // A default empty implementation that is overridden
 // if required by the application specific concrete aspects
 }

 protected abstract pointcut eventTrigger(Handler handler, Object request);

 after(Handler handler, Object request) : eventTrigger(handler, request)
 {
 receiveRequest(handler, request);
 }

 public void setSuccessor(Handler handler, Handler successor)
 {
 successors.put(handler, successor);
 }

 public Handler getSuccessor(Handler handler)
 {
 return ((Handler) successors.get(handler));
 }
}

Discussion

The ChainOfResponsibilityPattern abstract aspect defines the Handler interface that can then be

applied by specialized subaspect to all classes within a specific application that are to participate in
the chain. The aspect maintains the chain and asks the specifics of how a request is to be handled by
specific subaspects.

Figure 19-15 shows the structure of the ChainOfResponsibilityPattern abstract aspect and the

interfaces and behavior that it defines to support the chain of responsibility design pattern.

Figure 19-15. The ChainOfResponsibilityPattern aspect and the interfaces
it defines for the design pattern's roles

Example 19-10 shows how the abstract ChainOfResponsibility aspect could be applied for a

specific application.

Example 19-10. Applying the ChainOfResponsibility aspect to an
application's classes

public aspect HelpChain extends ChainOfResponsibilityPattern
{
 declare parents : PrintButton implements Handler;
 declare parents : PrintDialog implements Handler;
 declare parents : Manager implements Handler;

 protected pointcut eventTrigger(Handler handler, Object event) :
 call(void PrintButton.doClick(..))
 && target(handler)
 && args(event);

 private boolean Handler.alreadyHandledRequest = false;

 public boolean Handler.acceptRequest(Object event)
 {
 return !this.alreadyHandledRequest;
 }

 public void PrintButton.handleRequest(Object event)
 {
 if (!this.acceptRequest(event))
 {
 System.out.println(

 "PrintButton Forced to handle Request" +
 "due to being last in the chain (Implementation Decision)");
 }
 System.out.println("PrintButton handling request: " + event);
 this.alreadyHandledRequest = true;
 }

 public void PrintDialog.handleRequest(Object event)
 {
 if (!this.acceptRequest(event))
 {
 System.out.println(
 "PrintDialog Forced to handle Request" +
 "due to being last in the chain (Implementation Decision)");
 }
 System.out.println("PrintDialog handling request: " + event);
 this.alreadyHandledRequest = true;
 }

 public void Manager.handleRequest(Object event)
 {
 if (!this.acceptRequest(event))
 {
 System.out.println(
 "Manager Forced to handle Request due to being" +
 "last in the chain (Implementation Decision)");
 }
 System.out.println("Manager handling request: " + event);
 this.alreadyHandledRequest = true;
 }
}

The HelpChain aspect in Example 19-10, as its title suggests, implements a help chain where the

request for help information is passed to the classes that are registered handlers until one accepts
the request or it is the last in the chain.

Figure 19-16 shows the PrintButton, PrintDialog, and Manager classes before the HelpChain

aspect is applied.

Figure 19-16. The PrintButton, PrintDialog, and Manager classes

Figure 19-17 shows the effects of applying the HelpChain aspect to the PrintButton, PrintDialog,
and Manager classes.

Figure 19-17. The static structure after the chain of responsibility pattern
has been applied to the PrintButton, PrintDialog, and EntryField classes

Figure 19-18 shows an example interaction with the classes in Figure 19-17, using the aspect
introduced chain of responsibility pattern features.

Figure 19-18. Using the chain of responsibility pattern to handle a request
between the PrintButton and Manager classes

See Also

The Mediator pattern, as shown in Recipe 19.4, is often combined with the Chain Of Responsibility
pattern where a common mediator is required to work with the many objects of the application using
the chain of responsibility to pass requests throughout the application; more information on the

extension of existing classes using aspects can be found in Recipe 16.1; the Director aspect-oriented
design pattern is explained in Recipe 23.3.

Recipe 19.6. Implementing the Memento Pattern

Problem

You want to apply the memento pattern using AspectJ.

Solution

The memento pattern provides a mechanism by which an object's original state can be reinstated at
a later time without coupling the exact mechanisms with which the state of the object is rolled back
to the object. The memento encapsulates all of the information needed to restore a prior internal
state of an object at a later date. This capability can be used to provide a form of undo feature to the
state of objects within a particular application.

The abstract aspect and support classes in Example 19-11 use the Director aspect-oriented design
pattern (see Chapter 23) to specify the mechanisms by which the memento pattern can be applied to
an application using AspectJ.

Example 19-11. Defining the memento pattern using aspects

public abstract aspect MementoPattern
{
 public interface Memento
 {
 public void setState(Originator originator);
 public Object getState();
 }

 public interface Originator
 {
 public void setMemento(Memento memento);
 public Memento createMemento();
 public Object getState();
 }

Discussion

The MementoPattern aspect defines the roles and behavior of memento and originator objects

according to the design pattern. Those roles can be applied to the application specific classes by
specialized subaspects.

Figure 19-19 shows the structure of the MementoPattern abstract aspect and the interfaces and

behavior that it defines to support the memento design pattern.

Figure 19-19. The MementoPattern aspect and the interfaces it defines for
the design pattern's roles

Example 19-12 shows how the abstract MementoPattern aspect could be applied for a specific

application.

Example 19-12. Applying the MementoPattern aspect to an application's
classes

public aspect EmployeeMemento extends MementoPattern
{
 declare parents : Employee implements Originator;

 public void Employee.setMemento(Memento memento)
 {
 Object object = memento.getState();
 Employee stateToRestore = (Employee) object;
 this.setName(stateToRestore.getName());
 this.setSalary(stateToRestore.getSalary());
 }

 public Memento Employee.createMemento()
 {
 Memento memento = new DefaultMemento();
 memento.setState(this);
 return memento;
 }

 public Object Employee.getState() throws MementoException
 {
 Employee employee = new Employee(this.getName(), this.getSalary());
 return employee;
 }

}

The EmployeeMemento specifies that the Employee class is an originator and so supports mementos
of its state being created. To completely support this new role, the Employee class is extended with
the createMemento(), setMemento(Memento), and getState() methods.

The createMemento() method allows a client to get a memento for an Employee object, the
setMemento(Memento) method will restore an Employee object to the state stored in a memento,
and the getState() method is used by a memento when it is being created to access and store the
state of the Employee originator object.

Figure 19-20 shows the effects before and after applying the EmployeeMemento aspect to the

Employee class.

Figure 19-20. The static structure before and after the memento pattern
has been applied to the Employee class

Figure 19-21 shows an example interaction with the Employee class using the aspect introduced

memento pattern features.

Figure 19-21. Using the new memento pattern characteristics of the
Employee class

See Also

The recipes in Chapter 16 contain more details on the mechanisms by which existing classes can be
extended using aspects and the declare keyword; the Director aspect-oriented design pattern is

explained in Recipe 23.3.

Recipe 19.7. Implementing the Strategy Pattern

Problem

You want to apply the strategy pattern using AspectJ.

Solution

The strategy pattern provides a mechanism to separate client classes from the actual implementation
details of a particular algorithm or strategy. Traditionally, all of the separate classes, which
implement the strategy, implemented a distinct interface to allow the client to be decoupled from the
different implementations.

The abstract aspect in Example 19-13 uses the Director aspect-oriented design pattern (see Chapter
23) to provide a generic implementation of the strategy pattern that can be applied to your
application.

Example 19-13. Defining the strategy pattern using aspects

public abstract aspect StrategyPattern
{
 Hashtable strategyPerContext = new Hashtable();

 protected interface Strategy
 {
 }

 protected interface Context
 {
 }

 private Strategy Context.strategy = null;

 public void setConcreteStrategy(Context c, Strategy s)
 {
 strategyPerContext.put(c, s);
 }

 public Strategy getConcreteStrategy(Context c)
 {
 return (Strategy) strategyPerContext.get(c);
 }

}

Discussion

The StrategyPattern abstract provides definitions of the Strategy and Context roles as interfaces.

A hash table is used to look up the specific concrete strategy to be used.

Figure 19-22 shows the structure of the StrategyPattern abstract aspect and the interfaces and

behavior that it defines to support the strategy design pattern.

Figure 19-22. The StrategyPattern aspect and the interfaces it defines for
the design pattern's roles

Example 19-14 shows how the abstract StrategyPattern aspect could be applied for a specific
application. The SortingStrategy aspect defines the mapping of the strategy role to two types of

sorter implementation and the overall context to be that of a Sorter class. The advice is applied to
override the sort method on the Sorter context to apply the appropriate sorting strategy.

Example 19-14. Applying the StrategyPattern aspect to an application

public aspect SortingStrategy extends StrategyPattern
{
 declare parents : Sorter implements Context;
 declare parents : LinearSorter implements Strategy;
 declare parents : BubbleSorter implements Strategy;

 int[] around(Sorter s, int[] numbers) : call(int[] Sorter.sort(int[]))
 && target(s)
 && args(numbers)
 {
 Strategy strategy = getConcreteStrategy(s);
 if (strategy instanceof BubbleSorter)
 ((BubbleSorter) strategy).sort(numbers);
 else if (strategy instanceof LinearSorter)
 ((LinearSorter) strategy).sort(numbers);

 return numbers;
 }
}

The SortingStrategy aspect declares two different sorting strategies for a particular context, which

is sorting. The actual strategy that is to be executed depends on the type of strategy that has been
declared at runtime for a particular context.

Figure 19-23 shows the Sorter, LinearSorter, and BubbleSorter classes before the
SortingStrategy aspect is applied.

Figure 19-23. The Sorter, LinearSorter, and BubbleSorter classes

Figure 19-24 shows the effects of applying the SortingStrategy aspect to the classes from Figure

19-23.

Figure 19-24. The static structure after the strategy pattern has been
applied to the Sorter, LinearSorter, and BubbleSorter classes

Figure 19-25 shows an example interaction with the Sorter, LinearSorter, and BubbleSorter

classes using the aspect introduced strategy pattern features.

Figure 19-25. Using the new strategy pattern characteristics of the Sorter
and LinearSorter classes

See Also

The recipes in Chapter 16 contain more details on the mechanisms by which existing classes can be
extended using aspects and the declare keyword; declaring and using abstract aspects are
examined in Chapter 15; the args(Type or Identifier) pointcut is described in Recipe 11.3; the
target(Type or Identifier) pointcut is examined in Recipe 11.2; the call(Signature) pointcut is

covered in Recipe Recipe 4.1; exposing join point context is examined in Recipe 13.2; the Director
aspect-oriented design pattern is explained in Recipe 23.3.

Recipe 19.8. Implementing the Visitor Pattern

Problem

You want to apply the visitor pattern using AspectJ.

Solution

The visitor pattern encapsulates a request that can be executed by a hierarchy of objects as it is
passed throughout the structure. The abstract aspect in Example 19-15 uses the Director aspect-
oriented design pattern (see Chapter 23) to define the roles that take part in the Visitor pattern.

Example 19-15. Defining the visitor pattern using aspects

public abstract aspect VisitorPattern
{
 public interface Element
 {
 public void accept(Visitor visitor);
 }

 public interface CompositeElement extends Element
 {
 public Element[] getElements();
 }

 public interface Result
 {
 }

 public interface Visitor
 {
 public void visitElement(Element element);
 public void visitComposite(CompositeElement element);
 public Result getResult();
 }

 public void CompositeElement.accept(Visitor visitor)
 {
 visitor.visitComposite(this);
 }

 public void Element.accept(Visitor visitor)
 {
 visitor.visitElement(this);
 }
}

Discussion

The VisitorPattern abstract aspect defines the CompositeElement and Element roles as parts of
the object structure that is to be visited. The Visitor role describes how the Visitor is notified of

which type of element it is visiting. This role is applied to objects that may be passed to the different
parts of the structure, be they composite or simple elements. The CompositeElement and Element
roles are then extended to provide the methods by which the Visitor is passed.

Figure 19-26 shows the structure of the VisitorPattern abstract aspect and the interfaces and

behavior that it defines to support the visitor design pattern.

Figure 19-26. The VisitorPattern aspect and the interfaces it defines for
the design pattern's roles

Example 19-16 shows how the abstract VisitorPattern aspect could be applied to a specific

application.

Example 19-16. Applying the VisitorPattern aspect to an application

public aspect InventoryVisitor extends VisitorPattern
{
 declare parents : FloppyDisk implements Element;
 declare parents : HardDisk implements Element;
 declare parents : Processor implements Element;
 declare parents : Computer implements CompositeElement;
 declare parents : Motherboard implements CompositeElement;
 declare parents : InventoryReport implements Result;

 public Element[] Computer.getElements()
 {

 Element[] elements = new Element[3];
 elements[0] = this.getMotherboard();
 elements[1] = this.getHardDisk();
 elements[2] = this.getFloppyDisk();
 return elements;
 }

 public Element[] Motherboard.getElements()
 {
 Element[] elements = new Element[1];
 elements[0] = this.getProcessor();
 return elements;
 }
}

Figure 19-27 shows an example set of application classes before the InventoryVisitor aspect is

applied.

Figure 19-27. The relationships between classes that represent the
components of a computer

Figure 19-28 shows the effects of applying the InventoryVisitor aspect to the application classes

shown in Figure 19-27.

Figure 19-28. The computer part classes with the new visitor pattern
interfaces applied

Figure 19-29 shows a partial example interaction with some of the classes in Figure 19-28 using the
aspect introduced visitor pattern features. The interactions recursively continue throughout all of the
composite elements and individual elements, calling accept(Visitor) and then getdescription()
on each, that make up the top-level Computer object.

Figure 19-29. A partial interaction with the visitor pattern characteristics
of the Computer, Motherboard, and InventoryReportVisitor classes

See Also

The visitor pattern is often used together with the composite pattern shown in Recipe 18.1; For more
information on defining abstract aspects and specializing them, please refer to the recipes in Chapter
15; the recipes in Chapter 16 contain more details on the mechanisms by which existing classes can
be extended using aspects and the declare keyword; the Director aspect-oriented design pattern is

explained in Recipe 23.3.

Recipe 19.9. Implementing the Template Method Pattern

Problem

You want to apply the template pattern using AspectJ.

Solution

The template method pattern provides you with a mechanism by which to declare abstract methods
within a generic work flow. These abstract steps or methods are implemented by specialized classes.

Example 19-17 shows how to apply the template method pattern using aspects.

Example 19-17. Defining the template method pattern using aspects

public interface AlgorithmDefinition
{
 public String runAlgorithm();

 public StringBuffer stepOne();

 public void stepTwo(StringBuffer data);

 public void stepThree(StringBuffer data);

 public String stepFour(StringBuffer data);
}

public aspect DefaultAlgorithmImplementation
{
 public String AlgorithmDefinition.runAlgorithm()
 {
 StringBuffer dataInProcess = this.stepOne();
 this.stepTwo(dataInProcess);
 this.stepThree(dataInProcess);
 return this.stepFour(dataInProcess);
 }

 public StringBuffer AlgorithmDefinition.stepOne()
 {
 return new StringBuffer();
 }

 public String AlgorithmDefinition.stepFour(StringBuffer data)
 {
 return data.toString();
 }
}

Discussion

The DefaultAlgorithmImplementation aspect specifies the order of the steps for the algorithm and

a default implementation for a couple of steps. By using aspect-oriented techniques, the algorithm
template can be declared in an interface rather than an abstract class. Then, relying on static cross-
cutting techniques, a default implementation of the appropriate generic steps, including the method
to invoke the steps in the right order, can be specified in a concrete aspect. The more specific steps
can be completed by the classes that implement the algorithm interface, automatically picking up on
the default behavior where appropriate.

An aspect-oriented implementation advantage for this pattern is that it removes the constraint that
the top-level class in the pattern must be an abstract class by moving the partial abstract
implementation into the aspect and using static cross-cutting methods to provide that partial
implementation by default on the interface. This leaves the design more flexible in that the concrete
classes now implement the interface rather than using up their one inheritance relationship as
allowed within Java to incorporate the pattern.

See Also

The recipes in Chapter 16 contain more details on the mechanisms by which existing classes can be
extended using aspects.

Recipe 19.10. Implementing the State Pattern

Problem

You want to apply the state pattern using AspectJ.

Solution

The state pattern provides a mechanism by which an object can vary its behavior based upon its
state. The state is encapsulated in its own object that is then contained by the invoked object. The
invoked object passes all method requests affected by its state to the state object, which varies its
response based on its class at that point in time.

Example 19-18 shows how the state of a pseudo TCPConnection class could be declared using

aspects including how those states are transitioned between as methods are invoked.

Example 19-18. Implementing the State pattern for a specific application's
classes using aspects

public aspect TCPConnectionState
{
 protected TCPState listening = new TCPListen();

 protected TCPState acknowledged = new TCPAcknowledged();

 protected TCPState closed = new TCPClosed();

 after(TCPConnection connection) : initialization(new ())
 && target(connection)
 {
 listening.setConnection(new SocketConnection());
 connection.setState(listening);
 }

 after(TCPConnection connection, TCPState state) : call(
 void TCPState +.acknowledge())
 && target(state)
 && this(connection)
 {
 if (connection.getState() == listening)
 {
 acknowledged.setConnection(listening.getConnection());

 connection.setState(acknowledged);
 }
 }

 after(TCPConnection connection, TCPState state) : call(
 void TCPState +.close())
 && target(state)
 && this(connection)
 {
 if ((connection.getState() == listening)
 || (connection.getState() == acknowledged))
 {
 connection.setState(closed);
 }
 }
}

Discussion

The TCPConnectionState aspect specifies that the TCPConnection classes state will be listening
when it is created, acknowledged when the acknowledge() method is invoked, and closed when the
close() call is invoked. It also specifies what to do if these methods are invoked depending on their
order. This is all achieved without affecting the TCPConnection class.

Aspects are used in this solution to modularize the rules for changing from one state to another. By
modularizing these rules, analyzing the rules for the change of state becomes easier as they are in
one place and become more flexible to future changes such as the incorporation of new or changed
states without affecting the original class. This provides distinct advantages over a more traditional
object-oriented approach where the logic for deciding the state changes must be embedded in the
methods and, therefore, may confuse the business logic.

Figure 19-30 shows how the state of the TCPConnection is affected by the sequence of methods
called on the class as managed by the TCPConnectionState aspect.

Figure 19-30. Managing the state of a TCPConnection object using the
TCPConnectionState aspect

See Also

The call(Signature) pointcut is covered in Recipe Recipe 4.1; the after() form of advice is
discussed in Recipe Recipe 13.5; the this(Type or Identifier) pointcut is described in Recipe 11.3;
the target(Type or Identifier) pointcut is examined in Recipe 11.2; exposing join point context is
examined in Recipe 13.2; the initialization(Signature) pointcut is examined in Recipe 7.3.

Recipe 19.11. Implementing the Interpreter Pattern

Problem

You want to harness the benefits of implementing the façade and interpreter patterns using AspectJ.

Solution

Unfortunately, the interpreter pattern by definition does not appear at this point to gain any design or
implementation benefits from using aspect-oriented methods with AspectJ. The interpreter pattern's
implementation is tied explicitly to the specific classes of the structure being interpreted; therefore,
although the concept is generic, the implementation is specific and does not appear to benefit from
aspect-oriented methods.

Discussion

In stating that the interpreter and the façade patterns do not benefit from AspectJ begs the question,
why have they been included at all? First, it would seem odd to include some statement on all of the
other GoF design patterns and just exclude these two. Second, an aspect-oriented façade in
particular may prove useful. These situations are a gray area, and they benefit directly from
AspectJ's ability to code weave against libraries (.jar files) and compiled code (.class files).

AspectJ can and does weave against the Java source and compiled byte code. This is useful when you
wish to keep the decision whether an application contains specific aspects for a later point in a
legitimate build process. However, an added feature is that you can potentially weave against legacy
and third-party libraries where the source code is unavailable. This is a particularly gray area due to
the legal and technical implications of changing a third party's proprietary libraries. AspectJ does
provide the means by which this can be achieved if all other technical and nontechnical hurdles are
overcome, although a great deal of care must be taken when this route is opted for.

See Also

Using the ajc command to compile and weave aspects into .jar libraries is shown in Recipe 2.4.

Chapter 20. Applying Class and
Component Scale Aspects

Introduction

Recipe 20.1. Validating Parameters Passed to a Method

Recipe 20.2. Overriding the Class Instantiated on a Call to a Constructor

Recipe 20.3. Adding Persistence to a Class

Recipe 20.4. Applying Mock Components to Support Unit Testing

Introduction

Aspects seem to be easily categorized as system or enterprise-wide concerns because those contexts
gain the most visible benefits from aspect-oriented methods. However, any cross-cutting behavior is
a good candidate for implementation using AspectJ whether that behavior is across the enterprise,
system, or a single class or component.

The next three chapters will look at the different types of aspects that can be applied within these
three different software development contexts: enterprise, system, and component. This chapter
focuses on micro-scale aspects that are apparent in class or component-wide cross-cutting concerns.

You'd be forgiven for thinking that little could be described as cross-cutting within a single class or
component. Take a closer look though and you'll discover that any behavior that affects the
characteristics of a class can be a strong candidate for an aspect, especially if those characteristics
are not core to the business logic of the class.

Examples of these micro-scale cross-cutting concerns examined in this chapter range from validating
the parameters passed to a method, to controlling the instantiation of a class. These areas benefit
from modularization and separation from the core business concerns of a class and show how using
AspectJ can improve your design and implementation, even at the class and component level.

Recipe 20.1. Validating Parameters Passed to a Method

Problem

You want to validate the parameters passed to a method.

Solution

Create an aspect that modularizes the parameter checking logic. Declare a pointcut to capture the
execution of the method where the parameters are to be checked. The pointcut should expose the
parameters to the corresponding advice so it can perform the checks.

Depending on the result of the parameter checking, the advice will proceed with the methods
execution or safely override the method whenever the parameters are not suitable.

Discussion

Validation of method parameters is a chore every developer has to be concerned with whenever he
has no control over how his clients will use a component. Even when the developer is writing the
clients that will use a particular component, a useful practice would be to the values passed to a
method are acceptable before working with those values.

This checking often confuses the logic within a method by introducing initial checking code that has
little relationship to the job that the method is to complete. By using AspectJ, you can check a
method's parameters separately from the core business logic of a method to make the solution
cleaner.

The main method on a Java application is a common place where the parameters being supplied

cannot be controlled and have to be checked before the application can continue execution. The
normal means of achieving these checks is to code the test logic using an if statement into the main

method and to produce an error message if the parameters provided on the command line do not
meet the requirements of the application.

Example 20-1 shows a typical main method with the traditional parameter validation and checking

support code highlighted.

Example 20-1. Interleaving traditional command-line argument checking
with the business logic of the main method

package com.oreilly.aspectjcookbook;

import java.net.URL;
import java.net.MalformedURLException;

public class TraditionalMainApplication
{
 private static final String COMMAND_LINE_USAGE =
 "TraditionalMainAppliction usage :\n\n" +
 "\tjava TraditionalMainApplication <url>";

 public static void main(String[] args)
 {
 if (args.length == 1)
 {
 try
 {
 // Assuming that the first argument supplied is a url
 // Concentrating on the business logic, not validation which
 // is handled by the aspect.
 URL url = new URL(args[0]);

 System.out.println("Application Started, doing stuff with " + url);
 }
 catch (MalformedURLException mue)
 {
 System.err.println(COMMAND_LINE_USAGE);
 System.err.println("Please enter a valid URL for <url>");
 }
 }
 else
 {
 System.err.println(COMMAND_LINE_USAGE);
 }
 }
}

First, the traditionalMainApplication class declares the COMMAND_LINE_USAGE constant that

contains a message that will be displayed to the user if a problem occurs with the arguments passed
to the main method. Then an if statement within the main method checks that the right number of

arguments have been supplied; if not, the error message is displayed. Finally, one of the parameters
is a URL, and since this could be invalid, this is checked by a try/catch block. All of this occurs
before the main method can do anything useful such as starting the application.

Refactoring the checking logic into a separate method moves the problem to another part of the
same class and doesn't offer a satisfactory solution. AspectJ can remove these messy beginnings to
your application by creating an aspect such as the one shown in Example 20-2.

Example 20-2. Parameter checking using an aspect

package com.oreilly.aspectjcookbook;

import java.net.URL;
import java.net.MalformedURLException;

public aspect VerifyMethodArgsAspect
{
 private static final String COMMAND_LINE_USAGE =
 "MyAppliction usage :\n\n" +
 "\tjava MainApplication <url>";

 public pointcut captureMain(String[] arguments) :
 execution(void MainApplication.main(String[])) &&
 args(arguments);

 public pointcut createURLCalledinMainMethod() :
 call(java.net.URL.new(..)) &&
 withincode(public void MainApplication.main(String[]));

 void around(String[] arguments) : captureMain(arguments)
 {
 if (arguments.length == 1)
 {
 // Test that the host and port are valid
 try
 {
 URL url = new URL(arguments[0]);
 proceed(arguments);
 }
 catch(MalformedURLException mfe)
 {
 System.err.println(COMMAND_LINE_USAGE);
 System.err.println("Please enter a valid URL for <url>");
 }
 }
 else
 {
 System.err.println(COMMAND_LINE_USAGE);
 }
 }

 // If necessary soften the exception that would normally have been raised
 // if the url parameter was badly formed, but only in the validated main
 // method
 declare soft : MalformedURLException : createURLCalledinMainMethod();

}

The VerifyMethodArgsAspect aspect declares the captureMain(String[]) pointcut that interrupts
the execution of the main method and provides the arguments to the corresponding advice. The
around() advice then checks the number of parameters and that the URL parameter is valid before
calling proceed() with the original arguments if everything checks out. If any problems occur with

the arguments then the error messages are displayed in the same way as before.

Using an aspect to modularize the parameter checking logic leaves your main method looking much

neater without losing any of that important checking behavior, as shown in Example 20-3.

Example 20-3. Providing the parameter checking logic via an aspect
leaves the main method to focus on its job

package com.oreilly.aspectjcookbook;

import java.net.URL;

public class MainApplication
{

 public static void main(String[] args)
 {
 // Assuming that the first argument supplied is a url
 // Concentrating on the business logic, not validation which
 // is handled by the aspect.
 URL url = new URL(args[0]);

 System.out.println("Application Started, doing stuff with " + url);
 }
}

The main method logic still uses the URL argument as before, but because the aspect has provided
the necessary checking to ensure a problem will not occur, it is reasonably safe to use the declare
soft statement to save the main method from having to explicitly handle the
MalformedURLException.

The createURLCalledinMainMethod() pointcut captures where the exception would normally be
raisedi.e., when a java.net.URL instance is created and within the main methodand this is the only
join point where the MalformedURLException is to be softened. Without this softening of the
exception, the main method would have to handle the possibility of a MalformedURLException being

thrown even with the aspect based checking.

See Also

The execution(Signature) pointcut is described in Recipe 4.4; The args([TypePatterns ||
Identifiers]) pointcut is covered in Recipe 11.3; the around() form of advice is shown in Recipe

13.4; softening exceptions is discussed in Recipe 16.5.

Recipe 20.2. Overriding the Class Instantiated on a Call to
a Constructor

Problem

You want to be able to control the actual classes that are instantiated on a constructor call.

Solution

Use the Cuckoo's Egg aspect-oriented design pattern to create an aspect that modularizes the
override of a constructor call to be able to vary the implementation returned at runtime. Use the
call(Signature) pointcut to capture calls to a classes constructor and then use around() advice

to return a different object.

Discussion

It can be useful to be able to migrate to different implementations of an interface or specialization of
a base class without affecting the code that uses that interface or base class. Traditionally, deciding
the class selection is performed at object construction time, as shown in Example 20-4.

Example 20-4. Hardcoding the selection of the MyClass implementation of
MyInterface

public static void traditionalObjectOrientedImplementationSelection()
{
 MyInterface myObject = new MyClass(); // Specifies the MyClass
 // implementation of the
 // MyInterface interface

 System.out.println(myObject);
 myObject.foo(); // Calls the MyClass implementation of the foo() method
}

This code produces the following output:

com.oreilly.aspectjcookbook.MyClass@cf8583
foo() called on MyClass

To change the implementation of MyInterface, the code would need to be changed to:

public static void traditionalObjectOrientedImplementationSelection()
{
 MyInterface myObject = new AnotherClass(); // Specifies the
 // AnotherClass
 // implementation of the
 // MyInterface interface

 System.out.println(myObject);
 myObject.foo(); // Calls the AnotherClass
 // implementation of the foo() method
}

This will produce the following output:

com.oreilly.aspectjcookbook.AnotherClass@dbe178
foo() called on AnotherClass

The client code doesn't care what the implementation of the MyInterface interface is when making
calls to the foo() method since, in Java, the method is called dynamically at runtime based on the
object type. The disadvantage of this approach is that the implementation class (MyClass or
AnotherClass) is exposed when it is instantiated. Anywhere this interface is used, at least one line of

implementation-specific code can occur and if you wanted to change the implementation, this would
result in an error-prone ripple of changes across your application to migrate to the new class.

A common way around this problem is to use a factory method or an abstract factory design pattern.
Aspect-oriented techniques offer advantages to both of these approaches, as shown in Recipes
Recipe 13.3 and Recipe 13.4 respectively. However, things can be made simpler and neater by using
AspectJ's call(Signature) pointcut and around() advice, as shown in Example 20-5.

Example 20-5. Using an aspect to override instantiation of a class

package com.oreilly.aspectjcookbook;

public aspect ControlClassSelectionAspect
{
 public pointcut myClassConstructor() : call(MyClass.new());

 Object around() : myClassConstructor()
 {
 return new AnotherClass();
 }
}

The ControlClassSelectionAspect declares the myClassConstructor() pointcut that intercepts
calls to instantiate a MyClass object. The corresponding around() advice then returns a new instance

of the overriding AnotherClass class.

The class that is instantiated and returned from your around() advice must

be a subtype of the type expected on the overridden constructor call. For
instance, in Example 20-5, AnotherClass must extend MyClass as the
constructor call being overridden specified that it is creating a new MyClass().
If the around() advice returned an object that was not a subtype of MyClass,
you'd get ClassCastException errors at runtime wherever the around()

advice was applied.

Using this technique, the code in Example 20-4 does not need to be changed at all to use the
AnotherClass implementation of the MyInterface interface. If the ControlClassSelectionAspect
is woven into the application, the AnotherClass implementation automatically overrides the MyClass

implementation.

You could refine the myClassConstructor() pointcut further so the MyClass constructor could be
overridden in certain circumstances. You could, for example, add within(TypePattern) or
withincode(Signature) pointcut definitions to declare the overriding should only occur within a

designated scope.

You could examine a user-defined runtime parameter to vary the implementation that is instantiated
within the around() advice:

Object around() : myClassConstructor() &&
 if (System.getProperty("select_class").equals("AnotherClass"))
{
 return new AnotherClass();
}

This variation would allow you to change the class instantiated at runtime by changing the value of
your application's select_class runtime parameter without being forced to recompile your

application.

Looking ahead, Recipe 23.1 shows a typical use of the Cuckoo's Egg aspect-
oriented design pattern. This pattern provides a common solution to the
problem of overriding a call to a constructor to return a different object than
expected.

See Also

The call(Signature) pointcut when used to capture calls on constructors is described in Recipe 7.1;
the around() form of advice is discussed in Recipe 13.4; the within(TypePattern) and
withincode(Signature) pointcuts are described in Recipes Recipe 9.1 and Recipe 9.3 respectively;

the Cuckoo's Egg aspect-oriented design pattern is discussed in Recipe 23.1.

Recipe 20.3. Adding Persistence to a Class

Problem

You want to add persistence to a class so it can be saved and restored.

Solution

Apply the Director aspect-oriented design pattern and create an abstract aspect that defines the roles
and behavior required to manage object persistence, as shown in Example 20-6.

This abstract aspect can be extended into specialized subaspects that will implement an appropriate
persistence mechanism for each collection of persisted objects within your application.

Example 20-6. Defining the generic roles and behavior of persistence in an
abstract aspect

public abstract aspect PersistenceAspect
{
 public interface ObjectStore
 {
 public void persist();
 public void restore();
 }

 protected abstract pointcut restoreStorage(ObjectStore store);

 after(ObjectStore store) : restoreStorage(store)
 {
 store.restore();
 }

 protected abstract pointcut persistStorage(ObjectStore store);

 after(ObjectStore store) : persistStorage(store)
 {
 store.persist();
 }
}

Discussion

The abstract PersistenceAspect aspect defines the ObjectStore role as an interface that can be

applied to any class that will manage the persistence of a collection of objects. The
restoreStorage(ObjectStore) and persistStorage(ObjectStore) abstract pointcuts are
implemented by specialized subaspects to trigger the corresponding after() advice blocks that will
restore or persist the specified ObjectStore.

The restore() and persist() methods specified in the ObjectStore interface are implemented

according to the specific persistence strategy for a collection of objects within your application so you
can vary the persistence strategy on a per ObjectStore basis.

Example 20-7 shows how the abstract PersistenceAspect can be implemented to provide
persistence to an Employee class managed as a collection within the EmployeeCollection class.

Example 20-7. Applying the abstract Persistence aspect to the Employee
and EmployeeCollection classes

public aspect EmployeePersistenceAspect extends PersistenceAspect
{
 declare parents : EmployeeCollection implements ObjectStore;

 protected pointcut restoreStorage(ObjectStore store) :
 execution(EmployeeCollection.new(..)) &&
 target(store);

 protected pointcut persistStorage(ObjectStore store) :
 call(* java.util.List.add(..)) &&
 target(EmployeeCollection) &&
 target(store);

 declare parents : Employee extends Serializable;

 private File EmployeeCollection.employeesFile = new File("employees.ser");

 public void EmployeeCollection.persist()
 {
 try
 {
 ObjectOutput out = new ObjectOutputStream(
 new FileOutputStream(this.employeesFile));

 Object[] objectsToStore = this.toArray();
 out.writeObject(objectsToStore);
 out.flush();
 out.close();
 }
 catch (Exception e)
 {
 System.err.println("Couldn't store employees to " +

 this.employeesFile);
 }
 }

 public void EmployeeCollection.restore()
 {
 if (this.employeesFile.exists() && this.employeesFile.canRead())
 {
 try
 {
 ObjectInput input = new ObjectInputStream(
 new FileInputStream(this.employeesFile));

 Object[] objectsToRestore = (Object[]) input.readObject();
 for(int x = 0; x < objectsToRestore.length; x++)
 {
 this.add(objectsToRestore[x]);
 }

 input.close();
 }
 catch (Exception e)
 {
 System.err.println(
 "Couldn't restore employees due to a corrupt " +
 this.employeesFile +
 " file");
 e.printStackTrace();
 }
 }
 }
}

The EmployeePersistenceAspect applies the ObjectStore interface to the EmployeeCollection
class. The restoreStorage(ObjectStore) aspect is then implemented to capture when the
EmployeeCollection is constructed and uses the target(TypePattern || Identifier) pointcut to
expose the EmployeeCollection as the ObjectStore to be restored.

The persistStorage(ObjectStore) pointcut is implemented to capture whenever the
EmployeeCollection is changed and to persist the contents of the ObjectStore at this point. The
EmployeeCollection is a specialization of java.util.ArrayList; to avoid weaving directly into the
Java standard libraries, a call(Signature) pointcut is used to capture when the add(..) method is
called on java.util.List.

However, the call(Signature) pointcut definition on its own is too general, so you must restrict the
join points captured by the persistStorage(ObjectStore) pointcut to only capturing when add(..)
is called on an EmployeeCollection. To apply this restriction, the first target(TypePattern ||
Identifier) pointcut uses a TypePattern to specify you are only interested in join points where the
target of the join point is an EmployeeCollection class. The second target(TypePattern ||
Identifier) pointcut uses an Identifier to pass the current ObjectStore to the advice block as
the persistStorage(ObjectStore) pointcut's single parameter.

Finally, a straightforward object serialization persistence strategy is applied to the
EmployeeCollection. Each object within the EmployeeCollection is an instance of the Employee
class, and this class is extended to implement the Serializable interface so it can be subjected to
standard Java object serialization techniques. The serialized Employee objects are to be stored in a
file; therefore, this file information is added to the EmployeeCollection class in the form of an
employeesFile attribute.

To complete the picture, the persist() and restore() method implementations are added to the
EmployeeCollection class so it can meet the behavior required of the ObjectStore interface. These
methods execute the serialization and restoration of the Employee objects to and from the file
indicated by the employeesFile attribute.

In Example 20-7, the EmployeeCollection was persisted every time it was changed. This could be

overkill for your application, but you can change the join points captured by the
persistStorage(ObjectStore) pointcut to persist an ObjectStore more applicable to your own

application.

Example 20-8 shows part of an alternative implementation of the abstract PersistenceAspect that
only persists its corresponding ObjectStore when the application is shutting down.

Example 20-8. Declaring that an ObjectStore should be persisted when an
application is shut down

public privileged aspect AccountPersistenceAspect extends PersistenceAspect
{
 declare parents : MainApplication implements ObjectStore, Runnable;

 protected pointcut restoreStorage(ObjectStore store) :
 execution(MainApplication.new(..)) &&
 target(store);

 protected pointcut persistStorage(ObjectStore store) :
 execution(public void MainApplication.run()) &&
 this(store);

 declare parents : Account extends Serializable;

 private File MainApplication.accountsFile = new File("accounts.ser");

 public void MainApplication.persist()
 {
 // ... Code to persist the Accounts ...
 }

 public void MainApplication.restore()
 {
 // ... Code to restore the Accounts ...
 }

 after(MainApplication mainApplication) :

 restoreStorage(ObjectStore) &&
 target(mainApplication)
 {
 // Register a shutdown hook
 Thread shutdownThread = new Thread(mainApplication);
 Runtime.getRuntime().addShutdownHook(shutdownThread);
 }

 public void MainApplication.run()
 {
 // Do nothing, merely provides the trigger that the shutdown hook has been
 // executed so as to persist the store on shutdown.
 }
}

The AccountPersistenceAspect declares that the MainApplication class is to fulfill the
ObjectStore interface and adds the Runnable interface as well. The Runnable interface, from
java.lang, is used in Java as the interface to all objects that can be executed in their own thread.
The public void run() method is required by the Runnable interface to provide the entry point

for the Java Virtual Machine (JVM) to execute the class in its own thread.

In this example, the persistStorage(ObjectStore) pointcut is amended to capture the execution of
the Runnable enforced public void run() method on the MyApplication class. The
AccountPersistenceAspect then adds the necessary run() method implementation to the
MainApplication class to meet the needs of the Runnable interface, but this merely provides a

marker and does not need any implementation.

The addition of the Runnable interface and the stub run() method on the MainApplication class
means that the MainApplication can be registered with the JVM as a shutdown hook so the
MainApplicatin.run() method will be called when the overall application finishes normally.

Registering the MainApplication class as a shutdown hook is completed by the
around(MainApplication) advice block executed when an ObjectStore that is a MainApplication

class is restored.

By using the MainApplication as a shutdown hook, the persistStorage(ObjectStore) pointcut
will trigger the persisting of the MainApplication's objects when the shutdown hook is triggered.
Therefore, the collection of Account classes stored within the MainApplication will be persisted

once the application is shut down cleanly.

See Also

The call(Signature) pointcut is discussed in Recipe 4.1; the execution(Signature) pointcut is
explained in Recipe 4.4; the this(TypePattern | Identifier) pointcut is explained in Recipe 9.1;
the target(TypePattern | Identifier) pointcut is described in Recipe 9.2; the after() form of

advice is described in Recipe 13.5; specializing abstract aspects is discussed in detail in Recipe 15.2;
extending an existing class using the declare parents statement is explained in Recipe Recipe 16.2;

the Director aspect-oriented design pattern is described in Recipe 23.2.

Recipe 20.4. Applying Mock Components to Support Unit
Testing

Problem

You want to unit test your own component in isolation by providing a test harness implementation of
a component that your component uses.

Solution

Create a mock implementation of the external component that your component depends on. Create
an aspect that applies the mock component implementation in place of the real component.

When unit testing is complete, use a separate AspectJ build configuration file to switch out the testing
aspect so the real implementation can be used again.

Discussion

When you are creating your software components, unit test those components in isolation to ensure
that the component works as it should. However, when your component relies on other components,
it can be tricky and error prone to manually unhook all of the dependencies to the external
components for the unit testing and to restore those hooks when unit testing is complete.

Example 20-9 shows a typical situation where MyComponent is the component to be tested, and it has
dependencies on an external implementation of ThirdPartyComponentInterface . The real
implementation of ThirdPartyComponentInterface is retrieved by making a call to the factory
method ThirdPartyFactory.getThirdPartyComponent().

Example 20-9. Creating and using an external component

package com.ourcompany;

import com.thirdparty.ThirdPartyComponentFactory;
import com.thirdparty.ThirdPartyComponentInterface;

public class MyComponent implements MyComponentInterface
{
 private ThirdPartyComponentInterface thirdPartyComponent;

 public MyComponent()
 {
 this.thirdPartyComponent = ThirdPartyComponentFactory.
 getThirdPartyComponent();
 System.out.println("Component found " + thirdPartyComponent);
 }

 public void foo()
 {
 System.out.println("Inside MyComponent.foo()");
 this.thirdPartyComponent.bar();
 }
}

Example 20-9 shows the use of a factory class, but this is not a mandatory
feature of this recipes solution. Overriding the instantiation of a third-party
component directly is possible using the same techniques as shown in Recipe
20.2 without the need for a factory.

To run a unit test against MyComponent in isolation, you will need to override the
ThirdPartyComponent implementation so you will not confuse the test results by including the real

external component in the test. One strategy is to apply a mock component that overrides the real
component implementation manually, as shown in Example 20-10.

Example 20-10. Creating a mock class and then manually amending your
component to use the new mock object

package test.com.ourcompany;

import com.thirdparty.ThirdPartyComponentInterface;

public class MockThirdPartyComponent implements ThirdPartyComponentInterface
{
 public void bar()
 {
 System.out.println("Inside MockThirdPartyComponent.bar()");
 }
}

package com.ourcompany;

import com.thirdparty.ThirdPartyComponentFactory;
import com.thirdparty.ThirdPartyComponentInterface;
import test.com.ourcompany.MockThirdPartyComponent;

public class MyComponent implements MyComponentInterface
{

 private ThirdPartyComponentInterface thirdPartyComponent;

 public MyComponent()
 {
 // Manually commented out for unit testing purposes
 // this.thirdPartyComponent =
 // ThirdPartyComponentFactory.getThirdPartyComponent();

 // Replaced with mock object
 this.thirdPartyComponent = new MockThirdPartyComponent();

 System.out.println("Component found " + thirdPartyComponent);
 }

 public void foo()
 {
 System.out.println("Inside MyComponent.foo()");

 this.thirdPartyComponent.bar();
 }
}

The MockThirdPartyComponent is under your control, unlike the real implementation of the
ThirdPartyComponentInterface, so you can tailor the component to test your MyComponent
correctly. The MyComponent is no longer reliant on the real implementation of the
ThirdPartyComponentInterface, so you can safely conclude that any problems that occur when it is

tested are your problems.

After your unit testing is complete and you are satisfied that MyComponent is working correctly, the

mock component can be removed and the original code uncommented. Using this method, switching
back to the real implementation of ThirdPartyComponentInterface is another manual and

potentially error-prone task.

Though the solution in Example 20-10 works fine, it can be a difficult approach to manage if your
component uses more than a few interfaces. Using an aspect-oriented alternative, an aspect can be
created that intercepts the creation of the ThirdPartyComponent and overrides the returned object

with your mock object implementation, as shown in Example 20-11.

Example 20-11. Using an aspect to apply a mock object for isolation unit
testing purposes

package test.com.ourcompany;

import com.thirdparty.*;

public aspect MockThirdPartyComponentAspect
{
 public pointcut catchThirdPartyConstructor() :
 call(ThirdPartyComponentInterface ThirdPartyComponentFactory.
 getThirdPartyComponent());

 Object around() : catchThirdPartyConstructor()
 {
 return new MockThirdPartyComponent();
 }

The catchThirdPartyConstructor() pointcut catches calls to the
ThirdPartyFactory.getThirdPartyComponent() method and uses the associated around()
advice to return your MockThirdPartyComponent object rather than the real implementation of the
ThirdPartyComponentInterface. By using aspects rather than manual code changes, your

component is prepared for isolation unit testing automatically after the aspect is woven into your
application.

Similar to Recipe 6.3, this recipe shows another typical application of the
Cuckoo's Egg aspect-oriented design pattern, which is discussed in Recipe 23.1.

You can switch between using the real or mock implementation of the external component at compile
time by creating two different AspectJ build configuration files. A build configuration file that includes
the mock object testing aspect will result in a build that will be all set for isolation unit testing of your
component, and a build configuration file that excludes the mock object testing aspect will result in a
deployment build that uses the real implementation of the external component.

AspectJ makes the task of applying mock objects for testing purposes less intrusive to your code,
much more scalable and much less of a headache when it comes to switching between testing and
deployment builds.

See Also

Using different build configurations to vary the aspects applied to an application is explained in Recipe
2.5; the call(Signature) pointcut is described in Recipe 4.1; the around() form of advice is

covered in Recipe Recipe 13.4; how to implement the Abstract Factory and Factory Method design
patterns using AspectJ is shown in Recipes Recipe 17.3 and Recipe 17.4, respectively; the Cuckoo's
Egg aspect-oriented design pattern is discussed in Recipe 23.1.

Chapter 21. Applying Application Scale
Aspects

Introduction

Recipe 21.1. Applying Aspect-Oriented Tracing

Recipe 21.2. Applying Aspect-Oriented Logging

Recipe 21.3. Applying Lazy Loading

Recipe 21.4. Managing Application Properties

Introduction

Application scale aspects affect significant areas of your software and are often characteristics of your
software that affect many, even all, of the classes within your application. This chapter focuses on a
set of these system scale cross-cutting concerns where AspectJ can be used to implement their
characteristics better. The recipes in this chapter can be split into two categories: passive and active
aspects.

Passive aspects are interceptors, or observers, or your application's logic and do not affect or
feedback into this logic in an obvious way. One of the key characteristics of a passive aspect is that it
will usually only contain before() and after() advice, and if around() advice is used, it will still
always call the proceed() method.

Active aspects affect the application to which they are applied in ways such as changing logical paths
through the software. Although both aspects affect your application's code when they are compiled
and woven, active aspects will change the behavior of your application. Active aspects often contain
around() advice that may not call the proceed() method and can override the triggering join

point that was part of the original business logic.

This chapter begins by showing two passive application scale aspects that implement tracing and
logging . Tracing and logging are almost the "Hello World" use cases for AspectJ, partially because
they are good examples of flexible and modularized application-wide cross-cutting behavior. Although
tracing and logging are not the most interesting of aspects, they are powerful examples of passive
aspect implementation in AspectJ.

In the category of more active aspects, this chapter ends by showing how an application's properties
can be managed better by modularizing how they are stored and how they are applied and updated
using aspects. A property management aspect interacts directly with any classes that use those
properties and can monitor the internals of those classes to register when a property has been
updated.

Recipe 21.1. Applying Aspect-Oriented Tracing

Problem

You want to apply tracing to areas of your application using AspectJ.

Solution

Create an abstract base aspect, as shown in Example 21-1, to encapsulate the generic tracing logic.
Extend the generic tracing aspect using specialized subaspects to include or exclude areas of your
application from the tracing.

Example 21-1. An abstract tracing aspect that defines the generic tracing
logic to be specialized for your application

import org.aspectj.lang.JoinPoint;

public abstract aspect TracingAspect
{
 public abstract pointcut pointsToBeTraced();

 public abstract pointcut pointsToBeExcluded();

 public pointcut filteredPointsToBeTraced(Object caller) :
 pointsToBeTraced() &&
 !pointsToBeExcluded() &&
 !within(com.oreilly.aspectjcookbook.tracing.TracingAspect+) &&
 this(caller);

 public pointcut catchStaticCallers() :
 pointsToBeTraced() &&
 !pointsToBeExcluded() &&
 !within(com.oreilly.aspectjcookbook.tracing.TracingAspect+) &&
 !filteredPointsToBeTraced(Object);

 before(Object caller) : filteredPointsToBeTraced(caller)
 {
 traceBefore(thisJoinPoint, caller);
 }

 before() : catchStaticCallers()
 {

 traceStaticBefore(thisJoinPoint);
 }

 after(Object caller) : filteredPointsToBeTraced(caller)
 {
 traceAfter(thisJoinPoint, caller);
 }

 after() : catchStaticCallers()
 {
 traceStaticAfter(thisJoinPoint);
 }

 protected void traceBefore(JoinPoint joinPoint, Object caller)
 {
 System.out.println(caller + " calling " +
 joinPoint.getSignature() + " @ " +
 joinPoint.getSourceLocation());
 }

 protected void traceStaticBefore(JoinPoint joinPoint)
 {
 System.out.println("Static code calling " +
 joinPoint.getSignature() + " @ " +
 joinPoint.getSourceLocation());
 }

 protected void traceAfter(JoinPoint joinPoint, Object caller)
 {
 System.out.println("Returning from call to" +
 joinPoint.getSignature() + " @ " +
 joinPoint.getSourceLocation());
 }

 protected void traceStaticAfter(JoinPoint joinPoint)
 {
 System.out.println("Returning from static call to " +
 joinPoint.getSignature() + " @ " +
 joinPoint.getSourceLocation());
 }

 private static aspect FormatCallDepthAspect
 {
 private static int callDepth;

 private pointcut captureTraceBefore() :
 call(protected void TracingAspect.trace*Before(..));

 private pointcut captureTraceAfter() :
 call(protected void TracingAspect.trace*After(..));

 after() : captureTraceBefore()

 {
 callDepth++;
 }

 before() : captureTraceAfter()
 {
 callDepth--;
 }

 private pointcut captureMessageOutput(String message) :
 call(* *.println(String)) &&
 args(message) &&
 within(TracingAspect) &&
 !within(FormatCallDepthAspect);

 Object around(String originalMessage) : captureMessageOutput
 (originalMessage)
 {
 StringBuffer buffer = new StringBuffer();
 for (int x = 0; x < callDepth; x++)
 {
 buffer.append(" ");
 }
 buffer.append(originalMessage);

 return proceed(buffer.toString());
 }
 }
}

Discussion

The tracingAspect has a couple of abstract pointcuts, pointsToBeTraced() and
pointsToBeExcluded() , to allow specialized subaspects to specify the areas of the target

application to be subjected to the tracing.

The filteredPointsToBeTraced(Object) pointcut then combines the pointsToBeTraced() and
pointsToBeExcluded() pointcuts along with logic for excluding the TRacingAspect itself and

exposure of the calling object that triggered the tracing. This combined pointcut captures all of the
join points to be traced within the target application that have a calling object. Unfortunately, the
filteredPointsToBeTraced(Object) pointcut will exclude those join points that occur in a static
code block because of the use of the this(TypePattern | Identifier) pointcut.

The catchStaticCallers() pointcut solves this problem by capturing all of the join points to be
included in the tracing but not caught by the filteredPointsToBeTraced(Object) pointcut.

Two sets of before() and after() advice output the tracing messages to System.out. One set

performs the message output for when the calling object is available; the other set does the same
thing for when the calling object is not available.

If the tracingAspect was left at that, the tracing messages would be a little hard to read. It would

be useful to format the tracing messages appropriately by indenting each message according to the
current call depth. This turns out to be an aspect-wide cross-cutting concern because all of the advice
blocks in the aspect will need to be affected with the appropriate formatting logic.

The FormatCallDepth inner aspect meets the formatting needs for all of the tracing messages across
the tracingAspect aspect. The FormatCallDepth aspect keeps an internal count on the current call
depth by monitoring when the tracingAspect performs before and after tracing. When the
TRacingAspect makes a tracing call to System.out, the FormatCallDepth aspect amends the

tracing message according to the current call depth.

Example 21-2 shows how the TRacingAspect aspect can be applied to an example application.

Example 21-2. Applying the TracingAspect to a specific example
application

public aspect ApplicationSpecificTracingAspect extends TracingAspect
{
 public pointcut pointsToBeTraced() : call(* *.*(..));

 public pointcut pointsToBeExcluded() : call(void java.io.
 PrintStream.*(..));
}

See Also

The call(Signature) pointcut is described in Recipe 4.1; the within(TypePattern) pointcut is
described in Recipe 9.1; the this(TypePattern | Identifier) pointcut is explained in Recipe 7.1;
the args([TypePatterns || Identifiers]) pointcut is covered in Recipe 7.3; the AND (&&)
operator and the OR (||) operator are described in Recipes 12.2 and 12.3 respectively; the before(
) form of advice is explained in Recipe 13.3; the around() form of advice, including using the
proceed() method, is discussed in Recipe 13.4; the after() form of advice is explained in Recipe

13.5; using inheritance to implement abstract aspects is explained in Recipe 15.2; defining and using
inner aspects is explained in Recipe 15.4.

Recipe 21.2. Applying Aspect-Oriented Logging

Problem

You want to apply logging in a modular and application independent way.

Solution

Create an abstract Logging aspect that extends the generic TRacingAspect from Recipe 21.1. Extend
the tracingAspect with abstract pointcut definitions and advice for exception logging to complete

the logging aspect, as shown in Example 21-3. The new exception logging abstract pointcut
definitions allow specialized subaspects to capture areas of the target application where exception
logging needs to take place.

Example 21-3. An abstract logging aspect that defines the generic logging
logic to be specialized for your application

public abstract aspect LoggingAspect extends TracingAspect
{
 protected abstract pointcut exceptionsToBeLogged();

 private pointcut filteredExceptionCapture() :
 exceptionsToBeLogged() &&
 !pointsToBeExcluded();

 before() : filteredExceptionCapture()
 {
 logException(thisJoinPoint);
 }

 public abstract void logException(JoinPoint joinPoint);
}

Discussion

The LoggingAspect aspect inherits all of the behavior from the TRacingAspect shown in Recipe 21.1
but adds some new capabilities specific to logging. The exceptionsToBeLogged() abstract pointcut is

provided so specialized subaspects can specify the join points where exception information is to be
logged. The logException(JoinPoint) abstract method allows subaspects to implement the exact

behavior that will occur when exceptions are logged.

The handler(TypePattern) pointcut is the most appropriate pointcut

declaration to use in the specialized subaspects when implementing the
abstract exceptionsToBeLogged() pointcut. However, no way exists to
restrict the exceptionsToBeLogged() pointcut to just hand-
ler(TypePattern) pointcut definitions.

The filteredExceptionCapture() pointcut then combines the exceptionsToBeLogged() pointcut
with the pointcutsToBeExcluded() pointcut inherited from the tracingAspect so any join points

that have been declared as excluded continue to be excluded from the logging.

Example 21-4 shows how the abstract LoggingAspect in Example 21-3 can be applied to an example

application.

Example 21-4. Implementing logging for an example application

public aspect ApplicationLoggingAspect extends LoggingAspect
{
 public pointcut pointsToBeTraced() : call(* *.*(..));

 public pointcut pointsToBeExcluded() : call(* java.io.*.*(..));

 public pointcut exceptionsToBeLogged() :
 handler(com.oreilly.aspectjcookbook.PackageA.BusinessException);

 protected void traceBefore(JoinPoint joinPoint, Object caller)
 {
 System.out.println("Log Message: Called " + joinPoint.getSignature());
 }

 protected void traceStaticBefore(JoinPoint joinPoint)
 {
 System.out.println("Log Message: Statically Called " +
 joinPoint.getSignature());
 }

 protected void traceAfter(JoinPoint joinPoint, Object object)
 {
 System.out.println("Log Message: Returned from " +
 joinPoint.getSignature());
 }

 protected void traceStaticAfter(JoinPoint joinPoint)
 {
 System.out.println("Log Message: Returned from static call to " +
 joinPoint.getSignature());
 }

 protected void logException(JoinPoint joinPoint)

 {
 System.out.println("Log Message: " + joinPoint.getArgs()[0] +
 " exception thrown");
 }

 private static aspect FormatCallDepthAspect
 {
 private static int callDepth;

 private pointcut captureTraceBefore() :
 call(protected void TracingAspect.trace*Before(..));

 private pointcut captureTraceAfter() :
 call(protected void TracingAspect.trace*After(..));

 after() : captureTraceBefore()
 {
 callDepth++;
 }

 before() : captureTraceAfter()
 {
 callDepth--;
 }

 private pointcut captureMessageOutput(String message) :
 call(* *.println(String)) &&
 args(message) &&
 within(ApplicationLoggingAspect) &&
 !within(FormatCallDepthAspect);

 Object around(String originalMessage) : captureMessageOutput
 (originalMessage)
 {
 StringBuffer buffer = new StringBuffer();
 for (int x = 0; x < callDepth; x++)
 {
 buffer.append(" ");
 }
 buffer.append(originalMessage);

 return proceed(buffer.toString());
 }
 }
}

The ApplicationLoggingAspect aspect provides an implementation of the pointsToBeTraced()
and pointsToBeExcluded() pointcuts to specify the areas of the target application to be logged and
excluded from logging. The new exception logging pointcut, exceptionsToBeLogged(), is
implemented to meet the requirements of the LoggingAspect.

The FormatCallDepth inner aspect is included in the ApplicationLoggingAspect for convenience to
make the logging messages easy to read when they are output through System.out. If you were

using a full logging solution, this inner aspect would most likely not be required as the logging API
would probably provide formatting options of its own.

You can plug in any logging API you want to use by placing the code that
initializes and invokes your logging API in the specialized subaspects of the
LoggingAspect aspect.

The abstract LoggingAspect aspect supports multiple subaspects potentially logging parts of your

application in different ways at the same time. The code sample in Example 21-5 shows how an
additional aspect could be added to logs calls to targets within a specific package using an XML
format for the message output.

Example 21-5. Applying multiple logging solutions to the same application

public aspect PackageSpecificLoggingAspect extends LoggingAspect
{
 declare precedence : ApplicationLoggingAspect,
 PackageSpecificLoggingAspect;

 public pointcut pointsToBeTraced() :
 call(* com.oreilly.aspectjcookbook.PackageA.*.*(..));

 public pointcut pointsToBeExcluded() : call(void java.io.
 PrintStream.*(..));

 public pointcut exceptionsToBeLogged() : handler(PackageA.*);

 protected void traceBefore(JoinPoint joinPoint, Object object)
 {
 System.out.println("<before>" + joinPoint.getSignature() +
 "</before>");
 }

 protected void traceStaticBefore(JoinPoint joinPoint)
 {
 System.out.println("<before type=\"static\">" +
 joinPoint.getSignature() + "</before>");
 }

 protected void traceAfter(JoinPoint joinPoint, Object object)
 {
 System.out.println("<after>" + joinPoint.getSignature() + "</after>");
 }

 protected void traceStaticAfter(JoinPoint joinPoint)
 {

 System.out.println("<after type=\"static\">" +
 joinPoint.getSignature() + "</after>");
 }

 protected void logException(JoinPoint joinPoint)
 {
 System.out.println("<exception>" + joinPoint.getSignature() +
 "</exception>");
 }

See Also

The call(Signature) pointcut is described in Recipe 4.1; the handler(TypePattern) pointcut is
shown in Recipe Recipe 5.1; the AND (&&) operator and the OR (||) operator are described in
Recipes 12.2 and 12.3 respectively; the before() form of advice is explained in Recipe 13.3; the
around() form of advice, including using the proceed() method, is discussed in Recipe 13.4; the
after() form of advice is explained in Recipe Recipe 13.5; using inheritance to implement abstract

aspects is explained in Recipe 15.2; defining and using inner aspects is explained in Recipe 15.4.

Recipe 21.3. Applying Lazy Loading

Problem

You want to apply lazy loading techniques to a component of your application.

Solution

Use the Director aspect-oriented design pattern to set up the roles involved in lazy loading as
interfaces inside an abstract aspect, as shown in Example 21-6.

Example 21-6. Using the Director aspect-oriented pattern to define the
roles that take part in lazy loading

public abstract aspect LazyLoading extends DelegatingProxyPattern
{
 public interface RealComponent extends Subject
 {
 }

 public interface LazyProxy extends RealComponent
 {
 public RealComponent getRealComponent() throws LazyLoadingException;
 }

 public abstract LazyProxy initializeComponent(Object configuration);
}

The LazyLoading aspect in turn inherits from an implementation of the Proxy pattern, as shown in

Recipe 14.6, that focuses on the delegation characteristics of the Proxy pattern, as shown in Example
21-7.

Example 21-7. Specializing the ProxyPattern behavior to focus on
delegation

public abstract aspect DelegatingProxyPattern extends ProxyPattern
{
 protected boolean reject(
 Object caller,

 Subject subject,
 JoinPoint joinPoint)
 {
 return false;
 }

 protected boolean delegate(
 Object caller,
 Subject subject,
 JoinPoint joinPoint)
 {
 return true;
 }

 protected Object rejectRequest(
 Object caller,
 Subject subject,
 JoinPoint joinPoint)
 {
 return null;
 }
}

Finally, create specialized subaspects of the LazyLoading aspect that will implement the lazy loading

behavior for specific components of your target application.

Discussion

Lazy loading involves the loading and instantiation of a class being delayed until the point just before
the instance is used. The goal of lazy loading is to dedicate memory resources when necessary by
loading and instantiating an object at the point when it is needed.

The LazyLoading aspect in Example 21-6 builds in the DelegatingProxyPattern in Example 21-7 to
intercept calls to classes that it is to lazily load on demand. The DelegationProxyPattern in turn
specializes the ProxyPattern aspect from Recipe 14.6 to limit the scope to a delegation form of

proxy.

The RealComponent interface declared in the LazyLoading aspect is applied by specialized

subaspects to any classes within the target application to be lazily loaded. You need a proxy object to
store the information by which the real class can be instantiated when needed and this role is
provided by the LazyProxy interface.

The LazyProxy interface offers enough functionality to work with the real components without having
to load them. The LazyProxy defines a single method which is called to load the real component

when needed.

Finally, the LazyLoading abstract aspect defines the abstract initializeComponent(Object)

method which is implemented by subaspects to instantiate lazy proxies in place of the real
components.

Example 21-8 shows how the abstract LazyLoading aspect can be applied to an example application.

Example 21-8. Applying the LazyLoading abstract aspect to an
application's classes

package com.oreilly.aspectjcookbook.feature_management;

import org.aspectj.lang.JoinPoint;
import com.oreilly.aspectjcookbook.lazyloading.LazyLoading;
import com.oreilly.aspectjcookbook.lazyloading.LazyLoadingException;
import com.oreilly.aspectjcookbook.features.Feature;

public aspect LazyFeatureLoading extends LazyLoading
{
 declare parents : Feature implements RealComponent;

 declare parents : LazyProxy implements Feature;

 public LazyProxy initializeComponent(Object object)
 {
 LazyProxy proxy =
 new LazyFeatureProxy((String) object);
 return proxy;
 }

 protected pointcut requestTriggered() :
 call(* com.oreilly.aspectjcookbook.features.Feature.* (..)) &&
 !within(com.oreilly.aspectjcookbook.oopatterns.ProxyPattern+);

 protected Object delegateRequest(
 Object caller,
 Subject subject,
 JoinPoint joinPoint)
 {
 if (subject instanceof LazyFeatureProxy)
 {
 LazyFeatureProxy feature =
 (LazyFeatureProxy) subject;

 try
 {
 Feature implementedFeature =
 (Feature) feature.getRealComponent();

 implementedFeature.doSomething(
 (String) joinPoint.getArgs()[0]);

 }
 catch (LazyLoadingException lle)
 {

 lle.printStackTrace();
 lle.getOriginalException().printStackTrace();
 System.out.println(
 "Exception when attempting to "
 + "lazy load"
 + " a particular class,"
 + " aborting the call");
 }
 }
 else
 {
 ((Feature) subject).doSomething(
 (String) joinPoint.getArgs()[0]);
 }
 return null;
 }

 private class LazyFeatureProxy implements Feature, LazyProxy
 {
 private Object configuration;
 private Feature delegate;

 public LazyFeatureProxy(Object configuration)
 {
 this.configuration = configuration;
 }

 public synchronized RealComponent getRealComponent()
 throws LazyLoadingException
 {
 if (this.configuration instanceof String)
 {
 try
 {
 if (this.delegate == null)
 {
 return this.delegate =
 (Feature) Class
 .forName((String) this.configuration)
 .newInstance();
 }
 else
 {
 return this.delegate;
 }
 }
 catch (Exception e)
 {
 throw new LazyLoadingException(
 "Exception raised when loading real component", e);
 }
 }

 else
 {
 throw new LazyLoadingException("Error in configuration");
 }
 }

 public void doSomething(String message)
 {
 }
 }
}

The LazyFeatureLoading aspect encapsulates how to lazily load the category of classes that
implement the Feature interface. The two declare parent statements specify that any class
implementing the Feature interface meets the RealComponent role and that the LazyProxy can
replace a Feature to fulfill its role of providing a proxy for any Feature objects.

The initializeComponent(Object) method returns a LazyProxy instance set up with the necessary
configuration to load the real component. The initializeComponent(Object) method is called

whenever the target application decides that a particular instance is to be lazily loaded.

The requestTriggered(..) pointcut and the delegateRequest(..) method are required by the
abstract DelegatingProxyPattern. The requestTriggered(..) pointcut is used to capture all calls
to methods on classes that implement the Feature interface. Additional protection is provided to stop
the LazyFeatureLoading aspect advising itself when the method being called on a LazyProxy is

called by the aspect.

The delegateRequest(..) method examines the subject being called to see if it is an instance of the
LazyfeatureProxy class. If the subject is an instance of LazyFeatureProxy, the
getrealComponent() method is called to load the real component. The method call is then

forwarded to the real component.

Finally, the LazyFeatureLoading aspect defines the LazyFeatureProxy class. This class contains all
of the information necessary to load the corresponding real Feature implementation should a method
be called. The loading of the real Feature implementation is performed by the getrealComponent()
method required by the LazyProxy interface.

Example 21-9 shows how the LazyFeatureLoading aspect is used by an example application to
support the lazy loading of the FeatureA and FeatureB classes. In this example, both of these
classes implement the Feature interface.

Example 21-9. Using the LazyFeatureLoading aspect in an example
application

public class MainApplication
{
 private Feature[] features;

 public MainApplication()
 {

 features = new Feature[2];

 features[0] =
 LazyFeatureLoading
 .aspectOf()
 .initializeComponent(
 "com.oreilly.aspectjcookbook.features.FeatureA");

 features[1] =
 LazyFeatureLoading
 .aspectOf()
 .initializeComponent(
 "com.oreilly.aspectjcookbook.features.FeatureB");

 features[0].doSomething("Hello there");
 features[0].doSomething("Hello again");

 features[1].doSomething("Hi to you too");
 features[1].doSomething("Hi again");
 }

 public static void main(String[] args)
 {
 MainApplication mainApplication =
 new MainApplication();
 }
}

See Also

The call(Signature) pointcut is described in Recipe 4.1; the within(TypePattern) pointcut is
described in Recipe 9.1; the AND (&&) operator and the OR (||) operator are described in Recipes

12.2 and 12.3 respectively; using inheritance to implement abstract aspects is explained in Recipe
15.2; creating a delegating proxy pattern using aspects is shown in Recipe 18.6; the Director aspect-
oriented design pattern is explained in Recipe 23.2.

Recipe 21.4. Managing Application Properties

Problem

You want to manage your applications configuration properties transparently to your applications
classes.

Solution

Create an aspect that loads, supplies, monitors, and stores your applications properties.

Discussion

Java application properties are traditionally loaded from and managed by a singleton class. An
example of this is the System.getProperty() method, which returns a property supplied to the

application from the command line with the -D option.

Unfortunately, singletons tend to be a brittle solution resulting in many areas of your application
depending on the interface to the singleton. If the singleton's interface were to change, it is likely
that the many dependent areas of your application would have to change to incorporate the new
interface. This is the sort of cross-cutting concern that aspects can solve.

In traditional approaches to property management, the singleton property manager is a passive
participant in your application and responds to requests for property information from the various
parts of your application. The property manager doesn't have any knowledge of what is done with the
property information it provides, or where it goes, and is dependent on notifications when any
property is updated.

With an aspect-oriented approach to system properties, the perspective is switched around. The
mechanisms provided by AspectJ allow you to design your property manager so it will actively apply
the properties to those areas of your application where they are needed. All of the information about
where a property is deployed is contained within the aspect, so if new properties are required then
only the aspect will change.

The property managing aspect decouples the rest of the application from any considerations about
how a property is loaded, stored, and supplied. You are no longer tied to a simplistic name/value
form of interface to properties because that interface no longer exists. The aspect loads the
properties, applies them where they are needed, and stores them away when the application closes.

One final advantage to managing properties using aspects is that, because a property management
aspect is likely to be a privileged aspect to set the variables in the application that correspond to the
properties that it manages, it can monitor any changes to those variables if necessary to reflect those

changes back into its properties. This means that the aspect loads, supplies, and stores the
properties and can monitor the properties for changes removing any need for the application to notify
the properties manager when a property has changed.

Example 21-10 shows a property manager aspect for a simple example application.

Example 21-10. Loading, applying, monitoring, and storing an application's
properties usingaspects

package com.oreilly.aspectjcookbook;

import java.util.Properties;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;

public privileged aspect MyApplicationProperties
{
 // Property names

 private static final String MYCLASS_PROPERTY_NAME =
 "com.oreilly.aspectjcookbook.MyClass.property";

 private static final String MAINAPPLICATION_PROPERTY_NAME =
 "com.oreilly.aspectjcookbook.MainApplication.property";

 // Default property values

 private static final int DEFAULT_MAINAPPLICATION_PROPERTY = 1;

 private static final String DEFAULT_MYCLASS_PROPERTY =
 "Property Initialized:";

 // Property Storage

 private static final String PROPERTY_FILE_SYSTEM_PROPERTY = "props";

 private static final String DEFAULT_PROPERTIES_FILENAME =
 "myapplication.properties";

 Properties applicationProperties = new Properties();

 File propertiesFile;

 // Load Properties

 public MyApplicationProperties()
 {
 try
 {

 String propertyFilename = System.getProperty
 (PROPERTY_FILE_SYSTEM_PROPERTY);
 if (propertyFilename != null)
 {
 propertiesFile = new File(propertyFilename);
 }
 else
 {
 propertiesFile = new File(DEFAULT_PROPERTIES_FILENAME);
 }
 FileInputStream inputStream = new FileInputStream(propertiesFile);
 applicationProperties.load(inputStream);
 inputStream.close();
 }
 catch (Exception e)
 {
 // Just using default properties instead.
 System.err.println("Unable to load properties file,
 reverting to default values");
 }

 }

 // Supply Properties

 public pointcut mainApplicationInitialization() :
 staticinitialization(MainApplication);

 after() : mainApplicationInitialization()
 {
 try
 {
 int mainApplicationProperty =
 new Integer(
 applicationProperties.getProperty(
 MAINAPPLICATION_PROPERTY_NAME)).intValue();

 MainApplication.property = mainApplicationProperty;
 }
 catch (Exception e)
 {
 MainApplication.property = DEFAULT_MAINAPPLICATION_PROPERTY;

 applicationProperties.setProperty(
 MAINAPPLICATION_PROPERTY_NAME,
 new Integer(DEFAULT_MAINAPPLICATION_PROPERTY).toString());
 }
 }

 public pointcut myClassObjectCreation(MyClass myObject) :
 execution(public MyClass.new(..)) &&
 this(myObject);

 before(MyClass myObject) : myClassObjectCreation(myObject)
 {
 String myClassProperty = applicationProperties.
 getProperty(MYCLASS_PROPERTY_NAME);
 if (myClassProperty != null)
 {
 myObject.property = myClassProperty;
 }
 else
 {
 myObject.property = DEFAULT_MYCLASS_PROPERTY;
 applicationProperties.setProperty(
 MYCLASS_PROPERTY_NAME, DEFAULT_MYCLASS_PROPERTY);
 }
 }

 // Monitoring properties

 public pointcut monitorMainApplicationProperty(int newValue) :
 set(int MainApplication.property) &&
 args(newValue);

 after(int newValue) : monitorMainApplicationProperty(newValue) &&
 !within(MyApplicationProperties)
 {
 applicationProperties.setProperty(
 MAINAPPLICATION_PROPERTY_NAME,
 new Integer(newValue).toString());
 }

 public pointcut monitorMyClassProperty(String newValue) :
 set(String MyClass.property) &&
 args(newValue);

 after(String newValue) : monitorMyClassProperty(newValue) &&
 !within(MyApplicationProperties)
 {
 applicationProperties.setProperty(MYCLASS_PROPERTY_NAME, newValue);
 }

 // Store properties on application close

 class ShutdownMonitor implements Runnable
 {
 public ShutdownMonitor()
 {
 Thread shutdownThread = new Thread(this);
 Runtime.getRuntime().addShutdownHook(shutdownThread);

 }

 public void run()
 {
 try
 {
 FileOutputStream outputStream = new FileOutputStream(
 propertiesFile);

 applicationProperties.store(
 outputStream);
 outputStream.close();
 }
 catch (Exception e)
 {
 System.err.println(
 "Unable to save properties file,
 will use default on next run");
 }
 }
 }

 private ShutdownMonitor shutdownMonitor = new ShutdownMonitor();
}

First, the MyApplicationProperties aspect needs to be declared as privileged because it is going to

affect the internal private areas of the application's class to apply and monitor the property values to
the areas where they are needed.

The names of the two application properties are then declared as constants. In this case, two
properties are being managed, an int in the com.oreilly.aspectjcookbook.MainApplication
class and a String in the com.oreilly.aspectjcookbook.MyClass class. Some default values for

these two properties will be defined in case any problems occur when loading the properties.

The properties are loaded from a file and stored as java.util.Properties within the aspect as
specified by the java.util.File attribute, propertiesFile, and applicationProperties
attribute. Aspects in AspectJ are initialized before the class containing the public void
main(String[]) method entry point for a Java application, so the MyApplicationProperties

constructor can load the applications properties from the specified file and then apply those
properties before the application starts running.

The mainApplicationInitialization() and myClassObjectCreation() pointcuts capture when

the classes that need the properties are initialized so as to apply the properties before instances of
the classes access those properties. The monitorMainApplicationProperty() and
monitorMyClassProperty() pointcuts then watch the properties in the classes that need them to
detect when any class changes the properties' value. If a change occurs, the after() advice will be

triggered and the master value of the property updated. Other objects that use the property are not
notified when the master value is changed because this is not how properties traditionally work. If
one object changes a properties value, another object will not be informed of that change. You could
implement notification of all dependent objects when a property value changes by using the Observer
pattern from Recipe 15.1.

Finally, to handle storage of the applications properties when the application closes, the

ShutdownMonitor class is created and instantiated as an attribute of the aspect. The
ShutdownMonitor class registers itself as a shutdown hook in its constructor, and when its run()
method is called as the application closes, the ShutdownMonitor stores the applications properties

back to the indicated file.

See Also

The execution(Signature) pointcut is described in Recipe 4.4; the set(Signature) pointcut is
examined in Recipe Recipe 8.3; the staticinitialization(TypePattern) pointcut is described in
Recipe 7.5; the within(TypePattern) pointcut is described in Recipe 9.1; the this(TypePattern |
Identifier) pointcut is explained in Recipe 11.1; The args([TypePatterns || Identifiers])
pointcut is covered in Recipe 11.3; the AND (&&) operator and the OR (||) operator are described in
Recipes 12.2 and 12.3 respectively; the before() form of advice is explained in Recipe 13.3; the
after() form of advice is explained in Recipe 13.5; Recipe 19.1 shows how to implement the

Observer object-oriented design pattern using aspects.

Chapter 22. Applying Enterprise Scale
Aspects

Introduction

Recipe 22.1. Applying Development Guidelines and Rules

Recipe 22.2. Applying Transactions

Recipe 22.3. Applying Resource Pooling

Recipe 22.4. Remoting a Class Transparently Using RMI

Recipe 22.5. Applying a Security Policy

Introduction

An enterprise-scale application often has to consider factors that are above and beyond the scope of
more traditional desktop software. Those concerns can be good candidates for an aspect-oriented
approach because they are rarely closely coupled to the core business logic of the software.

Concerns such as transactional behavior, distributed communications, and security implications are
the mainstays of any serious enterprise system. Even tasks such as providing and enforcing
development guidelines, often a headache for large systems development, are shown to benefit from
AspectJ's capability to advise the compiler.

Because so much of an enterprise system is not core to an application's business logic, these systems
are seen as one of the areas where aspect orientation comes into its own. Enterprise systems are the
fastest growing area for aspect orientation, and the aspects in this chapter represent a small
selection of some of the concerns within those systems that benefit from an aspect-oriented
approach.

Evidence of the rapid adoption of aspect-oriented techniques in enterprise
systems appears in the work within the leading J2EE communities. In particular,
the open source Spring Framework (http://www.springframework.org) and
JBoss (http://www.jboss.org) communities incorporate fairly mature
implementations of aspect orientation and, with commercial companies, notably
IBM, staunchly backing the approach, aspect-oriented facilities may soon
become a regular and important part of the enterprise developer's tool suite.

http://www.springframework.org
http://www.jboss.org

Recipe 22.1. Applying Development Guidelines and Rules

Problem

You want to control what programmatic constructs are allowed in your application by providing a
policy that is enforced at compile time.

Solution

Use the Border Controller aspect-oriented design pattern to declare a set of regions within your code.
Reuse those regions when declaring any top-level rules for your project in an aspect according to the
Policy pattern. Optionally extend your projects' top-level policies to specialize them for particular
regions of your application.

Discussion

This solution gives you a sneak preview of two of the aspect-oriented design patterns coming in
Chapter 23. Providing the foundation for this recipe's solution, the Border Controller design pattern
allows you to capture your application's architecture as a set of reusable pointcuts that declare
important regions within your code. Those regions can be referenced throughout the rest of the
aspects in your application.

The BorderControllerAspect shown in Example 22-1 declares four regions within an example
application: the withinTestingRegion() region incorporates the packages where testing code is
located, withinMyApp() specifies the packages and subpackages that make up your application,
withinThirdParty() specifies any areas where you may be using third-party source code, and
withinMyAppMainMethod() conveniently declares the location of the main(..) method for your

application.

Example 22-1. Providing a foundation for your project and application's
policies by declaring the important regions within your code

package com.oreilly.aspectjcookbook;

public aspect BorderControllerAspect
{
 /**
 * Specifies the testing region.
 */
 public pointcut withinTestingRegion() :

 within(com.oreilly.aspectjcookbook.testing.+);

 /**
 * Specifies My Applications region.
 */
 public pointcut withinMyApp() : within(com.oreilly.aspectjcookbook.
 myapp.+);

 /**
 * Specifies a third party source code region.
 */
 public pointcut withinThirdParty() :
 within(com.oreilly.aspectjcookbook.thirdpartylibrary.+);

 /**
 * Specifies the applications main method.
 */
 public pointcut withinMyAppMainMethod() :
 withincode(public void com.oreilly.aspectjcookbook.myapp.MyClass.
 main(..));
}

Example 22-1 shows only some of the areas that could be defined in an application. Other good
candidates are areas where special logging is to take place, areas that are subjected to lazy loading
logic, and anywhere you find it useful to formally bound parts of your architecture so that further
pointcut definitions can reuse and work safely within those borders. The idea is that if those borders
were to change, you would only change the Border Controller so the rest of your application's
pointcut logic would immediately pick up on any relevant changes to their scope.

The Border Controller provides a useful library of reusable pointcut definitions incorporated into the
Policy aspect-oriented design pattern. This pattern is used to solve this recipe's problem by declaring
the different policies for your project's areas, as shown in Example 22-2.

Example 22-2. Defining a project-wide policy

package com.oreilly.aspectjcookbook;

public abstract aspect ProjectPolicyAspect
{
 protected abstract pointcut allowedSystemOuts();

 declare warning :
 call(* *.println(..)) &&
 !allowedSystemOuts() &&
 !BorderControllerAspect.withinTestingRegion()
 : "System.out usage detected. Suggest using logging?";
}

The ProjectPolicyAspect in Example 22-2 defines the project-wide rule that messages being output
to the System.out stream are to be warned against at compile time. The aspect leaves an abstract
pointcut so specialized aspects can define areas where using System.out is acceptable. The
specialized MyAppPolicyAspect in Example 22-3 extends the abstract ProjectPolicyAspect to
declare that the testing and the thirdpartylibrary source directories are allowed to use
System.out.

Example 22-3. Specializing the project-wide policy for the specifics of your
application's area

package com.oreilly.aspectjcookbook.myapp;

import com.oreilly.aspectjcookbook.ProjectPolicyAspect;
import com.oreilly.aspectjcookbook.BorderControllerAspect;

public aspect MyAppPolicyAspect extends ProjectPolicyAspect
{
 /**
 * Specifies regions within the application where messages
 * to System.out are allowed.
 */
 protected pointcut allowedSystemOuts() :
 BorderControllerAspect.withinMyAppMainMethod() ||
 BorderControllerAspect.withinThirdParty() ||
 BorderControllerAspect.withinTestingRegion();
}

Using the Policy and Border Controller aspect-oriented patterns, you can formalize the structure of
your architecture and apply consistent project, application, package, class, and method scope
policies.

See Also

The call(Signature) pointcut is described in Recipe 4.1; the within(TypePattern) pointcut is
described in Recipe 9.1; the withincode(Signature) pointcut is described in Recipe 9.3; the AND
(&&) operator and the OR (||) operator are described in Recipes 12.2 and 12.3 respectively; the
unary NOT (!) operator is shown in Recipe 12.4; defining reusable libraries of pointcut definitions is

covered in Recipe 12.6; extending the compiler with new warnings and errors is shown in Recipe
16.6; the Border Controller aspect-oriented design pattern is explained in Recipe 23.3; the Policy
aspect-oriented design pattern is described in Recipe 23.4.

Recipe 22.2. Applying Transactions

Problem

You want to introduce transactional behavior to a method in your application.

Solution

Use the Director aspect-oriented design pattern to declare an abstract aspect that captures the
generic behavior of controlling a transaction, as shown in Example 22-4. Extending the abstract
transaction aspect, declare specialized subaspects for each transaction within your application.

Example 22-4. Declaring the generic behavior of a transaction in a
reusable abstract aspect

public abstract aspect TransactionAspect
{
 protected abstract pointcut transactionalCall();

 protected pointcut transactionBoundary() :
 transactionalCall() && !cflowbelow(transactionalCall());

 protected interface Transaction
 {
 public void commit();
 public void rollback();
 }

 protected Transaction transaction;

 before() : transactionBoundary()
 {
 setupTransaction(thisJoinPoint.getArgs());
 }

 after() returning: transactionBoundary()
 {
 transaction.commit();
 }

 after() throwing: transactionBoundary()
 {

 transaction.rollback();
 }

 protected abstract void setupTransaction(Object[] args);
}

Discussion

Transactions are used to group a selection of operations into a cohesive unit that either completes or,
in the case where one step in the process fails, reverts back to its original state.

In Example 22-4, the TRansactionAspect first specifies the TRansactionCall() abstract pointcut.

This pointcut is used by specialized subaspects to specify the methods within the target application
that are to be treated as transactional.

The transactionBoundary() pointcut then builds on the transactionCall() pointcut to specify
where the transaction starts and ends. The cflowbelow() pointcut is used to ignore any join points

that may occur within the life of the transaction.

The TRansactionAspect needs to store and interact with transactions generically so the
transaction interface is defined. The transaction interface provides a base for subaspects to
implement their own transaction classes. A single TRansaction attribute is then used to indicate the

current transaction being managed by the aspect.

Finally, three pieces of advice work with the TRansaction attribute at the different points within a
transaction's lifecycle. The before() advice calls the abstract setupTransaction(Object[]) method
so the transaction attribute can be correctly initialized with the appropriate transaction
implementation. The after() returning advice will be executed if the join points selected by the
TRansactionCall() pointcut return without raising an exception; this is a good time for the
transaction to be committed. The after() throwing advice caters to the situation where a join

point returns with an exception, so the transaction needs to be rolled back.

Example 22-5 shows how to specialize the transactionAspect for an example application where the
transfer(..) method is selected by the implementation of the transactionalCall() pointcut to

mark the beginning of a transaction.

Example 22-5. Implementing transactional behavior where a transfer
occurs between two bank accounts within an example application

import com.oreilly.aspectjcookbook.Account;
import com.oreilly.aspectjcookbook.InsufficientFundsException;

public aspect TransferTransactionAspect extends TransactionAspect
{
 protected pointcut transactionalCall() :
 call(public void com.oreilly.aspectjcookbook.Bank.transfer(..));

 private class TransferTransaction extends ThreadLocal implements
 Transaction

 {
 private Account from;
 private Account to;
 private float value;

 public TransferTransaction(Account from, Account to, float value)
 {
 this.from = from;
 this.to = to;
 this.value = value;
 }

 public void commit()
 {
 System.out.println("Committing");
 // Nothing to actually commit here, all the changes
 // have been accepted ok
 }

 public void rollback()
 {
 System.out.println("Rolling back");
 try
 {
 to.debit(value);
 }
 catch(InsufficientFundsException ife)
 {
 System.err.println("Could not complete rollback!");
 ife.printStackTrace();
 }
 }
 }

 protected void setupTransaction(Object[] args)
 {
 this.transaction =
 new TransferTransaction(
 (Account) args[0],
 (Account) args[1],
 ((Float)args[2]).floatValue());
 }
}

See Also

This example was adapted from the presentation given by Ron Bodkin, New Aspects of Security,
available at http://newaspects.com/presentations/; Java Enterprise in a Nutshell by William
Crawford, Jim Farley and David Flanagan (O'Reilly) covers transactions in the enterprise Java
application; the call(Signature) pointcut is covered in Recipe Recipe 4.1; the

http://newaspects.com/presentations/

cflowbelow(Pointcut) pointcut is described in Recipe 10.2; the before() form of advice is
covered in Recipe 13.3; the after() returning form of advice is covered in Recipe 13.6; the
after() throwing form of advice is covered in Recipe 13.7; defining abstract aspects and pointcuts

is explained in Recipe 15.4; the Director aspect-oriented design pattern is discussed in Recipe 23.3.

Recipe 22.3. Applying Resource Pooling

Problem

You want to optimize the access to a commonly used resource by creating a reusable pool of those
resources without affecting the existing operation of your application.

Solution

Using the Director aspect-oriented design pattern, create an abstract aspect that defines the roles of
the Resource and Resource Pool as interfaces and the generic reusable behavior of resource pooling,
as shown in Example 22-6. The abstract resource pooling aspect can then be specialized for each
resource to be pooled within your target application.

Example 22-6. Defining the generic resource pooling behavior in an
abstract aspect

public abstract aspect ResourcePoolingAspect
{
 public interface Resource
 {

 }

 public interface ResourcePool
 {
 public void add(Resource resource);
 public Resource remove();
 }

 protected class ResourcePoolsCollection
 {
 WeakHashMap pools = new WeakHashMap();

 public void putResourcePool(ResourcePool pool,
 Class resourceClass)
 {
 pools.put(resourceClass, pool);
 }

 public ResourcePool getResourcePool(Class resourceClass)
 {

 return (ResourcePool) pools.get(resourceClass);
 }
 }

 protected ResourcePoolsCollection resourcePools =
 new ResourcePoolsCollection();

 public ResourcePoolingAspect()
 {
 initializeSpecificPool();
 }

 protected abstract void initializeSpecificPool();

 private pointcut excludeAspects() : !within(ResourcePoolingAspect+);

 public abstract pointcut catchResourceConstruction();

 public abstract pointcut catchResourceDestruction(Resource resource);

 Object around() : catchResourceConstruction() && excludeAspects()
 {
 ResourcePool resources =
 resourcePools.getResourcePool(
 thisJoinPoint.getSignature().getDeclaringType());
 return resources.remove();
 }

 Object around(Resource resource) :
 catchResourceDestruction(resource) && excludeAspects()
 {
 ResourcePool resources =
 resourcePools.getResourcePool(
 thisJoinPoint.getSignature().getDeclaringType());
 Object returnValue = resourceReturnedToPool(resource);
 System.out.println("Resource added back into pool: " + resource);
 resources.add(resource);
 return returnValue;
 }

 protected abstract Object resourceReturnedToPool(Resource resource);

 // A resource must use and resort to a simple default constructor
 // for initialization
 // As protected by the warning declared below
 declare warning : call(public Resource+.new(*,..))
 : "Use a default constructor when using classes declared as
 pooled resources";
}

Discussion

Example 22-6 shows how a reusable abstract aspect can be defined that will provide resource pooling
within an application that originally did not support it. The Resource and ResourcePool interfaces

are declared so the generic resource pooling behavior can be defined against those interfaces
separately from how those interfaces may be implemented.

The behavior declared within the abstract ResourcePoolingAspect is shared across all of the
resource pools declared as subaspects. The ResourcePoolCollection class provides a common

repository for all the resource pools throughout your application so the generic code can look up a
specific resource pool based on the class of the resource it contains.

When the ResourcePoolingAspect is initialized, a call is made to the abstract
initializeSpecificPool() method. This method is implemented by subaspects of the
ResourcePoolingAspect to initialize their own pool implementations and add them to the
ResourcePoolCollection.

The abstract catchResourceConstruction() and catchResourceDestruction(Resource) pointcuts

are provided so subaspects can specify the join points where a resource is first accessed and
released. The pointcuts are then applied to the two sets of around() advice that override when a

resource is created or destroyed so the resources that exist in the corresponding resource pool can
be used instead. The abstract resourceReturnedToPool() method is called when a resource is

released and placed back in its corresponding pool to give the subaspects an opportunity to do any
applicable post-processing.

Example 22-7 shows how the abstract ResourcePoolingAspect can be applied to an example
application. Once the aspect is applied, objects of the BusinessResource class are obtained and

released back into a resource pool transparently to the rest of the application.

Example 22-7. Applying resource pooling to a resource within a simple
example application

import java.util.List;
import java.util.ArrayList;

import com.oreilly.aspectjcookbook.BusinessResource;

public aspect BusinessResourcePoolingAspect extends ResourcePoolingAspect
{
 declare parents : BusinessResource implements Resource;

 public pointcut catchResourceConstruction() : call(public
 BusinessResource.new());

 public pointcut catchResourceDestruction(Resource resource) :
 call(public void BusinessResource.close()) && target(resource);

 private class BusinessResourcePool implements ResourcePool
 {
 private static final int RESOURCE_POOL_SIZE = 10;

 List resources = new ArrayList();

 public BusinessResourcePool()
 {
 for (int x = 0; x < RESOURCE_POOL_SIZE; x++)
 {
 this.add(new BusinessResource());
 }
 }

 public synchronized void add(Resource resource)
 {
 resources.add(resource);
 }

 public synchronized Resource remove()
 {
 if (resources.size() == 0)
 {
 resources.add(new BusinessResource());
 }
 return (Resource) resources.remove(resources.size() - 1);
 }
 }

 protected void initializeSpecificPool()
 {
 try
 {
 this.resourcePools.putResourcePool(new BusinessResourcePool(),
 Class.forName("com.oreilly.aspectjcookbook.BusinessResource"));
 }
 catch (ClassNotFoundException cnfe)
 {
 System.err.println("Couldn't find resource class to pool");
 }
 }

 protected Object resourceReturnedToPool(Resource resource)
 {
 // Do any resource specific tudying up if necessary
 // None to do in this example
 return null;
 }
}

The BusinessResourcePoolingAspect applies the Resource role to the example application's
BusinessResource class. The catchResourceConstruction() and catchRe-
sourceDestruction(Resource) pointcuts are implemented to specify when a BusinessResource is
constructed and when it is released by a call to its close() method.

The ResourcePool role is implemented by the BusinessResourcePool class, which contains a list of
BusinessResource objects. If the application needed it, this resource pool could be implemented in

more efficient ways depending on the situation and the requirements.

Finally, the initializeSpecificPool() method is implemented to construct the single instance of
the BusinessResourcePool. This BusinessResourcePool will be added to the
ResourcePoolCollection managed by the parent ResourcePoolingAspect. The BusinessResource

objects do not require anything special to be done when they are released back into the pool so the
resourceReturnedToPool(Resource) method does nothing extra in this case.

See Also

The call(Signature) pointcut is described in Recipe 4.1; using the call(Signature) pointcut to

capture and override a call to a constructor is examined in Recipes Recipe 7.1 and Recipe 20.1; using
the target() pointcut is described in Recipe 4.3; the around() form of advice is covered in Recipe

13.4; defining abstract aspects and pointcuts is explained in Recipe 15.4; the Director aspect-
oriented design pattern is explained in Recipe 23.3.

Recipe 22.4. Remoting a Class Transparently Using RMI

Problem

You want to use Java Remote Method Invocation (RMI) to remote calls on a local object to an
instance on another machine without making changes to how the original local object is used.

Solution

Create an RMI server application that contains an instance of the class, as shown in Example 22-8.

Example 22-8. Declaring an instance of BusinessClass that is contained
within an RMI Server implementation

import java.rmi.RemoteException;
import java.rmi.server.UnicastRemoteObject;

public class ThisOrThatServerImpl extends UnicastRemoteObject
 implements ThisOrThatServer
{
 BusinessClass businessClass = new BusinessClass();

 public ThisOrThatServerImpl() throws RemoteException
 {

 }

 public void foo() throws RemoteException
 {
 this.businessClass.foo();
 }
}

Within the client application, create an aspect that intercepts the calls to a specific instance of the
class that has been remoted and route those calls to the corresponding RMI server, as shown in
Example 22-9.

Example 22-9. Intercepting calls to a local instance and channeling those
calls to the remotely managed instance

import java.rmi.*;

public aspect RemoteBusinessClassAspect
{
 public pointcut callBusinessClassFooInMain() :
 call(public void BusinessClass.foo()) &&
 withincode(public void MainApplication.main(String[]));

 void around() : callBusinessClassFooInMain()
 {
 try
 {
 ThisOrThatServer rmtServer =
 (ThisOrThatServer) Naming.lookup("rmi://localhost/TTServer");
 rmtServer.foo();
 }
 catch (Exception e)
 {
 System.err.println("Problems occured when attempting " +
 "to use remote object, default to local");
 proceed();
 }
 }
}

Discussion

Using Java RMI can intrude on your application's classes in terms of new interfaces, new exceptions,
and new code that must be incorporated. Traditionally, the object-oriented façade design pattern
could be used to hide these complexities, but by using aspects, you are given the ability to use RMI
to remote areas of your application transparently to your existing code and without the addition of a
complex façade.

The RemoteBusinessClass aspect in Example 22-9 captures when the foo() method is called on
the BusinessClass instance within the execution of the application's main(..) method. The
corresponding around() advice overrides that call and attempts to pass the message to the remote
instance of BusinessClass as managed by the RMI Server and identified as TTServer in this case. If

any exceptions occur when attempting to use the remote object, then the aspect reverts to using the
original local instance by making the call to proceed().

RMI has some peculiarities that you need to know about to use the example
code that accompanies this recipe, available at
http://www.aspectjcookbook.com. The readme.txt file that is provided with the
example code contains useful information on how to get RMI and the example
working properly.

See Also

http://www.aspectjcookbook.com

The foundation of this example was supplied by Java Enterprise in a Nutshell by William Crawford,
Jim Farley, and David Flanagan (O'Reilly); the call(Signature) pointcut is described in Recipe
Recipe 4.1; the withincode(Signature) pointcut is described in Recipe 9.3; the around() form of

advice is covered in Recipe 13.4.

Recipe 22.5. Applying a Security Policy

Problem

You want to add security considerations to areas of an existing application.

Solution

Define an aspect that specifies join points within your application that need to be subjected to
additional security. When those join points are encountered, store and authenticate against a specific
security implementation within the aspect, as shown in Example 22-10.

Example 22-10. Applying authentication to calls on a specific class

public aspect SecureClassAAspect
{
 private boolean authenticated;

 public pointcut secureClassAMethods() :
 call(* com.oreilly.aspectjcookbook.ClassA.*(..));

 Object around() : secureClassAMethods()
 {
 if (authenticated)
 {
 return proceed();
 }
 else
 {
 LoginScreen loginScreen = new LoginScreen();
 loginScreen.setVisible(true);

 // Use the authentication procedure of your choice here
 // In this simple example we are just going to check that
 // it is the one person we know of
 if ((loginScreen.getUsername().equals("Kim")) &&
 (new String(loginScreen.getPassword()).equals("password")))
 {
 authenticated = true;
 loginScreen.dispose();
 return proceed();
 }

 loginScreen.dispose();
 return null;
 }
 }
}

Discussion

Security is an ideal example of a cross-cutting concern. Security characteristics rarely have anything
to do with the simple business logic of an application. They are often intrusive and, unfortunately, the
last thing to be applied to a piece of software.

In Example 22-10, the aspect captures when any method on the ClassA class is called and checks to

see if the current user is authenticated to run those methods. In this example, authentication takes
the form of displaying a login dialog comparing the username and password with some internally
stored constants. Once the user has been recognized, the aspect's authenticated attribute is set to

remember that no future checks are necessary as the application calls other methods on instances of
ClassA.

Example 22-10 uses a simple authentication mechanism to keep this recipe
focused on the aspect-oriented characteristics of applying a security policy
rather than on the particulars of a specific authentication technology. In
practice, consider using a more formal authentication procedure such as JAAS.

By applying security with aspects, you can modularize your security code in one place, apply the
security policies transparently to a large degree, and apply security to an application where the
concern was not originally part of the design.

See Also

Java Security by Scott Oaks (O'Reilly) goes into more detail on how to use JAAS and Java's other
security features in your applications; the call(Signature) pointcut is described in Recipe 4.1; the
around() form of advice is covered in Recipe 13.4.

Chapter 23. Applying Aspect-Oriented
Design Patterns

Introduction

Recipe 23.1. Applying the Cuckoo's Egg Design Pattern

Recipe 23.2. Applying the Director Design Pattern

Recipe 23.3. Applying the Border Control Design Pattern

Recipe 23.4. Applying the Policy Design Pattern

Introduction

You've already seen how AspectJ can provide enhancements to existing object-oriented design
patterns in Chapter 17 through Chapter 19. This books finishes by giving you an overview of some of
the emerging best practices in AspectJ software development by focusing on some of the new aspect-
oriented design patterns and how those patterns are implemented using AspectJ.

Aspect-oriented design patterns are common, best practice aspect-oriented solutions to common
aspect-oriented design problems. AspectJ idioms are common uses of the AspectJ language syntax
and tool usage. Although aspect-orientation is a fairly new discipline and AspectJ an even younger
implementation of that discipline, the active AspectJ community has discovered some design patterns
and idioms.

As adoption of the aspect-oriented approach continues to increase in momentum, new best practices
will be discovered and captured as design patterns. In time these discoveries could lead to as rich
and useful a collection of patterns as those that the object-oriented development community enjoys.

For more information and examples of AspectJ language and tool usage idioms
check out Ron Bodkin's work on the aTrack project , which has a wealth of
reusable aspect and pointcut libraries, available at http://atrack.dev.java.net
Check out Mik Kersten's standard pointcut idioms, which are available by going
to http://www.eclipse.org/aspectj and clicking on Documentation standard
pointcut idioms. These two experts have provided some of the pioneering work
on AspectJ language and tool idioms.

http://atrack.dev.java.net
http://www.eclipse.org/aspectj

Recipe 23.1. Applying the Cuckoo's Egg Design Pattern

Problem

You want to override the type of object instantiated on a constructor call to return an object of a
different class transparently to the original business logic.

Solution

Apply the Cuckoo's Egg aspect-oriented design pattern. Figure 23-1 shows the key components of the
Cuckoo's Egg pattern.

Figure 23-1. The structure of the Cuckoo's Egg pattern

The key roles in the Cuckoo's Egg pattern shown in Figure 23-1 are:

CuckoosEggAspect

The aspect at the center of the design pattern that intercepts the creation of the
OriginalClass class and instead returns an instance of ReplacementClass.

SharedInterface

Optional component of the pattern. According to the AspectJ rules for overriding around(),
the ReplacementClass must inherit from the type expected on the constructor call. In this
example, that type is the SharedInstance interface.

OriginalClass

The class originally being constructed when that constructor call is overridden by the
CuckoosEggAspect.

ReplacementClass

The class instantiated when the constructor call to OriginalClass is overridden.

MainApplication

Represents an example area within your application where the constructor call to
OriginalClass is to be overridden.

Discussion

As simple as the Cuckoo's Egg pattern is, it is one of the more powerful capabilities of aspect
orientation as implemented in AspectJ. It is reasonably common to want to control and change an
object instantiated on a constructor call or on a factory method when an aspect is applied. The
Cuckoo's Egg design pattern formalizes this common AspectJ use case.

Example 23-1 is modified from Recipe 20.2 and shows how the Cuckoo's Egg pattern can be
implemented in AspectJ to return an instance of AnotherClass when a MyClass constructor is called.

Example 23-1. An example of the Cuckoo's Egg design pattern

public aspect ControlClassSelectionAspect // Cuckoo's Egg Aspect
{
 public pointcut myClassConstructor() : call(MyClass.new());

 Object around() : myClassConstructor()

 {
 return new AnotherClass();
 }
}

The key characteristics of the Cuckoo's Egg pattern are:

It provides a suitable pointcut declaration to capture the construction of a class to be
overridden.

You can obtain any arguments supplied on the original constructor call by using the
args([Types | Identifiers]) pointcut to pass the identifiers to the corresponding advice if

applicable.

The Cuckoo's Egg pattern is useful in circumstances where you do the following:

Implement mock objects for testing purposes

Provide a proxy object in place of real instance of the class

The Cuckoo's Egg pattern can collaborate with the Border Controller design pattern, which can be
used to limit the constructor calls to a particular class overridden by the Cuckoo's Egg pattern.

See Also

The article at http://www.onjava.com/pub/a/onjava/2004/10/20springaop2.html shows how to
implement the Cuckoo's Egg Pattern using the Spring Framework; using the call(Signature)

pointcut to capture and override a call to a constructor is described in Recipes Recipe 7.1 and Recipe
20.1; the around() form of advice is covered in Recipe Recipe 13.4; the AspectJ rules on how

overriding around() advice can be applied are covered in more detail in Recipe Recipe 20.2.

http://www.onjava.com/pub/a/onjava/2004/10/20springaop2.html

Recipe 23.2. Applying the Director Design Pattern

Problem

You want to define a set of roles to be implemented by unknown sets of application classes so they
can be interacted with generically by an abstract aspect.

Solution

Apply the Director aspect-oriented design pattern. Figure 23-2 shows the key components of the
Director pattern.

Figure 23-2. The structure of the Director pattern

The key roles in the Director pattern shown in Figure 23-2 are:

DirectorAspect

The abstract aspect at the center of the design pattern that specifies the roles to be directed
using Java interfaces and optionally specifies interactions that can occur between those roles.

Role1 and Role2

A pair of example roles defined as nested interfaces within the abstract DirectorAspect.

BusinessClassA and BusinessClassB

A pair of business classes within the target application that are candidates for the roles defined
by the DirectorAspect.

SpecializedAspect

Applies the roles to specific classes within the target application. In this example, Role1 is
applied to BusinessClassA and Role2 is applied to BusinessClassB. When BusinessClassB
does not implement the bar() method necessary for the Role2 interface, this can be supplied
using static cross-cutting techniques by the SpecializedAspect.

Discussion

The Director pattern decouples the generic and reusable aspect behavior from the implementation
classes of a specific application, allowing the aspect's logic to direct the abstract roles rather than the
implementations.

Example 23-2 is modified from Recipe 19.1 and shows how the Director pattern can be implemented
in AspectJ to specify the Subject and Observer roles along with some default implementation details
for the Subject role.

Example 23-2. An example of the Director pattern

public abstract aspect ObserverPattern
{
 protected interface Subject
 {
 public void addObserver(Observer observer);
 public void removeObserver(Observer observer);
 }

 protected interface Observer
 {
 public void notifyOfChange(Subject subject);

 }

 private List Subject.observers = new LinkedList();

 public void Subject.addObserver(Observer observer)
 {
 this.observers.add(observer);
 }

 public void Subject.removeObserver(Observer observer)
 {
 this.observers.remove(observer);
 }

 private synchronized void Subject.notifyObservers()
 {
 Iterator iter = this.observers.iterator();
 while (iter.hasNext())
 {
 ((Observer)iter.next()).notifyOfChange(this);
 }
 }

 protected abstract pointcut subjectChange(Subject s);

 after(Subject subject) : subjectChange(subject)
 {
 subject.notifyObservers();
 }
}

Example 23-3, modified from Recipe 19.1, shows how the abstract ObserverPattern aspect uses the
Director pattern to apply the Observer and Subject roles to the ConcreteClassA and
ConcreteClassB target application classes.

Example 23-3. Applying the Director patterns roles to the target
application's classes

public aspect ConcreteClassAObserver extends ObserverPattern
{
 declare parents : ConcreteClassB implements Subject;

 declare parents : ConcreteClassA implements Observer;

 protected pointcut subjectChange(Subject s) :
 call(* ConcreteClassB.set*(..))
 && target(s);

 public void ConcreteClassA.notifyOfChange(Subject subject)

 {
 this.doSomething(
 "ConcreteClassA was notified of a change on " + subject);
 }
}

Here are the key characteristics of the Director pattern:

Provides a mechanism for declaring reusable aspect logic, including advice, and how it can
interact with a set of abstract roles without having to know what target implementation classes
will be coupled to those roles

Supports the encapsulation of the roles and the logic that works upon those roles in one place:
the Director aspect

Allows you to declare logic that can be applied to entire families of target application classes

The Director pattern is useful in circumstances where you want to:

Define an abstract aspect without knowing what target application classes the aspect's logic will
be applied to

Implement a set of relationships between abstract entities within your application, such as the
implementation of an object-oriented design pattern

Since the release of AspectJ 1.1, applying abstract roles as interfaces
according to the Director pattern is the only way to introduce behavior
across multiple classes as explained in the AspectJ documentation
available at
http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspectj-
home/doc/README-11.html#SINGLE_INTERCLASS_TARGET.

See Also

Using abstract aspects and pointcuts and declaring the inheritance between aspects is covered in
Chapter 15; the Director pattern is most prominently used throughout Chapter 17 through Chapter
19 when implementing the traditional object-oriented design patterns using aspect-oriented
techniques.

http://dev.eclipse.org/viewcvs/indextech.cgi/~checkout~/aspectj-

Recipe 23.3. Applying the Border Control Design Pattern

Problem

You want to formally define important regions within your application so your aspects can reuse those
definitions to ensure they are only applied in the correct areas.

Solution

Apply the Border Control aspect-oriented design pattern. Figure 23-3 shows the key components of
the Border Control pattern.

Figure 23-3. The structure of the Border Controller pattern

The key roles in the Border Control pattern shown in Figure 23-3 are:

BorderControllerAspect

The aspect at the center of the design pattern that specifies any important regions in your
application that can be used by other aspects to limit their effects to the appropriate areas

The application, application.testing, and thirdpartylibrary packages

The example target application's important packages as they are selected by the
BorderControllerAspect's reusable pointcut declarations

MainApplication

The main(String[]) method of this class provides an example of an important region inside a

class

Discussion

The Border Controller declares important characteristic regions of your code that can be method,
class, and package in scope. Example 23-4 is modified from Recipe 22.1 and shows how the Border
Controller pattern can be implemented in AspectJ to specify a set of regions that include packages
and methods within an example application.

Example 23-4. An example of the Border Controller pattern

public aspect BorderControllerAspect
{
 /**
 * Specifies the testing region.
 */
 public pointcut withinTestingRegion() :
 within(com.oreilly.aspectjcookbook.testing.+);

 /**
 * Specifies My Applications region.
 */
 public pointcut withinMyApp() : within(com.oreilly.aspectjcookbook.
 myapp.+);

 /**
 * Specifies a third party source code region.
 */
 public pointcut withinThirdParty() :
 within(com.oreilly.aspectjcookbook.thirdpartylibrary.+);

 /**
 * Specifies the applications main method.
 */
 public pointcut withinMyAppMainMethod() :
 withincode(public void com.oreilly.aspectjcookbook.myapp.MyClass.
 main(..));

}

In Example Example 23-4, the regions declared in the Border Controller aspect could then be reused
within the target application's aspects:

 pointcut regionsOfInterest() :
 BorderControllerAspect.withinMyAppMainMethod() ||
 BorderControllerAspect.withinThirdParty() ||
 BorderControllerAspect.withinTestingRegion();

Here are the key characteristics of the Border Controller pattern:

It provides a mechanism for declaring reusable pointcut logic that formalizes your application's
architecture.

The regions that are declared within a Border Controller aspect can be reused throughout your
application's aspects whenever an aspect is to work within one or more specific application
areas only.

If the structure of your application were to change and the Border Controller pattern had been
applied, then it is likely that only the Border Controller aspect would need to be updated to
reflect these changes throughout all the aspects in your application.

The Border Controller is usually best applied as a singleton in that one Border Controller is
usually enough for a single application.

The Border Controller pattern is useful when you want to do the following:

Have an application of reasonable complexity where there are defined internal areas to your
application to which aspects must be constrained.

Protect your application's aspects from future changes to overall application structure. To save
yourself the headache of updating all your aspects when your application's structure changes,
the Border Controller pattern provides a single point where those changes can be made and
automatically reflected across your applications aspects.

The Border Controller design pattern can be used as a foundation to define an application's structure
when using most design patterns and applications, including the Cuckoo's Egg and Policy aspect-
oriented design patterns.

See Also

The programmatic scope based pointcuts are examined in Chapter 9; the Border Controller aspect is
used in Recipe 22.1; the Cuckoo's Egg aspect-oriented design pattern is described in Recipe 23.1; the
Policy aspect-oriented design pattern is described in Recipe 23.4.

Recipe 23.4. Applying the Policy Design Pattern

Problem

You want to define a set of development rules within a policy that can be applied to your application's
structure.

Solution

Apply the Policy aspect-oriented design pattern. Figure 23-4 shows the key components of the Policy
pattern.

Figure 23-4. The structure of the Policy pattern

The key roles in the Policy pattern shown in Figure 23-4 are:

ProjectPolicyAspect

The aspect that specifies project-wide or top-level policies for your application. This can
optionally be declared abstract if it is to be extended by specialized subaspects.

ProjectSubAreaPolicyAspect

In this case, the ProjectPolicyAspect has been declared abstract leaving an abstract pointcut

that gives this subaspect the ability to override the top-level rules according to the specifics of
a particular project subarea's policy.

Discussion

The Policy pattern can declare a set of rules for any area within your application. Those rules can
vary from being compiler errors and warnings to overriding the use of certain classes and libraries.

Example 23-5 is modified from Recipe 22.1 and shows how the Policy pattern can be implemented in
AspectJ to specify a top-level policy for an example application that contains one rule stating that if
the Java System.out.println(..) method is called then a warning is to be issued at compilation

time.

Example 23-5. An example of the policy pattern being applying top level
rules to an application

public abstract aspect ProjectPolicyAspect
{
 protected abstract pointcut allowedSystemOuts();

 declare warning :
 call(* *.println(..)) &&
 !allowedSystemOuts() &&
 !BorderControllerAspect.withinTestingRegion()
 : "System.out usage detected. Suggest using logging?";
}

Because, in this example, the top-level policy aspect is abstract and declares an abstract pointcut
that can be used to override the System.out.println(..) rule, it can then be specialized for

different areas within the target application, as shown in Example 23-6.

Example 23-6. Extending an abstract top-level policy

public aspect MyAppPolicyAspect extends ProjectPolicyAspect
{
 /**
 * Specifies regions within the application where messages
 * to System.out are allowed.
 */
 protected pointcut allowedSystemOuts() :
 BorderControllerAspect.withinMyAppMainMethod() ||
 BorderControllerAspect.withinThirdParty() ||
 BorderControllerAspect.withinTestingRegion();
}

Here are the key characteristics of the Policy pattern:

Provides a mechanism for rules that can be applied a compilation and runtime

Can be used to declare a hierarchy of complex rules for different areas of your application

The Policy pattern is useful in the following circumstances:

When you are developing an application where many developers are involved, such as in an
open source project, and you want to convey some rules and guidelines for development more
actively than simply by providing documentation.

The policies can be changed to facilitate migration of the application from one set of libraries
and APIs to another. At first, the use of a set of libraries could be warned against in the policy;
this could be increased to an error when the libraries must not be used. Finally, if the libraries
are still being used for any reason, a proxy could be applied to move code away from the
forbidden library to the policy preferred one.

The Policy pattern can collaborate with the following design patterns:

It may use the Cuckoo's Egg design pattern to override the usage of a particular class or library.

It may use the Proxy object-oriented design pattern to intercept calls to a particular class or
library and either reject or delegate those calls to the right library or class according to the
applications policy.

You may want to define specialized policies for different areas of your application building on the
Border Controller design pattern.

See Also

Extending the compiler to include new warnings and errors is shown in Recipe 16.6; how to
implement the Proxy object-oriented pattern using aspect-oriented techniques is shown in Recipe
18.6; the Cuckoo's Egg aspect-oriented design pattern is explained in Recipe 23.1; the Border
Controller aspect-oriented design pattern is explained in Recipe 23.3.

Appendix A. The AspectJ Runtime API
It is sometimes useful to access information about the join points that trigger an advice in your
aspects at runtime, and AspectJ provides a runtime API in the org.aspectj.* packages that can be

used for just this purpose. Figure A-1 shows the package breakdown for the AspectJ runtime API.

Figure A-1. The package structure of the AspectJ runtime API

The main packages of the AspectJ runtime API contain:

org.aspectj.lang

Provides interfaces and support classes for discovering runtime information about join points.

org.aspectj.lang.reflect

Contains interfaces that provide more specialized information concerning join point signatures.

org.aspectj.weaver.tools

Provides interfaces to support a JVM class loader in performing load-time weaving.

This appendix focuses on the contents of org.aspectj.lang and org.aspectj.lang.reflect and

gives a brief overview of each of the main components in those packages. If you want to delve into
the API, then the full documentation is available within your AspectJ installation at
%ASPECTJ_INSTALLATION_DIR%/doc/api/index.html.

A.1. org.aspectj.lang

Similar to the familiar java.lang package that conatins the most fundamental constructs for the
Java language, the org.aspectj.lang package provides a set of classes for interacting with join

points at the most basic and common level.

JoinPoint and JoinPoint.StaticPart

Figure A-1Figure A-1 shows the structure of the JoinPoint and JoinPoint.StaticPart interfaces.

Figure A-2. The JoinPoint and JoinPoint.StaticPart interfaces

The JoinPoint interface

The JoinPoint interface is most commonly used by the thisJoinPoint reference that is made

available to any advice block. The interface provides access to the dynamic and static information
that is available about a specific join point.

public String toString()

Overrides the default toString() method on an object to return a string representation of
the join point. An example of the string returned from the toString() method on a method

call join point is:
call(void com.oreilly.aspectjcookbook.MyClass.foo(int, String))

public String toShortString()

Provides an alternative to the toString() method that returns an abbreviated version of the

string representation of the join point. An example of the string returned from the
toShortString() method on a method call join point is:

call(MyClass.foo(..))

public String toLongString()

Provides an alternative to the toString() method that returns an extended version of the

string representation of the join point. An example of the string returned from the
toLongString() method on a method call join point is:

call(public void com.oreilly.aspectjcookbook.MyClass.foo(int, java.lang.String))

public Object getThis()

Returns the object, if any, that is executingi.e., the value of this referenceat the join point.
Returns null if there is no reference at the corresponding join point, as is the case with static

blocks of code.

public Object getTarget()

Returns the object, if any, that is the target of the join point. For example, the target of a
method call join point is the object being called. Returns null if there is no target object at the

corresponding join point.

public Object[] getArgs()

Returns an array containing the arguments, if any, available at a join point. For example, the
getArgs() method returns the parameters being passed on a method call join point.

public Signature getSignature()

Returns the signature at the join point.

Note that the JoinPoint.StaticPart.getSignature() method returns the same value as

this method.

public SourceLocation getSourceLocation()

Returns an object that contains all information available, if any, about the source location of
the join point. A null will be returned if no source location information is available.

Note that the JoinPoint.StaticPart.getSourceLocation() method returns the same value

as this method.

public String getKind()

Returns a string enumeration indicating the type of the join point. The JoinPoint interface

declares the following constants that can be compared against the string that is returned from
this method to determine the type of the join point:

METHOD_CALL

Indicates that the join point occurred on the call to a method. See Recipe 4.1 for the
pointcut declaration that specifically captures this kind of pointcut.

METHOD_EXECUTION

Indicates that the join point occurred during the execution of a method. See Recipe 4.2
for the pointcut declaration that specifically captures this kind of pointcut.

ADVICE_EXECUTION

Indicates that the join point occurred during advice execution. See Recipe 4.3 for the
pointcut declaration that specifically captures this kind of pointcut.

FIELD_GET

Indicates that the join point occurred when an attribute was accessed. See Recipe 4.4 for
the pointcut declaration that specifically captures this kind of pointcut.

FIELD_SET

Indicates that the join point occurred when an attribute is modified. See Recipe 4.5 for
the pointcut declaration that specifically captures this kind of pointcut.

EXCEPTION_HANDLER

Indicates that the join point occurred when an exception was handled. See Recipe 4.6 for
the pointcut declaration that specifically captures this kind of pointcut.

CONSTRUCTOR_CALL

Indicates that the join point occurred on the call to a constructor. See Recipe 4.7 for the
pointcut declaration that specifically captures this kind of join point.

CONSTRUCTOR_EXECUTION

Indicates that the join point occurred during the execution of a constructor. See Recipe
4.8 for the pointcut declaration that specifically captures this kind of join point.

INITIALIZATION

Indicates that the join point occurred during the initialization of an object. See Recipe 4.9
for the pointcut declaration that specifically captures this kind of join point.

PREINITIALIZATION

Indicates that the join point occurred before the initialization of an object. See Recipe 4.10
for the pointcut declaration that specifically captures this kind of join point.

STATICINITIALIZATION

Indicates that the join point occurred during the initialization of a class. See Recipe 4.11
for the pointcut declaration that specifically captures this kind of join point.

Note that the JoinPoint.StaticPart.getKind() method returns the same value as this

method.

public JoinPoint.StaticPart getStaticPart()

Returns an object that contains the information about a join point that can be statically
determined. An alternative method for accessing the static information is to use the
thisJoinPointStaticPart reference available to any advice block.

The JoinPoint.StaticPart interface

The JoinPoint.StaticPart interface is most commonly accessed using the
thisJoinPointStaticPart reference available to all advice blocks. An alternative method is to use
the getStaticPart() method on the JoinPoint interface that can be accessed using the
thisJoinPoint reference.

public String toString()

Overrides the default toString() method on an object to return a string representation of

the join point.

Note that the JoinPoint.toString() method returns the same value as this method.

public String toShortString()

Provides an alternative to the toString() method that returns an abbreviated version of the

string representation of the join point.

Note that the JoinPoint.toShortString() method returns the same value as this method.

public String toLongString()

Provides an alternative to the toString() method that returns an extended version of the

string representation of the join point.

Note that the JoinPoint.toLongString() method returns the same value as this method.

public Signature getSignature()

Returns the signature at the join point.

Note that the JoinPoint.getSignature() method returns the same value as this method.

public SourceLocation getSourceLocation()

Returns an object that contains all information available, if any, about the source location of
the join point. A null will be returned if no source location information is available.

Note that the JoinPoint.getSourceLocation() method returns the same value as this

method.

public String getKind()

Returns a string enumeration indicating the type of the join point.

Note that the description of the JoinPoint.getKind() method shows the different

enumerations that are supported by AspectJ.

A.2. Signature

A Signature interface is used to determine the signature of the code to which a join point is
associated. The Signature interface provides access to the information available at any join point,
whereas its subinterfaces in the next section provide more information depending on the join point
type. (See Figure A-2Figure A-2.)

Figure A-3. The Signature interface

The Signature Interface

public String toString()

Overrides the default toString() method on an object to return a string representation of
the signature. An example of the string returned from the toString() method on a method

call join point is:
void com.oreilly.aspectjcookbook.MyClass.foo(int, String)

public String toShortString()

Provides an alternative to the toString() method that returns an abbreviated version of the

string representation of the signature. An example of the string returned from the
toShortString() method on a method call join point is:

MyClass.foo(..)

public String toLongString()

Provides an alternative to the toString() method that returns an extended version of the

string representation of the signature. An example of the string returned from the
toLongString() method on a method call join point is:

public void com.oreilly.aspectjcookbook.MyClass.foo(int, java.lang.String)

public Class getDeclaringType()

Returns the class that declared the member associated with the corresponding signature.

public String getDeclaringTypeName()

Returns the fully qualified name of the member associated with the corresponding signature.
An example of the string returned from the getdeclaringTypeName() method on a method

call join point is:
com.oreilly.aspectjcookbook.MyClass

public int getModifiers()

Returns the modifiers that are set on the corresponding signature.

Note that manipulating the int value that represents the modifiers using the
java.lang.reflect.Modifier class.

public String getName()

Just returns the identifier section of the signature. An example of the string returned from the
getName() method on a method call join point is:

Foo

A.3. org.aspectj.lang.reflect

The org.aspectj.lang.reflect package contains a selection of more specialized classes that

represent specific types of join points and the additional information that they may be able to provide
at runtime.

The Specialized Subinterfaces of Signature

Depending on the join point, various specialized subinterfaces are available to access the particulars
of the signatures on different join points. Figure A-3Figure A-3 shows the relationships between the
different interfaces that can be associated with join points.

Figure A-4. The relationships between the Signature interface and its
specialized subinterfaces

The AdviceSignature interface

Represents the signature on an advice block:

public Class getReturnType()

Returns the type of the object that a particular advice block returns, if any

The CatchClauseSignature interface

Represents the signature of a catch code block:

public String getParameterName()

Returns object name being passed as the parameter to a particular catch block

public Class getParameterType()

Returns object type that is being passed as the parameter to a particular catch block

The CodeSignature interface

Represents the signature of a generic code block:

public Class[] getParameterTypes()

Returns the types of any available parameters on a signature

public String[] getParameterNames()

Returns the names of any available parameters on a signature

public Class[] getExceptionTypes()

Returns the types of any available exceptions that can be raised on a signature

The ConstructorSignature interface

Represents a constructor's signature.

The FieldSignature interface

Represents the signature of a field access or modification:

public Class getFieldType()

Returns field type being accessed or modified according to the signature and the associated
join point

The InitializerSignature interface

Represents the signature of an object initialization.

The MemberSignature interface

Represents the signature of a join point that involves a class member.

The MethodSignature interface

Represents the signature on a method:

public Class getReturnType()

Returns the type of the object that a particular method returns, if any

SourceLocation

The SourceLocation interface defines the information that can potentially be accessed about the

location within the source that a particular join point was encountered. (See Figure A-4Figure A-4.)

public String getFileName()

Returns the file name of the source file where the associated join point is located

public int getLine()

Returns the line in the source file where the associated join point is located

public Class getWithinType()

Returns the type that the join point is located within

Figure A-5. The SourceLocation interface

A.4. The SoftException Class

The SoftException class is used when declaring exceptions that are thrown on a join point as

softened into runtime exceptions.

Recipe 12.5 shows how exception softening is used.

A.5. The NoAspectBoundException Class

The NoAspectBoundException class is potentially used when an exception is thrown when the
aspectOf(..) method is called to obtain access to a particular aspect and there are no aspects of

the indicated type available.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

The animal on the cover of AspectJ Cookbook is a marmoset. Marmosets are small monkeys (usually
no bigger than an oversized rat) that live in the tropical and subtropical forests of South America.
They are arboreal and incredibly agile. Their powerful hind legs, dextrous claw-like hands, and extra-
long tails make swinging from branch to branch a breeze.

Marmosets are not too picky about what they eat. They are partial to tree sap (the stickier the
better), but they also enjoy lizards, frogs, snails, insects, fruit, and nectar.

A group of marmosets (a social group consists of 8-20 individuals) communicates with facial
expressions, body movements, and occasional squeaks. They also rely heavily on smell to identify
each other. A highly adaptable species, marmosets can endure blistering temperatures and sparse
forest environments. Because of this tenacity, they are not under serious threat, unlike most other
primates.

Matt Hutchinson was the production editor for AspectJ Cookbook . GEX, Inc. provided production
services. Marlowe Shaeffer, Sarah Sherman, and Emily Quill provided quality control.

Emma Colby designed the cover of this book, based on a series design by Edie Freedman. The cover
image is a 19th-century engraving from Illustrated Natural History. Clay Fernald produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font.

Melanie Wang designed the interior layout, based on a series design by David Futato. This book was
converted by Julie Hawks to FrameMaker 5.5.6 with a format conversion tool created by Erik Ray,
Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed. The illustrations that appear in the book were produced by Robert
Romano, Jessamyn Read, and Lesley Borash using Macromedia FreeHand MX and Adobe Photoshop
CS. The tip and warning icons were drawn by Christopher Bing. This colophon was written by Matt
Hutchinson.

The online edition of this book was created by the Safari production group (John Chodacki, Ken
Douglass, and Ellie Cutler) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, Ellie Cutler, and Jeff Liggett.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

! (unary) operator

!within(CallRecipe+) pointcut

&& (logical AND) operator

 combining pointcuts with

 short-circuit behavior

\\|\\| operator

 short-circuiting behavior

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

abstract factory pattern

accept(Visitor) class

AccountPersistenceAspect aspect

acknowledge() method

adapter design pattern

advice 2nd

 accessing attributes and methods from within

 accessing join point context from within

 advising same join point within same aspect

 after()

 change triggered

 execute advice after 2nd

 outputing tracing messages

 returning(<ReturnType\\> <Identifier\\>)

 returning(<ReturnValue\\>) form

 throwing

 throwing(<ExceptionType\\> <Identifier\\>)

 transactions

 apply to other aspects

 around()

 constructor calls on Singleton interface classes

 join point triggers, executing advice around

 overriding original logic with

 return value required

 around(MainApplication) block

 aspects and pointcuts, relationship with

 before()

 outputing tracing messages

 transactions

 capturing value of field being accessed

 capturing when executing 2nd

 executed

 after join point raised exception

 after normally returned join point

 after specific join point

 all pointcut conditions true

 around join point triggers

 before join point triggers

 excluding join points from within

 one pointcut condition true

 exposing orginal join point while being advised

 javadoc tags, applying to

 join points, excluding execution

 JoinPoint implicit object passed to block

 precedence, controlling order of

 triggering based on true result comparison

AdviceExecution aspect

adviceexecution() pointcut

AdviceSignature interface

after() advice

 change triggered

 execute advice after

 join point

 join point raised exception

 outputting tracing messages

 returning(<ReturnType\\> <Identifier\\>)

 with primitive types

 returning(<ReturnValue\\>)

 throwing

 throwing(<ExceptionType\\> <Identifier\\>)

 transactions, and

ajc compiler [See compiler]

AJDT plug-in

 Version 1.1.11 or later

.ajproperties file

anonymous pointcuts

Ant

Apache Axis web service, using AspectJ

Apache Tomcat

AppleScript in a Nutshell (Bruce W. Perry)

application properties aspects

application scale aspects

ApplicationLoggingAspect aspect

applications

 areas in

 declaring set of rules for

 Axis web service

 command-line

 deployment setup

 executable JAR file

 deployment setup

 Java Servlet

 deployed structure

 JSP

 deployment setup

 methods, introducing transactional behavior to

 programmatic constructs, controlling

 security policies, adding to existing

 targets

args([TypePatterns \\| Identifiers]) pointcut, capturing method call parameter values

args([Types \\| Identifiers]) pointcut 2nd

 exposing new field value

 key characteristics 2nd

around() advice

 constructor calls on Singleton interface classes

 join point triggers, executing advice around

 overriding original logic with

 return value required

around(MainApplication) advice block

aspect-oriented programming 2nd [See also join points; pointcuts]

 advice

 aspects

 cross-cutting concerns

 enterprise systems

 history of

 join points, supported

 pointcuts

 Xerox PARC and

AspectJ

 ajc compiler [See compiler]

 applications

 Axis web service

 command-line

 executable JAR file

 Java Servlet

 JSP

 targets

 aspects [See also aspects]

 objects, treated as

 singletons by default in

 best practices

 build configurations

 file example

 multiple

 command-line build area

 compiler

 Eclipse as

 Eclipse download location

 project forced rebuild

 supplying files for

 weaving

 development environment, testing

 Eclipse, compiling with

 eclipse.org, open forum for

 installing

 Java Runtime requirements

 javadoc generation

 join points 2nd 3rd 4th [See also join points]

 supported

 JoinPoint implicit object passed to block

 pointcuts

 for Java class and object initialization and construction stages

 runtime API packages

 syntax example

 testing, applying mock objects for

 this variable

 thisJoinPoint variable

 thisJoinPointStaticPart variable

 weaving

 into JAR files

 load-time, compile-time

 Xerox PARC and

AspectJ Development Tools (AJDT) plug-in [See AJDT plug-in]

aspectjrt.jar

 library

 warning message when missing

 within deployment/lib directory

aspects

 AccountPersistenceAspect

 active as behavior changers

 advice, applying to

 AdviceExecution

 application properties

 application scale

 ApplicationLoggingAspect

 AspectJ, singletons by default in

 aTrack project (Ron Bodkin), resusable aspect libraries

 behavior decoupling, generic and reusable

 build configurations for, multiple

 BusinessResourcePoolingAspect

 CallRecipe 2nd 3rd

 categorized as

 ChainOfResponsibilityPattern abstract

 classes

 adding interfaces to

 mulitple advised by

 transformed into during weaving process 2nd

 CommandPattern abstract

 CompositePattern

 ConcreteClassAObserver

 ControlClassSelectionAspect

 CuckoosEggAspect

 DecoratorPattern abstract

 DefaultAlgorithmImplementation

 DelegatingProxyPattern

 DelegationProxy

 developing simple

 EmployeeIteration

 EmployeeMemento

 EmployeePersistenceAspect

 FormatCallDepth 2nd

 GraphicsComposite

 HelloWorld type example

 HelpChain

 instantiation

 per-object-instance

 sharing across all applied areas

 as singleton

 interatorPattern abstract

 InventoryVisitor

 Java classes, multiple applied to

 javadoc tags, applying to

 LazyFeatureLoading

 LazyLoading

 Logging abstract

 MainApplication

 MediatorPattern abstract

 MomentoPattern abstract

 MyAppPolicyAspect

 objects, treated as

 ObserverPattern

 ObserverPattern abstract

 passive as interceptors or observers

 logging 2nd

 tracing

 patterns, applying as

 PersistenceAspect

 pointcuts and advice, relationship with

 PrintableCharacterFlyweight

 PrinterScreenAdapter

 ProjectPolicyAspect

 ProxyPattern abstract

 resource pooling

 ResourcePoolingAspect

 SingletonPattern abstract

 SortingStrategy

 StrategyPattern abstract

 TCPConnectionState

 TextDisplayDecorator

 TextPhraseBuilderDefaultImplementation 2nd

 TracingAspect

 extending

 TransactionAspect

 varying selection of

 VerifyMethodArgsAspect

 VisitorPattern abstract

 weaving

 at load time

 into JAR files

 XWindowBridge

aTrack bug-tracking project

 reusable aspect and pointcut libraries (Ron Bodkin)

attributes

 private, encapsulation broken by get(Signature) pointcut

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

bar() method call 2nd 3rd

before() advice

 accessing identifiers with 2nd 3rd 4th

 examples

 executing advice before join point trigger

 foo() method enhancement

 outputting tracing messages

 transactions, and

Bodkin, Ron

 aTrack project's reusable aspect and pointcut libraries

 New Aspects of Security

Boolean pointcut logic

Border Control design pattern

 application's important packages

 BorderControllerAspect

 MainApplication

Border Controller design pattern

 Cuckoo's Egg pattern collaboration

 declaring sets of regions

 reusable pointcut definition library

bridge design pattern

BubbleSorter class

bug-tracking project, aTrack

 reusable aspect and pointcut libraries (Ron Bodkin)

build configurations

 file example

 multiple

builder pattern

business logic classes

BusinessCard class

BusinessResource class

BusinessResourcePool class

BusinessResourcePoolingAspect aspect

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

call(Signature) pointcut

 capturing method call parameter values 2nd

 capturing method call targets

 for constructors

 inherited or overridden methods

 simple class example

 specific method capture example

 static and dynamic targets

callFooIntStringPointcut() pointcut

callIntersectionFooOrBar() pointcut

CallRecipe aspect 2nd 3rd

calls

 constructors

 capturing

 class instantiation, controlling

 logging class, refactoring

 proceed()

 to methods, capturing

captureCallParameters(int,String) pointcut

captureCallTarget(MyClass) pointcut

captureThisDuringExecution(MyClass) pointcut

CatchClauseSignature interface

catchResourceConstruction() pointcut 2nd

catchResourceDestruction(Resource) pointcut 2nd

catchStaticCallers() pointcut

catchThirdPartyConstructor() pointcut

cflow(Pointcut) pointcut 2nd 3rd

cflowbelow() pointcut

cflowbelow(Pointcut) pointcut

chain of responsibility design pattern

ChainOfResponsibilityPattern abstract aspect

change(..) abstract pointcut

ClassCastException errors

classes

 accept(Visitor)

 adding interfaces using aspects

 applying new interface to

 AspectJ runtime API packages

 behavior induced across multiple classes

 BubbleSorter

 BusinessCard

 BusinessResource

 BusinessResourcePool

 capturing all join points for within a package

 characteristic regions, declaring

 client decoupling

 com.oreilly.aspectjcookbook.MainApplication

 ConcreteClassA

 ConcreteClassB

 constructor, no default

 decoupling from underlying implementation characteristics

 Employee

 EmployeeCollection 2nd

 extending existing

 factory

 getDeclaringType() public Class

 getDescription()

 getExceptionTypes() public Class[]

 getFieldType() public Class

 getParameterTypes() public Class[]

 getReturnType() public Class 2nd

 getWithinType() public Class

 inheritance, new, relationship between

 instantiated on call to constructor, overriding

 instantiating groups of related

 instantiation delayed

 JoinPoint

 LazyFeatureProxy

 LinearSorter

 MainApplication

 Manager

 NoAspectBoundException

 org.aspectj.lang.SoftException runtime exception

 OriginalClass

 persistence, adding

 PrintableCharacter, managed as flyweight

 PrintButton

 PrintDialog

 Printer

 pseudo TCPConnection

 public Class getParameterType()

 remoting with RMI

 ReplacementClass

 separating with single dependency

 ShutdownMonitor

 single aspect, multiple advised by

 singleton pattern, one runtime instance with

 SoftException

 Sorter

 TCPConnection

 TextDisplay

 TimeEvent

 TraditionalMainApplication

 VCardPrinter

 Window, capturing all methods of

close() method

CodeSignature interface

Colleague interface

com.oreilly.aspectjcookbook.MainApplication class

command design pattern

command-line applications, deploying

command-line build area

COMMAND_LINE_USAGE constant

CommandInvoker interface

CommandPattern abstract aspect

CommandReceiver interface

compiler

 Eclipse as

 Eclipse download location

 error and warning messages

 declaring new

 simple, declared string literals

 extending capabilities of

 project forced rebuild

 supplying files for

 weaving

 aspects into .jar files

 load-time

composite design pattern

CompositeElement roles

CompositePattern aspect

ConcreteClassA class

ConcreteClassAObserver aspect

ConcreteClassB class

Conditional pointcut logic

configuration files

 .ajproperites file

 .lst files

 excludeAspects.lst file

configuration properties, managing

constructors

 calls to, capturing

 no default

ConstructorSignature interface

ControlClassSelectionAspect aspect

createMemento() method

createNewFlyweight(...) abstract method

createURLCalledinMainMethod() pointcut

cross-cutting

 micro-scale

Cuckoo's Egg design pattern

 modularizing the override of a constructor call

CuckoosEggAspect aspect

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

declare error statement

declare parents statement

declare precedence statement

declare soft statement

declare warning statement

DecoratedComponent interface

decorator design pattern

DecoratorPattern abstract aspect

DefaultAlgorithmImplementation aspect

delegateRequest(..) method

DelegatingProxyPattern aspect

DelegationProxy aspect

deployment/lib directory, aspectjrt.jar within

design patterns

 adapter

 AspectJ

 abstract base class not needed

 cleaner business logic

 modularized code, less intrusive in

 Border Control

 Border Controller

 Cuckoo's Egg pattern collaboration

 declaring sets of regions

 reusable pointcut definition library

 bridge

 chain of responsibility

 command

 composite

 Cuckoo's Egg

 decorator

 Director 2nd 3rd 4th

 BusinessClassA

 BusinessClassB

 chain of responsibility

 classes, adding persistence to

 DirectorAspect

 resource pooling with

 Role1 and Role2

 roles for lazy loading

 SpecializedAspect

 transaction controlling with

 façade

 flyweight

 Hannemann, Jan

 interpreter

 research by Jan Hanneman

 iterator

 Kiczales, Gregor

 mediator

 memento

 observer

 heirarchical manner of

 policy

 collaborates with

 ProjectPolicyAspect

 ProjectSubAreaPolicyAspect

 proxy

 singleton pattern

 one runtime instance with

 state pattern

 strategy

 template method

 visitor

Design Patterns\: Elements of Reusable Object-Oriented Software (Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides)

development guidelines and rules, applying

Director design pattern 2nd 3rd 4th

 BusinessClassA

 BusinessClassB

 chain of responsibility

 DirectorAspect

 resource pooling with

 Role1 and Role2

 roles for lazy loading

 SpecializedAspect

 transaction controlling with

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Eclipse

 aspects for weaving, selecting

 compling AspectJ with

 converting .lst file to .ajproperties format

 download location

 project forced rebuild

 version 3.0

 Wizards, show all

eclipse.org, Aspect J open forum at

Element roles

Employee class

EmployeeCollection class 2nd

EmployeeIteration aspect

EmployeeMemento aspect

EmployeePersistenceAspect aspect

error, ClassCastException

exception handling

 join point capturing on

 object handling the exception

 when caught

 when thrown

exception logging abstract pointcut

exceptions

 converting checked to runtime

 converting to uncaught (softening)

 Java-supported types

exceptionsToBeLogged() pointcut 2nd

excludeAspects.lst file

excludeNonSingletons() pointcut

execution(Pointcuts)

 inherited or overridden methods

 static and dynamic targets

execution(Signature) pointcut

 capturing executing methods

 capturing ÒthisÓ reference value

 for constructors

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

façade design patterns

factory class

factory method pattern

fields

 capturing values of

 when modified 2nd

FieldSignature interface

filteredExceptionCapture() pointcut

filteredPointsToBeTraced() pointcut

flyweight design pattern

FormatCallDepth aspect 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

get(Signature) pointcut

 breaks encapsulation of private attributes

 object's attribute, capturing when accessed

 simple class, applied to

getArgs() public Object[]

getConstrantPointcut() pointcut

getDeclaringType() public Class

getDeclaringTypeName() public Strings

getDescription() class

getExceptionTypes() public Class[]

getFieldType() public Class

getKind() public Strings 2nd

 ADVICE_EXECUTION string enumeration

 CONSTRUCTOR_CALL string enumeration

 CONSTRUCTOR_EXECUT string enumeration

 EXCEPTION_HANDLER string enumeration

 FIELD_GET string enumeration

 FIELD_SET string enumeration

 INITIALIZATION string enumeration

 METHOD_CALL string enumeration

 METHOD_EXECUTION string enumeration

 PREINITIALIZATION string enumeration

 STATICINITIALIZATION string enumeration

getModifiers() public int

getName() public Strings

getParameterName() public String

getParameterType() public Class

getParameterTypes() public Class[]

getRealComponent() method

getResult() method, default implementation

getReturnType() public Class 2nd

getSignature() public Signature 2nd 3rd

getSourceLocation() public SourceLocation 2nd

getState() method

getStaticPart() method

getTarget() public Object

getThis() public Object

GraphicsComposite aspect

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

handler(TypePattern) pointcut 2nd

 class hierarchy, simple

 exceptions

 caught

 object handling

 thrown

Hannemann, Jan

hash table, singletons

HelloWorld type aspect example

HelpChain aspect

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

idioms, Mik Krestein's standard 2nd

if(Expression) statement

initialization(Signature) pointcut, for constructors

initializeComponent(Object) method

InitializerSignature interface

initializeSpecificPool() method 2nd

interfaces

 AdviceSignature

 applying to a class

 CatchClauseSignature

 CodeSignature

 Colleague

 CommandInvoker

 CommandReceiver

 constructor calls on Singleton applied classes

 ConstructorSignature

 DecoratedComponent

 default implementation

 FieldSignature

 InitializerSignature

 JoinPoint

 JoinPoint.StaticPart

 LazyProxy

 maintaining behavior while extending methods

 Mediator roles as

 MemberSignature

 MethodSignature

 NonSingleton

 RealComponent

 Resource

 ResourcePool

 Runnable

 SharedInstance

 Signature

 signature specialized subinterfaces

 Singleton

 SingletonPattern abstract aspect roles as

 SourceLocation

 TextPhraseBuilder

 ThirdPartyComponentInterface

 Transaction

interpreter design pattern

 Hanneman, Jan

ints

 getLine() public int

 getModifiers() public int

InventoryVisitor aspect

issingleton() aspect instantiation policy 2nd

iterator design pattern

IteratorPattern abstract aspect

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

JAAS authentication procedure for security policies

JAR files

 executable

 deployment setup

 weaving aspects into

Java classes, pointcuts for initialization and construction stages

Java Enterprise in a Nutshell (William Crawford, Jim Farley and David Flanagan)

Java in a Nutshell (David Flanagan) 2nd

Java runtime requirements

Java Security (Scott Oaks)

Java Server Pages (JSP)

Java Servlet & JSP Cookbook (Bruce W. Perry) 2nd

Java Servlet executable

 deployed structure

java.util.Properties

javadoc generation

JBoss implementation

join points 2nd 3rd

 adding additional security to

 advice execution, excluding from within

 capturing

 class initialization

 constructor call matches signature

 constructor execution

 exception handling

 object initialization

 object preinitialization 2nd

 within a class

 within a method

 within a package

 code signature, determining

 dynamic context information

 excluding result of advice execution

 getFileName() public String

 getLine() public int

 getWithinType() public Class

 ignoring during transaction life

 JoinPoint identifier

 JointPoint.StaticPart getStaticPart() public Joinpoint

 list of supported

 original join point, exposing while being advised

 originalJoinPoint identifier

 static context information

JoinPoint class

JoinPoint identifier

JoinPoint interface

 JoinPoint.StaticPart interface

JoinPoint.StaticPart getStaticPart() public Joinpoint

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Kiczales, Gregor

Krestein, Mik 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

LazyFeatureLoading aspect

LazyFeatureProxy class

LazyLoading aspect

LazyProxy interface

LinearSorter class

logException(JoinPoint) abstract method

logging

 API, plugging in

 different ways concurrently

 excluding from

 passive aspects

Logging abstract aspect

logging passive aspects

.lst files

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

main(..) method, declaring location of

main(String[]) method

MainApplicatin.run() method

MainApplication aspect

MainApplication class

mainApplicationInitialization() pointcut

MalformedURLException

Manager classes

manifest file

mappingColleagueToMediator lookup

Measuring the Dynamic Behaviour of AspectJ Programs (Ganesh Sittampalam)

mediator design pattern

 common mediator requirement

mediator roles as interfaces

MediatorPattern abstract aspect

MemberSignature interface

memento design pattern

MementoPattern abstract aspect

method calls, capturing

 bar() call 2nd 3rd

 on execution

 ÒthisÓ reference value 2nd

 parameter values 2nd

 targets

methods

 acknowledge()

 capturing all join points within

 characteristic regions, declaring

 close()

 createMemento()

 createNewFlyweight(...) abstract

 declaring abstract with work flow

 delegateRequest(..)

 extending behavior of, maintain public interface

 getRealComponent()

 getResult(), default implementation

 getState()

 getStaticPart()

 initializeComponent(Object)

 initializeSpecificPool() 2nd

 Java System.out.println(..)

 logException(JoinPoint) abstract

 main(..), declaring location of

 main(String[])

 MainApplicatin.run()

 notifyMediator(Colleague,Mediator)

 notifyOfChange(Subject)

 overloading from mismatched parameters

 parameters passed to, validating

 resourceReturnedToPool()

 resourceReturnedToPool(Resource)

 setMediator(Colleague, Mediator)

 setMemento(Memento)

 setT(float)

 setupTransaction(Object[]) abstract

 stub run()

 System.getProperty()

 ThirdPartyFactory.getThirdPartyComponent() factory

 thisJoinPoint.getStaticPart()

 transactional behavior, introducing

 transactions, specifying treatment as

MethodSignature interface

mock component unit testing

monitorMainApplicationProperty pointcut

monitorMyClassProperty() pointcut

MyAppPolicyAspect aspect

myClassConstructor() pointcut

myClassObjectCreation() pointcut

myExceptionHandlerPointcut pointcut

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

named pointcuts

New Aspects of Security (Ron Bodkin)

NoAspectBoundException class

NonSingleton interface

notifyMediator(Colleague,Mediator) method

notifyOfChange(Subject) method

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

objects

 creating state change dependencies

 duplicate supported by prototype pattern

 getArgs() public Object[]

 getTarget() public Object

 getThis() public Object

 grouping together in a collection

 incorporating fine-grained with flyweight patterns

 overriding instantiation on constructor call

 reinstating original state

 request execution by heirarchy of

 requests, encapsulation as

 surrogate

 XWindow, sharing

ObjectStore role

observer design pattern

 heirarchical manner of

ObserverPattern aspect 2nd

org.aspectj.lang package

org.aspectj.lang.SoftException runtime exception class

OriginalClass class

originalJoinPoint identifier

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

packages

 capturing all join points within

 characteristic regions, declaring

 org.aspectj.lang

parameters

 checking

 modularizing

 passed to method

 validating

patterns

 abstract factory

 applied as aspects

 builder

 chain of responsibility

 command

 Director aspect-oriented

 factory method

 interpreter

 iterator

 mediator

 memento

 observer

 prototype

 duplicate objects supported

 singleton, thread-safe implementation

 state

 strategy

 template method

 visitor 2nd

PersistenceAspect aspect

persistStorage(ObjectStore) pointcut

pertarget(Pointcut) aspect instantiation policies

perthis(..) aspect instantiation policy

perthis(Pointcut) aspect instantiation policies

pointcutadviceexecution() pointcut

 as parameter declaration

pointcuts 2nd 3rd 4th 5th [See also join points]

 !within(CallRecipe+)

 advice

 adviceexecution()

 anonymous 2nd

 args([TypePatterns \\| Identifiers]), capturing method call parameter values

 args([Types \\| Identifiers]) 2nd

 exposing new field value

 aspects

 to be advised, specifying

 call(Signature)

 capturing method call parameter values 2nd

 capturing method call targets

 for constructors

 inherited or overridden methods

 method capture example

 simple class example

 static and dynamic targets

 callFooIntStringPointcut()

 callIntersectionFooOrBar()

 captureCallParameters(int,String)

 captureCallTarget(MyClass)

 captureThisDuringExecution(MyClass)

 catchResourceConstruction() 2nd

 catchResourceDestruction(Resource) 2nd

 catchStaticCallers()

 catchThirdPartyConstructor()

 cflow(Pointcut) 2nd 3rd

 cflowbelow()

 cflowbelow(Pointcut)

 change(..) abstract

 createURLCalledinMainMethod()

 evaluated as Boolean expressions

 combining using logical AND (&&)

 combining using logical OR (\\|\\|)

 join points not caught by

 runtime condition evaluates to true

 exception logging abstract

 exceptionsToBeLogged() 2nd

 excludeNonSingletons()

 execution(Pointcuts)

 inherited or overridden methods

 static and dynamic targets 2nd

 execution(Signature)

 capturing excuting methods

 capturing ÒthisÓ reference value

 for constructors

 filteredExceptionCapture()

 filteredPointsToBeTraced(Object)

 get(Signature)

 breaks encapsulation of private attributes

 object's attribute, capturing when accessed

 simple class, applied to

 getConstrantPointcut()

 handler(TypePattern) 2nd

 class hierarchy, simple

 exceptions 2nd

 idioms, Mik Krestein's standard 2nd

 initialization(Signature)

 for constructors

 for Java class and object initialization and construction stages

 javadoc tags, applying to

 join points

 on Java methods

 picking with

 mainApplicationInitialization()

 monitorMainApplicationProperty()

 monitorMyClassProperty()

 myClassConstructor()

 myClassObjectCreation()

 myExceptionHandlerPointcut

 named

 persistStorage(ObjectStore)

 pointcutadviceexecution()

 as parameter declaraion

 pointsToBeExcluded() 2nd

 pointsToBeTraced() 2nd

 preinitialization(Signature), for constructors

 regionsOfInterest()

 requestTriggered(..)

 restoreStorage(ObjectStore)

 reusable definition library

 reusable pointcut libraries, aTrack project (Ron Bodkin)

 reusing 2nd

 selectSingletons() pointcut

 set(Signature)

 solitary adviceexecution()

 staticinitialization(TypePattern), for constructors

 target([Type \\| Identifier])

 target(TypePattern \\| Identifier)

 this([Type \\| Identifier]) 2nd 3rd 4th

 this(TypePattern \\| Identifier)

 traceCalls()

 tracedCalls()

 transactionBoundary()

 transactionCall()

 within(), NOT (!) operator use

 within(TypePattern)

 capturing all join points within a package

 class instantiation, overriding

 withincode(Signature)

 class instantiation, overriding

 key characteristics

pointsToBeExcluded() pointcut 2nd

pointsToBeTraced() pointcut 2nd

policies

 issingleton() aspect instantiation 2nd

 pertarget(Pointcut) aspect instantiation

 perthis(..) aspect instantiation

 perthis(Pointcut) aspect instantiation

 scope, applying consistent

 security

policy design pattern

 collaborates with

 ProjectPolicyAspect

 ProjectSubAreaPolicyAspect

preinitialization(Signature) pointcut, for constructors

PrintableCharacter class, managed as flyweight

PrintableCharacterFlyweight aspect

PrintButton class

PrintDialog class

Printer class

PrinterScreenAdapter aspect

proceed() call

programmatic constructs, controlling

Programming Apache Axis (Christopher Haddad, Kevin Bedell, and Paul Brown)

ProjectPolicyAspect aspect

prototype pattern

 duplicate objects supported

proxy design patterns

ProxyPattern abstract aspect

pseudo TCPConnection class

public String[] getParameterNames()

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

RealComponent interface

regions

 withinMyApp()

 withinMyAppMainMethod()

 withinTestingRegion()

 withinThirdParty()

regionsOfInterest() pointcut

remote calls on local object, peculiarities

Remote Method Invocation [See RMI]

ReplacementClass class

request, separating source from handler action

requestTriggered(..) pointcut

Resource interface

resource pooling abstract aspect

ResourcePool interface

ResourcePool role

ResourcePoolingAspect aspect

resourceReturnedToPool() method

resourceReturnedToPool(Resource) method

restoreStorage(ObjectStore) pointcut

RMI (Remote Method Invocation)

 peculiarities

 remote calls on local object

 remoting classes with

roles

 CompositeElement

 Element

 ObjectStore

 ResourcePool

 Visitor

rules, declaring set of for any application area

Runnable interface

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

security policies

 JAAS authentication procedure

 join points, adding to

selectSingletons() pointcut

sequentially accessing a collection

set(Signature) pointcut

setF(float) method

setMediator(Colleague, Mediator) method

setMemento(Memento) method

setupTransaction(Object[]) abstract method

SharedInstance interface

shutdown hook

ShutdownMonitor class

Signature interface

signatures, getSignature() public Signature 2nd

Singleton interface

SingletonPattern abstract aspect

singletons hash table

SoftException class

solitary adviceexecution() pointcut

Sorter class

SortingStrategy aspect

SourceLocation interface

SourceLocation, getSourceLocation() public SoucreLocation 2nd

Spring Framework implementation

standard pointcut idioms (Mik Krestein) 2nd

state design pattern

state information, encapsulating

statements

 declare error

 declare parents

 declare precedence

 declare soft

 declare warning

 if(Expression)

static cross-cutting techniques 2nd 3rd 4th

staticinitialization(TypePattern) pointcut, for constructors

strategy design pattern

StrategyPattern abstract aspect

String toLongString() public Strings

String toShortString() public Strings

strings

 getDeclaringTypeName() public Strings

 getFileName() public String

 getKind() public Strings 2nd

 ADVICE_EXECUTION string enumeration

 CONSTRUCTOR_CALL string enumeration

 CONSTRUCTOR_EXECUTION string enumeration

 EXCEPTION_HANDLER string enumeration

 FIELD_GET string enumeration

 FIELD_SET string enumeration

 INITIALIZATION string enumeration

 METHOD_CALL string enumeration

 METHOD_EXECUTION string enumeration

 PREINITIALIZATION string enumeration

 STATICINITIALIZATION string enumeration

 getName() public Strings

 getParameterName() public String

 getParameterNames() public String[]

 String toLongString() public Strings

 String toShortString() public Strings

 toLongString() public Strings 2nd

 toShortString() public Strings 2nd

 toString() public Strings 2nd 3rd

stub run() method

surrogate object

system policy warnings, designing

System.getProperty() method

System.out.println(..) method (Java)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

target([Type | Identifier]) pointcut

target(TypePattern \\| Identifier) pointcut

TCPConnection class

TCPConnectionState aspect

template method design pattern

test harness component implementation

TextDisplay class

TextDisplayDecorator aspect

TextPhraseBuilder interface

TextPhraseBuilderDefaultImplementation aspect 2nd

ThirdPartyComponentInterface interface

ThirdPartyFactory.getThirdPartyComponent() factory method

this([Type \\| Identifier]) pointcut 2nd 3rd 4th

this(TypePattern \\| Identifier) pointcut

thisJoinPoint variable

thisJoinPoint.getStaticPart() method

thread safe singleton pattern implementation

timed intervals, executing

TimedEvent class

toLongString() public Strings 2nd

Tomcat: The Definitive Guide (Jason Brittain and Ian Darwin) 2nd

toShortString() public Strings 2nd

toString() public Strings 2nd 3rd

traceCalls() pointcut

tracedCalls() pointcut

tracing passive aspects

TracingAspect aspect

 extending

TraditionalMainApplication class

Transaction interface

TransactionAspect aspect

transactionBoundary() pointcut

transactionCall() pointcut

transactions

 advice working with

 applying

 join points, ignoring during life of

 methods specified for treatment as

TypePatterns

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

unit testing with mock components

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

variables

 this

 thisJoinPoint 2nd

 thisJoinPointStaticPart

VerifyMethodArgsAspect aspect

visitor design pattern 2nd

Visitor role

VisitorPattern abstract aspect

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

weaving

 aspects into .jar files

 compile-time

 load-time 2nd

Window class, capturing all methods of

within() pointcut, NOT (!) operator use

within(TypePattern) pointcut

 capturing all join points within a package

 class instantiation, overriding

withincode(Signature) pointcut

 class instantiation, overriding

withinMyApp() region

withinMyAppMainMethod() region

withinTestingRegion() region

withinThirdParty() regions

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X]

Xerox Parc

XWindow object, sharing

XWindowBridge aspect

	AspectJ Cookbook
	Table of Contents
	Copyright
	Preface
	Audience
	About This Book
	Assumptions This Book Makes
	Conventions Used in This Book
	Using the Code Examples
	We'd Like to Hear from You
	Safari Enabled
	Acknowledgments

	Chapter 1. Aspect Orientation Overview
	Section 1.1. A Brief History of Aspect Orientation
	Section 1.2. AspectJ
	Section 1.3. A Definition of Aspect Orientation
	Section 1.4. Where to Go for More Information

	Chapter 2. Getting Started with AspectJ
	Introduction
	Recipe 2.1. Installing AspectJ
	Recipe 2.2. Developing a Simple Aspect
	Recipe 2.3. Compiling an Aspect and Multiple Java Files
	Recipe 2.4. Weaving Aspects into Jars
	Recipe 2.5. Weaving Aspects at Load Time
	Recipe 2.6. Generating Javadoc Documentation
	Recipe 2.7. Compiling an AspectJ Project Using Eclipse
	Recipe 2.8. Selecting the Aspects That Are Woven in a Build Within Eclipse
	Recipe 2.9. Building an AspectJ Project Using Ant

	Chapter 3. Deploying AspectJ Applications
	Introduction
	Recipe 3.1. Deploying a Command-Line AspectJ Application
	Recipe 3.2. Deploying an AspectJ Application as a Fully Contained Executable JAR File
	Recipe 3.3. Deploying a Java Servlet That Uses AspectJ
	Recipe 3.4. Deploying a JSP That Uses AspectJ
	Recipe 3.5. Deploying an Axis Web Service That Uses AspectJ

	Chapter 4. Capturing Joing Points on Methods
	Introduction
	Recipe 4.1. Capturing a Method Call
	Recipe 4.2. Capturing the Parameter Values Passed on a Method Call
	Recipe 4.3. Capturing the Target of a Method Call
	Recipe 4.4. Capturing a Method When It Is Executing
	Recipe 4.5. Capturing the Value of the this Reference When a Method Is Executing

	Chapter 5. Capturing Join Points on Exception Handling
	Introduction
	Recipe 5.1. Capturing When an Exception Is Caught
	Recipe 5.2. Capturing the Thrown Exception
	Recipe 5.3. Capturing the Object Handling the Exception

	Chapter 6. Capturing Join Points on Advice
	Introduction
	Recipe 6.1. Capturing When Advice Is Executing
	Recipe 6.2. Excluding Join Points That Are a Result of Advice Execution
	Recipe 6.3. Exposing the Original Join Point When Advice Is Being Advised

	Chapter 7. Capturing Join Points on Class Object Construction
	Introduction
	Recipe 7.1. Capturing a Call to a Constructor
	Recipe 7.2. Capturing a Constructor When It Is Executing
	Recipe 7.3. Capturing When an Object Is Initialized
	Recipe 7.4. Capturing When an Object Is About to Be Initialized
	Recipe 7.5. Capturing When a Class Is Initialized

	Chapter 8. Capturing Join Points on Attributes
	Introduction
	Recipe 8.1. Capturing When an Object's Attribute Is Accessed
	Recipe 8.2. Capturing the Value of the Field Being Accessed
	Recipe 8.3. Capturing When an Object's Field Is Modified
	Recipe 8.4. Capturing the Value of a Field When It Is Modified

	Chapter 9. Capturing Join Points Within Programmatic Scope
	Introduction
	Recipe 9.1. Capturing All Join Points Within a Particular Class
	Recipe 9.2. Capturing All Join Points Within a Particular Package
	Recipe 9.3. Capturing All Join Points Within a Particular Method

	Chapter 10. Capturing Join Points Based on Control Flow
	Introduction
	Recipe 10.1. Capturing All Join Points Within a Program's Control Flow Initiated by an Initial Join Point
	Recipe 10.2. Capturing All Join Points Within a Program's Control Flow, Excluding the Initial Join Point

	Chapter 11. Capturing Join Points Based on Object Type
	Introduction
	Recipe 11.1. Capturing When the this Reference Is a Specific Type
	Recipe 11.2. Capturing When a Join Point's Target Object Is a Specific Type
	Recipe 11.3. Capturing When the Arguments to a Join Point Are a Certain Number, Type, and Ordering

	Chapter 12. Capturing Join Points Based on a Boolean or Combined Expression
	Introduction
	Recipe 12.1. Capturing When a Runtime Condition Evaluates to True on a Join Point
	Recipe 12.2. Combining Pointcuts Using a Logical AND (&&)
	Recipe 12.3. Combining Pointcuts Using a Logical OR (||)
	Recipe 12.4. Capturing All Join Points NOT Specified by a Pointcut Declaration
	Recipe 12.5. Declaring Anonymous Pointcuts
	Recipe 12.6. Reusing Pointcuts

	Chapter 13. Defining Advice
	Introduction
	Recipe 13.1. Accessing Class Members
	Recipe 13.2. Accessing the Join Point Context
	Recipe 13.3. Executing Advice Before a Join Point
	Recipe 13.4. Executing Advice Around a Join Point
	Recipe 13.5. Executing Advice Unconditionally After a Join Point
	Recipe 13.6. Executing Advice Only After a Normal Return from a Join Point
	Recipe 13.7. Executing Advice Only After an Exception Has Been Raised in a Join Point
	Recipe 13.8. Controlling Advice Precedence
	Recipe 13.9. Advising Aspects

	Chapter 14. Defining Aspect Instantiation
	Introduction
	Recipe 14.1. Defining Singleton Aspects
	Recipe 14.2. Defining an Aspect per Instance
	Recipe 14.3. Defining an Aspect per Control Flow

	Chapter 15. Defining Aspect Relationships
	Introduction
	Recipe 15.1. Inheriting Pointcut Definitions
	Recipe 15.2. Implementing Abstract Pointcuts
	Recipe 15.3. Inheriting Classes into Aspects
	Recipe 15.4. Declaring Aspects Inside Classes

	Chapter 16. Enhancing Classes and the Compiler
	Introduction
	Recipe 16.1. Extending an Existing Class
	Recipe 16.2. Declaring Inheritance Between Classes
	Recipe 16.3. Implementing Interfaces Using Aspects
	Recipe 16.4. Declaring a Default Interface Implementation
	Recipe 16.5. Softening Exceptions
	Recipe 16.6. Extending Compilation

	Chapter 17. Implementing Creational Object-Oriented Design Patterns
	Introduction
	Recipe 17.1. Implementing the Singleton Pattern
	Recipe 17.2. Implementing the Prototype Pattern
	Recipe 17.3. Implementing the Abstract Factory Pattern
	Recipe 17.4. Implementing the Factory Method Pattern
	Recipe 17.5. Implementing the Builder Pattern

	Chapter 18. Implementing Structural Object-Oriented Design Patterns
	Introduction
	Recipe 18.1. Implementing the Composite Pattern
	Recipe 18.2. Implementing the Flyweight Pattern
	Recipe 18.3. Implementing the Adapter Pattern
	Recipe 18.4. Implementing the Bridge Pattern
	Recipe 18.5. Implementing the Decorator Pattern
	Recipe 18.6. Implementing the Proxy Pattern

	Chapter 19. Implementing Behavioral Object-Oriented Design Patterns
	Introduction
	Recipe 19.1. Implementing the Observer Pattern
	Recipe 19.2. Implementing the Command Pattern
	Recipe 19.3. Implementing the Iterator Pattern
	Recipe 19.4. Implementing the Mediator Pattern
	Recipe 19.5. Implementing the Chain of Responsibility Pattern
	Recipe 19.6. Implementing the Memento Pattern
	Recipe 19.7. Implementing the Strategy Pattern
	Recipe 19.8. Implementing the Visitor Pattern
	Recipe 19.9. Implementing the Template Method Pattern
	Recipe 19.10. Implementing the State Pattern
	Recipe 19.11. Implementing the Interpreter Pattern

	Chapter 20. Applying Class and Component Scale Aspects
	Introduction
	Recipe 20.1. Validating Parameters Passed to a Method
	Recipe 20.2. Overriding the Class Instantiated on a Call to a Constructor
	Recipe 20.3. Adding Persistence to a Class
	Recipe 20.4. Applying Mock Components to Support Unit Testing

	Chapter 21. Applying Application Scale Aspects
	Introduction
	Recipe 21.1. Applying Aspect-Oriented Tracing
	Recipe 21.2. Applying Aspect-Oriented Logging
	Recipe 21.3. Applying Lazy Loading
	Recipe 21.4. Managing Application Properties

	Chapter 22. Applying Enterprise Scale Aspects
	Introduction
	Recipe 22.1. Applying Development Guidelines and Rules
	Recipe 22.2. Applying Transactions
	Recipe 22.3. Applying Resource Pooling
	Recipe 22.4. Remoting a Class Transparently Using RMI
	Recipe 22.5. Applying a Security Policy

	Chapter 23. Applying Aspect-Oriented Design Patterns
	Introduction
	Recipe 23.1. Applying the Cuckoo's Egg Design Pattern
	Recipe 23.2. Applying the Director Design Pattern
	Recipe 23.3. Applying the Border Control Design Pattern
	Recipe 23.4. Applying the Policy Design Pattern

	Appendix A. The AspectJ Runtime API
	Section A.1. org.aspectj.lang
	Section A.2. Signature
	Section A.3. org.aspectj.lang.reflect
	Section A.4. The SoftException Class
	Section A.5. The NoAspectBoundException Class

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

