downloaded from: lib.ommolkefab.ir

JAV

Threads

O’REILLY" Scott Oaks & Henry Wong

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Scott Oaks & Henry Wong

and Edition January 1999
ISBN: 1-56592-418-5, 332 pages

Revised and expanded to cover Java 2, Java Threads shows you how to
take full advantage of Java's thread facilities: where to use threads to
increase efficiency, how to use them effectively, and how to avoid
common mistakes.

It thoroughly covers the Thread and ThreadGroup classes, the Runnable
interface, and the language's synchronized operator.

The book pays special attention to threading issues with Swing, as well
as problems like deadlock, race condition, and starvation to help you
write code without hidden bugs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table of Contents

Preface

1. Introduction to Threading
Java Terms
Thread Overview
Why Threads?
Summary

2. The Java Threading API
Threading Using the Thread Class
Threading Using the Runnable Interface
The Life Cycle of a Thread
Thread Naming
Thread Access
More on Starting, Stopping, and Joining
Summary

3. Synchronization Techniques
A Banking Example
Reading Data Asynchronously
A Class to Perform Synchronization
The Synchronized Block
Nested Locks
Deadlock
Return to the Banking Example
Synchronizing Static Methods
Summary

4. Wait and Notify
Back to Work (at the Bank)
Wait and Notify
wait(), notify(), and notifyAll()
wait() and sleep()
Thread Interruption
Static Methods (Synchronization Details)
Summary

5. Useful Examples of Java Thread Programming
Data Structures and Containers
Simple Synchronization Examples
A Network Server Class
The AsyncInputStream Class
Using TCPServer with AsyncInputStreams
Summary

6. Java Thread Scheduling
An Overview of Thread Scheduling
When Scheduling Is Important
Scheduling with Thread Priorities
Popular Scheduling Implementations
Native Scheduling Support
Other Thread-Scheduling Methods
Summary

downloaded from: lib.ommolkefab.ir

12

31

50

64

87

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Table of Contents (cont...)

7. Java Thread Scheduling Examples 117
Thread Pools
Round-Robin Scheduling
Job Scheduling
Summary

8. Advanced Synchronization Topics 137
Synchronization Terms
Preventing Deadlock
Lock Starvation
Thread-Unsafe Classes
Summary

9. Parallelizing for Multiprocessor Machines 162
Parallelizing a Single-Threaded Program
Inner-Loop Threading
Loop Printing
Multiprocessor Scaling
Summary

10. Thread Groups 189
Thread Group Concepts
Creating Thread Groups
Thread Group Methods
Manipulating Thread Groups
Thread Groups, Threads, and Security

Summary
A. Miscellaneous Topics 203
B. Exceptions and Errors 209
Colophon 214

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Description

Threads aren't a new idea: many operating systems and languages support them. But despite
widespread support, threads tend to be something that everyone talks about, but few use.
Programming with threads has a reputation for being tricky and nonportable.

Not so with Java. Java's thread facilities are easy to use, and - like everything else in Java - are
completely portable between platforms. And that's a good thing, because it's impossible to write
anything but the simplest applet without encountering threads. If you want to work with Java, you
have to learn about threads.

This new edition shows you how to take full advantage of Java's thread facilities: where to use threads
to increase efficiency, how to use them effectively, and how to avoid common mistakes.

Java Threads discusses problems like deadlock, race condition, and starvation in detail, helping you
to write code without hidden bugs. It brings you up to date with the latest changes in the thread
interface for JDK 1.2.

The book offers a thorough discussion of the Thread and ThreadGroup classes, the Runnable
interface, the language's synchronized operator. It explains thread scheduling ends by developing a
CPUSchedule class, showing you how to implement your own scheduling policy. In addition, Java
Threads shows you how to extend Java's thread primitives. Other extended examples include classes
that implement reader/writer locks, general locks, locks at arbitrary scope, and asynchronous I/0.
This edition also adds extensive examples on thread pools, advanced synchronization technique, like
condition variables, barriers, and daemon locks. It shows how to work with classes that are not thread
safe, and pays special attention to threading issues with Swing. A new chapter shows you how to write
parallel code for multiprocessor machines.

In short, Java Threads covers everything you need to know about threads, from the simplest

animation applet to the most complex applications. If you plan to do any serious work in Java, you will
find this book invaluable. Examples available online. Covers Java 2.

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Preface

When Sun Microsystems released the first alpha version of Java™ in the winter of 1995, developers all
over the world took notice. There were many features of Java that attracted these developers, not the
least of which were the set of buzzwords Sun used to promote Java: Java was, among other things,
robust, safe, architecture-neutral, portable, object oriented, simple, and multithreaded. For many
developers, these last two buzzwords seemed contradictory: how could a language that is
multithreaded be simple?

It turns out that Java's threading system is simple, at least relative to other threading systems. This
simplicity makes Java's threading system easy to learn, so that even developers who are unfamiliar
with threads can pick up the basics of thread programming with relative ease. But this simplicity
comes with trade-offs: some of the advanced features that are found in other threading systems are
not present in Java. However, these features can be built by the Java developer from the simpler
constructs Java provides. And that's the underlying theme of this book: how to use the threading tools
in Java to perform the basic tasks of threaded programming, and how to extend them to perform more
advanced tasks for more complex programs.

Who Should Read This Book?

This book is intended for programmers of all levels who need to learn to use threads within Java
programs. The first few chapters of the book deal with the issues of threaded programming in Java,
starting at a basic level: no assumption is made that the developer has had any experience in threaded
programming. As the chapters progress, the material becomes more advanced, in terms of both the
information presented and the experience of the developer that the material assumes. For developers
who are new to threaded programming, this sequence should provide a natural progression of the
topic.

This progression mimics the development of Java itself as well as the development of books about
Java. Early Java programs tended to be simple, though effective: an animated image of Duke dancing
on a web page was a powerful advertisement of Java's potential, but it barely scratched the surface of
that potential. Similarly, early books about Java tended to be complete overviews of Java with only a
chapter or two dedicated to Java's threading system.

This book belongs to the second wave of Java books: because it covers only a single topic, it has the
luxury of explaining in deeper detail how Java's threads can be used. It's ideally suited to developers
targeting the second wave of Java programs - more complex programs that fully exploit the power of
Java's threading system.

Though the material presented in this book does not assume any prior knowledge of threads, it does
assume that the reader has a knowledge of other areas of the Java API and can write simple Java
programs.

Versions Used in This Book

Writing a book on Java in the age of Internet time is hard: the sand on which we're standing is
constantly shifting. But we've drawn a line in that sand, and the line we've drawn is at the JDK™ 2
from Sun Microsystems. It's likely that versions of Java that postdate Java 2 will contain some
changes to the threading system not discussed in this version of the book. We will also point out the
differences between Java 2 and previous versions of Java as we go, so that developers who are using
earlier releases of Java will also be able to use this book.

Some vendors that provide Java - either embedded in browsers or as a development system - are
contemplating releasing extensions to Java that provide additional functionality to Java's threading
system (in much the same way as the examples we provide in Chapter 5 through Chapter 8 use the
basic techniques of the Java threaded system to provide additional functionality). Those extensions
are beyond the scope of this book: we're concerned only with the reference JDK 2 from Sun
Microsystems. The only time we'll consider platform differences is in reference to an area of the
reference JDK that differs on Unix platforms and Windows platforms: these platforms contain some
differences in the scheduling of Java threads, a topic we'll address in Chapter 6.

page 1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Organization of This Book

Here's an outline of the book, showing the progression of the material we present. The material in the
appendixes is generally either too immature to present fully or is mostly of academic interest,
although it may be useful in rare cases.

Chapter 1

This chapter introduces the concept of threads and the terms we use in the book.
Chapter 2

This chapter introduces the Java API that allows the programmer to create threads.
Chapter 3

This chapter introduces the simple locking mechanism that Java developers can use to
synchronize access to data and code.

Chapter 4

This chapter introduces the other Java mechanism that developers use to synchronize access
to data and code.

Chapter 5

This chapter summarizes the techniques presented in the previous chapters. Unlike the earlier
chapters, this chapter is solutions oriented: the examples give you an idea of how to put
together the basic threading techniques that have been presented so far, and provide some
insight into designing effectively using threads.

Chapter 6

This chapter introduces the Java API that controls how threads are scheduled by the virtual
machine, including a discussion of scheduling differences between different implementations
of the virtual machine.

Chapter 7

This chapter provides examples that extend Java's scheduling model, including techniques to
provide round-robin scheduling and thread pooling.

Chapter 8

This chapter discusses various advanced topics related to data synchronization, including
designing around deadlock and developing some additional synchronization classes, including
synchronization methods from other platforms that are not directly available in Java.

Chapter 9

This chapter discusses how to design your program to take advantage of a machine with
multiple processors.

Chapter 10

This chapter discusses Java's ThreadGroup class, which allows a developer to control and
manipulate groups of threads. Java's security mechanism for threads is based on this class
and is also discussed in this chapter.

Appendix A

This appendix presents a few methods of the Java API that are of limited interest: methods
that deal with the thread's stack and the ThreadDeath class.

Appendix B

This appendix presents the details of the exceptions and errors that are used by the threading
system.

page 2

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Conventions Used in This Book
constant width font is used for:

e Code examples:

public void main(String args[]) {
System.out.println("Hello, world");

e Method, variable, and parameter names within the text, as well as keywords
Bold constant width font is used for:

e Presenting revised code examples as we work through a problem:

public void main(String args[]) {
System.out.printin("Hello, world™);

e Highlighting a section of code for discussion within a longer code example
Italic font is used for URLs and filenames, and to introduce new terms.

Examples of the programs in this book may be retrieved online from:

http://www.oreilly.com/catalog/jthreads2

Feedback for Authors

We've attempted to be complete and accurate throughout this book. Changes in releases of the Java
specification as well as differing vendor implementations across many platforms and underlying
operating systems make it impossible to be completely accurate in all cases (not to mention the
possibility of our having made a mistake somewhere along the line). This book is a work in progress,
and as Java continues to evolve, so, too, will this book. Please let us know about any errors you find, as
well as your suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

1-800-998-9938 (in the U.S. or Canada)
1-707-829-0515 (international/local)
1-707-829-0104 (FAX)

You can also send us messages electronically. To be put on the mailing list or request a catalog, send
email to:

http://safari2.oreilly.com/info@oreilly.com
To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

We have a web site for the book, where we'll list examples, errata, and any plans for future editions.
You can access this page at:

http://www.oreilly.com/catalog/jthreads2/
For more information about this book and others, see the O'Reilly web site:
http://www.oreilly.com/

The authors welcome your feedback about this book, especially if you spot errors or omissions that we
have made. You can contact us at scott.oaks@sun.com and henry.wong@sun.com.

page 3

downloaded from: lib.ommolkefab.ir

http://www.oreilly.com/catalog/jthreads2
http://safari2.oreilly.com/info@oreilly.com
http://www.oreilly.com/catalog/jthreads2/
http://www.oreilly.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Acknowledgments

As readers of prefaces are well aware, writing a book is never an effort undertaken solely by the
authors who get all the credit on the cover. We are deeply indebted to the following people for their
help and encouragement: Michael Loukides, who believed us when we said that this was an important
topic and who shepherded us through the creative process; David Flanagan, for valuable feedback on
the drafts; Hong Zhang, for helping us with Windows threading issues; and Reynold Jabbour and
Wendy Talmont, for supporting us in our work.

Mostly, we must thank our respective families. To James, who gave Scott the support and
encouragement necessary to see this book through (and to cope with his continual state of
distraction), and to Nini, who knew to leave Henry alone for the ten percent of the time when he was
creative, and encouraged him the rest of the time: Thank you for everything!

Finally, we must thank the many readers of the first edition of this book who sent us invaluable

feedback. We have tried our best to answer every concern that they have raised. Keep those cards and
letters coming!

page 4

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Chapter 1. Introduction to Threading

This is a book about using threads in the Java programming language and the Java virtual machine.
The topic of threads is very important in Java - so important that many features of a threaded system
are built into the Java language itself, while other features of a threaded system are required by the
Java virtual machine. Threading is an integral part of using Java.

The concept of threads is not a new one: for some time, many operating systems have had libraries
that provide the C programmer with a mechanism to create threads. Other languages, such as Ada,
have support for threads embedded into the language, much as support for threads is built into the
Java language. Nonetheless, the topic of threads is usually considered a peripheral programming
topic, one that's only needed in special programming cases.

With Java, things are different: it is impossible to write any but the simplest Java program without
introducing the topic of threads. And the popularity of Java ensures that many developers who might
never have considered learning about threading possibilities in a language like C or C++ need to
become fluent in threaded programming.

1.1 Java Terms

We'll start by defining some terms used throughout this book. Many terms surrounding Java are used
inconsistently in various sources; we'll endeavor to be consistent in our usage of these terms
throughout the book.

Java

First is the term Java itself. As we know, Java started out as a programming language, and
many people today think of Java as being simply a programming language. But Java is much
more than just a programming language: it's also an API specification and a virtual machine
specification. So when we say Java, we mean the entire Java platform: a programming
language, an API, and a virtual machine specification that, taken together, define an entire
programming and runtime environment. Often when we say Java, it's clear from context that
we're talking specifically about the programming language, or parts of the Java API, or the
virtual machine. The point to remember is that the threading features we discuss in this book
derive their properties from all the components of the Java platform taken as a whole. While
it's possible to take the Java programming language, directly compile it into assembly code,
and run it outside of the virtual machine, such an executable may not necessarily behave the
same as the programs we describe in this book.

Virtual machine, interpreters, and browsers

The Java virtual machine is another term for the Java interpreter, which is the code that
ultimately runs Java programs by interpreting the intermediate byte-code format of the Java
programming language. The Java interpreter actually comes in three popular forms: the
interpreter for developers (called java) that runs programs via the command line or a file
manager, the interpreter for end users (called jre) that is a subset of the developer
environment and forms the basis of (among other things) the Java plug-in, and the interpreter
that is built into many popular web browsers such as Netscape Navigator, Internet Explorer,
HotJava™, and the appletviewer that comes with the Java Developer's Kit. All of these forms
are simply implementations of the Java virtual machine, and we'll refer to the Java virtual
machine when our discussion applies to any of them. When we use the term Java interpreter,
we're talking specifically about the command-line, standalone version of the virtual machine
(including those virtual machines that perform just-in-time compilation); when we use the
term Java-enabled browser (or, more simply, browser), we're talking specifically about the
virtual machine built into web browsers.

For the most part, virtual machines are indistinguishable - at least in theory. In practice, there
are a few important differences between implementations of virtual machines, and one of

those differences comes in the world of threads. This difference is important in relatively few
circumstances, and we'll discuss it in Chapter 6.

pages

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Programs, applications, and applets

This leads us to the terms that we'll use for things written in the Java language. Generically,
we'll call such entities programs. But there are two types of programs a typical Java
programmer might write: programs that can be run directly by the Java interpreter and
programs designed to be run by a Java-enabled browser..’ Much of the time, the distinction
between these two types of Java programs is not important, and in those cases, we'll refer to
them as programs. But in those cases where the distinction is important, we'll use the term
applets for programs running in the Java-enabled browser and the term applications for
standalone Java programs. In terms of threads, the distinction between an applet and an
application manifests itself only in Java's security model; we'll discuss the interaction between
the security model and Java threads in Chapter 10.

(1 Though it's possible to write a single Java program so that it can be run both by the interpreter and
by a browser, the distinction still applies at the time the program is actually run.

1.2 Thread Overview
This leaves us only one more term to define: what exactly is a thread? The term thread is shorthand

for thread of control, and a thread of control is, at its simplest, a section of code executed
independently of other threads of control within a single program.

Thread of Control

Thread of control sounds like a complicated technical term, but it's really a simple concept:
it is the path taken by a program during execution. This determines what code will be
executed: does the i f block get executed, or does the e1se block? How many times does the
whiTe loop execute? If we were executing tasks from a "to do" list, much as a computer
executes an application, what steps we perform and the order in which we perform them is
our path of execution, the result of our thread of control.

Having multiple threads of control is like executing tasks from two lists. We are still doing
the tasks on each "to do" list in the correct order, but when we get bored with the tasks on
one of the lists, we switch lists with the intention of returning at some future time to the
first list at the exact point where we left off.

1.2.1 Overview of Multitasking

We're all familiar with the use of multitasking operating systems to run multiple programs
simultaneously. Each of these programs has at least one thread within it, so at some level, we're
already comfortable with the notion of a thread in a single process. The single-threaded process has
the following properties, which, as it turns out, are shared by all threads in a program with multiple
threads as well:

e The process begins execution at a well-known point. In programming languages like C and
C++ (not to mention Java itself), the thread begins execution at the first statement of the
function or method called main() .

e Execution of the statements follows in a completely ordered, predefined sequence for a given
set of inputs. An individual process is single-minded in this regard: it simply executes the next
statement in the program.

e While executing, the process has access to certain data. In Java, there are three types of data a
process can access: local variables are accessed from the thread's stack, instance variables are

accessed through object references, and static variables are accessed through class or object
references.

page 6

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Now consider what happens when you sit at your computer and start two single-threaded programs: a
text editor, say, and a file manager. You now have two processes running on your computer; each
process has a single thread with the properties just outlined. Each process does not necessarily know
about the other process, although, depending on the operating system running on your computer,
there are several ways in which the processes can send each other various messages. A common
behavior is that you can drag a file icon from the file manager into the text editor in order to edit the
file. Each process thus runs independently of the other, although they can cooperate if they so choose.
The typical multitasking environment is shown in Figure 1.1.

Figure 1.1. Processes in a multitasking environment

~ Application #1 &
: Operofing System &=— 4‘
| Applicaion #2 &> Locol Memary |

.l.ppimhlrl #3 ol Local Memory |

From the point of view of the person using the computer, these processes often appear to execute
simultaneously, although many variables can affect that appearance. These variables depend on the
operating system: for example, a given operating system may not support multitasking at all, so that
no two programs appear to execute simultaneously. Or the user may have decided that a particular
process is more important than other processes and hence should always run, shutting out the other
processes from running and again affecting the appearance of simultaneity.

Finally, the data contained within these two processes is, by default, separated: each has its own stack
for local variables, and each has its own data area for objects and other data elements. Under many
operating systems, the programmer can make arrangements so that the data objects reside in memory
that can be shared between the processes, allowing both processes to access them.

1.2.2 Overview of Multithreading

All of this leads us to a common analogy: we can think of a thread just as we think of a process, and we
can consider a program with multiple threads running within a single instance of the Java virtual
machine just as we consider multiple processes within an operating system, as we show in Figure 1.2.

Figure 1.2. Multitasking versus threading

— Thread #2 I'" Local w.;.hh.-sj i

— Thread #3 I"’I.mi ‘i’tmhlesj :

page 7

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

So it is that within a Java program, multiple threads have these properties:

e Each thread begins execution at a predefined, well-known location. For one of the threads in
the program, that location is the main() method; for the rest of the threads, it is a particular
location the programmer decides on when the code is written. Note that this is true of an
applet as well, in which case the main() method was executed by the browser itself.

e Each thread executes code from its starting location in an ordered, predefined (for a given set
of inputs) sequence. Threads are single-minded in their purpose, always simply executing the
next statement in the sequence.

e FEach thread executes its code independently of the other threads in the program. If the
threads choose to cooperate with each other, there are a variety of mechanisms we will explore
that allow that cooperation. Exploiting those methods of cooperation is the reason why
programming with threads is such a useful technique, but that cooperation is completely
optional, much as the user is never required to drag a file from the file manager into the text
editor.

o The threads appear to have a certain degree of simultaneous execution. As we'll explore in
Chapter 6, the degree of simultaneity depends on several factors - programming decisions
about the relative importance of various threads as well as operating system support for
various features. The potential for simultaneous execution is the key thing you must keep in
mind when threading your code.

e The threads have access to various types of data. At this point, the analogy to multlple
processes breaks down somewhat, depending on the type of data the Java program is
attempting to access.

Each thread is separate, so that local variables in the methods that the thread is executing are
separate for different threads. These local variables are completely private; there is no way for
one thread to access the local variables of another thread. If two threads happen to execute the
same method, each thread gets a separate copy of the local variables of that method. This is
completely analogous to running two copies of the text editor: each process would have
separate copies of the local variables.

Objects and their instance variables, on the other hand, can be shared between threads in a
Java program, and sharing these objects between threads of a Java program is much easier
than sharing data objects between processes in most operating systems. In fact, the ability to
share data objects easily between threads is another reason why programming with threads is
so useful. But Java threads cannot arbitrarily access each other's data objects: they need
permission to access the objects, and one thread needs to pass the object reference to the
other thread.

Static variables are the big exception to this analogy: they are automatically shared between
all threads in a Java program.

Don't panic over this analogy: the fact that you'll be programming with threads in Java doesn't mean
you'll necessarily be doing the system-level type of programming you'd need to perform if you were
writing the multitasking operating system responsible for running multiple programs. The Java
Thread API is designed to be simple and requires little specialized skill for most common tasks.

1.3 Why Threads?

The notion of threading is so ingrained in Java that it's almost impossible to write even the simplest
programs in Java without creating and using threads. And many of the classes in the Java API are
already threaded, so that often you are using multiple threads without realizing it.

Historically, threading was first exploited to make certain programs easier to write: if a program can
be split into separate tasks, it's often easier to program the algorithm as separate tasks or threads.

Programs that fall into this category are typically specialized and deal with multiple independent
tasks.

page 8

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

The relative rareness of these types of programs makes threading in this category a specialized skill.
Often, these programs were written as separate processes using operating-system-dependent
communication tools such as signals and shared memory spaces to communicate between processes.
This approach increased system complexity.

The popularity of threading increased when graphical interfaces became the standard for desktop
computers because the threading system allowed the user to perceive better program performance.
The introduction of threads into these platforms didn't make the programs any faster, but it did create
an illusion of faster performance for the user, who now had a dedicated thread to service input or
display output.

Recently, there's been a flurry of activity regarding a new use of threaded programs: to exploit the
growing number of computers that have multiple processors. Programs that require a lot of CPU
processing are natural candidates for this category, since a calculation that requires one hour on a
single-processor machine could (at least theoretically) run in half an hour on a two-processor
machine, or 15 minutes on a four-processor machine. All that is required is that the program be
written to use multiple threads to perform the calculation.

While computers with multiple processors have been around for a long time, we're now seeing these
machines become cheap enough to be very widely available. The advent of less expensive machines
with multiple processors, and of operating systems that provide programmers with thread libraries to
exploit those processors, has made threaded programming a hot topic, as developers move to extract
every benefit from these new machines. Until Java, much of the interest in threading centered around
using threads to take advantage of multiple processors on a single machine.

However, threading in Java often has nothing at all to do with multiprocessor machines and their
capabilities; in fact, the first Java virtual machines were unable to take advantage of multiple
processors on a machine, and many implementations of the virtual machine still follow that model.
However, there are also implementations of the virtual machine that do take advantage of the multiple
processors that the computer may have. A correctly written program running in one of those virtual
machines on a computer with two processors may indeed take roughly half the time to execute that it
would take on a computer with a single processor. If you're looking to use Java to have your program
scale to many processors, that is indeed possible when you use the correct virtual machine. However,
even if your Java program is destined to be run on a machine with a single CPU, threading is still very
important.

The major reason threading is so important in Java is that Java has no concept of asynchronous
behavior. This means that many of the programming techniques you've become accustomed to using
in typical programs are not applicable in Java; instead, you must learn a new repertoire of threading
techniques to handle these cases of asynchronous behavior.

This is not to say there aren't other times when threads are a handy programming technique in Java;
certainly it's easy to use Java for a program that implements an algorithm that naturally lends itself to
threading. And many Java programs implement multiple independent behaviors. The next few
sections cover some of the circumstances in which Java threads are a required component of the
program, due to the need for asynchronous behavior or to the elegance that threading lends to the
problem.

1.3.1 Nonblocking I/0

In Java, as in most programming languages, when you try to get input from the user, you execute a
read() method specifying the user's terminal (System.in in Java). When the program executes the
read() method, the program will typically wait until the user types at least one character before it
continues and executes the next statement. This type of I/O is called blocking I/O : the program
blocks until some data is available to satisfy the read () method.

This type of behavior is often undesirable. If you're reading data from a network socket, that data is
often not available when you want to read it: the data may have been delayed in transit over the
network, or you may be reading from a network server that sends data only periodically. If the
program blocks when it tries to read from the socket, then it's unable to do anything else until the data
is actually available.

page 9

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

If the program has a user interface that contains a button and the user presses the button while the
program is executing the read () method, nothing will happen: the program will be unable to process
the mouse events and execute the event-processing method associated with the button. This can be
very frustrating for the user, who thinks the program has hung.

Traditionally, there are three techniques to cope with this situation:
1/0 multiplexing

Developers often take all input sources and use a system call like select() to notify them
when data is available from a particular source. This allows input to be handled much like an
event from the user (in fact, many graphical toolkits use this method transparently to the user,
who simply registers a callback function that is called whenever data is available from a
particular source).

Polling

Polling allows a developer to test if data is available from a particular source. If data is
available, the data can be read and processed; if it is not, the program can perform another
task. Polling can be done either explicitly - with a system call like po11() - or, in some
systems, by making the read() function return an indication that no data is immediately
available.

Signals

A file descriptor representing an input source can often be set so that an asynchronous signal
is delivered to the program when data is available on that input source. This signal interrupts
the program, which processes the data and then returns to whatever task it had been doing.

In Java, none of these techniques is directly available. There is limited support for polling via the
available() method of the FilterInputStream class, but this method does not have the rich
semantics that polling typically has in most operating systems. To compensate for the lack of these
features, a Java developer must set up a separate thread to read the data. This separate thread can
block when data isn't available, and the other thread(s) in the Java program can process events from
the user or perform other tasks.

While this issue of blocking I/O can conceivably occur with any data source, it occurs most frequently
with network sockets. If you're used to programming sockets, you've probably used one of these
techniques to read from a socket, but perhaps not to write to one. Many developers, used to
programming on a local area network, are vaguely aware that writing to a socket may block, but it's a
possibility that many of them ignore because it can only happen under certain circumstances, such as
a backlog in getting data onto the network. This backlog rarely happens on a fast local area network,
but if you're using Java to program sockets over the Internet, the chances of this backlog happening
are greatly increased; hence the chance of blocking while attempting to write data onto the network is
also increased. So in Java, you may need two threads to handle the socket: one to read from the socket
and one to write to it.

1.3.2 Alarms and Timers
Traditional operating systems typically provide some sort of timer or alarm call: the program sets the
timer and continues processing. When the timer expires, the program receives some sort of

asynchronous signal that notifies the program of the timer's expiration.

In Java, the programmer must set up a separate thread to simulate a timer. This thread can sleep for
the duration of a specified time interval and then notify other threads that the timer has expired.

1.3.3 Independent Tasks

A Java program is often called on to perform independent tasks. In the simplest case, a single applet
may perform two independent animations for a web page. A more complex program would be a
calculation server that performs calculations on behalf of several clients simultaneously. In either
case, while it is possible to write a single-threaded program to perform the multiple tasks, it's easier
and more elegant to place each task in its own thread.

page 10

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

The complete answer to the question "Why threads?" really lies in this category. As programmers,
we're trained to think linearly and often fail to see simultaneous paths that our program might take.
But there's no reason why processes that we've conventionally thought of in a single-threaded fashion
need necessarily remain so: when the Save button in a word processor is pressed, we typically have to
wait a few seconds until we can continue. Worse yet, the word processor may periodically perform an
autosave, which invariably interrupts the flow of typing and disrupts the thought process. In a
threaded word processor, the save operation would be in a separate thread so that it didn't interfere
with the work flow. As you become accustomed to writing programs with multiple threads, you'll
discover many circumstances in which adding a separate thread will make your algorithms more
elegant and your programs better to use.

1.3.4 Parallelizable Algorithms

With the advent of virtual machines that can use multiple CPUs simultaneously, Java has become a
useful platform for developing programs that use algorithms that can be parallelized. Any program
that contains a loop is a candidate for being parallelized; that is, running one iteration of the loop on
one CPU while another iteration of the loop is simultaneously running on another CPU. Dependencies
between the data that each iteration of the loop needs may prohibit a particular loop from being
parallelized, and there may be other reasons why a loop should not be parallelized. But for many
programs with CPU-intensive loops, parallelizing the loop will greatly speed up the execution of the
program when it is run on a machine with multiple processors.

Many languages have compilers that support automatic parallelization of loops; as yet, Java does not.
But as we'll see in Chapter 9, parallelizing a loop by hand is often not a difficult task.

1.4 Summary

The idea of multiple threads of control within a single program may seem like a new and difficult
concept, but it is not. All programs have at least one thread already, and multiple threads in a single
program are not radically different from multiple programs within an operating system.

A Java program can contain many threads, all of which may be created without the explicit knowledge
of the developer. For now, all you need to consider is that when you write a Java application, there is
an initial thread that begins its operation by executing the main () method of your application. When
you write a Java applet, there is a thread that is executing the callback methods (init(),
actionperformed(), etc.) of your applet; we speak of this thread as the applet's thread. In either case,
your program starts with what you can consider as a single thread. If you want to perform I/O
(particularly if the I/O might block), start a timer, or do any other task in parallel with the initial
thread, you must start a new thread to perform that task. In the next chapter, we'll examine how to do
just that.

page 11

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Chapter 2. The Java ThreadingAPI

In this chapter, we will create our own threads. As we shall see, Java threads are easy to use and well
integrated with the Java environment.

2.1 Threading Using the Thread Class

In the last chapter, we considered threads as separate tasks that execute in parallel. These tasks are
simply code executed by the thread, and this code is actually part of our program. The code may
download an image from the server or may play an audio file on the speakers or any other task;
because it is code, it can be executed by our original thread. To introduce the parallelism we desire, we
must create a new thread and arrange for the new thread to execute the appropriate code.

Let's start by looking at the execution of a single thread in the following example:

public class
ourclass {
public void run() {
for (int I = 0; I < 100; I++) {
System.out.printin("Hell0");

}
}

In this example, we have a class called OurClass. The OurClass class has a single public method called

run() that simply writes a string 100 times to the Java console or to the standard output. If we
execute this code from an applet as shown here, it runs in the applet's thread:

import java.applet.Applet;

public class
ourApplet extends Applet {
public void init() {
ourcClass oc = new ourcClass();
oc.runQ);

}

If we instantiate an OurClass object and call its run() method, nothing unusual happens. An object is
created, its run() method is called, and the "Hello" message prints 100 times. Just like other method
calls, the caller of the run() method waits until the run() method finishes before it continues. If we
were to graph an execution of the code, it would look like Figure 2.1.

Figure 2.1. Graphical representation of nonthreaded method execution

'

Applat axetsling
rund) method

Applet exensfing
init{} method

hpglel thread
doing other fosks

(> Time

Location

page 12

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

What if we want the run() method of OurClass to execute in parallel with the init() and other
methods of the applet? In order to do that, we must modify the OurClass class so that it can be
executed by a new thread. So the first thing we'll do is make OurClass inherit from the Thread
(java.lang.Thread) class:
public class ourcClass extends Thread {
public void run() {
for (int I =0; I < 100; I++) {
System.out.printin("Hell0");

3
}

If we compile this code and run it with our applet, everything works exactly as before: the applet's
init() method calls the run() method of the OurClass object and waits for the run() method to
return before continuing. The fact that this example compiles and runs proves that the Thread class
exists. This class is our first look into the Java threading API and is the programmatic interface for
starting and stopping our own threads. But we have not yet created a new thread of control; we have
simply created a class that has a run() method. To continue, let's modify our applet like this:

import java.applet.Applet;

public class oOurApplet extends Applet {
public void init() {
ourclass oc = new ourclass();
oc.start(Q);

}

In this second version of our applet, we have changed only one line: the call to the run() method is
now a call to the start() method. Compiling and executing this code confirms that it still works and
appears to the user to run exactly the same way as the previous example. Since the start () method is
not part of the OurClass class, we can conclude that the implementation of the start () method is part
of either the Thread class or one of its superclasses. Furthermore, since the applet still accomplishes
the same task, we can conclude that the start() method causes a call, whether directly or indirectly,
to the run() method.

Upon closer examination, this new applet actually behaves differently than the previous version.
While it is true that the start() method eventually calls the run() method, it does so in another
thread. The start() method is what actually creates another thread of control; this new thread, after
dealing with some initialization details, then calls the run() method. After the run() method
completes, this new thread also deals with the details of terminating the thread. The start() method
of the original thread returns immediately. Thus, the run() method will be executing in the newly
formed thread at about the same time the start() method returns in the first thread, as shown in
Figure 2.2.

Figure 2.2. Graphical representation of threaded method execution

'

Applat execsling
rurd) method

Applet exeasing
inlernal thread osks

Applet exensting
siort{} method

Applet exeqsling H

init{} method

hpalal thread
doing other 1osks

Location

¥

é Time

page 13

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Here are the methods of the Thread class that we've discussed so far:
Thread()

Constructs a thread object using default values for all options.
void run()

The method that the newly created thread will execute. Developers should override this
method with the code they want the new thread to run; we'll show the default implementation
of the run () method a little further on, but it is essentially an empty method.

void start()

Creates a new thread and executes the run() method defined in this thread class.
To review, creating another thread of control is a two-step process. First, we must create the code that
executes in the new thread by overriding the run() method in our subclass. Then we create the actual

subclassed object using its constructor (which calls the default constructor of the Thread class in this
case) and begin execution of its run() method by calling the start() method of the subclass.

run() Versus main()

In essence, the run () method may be thought of as the main() method of the newly formed
thread: a new thread begins execution with the run () method in the same way a program
begins execution with the main () method.

While the main() method receives its arguments from the argv parameter (which is
typically set from the command line), the newly created thread must receive its arguments
programmatically from the originating thread. Hence, parameters can be passed in via the
constructor, static instance variables, or any other technique designed by the developer.

2.1.1 Animate Applet

Let's see a more concrete example of creating a new thread. When you want to show an animation in
your web page, you do so by displaying a series of images (frames) with a time interval between the
frames. This use of a timer is one of the most common places in Java where a separate thread is
required: because there are no asynchronous signals in Java, you must set up a separate thread, have
the thread sleep for a period of time, and then have the thread tell the applet to paint the next frame.

An implementation of this timer follows:
import java.awt.*;

public class

TimerThread extends Thread {
Component comp; // Component that needs repainting
int timediff; // Time between repaints of the component
volatile boolean shouldRun; // Set to false to stop thread

public TimerThread(Component comp, int timediff) {
this.comp = comp;
this.timediff = timediff;
shouldRun = true;

public void run() {
while (shouldrRun) {
try {
comp.repaint();
sleep(timediff);
} catch (Exception e) {}

page 14

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

In this example, the TimerThread class, just like the OurClass class, inherits from the Thread class and
overrides the run() method. Its constructor stores the component on which to call the repaint()
method and the requested time interval between the calls to the repaint () method.

What we have not seen so far is the call to the sTeep () method:
static void sleep (long milliseconds)

Puts the currently executing thread to sleep for the specified number of milliseconds. This
method is static and may be accessed through the Thread class name.

static void sleep (long milliseconds, int nanoseconds)

Puts the currently executing thread to sleep for the specified number of milliseconds and
nanoseconds. This method is static and may be accessed through the Thread class name.

The sTleep() method is part of the Thread class, and it causes the current thread (the thread that
made the call to the sTeep() method) to pause for the specified amount of time in milliseconds. The
try statement in the code example is needed due to some of the exceptions that are thrown from the
sleep() method. We'll discuss these exceptions in Appendix B; for now, we'll just discard all
exceptions.

The easiest description of the task of the sTeep() method is that the caller actually sleeps for the
specified amount of time. This method is part of the Thread class because of how the method
accomplishes the task: the current (i.e., calling) thread is placed in a "blocked" state for the specified
amount of time, much like the state it would be in if the thread were waiting for I/O to occur. See
Appendix A for a discussion of the volatile keyword.

sleep(long) and sleep(long, int)

The Thread class provides a version of the sTeep () method that allows the developer to
specify the time in terms of nanoseconds. Unfortunately, most operating systems that
implement the Java virtual machine do not support a resolution as small as a nanosecond.
For those platforms, the method simply rounds the number of nanoseconds to the nearest
millisecond and calls the version of the sTeep () method that only specifies milliseconds. In
fact, most operating systems do not support a resolution of a single millisecond, so that the
milliseconds are in turn rounded up to the smallest resolution that the platform supports.

For the developer, we should note that support of nanoseconds may never be available in all
versions of the Java virtual machine. As a matter of policy, one should not design programs
that require support of nanoseconds (or even exact timing of milliseconds) in order to
function correctly.

To return to step 2 of the two-step process: let's take a look at the Animate applet that uses our
TimerThread class:

import java.applet.*;
import java.awt.*;

public class

Animate extends Applet {
int count, lastcount;
Image pictures[];
TimerThread timer;

public void init() {
lastcount = 10; count = 0;
pictures = new Image[10];
MediaTracker tracker = new MediaTracker(this);
for (int a = 0; a < lastcount; a++) {
pictures[a] = getImage (
getCodeBase(), new Integer(a).toString()+".jpeg");
tracker.addImage(pictures[a], 0);

tracker.checkAll(true);

page 15

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

public void start() {
timer = new TimerThread(this, 1000);
timer.start();

public void stop() {
timer.shouldRun = false;
timer = null;

public void paint(Graphics g) {
g.drawImage(pictures[count++], 0, 0, null);

if (count == lastcount)
count = 0;
3
}

Here we create and start the new thread in the applet's start() method. This new thread is
responsible only for informing the applet when to redraw the next frame; it is still the applet's thread
that performs the redraw when the applet's paint () method is called. The init () method in this case
simply loads the image frames from the server.

2.1.2 Stopping a Thread

When the stop() method of the applet is called, we need to stop the timer thread, since we do not
need repaint() requests when the applet is no longer running. To do this, we relied on the ability to
set the shouldrun variable of the TimerThread class to notify that class that it should return from its
run() method. When a thread returns from its run() method, it has completed its execution, so in
this case we also set the timer instance variable to nul11 to allow that thread object to be garbage
collected.

This technique is the preferred method for terminating a thread: threads should always terminate by
returning from their run () method. It's up to the developer to decide how a thread should know when
it's time to return from the run() method; setting a flag, as we've done in this case, is typically the
easiest method to do that.

Setting a flag means that my thread has to check the flag periodically. Isn't there a cleaner way to
stop the thread? And isn't there a way to terminate the thread immediately, rather than waiting for
it to check some flag? Well, yes and no. The Thread class does contain a stop() method that allows
you to stop a thread immediately: no matter what the thread is doing, it will be terminated. However,
the stop() method is very dangerous. In Java 2, the stop() method is deprecated; however, the
reasons that led it to become deprecated actually exist in all versions of Java, so you should avoid
using the stop() method in any release of Java. We'll discuss the motivation for this in Chapter 6
after we understand a little more about the details of threaded programming; for now, you'll have to
accept our word that using the stop() method is a dangerous thing. In addition, calling the stop()
method will sometimes result in a security exception, as we'll explain in Chapter 10, so you cannot rely
on it always working.

The start() and stop() Methods of the
Applet Class

It is unfortunate that both the Applet and the Thread classes have a start() and a stop()
method, and that they have the same signature in both classes. This may be a source of
confusion when implementing or debugging threaded applets.

These methods serve different purposes and are not directly related to each other.

page 16

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

For the record, here is the definition of the stop () method:
void stop() (deprecated in Java 2)

Terminates an already running thread.

What does returning from the run() method (or calling the stop() method) accomplish? As we
mentioned, when the run() method completes, the thread automatically handles the cleanup process
and other details of terminating the thread. The stop () method simply provides a way of prematurely
terminating the run() method. The thread will then, as usual, automatically handle the cleanup
process and other details of terminating the thread. Details of how the stop () method actually works
are given in Appendix A.

2.2 Threading Using the Runnable Interface

As simple as it is to create another thread of control, there is one problem with the technique we've
outlined so far. It's caused by the fact that Java classes can inherit their behavior only from a single
class, which means that inheritance itself can be considered a scarce resource, and is therefore
"expensive" to the developer.

In our example, we are threading a simple loop, so this is not much of a concern. However, if we have
a complete class structure that already has a detailed inheritance tree and want it to run in its own
thread, we cannot simply make this class structure inherit from the Thread class as we did before. One
solution would be to create a new class that inherits from Thread and contains references to the
instances of the classes we need. This level of indirection is an annoyance.

The Java language deals with this lack of multiple inheritance by using the mechanism known as
interfaces.i’ This mechanism is supported by the Thread class and simply means that instead of
inheriting from the Thread class, we can implement the Runnable interface (java.lang.Runnable),
which is defined as follows:

1Tt can be argued that interfaces cannot accomplish everything that multiple inheritance can, but that is a debate
for a different book.

public interface Runnable {
public abstract void run(Q);

The Runnable interface contains only one method: the run() method. The Thread class actually
implements the Runnable interface; hence, when you inherit from the Thread class, your subclass also
implements the Runnable interface. However, in this case we want to implement the Runnable
interface without actually inheriting from the Thread class. This is achieved by simply substituting the
phrase "implements Runnable" for the phrase "extends Thread"; no other changes are necessary in
step 1 of our thread creation process:

public class

ourClass implements Runnable {

public void run() {
for (int I =0; I < 100; I++) {
System.out.println("Hello, from another thread");

3
}

Step 2 of our thread creation processes has some other changes. Since an instance of the OurClass
class is no longer a Thread object, it cannot be treated as one. So in order to create a separate thread of
control, an instance of the Thread class is still needed, but it will be instantiated with a reference to
our OurClass object. In other words, its usage is slightly more complicated:

import java.applet.Applet;

public class
ourApplet extends Applet {
public void init() {
Runnable ot = new ourClass(Q;
Thread th = new Thread(ot);
th.start(Q;

page 17

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

As before, we have to create an instance of the OurClass class. However, in this new version, we also
need to create an actual thread object. We create this object by passing our runnable OurClass object
reference to the constructor of the thread using a new constructor of the Thread class:

Thread(Runnable target)

Constructs a new thread object associated with the given Runnable object.
The new Thread object's start () method is called to begin execution of the new thread of control.

The reason we need to pass the runnable object to the thread object's constructor is that the thread
must have some way to get to the run() method we want the thread to execute. Since we are no longer
overriding the run() method of the Thread class, the default run() method of the Thread class is
executed; this default run() method looks like this:

public void run() {
if (target != null) {
target.run(Q);

}

Here, target is the runnable object we passed to the thread's constructor. So the thread begins
execution with the run() method of the Thread class, which immediately calls the run() method of
our runnable object.

Interestingly, since we can use the Runnable interface instead of inheriting from the Thread class, we
can merge the OurClass class into the applet itself. This is a common technique for spinning off a
separate thread of control for the applet. Since the applet itself is now runnable, instance variables of
the applet thread and the run() method in this newly spun-off thread are the same:

import java.applet.Applet;

public class ourApplet extends Applet implements Runnable {
public void init() {
Thread th = new Thread(this);
th.startQ;

public void run() {
for (int I =0; I < 100; I++) {
System.out.printin("Hello, from another thread");

}
}

This technique can also be used with our Animate class:

import java.applet.*;
import java.awt.*;

public class

Animate extends Applet implements Runnable {
int count, lastcount;
Image pictures[];
Thread timer;

public void init() {
lastcount = 10; count = 0;
pictures = new Image[10];
MediaTracker tracker = new MediaTracker(this);
for (int a = 0; a < lastcount; a++) {
pictures[a] = getImage (
getcodeBase(), new Integer(a) tostring(O+".jpeg");
tracker.addImage(pictures[a], 0);

h
y tracker.checkAll(true);

public void start() {
if (timer == null) {
timer = new Thread(this);
timer.startQ;

page 18

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir
Java Threads, 2nd edition

public void paint(Graphics g) {
g.drawImage(pictures[count++], 0, 0, null);
if (count == lastcount) count = 0;

public void run() {
while (isActive()) {
try {
repaint();
Thread.s1eep(1000);
} catch (Exception e) {}

timer = null;

}

After merging the classes, we now have a direct reference to the applet, so we can call the repaint()
method directly. Because the Animate class is not of the Thread class, its run() method cannot call
the sTeep() method directly. Fortunately, the sTeep() method is a static method, so we can still
access it using the Thread class specifier.

As can be seen from this example, the threading interface model allows classes that already have fixed
inheritance structures to be threaded without creating a new class. However, there is still one
unanswered question: when should you use the Runnable interface and when should you create a new
subclass of Thread?

The isActive() Method

We used the isActive() method in the last example instead of stopping the thread
explicitly. This shows another technique you can use to stop your threads; the benefit of this
technique is that it allows the run () method to terminate normally rather than through the
immediate termination caused by the stop () method. This allows the run() method to
clean up after itself before it terminates.

The isActive() method is part of the Applet class and determines if an applet is active. By
definition, an applet is active between the periods of the applet's start () and stop()
methods. Don't confuse this method with the isATive () method of the Thread class, which
we'll discuss later.

Does threading by the Runnable interface solve a problem that cannot be solved through threading
by inheritance or vice versa? At this point, there do not seem to be any significant differences
between the two techniques. It is easier to use one technique for certain tasks and the other technique
for other tasks. For example, our last Animate class saved us the need to have an extra class definition,
via its use of the Runnable interface in the Applet class. In the earlier example, having a separate
TimerThread definition may have been both easier to understand and to debug. But these differences
are relatively minor, and there do not seem to be any tasks that cannot be solved by either technique.

At this point, we will not worry about the difference between the two techniques. We will use one
technique or the other based on personal preference and the clarity of the solution. As we develop
examples throughout this book, we hope that you will learn to use either technique on a case-by-case
basis.

This is all there is to writing simple threaded Java programs. We have a class that allows us to define a
method that will be executed in a separate thread; this thread can be initiated via its start() method,
and it should stop by returning from its run() method. However, as we have seen in the previous
chapter, it is not just the ability to have different threads that makes the threaded system a powerful
tool; it is that these threads can communicate easily with each other by invoking methods on objects
that are shared between the threads.

page 19

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Inheritance or Interfaces?

As noted, we will choose threading with inheritance or interfaces based on personal
preference and the clarity of the solution. However, those of you who are object-oriented
purists could argue that unless we are enhancing the Thread class, we should not inherit
from the Thread class.

Theorists could insert an entire chapter on this issue. Our main concern is for the clarity of
the code; any other reasons for choosing between threading by inheritance or interfaces are
beyond the scope of this book.

2.3 The Life Cycle of a Thread

So far, we have a simple knowledge of working with threads: we know how to use the start() method
to start a thread, and how to terminate a thread by arranging for its run() method to complete. We'll
now look at two techniques that provide us more information about the thread during its life cycle.

2.3.1 The isAlive() Method

There is a period of time after you call the start() method before the virtual machine can actually
start the thread. Similarly, when a thread returns from its run() method, there is a period of time
before the virtual machine can clean up after the thread; and if you use the stop () method, there is an
even greater period of time before the virtual machine can clean up after the thread.

This delay occurs because it takes time to start or terminate a thread; therefore, there is a transitional
period from when a thread is running to when a thread is not running, as shown in Figure 2.3. After
the run() method returns, there is a short period of time before the thread stops. If we want to know
if the start () method of the thread has been called - or, more usefully, if the thread has terminated -
we must use the isAlive() method. This method is used to find out if a thread has actually been
started and has not yet terminated:

boolean isAlive()

Determines if a thread is considered alive. By definition, a thread is considered alive from
sometime before a thread is actually started to sometime after a thread is actually stopped.

Figure 2.3. Graphical representation of the states of the thread

4 Perind during the starf{) meihad

Pariod during the stap/) method

Running

State,/Status
S
-

Nat Runiing

é Time

page 20

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Let's modify our Animate class to wait until the timer thread stops before finishing:

import java.applet.*;
import java.awt.*;

public class

Animate extends Applet {
int count, lastcount;
Image pictures[];
TimerThread timer;

public void init() {
lastcount = 10; count = 0;
pictures = new Image[1l0];
MediaTracker tracker = new MediaTracker(this);
for (int a = 0; a < lastcount; a++) {
pictures[a] = getImage(
getCodeBase(), new Integer(a).toString()+".jpeg");
tracker.addImage(pictures[a], 0);

tracker.checkAll(true);

}

public void start() {
timer = new TimerThread(this, 1000);
timer.start();

public void stop() {
timer.shouldRun = false;
while (timer.isAlive()) {
try {
Thread.sleep(100);
} catch (InterruptedException e) {}

timer = null;

public void paint(Graphics g) {
g.drawImage(pictures[count++], 0, 0, null);

if (count == lastcount) count = 0;

}

Just because a thread has been started does not mean it is actually running, nor that it is able to run -
the thread may be blocked, waiting for I/O, or it may still be in the transitional period of the start()
method. For this reason, the isAlive() method is more useful in detecting whether a thread has
stopped running. For example, let's examine the stop() method of this applet. Just like the earlier
versions, we have a TimerThread object that is started and stopped when the applet is started and
stopped. In this newer version, the applet's stop() method does more than just stop the
TimerThread: it also checks to make sure the thread actually has stopped.

In this example, we don't gain anything by making sure the timer thread has actually stopped. But if
for some reason we need to deal with common data that is being accessed by two threads, and it is
critical to make sure the other thread is stopped, we can simply loop and check to make sure the
thread is no longer alive before continuing.

There is another circumstance in which a thread can be considered no longer alive: if the stop()
method is called, the thread will be considered no longer alive a short time later. This is really the
same case: the isATive() method can be used to determine if the run() method has completed,
whether normally or as a result of the stop () method having been called.

2.3.2 Joining Threads

The isATive() method can be thought of as a crude form of communication. We are waiting for
information: the indication that the other thread has completed. As another example, if we start a
couple of threads to do a long calculation, we are then free to do other tasks. Assume that sometime
later we have completed all other secondary tasks and need to deal with the results of the long
calculation: we need to wait until the calculations are finished before continuing on to process the
results.

page 21

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

We could accomplish this task by using the looping isATlive() technique we've just discussed, but
there are other techniques in the Java API that are more suited to this task. This act of waiting is
called a thread join. We are "joining" with the thread that was "forked" off from us earlier when we
started the thread. So, modifying our last example, we have:

import java.applet.Applet;
public class Animate extends Applet {

|:.)l:lli.)-|'iC void stop() {
t.shouldRun = false;

try {
t.joinQ;
} catch (InterruptedeException e) {}

}
The Thread class provides the following join() methods:
void join()
Waits for the completion of the specified thread. By definition, join() returns as soon as the

thread is considered "not alive." This includes the case in which the join() method is called
on a thread that has not been started.

void join(long timeout)

Waits for the completion of the specified thread, but no longer than the timeout specified in
milliseconds. This timeout value is subject to rounding based on the capabilities of the
underlying platform.

void join(long timeout, int nanos)

Waits for the completion of the specified thread, but no longer than a timeout specified in
milliseconds and nanoseconds. This timeout value is subject to rounding based on the
capabilities of the underlying platform.

When the join() method is called, the current thread will simply wait until the thread it is joining
with is no longer alive. This can be caused by the thread not having been started, or having been
stopped by yet another thread, or by the completion of the thread itself. The join() method basically
accomplishes the same task as the combination of the sTeep() and isATive() methods we used in
the earlier example. However, by using the join () method, we accomplish the same task with a single
method call. We also have better control over the timeout interval, and we don't waste CPU cycles by
polling.

Another interesting point about both the isATive() method and the join() method is that we are
actually not affecting the thread on which we called the method. That thread will run no differently
whether the join() method is called or not; instead, it is the calling thread that is affected. The
isATive() method simply returns the status of a thread, and the join() method simply waits for a
certain status on the thread.

join(), isAlive(), and the Current Thread

The concept of a thread calling the isATive() or the join() method on itself does not
make sense. There is no reason to check if the current thread is alive since it would not be
able to do anything about it if it were not alive. As a matter of fact, isAlive() can only
return true when it checks the status of the thread calling it. If the thread were stopped
during the isAlive() method, the isATive() method would not be able to return. So a
thread that calls the isATive () method on itself will always receive true as the result.

The concept of a thread joining itself does not make sense, but let's examine what happens
when one tries. It turns out that the join() method uses the isAlive () method to
determine when to return from the join() method. In the current implementation, it also
does not check to see if the thread is joining itself. In other words, the join() method
returns when and only when the thread is no longer alive. This will have the effect of
waiting forever.

page 22

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

2.4 Thread Naming
The next topic we will examine concerns the thread support methods that are used mainly for thread
"bookkeeping." First, it is possible to assign a String name to the Thread object itself:
void setName(String name)

Assigns a name to the Thread instance.
String getName()

Gets the name of the Thread instance.
The Thread class provides a method that allows us to attach a name to the thread object and a method
that allows us to retrieve the name. The system does not use this string for any specific purpose,
though the name is printed out by the default implementation of the tostring() method of the

thread. The developer who assigns the name is free to use this string for any purpose desired. For
example, let's assign a name to our TimerThread class:

import java.awt.*;

public class
TimerThread extends Thread {

Component comp; // Component that needs repainting
int timediff; // Time between repaints of the component
volatile boolean shouldRun; // Set to false to stop thread

public TimerThread(Component comp, int timediff) {
this.comp = comp;
this.timediff = timediff;
shouldRun = true;
setName("TimerThread(" + timediff +

milliseconds)™);

public void run() {
while (shouldRun) {
try {
comp.repaint();
sleep(timediff);
} catch (Exception e) {}

3
}
In this version of the TimerThread class, we assigned a name to the thread. The name that is assigned
is simply "TimerThread" followed by the number of milliseconds used in this timer thread. If the
getName () method is later called on this instance, this string value will be returned.

Uses for a Thread Name?

Using the thread name to store information is not too beneficial. We could just as easily
have added an instance variable to the Thread class (if we're threading by inheritance) or to
the Runnable type class (if we're threading by interfaces) and achieved the same results.
The best use of this name is probably for debugging. With an assigned name, the debugger
and the tostring() method display thread information in terms of a "logical" name
instead of a number.

By default, if no name is assigned, the Thread class chooses a unique name. This name is
generally "Thread-" followed by a unique number.

page 23

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

The naming support is also available as a constructor of the Thread class:
Thread(String name)

Constructs a thread object with a name that is already assigned. This constructor is used when
threading by inheritance.

Thread(Runnable target, String name)

Constructs a thread object that is associated with the given Runnable object and is created
with a name that is already assigned. This constructor is used when threading by interfaces.

Just like the setName() method, setting the name via the thread constructor is simple. One
constructor is provided for threading by inheritance and another for threading by interfaces. In our
TimerThread example, since we are setting the name in the constructor, we could just as easily have
used the thread constructor instead of the setName () method:

import java.awt.*;

public class TimerThread extends Thread {

Component comp; // Component that needs repainting
int timediff; // Time between repaints of the component
volatile boolean shouldRun; // Set to false to stop thread

public TimerThread(Component comp, int timediff) {
super("TimerThread(" + timediff + " milliseconds)™);
this.comp = comp;
this.timediff = timediff;
shouldRun = true;

}

public void run() {
while (shouldrRun) {

try {
comp.repaint();
sleep(timediff);
} catch (Exception e) {}
}
}
2.5 Thread Access

Next, we'll look into several methods that show us information about specific threads.

2.5.1 The Current Thread

First, we'll examine the currentThread() method:

static Thread currentThread()
Gets the Thread object that represents the current thread of execution. The method is static
and may be called through the Thread class name.

This is a static method of the Thread class, and it simply returns a Thread object that represents the
current thread; the current thread is the thread that called the currentThread() method. The object
returned is the same Thread object first created for the current thread.

But why is this method important? The Thread object for the current thread may not be saved
anywhere, and even if it is, it may not be accessible to the called method. For example, let's look at a

class that performs socket I/O and stores the data it reads into an internal buffer. We'll show the full
implementation of this class in the next chapter, but for now, we're interested only in its interface:

page 24

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

public class
AsyncReadSocket extends Thread {
StringBuffer result;

public AsyncReadSocket(String host, int port) {
// Open a socket to the given host.
}

public void run(Q) {
// Read data from a socket into the result string buffer.

// Get the string already read from the socket so far.
// only allows "Reader" threads to execute this method.
public String getResult() {
String reader = Thread.currentThread().getName(Q);
if (reader.startswith("Reader")) {
String retval = result.toString(Q);
result = new StringBuffer();
return retval;
} else {
return "";

}
}

To retrieve the data that has been read by this class, you must call the getResult () method, but we've
coded the getrResult() method such that only reader threads are allowed actually to retrieve the
stored data. For our example, we are assuming that reader threads are threads whose names start with
"Reader." This name could have been assigned by the setName () method earlier or when the threads
are constructed. To obtain a name, we need simply to call the getName () method. However, since we
do not have the Thread object reference of the caller, we must call the currentThread() method to
obtain the reference. In this case, we are using the name of the thread, but we could just as easily have
used the thread reference for other purposes. Other uses of the thread reference could be priority
control or thread groups; these and other services are described in upcoming chapters.

Note that there is a very subtle thing going on here. The getName () method is a method of the Thread
class, and we might have called it directly in our code. That would return the name of the
AsyncReadSocket thread itself. Instead, what we're after is the name of the thread that has called the
getResult() method, which is probably not the AsyncReadSocket thread. Typically, we'd use the
AsyncReadSocket class like this:
public class
TestRead extends Thread {

AsyncReadSocket asr;

public static void main(String args[]) {

AsyncReadSocket asr = new AsyncReadSocket("myhost", 6001);

asr.start(Q;
new TestRead(asr).start();

public TestRead(AsyncReadSocket asr) {
super("ReaderThread");
this.asr = asr;

}

public void run() {]
// Do some other processing, and allow asr to read data.
System.out.printin("Data is " + asr.getResult());

}

There are three threads of interest to us in this example: the thread that the virtual machine started
for us that is executing the main() method, the asr thread, and the TestRead thread. Since the
TestRead thread is executing the getResult() method, it will actually receive the data, as its name
begins with "Reader." If another thread in this example were to call the getResult() method, it
would receive merely an empty string.

This can be a common source of confusion: methods in subclasses of the thread class may be executed
by the thread object itself, or they may - like the get-Result() method in this example - be executed

by another thread object. Don't assume that the code in a thread object is only being executed by the
specific thread that the object represents.

page 25

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

2.5.2 Enumerating Threads in the Virtual Machine

Also provided with the Thread class are methods that allow you to obtain a list of all the threads in the
program:

static int enumerate(Thread threadArray[])

Gets all the thread objects of the program and stores the result into the thread array. The
value returned is the number of thread objects stored into the array. The method is static and
may be called through the Thread class name.

static int activeCount()

Returns the number of threads in the program. The method is static and may be called
through the Thread class name.

This list is retrieved with the enumerate () method. The developer simply needs to create a Thread
array and pass it as a parameter. The enumerate () method stores the thread references into the array
and returns the number of thread objects stored; this number is the size of the array parameter or the
number of threads in the program, whichever is smaller.

In order to size the array for the enumerate () method, we need to determine the number of threads in
the program. The activecount() method can determine the number of threads and size the thread
array accordingly. For example, we could add a support method to our Animate applet that prints all
the threads in the applet, as follows:

import java.applet.*;

import java.awt.*;

public class

Animate extends Applet {
// Instance variables and methods not shown

public void printThreads() {
Thread ta[] = new Thread[Thread.activeCount()];
int n = Thread.enumerate(ta);
for (int i = 0; i < n; i++) {
System.out.printin("Thread " + i + " is " +
ta[i].getName());

}
}

In this example, we are instantiating a Thread array; the size of the array is determined by the
activecount() method of the Thread class. Once we have an active count, we call the enumerate()
method to obtain references to all the thread objects in our applet. In the rest of the method, we
simply print the name assigned to each thread by calling the getName() method on the thread
reference.

Trivia: When Is a Thread Active?

When is a thread active? At first glance, this seems to be a simple question. Using the
isATive () method, a thread is considered alive during the period between the call to the
start() method and a short time period after the stop () method is called. We might
consider a thread active if it is alive.

However, if the definition of an active thread is a thread whose thread reference appears in
the active count returned by the activecount () method, we would have a different
definition of active. A thread reference first appears in the thread array returned by the
enumerate () method, and is counted by the activecount () method, when the thread
object is first constructed and not when the thread is started.

The thread is removed from the thread array either when the thread is stopped or when the
run() method has completed. This means that if a thread object is constructed but is not
started, the thread object will not be removed from the enumeration list, even if the original
reference to the object is lost.

page 26

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Note that we've been careful in this section to say "all the threads in the program" rather than "all the
threads in the virtual machine." That's because at the level of the Thread class, the enumerate()
method shows us only the threads that our program has created, plus (possibly) the main and GUI
threads of an application or applet that the virtual machine has created for us. It will not show us
other threads of the virtual machine (e.g., the garbage collection thread), and in an applet, it will not
show us other threads in other applets. We'll see how to examine all these other threads in Chapter 10.

2.6 More on Starting, Stopping, and Joining

Consider this revision to the Animate example:
import java.applet.Applet;

public class
Animate extends Applet {
TimerThread t;
public void start() {
if (t == null)
t = new TimerThread(this, 500);
t.start(Q);

public void stop() {
t.shouldRun = false;
try {
t.joinQ);
} catch (InterruptedeException e) {}
// t = null;

}

In our last version of the Animate applet (see Section 2.3," earlier in this chapter), the start()
method of the applet created a new TimerThread object and started it. But what if we had only created
the TimerThread once? In the example just shown, we once again create a new TimerThread in the
start() method of the applet; however, since we know the thread will be stopped in the stop()
method, we try to restart the stopped thread in the start() method. In other words, we create the
TimerThread only once and use this one thread object to start and stop the animation. By starting and
stopping a single TimerThread, we do not need to create a new instance of TimerThread every time
the applet is started, and the garbage collector will not need to clean up the TimerThread instance
that's left when the applet is stopped and the TimerThread dereferenced.

But will this work? Unfortunately, the answer is no. It turns out that when a thread is stopped, the
state of the thread object is set so that it is not restartable. In our case, when we try to restart the
thread by calling the TimerThread's start() method, nothing happens. The start() method won't
return an exception condition, but the run () method also won't be called. The isAT1ive () method also
won't return true. In other words, never restart a thread. An instance of a thread object should be
used once and only once.

More Details for Restarting a Thread

What happens when you try to restart a thread? The answer is that it actually depends on
when you restart it. When the stop () method is called on a thread (or the thread exits its
run() method), it actually takes time for the thread to stop. Hence, what happens when the
start() method is called depends on a race condition . (Race conditions are discussed
more fully in Chapter 3.)

If the start () method is called before the stopping thread actually stops, an error
condition exists, and an exception will be thrown. The same is true if you call start() on a
thread object that has not been stopped.

If the start() method is called after the stopping thread has actually stopped, nothing
happens: the thread object is in a state where it cannot be restarted.

page 27

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Can an already stopped thread be stopped? At first glance, this may seem an odd question. But the
answer is yes, and the reason is that it avoids a race condition that would occur otherwise. We know
there are two ways a thread can be stopped, so you could stop a thread that has already exited because
its run() method terminated normally. If the Thread class did not allow the stop() method to be
called on a stopped thread, this would require us to check if the thread was still running before we
stopped it, and we'd have to avoid a race condition in which the run() method could terminate in
between the time when we checked if the thread was alive and when we called the stop() method.
This would be a big burden on the Java developer, so, instead, the stop() method can be called on a
thread that has already stopped.

What happens when we call the join() method for a thread that was stopped a long time ago? In the
examples so far, we assumed the usage of the join() method was to wait for a thread to complete or
to stop. But this assumption is not necessary; if the thread is already stopped, it will return
immediately. This may seem obvious, but it should be noted that a race condition would have resulted
if the join () method had required that the thread be alive when the method was first called.

The Stopping Thread and the Garbage
Collector

The thread object, like any other object, is a candidate for garbage collection when it gets
dereferenced. As developers, we should just note that the garbage collector behaves
correctly with the threading system and not worry about the exact details. However, for
those of us who are detail-oriented, here is how the garbage collector behaves with the
threading system.

In all the examples so far, the garbage collector cannot collect the thread object even when
the thread has completed or stopped. This is because we still have a reference to the
TimerThread object after we signal it to stop. To be complete, we should manually
dereference the thread object. However, this is necessary only to free the memory that
stores the thread object. The threading system automatically releases any thread-specific
resources (including those tied to the operating system) after the thread has completed or
stopped whether or not we dereference the object.

Dereferencing a thread object for a running thread is also not a problem. The threading
system keeps references to all threads that are running in the system. This is needed in
order to support the currentThread() and enumerate () methods of the Thread class. The
garbage collector will not be able to collect the thread object until the threading system also
dereferences the object, which won't happen until the thread is no longer alive.

What would be the best way to join() with more than one thread? Let's look at the following code:
import java.applet.Applet;

public class
MyJoinApplet extends Applet {
Thread t[] = new Thread[30];
public void start() {
for (int i=0; i<30; i++) {
t[i] = new calcThread(i);
t[i].startQ;

}

public void stop() {
for (int i=0; i<30; i++) {
try {
t[i].joinQ);
} catch (InterruptedeException e) {}

page 28

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

In this example, we start 30 CalcThread objects. We have not actually defined the CalcThread class,
but for this example, we assume it is a class that is used to calculate part of a large mathematical
algorithm. In the applet's stop () method, we execute a loop waiting for all the started threads to be
finished. Is this the best way to wait for more than one thread? Since it is possible to join() with an
already stopped thread, it is perfectly okay to join() with a group of threads in a loop, even if the
threads finish in an order different than the order in which they were started. No matter how we might
have coded the join() loop, the time to complete the join() will be the time it takes for the last
thread to finish.

Of course, there may be cases where a specific joining mechanism is desired, but this depends on
details other than the threading system. There is no performance penalty to pay for joining in an order
that is not the order of completion.

2.7 Summary

Here's a list of the methods of the Thread class that we introduced in this chapter:
Thread()

Constructs a thread object using default values for all options.
Thread(Runnable target)

Constructs a new thread object associated with the given Runnable object.
Thread(String name)

Constructs a thread object with a name that is already assigned. This constructor is used when
threading by inheritance.

Thread(Runnable target, String name)

Constructs a thread object that is associated with the given Runnable object and is created
with a name that is already assigned. This constructor is used when threading by interfaces.

void run()

The method that the newly created thread will execute. Developers should override this
method with the code they want the new thread to run; we'll show the default implementation
of the run() method a little further on, but it is essentially an empty method.

void start()

Creates a new thread and executes the run() method defined in this thread class.
void stop() (deprecated in Java 2)

Terminates an already running thread.
static void sleep (long milliseconds)

Puts the currently executing thread to sleep for the specified number of milliseconds. This
method is static and may be accessed through the Thread class name.

static void sleep (long milliseconds, int nanoseconds)

Puts the currently executing thread to sleep for the specified number of milliseconds and
nanoseconds. This method is static and may be accessed through the Thread class name.

boolean isAlive()

Determines if a thread is considered alive. By definition, a thread is considered alive from
sometime before a thread is actually started to sometime after a thread is actually stopped.

void join()
Waits for the completion of the specified thread. By definition, join() returns as soon as the

thread is considered "not alive." This includes the case in which the join() method is called
on a thread that has not been started.

void join(long timeout)

Waits for the completion of the specified thread, but no longer than the timeout specified in
milliseconds. This timeout value is subject to rounding based on the capabilities of the
underlying platform.

page 29

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

void join(long timeout, int nanos)

Waits for the completion of the specified thread, but no longer than a timeout specified in
milliseconds and nanoseconds. This timeout value is subject to rounding based on the
capabilities of the underlying platform.

void setName(String name)

Assigns a name to the Thread instance.
String getName()

Gets the name of the Thread instance.
static Thread currentThread()

Gets the Thread object that represents the current thread of execution. The method is static
and may be called through the Thread class name.

static int enumerate(Thread threadArray/])

Gets all the thread objects of the program and stores the result into the thread array. The
value returned is the number of thread objects stored into the array. The method is static and
may be called through the Thread class name.

static int activeCount()
Returns the number of threads in the program. The method is static and may be called
through the Thread class name.

In this chapter, we have had our first taste of creating, starting, and stopping threads. This is achieved
through the methods of the Thread class, which also contains methods that allow us to examine the
status of threads, the names of threads, and the threads that our program is using. This provides us
with the basics for writing simple, independent threads.

However, there are other issues that must be dealt with when it comes to threads: most notably, that
communication between the individual threads must avoid the race conditions we outlined. This issue
of communication, or synchronization, will be discussed in the next chapter.

page 30

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Chapter 3. Synchronization Techniques

In the previous chapter, we covered a lot of ground: we examined how to create and start threads, how
to arrange for them to terminate, how to name them, how to monitor their life cycles, and so on. In the
examples of that chapter, however, the threads that we examined were more or less independent: they
did not need to share any data between them.

In this chapter, we look at the issue of sharing data between threads. Sharing data between threads is
often hampered due to what is known as a race condition between the threads attempting to access
the same data more or less simultaneously. In this chapter, we'll look at the concept of a race
condition as well as examining a mechanism that solves race conditions. We will see how this
mechanism can be used not only to coordinate access to data, but also for many problems in which
synchronization is needed between threads. Before we start, let's introduce a few concepts.

3.1 A Banking Example
As an application designer for a major bank, we are assigned to the development team for the
automated teller machine (ATM). As our first assignment, we are given the task of designing and

implementing the routine that allows a user to withdraw cash from the ATM. A first and simple
attempt at an algorithm may be as follows (see Figure 3.1 for the flow chart):

1. Check to make sure that the user has enough cash in the bank account to allow the withdrawal
to occur. If the user does not, then go to step 4.

2. Subtract the amount withdrawn from the user's account.
3. Dispense the cash from the teller machine to the user.
4. Print a receipt for the user.

Figure 3.1. Algorithm flow chart for ATM withdrawal

Steart

Deduct Amouni =—————pe Dispense Cosh Primt Receipt

Given this very simple algorithm, an implementation may be as follows:

public class
AutomatedTellerMachine extends Teller {
public void withdraw(float amount) {
Account a = getAccount();
if (a.deduct(amount))
dispense(amount);
printReceipt();

}
public class Account {
private float total;
public boolean deduct(float t) {
if (t <= total) {
total -= t;
return true;

return false;

page 31

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Of course, we are assuming that the Teller class and the getAccount(), dispense(), and
printReceipt() methods have already been implemented. For our purposes, we are simply
examining this algorithm at a high level, so these methods will not be implemented here.

During our testing, we run a few simple and short tests of the routine. These tests involve withdrawing
some cash. In certain cases, we withdraw a small amount. In other cases, we withdraw a large amount.
We withdraw with enough cash in the account to cover the transaction, and we withdraw without
enough cash in the account to cover the transaction. In each case, the code works as desired. Being
proud of our routine, we send it to a local branch for beta testing.

As it turns out, it is possible for two people to have access to the same account (e.g., a joint account).
One day, a husband and wife both decide to empty the same account, and purely by chance, they
empty the account at the same time. We now have a race condition: if the two users withdraw from the
bank at the same time, causing the methods to be called at the same time, it is possible for the two
ATMs to confirm that the account has enough cash and dispense it to both parties. In effect, the two
users are causing two threads to access the account database at the same time.

Definition: Atomic

The term atomic is related to the atom, once considered the smallest possible unit of
matter, unable to be broken into separate parts. When a routine is considered atomic, it
cannot be interrupted during its execution. This can either be accomplished in hardware or
simulated in software. In general, atomic instructions are provided in hardware that is used
to implement atomic routines in software.

In our case, we define an atomic routine as one that can't be found in an intermediate state.
In our banking example, if the acts of "checking on the account" and "changing the account
status" were atomic, it would not be possible for another thread to check on the same
account until the first thread had finished changing the account status.

There is a race condition because the action of checking the account and changing the account status
is not atomic. Here we have the husband thread and the wife thread competing for the account:

1. The husband thread begins to execute the deduct () method.

2. The husband thread confirms that the amount to deduct is less than or equal to the total in the
account.

3. The wife thread begins to execute the deduct () method.

4. The wife thread confirms that the amount to deduct is less than or equal to the total in the
account.

5. The wife thread performs the subtraction statement to deduct the amount, returns true, and
the ATM dispenses her cash.

6. The husband thread performs the subtraction statement to deduct the amount, returns true,
and the ATM dispenses his cash.

page 32

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

The Java specification provides certain mechanisms that deal specifically with this problem. The Java
language provides the synchronized keyword; in comparison with other threading systems, this
keyword allows the programmer access to a resource that is very similar to a mutex lock. For our
purposes, it simply prevents two or more threads from calling our deduct () method at the same time:

public class Account {

private float total;
public synchronized boolean deduct(float t) {
if (t <= total) {
total -= t;
return true;

return false;

}

By declaring the method as synchronized, if two users decide to withdraw cash from the ATM at the
same time, the first user executes the deduct () method while the second user waits until the first user
completes the deduct () method. Since only one user may execute the deduct () method at a time, the
race condition is eliminated.

Definition: Mutex Lock

A mutex lock is also known as a mutually exclusive lock. This type of lock is provided by
many threading systems as a means of synchronization. Basically, it is only possible for one
thread to grab a mutex at a time: if two threads try to grab a mutex, only one succeeds. The
other thread has to wait until the first thread releases the lock; it can then grab the lock and
continue operation.

With Java, there is a lock created in every object in the system. When a method is declared
synchronized, the executing thread must grab the lock assigned to the object before it can
continue. Upon completion of the method, the mechanism automatically releases the lock.

Under the covers, the concept of synchronization is simple: when a method is declared as
synchronized, it must have a token, which we call a lock. Once the method has acquired this lock (we
may also say the lock has been checked out or grabbed), it executes the method and releases (we may
also say returns) the lock once the method is finished. No matter how the method returns—including
via an exception—the lock is released. There is only one lock per object, so if two separate threads try
to call synchronized methods of the same object, only one can execute the method immediately; the
other thread has to wait until the first thread releases the lock before it can execute the method.

3.2 Reading Data Asynchronously

Let's look at a complete example. One of the primary uses for threads within a Java program is to read
data asynchronously. In this section, we'll develop a class to read a network socket asynchronously.

Why is threading important for I/0? Whether you are reading from or writing to a file or network
socket, a common problem exists, namely, that the action of reading or writing depends on other
resources. These resources may be other programs; they may be hardware, like the disk or the
network; they may be the operating system or browser. These resources may become temporarily
unavailable for a variety of reasons: reading from a network socket may involve waiting until the data
is available, writing large amounts of data to a file may take a long period of time to complete if the
disk is busy with other requests, and so on. Unfortunately, the mechanism to check whether these
resources are available does not exist in the Java API. This is particularly a problem for network
sockets, where data is likely to take a long time to be transmitted over the network; it is possible for a
read from a network socket to wait forever.

page 33

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Why Asynchronous I/0?

The driving force behind asynchronous I/O is to allow the program to continue to do
something useful while it is waiting for data to arrive. If I/O is not asynchronous and not
running in a thread separate from the applet thread, we run into the problems we discussed
in the previous chapter: mouse and keyboard events will be delayed, and the program will
appear to be unresponsive to the user while the I/O completes.

The InputStream class does contain the available() method. However, not all input streams support
that method, and on a slow network, writing data to a socket is also likely to take a long time. In
general, checking for data via the available() method is much less efficient (and much harder to
program) than creating a new thread to read the data.

The solution to this problem is to use another thread. Say that we use this new thread in an applet:
since this new thread is independent of the applet thread, it can block without hanging the applet. Of
course, this causes a new problem: when this thread finally is able to read the data, this data must be
returned to the applet thread. Let's take a look at a possible implementation of a generic socket reader
class that will read the socket from another thread:

import java.io.*;
import java.net.*;

public class

AsyncReadSocket extends Thread {
private Socket s;
private StringBuffer result;

public AsyncReadSocket(Socket s) {
this.s = s;
result = new StringBuffer();

public void run() {
DataInputStream is = null;
try {
is = new DataInputStream(s.getInputStream());
} catch (Exception e) {}
while (true) {

try {
char c = is.readchar(Q;
appendResult(c);

} catch (Exception e) {}
}

// Get the string already read from the socket so far.
// This method 1is used by the Applet thread to obtain the data
// in a synchronous manner.
public synchronized String getResult() {
String retval = result.toString();
result = new StringBuffer();
return retval;

// Put new data into the buffer to be returned

// by the getResult method.

public synchronized void appendResult(char c) {
result.append(c);

page 34

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Here we have a Thread class, AsyncReadSocket, whose run() method reads characters from a socket.
Whenever it gets any characters, it adds them to the StringBuffer result. If this thread hangs while
reading the socket, it has no effect on any other threads in the program. An applet can call the
getResult() method to get any data that has been received by this new thread; if no data is available,
the getResult() method returns an empty string. And if the applet thread is off doing some other
tasks, this socket thread simply accumulates the characters for the applet thread. In other words, the
socket thread stores the data it receives at any time, while the applet thread can call the getrResuTt()
method at any time without the worry of blocking or losing data. An actual run of the two threads may
look like the diagram in Figure 3.2.

Figure 3.2. Possible time/location graph during a sample execution of the applet

4
Socket fhread
blocked | | | | | | |

E Sockel threod
"E reading inte result
S ot threod
colling getRasult{)

Hpgle! thread o

duing other fosks -

-
é Time

One of the attractions of threaded programming is that it is simple to write many small, independent
tasks, and that's just what we've done here. And since these small tasks are contained in one program,
communication between the tasks (the threads) is as simple as communication between two methods
in a single program. We just need a common reference somewhere that both threads can access. That
"somewhere," in this case, is the result instance variable.

Note that we could not have written this class correctly without using the synchronized keyword to
protect the socket thread and the applet thread from accessing the result buffer at the same time.
Otherwise, we would have had a race condition. Specifically, if the getrResuTt () and appendresult()
methods were not synchronized, we could see this behavior:

1. The applet thread enters the getResult () method.

2. The applet thread assigns retval to a new string created from the result StringBuffer.

3. The socket thread returns from the readchar () method.

4. The socket thread calls the appendresult() method to append the character to the result
StringBuffer.

5. The applet thread assigns result to a new (empty) StringBuffer.
The data that was appended to the StringBuffer in step 4 is now lost: it wasn't retrieved by the applet
thread at step 2, and the applet thread discards the old StringBuffer in step 5. Note that there is
another race condition here: if two separate threads call the getResult() method at the same time,
they could both get copies of the same data from the StringBuffer, and that data would be processed
twice.

When all actions on the result variable are atomic, our race condition problem is solved. We need
only ensure that the result variable is accessed only in methods that are synchronized.

page 35

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

When Is a Race Condition a Problem?

A race condition occurs when the order of execution of two or more threads may affect
some variable or outcome in the program. It may turn out that all the different possible
thread orderings have the same final effect on the application: the effect caused by the race
condition may be insignificant, and may not even be relevant. For example, a character lost
in the AsyncReadSocket may not affect the final outcome of the program. Alternately, the
timing of the threading system may be such that the race condition never manifests itself,
despite the fact that it exists in the code.

A race condition is a problem that is waiting to happen. Simple changes in the algorithm
can cause race conditions to manifest themselves in problematic ways. And, since different
virtual machines will have different orderings of thread execution, the developer should
never let a race condition exist even if it is currently not causing a problem on the
development system.

At this point, we may have introduced more questions than answers. So before we continue, let's try to
answer some of these questions.

How does synchronizing two different methods prevent the two threads calling those methods from
stepping on each other? As stated earlier, synchronizing a method has the effect of serializing access
to the method. This means that it is not possible to execute the same method in another thread while
the method is already running. However, the implementation of this mechanism is done by a lock that
is assigned to the object itself. The reason another thread cannot execute the same method at the same
time is that the method requires the lock that is already held by the first thread. If two different
synchronized methods of the same object are called, they also behave in the same fashion because they
both require the lock of the same object, and it is not possible for both methods to grab the lock at the
same time. In other words, even if two or more methods are involved, they will never be run in parallel
in separate threads. This is illustrated in Figure 3.3: when thread 1 and thread 2 attempt to acquire the
same lock (L1), thread 2 must wait until thread 1 releases the lock before it can continue to execute.

Figure 3.3. Acquiring and releasing a lock

Thread | Thread 2

Time (H

&

AV

of’

e Fiarivhle Thread
sesess Waiting Thread

The point to remember here is that the lock is based on a specific object and not on any particular
method. Assume that we have two AsyncReadSocket objects called a and b that have been created in
separate threads. One thread executes the a.getrResult () method while the other thread executes the
b.getrResult() method. These two methods can execute in parallel because the call to a.get-
Result() grabs the object lock associated with the instance variable a, and the call to b.getResuTt()
grabs the object lock associated with the instance variable b. Since the two objects are different
objects, two different locks are grabbed by the two threads: neither thread has to wait for the other.

page 36

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Why do we need the appendResult() method? Couldn't we simply put that code into the run() method
and synchronize the run() method? We could do that, but the result would be disastrous. Every lock
has an associated scope; that is, the amount of code for which the lock is valid. Synchronizing the
run() method creates a scope that is too large and prevents other methods from being run at all.

Definition: Scope of a Lock

The scope of a lock is defined as the period of time between when the lock is grabbed and
released. In our examples so far, we have used only synchronized methods; this means that
the scope of these locks is the period of time it takes to execute these methods. This is
referred to as method scope.

Later in this chapter, we'll examine locks that apply to any block of code inside a method or
that can be explicitly grabbed and released; these locks have a different scope. We'll
examine this concept of scope as locks of various types are introduced.

The scope of the run() method is infinite, since the run() method executes an infinite loop. If both
the run() method and getresult() method are synchronized, they cannot run in parallel in separate
threads. Since the run() method has the task of opening the network socket and reading all the data
from the socket until the connection is closed, it would need the object lock until the connection is
closed. This means that while the connection is open, it would not be possible to execute the
getResult() method. This is not the desired effect for a class that is supposed to read the data
asynchronously.

How does a synchronized method behave in conjunction with a nonsynchronized method? Simply
put, a synchronized method tries to grab the object lock, and a nonsynchronized method doesn't. This
means it is possible for many nonsynchronized methods to run in parallel with a synchronized
method. Only one synchronized method runs at a time.

Synchronizing a method just means the lock is grabbed when that method executes. It is the
developer's responsibility to ensure that the correct methods are synchronized. Forgetting to
synchronize a method can cause a race condition: if we had synchronized only the getresult()
method of the AsyncReadSocket class and had forgotten to synchronize the appendresult() method,
we would not have solved the race condition, since any thread could call the appendresult() method
while the getResult () method was executing.

3.3 A Class to Perform Synchronization

Why do we need a new keyword to solve a race condition? Could we reengineer our algorithms so
that race conditions do not exist? Let's see if we can reengineer the AsyncReadSocket class not to have
a race condition by using trial and error (obviously not the best programming technique, but one that
is useful for our purposes). We'll conclude that it is impossible to solve a race condition without direct
support from the virtual machine, because everything that we might try requires two operations:
testing and setting variable. Without some process in the virtual machine to ensure that nothing
happens to the variable after it is tested and before it is set, a race condition can occur. But the
investigation into a possible way to avoid the race condition will provide us with an important tool for
our later use—the BusyFlag class.

At first glance, the easiest way to make sure that the two threads do not try to change the result
variable, or any buffer at the same time, is to use the concept of a busy flag: if a thread needs to access
the result variable, it must set the flag to busy. If the flag is already busy, the thread must wait until
the flag is free, at which point it must set the flag to busy. The thread is then free to access the buffer
without fear of it being accessed by the other thread. Once the task is completed, the thread must set
the flag to not busy.

page 37

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Java Threads, 2nd edition

Why Have the BusyFlag Class at All?

Fixing race conditions using the BusyFlag class seems more like an academic exercise at
this moment: why would you then want to use the BusyFlag class in place of the
synchronization mechanism?

For all the cases encountered so far, we wouldn't. In other cases, one of the answers lies in
the scope of the lock: the synchronization mechanism does not allow us to lock code at
certain scopes. We will encounter cases where the scope of the lock cannot be solved by the
synchronized mechanism. In addition, the concepts of the BusyFlag class will be useful to
implement other mechanisms that we'll be exploring throughout the rest of this book.

Here's a possible implementation of the busy flag:

public class BusyFlag {
protected Thread busyflag = null;

public void getBusyFlag () {
while (busyflag != Thread.currentThread()) {
if (busyflag == null)
busyflag = Thread.currentThread();

try {
Thread.sleep(100);
} catch (Exception e) {}

3

public void freeBusyFlag () {
if (busyflag == Thread.currentThread()) {
busyflag = null;

3
}

This BusyFlag class contains two methods. The method getBusyFlag() sits in a loop until it is able to
set the busyflag to the current thread. As long as the busyflag is set to another thread, our thread
waits for 100 milliseconds. As soon as the flag is set to nu11, our thread sets it to the current thread.
The other method, freeBusyFlag() , frees the flag by setting it back to nul11. This implementation
seems to solve the problem simply and elegantly. But it does not.

Why do we need to sleep for 100 milliseconds? Because there seems to be no way to detect changes in
the flag without a polling loop. However, a p